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A Real-Time Algorithm for Assessing
Inhomogeneities In Fabrics

it can be graded using a specific Laplacian pyramid decomposition which has to be
modified at the boundaries. An algorithm is presented which calculates a quality measure
as a weighted mean of the variances at all pyramid levels, where the weights are adapted to the
human perception of cloudiness. The obtained results reach the quality of a human assessor.
The method is easy to implement and it can be used for online grading of the complete fabric

C loudiness constitutes an important quality parameter of nonwoven fabrics. We show that

production of a plant.

© 1999 Academic Press
Joachim Weickert

Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen,

Introduction

A large variety of industrial products, ranging from
carpet to baby napkins, make use of nonwoven,
fleece-like fabrics. For all these products, the fabric
quality plays an important role. It is deteriorated by
inhomogeneities such as clouds and stripes.

Clouds result from isotropic fibre agglomerations,
thus having no preferred directions. Since large clouds
do not look very pleasing, the scale of the cloudiness
gives a measure of the optical appearance of the fabric.
Moreover, the areas with the lowest density charaterize
the mechanically weakest parts of the fabric.

Stripes consist of adjacent fibres preferring a certain
direction. Therefore, the orientation of the stripes
characterizes the fabric anisotropy, which has a strong
impact on its mechanical properties.

The fabric producing company which brought this
problem to our attention takes online images of their
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fabrics with a resolution well-suited for estimating the
cloudiness. For evaluating the stripes, more advanced
methods have to be applied which require a higher
resolution. This cannot be investigated during the pro-
duction process anymore. In the present paper, we
shall therefore focus on the cloudiness.

In order to obtain objective, reliable quality mea-
sures for cloudiness, a suitable mathematical model is
needed. On one hand, such a model would be useful
for the internal assessment during the production, e.g.
for surveying the product quality, for determining
machine cleaning cycles and for comparing different
machines. On the other hand, objective quality criteria
provide standards for the customers and help them to
specify their demands in a proper way.

A good model should be exact enough to match the
human perception of cloudiness and it should allow
fast algorithms which enable the company to perform
grading during the production. In the present paper we
shall discuss such a model and present a suitable real-
time algorithm.

© 1999 Academic Press
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It should be noted that our problem is quite different
from questions of defect detection in textile fabrics
which are treated for instance in Cohen et al. [1] and
Neubauer [2]. For textile fabrics one is interested in
finding well-located irregularities in woven structures.
For nonwoven fabrics one is concerned with inhomo-
geneities which happen as stochastic fluctuations at the
entire area of a fleece. Nevertheless, also in the latter
case we can base our studies on a number of previous
approaches in this field.

First, it should be observed that simple ideas like
calculating the variance or the entropy of an image are
not sensitive enough for our purpose, since they are
independent of the ordering of the grey values. Hence,
they cannot distinguish between multiple small clouds
and one large cloud. In both cases, they yield the same
amount of inhomogeneity. Since for the human
observer there is a big difference between these two
cases, it becomes clear that a suitable model must take
into account the scale of a cloud.

Early suggestions in this direction were made by
Neunzert and Wetton [3], who proposed using the
discrepancy as a cloudiness criterion. Roughly speak-
ing, the discrepancy measures the largest cloud or the
largest hole in the fabric. A fast algorithm for two-
dimensional (2D) interval discrepancy was presented by
Hackh [4]. He reported that the results were still too
coarse and not always selective enough for the desired
purpose.

Stark [5] took into account the scale character of the
cloudiness by analysing the fabric in a wavelet basis.
Since his method did not exploit the main feature of
wavelets, the localization in frequency and space, it
seems that simpler techniques such as Fourier analysis
suffice as well. Moreover, the grading step of this
model was based on a fractal dimension assumption: it
was claimed that the variance depends in a linear way
on the scale. Recent experiences do not confirm this
hypothesis.

Weickert [6] suggested processing the fabric image
using nonlinear anisotropic diffusion in order to visual-
ize clouds and the main stripes simultaneously.
Although the results were fairly promising, the
proposed method is not yet fast enough for online
assessment. Furthermore, there seems to be no need to

process both quality relevant features simultaneously.
In Weickert [7] a preprocessing strategy based on non-
linear diffusion is discussed which is especially
designed for the enhancement of coherent structures
such as stripes.

In the present paper it is shown that linear diffusion
suffices for evaluating the cloudiness. The linear
diffusion process is used implicitly in the image
description by means of a modified Laplacian pyramid.
As a quality criterion of the cloudiness, it is proposed
to use a weighted mean over the variances of all scales,
with weights adapted to the human impression of
cloudiness.

