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Abstract. Cloudy inhomogenities in artificial fabrics are graded by a fast
method which is based on a Laplacian pyramid decomposition of the fabric
image. This band-pass representation takes into account the scale character
of the cloudiness. A quality measure of the entire cloudiness is obtained as
a weighted mean over the variances of all scales.
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1 Introduction

A large variety of industrial products ranging from carpets to baby napkins
makes use of artificial fabrics. For all these products, the fabric quality plays
an important role. It is deteriorated by inhomogenities such as clouds and
stripes.

Clouds result from isotropic fibre agglomerations, thus having no preferred
directions. Since large clouds do not look very pleasing, the scale of the
cloudiness gives a measure for the optical appearance of the fabric. Moreover,
the areas with the lowest density characterize the weakest parts of the fabric.

Stripes consist of adjacent fibres preferring a certain direction. Therefore,
the orientation of the stripes characterizes the fabric anisotropy, which has
a strong impact on its mechanical properties.

The fabric producing company which brought this problem to our atten-
tion takes online images of their fabrics with a resolution well-suited for
estimating the cloudiness. For evaluating the stripes, more advanced meth-
ods have to be applied which require a higher resolution. This cannot be
investigated during the production process anymore. In the present paper,
we shall therefore focus on the cloudiness.

In order to obtain objective, reliable quality measures for cloudiness, a
suitable mathematical model is needed. On one hand, such a model would
be useful for the internal assessment during the production, e.g. for sur-
veying the product quality, for determining machine cleaning cycles and for
comparing different machines. One the other hand, objective quality criteria
provide standards for the customers and help them to specify their demands
in a proper way.
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A good model should be exact enough to match the human perception
of cloudiness and it should allow fast algorithms which enable the company
to perform grading during the production. In the present paper, we shall
discuss such a model.

We can rely our studies on a number of previous approaches in this field.

First it should be observed that simple ideas like calculating the variance
or the entropy of an image are not sensitive enough for our purpose, since
they are independent of the ordering of the grey values. Hence, they cannot
distinguish between multiple small clouds and one large cloud. In both cases,
they yield the same amount of inhomogenity. Since for the human observer,
there is a big difference between these two cases, it becomes clear, that a
suitable model must take into account the scale of a cloud.

Early suggestions in this direction were made by Neunzert and Wetton
[4], who proposed to use the discrepancy as a cloudiness criterion. Roughly
speaking, the discrepancy measures the largest cloud or the largest hole in
the fabric. A fast algorithm for two-dimensional interval discrepancy was
presented by Hackh [3]. He reported that the results were still too coarse
and not always selective enough for the desired purpose.

Stark [5] took into account the scale character of the cloudiness by
analysing the fabric in a wavelet basis. However, his method did not make
use of the main feature of wavelets, the localization in frequency and space,
thus, it seems that simpler techniques such as Fourier analysis suffice as well.
Moreover, the grading step of this model was based on a fractal dimension
assumption: it was claimed that the variance depends in a linear way on the
scale. Recent experiences do not confirm this hypothesis.

Weickert [6] suggested to process the fabric image using nonlinear aniso-
tropic diffusion in order to visualize clouds and the main stripes simultane-
ously. Although the results were fairly promising, the proposed method is
not yet fast enough for online assessment. Furthermore, there seems to be
no need to process both quality relevant features simultaneously.

The purpose of the present paper is to show that linear diffusion suffices
for evaluating the cloudiness. The linear diffusion process is used implicitly
in the image description by means of a Laplacian pyramid. A Laplacian
pyramid can be thought of as a multiscale representation providing a band-
pass decomposition of the image. Being a multigrid technique, this method
is extremly fast. As a quality functional of the cloudiness, it is proposed to
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use a weighted mean over the variances of all scales, with weights adapted
to the human impression of cloudiness.

The paper is organized as follows.

In section 2, we shall briefly review the concept of image pyramids. We
will see that the commonly used Laplacian pyramid has to be modified at
the boundaries in order to be suitable for our task. Moreover, we shall point
out the differences to other multiscale representations such as Fourier or
wavelet analysis. The third section decribes the proposed quality functional
for the cloudiness of a fabric and discusses some experiments. In section 4,
the paper concludes with a summary of the obtained results.

