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Preface

This work is a selection of twelve publications which serve as partial fulfillment of
the requirements for the habilitation degree in computer science at the University
of Mannheim, Germany. It contains contributions to the fields of digital image
processing and computer vision. The methods used are based on partial differential
equations.

The included material is a subset of the author’s publications. A complete
listing can be found on page 351. One selection criterion was to include work
that was done after the author’s dissertation in 1996. The article in Chapter 6
contains results from the doctoral thesis as well as more recent research. The
author’s dissertation has been published as a book (Anisotropic Diffusion in Image
Processing, Teubner Verlag, Stuttgart, 1998), and is not part of this collection. In
all included work the author acted either as first author or provided significant
contributions as coauthor. Eleven of the included papers have been published or
accepted for publication in journals, and one is currently under review.

Each chapter represents one article. A summary of the main contributions and
their relations can be found in Chapter 1. The chapters in this collection are —
apart from reformattings and a few minor corrections — identical with the versions
that have been accepted for publication. As a consequence, it may happen that
similar introductory explanations can be found in related chapters. Since each
article used the nomenclature that appeared most convenient to its authors, slight
deviations between the nomenclature in different chapters may occur.
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Chapter 1

Introduction and Overview

The goal of this chapter is to give an overview of the author’s recent scientific
contributions to the field of image processing and computer vision methods us-
ing partial differential equations (PDEs). We start by justifying the use of this
relatively new class of image analysis techniques. Then a short sketch of the state-
of-the-art in PDE-based methods in image processing and computer vision is given.
Afterwards it is described in more detail in which sense the author’s contributions
in Chapters 2-13 have created novel scientific knowledge in scale-space analysis,
nonlinear diffusion filtering, variational image restoration, and optic flow computa-
tion. The chapter is concluded by sketching some related work in which the author
was involved and which is not included in this collection.

1.1 Why Partial Differential Equations?

Sometimes the state of image processing and computer vision has been compared
with the state of chemistry shortly before the discovery of the periodic system of
elements. Indeed, progress in the last decade creates the impression that image
processing and computer vision are currently in a transition phase from an “al-
chemistic” trial-and-error state to a science which is built on a solid mathematical
foundation. Sophisticated techniques such as wavelets in signal and image pro-
cessing [99, 240], unifying geometric concepts for computer vision [120, 123, 162,
236], and geometric algebra for solving problems in machine vision and robotics
[223, 364, 365, 366, 367] are important examples that demonstrate this general
tendency.

One of the innovative areas in this transition phase consists of methods that are
based on partial differential equations [87, 116]. Such equations describe relations
between an unknown function in several variables and its partial derivatives. They
play a fundamental role in physics and engineering, but also in chemistry, biology
or even economics. In the context of image processing and computer vision, PDE-
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based techniques offer several advantages:

e Many mathematical results with respect to well-posedness are available, and
well-understood numerical frameworks exist that describe how stable algo-
rithms can be designed. As a result, PDE-based methods are one of the
mathematically best-founded techniques in image processing and computer
vision.

e Some PDE-based techniques make use of the Euler-Lagrange equations aris-
ing from variational problems where a suitable energy functional is mini-
mized. Such optimization problems offer the advantage of using a conceptu-
ally clear formalism without any hidden assumptions: all model assumptions
enter the energy functional, and the resulting solution is optimal with respect
to the desired criteria.

e The ultimate goal in machine vision is a transition from a signal-based im-
age representation (pixels with grey values) to a symbol-based high-level
description of the depicted real-world objects in their 3D configuration. This
bottom-up approach requires mechanisms that introduce a hierarchy into the
image structure. One such concept is a so-called scale-space representation.
It embeds the original image into a continuous family of increasingly simpli-
fied representations. Work by Alvarez et al. [12] has shown that PDEs are
the natural language in which scale-space concepts should be formulated.

e Several classical image processing methods have been reinterpreted under
such a unifying PDE-based framework. This includes many well-known tech-
niques such as Gaussian convolution, median filtering, dilation or erosion.

e PDE formulations have also led to the discovery of entirely new methods.
They can offer more invariances than classical image processing techniques,
or describe novel ways of adaptive filtering, shape simplification, image match-
ing, and interactive segmentation. PDEs are also involved in new computer
vision methods for image sequence analysis, stereo reconstruction, or shape-
from-shading.

e PDE formulations are genuinely continuous. This allows rotationally invari-
ant formulations. Using adequate numerical techniques ensures that the re-
sulting algorithms approximate this invariance very well. This distinguishes
them from many purely discrete concepts.

