
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science
Bachelor’s Program in Computer Science

Bachelor’s Thesis

Multi-User Tracking
in Instrumented Rooms

submitted by
Henning Lars Zimmer

on 10th November 2006

Supervisor
Prof. Dr. Dr. h.c. mult. Wolfgang Wahlster

Advisor
Dipl.-Inform. Michael Schmitz

Reviewers
Prof. Dr. Dr. h.c. mult. Wolfgang Wahlster

Prof. Dr. Joachim Weickert

Statement

Hereby I confirm that this thesis is my own work and that I have docu-
mented all sources used.

Saarbrücken, 10th November 2006

Acknowledgments

First of all I have to thank Prof. Wolfgang Wahlster for giving me the opportunity to
write this thesis in his research project BAIR (BenutzerAdaption in Instrumentierten
Räumen, User Adaptation in Instrumented Rooms).

In this context I am also much obliged to my advisor Dipl.-Inform. Michael Schmitz
who helped me a lot with any problem I had and gave me really interesting ideas and
inspirations.

I am also very thankful to all the nice people at our chair for providing me with a
nice working atmosphere and being kind and helpful all the time.

Of course, I also have to thank Prof. Dr. Joachim Weickert for being so kind and
accepting my request to be my second reviewer and for sparking my interest in Com-
puter Vision.

Last but not least, I have to express my special thanks to my friends and family for
their continuous support.

Abstract

In the ubiquitous computing (ubicomp) vision, one persues the idea of equipping ev-
eryday objects with computational abilities, i.e., one integrates computation into the
environment of persons. This encompasses intelligent objects, displays and so on. An
example of such an environment, an instrumented room, is available to us in our lab.

One open problem in such environments is multi-user distinction, as normally there
is more than one person in such an environment, especially in a public room. This
actually offers a problem, because associating interactions with devices or objects to
a certain user is difficult, or even not possible in this case. On the other hand such
an association is crucial for intelligent, personalized services, which may base on an
interaction-history.
One existing approach is to require users to carry personalized devices like a PDA or a
mobile phone, which are used to carry out interactions.

Our idea is to use a visual approach, decreasing the instrumentation of users by in-
creasing the instrumentation of the environment, which is in our case the instrumented
room. We use quite complex sensors, namely cameras, which offer a lot of informations,
but are quite challenging to analyze. Therefore, we split our ’problem-space’ in a macro-
and a micro-space with a final fusion of results. The macro-space comprises the whole
room, i.e., all persons and their position, whereas the micro-space deals with special
areas of interest and gives detailled informations about the actions of persons in it.
The technique we are actually using is a Computer Vision tracking technique, allowing
us to track movements of persons (users) in image sequences obtained by our cameras.
Together with homography estimations and skin detection, we will be able to determine
how many persons are in the room (tracking), where, approximately, the persons are
located (homography) and who interacts with devices (skin-detection) by reaching to-
wards or grasping them.
This approach helps us to do a visual multi-user distinction and an assignment of inter-
actions with devices to users in the environment, which solves the problem mentioned
above.

Zusammenfassung

In der Ubiquitous Computing Vision (ubicomp, zu Deutsch: allgegenwärtige Compu-
tertechnik), verfolgt man die Idee alltägliche Objekte mit komputionalen Fähigkeiten
auszustatten, d.h., man integriert Informationsverarbeitung in die Umgebung von Per-
sonen. Dies umfasst intelligente Objekte, Displays usw.. Solch eine Umgebung, ein in-
strumentierter Raum, steht uns in unserem Labor zur Verfügung.

Ein offenes Problem in solchen Umgebungen ist die Mehrbenutzer-Unterscheidung, da
sich normalerweise mehr als eine Person in einer solchen Umgebung befinden wird,
vor allem wenn man es mit einem öffentlichen Raum zu tun hat. Dies ist in der Tat
ein Problem, weil die Zuordnung von Interaktionen mit Geräten oder Objekten zu ei-
nem bestimmten Benutzer schwierig, oder sogar unmöglich ist. Andererseits sind sol-
che Zuordnungen lebensnotwendig für intelligente, personalisierte Dienste, die auf einer
Interaktions-Historie basieren.
Ein existierender Ansatz sieht es vor, dass Benutzer personalisierte Geräte, wie einen
PDA oder ein Mobiltelefon bei sich tragen müssen, welche dann benutzt werden um
Interaktionen auszuführen.

Unsere Idee ist es nun eine visuellen Ansatz zu wählen, welcher die Instrumentierung
der Benutzer verringert, indem man die Instrumentierung des Raumes erweitert. Wir
benutzen sehr komplexe Sensoren, nämlich Kameras, welche viele Informationen bieten,
aber auch schwer auszuwerten sind. Deshalb teilen wir unseren Problemraum in einen
Makro- und einen Mikroraum auf und vereinigen die Ergebnisse am Ende. Der Makro-
raum umfasst die ganze Umgebung, d.h. alle Personen und ihr Positionen, wohingegen
der Mikroraum sich mit speziellen, interessanten Teilen unserer Umgebung befasst und
detaillierte Informationen über Aktionen der Benutzer darin gibt.
Die Technik die wir hierzu benutzen ist eine Computer Vision Tracking (Verfolgungs-
) Technik, die es uns erlaubt die Bewegungen von Personen (Benutzern) in Bilderse-
quenzen unserer Kameras zu verfolgen. Zusammen mit Homographie Schätzungen und
Hauterkennung, werden wir in der Lage sein zu bestimmen wie viele Personen im Raum
sind (Tracking), wo sie sich ungefähr befinden (Homographie) und wer mit welchem
Gerät interagiert, indem er zu ihm zeigt oder nach ihm greift (Hauterkennung).
Dieser Ansatz erlaubt es uns eine visuelle Mehrbenutzer Unterscheidung und eine Zuord-
nung von Interaktionen mit Geräten zu Benutzern der Umgebung zuzuordnen, welches
das beschriebene Problem löst.

Contents

1 Introduction 7
1.1 Issues Addressed . 7
1.2 What is Tracking . 8
1.3 Requirements . 9
1.4 Organization . 10

2 Related Work 11
2.1 Person Tracker . 11

2.1.1 RPT . 11
2.1.2 Tracking Groups of People . 12
2.1.3 W4 / W4S . 13
2.1.4 EasyLiving . 14

2.2 Comparison to MaMUT . 15
2.2.1 Similar Approaches . 15
2.2.2 Comparison of Features . 15

3 Theoretical Background 17
3.1 Syntax . 18
3.2 Person Tracking . 19

3.2.1 Motion Detection . 19
3.2.2 Region Tracking . 25

3.3 Homography . 29
3.3.1 Idea . 29
3.3.2 Approach . 29

3.4 Skin Detection . 30
3.4.1 Motivation . 30
3.4.2 Basic Idea . 30

4 System Implementation of MaMUT 35
4.1 Tools . 35

4.1.1 Intel’s Open Computer Vision Library (OpenCV) 35
4.1.2 cURL . 36

4.2 Setup . 37

3

CONTENTS

4.2.1 Room . 37
4.2.2 Input: Cameras . 37
4.2.3 Output: EventHeap . 39
4.2.4 Our Implementation . 39

4.3 Desired Results . 39
4.4 Overview . 39

4.4.1 Overview of the Implementation 40
4.5 Configuration Files . 42
4.6 Capturing: Network Cameras . 42
4.7 Person- and Skin-Region Detection . 43

4.7.1 Background Subtraction . 43
4.7.2 Filtering . 44
4.7.3 Blob Extraction . 44
4.7.4 Region Detection and Merging . 44

4.8 Person Tracking . 46
4.8.1 Actual Tracking . 47
4.8.2 Storing Tracking Results . 48

4.9 Skin Detection . 49
4.9.1 Skin Model . 49
4.9.2 Skin Probability Image and Skin Classification 49
4.9.3 Thresholding, Filtering, Discarding and Merging 50

4.10 Homography . 51
4.11 Fusion of Tracking Results . 52

4.11.1 Approach . 52
4.12 Output: EventHeap . 54

4.12.1 Tracker Events . 55

5 Conclusions and Future Work 57
5.1 Applications . 57
5.2 Conclusions . 58

5.2.1 What have we done . 58
5.2.2 What have we learned . 59
5.2.3 Problems . 60

5.3 Possible Solutions to Mentioned Problems 65
5.3.1 Other approaches to Motion Detection 65
5.3.2 Improvements to Region Tracking 67
5.3.3 Possible Improvements to Skin Detection 68
5.3.4 Other approaches to Homography Estimation 69
5.3.5 Approaches using ≥ 2 Cameras (Stereo Reconstruction) 69
5.3.6 Stereo Cameras . 70

5.4 Extensions to our System . 70
5.4.1 More Cameras . 70
5.4.2 Gesture Recognition . 71

4

CONTENTS

5.4.3 Moving Cameras . 71

A Glossary - Basics in Image Processing and Computer Vision 73

B Algorithm Details 77
B.1 Update Equation for Gaussian Mixture Model 77
B.2 DLT Algorithm . 78

B.2.1 Normalizing . 80
B.2.2 Actual DLT Algorithm . 81
B.2.3 More than 4 Point Correspondences 82

B.3 Conversion from RGB to HSV Color Space 83

C Implementation Details 85
C.1 Classes and Modules . 85
C.2 Config Files . 87

C.2.1 Example Config File . 87
C.3 Using OpenCV . 91
C.4 The Person Class . 91
C.5 The TrackingDB Class . 93
C.6 Measurements, Results and Implementation of the DLT Algorithm . . . 95

C.6.1 Measured Point Correspondences 95
C.6.2 DLT Algorithm . 96
C.6.3 Resulting Matrices H . 97

5

CONTENTS

6

Chapter 1

Introduction

In this chapter we want to present the problem we tried to solve to the reader, state
requirements we wanted to meet and shortly summarize the further organisation of this
thesis.

Preliminary Note: In this thesis, a lot of technical terms from the Computer Vision
and Image Processing world will be used. For persons familiar with this area, in most
of the cases no further explanation of this terms is necessary and would disturb the
readability of the thesis.
Nevertheless we provide short definitions of used technical terms in the appendix Glos-
sary - Basics in Image Processing (see Glossary, Appendix A), where persons not fa-
miliar with them can look them up.
We will also denote in the text which terms are defined in the Glossary.

1.1 Issues Addressed

In the context of the BAIR-project (BenutzerAdaption in Instrumentierten Räumen,
User Adaptation in Instrumented Rooms [WKB04]) of our research group, we want to
add support for multiple users interacting with devices or objects in an ubiquitous com-
puting (ubicomp) environment. In such environments, one refrains from having comput-
ers as distinct entities and integrates computation abilities into the environment. This
encompasses so called intelligent objects and devices.
Our example for such an environment is an airport scenario, including a shopping setting,
which is available to us in an instrumented room, our SUPIE lab (Saarland University
Pervasive Intelligent Environment, described in [BK]).
What we now want to know is how many persons are in the room, where they are located
and which person interacts with which device or object, e.g. with a display at a wall or
with a product in a shelf in the shop.

At the moment, we can only distinguish certain users in our environment via PDAs,

7

CHAPTER 1. INTRODUCTION

mobile phones or similar personalized devices, which have to be carried along by per-
sons and which have to be used to carry out interactions with devices in our environment.
A visual Computer Vision (CV) approach seemed to be quite fruitful to us, because it
offers a good solution to detect movement of persons and interaction of persons with
devices in an ubicomp environment without further instrumentation of our users and
devices in the environment. We ’just’ have to install several cameras, extract the needed
informations from each one and finally fuse the informations to our desired result.
In this context, we also ensue a ’come as you are’ approach, i.e., we do not force our per-
sons to wear special clothes, like colored gloves, for better detecting their hands. This, of
course, offers some additional problems, but replacing the need of some auxiliary device
by another (which may be much less expensive, actually) is not really satisfactory.
The remarks from above also answer the question why we accept the challenge of de-
veloping a CV system, i.e., a system where we try to teach a computer to ’see’, or to
be more exact, to extract semantic informations from images. This field of Computer
Science offers a lot of (yet partly unsolved) problems, like sensitivity to image noise,
dependency on many configuration parameters and so on.

The main goal addressed in this thesis is now to distinguish certain users and their
interactions with devices or objects by tracking their location, movements and actions
in images obtained by cameras. The approach we follow is to develop an extended
person tracking system, we will call MaMUT (Macro- and Micro User Tracker), and
which we develop in the context of this thesis.

1.2 What is Tracking

As mentioned, we want to realize the multi-user distinction via tracking, but what ex-
actly do we understand under this notion?
In Wikipedia we find that ’(Video) Tracking is the process of locating a moving object
[in our case: persons or their hands], or several ones in time using a camera. An algo-
rithm analyzes the video frames and outputs the location, optionally in realtime.’
In the literature, there exist several solutions for tracking persons via cameras, like
[Sie03], [MJD+00], [HHD98] or [KHM+00]. A detailed discussion of related work can be
found in the according chapter 2.
The problem hereby is that there is no best solution, every solution has its advantages
and is mainly adapted for the setting it was developed for. Examples for crucial differ-
ences are:

• Indoor versus outdoor settings

• How many persons have to be tracked

• Do we have to deal with occlusion of persons

• Does the lightning condition change distinctly

8

1.3. REQUIREMENTS

• How large is the considered area

• . . .

In our case, we will also do a distinction between macro- and micro-tracking on a room
scale. The first notion describes the tracking of persons throughout the whole room,
including a homography estimations to estimate their position. The latter describes the
tracking of hands of persons, using skin detection, in front of certain areas of interest,
like shelfs, displays and so on. This also explains why we have to use multiple cameras.
Of course, this yields the need of a fusing entity, which collects results from all cameras
and fuses them, e.g., to assign detected object interactions (micro-tracking) to persons
(macro-tracking).
To conclude this section, we want to mention that the notions of macro- and micro-
tracking are inspired from [SBB+05], where the authors talk about macro- and micro-
navigation in a shopping assistant system operating in ubicomp environments.

1.3 Requirements

The final result, the output, of our system is supposed to encompass the number of
persons, their approximate positions and the position of their hands, if they are in an
area of interest. These informations have to be made available to other applications
operating in the ubicomp environment. To reach these aims, our system has to fulfill
certain requirements, which we will now specify.

Robustness: As mentioned, the main Achilles heel of Computer Vision approaches is
robustness.
Our system will have problems if there are too many persons in the room, but
we require that it will work with a reasonable number of persons compared with
the size of the room. Furthermore, lightning conditions and parameter setting will
have a big influence on the quality of our results, but we will accept this, as this
is the usual price one has to pay when using a Computer Vision system.

Realtime: The tracking task has to be fulfilled in realtime, because we immediately
want to react to user interactions with the environment. This requirement poses
a strict boundary to the complexity of used algorithms, the capability of the
computer system and the infrastructure our tracker runs on and the size of the
images to process.

Cameras: We will restrict ourselves to the use of standard, off-the-shelf cameras, and
hence only obtain 2D information, i.e. we cannot a priori determine the exact
position of a tracked person in the room. But as we use static cameras, we can

9

CHAPTER 1. INTRODUCTION

approximate the position of tracked persons via a ground plane homography esti-
mation. A short discussion about moving, so called Pan-Tilt-Zoom (PTZ) cameras
is given in section 5.4.3.
The number of cameras is not restricted. The technical requirements of our cam-
eras encompass: LAN interface to transfer images to the computer system running
MaMUT, a frame rate of at least 10 FPS, to meet the realtime needs and a rea-
sonabe resolution. This means that on the one hand, the resolution has to be large
enough to recognize all needed details (hands, arms, . . .), but on the other hand
it has to be small enough, so it does not spoil our realtime needs.

Integration into existing infrastructure: Usually, an ubicomp environment offers
a commom communication infrastructure, where applications can post and receive
informations. Of course, our system has to be able to at least post its tracking
results to this infrastructure.

1.4 Organization

After this introductory chapter, we start to describe the background and implementa-
tion of our tracking system MaMUT.

In chapter 2, we will give references to related work and compare the presented ap-
proaches to MaMUT.

In chapter 3, we describe the theoretical background of our system, which encompasses
person tracking, homography estimation, skin detection and fusion of tracking results.

In chapter 4, we describe how we concretely implemented the theoretical ideas stated
beforehand, and finally,

in chapter 5, we shortly conclude what we have done, state problems and possible
solutions to them and mention possible extensions and enhancements to our system.

10

Chapter 2

Related Work

As one can imagine, there are also other approaches which use visual informations to
detect persons. Each has its advantages for the setting it operates in, but all in all
none could solve our special problem described in the introduction, which forced us to
develop our own system.
In the following we will present some approaches and finally do a comparison with the
features to MaMUT.

2.1 Person Tracker

2.1.1 RPT

The Reading People Tracker (RPT) was developed at the University of Reading in
England. It was developed in the context of the Ph.D. thesis [Sie03] of Nils T. Siebel,
who already published some papers on robust realtime people tracking
([SM02],[SM01b],[SM01a]).
The RPT was designed as a person tracking module for the ADVISOR-project 1, where
they built ’an integrated realtime surveillance system for use in underground stations’.
In the ADVISOR-setting it ran as just a tracking module, processing input from an external
video capturing module with a motion detector (see section 3.2.1), but it also has an
integrated motion detector and the possibility to directly feed images into the system,
so it also runs as a stand-alone program.
One nice approach of the RPT is the splitting of problems into smaller parts and solving
them by (communicating) modules (divide and conquer).
The main features of the RPT are the following:

• It is a finished and tested project and operates in realtime under real-world con-
ditions.

1Annotated Digital Video for Intelligent Surveillance and Optimised Retrevial, EU project code
IST-1999-11287, http://www-sop.inria.fr/orion/ADVISOR/

11

CHAPTER 2. RELATED WORK

Figure 2.1: The Reading People Tracker with tracked outline shapes [SM02].

• It was designed to be integrated into a bigger surveillance system.

• It uses a sophisticated person model to distinguish persons from other ’moving’
objects, like opened doors and so on.

• The images are filtered, so that we can deal with noisy images up to a certain
degree.

2.1.2 Tracking Groups of People

S.J. McKenna et al. develop in their paper [MJD+00] a quite sophisticated tracking
system (TGOP), which can operate in an indoor as well as in an outdoor setting and
can handle occlusion of persons via a depth ordering estimation.
The robustness is mainly achieved by using the RGB color information in probabilistic
models and some interesting approaches to track persons that come together to form
groups, eventually occluding each other, and split again.
Furthermore, simple interactions with objects can be detected, based on the (very)
simple idea that carried objects that are dropped will give rise to new (small) regions,
detectable by the motion detector. This part is also one of the highlights of this work, as
it uses an adaptive background model (see 3.2.1), incorporating changes in the first-order
image gradients (see Glossary, Appendix A) and chromaticity. This helps to overcome
problems with shadows.
This tracker uses a very simple person model mainly based on color models (color
histograms), which can make it difficult to delinate persons from other moving objects.

12

2.1. PERSON TRACKER

Figure 2.2: The TGOP tracker: Tracking people as they form groups and separate again
[MJD+00].