2 Multiscale analysis with the Laplacian
pyramid

2.1 Gaussian and Laplacian pyramid

For simplicity, we first restrict ourselves to the one dimensional case in order
to sketch the pyramid concept in image processing. Due to its separability,
the two dimensional case follows immediately from the one dimensional case
(for more details, see Burt and Adelson [2]).

We start by defining a (grey value) image as a vector u = (Ug, ..., usn )’ €
oN 4 . . | . . .
R* *'. We consider the linear interpolation operators
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Note that their row sums are always 1.

Furthermore, we define the following restriction operators.

2100.--0000
0Li1...0000

RO = ¢ R HIXEHYD (p =9 N),
000011
0000---00

Rg:: (% % %) e RI*3.

As for the interpolation operators, their rows sum up to 1 as well. Apart from
R3 and boundary points, the restriction operators consist of a convolution
with the binomial mask [, 1, 1] followed by a coarser subsampling. In multi-
grid analysis, they are also called full weighting operators [1, page 39]. The
preceding convolution mask is nothing else but an explicit finite difference
scheme to the diffusion equation u; = u,, with mesh ratio Ef;’»ﬁ = ;. This
scheme is well-known to inherit several important properties of the continu-
ous diffusion equation such as nonnegativity, maximum-minimum principle,
monotonicity preserving, and total variation diminishing (TVD).

Using the preceding family of restriction operators, we define the Gaussian
. N
pyramid {v* ' . v'} of u by

o N
v =y,
QN»l 2N»—\ 2)\'
p? T~ R3N+1+1v ARR
oN=2py o opaNeip aN-lyg
v = Ronoa )0 ,

vl = Rivd,

Due to the coarser subsampling and the smoothing binomial mask, the Gaus-
slan pyramid can be regarded as a sequence of low-pass filtered versions of
u, whose size is reduced in each step by a factor which is close to 1/2. (Note
that the upper index is not an exponent, it denotes the size of the vector.)
So if we interpolate every successor in the Gaussian pyramid and subtract
it from its predecessor, we get a band-pass representation of u:
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w® = v~ Byl
wh = 'vl.

w2+ . w'}is called Laplacian pyramid of u. Its highest frequency com-
_ P py g

N N
ponent is w? 1,

2.2 Modification at the boundaries

The paper of Burt and Adelson [2] does not address the question of how to
choose the restriction operator at the boundaries. Other choices than the
one that we have already seen may cause undesirable effects near the bound-
aries of the Laplacian pyramid (such as strong oscillations), and the pyra-
mid levels w2 *+',... w? may not have zero mean. The latter phenomenon
is rather untypical for other band-pass representations such as Fourier or
wavelet based ones. It can only happen if the restriction with the subse-
quent interpolation does alter the average grey value of the image. This is
also undesirable if we think of the diffusion interpretation of this process: dif-
fusion relies upon the continuity equation and, therefore, it is conservative.
This indicates that the restriction operator has to be chosen very carefully
at the boundaries in order to fit the interpolation operator well.

The following lemma shows how both operators should be related to en-

sure that the Laplacian pyramid levels w?" +!....w® have zero mean.

Lemma 1 Let all row sums of 4 := (a;;) € R™™" and B = (b;) € R™™
be 1. Furthermore, assume that y_\-, ax; # 0 and bj; = ay;/ Y1, ax; for all
t=1,...,m,and j=1,....n

Then for all x,y € R™ with y = ABz, we have Y71 y; = SO0, @i

Proof: Let C := (¢;;) := AB. Since

n "
a, a;
_ , DinGip__ o
Cij = § :“wbm E : E :“prm = Cjiy
p=l

p=1 ket @kp

for all 4,7 € {1,...,m}, we know that C is symmetric. Furthermore, the
product of two matrices with row sums 1 yields also a matrix whose rows
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sum up to 1. Thus, all colum sums of C' are also 1, and we end up with the
assertion
m m m m m m
Zy; = chiﬂij = Z(Zcﬁ)%’ = Z"’j-
i=1 i=1j=1 j=1 i=1 i=1
We observe that the suggested interpolation and restriction operators sat-
isfy the requirements of the preceding lemma.