After this general discussion, let us now survey some important PDE techniques
for image processing and computer vision.
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1.2 Relation to Previous Work

In this section we shall briefly review the current PDE methods in imaging, and we
shall sketch how the work in Chapters 2-13 relates to the state-of-the-art in this
field. This section is not intended to be complete, but it will give some pointers
to seminal papers. For more detailed explanations, further material and a more
extensive list of references, the reader is referred to the collections and monographs
on PDEs in image processing and computer vision [38, 274, 330, 382, 381, 412] as
well as to a survey paper by Deriche and Faugeras [104] and special issues of IEFE
Transactions on Image Processing (Vol. 7, March 1998) and Journal of Visual
Communication and Image Representation (Vol. 11, June 2000).

Linear PDE-based image processing techniques became popular in the eighties
by the scale-space work of Witkin [436] and Koenderink [213]. They proposed to
embed an image into a family of Gaussian-smoothed versions and to investigate
their deep structure, i.e. the behaviour of important features (such as edges) over
scale. It is well-known that this family can be created by evolving the initial image
under a linear diffusion process. Interestingly, linear scale-space had already been
axiomatically introduced to imaging by Iijima in 1959 [174]. His numerous contri-
butions to linear scale-space theory remained unknown to the western world until
1997 [420]. They are surveyed in Chapter 2. A detailed treatment of the various
aspects of linear scale-space theory can be found in [127, 230, 369, 383] and the
references therein.

Nonlinear PDEs for image enhancement started to become an active research
area after Perona and Malik’s 1987 paper on nonlinear diffusion filtering [301].
They proposed to smooth an image under a space-variant nonlinear diffusion equa-
tion that reduces smoothing at edges of the evolving image. An early predecessor
of this work was a publication by the Nobel laureate Dennis Gabor who proposed
in 1965 a nonlinear deblurring method using forward diffusion along level lines
with backward diffusion across them [138, 233]. Essentially the same behaviour
can be observed for the Perona—-Malik filter. Since it has been realized that the
Perona—Malik process in its original formulation is ill-posed to a certain degree
[74, 280, 204, 202|, Catté et al. [74] studied a regularization for which they es-
tablished existence and uniqueness results. In his monograph [412], the author
extended their continuous results and established related theorems in the semidis-
crete and fully discrete setting. By means of Lyapunov functionals he showed that
these nonlinear methods, which may locally act edge enhancing, can be regarded
as smoothing scale-space transformations. Chapter 5 presents an application of
these ideas in an information theoretic context, where the scale-space behaviour
of Rényi’s generalized entropies is studied. Other research has been devoted to the
design of more flexible anisotropic diffusion models with a diffusion tensor [91, 404].
One representative of this class is coherence-enhancing anisotropic diffusion. This
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method, which allows to smooth along lines and flow-like structures, is discussed
in Chapters 6 and 7 for the scalar-valued and vector-valued case, respectively. Re-
cent years have also witnessed efforts to design appropriate efficient schemes for
nonlinear diffusion filtering [33, 305, 410]. Chapters 8, 9 and 10 describe the au-
thor’s contributions where additive operator splittings on sequential and parallel
architectures are developed and their embedding into nested iteration schemes is
investigated.

Nordstrém [281] was the first to introduce a bias term in the Perona-Malik
process. This enabled him to establish relations to variational image restoration
methods (also called regularization methods). Well-posed variants based on convex
nonquadratic optimization formulations have been proposed simultaneously by
Charbonnier et al. [80], Schnérr [345] and Stevenson et al. [376]. Under specific
parameters settings, these methods approximate total variation regularization, a
powerful denoising technique introduced by Rudin et al. in 1992 [326]. Some ideas
therein are based on Osher and Rudin’s earlier work on shock filtering [290] that
can be traced back to Rudin’s Ph.D. thesis in 1987 [325]. In Chapters 3 and 4,
it is shown that there is a very close connection between regularization methods
and diffusion scale-spaces. By regarding regularization methods as time discrete
diffusion filters, the scale-space theory for nonlinear diffusion filtering is transferred
to regularization methods. Thus, regularization methods create scale-spaces where
the regularization parameter serves as scale.