Also the tracking part is quite simple and bases on matching overlapping bounding
boxes of persons for tracking them.

2.1.3 W4 / W4S

Figure 2.3: The W4 tracker with detected body parts [HHD00].

Haritaoglu et al. present in their paper [HHD00] a very interesting approach for
tracking persons and their body parts, like head, hands, torso and feet without skin
detection.

13

CHAPTER 2. RELATED WORK

They use dynamic models of the human body to answer questions who is doing what,
where and when in an outdoor environment, hence the name W4.
Another important fact is that W4 relies on monochromatic images, i.e., does not use
color information, as for pure person tracking this is not needed.
W4 suffers from the problem to track persons through occlusions by static objects or
other persons. To overcome this, the authors invented W4S [HHD98], which incorporates
a realtime stereo system (SVM). Now, the authors could track persons in 21

2
D, as SVM

does not really gives you 3D information. But the data of SVM is enough to robustify
the W4 tracking system to deal with sudden illumination changes, occlusions, merging
and splitting of person groups, operating on a dual Pentium PC.

2.1.4 EasyLiving

Figure 2.4: The intelligent environment of the EasyLiving-Tracker [KHM+00].

In [KHM+00] the authors develop a really sophisticated person tracking system for
Microsoft’s intelligent ubicomp environment, called ’EasyLiving’.
The main thing to mention here is that very expensive stereo cameras are used, which
offer 3D informations without any further computing effort by the tracker. So, a ho-
mography estimation is not needed and the depth information will be more accurate
then any estimate by a homography could be.
Furthermore, a statistical background model is also used, like in [MJD+00]. Here, sets
of blobs (clusters) belonging to one person (see section 3.2.1) are extracted via a sophis-
ticated algorithm, working on a graph where blobs are nodes and arcs are labelled with
the distance between two blob centroids. This algorithm extracts the best clustering of

14

2.2. COMPARISON TO MAMUT

blobs, where each cluster corresponds to one person.
Another nice feature is that also here, color information, to be more exact color his-
tograms, are used to maintain the identity of persons if they become occluded or leave
the view of the camera.

2.2 Comparison to MaMUT

To conclude this chapter we want to summarize which ideas we could adapt and which
we could not use while developing MaMUT. Finally, we give a tabularly comparison
of features of the approaches presented in this chapter and the features of our system,
MaMUT.

2.2.1 Similar Approaches

The RPT uses a nice divide and conquer strategy to distribute tasks to different modules
with subsequent fusion, an idea which we considered to be useful for fusion of results
from macro- and micro-tracking.

The TGOP -tracker gave rise to quite some ideas for our system, like the statistical back-
ground model, the region merging idea, the simple person models (color histograms) and
the region tracking part (overlapping bounding boxes).

W4S uses a stereo vision system, which we judged to be too expensive for MaMUT. On
the other hand the idea of tracking body parts influenced our micro-tracking approach.

Also in Easyliving, expensive stereo cameras are used, but the clustering of person
blobs inspired our clustering of hand regions, as described in section 4.11.1.

Finally, we had to realize that no system does person tracking, detection of body parts
and fusion of results as we wanted and needed it, therefore we decided to accept the
challenge of developing a tracking system ’from scratch’, which was also supported by
the fact that except for the RPT, no source code is available for the mentioned trackers.

2.2.2 Comparison of Features

As promised, we will now list features of presented trackers and compare them to Ma-
MUT.

15

CHAPTER 2. RELATED WORK

RPT TGOP W4S EasyLiving MaMUT

Runs with off-the-shelf PC-hardware x x x
Uses off-the-shelf cameras n/a x
Incorporates more than 1 camera x x x
Uses a sophisticated background model x x x x
Uses homography estimations x
Tracks body parts x x
Detects interaction with objects x x x
Does skin detection x
Incorporates color person models x x x
Fusion of results from multiple cameras x x x

Table 2.1: Comparing features of related work to MaMUT.

16

Chapter 3

Theoretical Background

In this chapter we want to present the theoretical background needed to understand the
implementation of our system.

Section 3.1 fixes the syntax we will use to formally talk about Computer Vision tasks.
Section 3.2 describes the tracking of persons, including background subtraction to ini-
tially detect movement in images, followed by blob extraction and region detection to
detect regions (bounding box rectangles) encompassing moving persons.
Section 3.3 deals with the homography estimations we used to approximate the posi-
tion of persons in the ubicomp environment, our small instrumented room, by mapping
image coordinates to coordinates on the ground-plane, the floor, of our room, and finally
Section 3.4 will introduce our approach for detecting skin pixels in images from micro-
tracking, based on histogram back projection.

17

CHAPTER 3. THEORETICAL BACKGROUND

3.1 Syntax

Before we can dive into detail, we need to fix a syntax which we can use to formally talk
about Computer Vision problems.

Most of the time we will have to deal with RGB color images. In general, we con-
sider a RGB color image as a tuple f = (f, width, height), with a function f : Ω −→ R
and dimensions f .width and f .height.
Here, Ω is the image domain, usually a rectangle with width (x-dimension) f .width
and height (y-dimension) f .height, so (x, y) ∈ Ω ⊆ R2, if and only if x < f .width and
y < f .height.
The co-domain is R3, representing the three color channels red, green and blue, so
(r, g, b) ∈ R3.

To make such images representable in a computer, of course we have to discretize the
infinite domain (sampling) and co-domain (quantizing) of f . This yields a discrete RGB
color image f , which is represented as a function f : N2 −→ N3, or to be more exact if
we have a 1-byte coding of our three color channels:

f : [0, f .width− 1]× [0, f .height− 1] −→ [0, 255]3.

Every single pair (x, y) is called a pixel of f and every function value f(x, y) ∈ [0, 255]3

is called color value of pixel (x, y).
For convenience, we will write f(x, y) instead of f(x, y), to make it easier to distinguish
between images and other things.

Sometimes we have to deal with greyscale images. Here, pixels just have one grey-
value ∈ [0, .., 255], so f(x, y) ∈ [0, .., 255].
Even simpler are black and white images, so called binary images, where each pixel is
either black (0) or white (1), so f(x, y) ∈ [0, 1].

With these notations, a video stream of a camera can be described as sequence of images
< f0, f1, . . . >, called frames, with an unique frame id.

18

3.2. PERSON TRACKING

3.2 Person Tracking

In this section, we want to give the reader an introduction to the theoretic background
of realtime person tracking.
We have to note that most of these algorithms are also used to track hand- and arm-
regions of persons, as described in section 4.4.
Another thing is that some algorithms are very complex in detail. Here, we will in the
context of this thesis only give the coarse idea and refer to literature or to Appendix B,
dealing with algorithm details.

The organization of this section is as follows. First, we describe an adaptive statis-
tical background subtraction algorithm, which classifies movement in images. After
that we describe how to extract blobs of moving pixels and merge those blobs to person
regions, which we finally track.

3.2.1 Motion Detection

Our motion detection module will be applied to image sequences from macro- and micro-
tracking. In the first case, we detect movement of persons, and in the latter, movement
of hands and arms of persons located in areas of special interest.

The first step in every tracking module will be to detect where motion occurs in the
currently processed frame f of our video sequence, i.e, we want to get a so called motion
image, which is a binary image where every moving pixel has value 1 and every other
pixel is set to 0.
Then, we can find connected moving regions, so called blobs and finally assign rectangu-
lar bounding boxes, so called regions, to all blobs. These regions should then correspond
to persons, so called person regions (for macro-tracking) or to hands of persons, so called
skin regions (for micro-tracking) we can track through consecutive frames.

Background Subtraction

To classify moving pixels in our frame f , we use the widely accepted background sub-
traction technique ([Sie03], [MJD+00], [KB01], [LHGT]).
The basic idea here is to compute a model m of the background for all pixels (x, y) in
our images, i.e, m = m(x, y).
Then we can pixel-wise ’subtract’ every captured frame f from m and threshold the
result to classify moving pixels, i.e,

moving(x, y) ⇔ ||f(x, y)−m(x, y)|| > T (x, y),

with a threshold parameter T (x, y), which may be constant for all (x, y), or different for
each pixel.
Note that || · || can be any defined norm on the deviation of the current pixel from its

19

CHAPTER 3. THEORETICAL BACKGROUND

Figure 3.1: Top Left: Frame from camera. Top Right: Background model. Bottom
Left: Result of background subtraction. Bottom Right: Result after filtering

model.
This allows us to delinate moving, foreground pixels from background pixels and the
result of the process is usually a binary motion image (see figure 3.1) where moving,
foreground pixels are white (have value 1) and static background pixels are black (have
value 0).

Adaptive Statistical Background Subtraction
Easy approaches like used in [Sie03] suffer immensely from illumination changes and

have problems when facing moving background objects or static foreground objects,
which will create significant errors in the classification of movement. Furthermore they
require a ’training phase’ with no persons in the room.
We can only overcome these problems if we use a more sophisticated background model.
In our case, we used the idea originating from [KB01].

Coarse Idea of a Statistical Background Model: The coarse idea of our ap-
proach is to use a sophisticated, adaptive statistical model of the background, i.e, we

20

3.2. PERSON TRACKING

model every pixel (x, y) with its expected mean color value µ(x, y) and standard devia-
tion σ(x, y) as a stochastic process, the so called pixel process, modelling the color values
in the previously observed frames.
So, our model m is given by

m(x, y) = (µ(x, y), σ(x, y))

Note, that we use color information and so we will get vector valued results µ(x, y) =
(µr(x, y), µg(x, y), µb(x, y))T and the same for σ(x, y).
This approach will help to better cope with above problems.

Another important fact is that here, the thresholding will of course use the statisti-
cal information, yielding a different threshold for every pixel:

T (x, y) = n · σ(x, y) , 2 ≤ n ≤ 3,

which is used to classify moving pixels according to their deviation from the statistic
mean (the model) in the current frame. This brings a huge advantage to simple ap-
proaches with a constant threshold. In regions with less changes, the threshold is small
and so we get very sensitive results here. In contrast, if we have regions with lots of
changes, we have a large threshold, which makes them less sensitive to noise.
So the classification of motion pixels in frame f in a binary motion image d is obtained
by:

d(x, y) =

{
1 if |f(x, y)− µ(x, y)| > T (x, y)
0 else

Note, that we also use the color version of f , so actually f = (fr, fg, fb)T .

This model is easily adapted online, by just updating µ and σ by the current mea-
surements in frame f .

An Adaptive Gaussian Mixture Model: The statistical model actually used is
a so called Adaptive Gaussian Mixture Model, which is a multi-color background model,
modelling each background pixel at time N by a mixture of K Gaussian probability
distributions for all of its K color values. To adapt to changes in the scene, we have to
update for all pixels those distribution out of the K which describes a pixel best, i.e.,
the color that is most significant to the pixel.
The updating in accordance to the actual pixel value is done by an (online) Expectation
Maximization (EM) algorithm. This is an iterative method for optimizing a Gaussian
mixture model, which is guaranteed to converge to a local maximum. It is described by
quite sophisticated update equations we will present later in Appendix B.1.
There exist several classes of those algorithms and the one used here are so called
parametric estimation probability density functions, originating from Nowlans Ph-D.

21

CHAPTER 3. THEORETICAL BACKGROUND

thesis [Now91]. To be more exact, we mainly use the L recent window technique, as
described in the work of McKenna [MRG97].
It was first proposed in its full beauty by Grimson et al. in [SG99] and originates from
the work of Friedman and Russel [FR97].

Creating the Gaussian Mixture Model: In detail, the background modelling
looks like the following:
At each time N , N ≥ 0, each background pixel ~xN := (x, y)N is modeled by a mixture
(weighted sum) of K Gaussian probability distributions η(~xN ; µk, σk) , 1 ≤ k ≤ K for
K different colors. The parameter K with 3 ≤ K ≤ 5 is chosen w.r.t the available time
and computational power, a higher K requires more computational effort, but will yield
a more detailed model.
The distributions (components) are obtained and updated by the history (the ’pixel
process’, as the authors call it) of the pixel values in the previous frames, i.e, <
f1(~x), f2(~x), . . . , fN−1(~x) >, which describes a stochastic process.
The weight parameters wk used for the weighted sum (the mixture) correspond to the
time proportion of color k , 1 ≤ k ≤ K, staying in the background.

The actual computation of the model computes for every pixel its probability of having
color value ~xN at time N as

P (~xN) =
K∑

j=1

wj · η(~xN ; µj, Σj),

where wK is the weight parameter of the k-th Gaussian component, and η(~xN ; µj, Σj) is
the Normal distribution of the k-th component at pixel ~x, with mean µ and covariance
matrix Σ = σ2 · ~I, where σ2 is the variance.
In detail, we get:

η(~xN ; µj, Σj) =
1

(2π)
D
2 |Σk|

1
2

e−
1
2
(~xN−µk)T Σ−1

k (~xN−µk).

Updating the Gaussian Mixture Model: For every captured frame f , we have
to update our model, hence the notion adaptive.
The update method is selective, i.e, it compares every pixel value ~xN at time N to
the existing model components, the K Gaussian distributions w.r.t to a fitness measure
wk/σk.
The first matching component is updated by the current pixel value ~xN according to
the update equations of the EM-algorithm.
A match for component k is defined if |~xN − µk| < 2.5 · σk.
If no match is found, the least probable distribution is replaced by a new Gaussian with
µN+1

k = ~xN , a large ΣN+1
k = σ2 · ~I and a small wN+1

k .

22

3.2. PERSON TRACKING

The idea of [KB01] is to use two different EM-algorithms, which will improve the per-
formance of the method in [SG99].
In the beginning we use an expected sufficient statistics update method, which gives
good estimates in the beginning and improves the quality of later estimates.
If we have observed more then L frames, i.e., our pixel process has advanced, we can
skip to a L-recent window method, which only takes into account the last L frames,
which is more appropriate, as more recent changes are more important then older ones.

If the reader is interested in the detailed update equations, he can look them up in
Appendix B.1.

Classifying Motion: To finally classify motion, we exploit the fact that a moving
object will create a high variance in the color space, due to reflecting surfaces during
movement. This implies the fitness measure wk/σk, inversely proportional to the vari-
ance and measuring how well an observed pixel fits its model.
Now the idea is that the background contains only B < K highest probable colors,
where the probability of a color being a background color is proportional to the time
and staticness of it in the history. So we only need B Gaussian distributions.
To compute B, we order the K distributions w.r.t the fitness measure wk/σk and only
use the first B with B < K for our background model, where

B = argminb(
b∑

j=1

wj > T).

The threshold T is the minimal fraction allowed to be used in the model and is set
empirically in accordance to the following tradeoff. Small T lead to an unimodal model
(B is small), which is easy to compute, but not very robust, e.g., to small movement of
leaves of a tree in the wind or similar phenomenas.
Large T lead to large B, which increases robustness, but is harder to compute.

To classify moving pixels in a frame f , we can now check if its value ~x deviates more
than m · σb for any of the B distributions.
Usually we take a factor m of 2.5, yielding for the foreground motion image dN at time
N :

dN(x, y) =

{
1 if ∃ b ≤ B : |~xN − µb| > 2.5 · σb

0 else

Parameters: As usual, this algorithm takes some parameters one has to specify
initially. They are used to adapt the algorithm to the setting and get hopefully better
segmentation results. As mentioned in [SG99], we mainly use two significant parame-
ters, namely T and α.
The threshold T ∈ [0, 1] controls the proportion of the data that should be accounted
for by the background, i.e., it is the ’minimum prior probability that the background

23

CHAPTER 3. THEORETICAL BACKGROUND

is in the scene’ [KB01] and the learning constant α controls how fast the background
model is adapted online to captured images, i.e., how fast objects are incorporated into
the background.
Furthermore, we have to specify the number K of Gaussian distributions we want to
use. As mentioned, larger K lead to more robust results, but will also increase the
computational complexity.
We also need to set the threshold parameter m, which tells us at which deviation from
σ we classify a pixel as foreground.
In addition, there are also two initial parameters, we have to set, namely winit, the
initial weight wK of each of the K Gaussian distributions, and σinit, the initial standard
deviation for each of the K Gaussians.

Our values for those parameters can be found in section 4.7.1.

Blob Extraction

To obtain blobs from the binary motion image dN, we can use a simple connected com-
ponents labeling algorithm.

But before we can assign rectangular bounding boxes (regions) to the extracted blobs,
we need some filtering to cope with noise induced by our cameras.
The image dN will suffer from a lot of tiny 1 − 3 pixel large noise blobs, which were
classified as moving due to difference to the model, although no movement occurred
there. An efficient and easy way to remove such small noise blobs is to use a median
filter (see Glossary, Appendix A).
The filtered image we will call df

N, and use it for the actual blob extraction depicted
above, followed by the region detection.

Region Detection

Ideally, we would now have one blob per person and so just assign a minimal bounding
rectangle r to every extracted blob in the filtered motion image df

N.
Formally, we specify r by its upper-left origin (r.x, r.y) and its width and height
r.width, r.height.
For later purposes, we will also compute a tracepoint c of every bounding box. This is
just the middle of the lower horizontal bounding of the rectangle. Formally, c(r).x =
r.x + (r.width/2) and c(r).y = r.y + r.height.

Unfortunately, most of the time our persons will consist of two or even more blobs
(see figure 3.1), due to low contrast areas which were not classified as moving before-
hand.
A remedy comes from initially assigning regions to all blobs and then merge regions

24

3.2. PERSON TRACKING

which will most probable constitute a person.
The approach proposed in [MJD+00] is to merge all regions ri, rj with i 6= j where
four conditions hold for a new, larger region rnew, where rnew is just a minimal rect-
angular bounding box that encompasses ri and rj, i.e., ri ⊆ rnew and rj ⊆ rnew and
rnew.width · rnew.height is minimal (see figure 3.2).
The four merge conditions are:

Horizontal overlapping: The projections of ri and rj to the x-axis (denoted by rx
i

and rx
j), have to overlap,

i.e., rx
i ∩ rx

j 6= ∅, with rx
i := {ξ | r.x ≤ ξ ≤ r.x + r.width}.

x-distance of regions: The regions ri and rj must have a distance in x-direction
which is smaller then Tdist := 5,
i.e., if r1.x < r2.x then r1.x− (r2.x + r2.width) < Tdist,
else r2.x− (r1.x + r1.width) < Tdist

This means that we merge regions if they are less than Tdist pixels in x-direction
away from each other.

Area of regions: The area of rnew is supposed to be larger then Tarea−min and less
then Tarea−max,
i.e., Tarea−min < rnew.width · rnew.height < Tarea−max.

Ratio of regions: The aspect ratio of rnew should be less or equal to 1,
i.e., rnew.width/rnew.height ≤ 1.
This is due to the fact that persons are normally higher then wide. This also
implies that this threshold will not be applied for the detection of moving skin
regions by the micro-tracking.

3.2.2 Region Tracking

As we have finished to detect moving regions in an image, we can now turn our attention
on how to track those regions and hence the corresponding persons (for macro-tracking)
or skin-regions (for micro-tracking) through consecutive frames of our video sequence.
In the remainder of this section, we will mainly talk about persons, but if not said
otherwise, all the mentioned concepts can also be used for skin regions.
We will first explain how to store tracking informations and then turn our attention to
some common tracking algorithms.