The paper is organized as follows. In the following
section we shall briefly review the concept of image
pyramids. We will see that the commonly used
Laplacian pyramid has to be modified at the bound-
aries in order to be suitable for our task. Moreover, we
shall point out the differences to other multiscale rep-
resentations such as Fourier or wavelet analysis. Later
sections describe the proposed quality criterion for the
cloudiness of a fabric, discuss some experiments, and
on algorithmic details. The paper concludes with
a summary. Some preliminary results of our research
have been presented at a mathematical conference [8].

Multiscale Analysis with the Laplacian Pyramid
Gaussian and Laplacian pyramid

For simplicity, we first restrict ourselves to the one-
dimensional (1D) case in order to sketch the pyramid
concept in image processing. Due to its separability,
the 2D case follows immediately from the 1D case. For
more details on pyramids, see for instance Burt and
Adelson [9], Contoni and Ferretti [10], Jolion and
Rosenfeld [11], and Rosenfeld [12].

We start by defining a (grey value) image as a vector
u = (ug,...,u,v)". We say that a vector is of level k if
it consists of 2¥ + 1 components for k > 1, and of 1
component for k = 0. We consider linear interpolation
operators A* from level k to level k + 1, which are
given by the matrices
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Note that their row sums are always 1, and that the
column sums never vanish. A% is a (21 + 1) x (2% +
1) matrix for k > 1.

Next we define restriction operators R* from level k
to k£ — 1via

o win

R = ( ).

R¥is a 21 + 1) x (2F + 1) matrix. Apart from R!
and boundary points, the restriction operators consist
of a convolution with the binomial mask [,%,1] fol-
lowed by a coarser subsampling. In multigrid analysis,
they are called full weighting operators [13]. The pre-
ceding convolution mask can also be regarded as an
explicit finite difference scheme to the diffusion equa-
tion u, = u,_ with mesh ratio At/(Ax)* = %, see for
instance [14]. For this ratio, the explicit scheme inherits
several important smoothing properties of the continu-
ous diffusion equation such as nonnegativity, a maxi-
mum-minimum principle, preservation of nontonicity,
and it diminishes the total variation.

Wl
Wl
Wl

Using the preceding family of restriction operators,
we obtain a Gaussian pyramid {v”", ..., v°) of u by

oN =y, (&)

............................. (k>=1),

Uk_l = RkUk (k = N,. Cay 1) (2)

The Gaussian pyramid gives a sequence of low-pass
filtered versions of u, whose size is reduced in each
step by a factor which is close to 1 /2. If we interpolate
every successor in the Gaussian pyramid and subtract it
from its predecessor, we get a band-pass representation
of u:

ko pk—lgk=1, k-1

w (k=N,...,D, 3
w0 = p°, (4)
{w", ..., w% is the Laplacian pyramid of u. Its highest

frequency component is w?.

Modification at the Boundaries

Most literature on image pyramids does not address
the question of how to choose the restriction operator
at the boundaries. Other choices than the one that we
have already seen may cause undesirable effects near
the boundaries of the Laplacian pyramid (such as strong
oscillations), and the pyramid levels w”,...,w! may
not have zero mean. The latter phenomenon is rather
untypical for other band-pass representations such as
Fourier or wavelet-based ones. It can only happen if
the restriction with the subsequent interpolation does
alter the average grey value of the image. This is also
undesirable if we think of the diffusion interpretation
of this process: diffusion is based on the continuity
equation and therefore, it is conservative. This indi-
cates that the restriction operator has to be chosen
very carefully at the boundaries in order to fit the
interpolation operator well.

The following criterion shows how the restriction
operator R* should be related to the interpolation
operator A*~! to ensure that w* = v¥ — A¥~1Rkp*
has zero mean. A proof for this criterion can be found
in the appendix.

Selection criterion for restriction operators:

Let A4 = (a;)) satisfy X, a;, =1 and ¥, a;; # 0. Then,
choosing R = (r,;) such that

a..

- (5)

r =
j
X, a;

guarantees that AR preserves the average grey value:
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Yy.=Y x, for y=ARx. (6)
i i

One can easily check that the suggested restriction
operators satisfy this criterion.

It should be noted that—in our case—a correct
treatment at the boundaries is of crucial importance.
As we will see in the next section, we need the variance
of each pyramid level in order to grade the cloudiness.
Especially at coarse levels (corresponding to large
clouds), boundary pixels cause an important contribu-
tion to this value. Incorrect boundary treatment would
be the source of significant deviations and misinterpre-
tations.