It should be noted that - in our case — a correct treatment at the bound-
aries is of crucial importance. As we will see in section 3, we need the
variance of each pyramid level in order to grade the cloudiness. Especially
at coarse levels (corresponding to large clouds), boundary pixels cause an
important contribution to this value. Incorrect boundary treatment would
be the source of significant deviations and misinterpretations.

2.3 Comparison with other multiscale methods

Like Fourier and wavelet transformation, the Laplacian pyramid gives a
complete image representation which allows to retrieve the image entirely,
see e.g. [2]. Since this representation is completely performed in the spatial
domain, we obtain the band-pass filtered versions immediately, no preceding
reconstruction is necessary. In contrast to Fast Fourier Transform (FFT),
the computational (and storage) effort is linear in the number of pixels.
Thus, on a fast PC or a small workstation, the computation of the Lapla-
cian pyramid is fast enough for online analysis of cloudiness in fabrics. On
the other hand. a Laplacian pyramid contains always some redundancy, since
the pyramid representation is about 1/3 larger than the original image. The
frequency separation between neighbouring scales is not as strict as in the
wavelet and Fourier case. Nevertheless, we shall see that it is still sufficient
for our purposes. Qur experiments have indicated that the Laplacian pyra-
mid is sufficiently robust with respect to translations (a frequent problem
when using wavelets) and it performs better at boundaries than wavelet and
Fourier methods. A correct boundary treatment would be one of the main
problems when using wavelet analysis. For the FFT, discontinuities at the
periodic extensions of images may lead to artefacts deceiving anisotropy,
which is not apparent in the original image.

Recapping, besides its simplicity and velocity, the robust behaviour near
boundaries is the main reason for preferring Laplacian pyramids to other
multiscale approaches for the present problem.
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3 The quality functional for cloudiness

Having a band-pass representation of the fabric image by means of the
Laplacian pyramid, one may take the variance ¢f at some scale k as a
measure for the cloudiness at this scale. Since our Laplacian pyramid levels
have zero mean, the variance is given by

od(u) =

2)&
2% 2 k‘ =1 N

s 2wl (k=1 0),
2 + 1 i=0
Now the question arises of how to assemble the variances o, k = 1,..., N
to a single value describing the human impression of cloudiness. One of the
simplest ideas is to calculate a weighted mean. But how shall the weights
be chosen?

To solve this question, an experiment was performed: 18 members of the
Laboratory of Technomathematics (with different ages, nationalities, and
degrees of expertise) were asked to classify nine fabric images according
to their visual appearance of cloudiness. The result was fairly surprising:
most of the candidates gave a very similar ranking. This indicates that
there seems to exist a typical human impression of cloudiness independent
of age, sex, cultural background and knowledge. It takes into account mainly
inhomogenities at middle scales. Smaller and larger clouds had significantly
less influence to the assessment. For this reason, we may choose weights
proportional to a Gaussian distribution which is centered around the middle
scales and decreases rapidly towards small and large scales:

exp (- e52)

207

S e (~52)

207

w(k) =

The mean i and the standard deviation o are determined in order to fit the
experimental data best. Thus, the final expression of the cloudiness ¢ of a
fabric u is

N

e(u) = Z w(k) of(u)

k=1

The validity of the quality functional was checked by comparing its results
with the preceding test. Moreover, a simultaneous test was made with 27
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employees of the fabric producing company. In both cases, the ranking of the
model was within the standard deviation of ranking of the human evaluators.
Also with other image sets, similar results could be obtained.

4 Summary and outlook

The cloudiness of fabrics is a scale-phenomenon which can be analysed suffi-
ciently well using a Laplacian pyramid decomposition. The pyramid should
be modified at boundaries in order to reduce errors induced by these values.
As a measure of cloudiness, one may use a weighted average of the variances
at all scales, with weights according to the human perception. The obtained
model reaches the qualities of a human assessor, and it is fast enough for
online grading. Therefore, future research can focus on the second quality
relevant feature of fabrics, the grading of stripes.
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