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Abstract. Cloudy inhomogcnities in artificial fabrics are graded hy a, fast 
method which is based on a Laplaciarl pyramid decomposition of the fabric 
image, ‘I‘his trand-pass representation takes into account the scale character 
of the cloudiness. A quality measure of the entire cloudiness is ol)tained as 
a weighted mean over the varia,nccs of all scales. 
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1 Introduction 

A large variety of industrial products ranging from carpets to baby napkins 
makes use of artificial fabrics, For all these products, the fabric quality plays 
an important role. It is deteriorated by inhomogenities such as clouds and 
stripes. 

Clouds result from isotropic fibre agglomerations, thus having no preferred 
directions. Since large clouds do not look very pleasing, the scale of the 
cloudiness gives a measure for the optical appearance of the fabric. iCloreover, 
the areas with the lowest density characterize the weakest parts of the fabric. 

Stripes consist of adjacent, fibres preferring a certain direction. Therefore, 
the orientation of the stripes charactcrizes the fabric anisotropy, which has 
a strong impact on its mechanical properties. 

l’he fabric producing company \vhich brought this problem to our atten- 
tion takes online images of their fabrics rvitli a resolution well-suited for 
estimating the cloudiness. For evaluating the stripes, more advanced meth- 
ods have to be applied which require a higher resolution. ‘This ca,nnot be 
investiga,ted during the production process a.nymore. In the present paper, 
we shall therefore focus on the cloudiness. 

Tn order to obtain objective, reliable quality measures for cloudiness, a 
suitable mathematical model is needed. On mc hand, such a model would 
be useful for the internal assessment during the production, e.g. for sur- 
veying the product quality, for determining machine cleaning cycles a.nd for 
comparing different machines. One the other hand, objective quality criteria 
provide standards for the customers and help them to specify their demands 
in a proper way. 
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A good model should be exact enough to match the human perception 
of cloudiness and it should allow fast algorithms which enable the company 
to perform grading during the production. In the present paper, we shall 
discuss such a model. 

We can rely our st,udics on a number of previous approaches in this field. 

First it should be observed that simple ideas like calculating the variance 
or the entropy of an image are not sensitive enough for our purpose, since 
they are independent of the ordering of the grey values. Hence, they cannot 
distinguish between multiple small clouds and one large cloud. In both cases, 
they yield the same amount of inhomogenity, Since for the human observer, 
there is a big difference between these two cases, it becomes clear, that a 
suitable model must take into account the scc~le of a cloud. 

Early suggestions in this direction were made by Neunzert and Wetton 
[4], who proposed to use the discrepancy as a cloudiness criterion. Roughly 
speaking, the discrepancy measures the largest cloud or the largest hole in 
the fabric. A fast algorithm for two-dimensional interval discrepancy was 
presented by Ha.ckh [:<I. Flc report,ed that. the results were still too coarse 
and not a.lways selective enough for the desired purpose. 

St,ark [5] t’ook into account the scale cha,racter of the cloudiness by 
analysing the fabric in a wavelet basis. However, his method did not make 
use of the main feature of wavelets, t,he localization in frequency rtnrl space, 
thus, it seems that simpler techniques such as Fourier analysis suffice as well. 
Moreover, the grading step of this model ‘~vas based on a fractal dimension 
assumpt,ion: it was claimed tha.t the variance depends in a l~incar wa,y otr the 
scale. R.ecent experiences do not confirm t.his hypothesis, 

Weickert [6] suggested to process the fabric image using nonlinear aniso- 
tropic diffusion in order to visua,lize clouds and the ma.in stripes simulta,ne- 
ously. Although the results were fairly promising, the proposed method is 
not yet fast enough for online assessment. Furthermore, there seems to be 
no need to process both quality relevant features simulta~ncously. 

The purpose of t,he present paper is to show that linear diflusion suf’tices 
for evaluating the cloudiness. The linear diffusion process is used implicitly 
in the image description by means of a Laplacian pyramid. A Laplacian 
pyramid can be thought of as a mult,iscale representation providing a band- 
pass decomposition of the image. Being a multigrid technique, this method 
is extremly fa.st. XS a quality functional of the cloudiness, it is proposed to 
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use a weighted mean over the variances of all scales, with weights adapted 
to the human impression of cloudiness. 