Storing Tracking Results

To do so, we keep a tracking database data structure, inspired by [MJD+00], where
we mainly store the position of the bounding boxes, a history of former bounding box
positions and (for persons only) the tracking state of that person.
The state consits of several boolean variables, where the first one distinguishes between

25

CHAPTER 3. THEORETICAL BACKGROUND

Figure 3.2: Top Left: Result of background subtraction. Top Right: Initial regions
(one for each blob of background subtraction). Bottom Left: Merged regions (blue).
Bottom Right: Tracking result.

26

3.2. PERSON TRACKING

moving currently tracked persons and persons, where we lost the track because they
are standing still and hence are incorporated into the background model and no longer
detected by our background subtraction algorithm.
The second state variable is reliable. A tracked person is considered as being reliable,
if we track it for two or more consecutive frames. This helps to remove pseudo-person
regions, existant for one frame, which result from sudden illumination changes. The
existence of those pseudo-persons can be explained by the fact that objects like shelfs are
detected as person regions if their illumination changes suddenly, caused by two factors.
First, their appearance model (size and aspect ratio) matches our person model and
second, they are marked as moving by the background subtraction algorithm, because
the color values of their pixels changed enough due to the varying illumination.
A third state variable is inside, which distinguishes between persons inside the view of
our camera and ones which have left the view of the camera. This distinction is useful,
as we do not want to lose the last tracking information of persons who became static and
are therefore incorporated into the background and no longer detected. The distinction
if a person just became static or left the view is simply done by checking if the last
known position of a persons bounding box is close (about 5 pixels) to the left or right
border of the camera image. If so, we conclude that a lost person may probably has left
the room and else we just consider it as non-moving.

Tracking Algorithms

Overlapping Bounding Boxes In [MJD+00], the authors propose to just track per-
sons by overlapping bounding boxes, which is easy to implement and to compute.
This approach tracks a person by assuming that its movements will be so small with
respect to the frame rate of our cameras, which will lead to the fact that the bounding
boxes of persons will overlap in consecutive frames.
In every newly captured frame f , we then just have to check for every detected moving
region i, if its bounding box ri overlaps with any bounding box rj of a person in the
tracking database. If so, we have to update the informations in the database by the
current position. If no overlapping bounding box is found, we assume that we found a
new person and have to add it to the database.
Overlapping in this case can be formalized by checking if two bounding boxes, i.e, rect-
angles, have both overlapping projections to the x- and to the y-axis. Formally:
rx
i ∩ rx

j 6= ∅ and ry
i ∩ ry

j 6= ∅,
with rx

i := {ξ | r.x ≤ ξ ≤ r.x + r.width} and ry
i := {η | r.y ≤ η ≤ r.y + r.height}.

Color Models In [MJD+00] as well as in [KHM+00] it is proposed to use color his-
tograms Hi(x) of a person i to maintain its identity through occlusion (see Glossary,
Appendix A for details on histograms). This approach is inspired by the idea that the
histogram of a person will not significantly change during movement and change of pose,
as it simply counts which color occurs how often in the person, and not where. Such
histograms can be obtained from the mask of a person, i.e., the pixels in a person region

27

CHAPTER 3. THEORETICAL BACKGROUND

which were classified as moving by our background subtraction algorithm.
In [MJD+00], such a histogram is used to compute the probability of pixel x belonging
to a certain person i via

P (x|i) =
Hi(x)

Ai

,

where Ai denotes the number of pixels in the mask of person i.
In [KHM+00], the comparison of stored histograms and newly computed ones is done
via a histogram intersection algorithm [SB91]. The histogram intersection algorithm
outputs a value between 0 and 1, where higher values correspond to higher similarity of
the histograms to be compared.

It is essentially to note that we have to adapt the histogram of each person during
the tracking task. We chose to update the histograms cumulative, i.e., we add newly
gathered histograms to the stored, old one and normalize afterwards. This normaliza-
tion normalizes the sum over all histogram bins to 1, i.e.,

∑
i H(i) = 1.

For skin regions, we cannot use any color model, as every skin region should have more
or less the same color, a fact we actually exploit for detecting skin in images.

Forming Groups of Persons

In [MJD+00] or [HHD98], the authors use the notion of groups of persons. A group is
just a set of tracked persons, which are close together. This notion is inspired by the fact
that persons standing close together are hard to delinate by the background subtraction
algorithm and often extracted as one, over-dimensional person region.

For skin regions, grouping is not interesting.

28

3.3. HOMOGRAPHY

3.3 Homography

In this section, we present our approach for estimating the position of the tracked
persons in our room. This means, we will usually use images and tracking results from
our macro-tracking cameras. But we will also apply this approach to images from our
micro-tracking cameras to obtain the position of skin regions in a coordinate system of
shelfs for example, which we will call shelf coordinate-system.
In the remainder of this section we will mainly talk about the estimation of person
positions. These approaches will also work for estimating shelf coordinates of skin
regions.

3.3.1 Idea

The basic idea is that we use static cameras, i.e, cameras that do not change their po-
sition during the tracking task.
Furthermore, we exploit the fact that persons will stand on the ground plane, the floor
of our room and so we can describe every person’s position by its tracepoint coordinates
on the ground plane. Remember, the tracepoint of the rectangular bounding box of a
person was just the middle of the lower horizontal bounding of the rectangle.

The problem now is how to map the image coordinates in which we measure the trace-
points of our camera images to world coordinates of our room.

3.3.2 Approach

The approach we follow is to use the so called Direct Linear Transformation (DLT)
algorithm, as described in Hartleys book [HZ04].

Input and Output

As input, the DLT algorithm uses n , n ≥ 4, point correspondences xi ↔ x′i for

i = 1, . . . , n, i.e., we measure for n points in (homogeneous) image coordinates xi ∈ R3

(see Glossary, Appendix A) the corresponding world coordinates of our room x′i (see
figure 3.3).
As notation we will use: xi = (xi, yi, wi)

T , with an arbitrary scale factor w. The result
of the computations of the DLT algorithm will be a matrix H ∈ R3×3, s.t.,

H xi = x′i , ∀ i ∈ {1, . . . n}.

So, H is a so called projective mapping from image- to world-coordinates, which is ex-
actly what we want to have.

For mathematical details on this algorithm, we refer the interested reader to Appendix
B.2.

29

CHAPTER 3. THEORETICAL BACKGROUND

Figure 3.3: Our room with the 4 point correspondences x1, . . . , x4 (red), which embrace
the ground plane of our room (blue).

3.4 Skin Detection

3.4.1 Motivation

One important feature of MaMUT is that it will not only detect and track persons in
our room, but also skin colored regions by our micro-tracking. Hence, this module of
our system will use images from the micro-tracking cameras.

3.4.2 Basic Idea

We use a quite simple, but still quite robust technique to detect skin colored pixels,
forming skin blobs, which are finally grouped together to skin regions (cp. person re-
gions) we are interested in.
The applied technique is the skin detection part of the CAMShift Algorithm [Bra98],
and goes under the slogan Histogram Back Projection.
It uses a model of skin color, obtained by sample skin images, which are just small
images containing only skin, e.g., small patches cut out from captured images of our
cameras (see figure 3.4).
The important idea is that we convert our images from the usual RGB color space to the
HSV (Hue-Saturation-Value) color space (see Glossary, Appendix A). Here, we only use
the H-channel, the hue channel, of the images, which carries the informations about the
color, which is crucial to distinguish skin from non-skin pixels. Furthermore, we ignore
in this way lightning changes which will be only visible in the V -channel (value) and
ignore variants in skin color (dark skinned versus bright skinned persons), only visible

30

3.4. SKIN DETECTION

Figure 3.4: 9 small skin patches used to create our skin model.

in the S-channel, the saturation channel (see figure 3.5).

This model is used to compute for every pixel in a moving region of the actual pro-
cessed frame (in a HSV version) the probability that this pixel is a skin pixel.

Simply thresholding this skin probability image yields a binary classification of skin
pixels (c.p. classification of moving pixels for motion detection).

From RGB to HSV

As our images are stored in RGB format, we have to map them to HSV via a mapping

F : R3 −→ R3, (r, g, b) 7→ (h, s, v),

where usually r, g, b, s, v ∈ [0, 255] and h ∈ [0, 360] (angle).

For the concrete mapping, the interested reader may refer to Appendix B.3.

Model

The initial step is to obtain a model of skin hue. Therefore we use a HSV version of n
offline captured sample skin images.
For every of those images, we compute the hue-histogram (histogram of the H-channel),
counting in its bins which hue-value occurs how many times in the image. The n
histograms are simply averaged in the end to obtain a single histogram.
This histogram serves as a skin hue probability distribution M , and therefore has to be

31

CHAPTER 3. THEORETICAL BACKGROUND

Figure 3.5: Example HS-histogram of human skin. Note that by far most of the hue
values lie in the lower range from 0 to 10. Author: B. Kapralos [KJM03]

normalized in such a way that all of its bin contain values in the range [0, . . . , 255] and
that the sum over all bins should equal 255.

Skin Probability Image

For every processed frame f , we compute its HSV version fHSV and only use the H-
channel to compute, in moving regions only, the conditional probability of every pixel
being skin, given its hue value h, according to our skin model M i.e.,

P (skin | h) = M[h] ∈ [0, . . . , 255].

This yields a greyscale skin probability image S, where brighter pixels correspond to
higher skin probabilities (see figure 3.6).

Thresholding, Filtering, Discarding and Merging

The final step is to threshold S at a reasonable threshold TSkin, which yields a binary
image Sbin, classifying skin pixels.
This image is then median filtered to remove pixelwise noise.
But in spite of filtering, lots of tiny skin regions survive, due to erroneous classifica-
tions. These are simply discarded if their area is less than a skin region area threshold
TSkin−Area.

32

3.4. SKIN DETECTION

Figure 3.6: Top Left: Frame from one of the micro-tracking cameras. Top Right: Skin
probability image. Bottom Left: Binary skin probability image, result of thresholding.
Bottom Right: Resulting skin region (red), with position in shelf coordinates and ID
of person it belongs to.

The last problem is, that we still may get multiple skin regions which correspond to one
skin object (head or hands).
Fortunately, these are quite close together and so, we can merge skin regions, if the
distance of their centers is less than a threshold TSkin−Dist.

33

CHAPTER 3. THEORETICAL BACKGROUND

34

Chapter 4

System Implementation of MaMUT

After having dealt with the theoretical background behind our tracking approach, we
can now turn our attention on how to implement our ideas.

4.1 Tools

In this section we want to describe which tools we used to implement MaMUT.

4.1.1 Intel’s Open Computer Vision Library (OpenCV)

As MaMUT is a tracking module with skin detection and homography estimation, it
is clear that we heavily had to use Image Processing and Computer Vision algorithms.
Furthermore we also needed a GUI to visualize our results.
All these needs are fulfilled by Intel’s Open Source Computer Vision Library, in short
OpenCV [Bra00].

Features

OpenCV encompasses a really widespread collection of Image Processing and Computer
Vision tools. Starting from low-level functions for loading and accessing images up to
elaborate Active Contour computations.
The areas covered by OpenCV are:

• Image creation and access

• Image arithmetic and logic operations

• Image filtering

• Linear image transformation

• Image morphology

35

CHAPTER 4. SYSTEM IMPLEMENTATION OF MAMUT

• Color space conversion

• Image histogram and thresholding

• Geometric transformation (zoom-decimate, rotate, mirror, shear, warp, perspec-
tive transform, affine transform)

• Image moments

For a full overview of the features, one can have a look at Intel’s OpenCV homepage [Int].

Features we actually used include

Background Differencing: Accumulate images and squared images, Running aver-
ages.
Used for background modelling and background subtraction

Thresholding: Binary, inverse binary, truncated, to zero, to zero inverse.
Used for obtaining binary images from greyscale images, e.g., to classify moving-
and skin-pixels from greyscale difference image and greyscale skin probability im-
age.

Histogram (recognition): Manipulation, comparison, backprojection.
Earth Mover’s Distance (EMD).
Used for modelling skin hue and recognizing skin areas in person regions and for
person color models.

Color space conversion: RGB↔HSV, RGB↔Greyscale, . . .
Used for converting images to needed color spaces, e.g., HSV images for skin
detection.

HighGUI: A GUI to display images opened via OpenCV’s image access functions.

4.1.2 cURL

To capture images from our network cameras, which offer a CGI-interface via a HTTP-
server, we decided to use cURL, a
’[. . .] command line tool for transferring files with URL syntax, supporting FTP, FTPS,
TFTP, HTTP, HTTPS, TELNET, DICT, FILE and LDAP. [. . .]’ [Haxa].
This tool provides a simple usage within C++, by just using system calls
system("curl ..."), emulating command line interaction.
The call we used looks like this:

system("curl -u root:<password> -s

http://134.96.240.132:4444/axis-cgi/jpg/image.cgi?resolution=704x480

-o images/cam2.jpg");

36

4.2. SETUP

which tells cURL to get data from the server 134.96.240.132
(= wwcam02.cs.uni-sb.de), at port 4444 and folder
/axis-cgi/jpg/image.cgi?resolution=704x480, which actually starts a CGI request
for the actual image with resolution 704× 480 pixels.
We authenticate to the server as user root and with the known password.
The image data is stored in the local folder images/cam2.jpg and the flag -s tells
cURL, to be silent, i.e., not to output (unpleasant) status messages to cout.

libcurl

A more elegant way of using cURL without UNIX-system calls would be to use libcurl
[Haxb], which is a library, available for C, allowing to use features of the command line
tool cURL in C/C++ programs.

4.2 Setup

Before we start to describe the actual implementation of our system, we want to shortly
present the actual setup of our lab (SUPIE [BK]), which is relevant for MaMUT.

4.2.1 Room

As can be seen in figure 4.2, the main parts of our ubicomp environment, a small
instrumented room are a shelf, where some products (digital cameras) are located. The
shelf is also equipped with some loudspeakers, allowing to consult persons about the
digital cameras inside.
On one wall, there is a big display which can be used to display all kinds of informations.
On the ceiling, a movable beamer is mounted, which can project informations to the
walls of our room.

4.2.2 Input: Cameras

The input of our tracker originates from from three mounted LAN-cameras of type AXIS
2130 PTZ (see figure 4.1).
These are Pan-Tilt-Zoom cameras which broadcast their captured images via Ethernet
to a LAN and are also configurable by a Web-Interface. Therefore, each cam has a
unique IP-address in the LAN and a domain name.

We use three cameras (see figure 4.2). Two mounted at corners of the room, to ob-
serve our room and track the position and movement of persons, the so called room
cameras (macro-tracking).
The other camera is mounted above a shelf with products. This camera precisely tracks
in detail the hands and arms of persons, who reach towards the products in the shelf,
the so called shelf camera (micro-tracking).

37

CHAPTER 4. SYSTEM IMPLEMENTATION OF MAMUT

Figure 4.1: Left: Micro-tracking : The shelf and the shelf camera. Right: One of our
cameras.

Figure 4.2: Top Left: Image from a macro-tracking camera (Room1). Top Right:
Image from a macro-tracking camera (Room2). Bottom Left: Image from a micro-
tracking camera (Shelf).

38

4.3. DESIRED RESULTS

4.2.3 Output: EventHeap

All applications who need information about the state of our room, e.g., PDAs displaying
product informations, communicate over a common coordination infrastructure, the so
called EventHeap [JF02], which will be the output destination for our tracking results.
Details of the EventHeap and its usage by MaMUT can be seen in section 4.12.

4.2.4 Our Implementation

In the context we will implement a tracking system from scratch, adopting ideas from
several sources.

4.3 Desired Results

To meet the requirements mentioned in section 1.1, we want our system to produce the
following results for each frame of our video sequence, which then can be send to the
EventHeap (see figure 4.3).

• Number of persons in the room = n ⇒ person0, . . . , personn−1 (macro-tracking).

• For i = 0, . . . , n−1: Position of personi in our room, represented as 2D-coordinates
of the ground plane, the floor of our room (macro-tracking).

• For i = 0, . . . , n− 1: Moving direction of personi (macro-tracking).

• For i = 0, . . . , n− 1: Number of skin regions for personi = ki (micro-tracking)

• If ki > 0: For j = 0, . . . , k − 1: Position of skin region j of personi in shelf
coordinates, i.e., in a 2D-coordinate system of the shelf front (micro-tracking).

4.4 Overview

First of all, we will give a brief overview of our system. To ease the understanding of
the following, the reader may refer to figure 4.4.

To reach the desired results of our system described in section 4.3, we continuously
capture images from n macro- and m micro-cameras, which do macro- and micro track-
ing as described in section 1.2.
With these images (to keep our figure simple we just set n = m = 1), we can detect
persons in macro-images as well as arms and hands of persons reaching towards the
shelf in micro-images.

These goals are reached by performing certain steps, which are partly equal for macro-

39

CHAPTER 4. SYSTEM IMPLEMENTATION OF MAMUT

Figure 4.3: Left: Tracking result of one of the macro-tracking cameras: Person regions
(blue and green, green denotes tracked persons at the shelf), Person ID’s, moving direc-
tion and positions in room coordinates (orange). The 4 green markers denote the region
in front of our shelf. Right: Tracking result of one of the micro-tracking cameras: Skin
regions (red), moving direction, positions in shelf coordinates (orange) and ID of person
the skin region most probably belongs to (red).

and micro-tracking.
First, we do a background subtraction, which yields a binary motion image, classifying
motion in the images. With those images, we perform a connected component labelling
to find connected blobs. These blobs now have to be merged, as usually we will observe
more than one blob per person or hand. These merged blobs are grouped in regions,
where we talk about person regions for macro- and hand-/arm regions for micro-tracking.
For the micro-images, we will now have to do a skin detection based on histogram back
projection in all found regions to detect hands, yielding so called skin regions.
Now, we can track skin- and person regions via tracking algorithms, mainly based on
matching overlapping bounding boxes and color models. The results of this tracking
tasks are stored in individual database structures (in our case Tracking Database and
Shelf Tracker). Here, we also assign the position to those regions via homography esti-
mations.
The next step is then to fuse tracking results of macro- and micro-tracking, i.e., assign
detected hand regions to detected persons in our case.
These informations are all we were looking for and finally have to be stored to the
EventHeap via TrackerEvents, coding all informations.

4.4.1 Overview of the Implementation

The actual implementation heavily uses functions of the OpenCV library [Bra00], which
makes the code quite compact, we can get along with about 5000 lines of code in total.

All the parts of MaMUT which mainly deal with Image Processing tasks, like the back-

40

4.4. OVERVIEW

Figure 4.4: Overview of our system. Ellipses describe results, cambered rectangles
attributes of associated objects, actions are denoted next to arrows and dotted red
rectangles describe different modules.

41

CHAPTER 4. SYSTEM IMPLEMENTATION OF MAMUT

ground subtraction, region merging, and so on are C/C++ functions stored in modules
like region_merging.cpp.
All pure tracking parts, like the tracking database data structure, the EventHeap Out-
put and so on are C++ classes, with header and implementation file, like TrackingDB.h
and TrackingDB.cpp.