Another influential image processing method that has been formulated in terms
of energy functionals is the segmentation technique of Mumford and Shah [257].
Their functional, which may be considered as a continuous formulation of the
Markov random field model of Geman and Geman [143] and the weak membrane
model of Blake and Zisserman [48], has triggered a lot of mathematical research
[253]. Recent results by Chambolle indicate even close relationship to the Perona—
Malik filter. The Mumford—Shah process has been approximated in the sense of
I'-convergence leading to a functional whose steepest descent equations are given
by a set of coupled diffusion-reaction equations [19, 318]. Many related processes
have been studied for a number of computer vision problems by Van Gool’s group
in Leuven [308]. Interestingly, it was also a group from the same department who
pioneered nonlinear diffusion-reaction systems for image enhancement already in
1989 [307]. Their methods were based on Turing’s pattern formation models.

Although mathematical morphology is an image analysis technique based on
algebraic set theory, PDEs for continuous-scale dilations and erosions with convex
structuring elements have been found around 1992 by Brockett and Maragos [56],
van den Boomgaard [390], Arehart et al. [23] and Alvarez et al. [12]. The resulting
nonlinear PDEs are hyperbolic and can be treated with specific upwind schemes
that have been proposed in the context of level set methods [291, 353].

Since morphological filters act only on the level sets of an image, it is not sur-
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prising that there is a very fruitful connection between mathematical morphology
and level set methods. In the last decade image processing researchers also became
interested in morphological processes that move level sets with curvature depen-
dent speed. The use of mean curvature motion in imaging goes back to a 1990
paper by Kimia et al. [207] followed by work of Alvarez et al. [13]. Later on it
became clear that this process can be thought of as the limiting case of iterated
median filtering [158]. A closely related process called affine morphological scale-
space has been discovered independently and simultaneously by Alvarez et al. [12]
and Sapiro and Tannenbaum [333]. It can be axiomatically derived as the unique
equation with invariance under the special affine group [12]. This has also triggered
research on how one can construct flows with other invariances. In 1993, Faugeras
was the first to study projective invariant flows [119], followed by work of Olver et
al. [286], Bruckstein and Shaked [59], and Dibos [108]. It has turned out that Car-
tan’s moving frames are an elegant tool for describing the differential geometry of
the different curve evolutions [121]. Another useful framework for unifying several
flows for scalar and vector-valued images has been studied by Kimmel, Sochen,
and Malladi [209, 362]. They regard these flows as steepest descent methods of
energy functionals that have been proposed by Polyakov in the context of string
theory.

An interesting application field of flows of mean-curvature type consists of
implicit active contour models [67, 238]. An important representative of this class
of interactive segmentation tools are geodesic active contour models which have
been introduced simultaneously and even at the same conference by Caselles et al.
[69] and Kichenassamy et al. [205]. Recently Leventon et al. have shown how one
can incorporate statistical shape information into geodesic active contours [224].

Optic flow estimation belongs to the classic fields in computer vision. Already
in 1981, Horn and Schunck proposed a variational method for this purpose. The
resulting flow field, however, did not respect discontinuities, since a quadratic reg-
ularizer was used. In 1983, Nagel proposed an oriented smoothness constraint that
prevents blurring across image edges [260]. Through the years much progress has
been made regarding the theoretical analysis of this method [262, 263, 342, 361].
Recently it has been discovered that one may regard Nagel’s method even as an
early method that performs linear anisotropic diffusion filtering [17]. This relation
and some modifications that improve Nagel’s method significantly in the case of
large displacement fields are discussed in Chapter 11. Nonquadratic regulariza-
tion approaches for optic flow problems have been considered by I. Cohen in 1993
and later on by Schnorr [344], Deriche et al. [105] and Kumar et al. [221]. They
lead to systems of diffusion—reaction equations for the two unknown flow compo-
nents. Methods of this type typically use spatial regularizers. In Chapter 12 it is
demonstrated how one can improve their performance by means of spatio-temporal
regularization. Chapter 13 presents a unifying taxonomy for convex regularizers
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which includes many earlier models as well as novel ones that are anisotropic and
nonlinear.