Comparison with other multiscale methods

Like Fourier and wavelet transformation, the Laplacian
pyramid gives a complete image representation which
allows retrieval of the image entirely, see, for example,
Burt [9]. Since this representation is completely per-
formed in the spatial domain, we obtain the band-pass
filtered versions immediately, no preceding reconstruc-
tion is necessary. In contrast to the Fast Fourier Trans-
form (FFT), however, the computational effort is linear
in the number of pixels. On the other hand, a
Laplacian pyramid contains always some redundancy,
since the pyramid representation is about 1/3 larger
than the original image. Although the frequency sepa-

Figure 1. The test set.
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ration between neighbouring scales is not as strict as in
the wavelet and Fourier case, we shall see that it is
sufficient for our purposes. Our experiments have indi-
cated that the Laplacian pyramid is sufficiently robust
with respect to translations (a frequent problem when
using wavelets) and it performs better at boundaries
than wavelet and Fourier methods. A correct boundary
treatment would be one of the main problems when
using wavelet analysis. For the FFT, discontinuities at
the periodic extensions of images may lead to
anisotropic artifacts, which are not apparent in the
original image.

Recapitulating, besides its simplicity and speed, the

robust behavior near boundaries is the main reason for
preferring Laplacian pyramids to other multiscale
approaches for the present problem.

The Quality Criterion for Cloudiness

Having a band-pass representation of the fabric image
by means of the Laplacian pyramid, one may take the
variance o2 at some scale k as a measure of the
cloudiness at this scale. Since our Laplacian pyramid
levels are designed to have zero mean (except for

k = 0), the variances can be obtained from

Figure 2. The test set ordered according to the quality criterion. From top left to bottom right: increasing cloudiness.
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Table 1. Results for the test set consisting of six fabric
images. o2 gives the variance at the k-th pyramid level, ¢
denotes the resulting quality index, and r is the average
ranking by 32 human assessors

Fabric #5 #1 #4 #6 #2 #3

o 2099 2126 2039 36.69 49.60 54.16
o 3244 3269 30.66 56.57 66.77 77.99
ol 4230 4468 4048 7581 80.96 104.92
ol 48.93 4959 50.01 87.83 9423 113.30
a2 52.86 52.84 57.97 7542 94.87 103.86
o 4768 59.08 48.92 36.29 66.70 86.35
o} 23.60 27.96 4483 3155 5716 75.15
o 33.20 77.82 99.62 91.73 156.94 179.05
c 4832 5179 5226 66.59 8526 100.63
r 1.50 2.28 2.28 4.38 5.03 5.53

+05 +051 +045 +054 +0.17 +0.50

1 2
O'kz(u) = mi:ZO(Wik(u))z (k=1,...,N).

(7)

Now the question arises of how to assemble the vari-
ances o2, k = 1,..., N to asingle value describing the
human impression of cloudiness. One of the most natu-
ral ideas is to calculate a weighted mean. But how shall
the weights be chosen?

To solve this question, an experiment was per-
formed: 18 members of our department (with different
ages, nationalities, and degrees of expertise) and 14
employees from the fabric-producing company were
asked to classify six fabric images according to their
visual appearance of cloudiness. The test set is
depicted in Figure 1. The human assessors were sup-
posed to grade the most homogeneous fleece with 1
point, the second most with 2 points and so forth. The
bottom row of Table 1 shows the mean and the
standard deviation of these rankings.

The result was fairly surprising: most of the candi-
dates gave a very similar ranking. This indicates that
there seems to exist a typical human impression of
cloudiness independent of age, gender, cultural back-
ground and knowledge. It takes into account mainly
inhomogeneities at middle scales. Smaller and larger
clouds had significantly less influence on the assess-
ment. For this reason, we may choose weights propor-
tional to a Gaussian distribution which is centered
around the middle scales and decreases rapidly towards
small and large scales:

(k — w)’
exp ——20_2
w(k) = — (8)
(j—w
R

The mean w and the standard deviation o are deter-
mined in order to fit the experimental data best. Thus,
the final expression of the cloudiness ¢ of a fabric u is

N

cw) =Y, wk)a(u). (9

k=1

In the case of the test data set, the resulting values for
o and ¢ can be found in Table 1. We observe that
one can get the same ranking as for a human observer.
The result was not very sensitive with respect to the
choice of the parameters u and o. In Table 1, the
values w =4 and o := 1 were used. Figure 2 shows
the test images ordered by increasing cloudiness.

The validity of this quality criterion was checked by
comparing its results with human assessment of other
data sets. In all cases, the ranking of the model was
within the standard deviation of rankings by human
experts.

Algorithmic Details
Parameters

A programme which is supposed to be used in industry
should have only a small humber of parameters, and
they should have an intuitive meaning. Our programme
requires four parameters: two of them are the pixel
number M and the pixel size Ax, which follow from the
resolution and the positioning of the camera. The other
two determine an interval [a, b] which gives the typical
diameter range of clouds which are regarded as
quality-relevant.