In our actual implementation, we used two macro-cameras (room1 and room2, room
cameras) and one micro-camera (shelf , shelf camera). With the images from cameras
room1 and room2 we will basically do the same things, as they are both macro-cameras.
Now, we will present the implementation in detail.

4.5 Configuration Files

Before MaMUT can start its work, it has to know several configuration parameters, like
the path of the input images, if we run in HDD-mode (loading images from harddisk
instead of capturing live from the cameras), or all the threshold parameters.
These parameters are specified in a config file (*.bcf) which is passed to MaMUT as a
command line parameter. For example: ./mamut ../files/BAIR.bcf

The parsing of the file is done by a class called ConfigFile, which is available to down-
load from [Wag]. For a detailed description, check out section C.2.

A commented example config file describing all possible (realtime- and HDD-) parame-
ters is given in Appendix C.2.1.

4.6 Capturing: Network Cameras

As mentioned, MaMUT will use images from several mounted LAN-cameras of type
AXIS 2130 PTZ.
In our case, the cameras are wwcam01 for the micro-camera (micro-tracking) and wwcam02

and wwcam03 for the macro-cameras (macro-tracking), which we denote by camera room1

and room2, respectively.
Hereby it is important to note that the two used macro-cameras are disjoint, i.e., if
we see a person in one camera image, this person can not be seen in the image from
the other camera. Furthermore, they fulfill basically the same task, namely tracking
persons, but camera room2 does not observe any region of interest, like a shelf, so we
do not need a shelf carpet (see section 4.11) there. All other important parameters,
like parameters for the statistical background model or thresholds for region merging
are the same for the two macro-cameras. The communication between them is actually
established by using the same data structure to store tracking results.

The technical specifications of the cameras are as follows:

• Resolution: 704× 480 or 352× 240 or 176× 112 pixels

42

4.7. PERSON- AND SKIN-REGION DETECTION

• FPS: 12 fps @ 704× 480, 30 fps @ 352× 240 and 176× 112

• Images: Motion- and Snapshot-images /Black and White or RGB-color in JPEG
format, supporting 5 compression rates and timestamps

We use color (RGB) JPEG images with resolution of 352 × 240 pixels, which will give
us enough details, and allow our algorithms to run fast enough for realtime tracking.
In MaMUT, we capture images via the CGI interface of HTTP-server of the cameras
(for more detailed information, refer to the web page of the camera manufacturer [Axi]),
which will offer some speed advantages, and make a point as we want to meet realtime
requirements.
To do so, we use cURL [Haxa], a nice small command-line tool to get data from HTTP
servers (for details see section 4.1.2).
It is accessed via a C++ system call:

system("curl -u root:<password > -s
http ://134.96.240.132:4444/ axis -cgi/jpg/image.cgi
?resolution =704 x480 -o images/cam2.jpg");

which will store the actual image from the camera as images/cam2.jpg.
Unfortunately, we cannot use the data stream from the cameras directly, as this would
require to manually decode the JPEG data to raw data, which then could be loaded
as a IplImage object, the image class of OpenCV. But storing the JPEG images and
loading them via the built-in load routine cvLoadImage()of OpenCV was found to be
quite effective.

4.7 Person- and Skin-Region Detection

4.7.1 Background Subtraction

To obtain the Gaussian Mixture model of our background, i.e., an object of type
CvBGStatModel, we just capture an image from our empty room f, specify some pa-
rameters params (see section 3.2.1) and do
CvBGStatModel* bg_model = cvCreateGaussianBGModel(f, ¶ms).
Interestingly, the adaptive Gaussian background model would even allow to start track-
ing if there are already persons in the room, but the results are better if we start with
an empty room.

Empirically, we found the following parameters to work out well in our setting:
For the room cameras, we used

params.win_size = 1000; // win_size = 1/ alpha
// => alpha = 0.001

params.n_gauss = 5; // n_gauss = K
params.bg_threshold = 0.8; // bg_threshold = T
params.std_threshold = 3.0; // std_threshold = m

43

CHAPTER 4. SYSTEM IMPLEMENTATION OF MAMUT

params.minArea = 5;
params.weight_init = 0.05; // weight_init = w_init
params.variance_init = 60; // variance_init = sigma_init

For the shelf camera, we used the standard parameters of OpenCV:

std_params.win_size = 500;
std_params.n_gauss = 5;
std_params.bg_threshold = 0.7;
std_params.std_threshold = 2.5;
std_params.minArea = 15;
std_params.weight_init = 0.05;
std_params.variance_init = 30;

The actual background subtraction and model adaption is then done for all frames f,
by just calling cvUpdateBGStatModel(f, bg_model).
This yields the binary motion image as bg_model->foreground.

4.7.2 Filtering

To remove small noise blobs, we use OpenCV’s median filter with a 3× 3 mask
cvSmooth(.., .., CV_MEDIAN, 3, 0, 0) for the room cameras and with a 7 × 7
mask for the shelf camera. The reason for using a larger mask for detecting skin regions
at the shelf is that because of the large zoom-factor of the shelf-camera, we will face
more noise here, but on the other hand we will also be more robust to stronger filtering.

4.7.3 Blob Extraction

OpenCV provides an efficient connected component labeling algorithm
CvSegmentMotion(...), which yields a sequence CvSeq of connected components
CvConnectdComp. Such connected component objects encompass a CvRectangle object,
which is just our bounding box.

4.7.4 Region Detection and Merging

The mentioned problem is now merging connected components (regions), which will
most probable form a person.
To do so, we first remove every too small region from the sequence obtained by the
connected component labeling, which will be due to noise. Therefore we just remove
every region with area less than a threshold TCC1 from the sequence. Then we start a
merging method which checks in a nested for-loop every pair of remaining regions (cc1,
cc2), if they should be merged.
To this end, we check if two regions’ projections to the x-axis overlap or if the distances
of their centers is less than a threshold TD. If this is the case, we merge them, i.e., we
create a new CvConnectedComp object with a rectangle encompassing cc1.rect and

44

4.7. PERSON- AND SKIN-REGION DETECTION

cc2.rect via
CvMaxRect(cc1->rect,cc2->rect). This component is pushed to the end of the se-
quence and the two original components are removed.
After merging, we run another discarding function, which will remove small merged
regions with area less than a threshold TCC2 and regions with aspect ratio greater than
1.

Threshold Parameter Computation

The threshold parameters for region merging are not set statically, but initially com-
puted according to the size of the input images s := f .width · f .height and a factor F
via T = s/F.
Empirically we obtained the following factors for good thresholds:

For the room-cameras :
Step 1: First cleanup step to remove too large and too small regions.

• Tarea−min := s/700

• Tarea−max := s/3

Step 2: Final step to remove too large merged regions and regions with a strange aspect
ratio ≤ 1.

• Tarea := s/17

• Tdist := 5

• Tratio := 1

For the shelf-camera:
Step 1: First cleanup step to remove too large and too small regions.

• Tarea−min := s/845

• Tarea−max := s/2

Step 2: Final step to remove too large merged regions and regions with a strange aspect
ratio ≤ 1.

• Tarea := s/154

• Tdist := 5

Important: If the according config parameter is set, it is also possible to adapt the
threshold parameters online via trackbars!

45

CHAPTER 4. SYSTEM IMPLEMENTATION OF MAMUT

Concrete values: In our case with an image size of 352× 240 pixels, we obtained
the following thresholds:

1. Room cameras:

• Tarea−min = 14.98

• Tarea−max = 28160

• Tarea = 4969.41

• Tdist = 5

• Tratio = 1

2. Shelf camera:

• Tarea−min = 99.98

• Tarea−max = 42240

• Tarea = 548.57

• Tdist = 5

4.8 Person Tracking

For tracking persons in consecutive frames, we mainly use overlapping bounding boxes
and color models (see section 3.2.2).

Match Direction To robustify our system even more, we decided to also add a di-
rection matching. This simple approach is inspired by the fact that due to heavy illumi-
nation changes, e.g., when persons are moving in front of a window, it can happen that
even our sophisticated statistical background subtraction algorithm will fail and we can
extract no moving regions during some (1 – 2) frames.
Hence, we will no longer have overlapping bounding boxes, as the movement through
more than one frame might be too large.
To overcome this problem, we compute every time in which direction a person is moving,
i.e., we just compare the x-coordinates of the tracepoints c1 and c2 of two consecutive
bounding boxes.
The computation of the direction is then performed as follows:

direction(c1, c2) =

{
Right if c2.x ≥ c1.x
Left else

This helps us to match a region to a person not only if the bounding boxes overlap, but
also if the moving direction of the person would be preserved by the region.

46

4.8. PERSON TRACKING

4.8.1 Actual Tracking

We actually combine three approaches in a 3-step algorithm for person tracking :

1. Match newly detected regions with moving persons via overlapping bounding boxes
or similar color models.

2. Match newly detected regions with non-moving persons via similar color models
or same direction.

3. Else, we found a new person and have to add it to the database.

If we found a match, we update the person’s status like bounding box, timestamp, tra-
cepoint, and so on in accordance to the matched bounding box.

After this matching step is done for all newly found regions, we check which persons
do not have been updated. For those persons we lost the track, and so we have two
possibilities.
A first one is to set them non-inside, if the possibility of leaving the camera view existed,
or if we lost their track for more than 5 frames.
The second possibility is to just set them non-moving and still update their status, if
we still consider them as inside, as described above, and have not lost their track for
more than 5 frames.

A final step consists of two checks.
The first one is to check if the tracepoints projected to the ground plane are actually
located on the ground plane. This is needed because usually the lower parts of persons
have low contrast to the floor. This yields too small bounding boxes which are still
classified as persons, but do not encompass the feet region of a person and hence yield
erroneous tracepoint coordinates when projected onto the ground plane.
This check simply assures that the second coordinate of our projected tracepoint is
smaller or equal to 0, as our ground plane is the x,−z–plane of our room (see section
4.10).
The second check verifies if person regions did not became too large, i.e., too wide or
too high. This can happen due to reflections next to persons, which lead to too large
person regions. A good value found was to remove persons, whose regions are less than
10 pixels smaller than one of the actual image dimensions.

For skin regions we just match overlapping bounding boxes. Furthermore, we totally
discard any non-matched skin region, instead of setting a non-moving state or something
similar.

47

CHAPTER 4. SYSTEM IMPLEMENTATION OF MAMUT

Forming Groups of Persons In MaMUT, such an approach does not seem to be
too fruitful, as we want to distinguish which person interacts with an object, even if
they stand close together. This requires us not to group close persons together and try
our best to even delinate persons in such difficult situations.
Fortunately, our adaptive background subtraction algorithm gives quite robust results,
even if persons are close. If one person stands still and the other one moves by, we
almost have no problem, as the standing person is incorporated into the background
model and does not disturb the tracking of the moving person.

4.8.2 Storing Tracking Results

The gathered informations have to be stored in a tracking database, which is in our case a
class mainly containing a pointer to a vector of person objects vector<Person*>* persons.
More details on this class can be found in Appendix C.4.

The tracking database provides a method for tracking the sequence of connected com-
ponents at time t, extracted by the motion detection module via
track(CvSeq* comp, int t, ..). In this method, every component is matched to all
bounding boxes in the database. If it overlaps, i.e., it overlaps horizontally and verti-
cally
(vert_overlaping(r1, r2)) && (horiz_overlaping(r1, r2), or the color model
matches to any person in the database, or the direction would match with the direction
of any person
same_direction(dir_person, compute_direction(..)), the person object with in-
dex i is updated with the informations of the matching component via
update_person(int index, CvRect r, ..). If no match is found we add a new per-
son object for this component by calling add_person(CvRect r, ..).
The matching of the color models, the color histograms, is done via the histogram in-
tersection algorithm, available in OpenCV via
double cvCompareHist(h1, h2, CV_COMP_INTERSECT). Empirically, histograms match
if this function returns a value greater than 0.6.
In the mentioned update function, it is important to also update the color models. To
do so, we accumulate stored and newly matched histograms and normalize afterwards
via cvNormalizeHist(h, 1.0)

If we cannot update a person like described above, we lost the track and set the person
non-moving via remove_person(i,..).
It is interesting to note that we use a method bool is_at_shelf(Person*) to check
if a person is standing in a region of interest. This method uses a quite sophisticated
algorithm to test if a given point x is inside a general quadrangular, specified by its 4
corner points x0,...,x3: in_quadrangle(x, x0, x1, x2, x3).
We use an algorithm originating from [OMH99], which we implemented in
aux_functions.cpp. Basically, it divides the quadrangular in two triangles and tests
if the point lies in any of them. Hereby, it is important to note that the algorithm for

48

4.9. SKIN DETECTION

testing membership of a triangle traverses the triangle in a certain order. This forces us
to give the 4 corner points in a certain order, namely starting in the lower left corner
and continuing in counter-clockwise manner.

For convenience, the database also offers a method drawing the bounding boxes and
trajectories of persons in an image, namely draw_traces(IplImage* f).

A last thing is that our room cameras will communicate through the vector persons.
All TrackingDB instances have a pointer to it and so they can get information about
tracking results from other room cameras and store their own results in the same data
structure.

4.9 Skin Detection

4.9.1 Skin Model

Before we start tracking with our shelf camera, we have to build a skin color model,
which is represented by a hue-histogram of sample skin images.
So, we manually select small rectangular skin regions in sample images from our shelf
camera with person’s hands in it and save them as individual images.
At the initialization of MaMUT, we first create a one dimensional histogram
CvHistogram* skin_model = cvCreateHist(1, ..), where the size is set to 30 bins
(for the hue channel) and the range from 0 to 180, according to 0 and 180 degrees angles
in the HSV color model.
Then, we compute the HSV version of every image via
cvCvtColor(image, image_hsv, CV_BGR2HSV), compute the hue histogram of it and
accumulate the histograms via cvCalcHist(planes, skin_model, 1, 0) to our skin
model.
After every step, we threshold the histogram to discard every bin which is smaller than
1
40

of the total sample image pixels
(cvThreshHist(skin_model, thresh)), as we consider such hue values as due to
noisy sample images.
Finally, after all sample images are processed we have to normalize the histogram such
that the sum over all its bins is equal to 255, which is done via
(cvNormalizeHist(skin_model, 255.0)). This is needed to create a greyscale skin
probability image afterwards.

4.9.2 Skin Probability Image and Skin Classification

During the tracking, we compute a greyscale skin probability image.
Therefore, we compute the HSV version of the current frame, extract the hue chan-
nel in f_hue and set the image ROI according to a detected moving regions of the

49

CHAPTER 4. SYSTEM IMPLEMENTATION OF MAMUT

ShelfTracker (which does micro-tracking) via cvSetImageROI(f_hue, roi), where
roi is just the CvRect object of a detected moving region.
Now, we can compute the histogram back projection with our skin model histogram
(cvCalcBackProject(plane, skin_prob_img, skin_model)), yielding the greyscale
skin probability image skin_prob_img. This image is then thresholded to classify skin
pixels in a binary image (cf. binary foreground motion image).
A last step is to find connected components in the binary skin image, which is done in
the same manner as for detecting moving regions. After connected components anal-
ysis, we also first discard too small regions and merge regions which are close enough
together.

4.9.3 Thresholding, Filtering, Discarding and Merging

The threshold to binarize the skin probability image is computed according to the max-
imal value in M:

TSkin :=
3

4
·max

b∈M
M[b].

After that, we do a median filtering with a 3× 3 mask.

A skin region area threshold TSkin−Area is used to discard too small skin regions. It
is initially, like the thresholds for person regions, computed according to the image size
s = f .width · f .height and a factor F via T = s/F :

TSkin−Area := s/94.

Finally, to merge large skin regions which correspond to a hand or an arm, we use a
distance threshold TSkin−Dist, which is also computed according to the image size

TSkin−Dist := s/1126.

To make the output nicer, we also use a height threshold TSkin−Height for skin regions. If
we get too long skin regions, we set their height according to this value. It is computed
as:

TSkin−Height := s/1300.

Important: If the according config parameter is set, it is also possible to adapt the
threshold parameters online via trackbars!

Concrete values: In our case with an image size of 352× 240 pixels, we obtained the
following thresholds:

• TSkin = 96.93

• TSkin−Area = 898.72

50

4.10. HOMOGRAPHY

Figure 4.5: Left: Our instrumented room with the 4 used point correspondences
x1, . . . , x4 for camera Room1 and coordinate axes. Right: The shelf in our room with
the 4 used point correspondences x1, . . . , x4 for the camera Shelf and coordinate axes.

• TSkin−Dist = 75.03

• TSkin−Height = 64

4.10 Homography

The homography computation is done before the actual tracking task is started, and
usually only once, as we used fixed cameras. We compute a homography to map image-
to world (usually ground plane-) coordinates. Therefore, we use a separate program
./compute_homography, which asks for 4 point correspondences xi ↔ x′i between image-
and world-coordinates to compute the projection matrix H.

The actual measurements, the resulting matrices and the implementation details can
be found in Appendix C.6, but one can also refer to figure 4.5. The measuremts serve
as input to our auxiliary program
compute_homography <Measurements> <Matrix_H> which computes matrix H accord-
ing to the DLT algorithm sketched in section 3.3.2 and writes its result to a specified
text file which will serve as input to our main program ./mamut <Matrix_H>.

The resulting matrices H are used in the Homography objects of MaMUT, which of-
fer a function
CvPoint Homography::homography_projection (CvPoint x) to transform image co-
ordinates x to world coordinates x_prime.
Hereby, it is essential that we finally have to normalize the projection result x′i := 1

w′
i
x′i,

i.e.,

x_prime.x = (int)(x_p_x / x_p_w);
x_prime.y = (int)(x_p_y / x_p_w);

51

CHAPTER 4. SYSTEM IMPLEMENTATION OF MAMUT

Figure 4.6: The quadrangular region in front of our shelf which is used to check if a
person stands in front of the shelf.

4.11 Fusion of Tracking Results

After we have tracked persons in our room from images of camera Room1, which observes
the shelf (macro-tracking) and skin regions at our shelf in images from the camera Shelf
(micro-tracking), we have to fuse these two results to finally be able to tell which persons
hands we have detected at the shelf. Note that we do not have to implicitly fuse anything
from camera Room2, as it does not observe any areas of special interest.
In general, this approach can be extended to any number of room- / shelf-camera-pairs.
The only thing that matters is that both cameras observe the same area of interest.

4.11.1 Approach

First of all, we check how many skin regions the shelf tracker has detected at the shelf.
We denote this number by k and if k = 0, we are done.

If we have skin regions detected (k > 0), we now face the problem to map skin re-
gions to persons. Therefore, the fuser asks the person tracker how many persons are
standing in front of the shelf, which is obtained by just checking if the tracepoint of
persons, which is for robustness reasons specified in image coordinates, is in an initially
specified quadrangular region of our ground plane in front of the shelf (see figure 4.6).
If we denote the number of persons at the shelf by n, we now do the following case
distinction, after performing an initial discarding step. This step consists of two phases,
where we discard each skin region which is outside of the shelf area in the first phase.
Such skin regions have a center cs in shelf coordinates, where cs.x < 0 or cs.y < 0. The

52

4.11. FUSION OF TRACKING RESULTS

second phase is inspired by the idea that we only want to have one skin region per hand
and per person. So we discard as many skin regions s.t. we obtain k ≤ 2 · n, i.e., we
allow only two skin regions per person at the shelf. To decide which skin regions to
discard, we just discard the smallest skin regions.