Besides these regularization ideas, image sequence analysis has also benefited
from other PDE-based image processing concepts. Nesi [270], for instance, intro-
duced an optic flow functional that is motivated from the segmentation functional
of Mumford and Shah. Another example is object tracking in image sequences.
Here one can combine ideas from optic flow estimation with level sets and active
contour concepts. Methods of this type have been investigated by Caselles and
Coll [68] and Paragios and Deriche [294].

Techniques similar to optic flow estimation may also be used for stereo recon-
struction, since they lead to essentially the same correspondence problem. Varia-
tional methods along these lines have been considered by Robert et al. [322, 321]
and Alvarez et al. [10]. A level set approach for stereo reconstruction that arises
also from a variational principle has been investigated by Faugeras and Keriven
[122].

Shape-from-shading is another computer vision problem that has been ad-
dressed with PDE methods. Horn and Brooks [172] were among the first to cast this
reconstruction problem into a variational framework with an additional smoothness
constraint, while Kimmel and Bruckstein [208] considered a level set formulation
for a shape-from-shading model leading to an Eikonal equation. Rouy and Tourin
[323] obtained uniqueness results for the shape-from-shading problem using the
theory of viscosity solutions.

These discussions show that nonlinear PDE methods play an important role
in solving key problems in image processing and computer vision. It is thus not
surprising that they have also been applied to other problems in this area includ-
ing for instance histogram equalization [331], blind image restoration [78, 441],
corner detection [15], and interpolation [71]. From an application viewpoint, PDE
methods have been used e.g. for enhancement of electron microscopy images [134],
restoration of old copper plates [112], classification of chrysanthemum leaves [1],
computer aided quality control of fabrics [404], and several computer graphics
problems [106, 243, 306]. Their main application area, however, continues to be
medical imaging; see e.g. [30, 144, 276, 334]. In quite a number of these fields,
state-of-the-art results have been obtained which confirm the general usefulness of
mathematically sound techniques.

1.3 Overview of the Main Results

The previous section indicated that the author contributed to PDE-based imaging
in the fields of scales-space representations, models and algorithms for diffusion
filters, and variational methods for image restoration and optic flow computation.
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In the sequel we shall discuss these contributions in more detail by sketching the
main results of Chapters 2-13.

1.3.1 Foundations and Applications of Scale-Spaces
Early Japanese Scale-Space Results

Let us consider a two-dimensional (scalar-valued) image which is given by a con-
tinuous bounded mapping f : R?> — R. One of the most widely used methods for
smoothing f is to regard it as the initial state of a homogeneous linear diffusion
process:

Ot = Oy U+ Opyryt = Au, (1.1)
u(z,0) = f(z)

with z := (21, 29) . Its solution is given by the convolution integral

_[ @) (t=0)
“w0={ i ne (o0 1

where K, denotes a Gaussian with standard deviation o:

Ky (z) = — -exp(—%). (1.4)

Linear diffusion filtering is the oldest and best-studied representative of a scale-
space. In scale-space theory one embeds an image f into a continuous family
{T,f | t > 0} of gradually smoother versions of it. The original image corresponds
to the scale ¢t = 0 and increasing the scale should simplify the image without cre-
ating spurious structures. Since a scale-space introduces a hierarchy of the image
features, it constitutes an important step from a pixel-related image representation
to a semantical image description. Numerous publications and two successful con-
ferences [381, 274] demonstrate that scale-space theory has evolved into a mature
field of image processing and computer vision.

Usually a 1983 paper by Witkin [436] is regarded as the first reference to the
scale-space idea. In Chapter 2 it is shown that this concept is at least 24 years
older: An axiomatic derivation of linear scale-space has already been presented
by Taizo [ijima in a Japanese conference paper from 1959 [174]. Lijima derived
linear scale-space in 1D under five axioms: linearity, translation invariance, scale
invariance, semigroup property, and preservation of positivity. This has been the
starting point of an entire world of linear scale-space research in Japan, which
remained unknown in the western world. Possible reasons for this could be the fact
that many papers were written in Japanese. However, there are also English papers
available in which Iijima describes his scale-space ideas. A more likely reason is
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that his results came too early to be appreciated. Thus, the goal of Chapter 2 is to
survey important milestones of this unknown early Japanese scale-space research.
It has been written in close collaboration with two Japanese image processing
researchers. This allowed to analyse a large amount of original literature.