The parameters a and b are used to determine the
mean w and the standard deviation o in the Gaussian
weight function [Egn (8)]. If k(s) denotes the pyramid
level k, which has highest sensitivity for clouds of scale
s, then w and o are chosen such that k(a) = u — o
and k(b) = u + o. This gives

. k(a) + k(b)

> ) (10)

ILL :
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B k(a) + k(b)

5 (1)

g

Now the question arises as to how to obtain the func-
tion k(s). From an analysis in the Fourier domain one
would expect that reducing the structure size s to s/2
would lead to an increment of k£ by approximately 1.
However, since pyramids are not translation-invariant
and clouds are rather a local stochastic phenomenon
than a global, cosine-shaped function, we also made
some stochastic simulations.

We analysed the behaviour of our Laplacian pyramid
decomposition by applying it to synthetic images with
cloud-like blobs of different sizes, which were placed at
random locations within the image.

To express the structure size s(k) where a pyramid
level k attains its maximal sensitivity, we used the
ansatz

s(k) = aMAx - exp(— Bk). (12)

Fitting the parameters « and B to our experimental
data yielded « := 0.914 and B := 0.6032. Solving [Egn
(12)] for k gives

1 aMAx
)

k(s) == —I
(s Bn

Let us illustrate these considerations by a practical
example with typical parameters: if a 512 X 512 image
describes an area of 100 x 100 cm?, then M = 512 and
Ax = 0.195 cm. Taking into account clouds between
a = 5cmand b = 15 cm diameter leads to k(a) = 4.817
and k(b) = 2.996. This gives u = 3.906 and o = 0.910.
The fact that this is in good agreement with the fit
parameters u = 4 and o = 1 from the previous section
gives evidence that the 32 assessors were indeed focus-
ing on clouds between 5 and 15cm.

Pyramid decompositions use most of their computa-
tion time for operations at high pyramid levels. Since
the cloudiness is dominant at middle levels, one can
gain a significant speed-up by downsampling the origi-
nal image. Frequently we downsampled 512 X 512
images such that the highest pyramid level was 7.

Storage effort and execution times

The whole algorithm was implemented as a portable C

Table 2. Storage effort and execution time for grading one
fabric image on an HP 9000 /889

SizeM  Max. level N CPUtime(s) Memory (MB)
128 6 0.007 0.2
128 7 0.018 0.8
256 6 0.012 0.9
256 7 0.023 1.4
256 8 0.075 2.7
512 6 0.093 3.2
512 7 0.112 3.4
512 8 0.185 4.2
512 9 0.446 11.4

programme using only ANSI features. Table 2 shows
the measured storage effort and the execution times on
an HP 9000 /889 workstation.

Let us now discuss the practical consequences of this
table for typical data sets. We observe that downsam-
pling 512 X 512 images to a highest pyramid level of
7 and executing the grading algorithm allows to treat
about 9 images per second. If one image depicts a
fabric area of 1 m?, it is possible to assess 9 m?/s. This
shows that many plants can grade their entire fleece
production with such an online algorithm running on
one workstation. In many cases, one or two fast PCs
will suffice as well, and a significant speed-up can be
achieved by using image sizes of 256 X 256 instead of
512 X 512. This has basically no influence on the grad-
ing results.

In the meantime, our industrial co-operation partner
has been using this algorithm for many months. By
comparing it with previously used offline methods and
the results of human assessors, it has been concluded
that this algorithm combines high reliability with good
selectivity and online qualities.

Summary

The cloudiness of nonwovens is a scale-phenomenon
which can be analysed using a Laplacian pyramid
decomposition. The pyramid should be modified at
boundaries in order to reduce errors induced by these
values. As a measure of cloudiness, one may use a
weighted average of the variances at all scales, with
weights according to the human perception. The
obtained model reaches the qualities of a human asses-
sor, and it is fast enough for online grading. Implemen-
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tations at our industrial cooperation partner have
demonstrated its success as a real-time grading tool.

It appears that the scope of the presented method is
not restricted to grading of the cloudiness of nonwo-
vens. Our algorithms might also be applicable to simi-
lar assessment problems, for instance to online grading
tasks within the paper and marble industry.
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Appendix
Proof of the selection criterion
Let C := (cl-j) = AR.

First we show that all row sums of C are 1:

a .
Jjk
Z Cij = Z Zaikrkj = Z Z aikz
J ik ik 191k
Y.a.
J %k
=Zaikz =Zaik=1'
k 195k k
Furthermore, because of
AixAjg

Cij = Z AixTej = Z
k

= Z AipTri = Cji
e Lo dy k

we know that C is symmetric. Thus, all column sums of
C are 1 as well, and we have

Xi:yi = Xl: Zc,jxj = Z(Z cij)xj = ij.

This concludes the proof.
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