After discarding we can come to the mentioned case distinction:

• If n = 0, we cannot do anything as there is no person we can map our skin regions
to.

• If n = 1, we can easily map all k skin regions to the lonely person at the shelf.

• If n = 2 and k = 1, we map the lonely skin region to the person closest to the
shelf. To find the closest person, we search for those person whose tracepoint has
the least distance to the center of the quadrangular shelf region (see figure 4.6).

• If n = 2 and k > 1, we do a bipartition of the skin regions. This means we search
for two sets (skin clusters) of skin regions, which contain almost the same number
of regions and where the distance of skin regions in a set is minimal.
For this problem, there exist some sophisticated algorithms, known as graph par-
titioning algorithms.

We use a simple algorithm inspired from the blob clustering of [KHM+00], which
first computes the distances of each skin region to all others, and stores them in a
(symmetric) k × k matrix D.
We now search for the longest distance in D. If we find the maximum of D in
Di,j, we take the skin regions i and j as seeds for the two skin clusters.
These clusters are then grown by just adding the skin region with the least dis-
tance to any skin cluster S. This is repeated until no skin regions are cluster-less
(see figure 4.7).
If we now have the bipartition of skin regions, we order the clusters from left
to right, according to our shelf coordinate system. Therefore, we take into ac-
count the x-coordinate of the leftmost skin region of every skin cluster. If we now
also order our n = 2 persons from left to right according to our room coordinate
system, by comparing the x-coordinate of their tracepoints, we can do a simple
1− to− 1-mapping of the two skin clusters to the two persons.

• If n ≥ 3, we do no fusing, as we consider the shelf as too crowded in this situation.
If we had a larger shelf, it would also be possible to deal with three or even more
persons by just refining the clustering algorithm to do a n-partition instead of a
bipartition. The problem however is that persons which stand too close together
will be classified as one moving region, which offers a big problem. A further
discussion can be found in section 5.2.3.

53

CHAPTER 4. SYSTEM IMPLEMENTATION OF MAMUT

Figure 4.7: Example bipartition of 4 skin regions. The dotted line indicates that the
longest distance of regions exists between region 1 and 2 (red). The solid lines indicate
which regions were added to cluster 0 (because of close distance to region 1) or cluster
1 (because of close distance to region 2).

To implement above ideas, we use a tracking fuser class, which will process the re-
sults of person tracking and our shelf tracker, by mapping skin regions to persons, from
which they most probably originate.
This is done by the TrackingFuser class, which has pointers to our TrackingDB and
ShelfTracker objects and fuses the results via a fuse(..) method. This method will
assign detected skin regions of the shelf tracker to persons in the persons vector of the
TrackingDB. To do so, it also offers a method to do a bipartition of skin regions into
two skin clusters: vector<vector<SkinRegion*> > bipartition_skin().
For convenience, the fuser offers methods for printing its status to the console (print(..))
and for drawing the ID’s of persons to the assigned skin regions (draw(..)).

4.12 Output: EventHeap

The EventHeap is a coordination model for coordinating interactions of applications
running on devices which are part of an ubiquitous computing environment, like our
instrumented room. It is similar to tuplespaces [CG92].
In this model, all participants communicate through a commonly accessible tuplespace,
a storage where tuples can be written to and read from (either via a destructive or a
non-destructive read).
These tuples are ordered type-value fields
[(type_1,value_1), (type_2,value_2), ...], containing informations. In our case
this will most probably be informations about the state of our room and the devices in
it. If we want to read a tuple, we have to specify a template tuple, where fields to be
matched contain concrete values and fields to be retrieved contain wildcards.

54

4.12. OUTPUT: EVENTHEAP

4.12.1 Tracker Events

As output for our tracker module we will write Tracker Events to the EventHeap, col-
lecting the tracking results.
A typical tuple could look like this:

[

(EventType, String, ’TrackerEvent’),

(TimeToLive, Int, 1000),

(Number_Of_Persons, Int, 2),

(Position_Person_0, String, ’< 257 , -169 > (*)’),

(Number_Skin_Regions_Person_0, Int, 1),

(Person_0_Skin_Region_0, String, ’(47 , 120)’),

(Position_Person_1, String, ’< 148 , -209 >’),

(Number_Skin_Regions_Person_1, Int, 0),

(TimeStamp, Int, 16)

]

This tuple would express that the number of persons in our room is 2, i.e., we have
person0 and person1.
Furthermore, their position (the coordinates of their tracepoint on the ground plane
(x,−z-plane) is given. If we have (*) appended to the position, this will mean that this
person stands in front of the shelf. These are the informations gathered by the motion
detection module, combined with the homography position estimation.

We also see how many skin regions are detected by the shelf tracker and if any, we
get their positions in shelf coordinates. These informations originate from the skin de-
tection and the fusion module.

The TimeToLive of our tuple is computed according to the computed FPS-rate of
MaMUT, updated after every frame. This value tells us how many frames MaMUT
can capture, process and output per second, and so we compute the TimeToLive in
milliseconds as TTL = 3 · 1000

FPS−rate
[ms].

This yields that we (approximately) have three tuples per time on the EventHeap. This
decision is based on the fact that we may have some useless results if MaMUT adapts
to illumination changes or something similar. Usually three frames will then be enough
to finish adaption and produce reasonable output again.

55

CHAPTER 4. SYSTEM IMPLEMENTATION OF MAMUT

Finally, the timestamp of the frame of our video stream which was used for obtain-
ing this results is given.

56

Chapter 5

Conclusions and Future Work

In this final chapter we want to summarize what we have done and learned during
developing MaMUT. We state problems and possible solutions and ideas on how to
enhance and extend MaMUT that would have exceeded the scope of this thesis by far.

5.1 Applications

Of course, one has to ask himself what will be the use of the data collected by our sys-
tem. Before dealing with this problem in detail, we concern ourselves with the problem
of person identities.
Basically, extracting number and position of persons and their hands is a big step to-
wards multi-user distinction in ubicomp environments, but a final goal could be to assign
personal informations, like the name, to every detected person. Remember that at the
moment we just have an enumeration of anonymous users: person0, person1,

As mentioned, MaMUT will basically extract for every frame of the image sequence
how many persons are in the room and where they (macro-tracking) and their hands
(micro-tracking) are located. These informations will then be published to a common
communication infrastructure of our room, the EventHeap (see section 4.12).
Applications, which could use the informations originating from our system are for ex-
ample:

Virtual Room Inhabitant: We have an application where a movable beamer projects
a virtual room inhabitant (VRI), to the walls of our room [KSS05]. The VRI is
supposed to assist and guide persons in the room. Therefore it has to follow the
persons, which is only possible if we know their positions. With the informations
of the micro-tracking, one could also let the VRI react to interaction with objects,
like describing a product picked out of a shelf.

Consulting Customers at the Shelf: In our room is a shelf with digital cameras in
it. Here, an audio system can tell customers details about the cameras, like price,

57

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

mega-pixels, focal length, and so on.
With the data of MaMUT, one could recognize if a person comes back to the
shelf and continue the consultation, instead of starting it over and over again if we
detect the removal of a product from the shelf, or we can even react to customers
who do not pick any products, but just point towards them.

Integration into Indoor Positioning System: At the moment, we have an indoor
positioning system [BS05], which can locate persons in our instrumented room
via RFID-tags and according antennas or Infrared-senders and PDAs with IrDA
(Infrared Data Association) support.
With the help of MaMUT, one could also locate persons without any auxiliary
devices.

Storing Persons Color-Profiles in UbisWorld: In our project UbisWorld [Hec],
we can, among other things, model persons that are part of our environment,
which encompasses informations about their name, gender and so on.
Our ideas is now that we could also add informations about the color model of
persons which we create anyway during the tracking task. Therefore, we had to
require our users to initially identify themselves when they enter the instrumented
room, for example via a badge or something similar. But the problem is that most
probably persons will change their clothes every other day, and so we could only
store a daily color model for each person, which is only valid for one day or even
a shorter period of time.

5.2 Conclusions

To conclude this thesis, we want to shortly recapitulate, what were our goals, which
ones we have achieved and where there are still some unsolved problems.

5.2.1 What have we done

In section 1.3, we stated requirements to our system. In the following, we will discuss,
which we have met and in what extent.

Result: Basically, we have developed a person tracker for our instrumented room and
added a shelf tracker, which tracks hand- and arm-regions in front of our product
shelf. Here, we also do a skin detection for finding hands of persons reaching
towards products in our shelf.
All this was done with a ’come as you are’ philosophy in mind, wanting to be able
to track person no matter how their outward appearance (clothes, skin color) is.
The results of these two, basically independent, modules are fused to finally obtain
a result where we can tell which person has reached towards which object in the
shelf. This is exactly the result we wanted.

58

5.2. CONCLUSIONS

In this context we should note that our approach can also be used for displays or
other special areas of interest without any adaptations.

Integration into existing infrastructure: With the integration of an LAN-camera
and an EventHeap interface to MaMUT, we met this requirement perfectly, but it
costed quite a lot of time, because this requirement forced us to access the LAN
cameras via their CGI-interface in our C++ programs, which we solved by using
the command line tool cURL via UNIX system calls. Furthermore, we also had to
find a solution for outputting tracking results to the EventHeap. This, we solved
by using the HTTP interface of the EventHeap, for which we again used cURL.

Cameras: The three cameras we used and which are described in section 4.2 fulfill all
the needs specified, like LAN access, frame rate or image resolution.

Realtime: Here we faced some problems, as our frame rate is limited to 4–5 FPS,
which we will discuss in detail in section 5.2.3.

Robustness: Also this point posed, as expected, quite some challenges. Some we
could solve, e.g., dealing to a certain degree with noisy images and resulting noisy
motion images. We also can handle about three to four users in our relatively
small lab, where two can stand in front of the shelf at a time. We judge these
limits as quite reasonable.
Of course, we could not solve all problems in the context of this thesis. The
interested reader may refer to section 5.2.3 for a detailled discussion of problems
and possible solutions.

In conclusion, one can see that for developing our system, we partly adopted other
approaches, like the statistical background subtraction, and newly invented ideas like
the fusion of tracking results.

5.2.2 What have we learned

Now, it is time to summarize what we have learned while developing our tracking sys-
tem.
The most important lesson we have learned is that Computer Vision is quite promising
in the context of interacting with users in ubicomp environments, but also a very chal-
lenging field of Computer Science.
This can be explained by the fact that Computer Vision offers on the one hand the
maybe ultimate ubiquitous interface to computer systems, as it allows to interact with
users without any auxiliary means, by just detecting human movement, gestures and so
on. On the other hand, nothing comes for free and Computer Vision systems force us
to cope with lots of sensitive threshold parameters, robustness problems and computa-
tional highly complex algorithms, spoiling the needs of realtime applications. This last
point bring us then to the problems we faced.

59

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.2.3 Problems

As mentioned, during developing and testing MaMUT, we encountered some problems
we could not solve, or at least not totally satisfactory, in the scope of this thesis.
In some cases, the easiest remedy could come from just changing the settings in our
room, which can be done quite easily here, but would pose big problems in an outdoor
setting for example. Unfavorable lightning conditions, for example, can be handled by
installing different lightning sources.

Realtime Needs

One big problem are the realtime needs of our system. We have three cameras from
which we capture images of size 352×240 pixels, and where we want to have frame rates
of about 10 FPS. This frame rate is needed by two factors. First, a realtime system
should process at least 10 frames per second and beyond this, much of our approaches
rely on the fact that our frame rate is quite high which yields comparably small changes
from frame to frame.
This means we have to process 3 · 10 · 352 · 240 = 2534400 pixels per second. We have
to keep in mind that we have to apply several algorithms (background subtraction, con-
nected component labeling, region merging, skin detection, . . .) for each image and
some of them, like the background subtraction, have to process every pixel.
This is quite a challenge, even for state of the art systems and in spite of the fact that
fast CPUs and memory becomes less and less expensive nowadays.

In fact, we did not manage to reach frame rates above 1–2 FPS under real-world con-
ditions at a PC operating under Debian/GNU Linux, equipped with an Intel Centrino
1.4 GHz processor and 256 MB RAM. We guess that the main bottleneck is the small
memory of our machine.
Measurements resulted that our machine needs about 750ms for just processing the im-
ages without capturing or output to the EventHeap, which yields that we approximately
can only obtain 1.3 FPS.

Fusion

The fusing approach described in section 4.11.1 is quite simplistic and so naturally suffers
from some problems.
Fist, we are in serious trouble if persons cross their hands. Then our algorithm will just
do the wrong mapping. Also, if more than two persons stand in front of the shelf, the
simple algorithm will most likely produce bad results.

Crowded Rooms

If our room is too crowded with persons, the delineation of all the persons is not possible.
In our small room, we already face serious problems distinguishing persons if we have

60

5.2. CONCLUSIONS

more than three at the same time in the view of our camera.
This is caused by the fact that the persons will then have to stand such close together,
that the region merging algorithm will merge all of their blobs to one or two big regions
which it will discard because of too large area or strange aspect ratio.

Shadows

Artificial light sources which are punctiform, like spotlights, cause persons walking in
our room to cast shadows. The problem is that these moving shadows are detected as
moving blobs by the background subtraction algorithm and merged to person regions,
which yields inexact, too large, bounding boxes (see figure 5.2.3).
One solution is to avoid punctiform lightning and rely on diffuse light sources, like nat-
ural sunlight, or spotlights pointing towards the ceiling. In the first case, putting some
sunblinds in front of the windows will improve the situation further.

If we, nevertheless, want or have to use punctiform light sources, a background sub-
traction with shadow removal, like described in section 5.3.1 could solve this problem.

Illumination Changes

Altough we refrain from using punctiform lightning sources and use a quite sophisti-
cated, adaptive, statistical background model, we have some problems if persons are for
example walking along a window, which changes the illumination situation of the whole
room (see figure 5.2). This change is not very serious, but it yields that we will have
no useful background subtraction result for this and the next two to three frames (until
the background model has been adapted to the new situation), resulting in losing the
track of our tracked persons.
But this does not pose a big problem, as we will recover the track of persons after these
few frames via our color models and just ’track’ persons as non-moving during this few
frames.

Static Persons

Another problem concerning background subtraction is the fact that persons will most
probably stand still for quite some frames if they stand in front of the shelf, having a
look at the products in the shelf (see figure 5.3).
The problem is that our adaptive background subtraction algorithm will incorporate
static persons (or parts of them) into its background model, which yields that we do
not find them anymore in the result of the background subtraction.
This problem is again partly solved by setting persons to non-moving and recovering
their track as they start to move again.

61

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Figure 5.1: Top Left: Our room enlightened with a punctiform light source. Top
Right: Result of background subtraction. Bottom Left: Result of person tracking
has too large person regions, which also encompass the shadow cast by the person.

62

5.2. CONCLUSIONS

Figure 5.2: Top Left: Frame from one of the macro-tracking cameras. Person is walking
across window. Top Right: Background model. Bottom Left: Result of background
subtraction. Bottom Right: (Useless) result of region detection.

63

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Figure 5.3: Top Left: Frame from one of the macro-tracking cameras. Persons are
standing more or less static in front of the shelf. Top Right: Background model.
Note the incorporation of the two persons into the model. Bottom Left: Result of
background subtraction. Bottom Right: Result of region detection does not detect
the two persons properly.

64

5.3. POSSIBLE SOLUTIONS TO MENTIONED PROBLEMS

5.3 Possible Solutions to Mentioned Problems

As one could see from above, there are several points, where MaMUT could be improved.
In this section we will collect ideas from other approaches, or ideas we could not realize
in the scope of this thesis.

5.3.1 Other approaches to Motion Detection

This section covers possible improvements and alternatives to our motion detection
module, i.e., background subtraction, blob- and region extraction and region merging.

Other Statistical Background Models

In [LHGT], another background modelling approach using Bayes decision rules for clas-
sifying moving objects from selected feature vectors is presented. It is also available
in OpenCV’s cvaux library, and so an evaluation with the Gaussian Mixture models
[KB01] used in MaMUT may be interesting.

Shadow Removal in Background Subtraction Algorithms

A common problem is that most of the background subtraction algorithms cannot dis-
tinguish between moving shadows and persons casting them.
In [KB01] and [MJD+00], the authors use chromatic color spaces, like the RGB color
space, where we can separate chromatic and brightness components. The idea is that
a shadow pixel is darker than its background model, but only changes slightly in chro-
maticity. Such pixels should then not be classified as moving.
In [HHD98], the problem is easily solved by incorporating informations from the dispar-
ity images of the stereo-vision system. In disparity images, shadows cast on the ground
will not differ from their background model.

As we do not use any stereo vision, maybe the best possibility would be to incorpo-
rate the approach of [KB01] in OpenCV. This will make sense, as the basic algorithm
without shadow removal is already implemented in OpenCV’s cvaux library function
cvCreateGaussianBGModel.

Sophisticated Person Models

In MaMUT, we used the most simple person model, which is usually called model-free.
This means we just use region- and blob-based-tracking combined with size and aspect-
ratio thresholds and color information to recognize persons.

The RPT [Sie03] uses a really sophisticated model to distinguish moving regions which
correspond to persons from non-person objects, like displays with changing content,

65

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

opened doors and windows, shadows of persons, and so on. Here, the idea is to teach
the tracker a certain idea of the outward appearance of a person.

Active Shape Models:
The problem with these models is that we have a tradeoff between complexity and

exactness. The RPT uses a more sophisticated model than MaMUT, actually a 2-D
appearance model, called Active Shape model ([Bau95],[BH95],[Bau96]) of persons, i.e.
they teach the system the mean outline, the so called mean shape of a person in a 2D-
image.
To do so, they need a large set of test data, a set of pictures depicting a walking person,
possibly recorded in a special environment where one can easily determine their shape
via a simple edge detector (see Appendix A) or manually determine the person outlines.
This training set is used for obtaining the Active Shape Model m, i.e. one wants to
compute one adaptive ’mean’ shape (person outline) m(p) of a person in a 2D image.
This shape is parameterized with a parameter p, so that it can be adjusted to the actual
image parameters, like size, and obtain a representation d = m(p).

Each of the n extracted shapes is represented by a vector of spline coefficients, so called
control points (or landmark points as they are called in [Bau95],[BH95],[Bau96]) for a
cubic B-spline and for obtaining a set of coefficient vectors. From this, one can compute
the coefficients of the mean shape m, by just computing the mean coefficient vector.
The problem is that if one would try to match every region in every frame with the
mean shape, one would get a high space and time complexity and destroying needs for
realtime computations. Therefore one has to reduce the complexity of the model, i.e.,
reducing the dimensionality of the model by a certain approximation.
This approximation method is known in the literature under the notion of Principal
Component Analysis (PCA) ([Ger99], sect.11.14), which we will not discuss any further
in the context of this thesis.