The main focus in this chapter is on scale-space axiomatics. Under a suitable
set of axioms, the scale-space evolution (1.1) can be singled out as the unique pos-
sibility to create a linear scale-space. Chapter 2 presents four Japanese axiomatics
for linear scale-space that have been proposed between 1959 and 1981. By compar-
ing them to ten western axiomatics, a survey on the state-of-the-art in this field
is given. It turns out that the Japanese axiomatics require only a relatively small
set of axioms, and that some of them are much more systematic than most of the
western ones, while others are sufficiently simple to be taught in undergraduate
courses.

Apart from these pioneering results regarding the axiomatic foundations of
linear scale-space, it is shown that Japanese scale-space theory is well embedded
in a general framework for pattern recognition and object classification. Also in
this context, many Japanese results had been obtained earlier than in the western
world. The main application field was optical character recognition (OCR). Al-
ready in 1971, [ijima’s scale-space based recognition theory has been implemented
in hardware in the optical character reader ASPET/71. It was capable of reading
2000 alphanumeric characters per second, and the underlying scale-space frame-
work has been regarded as the reason for its high reliability and robustness. Later
on these concepts have also been used as the main algorithm of Toshiba’s OCR sys-
tems. Successful applications of linear scale-space theory were thus commercially
available long before the concept itself was rediscovered in America and Europe.

Another aspect that characterizes Japanese scale-space research was deep struc-
ture analysis. By defining so-called stable viewpoints, a topological scale-space tree
has been derived in 1985 that resulted in a focus-of-attention method. Later on,
some of these ideas have been continued by Makoto Sato, a former Ph.D. student
of Tijima.

[ijima has written many papers and several textbooks on his pattern recogni-
tion theory that is based on linear scale-space. Chapter 2 provides a list of key
references, Japanese ones as well as English ones. Iijima held professorships at the
Tokyo Institute of Technology, Tokyo Engineering University, and the Advanced
Institute of Science and Technology. In spring 1997, he retired at the age of 72.
Since Japanese and western linear scale-space theory evolved with no interaction,
it is both interesting and inspiring to compare the results that have been obtained
in both cases. Chapter 2 may be regarded as a first step in this direction.
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A Scale-Space Framework for Regularization Methods

Another contribution to the foundations of scale-spaces is presented in Chapters 3
and 4, where regularization methods are regarded as time-discrete diffusion scale-
spaces.

Partial differential equations can be classified into three main types [87, 116]:
parabolic equations behaving in a diffusion-like manner, hyperbolic processes with
wave-like character, and elliptic PDEs that can be related to variational problems.

The pioneering work of Alvarez et al. [12] has shown that imposing a reasonable
set of architectural, invariance and simplification properties automatically leads
to scale-spaces that can be described in terms of partial differential equations. It
should be noted that, in contrast to our previous discussion on Japanes scale-space
research, we do also consider nonlinear scale-spaces here.

Examples of PDE-based scale-spaces include parabolic PDEs such as linear and
nonlinear diffusion scale-spaces [175, 303, 412], but also curvature scale-spaces
like mean-curvature motion [13, 206] and affine morphological scale space [12,
333]. Hyperbolic PDEs with scale-space properties are given by the dilation and
erosion equations from continuous-scale morphology [12, 23, 57, 195, 390]. Thus,
the question appears whether it makes sense to study elliptic scale-spaces arising
from variational principles.

To this end, so-called regularization methods are considered. Their basic struc-
ture is as follows. Let us consider some rectangular image domain 2 C R?. In order
to obtain a restoration u of some noisy image f : {2 — R, an energy functional of

type
E(u) ::/Q((f—u)Q—i-oz\IlﬂVu\?)) da (1.5)

is minimized. The first summand encourages similarity between the restored im-
age and the original one, while the second summand rewards smoothness. In the
simplest case, the so-called regularizer ¥(s?) is supposed to be increasing and dif-
ferentiable in s?> and convex in s. Moreover, we assume that there exists some
constant ¢ > 0 such that ¥(s?) > cs®. The smoothness weight o > 0 is called
reqularization parameter. From variational calculus it follows that the minimizer
of E(u) satisfies the Euler-Lagrange equation

u—f

o

= div (¥'(|Vul?) Vu). (1.6)

Following [253, 339, 378] we may regard this elliptic PDE as an approximation to
the nonlinear diffusion process

du = div (V'(|Vul?) Vu) (1.7)

with initial image f and stopping time «. This shows that regularization methods
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approximate diffusion filters. If we choose e.g. the modified total variation regu-
larizer [268]
U(|Vul?) = |Vul* + /B2 + |Vul? (1.8)

with some small positive numbers € and 3, we end up with the nonlinear diffusivity
1

Since this diffusivity becomes small at edges where |Vu/| is large, we have a diffusion
filter that is edge preserving. If we use the Tikhonov regularizer [387]

V(|Vul') = e+ (1.9)

T(|Vul?) = |Vul?, (1.10)

we obtain W' = 1. Hence, we approximate linear diffusion filtering.