The paper is organ&d as follows. 

In section 2, we shall briefly review the concept of image pyramids. We 
will see that the commonly used Laplacian pyramid has to be modified at 
the boundaries in order to be suitable for our task. Moreover, we shall point 
out the differences to other multiscale representations such as Fourier or 
wavelet analysis. The third section decribcs the proposed quality functional 
for the cloudiness of a fabric and discusses some experiments. In section 4, 
the paper concludes with a summary of the obtained results. 

2 Mult iscale analysis wit 11 the Laplacian 
pyramid 

2.1 Gaussian and Laplacian pyramid 

For simplicity, we first wstrict. o~usclves to the one ditnensiotd CXE in order 
to sketch the pyramid concept in image processing. Due t,o its separability, 
the two dimensional case follows immedia.tely from the one dimensional case 
(for more details, see Burt and Ad&on [‘2]). 

We start by defining a (grey value) image as a vector TL = (;uo, . ..? upjT E 

nt 3Nf’. JVe consider the linear it~terpolatint’~ operators 
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Note that their row sums are always 1. 

Furthermore, we define the following restriction operators, 

n 2’-‘$1 _ 
2’+1 - I I * #. . . *. . *. . . . . . . 

E ~Pk-‘tw2”+~) (k = 2, “‘) Jq, 

As for t.he interpolation operators, their rows sum up to 1 as well. Apart from 
Ri and boundary points, the restriction operators consist of a convolution 
with the binomial mask [$, i, $1 followed by a coarser subsampling. In multi- 
grid analysis, they are also called full weight,ing operators [I, page 39]. The 
preceding convolution mask is not,hing else but an explicit finite difference 
scheme to the diffusion equation 11,~ = II,, with mesh ratio ;;“% =: a. This 
scheme is well-kno\vn to inherit several important properties of the continu- 
ous diffusion equation such as nonnegativity, Inaximurn-nlinimnrn principle, 
monotonicity preserving, and total variation diminishing (TVD). 

IJsing the precedin g family of restrict,ion operators, we define the Gau~sinr~ 
p?pmid {~u2”t1, . ..) ,LJ} of IL by 

Due to the coarser subsampling and the smoothing binomial mask: the Cans- 
sian pyramid can be regarded as a sequence of low-pass filtered versions of 
u, whose size is reduced in each step by a factor which is close to I/2. (Note 
that the upper index is not an exponent,, it denotes the size of the vector.) 
So if we interpolate every successor in the Gaussian pyramid and subtract 
it from its predecessor, WC get a band-pass representation of 11: 



{w 2"ti , I.., UJI) is cdkd Lap/a&an pyramid of U. Its highest frequency com- 
ponent is 112~“~’ q 

2.2 Modification at the boundaries 

The pa,per of Burt and Adelson [2] d oes not address the question of how to 
choose the restriction operator at the boundaries. Other choices than the 
one that WC have already seen may cause undesirable effects near the bound- 
aries of the Laplacian pyramid (such as strong oscillations), and the pyra- 
mid levels 7u2’ ‘fl . . . ..w3 may not have zero mean. The latter phenomenon 
is rather untypical for other band-pass representations such as Fourier or 
wavelet based ones. It can only happen if the restriction wit,h the snbse- 
qucnt, interpolation does alter the average grey value of the image. This is 
also undesirable if we think of the diffusion interpretation of this process: dif- 
fusion relies upon the continuity cqua,tion and, therefore, it is conservative. 
This indicates tha,t the restriction operator has to be chosen very ca.refuIly 
at the boundaries in order to fit the interpolation operator well, 

The following lemma shows how both opcrat ors should be related to en- 
sure that the Lap1acia.n pyramid levels r~“~+’ ,.... 12 haIT zc1’0 Illran. 

PrOOfi Let C := (Cij) := AB. Since 

for all ;,j E (l,..., nz}? we know that C is symmetric. Furthermore, the 
product of two matrices with row sums 1 yields also a matrix whose rows 



sum up to 1. Thus, all colum sums of C are also 1, and we end 711) with the 
assertion 

We observe that the suggested interpolation and restriction operators sat- 
isfy the requirements of the preceding lemma. 