Even more advanced person models

There exist even more advanced models relying on 3D information ([GD96], [SBF00])
which are even more robust and exact.
Here, 3D space models of persons are used, which are projected to the concrete setting.
But either we need expensive, dedicated hardware (stereo cameras) or the computational
complexity of these models does not allow realtime operation anymore and therefore we
cannot fruitfully use them in our setting.

Advanced Region Merging, Blob Extraction

We use a very simple blob extraction algorithm, namely connected components label-
ing, i.e., we initially assume every connected component to be a region and then merge
regions according to some simple criteria, like overlapping, distance, and so on.

66

5.3. POSSIBLE SOLUTIONS TO MENTIONED PROBLEMS

More sophisticated algorithms, like in [KHM+00], use weighted graphs (blobs are nodes,
arcs are weighted with Euclidean distance between two blob centroids) and minimum
spanning tree algorithms on them to extract sets of blobs (clusters) which are most
likely to belong to one person.

In OpenCV, there exist no functions for such algorithms, and hence a usage in Ma-
MUT would require to implement the algorithms from scratch, which will be quite a lot
of work.

Fortunately, Dave Grossman, a member of the OpenCV community has developed a
blob extraction library available for download at [Sou].
The problem is that it is only available for Microsoft Windows at the moment, but as
the code is open, one could try to port it to Linux and use it with MaMUT.

5.3.2 Improvements to Region Tracking

This section will show some improvements to our tracking module which tracks detected
regions through subsequent frames.

Occlusion Handling with Stereo Systems

In the W4S tracking system [HHD98], a stereo system (SVM) is used to gather 21
2
D

information of the scene and robustify the tracking of person regions through sudden
illumination changes, occlusions and merging and splitting of person groups. These
are problems which also exist in MaMUT, but the question is if the use of a quite
special system like SVM would make sense in our setting, especially, as W4S relies on
monochromatic images, which would make a skin detection virtually impossible.
W4S detects object interaction via its sophisticated models of the human body. This
approach could also be fruitful in MaMUT.

Color Histograms

In [MJD+00], the updating of the color histograms is done in an adaptive manner, using
Pt(x|i), the old, stored and Pt+1(x|i), the newly acquired informations:

Pt+1(x|i) = βPt(x|i) + (1− β)Pt+1(x|i),

with a weight of β = 0.8.
This updating is not possible in OpenCV, but one could test if it leads to better results,
than the cumulative update we use.
To distinguish persons as they form groups, which will lead to merging of their regions
(bounding boxes), the authors of [MJD+00] use a probabilistic occlusion reasoning ap-
proach, based on color histograms, which could make sense to test in MaMUT. If persons
come together in groups and occlude each other, this approach computes probabilities

67

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

of pixels belonging to a certain person, based on the color histogram of the persons.
This approach sounds quite elegant, but will be hard to implement using the OpenCV
library.

The object interaction detection in [MJD+00] relies on considering small new regions
as dropped objects. Unfortunately, MaMUT will detect lots of small noise regions due
to illumination changes, which will make this approach almost impossible in MaMUT.

Kalman Filtering

One thing to robustify tracking of person regions can be to use the widely accepted
Kalman Filtering technique. In [Wik], we find the definition of a Kalman Filter as just
’an efficient recursive filter which estimates the state of a dynamic system from a series
of incomplete and noisy measurements’.
In the context of person tracking, we can use a Kalman Filter to provide accurate and
continuously-updated information about the position and velocity of our persons, given
a sequence of (former) observations about their position, each of which includes some
error.
In a person tracking application, we are at any time instant interested in tracking
a person. To do so, information about the location, speed, and acceleration of the
person is measured with a certain amount of corruption by noisy images and resulting
corrupted person blobs and regions. The Kalman filter exploits the dynamics of the
person movements, which govern its time evolution, to remove the effects of the noise
and get a good estimate of the location of the person at the present time (filtering), at
a future time (prediction), or at a time in the past (interpolation or smoothing).
Note: The above examples are inspired from the examples available in [Wik].

5.3.3 Possible Improvements to Skin Detection

Also our skin detection module could be improved further to deliver more robust clas-
sification of skin pixels.

Improvements to Histogram Back Projection

One thing to note is that for dark pixels, i.e., pixels with a low saturation, but also pixels
with a quite high brightness it is very difficult to measure their hue value, because of
the hexcone structure of the HSV model (see Glossary, Appendix A). A remedy could
come from applying brightness and saturation thresholds to pixels before computing the
histogram back projection, i.e., pixels with brightness or saturation values above these
thresholds are not considered for the back projection.
In [Bra98], a value of 10% of the maximum pixel value is proposed.

68

5.3. POSSIBLE SOLUTIONS TO MENTIONED PROBLEMS

Alternative to Histogram Back Projection: Bayesian Classifier

A second class of skin classification algorithm is based on Bayesian classification, like
described in [AL04]. These approaches mainly obtain their skin probability image by
computing in every pixel the probability of this pixel having skin color s, given its color
value c, i.e., they compute the probability

P (s|c) =
P (c|s) · P (s)

P (c)

. The probabilities on the right side of the equation are obtained a priori on a small
training set of images, where one manually classifies skin pixels. During operation the
algorithm adapts itself to the given input of the last w frames Pw(s|c), i.e., P (s|c) =
γP (s|c)+ (1− γ)Pw(S|c), using a parameters γ determining how strong the influence of
new measurements is.
These approaches promise a higher robustness, especially due to their online adaption
phase.
The problem is especially the offline training phase, where one has to manually mark
skin pixels in test images. This could be quite difficult and time consuming to implement
with OpenCV’s small GUI library highgui.

5.3.4 Other approaches to Homography Estimation

In [AJN05], more than 10 different homography estimation techniques are described and
evaluated, including the DLT algorithm, which we use in MaMUT.
Interesting in this context are algorithms which use more than 4 point correspondences
to robustify the result. By the way, this is also the case in the Gold standard algorithm,
an extension of the DLT-algorithm, which can also be found in [HZ04]. For further
homography estimation techniques the reader may refer to [KS06] for an approach using
more than one camera.

5.3.5 Approaches using ≥ 2 Cameras (Stereo Reconstruction)

A quite different approach would be to use sophisticated stereo reconstruction tech-
niques, to get real 3D-information from our environment, our instrumented room.
These approaches try to use stereo vision, inspired by the human vision system with
two eyes. Hence, we have to use images from (at least) two calibrated (see Glossary,
Appendix A) cameras. The main task is then to find corresponding points in the two
images, which is computational quite complex and could spoil our realtime needs. By
computing the disparity of all these point pairs, we can then compute depth informa-
tions for all pixels, which is just the missing third dimension.
A very good introduction to this complex field cam be found in the corresponding chap-
ters in [HZ04] or [JKS95].

69

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Papers using this approach in a comparable setting to ours are for example [RSL99],
where the authors track the movement of cars on a parking lot using multiple video
streams. Here, also a short description of the calibration task can be found.
In [FR02], the authors track persons in a smart room with multiple calibrated cameras,
which compares quite well with to our task.

5.3.6 Stereo Cameras

OpenCv’s auxiliary functions library cvaux comes with routines to calibrate and use
stereo cameras to perform 3D tracking of objects. Those cameras have two lenses
and output depth-images (3D-images) in realtime, which can then be processed by our
tracker.
That this approach can be fruitful is shown in [KHM+00]. Here, two color stereo-vision
Triclops cameras from Point Grey Research [Poi] are used. These cameras give 3D
informations without any computations from the tracker module, which will be a huge
benefit for determining the position of persons or skin objects, but they are unfortunately
still quite expensive at the moment.

5.4 Extensions to our System

5.4.1 More Cameras

Theoretically, the number of cameras (for macro- and micro-tracking) is not restricted.
For our setting, it was enough to have two room cameras for macro-tracking and one
shelf camera for micro-tracking at the lonely shelf in our room.
Adding more (disjoint) room cameras is no problem, we just have to create individual
database structures for each. For every shelf camera, we will need an individual fuser,
which fuses informations from the room camera observing the shelf and the actual shelf
camera.

One thing to keep in mind is that every additional camera increases the number of
pixels to be processed in every frame, and so adding more and more cameras to Ma-
MUT could spoil the realtime needs by increasing the network traffic, CPU load and
memory usage.
A possible solution may be to use more than one computer to run our system, but
distributing MaMUT to different computer systems, e.g., one computer for every room-
/ shelf-camera pair and maybe an additional computer for room cameras, which do not
observe any shelf, and hence need no fusing.

70

5.4. EXTENSIONS TO OUR SYSTEM

5.4.2 Gesture Recognition

One thing that came to our mind when developing MaMUT, is to do gesture recognition
with the micro-tracking cameras, as we anyway do skin detection to detect hands.
This could be used to distinguish different interactions with objects, like asking about
the price or something similar, by different hand poses.

One nice thing is that the so called POSIT -algorithm [DD92], which can be used for
gesture recognition is implemented in OpenCV.

5.4.3 Moving Cameras

Basically, our system is equipped with Pan-Tilt-Zoom (PTZ) cameras, i.e., cameras
which are moveable. The advantage of such cameras could be that they allow us to
follow certain users, or to have one camera observing different spots, depending on
whether there are users in this area.
The big problem is that a homography estimation as we use it is only possible if one
has static cameras, i.e., if we want to pursue the approach of moving cameras one has
to think about another possibility to extract the position of users in the environment or
to just allow discrete steps of our cameras. In the latter case, we then could store our
homography matrices and positions of special areas of interest for micro-tracking for all
the different camera positions.

71

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

72

Appendix A

Glossary - Basics in Image
Processing and Computer Vision

We will use some notions and definitions from the field of Image Processing and Com-
puter Vision. In the following we will give a short introduction to some basic notions
like noise, filters, etc..

Noise in Digital Image is a very common kind of image degradation due to digitiza-
tion and compression methods. As we will use JPEG images we mainly have the
problem of noise which is created by the sub-sampling and quantization of color
information by the JPEG compression. This compression method discards color
information because brightness is more important for the human eye.
But also small defects in the CCD chip of our digital cameras can create so called
impulse (salt and pepper) noise, where we obtain erroneous pixel values at certain
pixels.

Image Filters may offer a remedy for dealing with noise.
Formally an image filter F is just function mapping an initial image u to another,
filtered image f , i.e. f = F (u).
We will deal with local filters which only take into account a small neighborhood
of a pixel (e.g. a 3 × 3-mask or even just a single pixel) in u to determine the
corresponding new pixel value in f .

Median filtering is a local filtering which can have two different meanings, but the
idea is always the same.
First, it can mean that we create an average image over n given images. Here, we
average over an uneven number of images, so n = 2m + 1. Then for every pixel
in the filtered image, we use the median over the n corresponding pixels in the n
given images.
To compute the median, we order the n pixels with increasing value and take the
middle pixel value as median.

73

APPENDIX A. GLOSSARY - BASICS IN IMAGE PROCESSING AND
COMPUTER VISION

Formally, if we have the n images u1, . . . ,un and want to obtain a filtered image f :

pixels =order(increasing, u1(x, y), . . . ,un(x, y));

f(x, y) = pixels[m].

The second meaning of a median filter can be that we average each pixel in a single
image, by replacing its color value by the median of all color values in a n × n
neighborhood, where n is uneven, n = 2m + 1, again.
The benefits of median filtering are that it is more robust against outliers (salt
and pepper noise), as an arithmetic mean filter or something similar.

Closing is a morphological filter which performs a erosion followed by a dilation. These
filters use a structuring element B which may be a n × n, n > 0 mask or even a
’round’ pixel mask.
Erosion replaces every pixel (x, y) in an image by the minimum pixel value in
B(x, y) and dilation replaces pixels by the maximum.
If we know close our binary motion image, we first apply an erosion, followed by a
dilation, which will close any vacancies in blobs which are smaller or equal to B.

Edge Detection algorithms can be used to determine edges in greyscale or even color
images. They search for strong changes in the pixel values in a small neighborhood
(i.e., a large image gradient, see below), which indicate the presence of an edge.
Their problem is that they suffer a lot from noise.

Image Gradients are similar to gradients in analysis. As mentioned in section 3.1, we
can describe images as functions f : Ω −→ R and hence compute gradients.
Hereby, we have to note that usually Ω = [0, f .width − 1] × [0, f .height − 1], i.e.,
we have for every pixel (x, y) gradients in x− and y− direction.

Color models are used to code color in images. One usually stores for every pixel of
the image a triple, coding the color.

RGB color model Usually we use RGB color images. These images store for every
pixel a triple (r, g, b) ∈ [0, . . . , 255]3 of red, green and blue color values (corre-
sponding to 0 and 1 in a byte-wise coding) to describe all possible colors. This is
a natural way of color coding, as computer monitors and even the human eye uses
this ’technique’.
As a visualization, one uses a cube to describe RGB color (see figure A.1).
But for some reasons other color model may be more appropriate .

HSV color model HSV (Hue-Saturation-Value) stores a triple
(h, s, v) ∈ [0, . . . , 360]× [0, . . . , 255]2.

74

Figure A.1: RGB cube. Author: G. R. Bradski [Bra98]

Figure A.2: HSV hexcone. Author: G. R. Bradski [Bra98]

The hue channel describes the color value as an angle between 0 corresponding to
red and 360, which is red again. The saturation channel describes how concen-
trated the color is as a scalar value between 0 and 255 (corresponding to 0 and 1
in a byte-wise coding). Finally, the value channel describes the brightness of the
color, also in the range from 0 to 255.
As a visualization, one uses a hexcone (see figure A.2).
This color model is extremely useful to analyze color information (hue), invariant

from lightning changes, which we will use for skin color classification.

Histogram A histogram of an image can be thought of as a lookup table, where we
store which color-value (or grey-value) occurs how many times in the image. So a
color image yields three histograms, one for each color channel.
Usually, the domain of the histogram are discrete values in the range from 0 to
255 (its bins, as one says), representing all possible color values. But for efficiency
reasons it may be useful to group certain bins together, e.g. just use bins from 0

75

APPENDIX A. GLOSSARY - BASICS IN IMAGE PROCESSING AND
COMPUTER VISION

to 64, where we combine every 4 bins. Naturally, the sum over all bin values of a
histogram is supposed to be equal to the number of pixels in the image.

Homogeneous Point Coordinates If we want to describe points on a plane, e.g. on
an image or points on the ground plane of our room, we basically only need 2
values ~x = (x, y)T . But as these points are projected from a real 3D-scene onto
the plane, we would like to express them in R3. Therefore, we exploit the fact that
each point ~x on the plane will lie on the line described by ax+by+x = 0, hence we
get an arbitrary scale factor w, leading to ~x = (x, y, w)T , which we usually set to
w = 1 ⇒ ~x = (x, y, 1)T . This is motivated by the fact that we map homogeneous
points to 2D points via (x, y, w)T 7→ (x/w, y/w)T . In our case: (x, y, 1)t 7→ (x, y)T .

Camera Calibration is the task to estimate the so called 6 extrinsic and 5 intrinsic
parameters of cameras.
The extrinsic parameters denote the position of the world (room) coordinate sys-
tem relative to the camera coordinate system.
We describe this relation by a translation (t1, t2, t3)

T followed by a rotation around
the x−, y− or z−axis by an angle φx, φy, φz.
The intrinsic parameters characterize the geometry of the image plane inside the
camera, i.e. they are used to map an image from the 3D-camera coordinate system
to the 2D-image coordinate system. This is necessary as

1. The origin of the image plane my be located in another point than the origin
of the camera coordinate system. Usually, the image origin is in the upper-
left corner, whereas the camera origin would be projected to the middle of
the image plane. We say that the camera origin is located in (x0, y0)

T of the
image plane.

2. Pixels may have different dimensions in the two coordinate systems, we denote
the pixel dimensions of the image by kx and ky.

3. The coordinate axis may not be parallel, but have an angle θ 6= π/2.

These parameters are stored in matrices, which can be used to map points from
one coordinate system to another.
The idea of mainly all existing camera calibration algorithms is it to investigate
on an object of known size and shape and how correspondent points change if we
move the object.

76

Appendix B

Algorithm Details

In this Appendix, we want to present details of algorithms presented in chapter 3.

B.1 Update Equation for Gaussian Mixture Model

As mentioned in section 3.2.1, we update at each frame our Gaussian distributions by
some sophistacted update equations, we will now specify.

Let wN+1
k be the new weight for distribution k, (1 ≤ k ≤ K) at time level N + 1,

µN+1
k be the new mean of the distribution k at time level N + 1 and
tN+1

k be the new covariance matrix of the distribution k at time level N + 1.

• For expected sufficient statistics update [Now91] (used at time N < L) we have:

wN+1
k = wN

k +
1

N + 1
(p(ωk | ~xN+1)− wN

k))

µN+1
k = µN

k +
p(ωk | ~xN+1)∑N+1
i=1 p(ωk | ~xi)

(~xN+1 − µN
k)

tN+1
k = tN

k +
p(ωk | ~xN+1)∑N+1
i=1 p(ωk | ~xi)

((~xN+1 − µN
k)(~xN+1 − µN

k)T − tN
k)

• For L-recent window update [MRG97] (used at time N ≥ L) we have:

wN+1
k = wN

k +
1

L
(p(ωk | ~xN+1)− wN

k)

µN+1
k = µN

k +
1

L
(
p(ωk | ~xN+1)~xN+1

wN+1
k

− µN
k)

tN+1
k = tN

k +
1

L
(
p(ωk | ~xN+1)(~xN+1 − µN

k)(~xN+1 − µN
k)T

wN+1
k

− tN
k)

77

APPENDIX B. ALGORITHM DETAILS

B.2 DLT Algorithm

To understand the DLT algorithm mentioned in chapter 3.3, we need some mathemati-
cal background, we will give now.

All our considerations will result in how to actually compute the projection matrix
H, s.t.

H xi = x′i , ∀i = 1, . . . n.

By definition of the vector cross product ×, we can instead of searching for an H
s.t., H xi = x′i, compute

x′i ×Hxi = 0

.
Here, a simple linear solution is possible to find.

For notational convenience, we denote the 9 unknowns of H by h1, . . . , h9 respectively.
So,

H =

h1 h2 h3

h4 h5 h6

h7 h8 h9

 .

Furthermore, we will denote with hjT
the j − th (j = 1, . . . 3) row of H, e.g., h1T

=
(h1, h2, h3).

This enables us to write

h =

h1T

h2T

h3T

 , and therefore,

Hxi =

h1T
xi

h2T
xi

h3T
xi

 .

This helps us to reformulate the cross product as

x′i ×Hxi =

y′ih
3T

xi − w′ih
2T

xi

w′ih
1T

xi − x′ih
3T

xi

x′ih
2T

xi − y′ih
1T

xi

 = 0.

78

B.2. DLT ALGORITHM

With xi
T hj = hjT

xi, we now can write

 0T −w′ixi
T y′Ti

w′ixi
T 0T −x′ixi

T

−y′ixi
T x′ixi

T 0T

 h1

h2

h3

 = 0.

This has the form Ai h = 0, with Ai ∈ R3×9 and h ∈ R3×3, and will be written as

Ai h = 0.