The author has established a well-posedness and scale-space theory for non-
linear diffusion filters in his monograph [412]. One part of this theory analyses in
which sense the filtered image can be regarded as a smoother, simplified version of
the original one. Smoothing qualities play a central role in every scale-space evo-
lution. Establishing smoothing properties for nonlinear diffusion filters is neither
trivial nor obvious, since some of them may even act edge-enhancing on a local
scale.

One simplification property that is applicable here consists of a maximum-—
minimum principle. Hummel [173] has shown that this is equivalent to the fact
that level lines can be traced back in scale. Such a causality property [213] is
fundamental for scale-spaces, since it allows to connect structures at different scales
(e.g. in order to improve their localization).

Another useful concept for expressing the smoothing behaviour of nonlinear
diffusion filters arises from the study of their Lyapunov functionals [412]. As a re-
sult of these considerations, it has been shown that during the temporal evolution,
the L? norm of the solution decreases. By Parseval’s equality, this proves that the
integral of the squared Fourier or wavelet coefficients decreases as well. Lyapunov
functionals also imply statistical smoothness results: the image variance and all
higher even central moments are decreased by diffusion filters. As an information
theoretic consequence of the Lyapunov functionals, the entropy, a measure of un-
certainty and missing information, increases during diffusion filtering. Moreover,
when the scale parameter ¢ tends to infinity, the filtered image approaches the
average grey value of the initial image. All these results do not only hold in the
continuous setting, they have also been proved in the spatially discrete and the
fully discrete setting.

What has this to do with regularization methods? If one could establish a
similar scale-space theory for regularization methods, one would simultaneously
have a theory for time-discrete diffusion filters. Such a result would not only be
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the first proof that a class of parameter-dependent elliptic processes can create
scale-spaces, it would also complete the theory of diffusion filtering.

This has been done in Chapter 3. It is shown that regularization methods are
well-posed in the Sobolev space H'(€2) and that they satisfy a causality property
in terms of a maximum-minimum principle. A class of Lyapunov functionals is
established which implies that the regularized image has a smaller L? norm than
the original one, that all even central moments become smaller, and that the
entropy grows. Moreover, u tends to the average grey value of f for o — oo. These
results hold for a large class of regularizers including Tikhonov regularization [387],
the modified total variation regularizations of Ito and Kunisch [193], Nashed and
Scherzer [268], Geman and Yang [142] and Chambolle and Lions [76], as well as
for Schnorr’s nonquadratic regularization [345].

Since regularization is an approximation to diffusion filtering with a single
time step, one may ask what happens if the regularization parameter « is replaced
by a sequence of regularization parameters hq,...,hy with Zle h; = «a. The idea
is to start with the original image f, regularize it with parameter h;, use the
result as input for the next regularization with parameter ho, and so forth until &
regularizations have been carried out. This it called iterated reqularization. If the
regularization parameter remains constant, one speaks of stationary regularization,
while for differing parameters one gets nonstationary regularization. The latter case
is treated in detail in Chapter 4.

It is clear that iterated regularization gives a better approximation to diffu-
sion filtering than noniterated. Since diffusion filters have to be discretized in time
direction anyway, one may even identify diffusion filtering and iterated regulariza-
tion. Now the question arises whether iterated or noniterated regularization gives
better results. In the linear case with Tikhonov iteration, it is proved in Chapter
3 that iterated regularization is more efficient in removing high-frequency noise
than noniterated. This was also confirmed in experiments, where three real-world
images were degraded by Gaussian noise, and the signal-to-noise ratio of the best
restorations was computed. In the nonlinear case with modified total variation reg-
ularization, theoretical results are not available so far and experiments remained
inconclusive. The signal-to-noise ratio, however, was in all cases better than the
one obtained for Tikhonov regularization.