It should be not,ed that - in our case - a correct treatment at the bourtd- 
aries is of crucial importance. As WC will see in section 3, we need the 
variance of each pyramid level in order to grade the cloudiness. Especially 
at coarse levels (corresponding to large clouds), boundary pixels cause an 
important contribution to this value. Incorrect boundary treatment would 
be the source of significa,nt deviations and misinterpretatiorIs, 

2.3 Comparison with other multiscale methods 

Like Fourier and wavelet transformation, the Laplacian pyramid gives a 
complete image representation which allows to retrieve the image entirely, 
see e.g. [a]. Since this represcnta,tion is completely performed in the spatia,l 
domain, we obtain the band-pass filtered versions immediately, no precediug 
reconstruction is necessary. In contrast to Fast Fourier Transform (FFT), 
the computational (and storage) effort is linear in the number of pixels, 
Thus, on a fast, PC or a small workstat,ion, the computation of 111c Lapla- 
cian pyramid is fast euough for otdinc aiialysis of cloudiness in fa.brics. Ot1 
the other ha~lct. a Lqlacian pyramid contains altvays some rdundarl~y, since 
the pyramid representation is about l/3 la.rger than the original image, The 
frequency separation between neighbouring scales is not a~ strict as in the 
wavelct and Fourier case. Nevertheless! we shall see that it, is still sufficient 
for our yurposes. Our experiments ha.ve indicated that, the La,placian pyra- 
mid is sufficiently robust with respect to translations (a frccluent~ problem 
when using wavelets) and it performs better at boundaries than wavelet and 
Fourier methods, X correct boundary treatment would be one of t,he main 
problems when rising wavelet analysis. For the l:F’l’, cliscc)nt~iIrllities at the 
periodic extensions of images may lead to artcfacts deceiving anisotropy, 
which is not apparent in the original image, 

Recapping? besides it,s simplicity and velocity, the robust beha,viour near 
boundaries is t,he main reason for preferring Laplacian pyramids to other 
multiscale approaches for the present problem. 
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3 The quality functional for cloudiness 

Having a band-pass representation of the fabric image by means of the 
Laplacian pyramid, one may take the variance tri at some scale k as a 
measure for the cloudiness at this scale. Since our Laplacian pyramid levels 
have zero mean, the variance is given by 

Now the question arises of how to assemble the variances a;, k = 1, . . . . Ic’ 
to a single value describing the human impression of cloudiness. One of the 
simplest ideas is to calculate a weighted rnea,n, But how shall the weights 
be chosen? 

To solve this question, a,n experiment was performed: 18 members of the 
Laboratory of Technornathem;ttics (with different ages, nationalities, and 
degrees of expertise) were asked to classify nine fabric images according 
to their visual appearance of cloudiness. The result was fairly surprising: 
most of the candidates gave a very similar ranking. This indicates that 
there swxns to exist a typical human impression of cloudiness independent 
of age, sex, cultural background and knowledge. It takes into xcount mainly 
inhomogenities at middle scales. Smaller a,nd larger clouds had significantly 
less influence to the assessment. For this reason, we may choose weights 
proportional to a, Gaussian distribution which is ccntcrcd around the middle 
scales and decreases rapidly totvards small and large scales: 

The mean /1 and the standard deviation CY are determined in order to fit t.hc 
experimental da.ta best. Thus, the final expression of the cloudiness c of a 
fabric II is 

N 

C(U) = c w(k) c7&) 

k=l 

The validity of the quality functional was checked by comparing its results 
with the preceding test, Moreover, a simultaneous test was made with 27 
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employees of the fabric producing company. In both cases, the ranking of the 
model was within the standard deviation of ranking of the human evaluators. 
Also with other image sets, similar results could be obtained. 

4 Summary and outlook 

The cloudiness of fabrics is a scale-phenomenon which can be analysed sufXi- 
ciently well using a Lap1acia.n pyramid decomposition. The pyramid should 
be modified at boundaries in order to reduce errors induced by these values. 
As a. measure of cloudiness, one ma.v use a. weighted average of the variances 
at all scales, with weights according to the human perception. The obtained 
model reaches the qualities of a human assessor, and it is fast enough for 
online grading, Therefore, future research ran focus on the second quality 
relevant feature of fabrics, the grading of st,ripes. 
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