Note: We should note that only the first two rows of Ai are linearly independent
and so, for speeding up the algorithm, we could discard the third row and obtain

[
0T −w′ixi

T y′Ti
w′ixi

T 0T −xixi
T

] h1

h2

h3

 = 0.

This will speed up the algorithm, but also lead to not such exact estimations, and so we
decided to use the algorithm without speedup.

From the n matrices Ai ∈ R3×9 (representing in its two linearly independent rows
the two equations given by every point correspondence), we assemble a single matrix
A ∈ R3n×9

A =

A1
1

A2
1

A3
1

A1
2

A2
2

A3
2
...

A1
n

A2
n

A3
n

0 . . . 0

,

where Aj
i denotes the j-th row of Ai. Our problem can now be rewritten as solving

A h = 0,

where h ∈ R9×1 holds the 9 entries of our matrix H we are striving for, and hence, we
search for a solution h 6= 0.
This solution can only be determined up to a scale factor, so to be deterministic, we

79

APPENDIX B. ALGORITHM DETAILS

choose a norm of 1, i.e., ||h|| = 1.

Usually, our point measurements are inexact, they will suffer from noise, i.e., we cannot
get an exact solution, but strive for a best approximation. To do so, we search a vector
h minimizing a suitable cost function, e.g., the norm ||A h||. Further and more elaborate
cost functions can be found in chapter 3.2 of [HZ04].
This amounts in minimizing the quotient ||A h||/||h||.
One can show that this minimizer is just the (unit) eigenvector of AT A corresponding
to the smallest eigenvalue.
Equivalently, we can use the unit singular vector corresponding to the smallest singular
value of A, obtained by a Singular Value Decomposition (SVD) of A.
This SVD yields a decomposition of A as the product of three matrices U,D and V T .

A = U D V T ,

where D is a diagonal matrix of the singular values si, i.e., D = diag(s1, . . . , sn) and U
and V T are matrices, made up by the singular vectors vi.
For more informations on SVD, we refer the reader to the corresponding appendix section
in [HZ04].
If we now order the singular values of D in a descending order, i.e.,
s1 ≥ s2 ≥ . . . ≥ sn, we obtain h just as the last row of V T , which is the last column of
V . From h we can obtain H by above formula, H is just a 3× 3 matrix built from the
9× 1 matrix h.

B.2.1 Normalizing

The ideas above will only work if the origin of the world- and image-coordinate system
will correspond, and if the coordinate axis have the same scale and orientation, which
will literally never be the case in our applications.
Therefore, we need a normalizing transformations T and T ′, which normalize our points
by
x̃i = T xi and x̃′i = T ′ x′i, respectively.

Normalizing transformations T and T ′

The goals of applying a transformation T are (for convenience, we will skip writing T
and T ′ in the remainder and just use T . The formulae for T ′ are obtained by just
substituting x̃i with x̃′i)

1. Translation by a matrix Tt, to bring the centroid c of all points xi to the origin.

2. Scaling by a matrix Ts, to make the average distance d̄ of all points xi to the origin

equal to
√

2.

80

B.2. DLT ALGORITHM

Hereby, the centroid is computed as c =

(
(
∑n

i=1 xi)/n
(
∑n

i=1 yi)/n

)
,

and hence,

Tt =

1 0 −(
∑n

i=1 xi)/n
0 1 −(

∑n
i=1 yi)/n

0 0 1

 .

The average distance to the origin is computed as

d̄ = (
n∑

i=1

√
x2

i + y2
i)/n

.
Hence, the scaling factor s, normalizing the distance d̄ to

√
2 is simply obtained via

s =
√

2/d̄.

And hence,

Ts =

s 0 0
0 s 0
0 0 s

 .

As we want to do a translation followed by a scaling we get x̃i = Ts(Ttxi) and hence
T = Ts Tt.

A last thing to mention is that we finally apply our DLT algorithm to the normalized
point set {x̃i ↔ x̃′i}, yielding a homography matrix H̃, which has to be re-normalized
via

H = T ′−1 H̃ T.

Final note: A homography transformation H xi = x′i = (x′i, y
′
i, w

′
i)

T will usually lead

to w′i 6= 1, which is not desired. So, we also have to normalize the results via x′i := 1
w′

i
x′i,

to set w′i = 1.

B.2.2 Actual DLT Algorithm

The ideas above are resembled in the simple DLT algorithm.

Get user input for n point correspondences: First, we obtain the measured point
correspondences from the user, i.e., we have xi ↔ x′i , ∀i = 1, . . . , n

Compute Ai for all i = 1, . . . , n: This can be done directly from the obtained point
correspondences xi ↔ x′i with xi = (xi, yi, wi)

T :

Ai =

 0T −w′ixi
T y′Ti

w′ixi
T 0T −xixi

T

−y′ixi
T x′ixi

T 0T

 ∈ R2×9.

81

APPENDIX B. ALGORITHM DETAILS

Resemble matrix A: The matrix A is resembled from the two independent equations
each point correspondence gives us.

A =

A1
1

A2
1

A3
1

A1
2

A2
2

A3
2
...

A1
n

A2
n

A3
n

0 . . . 0

.

Note that we have: A ∈ R12×9 and h ∈ R9.

Solve system of equations for h via SVD: To solve the system of equations A h =
0 for h, where we strive for a non-trivial solution h 6= 0.
This is done a SVD of A.

Determine H from h: Remember that our final goal was to determine the projec-
tion matrix H.
Now, as we computed h we can compute H by the above mentioned formula

H =

h1 h2 h3

h4 h5 h6

h7 h8 h9

 .

where h = (h1, h2, h3, h4, h5, h6, h7, h8, h9)
T .

B.2.3 More than 4 Point Correspondences

Of course, we could measure more than 4 point correspondences in our room. As one
can see, this will result in an over-determined set of equations A h = 0.
Here, we will also strive for a approximate solution, like described above, which mini-
mizes a suitable cost function. Also here, the requirement of ||h|| = 1 will make sense
and we remain with minimizing ||A h||/||h|| via a SVD.
A discussion of different cost functions can be found in chapter 3.2 of [HZ04].

82

B.3. CONVERSION FROM RGB TO HSV COLOR SPACE

B.3 Conversion from RGB to HSV Color Space

Our skin detection uses HSV images, but our cameras only provide us with RGB im-
ages. A conversion mapping F : R3 −→ R3, (r, g, b) 7→ (h, s, v), can be found in [GW02]:

Let max := max{r, g, b} and min := min{r, g, b}.

Then F (r, g, b) = (h, s, v) with

h =

undefined = 0, max = min

60 · g−b
max−min

+ 0, if max = r and g ≥ b

60 · g−b
max−min

+ 360, if max = r and g < b

60 · b−r
max−min

+ 120, if max = g

60 · r−g
max−min

+ 240, if max = b

,

s =

{
0, if max = 0

1− min
max

, else
,

v = max.

83

APPENDIX B. ALGORITHM DETAILS

84

Appendix C

Implementation Details

In this Appendix, we want to present details of our implementation we described in
chapter 4.

C.1 Classes and Modules

In this section we want to give a short presentation all of the classes and modules used
in MaMUT.

aux functions.cpp: This module contains all the small auxiliary functions we needed
sometimes, and were not part of OpenCV, like
double compute distance centers (CvPoint, CvPoint) to compute the dis-
tance of two points.

cam capture.cpp: This module is used to capture images from a specified camera,
given the username, password and a folder for temporarily storing the captured
images. This is done via calling
IplImage* capture (int cam nr, string userpass, string folder), which
relies on the approach presented in section 4.6.

compute homography.cpp: This file will be compiled to a small program which will
compute a homography matrix H, given 4 point correspondences, like described
in section 3.3.
The usage is ./homography <input(measurements)> <output(matrix H)>.

EHeapOutput.h / .cpp: This class establishes a connection to the EventHeap for out-
putting tracking results, like described in section 4.12. The constructor assigns
URL and port of the server running the EventHeap:
EHeapOutput(string URL, int port). The class also offers a method to send
TrackerEvent-objects to the EventHeap via
bool write to EHeap(TrackerEvent*, ...).

85

APPENDIX C. IMPLEMENTATION DETAILS

Homography.h / .cpp: This class holds the computed projection matrix H, and offers
a method to project points (CvPoint homography projection (CvPoint)), like
described in section 3.3.

mamut.cpp: This module contains the main()-method and therefore initializes and
runs MaMUT, by calling modules and instantiating classes listed here.

Person.h / .cpp: This class represents the persons tracked. A detailed description
is given in section C.4.

region detection.cpp: This module is used to merge lots of initial blob regions
(from the background subtraction and connected components labeling algorithms)
to some person regions, via CvSeq* detect regions (... ,CvSeq* ConnComp,

double TCC1 min, double ...), incorporating the specified thresholds. A de-
scription can be found in section 3.2.1.

ShelfTracker.h / .cpp: This class is similar to TrackingDB, except that it tracks
skin regions of the shelf camera (micro-tracking) instead of person regions from
the room cameras.

skin detection.cpp: This module allows us to create a skin color model, i.e., a hue-
histogram, via
CvHistogram* create skin model (string skin model name, ...). Further-
more, it provides us with a function to find skin regions in person regions: CvSeq*
skin detection(..., CvHistogram* skin model, double TSkin, double ...,

CvRect roi, CvSeq* SkinComp, ...), like described in section 3.4.

SkinRegion.h / .cpp: This class is quite similar to the Person class, but it represents
the skin region objects of the ShelfTracker.

statist bg subtr.cpp: This module performs a statistical background subtraction
(see section 3.2.1) via
IplImage* stat bg subtr (IplImage*, CvBGStatModel* bg model, ...).

TrackerEvent.h / .cpp: This class represents the results of our tracking task. In its
constructor we specify all collected results:
TrackerEvent (int number of persons, vector<Person*> persons, ..).
In addition, it offers a method to create a string which can be send to the
EventHeap via an HTTP-request: string get HTTP string(...). Details are
given in section C.5.

TrackingDB.h / .cpp: This class holds the data structure for saving tracking results
of the person tracker of the room cameras and offers methods to track persons like
described in section 3.2.2. Details are given below.

86

C.2. CONFIG FILES

TrackingFuser.h / .cpp: This class fuses the results of the TrackingDB and the
ShelfTracker classes, by assigning the skin regions of the latter to the appropriate
persons of the first.

C.2 Config Files

As MaMUT uses a config file to let the user specify configuration parameters, like paths
of images, FPS-rate, and so on, the first thing to do in MaMUT is to parse the config
file.
For convenience, we used a config file parser class available to download from [Wag].
If we #include "ConfigFile.h", we can create an ConfigFile object, specifying the
path to the file (ConfigFile config ("../files/WWCam02.bcf")).
This objects then allows us to simply read parameters into variables.
If we, for example, want to read the integer value for the FPS-rate, we just do
int FPS = config.read<int>("FPS", 1); where we also specified an optional default
value of 1 for this parameter.

C.2.1 Example Config File

In the following we give a commented config file for MaMUT.

--- GENERAL options -------------------------------------
TRACKBAR_MAIN = true # "= true" if we want to have

trackbars to adjust
MaMUT -Runtime -Parameters

TRACKBAR_THRESHOLDS = true # "= true" if we want to have
trackbars to adjust
Thresholds -Parameters

HDD = true # "= true" if we use images from HDD ,
"= false" if we capture live from camera

BGSUBTR_T = false # =" true" if we want to manually
specify parameters for our
statistical background subtraction

COUT = true # "= true" if we want to print results
of tracking to console

MINIMAL_COUT = true # "= true" if we want to have a minimal
output of results to console.

WINDOW = true # "= true" if we want to output
images in windows

AUX_WINDOW = false # "= true" if we want to output ALL

87

APPENDIX C. IMPLEMENTATION DETAILS

created images , like BG-Model ,
Skin Probability Image , ...

IMAGES = false # "= true" if we want to save images to HDD

FPS = 6 # Frames per Second - rate ,
one wants to achieve.
Should be between 1 and 12 !

STEP = true # "= true" if we want to proceed from frame
to frame via a keypress ,
"= false" if we proceed from frame to frame
after (1/ FPS) seconds

EHEAP = true # "= true" if we want to post results
of tracking to EHeap

--- EHeap options ---------------------------------------
EHEAP_URL = http :// wwplayer09.cs.uni -sb.de

#URL of EHeap -Server
EHEAP_PORT = 2486

#Port of EHeap -Server

--- Homography options -----------------------------------
H_FILENAME__ROOM = ../ files/H__room.txt

File containing Homography matrix H
for the ROOM

H_FILENAME__SHELF = ../ files/H__shelf.txt
File containing Homography matrix H
for the SHELF

--- Skin Detection options -------------------------------
SKIN_MODELNAME__SHELF = ../ images/skin_model/BAIR/skin_

Images of our skin model.
Give start of name , e.g., " skin_0"
for skin_01.jpg , skin_02.jpg , ...

and ...

SKIN_SAMPLES_NUMBER__SHELF = 6
number of samples to process

--- Shelf Carpet (in IMAGE coordinates !!!) --------------
Marks regions of interest (like shelfs).
Will be projected to WORLD coordinates
in TrackingDB -Constructor !!!

SHELF_CARPET_0_X = 135
SHELF_CARPET_0_Y = 170

88

C.2. CONFIG FILES

SHELF_CARPET_1_X = 70
SHELF_CARPET_1_Y = 215

SHELF_CARPET_2_X = 145
SHELF_CARPET_2_Y = 240

SHELF_CARPET_3_X = 180
SHELF_CARPET_3_Y = 180

--- Threshold Parameter Scale options --------------------
Threshold parameters are computed according to image sizes
’s’ and a scale factor ’f’ via T = s / f. These factors ’f’
have to be specified below.
NOTE 1 : Increasing values of ’f’ leads to smaller values
of the threshold !
NOTE 2 : ’f’ has to be a double in general ,
i.e., append ’.0’ to every value !

#ROOM Cams
F_TCC1_MIN__ROOM = 5640.0 # Region Detection : Threshold for

too small detected regions ,
at hysteresis step 1

F_TCC1_MAX__ROOM = 3.0 # Region Detection : Threshold for
too large detected regions ,
at hysteresis step 1

F_TCC2__ROOM = 17.0 # Region Detection : Threshold for
too small detected regions ,
at hysteresis step 2

F_TD__ROOM = 5 # Region Detection : Distance
Threshold for adjacent regions

#SHELF Cam
F_TCC1_MIN__SHELF = 845.0 # Region Detection : Threshold for

too small detected regions ,
at hysteresis step 1

F_TCC1_MAX__SHELF = 2.0 # Region Detection : Threshold for
too large detected regions ,
at hysteresis step 1

F_TCC2__SHELF = 154.0 # Region Detection : Threshold for
too small detected regions ,
at hysteresis step 2

F_TD__SHELF = 5 # Region Detection:
Distance Threshold
for adjacent regions

89

APPENDIX C. IMPLEMENTATION DETAILS

-- Skin Detection ---
F_SKIN_PROB__SHELF = 0.75 # Which skin probabilities will

count as skin

F_SKIN_AREA__SHELF = 94.0 # Threshold for too
small skin regions

F_SKIN_DIST__SHELF = 1126.0 # Distance Threshold for
adjacent skin regions

F_SKIN_HEIGHT__SHELF = 1300 # Threshold for Skin Region height ,
too high regions are cropped !

--- HDD options --
IMAGE_LOCATION__ROOM = ../ images/capture/BAIR/room/cam2_

IMAGE_LOCATION__SHELF = . ./ images/capture/BAIR/room/cam1_
where we stored our (numbered) images ,
e.g., image_001.jpg , image_002.jpg , ...
Give beginning of files , e.g., "cam2_"
EXAMPLE:
../ images/capture/cam2Duo/cam2_

INIT_TICK = 3 # Timestamp to start with
END_TICK = 72 # Timestamp to finish

--- Realtime options --------------------------------------
CAM__ROOM = 2 # Number of Camera ,

n ==> ’ wwcam0n.cs.uni -sb.de’,
n=1,2,3

CAM__ROOM_2 = 3 # If ’-1’ then no second room cam is
attached !!!

CAM__SHELF = 1

COMMON Authenticating informations for the 2 cameras:
USER = root # Username for authenticating to

camera specified above
PASS = ***** # Password of user specified above

IMAGE_FOLDER = ../ images / #Folder to store captured image

90

C.3. USING OPENCV

C.3 Using OpenCV

After successfully installing OpenCV according to the mentioned documentation, all
library functions are available if we include the OpenCV header and the header for aux-
iliary helper functions (very useful!):
#include "cv.h"

#include "cvaux.h"

If we want to use the built-in GUI for visualizing our results, we need in addition:
#include "highgui.h"

For further informations and help on particular problems with OpenCV, there exists
a quite vital Yahoo Group for OpenCV [Yah], where one can search through former
posts or post new questions oneself.
In addition, they offer some nice tutorials and HowTo’s, e.g., how to build OpenCV
projects with Eclipse or nice tutorials on camera calibration using the famous chess-
board pattern (see Glossary, Appendix A).

C.4 The Person Class

class Person {

private:
// Bounding Box of merged CC
CvRect rect;

// ID of person
int id;

// Detected skin regions for person
vector <SkinRegion *> skin_regions;

// Color model of persons appearance
CvHistogram * color_model;

// Timestamp , when person was tracked for the last time
int t;

// Timestamp , when person was tracked for the first time
int t_0;

// Tracking state
bool moving;
bool reliable;
bool inside;

// States if person is at shelf
bool at_shelf;

91

APPENDIX C. IMPLEMENTATION DETAILS

// Projection matrix for homography computation
Homography * H;

// Tracepoint of rectangle (footpoint) for trajectory
CvPoint tracepoint;

// Tracepoint in world coordinates
CvPoint tracepoint_world;

// Trajectory of bounding box tracepoints
vector <CvPoint > trajectory;
vector <CvPoint > trajectory_world;

// Direction in which person is currently moving
int dir; // -1 = Left , 0 = None , 1 = Right

// Denotes which camera tracks the person
// element of {ROOM_1 , ROOM_2}
string CAM;

public:
Person(CvRect r, int t, Homography * H,

IplImage * f, IplImage * FG , string CAM);

~Person ();

// Add tracepoint to trajectory of person
void add_to_trajectory(CvPoint c);
void add_to_trajectory_world(CvPoint c);

// Draw persons bounding boxes and traces in frame
void draw_person(IplImage * f);
void draw_trace(IplImage * f);

// Create initial color model for person
CvHistogram * init_color_model(IplImage * f,

IplImage * FG);

// Update color model
void update_color_model(IplImage * f, IplImage * FG);

// Clears assigned skin regions ,
// needed before adding skin regions by Fuser
void clear_skin_regions ();

...
};

92

C.5. THE TRACKINGDB CLASS

C.5 The TrackingDB Class

class TrackingDB {

private:
// All tracked persons , same vector for all TrackingDB
// classes for each room camera
vector <Person *>* persons;

// Connection to EventHeap
EHeapOutput * EH;

// Timestamp of current frame
int act_time;

// Projection matrix for homography computation
Homography * H;

// WORLD and IMAGE coordinates of shelf carpet
// If no carpet is needed , just pass an array which contains
// only (-1, -1)
CvPoint shelf_carpet [];
CvPoint shelf_carpet_img [];

// Denotes if we have a carpet or not
bool has_carpet;

// WORLD coordinate of the center of the shelf ,
// used to compute distances to shelf
CvPoint shelf_center;

// Denotes to which camera the DB is connected
// element of {ROOM_1 , ROOM_2}
string CAM;

// Update status of tracked person
void update_person(int index , CvRect r, IplImage * f,

IplImage * FG , bool COUT);

// Add a new person to track
void add_person(CvRect r, IplImage * f, IplImage * FG , bool COUT);
void add_person(Person * p, bool COUT);

// Remove a person to track ,
// i.e., set them ’non -moving ’ or ’outside ’
void remove_person(int index , IplImage * f, bool COUT);

// Match rectangle to all persons in database
void match(CvRect r, IplImage * f, IplImage * FG , bool COUT);

93

APPENDIX C. IMPLEMENTATION DETAILS

// Checks if color model of a ConnComp r and
// a person (color_model_person) matches
bool match_color_models

(CvRect r, CvHistogram * color_model_person ,
IplImage * f, IplImage * FG);

//Tests if a person is near the image border
bool near_border(Person * p, IplImage * f);

// Tests if a person stands in front of the shelf
bool is_at_shelf(Person * person);

public:
TrackingDB(int time , Homography * H, CvPoint shelf_carpet [],

vector <Person *>* persons , string CAM);

~TrackingDB ();

// Track all ConnComp regions in comp at time t
void track(CvSeq * comp , int t, IplImage * f, IplImage * FG , bool COUT);

// Return all persons standing in front of shelf
vector <Person*> get_persons_at_shelf ();

...
};

94

C.6. MEASUREMENTS, RESULTS AND IMPLEMENTATION OF THE DLT
ALGORITHM

Point Image Coord. Room Coord.
x′i y′i xi yi

x1 330 130 0 0
x2 130 180 295 −70
x3 65 240 285 −160
x4 350 240 110 −230

Table C.1: The four measured point correspondences in our room for camera Room1.

Point Image Coord. Room Coord.
x′i y′i xi yi

x1 333 119 380 −447
x2 54 183 0 −447
x3 67 237 11 −355
x4 350 238 230 −267

Table C.2: The four measured point correspondences in our room for camera Room2.

C.6 Measurements, Results and Implementation of

the DLT Algorithm

C.6.1 Measured Point Correspondences

For the room, we obtained the following correspondences as shown in table C.1. Note
that the ground plane of our room is the x,−z –plane.
A last thing to notice is that the world coordinates are measured in centimeters, i.e.,
a point [110,−230] is located 110cm in x- and 230cm in −z –direction from the world
origin [0, 0].
Also for the second room camera, we will state the measurements and the results.

For the shelf, we got the corresponding as can be seen in table C.3.

Point Image Coord. Shelf Coord.
x′i y′i xi yi

x1 344 69 0 0
x2 47 66 705 0
x3 102 172 79 97
x4 267 172 0 97

Table C.3: The four measured point correspondences at our shelf for camera Shelf .

95

APPENDIX C. IMPLEMENTATION DETAILS

C.6.2 DLT Algorithm

To implement the DLT algorithm we simply translated the sketched algorithm in C++-
code. We store the points xi and x′i in arrays double x[n] and double x_p[n]. The
normalizing transformation matrices are computed as

double T[9] =
{ s, 0.0, (-c.x*s),
0.0, s, (-c.y*s),
0.0, 0.0, s
};

double T_prime [9] =
{ s_prime , 0.0 , (- c_prime.x * s_prime),

0.0, s_prime , (- c_prime.y * s_prime),
0.0, 0.0, s_prime

};

where the normalizing factors s and c.x, c.y are computed as shown in section 3.3.2.
With them we transform our points via

for (int i=0; i<n; i++) {
x_tilde[i].x =

T[0] * x[i].x + T[1] * x[i].y + T[2] * x[i].w;

x_tilde[i].y =
T[3] * x[i].x + T[4] * x[i].y + T[5] * x[i].w;

x_tilde[i].w =
T[6] * x[i].x + T[7] * x[i].y + T[8] * x[i].w;

x_p_tilde[i].x =
T_prime [0] * x_p[i].x + T_prime [1] * x_p[i].y

+ T_prime [2] * x_p[i].w;

x_p_tilde[i].y =
T_prime [3] * x_p[i].x + T_prime [4] * x_p[i].y

+ T_prime [5] * x_p[i].w;

x_p_tilde[i].w =
T_prime [6] * x_p[i].x + T_prime [7] * x_p[i].y

+ T_prime [8] * x_p[i].w;
}

So, we can assemble our matrix A as the array

double A_array [12*9] =
{ 0.0 , 0.0 , 0.0 ,
-x_p_tilde [0].w * x_tilde [0].x , -x_p_tilde [0].w * x_tilde [0].y,
-x_p_tilde [0].w * x_tilde [0].w,
x_p_tilde [0].y * x_tilde [0].x , x_p_tilde [0].y * x_tilde [0].y,
x_p_tilde [0].y * x_tilde [0].w,

96

C.6. MEASUREMENTS, RESULTS AND IMPLEMENTATION OF THE DLT
ALGORITHM

// ---
x_p_tilde [0].w * x_tilde [0].x , x_p_tilde [0].w * x_tilde [0].y,
x_p_tilde [0].w * x_tilde [0].w,
0.0 , 0.0 , 0.0 ,

-x_p_tilde [0].x * x_tilde [0].x , -x_p_tilde [0].x * x_tilde [0].y,
-x_p_tilde [0].x * x_tilde [0].w,
// ---
-x_p_tilde [0].y * x_tilde [0].x, - x_p_tilde [0].y * x_tilde [0].y,
-x_p_tilde [0].y * x_tilde [0].w,
x_p_tilde [0].x * x_tilde [0].x, x_p_tilde [0].x * x_tilde [0].y,
x_p_tilde [0].x * x_tilde [0].w,
0.0 , 0.0 , 0.0 ,

// ---
... ...
... ...
... ...

// ---
0.0 , 0.0 , 0.0 ,

-x_p_tilde [3].w * x_tilde [3].x , -x_p_tilde [3].w * x_tilde [3].y,
-x_p_tilde [3].w * x_tilde [3].w,
x_p_tilde [3].y * x_tilde [3].x , x_p_tilde [3].y * x_tilde [3].y,
x_p_tilde [3].y * x_tilde [3].w,

// ---
x_p_tilde [3].w * x_tilde [3].x , x_p_tilde [3].w * x_tilde [3].y,
x_p_tilde [3].w * x_tilde [3].w,
0.0 , 0.0 , 0.0 ,

-x_p_tilde [3].x * x_tilde [3].x , -x_p_tilde [3].x * x_tilde [3].y,
-x_p_tilde [3].x * x_tilde [3].w,
// ---
-x_p_tilde [3].y * x_tilde [3].x, - x_p_tilde [3].y * x_tilde [3].y,
-x_p_tilde [3].y * x_tilde [3].w,
x_p_tilde [3].x * x_tilde [3].x, x_p_tilde [3].x * x_tilde [3].y,
x_p_tilde [3].x * x_tilde [3].w,
0.0 , 0.0 , 0.0

};

The SVD of A is done via a OpenCV function cvSVD(&A, D, U, VT, CV_SVD_V_T);,
where we have to make CvMat objects out of our arrays via
CvMat A; cvInitMatHeader(&A, 12, 9, CV_64FC1, &A_array);, for example.

C.6.3 Resulting Matrices H

The resulting matrix H is written to a text file in a format compatible with the
Homography objects of MaMUT.
In our case the matrix H is for camera Room1 : Hroom1 : 0.011953387 −0.028514934 −0.237676287

0.008839702 0.053470653 −9.868286717
−0.000014811 −0.000169101 0.019426561

97

APPENDIX C. IMPLEMENTATION DETAILS

For the camera Room2 : Hroom2 :−0.073631361 0.000225558 3.934816339
−0.018459078 0.011917704 28.910878765
−0.000029886 −0.000336970 −0.004047287

For the camera Shelf we obtained as Hshelf :−0.007814197 −0.005785512 3.081498727
−0.000100925 0.014987432 −0.984426987
−0.000001040 −0.000124018 0.037757965

98

Bibliography

[AJN05] Agarwal, Anubhav ; Jawahar, C. V. ; Narayanan, P. J.: A Survey of
Planar Homography Estimation Techniques / International Institute of In-
formation Technology Hyderabad (Deemed University). 2005. – Forschungs-
bericht

[AL04] Argyros, A. A. ; Lourakis, M. I. A.: Real-Time Tracking of Multi-
ple Skin-Colored Objects with a Possibly Moving Camera. In: European
Conference on Computer Vision, 2004, S. Vol III: 368–379

[Axi] Axis Communications: AXIS 213 PTZ Network Camera.
http://www.axis.com/products/cam 213/index.htm, . – [Online, last
accessed 2006-11-02]

[Bau95] Baumberg, A.: Learning Deformable Models for Tracking Human Motion,
University of Leeds, Diss., 1995

[Bau96] Baumberg, A.: Hierarchical Shape Fitting using an Iterated Linear Filter.
In: British Machine Vision Conference, 1996, S. Model Fitting, Matching,
Recognition

[BH95] Baumberg, A. ; Hogg, D.: An Adaptive Eigenshape Model. In: Proceed-
ings of the 6th British Machine Vision Conference Bd. 1, 1995, S. 87–96

[BK] Butz, A. ; Krüger, A.: A mixed reality room following the generalized
peephole metaphor. In: To appear in IEEE Computer Graphics & Applica-
tions

[Bra98] Bradski, G. R.: Computer Vision Face Tracking For Use in a Perceptual
User Interface. In: Intel Technology Journal (1998), 2nd Quarter

[Bra00] Bradski, G.: The OpenCV Library. In: Dr. Dobb’s Journal of Software
Tools 25 (2000), November, Nr. 11, S. 120, 122–125

[BS05] Brandherm, B. ; Schwartz, T.: Geo Referenced Dynamic Bayesian Net-
works for User Positioning on Mobile Systems. In: Strang, T. (Hrsg.)
; Linnhoff-Popien, C. (Hrsg.): Proceedings of the International Work-
shop on Location- and Context-Awareness (LoCA), LNCS 3479 Bd. 3479 /

99

BIBLIOGRAPHY

2005, Springer-Verlag Berlin Heidelberg, 2005 (Lecture Notes in Computer
Science), S. 223–234

[CG92] Carriero, N. ; Gelernter, D.: Coordination Languages and Their Sig-
nificance. In: Communications of the ACM 35 (1992), February, Nr. 2, S.
97–107

[DD92] DeMenthon, D. F. ; Davis, L. S.: Model-Based Object Pose in 25 Lines
of Code. In: Image Understanding Workshop, 1992, S. 753–761

[FR97] Friedman, N. ; Russell, S.: Image Segmentation in Video Sequences: A
Probabilistic Approach. In: Geiger, Dan (Hrsg.) ; Shenoy, Prakash P.
(Hrsg.): Proceedings of the 13th Conference on Uncertainty in Artificial In-
telligence (UAI-97). San Francisco : Morgan Kaufmann Publishers, August
1997, S. 175–181

[FR02] Focken, D. ; R.Stiefelhagen: Towards Vision-Based 3-D People Track-
ing in a Smart Room. In: ICMI, IEEE Computer Society, 2002, S. 400–405

[GD96] Gavrila, D. ; Davis, L. S.: 3-D model-based tracking of humans in action:
a multi-view approach. In: CVPR, IEEE Computer Society, 1996, S. 73–80

[Ger99] Gershenfeld, N.: The Nature of Mathematical Modeling. New York, NY,
USA : Cambridge University Press, 1999

[GW02] Gonzalez, R. C. ; Woods, R. E.: Digital Image Processing. 2nd. Addison-
Wesley, 2002. – 295 S.

[Haxa] Haxx: cURL groks URLs. http://curl.haxx.se, . – [Online, last accessed
2006-11-02]

[Haxb] Haxx: libcurl - the multiprotocol file transfer library.
http://curl.haxx.se/libcurl/, . – [Online, last accessed 2006-11-02]

[Hec] Heckmann, D.: UbisWorld.org. http://www.ubisworld.org, . – [Online,
last accessed 2006-11-02]

[HHD98] Haritaoglu, I. ; Harwood, D. ; Davis, L. S.: W4S: A real-time system
for detecting and tracking people in 2 1/2-D. In: European Conference on
Computer Vision, 1998, S. I: 877

[HHD00] Haritaoglu, I. ; Harwood, D. ; Davis, L. S.: W4: Real-Time Surveil-
lance of People and Their Activities. In: IEEE Trans. Pattern Anal. Mach.
Intell 22 (2000), Nr. 8, S. 809–830

[HZ04] Hartley, R. I. ; Zisserman, A.: Multiple View Geometry in Computer
Vision. Second. Cambridge University Press, 2004

100

BIBLIOGRAPHY

[Int] Intel: Open Source Computer Vision Library (Official Homepage).
http://www.intel.com/technology/computing/opencv/, . – [Online, last ac-
cessed 2006-11-02]

[JF02] Johanson, B. ; Fox, A.: The Event Heap: A Coordination Infrastructure
for Interactive Workspaces. In: WMCSA, IEEE Computer Society, 2002, S.
83–93

[JKS95] Jain, R. C. ; Kasturi, R. ; Schunck, B. G.: Machine Vision. McGraw-
Hill, 1995

[KB01] Kaewtrakulpong, P. ; Bowden, R.: An Improved Adaptive Background
Mixture Model for Realtime Tracking with Shadow Detection. April 2001

[KHM+00] Krumm, J. ; Harris, S. ; Meyers, B. ; Brumitt, B. ; Hale, M. ; Shafer,
S. A.: Multi-Camera Multi-Person Tracking for EasyLiving. In: Workshop
on Visual Surveillance, 2000

[KJM03] Kapralos, B. ; Jenkin, M. ; Milios, E.: Audio-visual localization of mul-
tiple speakers in a video teleconferencing setting. In: International Journal
of Imaging Systems and Technology, special issue on Facial Image Process-
ing, Analysis and Synthesis 13 (2003), June, Nr. 1, S. 95–105

[KS06] Khan, S. M. ; Shah, M.: A Multiview Approach to Tracking People in
Crowded Scenes Using a Planar Homography Constraint. In: European
Conference on Computer Vision, 2006, S. IV: 133–146

[KSS05] Kruppa, M. ; Spassova, M. ; Schmitz, M.: The Virtual Room Inhabitant
- Intuitive Interaction With Intelligent Environments. In: Proceedings of the
18th Australian Joint Conference on Artificial Intelligence (AI05), 2005

[LHGT] Li, L. ; Huang, W. ; Gu, I. Y. H. ; Tian, Q.: Foreground object detection
from videos containing complex background. In: Proceedings of the 11th
ACM International Conference on Multimedia (MM-03), S. 2–10

[MJD+00] McKenna, S. J. ; Jabri, S. ; Duric, Z. ; Rosenfeld, A. ; Wechsler, H.:
Tracking Groups of People. In: Computer Vision and Image Understanding
80 (2000), October, Nr. 1, S. 42–56

[MRG97] McKenna, S. J. ; Raja, Y. ; Gong, S.: Object Tracking Using Adaptive
Color Mixture Models. In: Lecture Notes in Computer Science 1351 (1997)

[Now91] Nowlan, S. J.: Soft competitive adaptation: neural network learning al-
gorithms based on fitting statistical mixtures, Carnegie Mellon University,
Diss., 1991. – CS–91–126

101

BIBLIOGRAPHY

[OMH99] Orwant, J. ; MacDonald, J. ; Hietaniemi, J. ; Oram, A. (Hrsg.):
Mastering Algorithms with Perl. O’Reilly & Associates, Inc., 1999

[Poi] Point Grey Research: Advanced Digital Camera Technology Products.
http://www.ptgrey.com, . – [Online, last accessed 2006-11-02]

[RSL99] Romano, R. ; Stein, G. P. ; Lee, L.: Monitoring Activities from Multiple
Video Streams: Establishing a Common Coordinate Frame / MIT Artificial
Intelligence Laboratory. 1999 (AIM-1655). – Forschungsbericht

[SB91] Swain, M.J. ; Ballard, D.H.: Color Indexing. In: IJCV: International
Journal of Computer Vision 7 (1991)

[SBB+05] Stahl, C. ; Baus, J. ; Brandherm, B. ; Schmitz, M. ; Schwartz, T.:
Navigational- and Shopping Assistance on the Basis of User Interactions in
Intelligent Environments. In: Proceedings of the IEE International Work-
shop on Intelligent Environments (IE), 2005

[SBF00] Sidenbladh, H. ; Black, M. J. ; Fleet, D. J.: Stochastic Tracking of
3D Human Figures using 2D Image Motion. In: European Conference on
Computer Vision, 2000, S. II: 702–718

[SG99] Stauffer, C. ; Grimson, W. E. L.: Adaptive Background Mixture Models
for Real-Time Tracking. In: Proceedings of the IEEE Computer Science
Conference on Computer Vision and Pattern Recognition (CVPR-99), 1999,
S. 246–252

[Sie03] Siebel, N. T.: Design and Implementation of People Tracking Algorithms
for Visual Surveillance Applications, Department of Computer Science, The
University of Reading, Reading, UK, Diss., March 2003

[SM01a] Siebel, N. T. ; Maybank, S. J.: The Application of Colour Filtering to
Real-Time Person Tracking. In: Proceedings of the 2nd European Workshop
on Advanced Video-Based Surveillance Systems (AVBS’2001), 2001, S. 227–
234

[SM01b] Siebel, N. T. ; Maybank, S. J.: Real-Time Tracking of Pedestrians and
Vehicles. In: International Workshop on Performance Evaluation of Track-
ing and Surveillance, 2001

[SM02] Siebel, N. T. ; Maybank, S. J.: Fusion of Multiple Tracking Algorithms
for Robust People Tracking. In: European Conference on Computer Vision,
2002, S. IV: 373 ff.

[Sou] Sourceforge: OpenCV Blob Extraction Library.
http://opencvlibrary.sourceforge.net/cvBlobsLib/, . – [Online, last
accessed 2006-11-02]

102

BIBLIOGRAPHY

[Wag] Wagner, R.: Configuration File Reader for C++. http://www-
personal.umich.edu/ wagnerr/ConfigFile.html, . – [Online, last accessed
2006-11-02]

[Wik] Wikipedia: Kalman Filter. http://en.wikipedia.org/wiki/Kalman filter, .
– [Online, last accessed 2006-11-02]

[WKB04] Wahlster, W. ; Krüger, A. ; Baus, J.: Resource-adaptive Cognitive
Processes. 2004. – Finanzierungsantrag, BAIR: User Adaptation in Instru-
mented Rooms

[Yah] Yahoo Groups: Open Source Computer Vision Library Community.
http://groups.yahoo.com/group/OpenCV/, . – [Online, last accessed 2006-
11-02]

103