As already mentioned, Chapter 4 is devoted to the case of nonstationary iter-
ative regularization. This is of special interest when one uses adaptive time steps.
Typically, one uses small parameters in the beginning and increases them when
the process is slowing down. The proofs in Chapter 4 show that all scale-space
results that have been established for noniterated regularization do also carry over
to iterated regularization methods, even in the nonstationary case. In addition to
that, it is shown that the filtered image depends continuously on the sequence of
regularization parameters. This constitutes an important stability result.
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Another extension in Chapter 4 is concerned with a more general class of dif-
fusion filters and their approximation in terms of iterated regularization methods.
The previous convex regularization methods resulted from fully implicit discretiza-
tions of diffusion filters. Implicit means that the divergence term is evaluated at
the unknown new time level. Discretizing edge-enhancing diffusion filters, such
as the Perona-Malik filter [301, 303] or its well-posed variants in [74, 412], in
an implicit manner would lead to nonconvex problems where no satisfactory the-
ory is available. As a remedy one may apply semi-implicit discretizations which
treat the nonlinear diffusivity (or the diffusion tensor) in an explicit way using the
known results from the old time level, while the remainder is discretized implicitly.
This linearization strategy leads to quadratic iterative regularization methods, for
which all theoretical results from Chapters 3 and 4 apply. Such a convexification
by freezing the nonlinear part also relates this method to the adaptive linearization
technique of Geman and Reynolds ([141]; see also [81, 215]) and to the Kacanov
method from elasticity theory [137, 165, 419].

Information Measures in Scale-Spaces

Let us now turn our attention to information theoretic aspects of linear and non-
linear diffusion scale-spaces. It has already been mentioned that the entropy is
a specific Lyapunov functional for diffusion filters. The goal of Chapter 5 is to
analyse the scale-space behaviour of an entire family of entropies, namely Rényi’s
generalized entropies [314, 316].

To this end we identify an image with its 2D brightness distribution on some
rectangular image domain. In a space-discrete setting we may represent such an
image with N pixels by a vector v = (u1,...,uy)'. Rényi’s generalized entropies
for this distribution are defined by

l—«o

N
Sa(u) = ! logZu? (1.11)
i=1

for aw # 1. The limit @ — 1 gives the Shannon-Wiener entropy

N
Si(u) = —Zui log u;, (1.12)
i=1

which can also be considered as part of the continuum. The parameter « is called
information order.

The generalized entropies have been successfully applied to image processing
problems such as local thresholding [54, 55, 327]. Moreover, it is not difficult to see
that the generalized entropies, the multifractal spectrum, the grey-value moments,
and the grey-value histogram are equivalent representations.
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Since scale-spaces are intended to simplify images, it is natural to investigate
their simplification properties in terms of information measures. Vice versa, a scale-
space extension complements the entropies with spatial information. Two diffusion
scale-spaces are studied in Chapter 5, but all results hold for the entire class of
diffusion scale-spaces considered in [412]. In the continuous setting, the two scale-
spaces under consideration are given by the linear diffusion process

Owu = Au (1.13)
and a nonlinear diffusion scale-space of type
o = V- (g(|Vul?) Vu) (1.14)

where the diffusivity decreases at edges [80]:
1

V1+|Vul2/22

The following monotony results have been obtained: For fixed ¢, the generalized
entropies S,(u(t)) are decreasing in «. For fixed «, it is proved that they are
increasing in ¢ if a > 0, constant if &« = 0, and decreasing if o < 0. For ¢ — o0, all
entropies converge to Sy. Regarding smoothness it is shown that they are at least
one time continuously differentiable in ¢ as well as in a.

g(|Vul?) = (1.15)

In an experimental section of Chapter 5, possible image processing applica-
tions of the scale-space behaviour of Rényi’s entropies are studied. By considering
characteristic times where the change of entropies by logarithmic scale becomes
maximal, global scale analysis is performed. Experiments with linear scale-space
indicate that this point of maximal entropy change is proportional to the dominat-
ing structure size in the image. This does not only hold for the Shannon-Wiener
entropy, but also for the entire family of generalized entropies. A specific feature
of the generalized entropies is that they allow to separate the dominating size of
foreground and background: Large positive information orders focus on high grey
values, while for large negative information orders low grey values are analysed.

In another experiment not only selected information orders are considered, but
the entire continuum. By calculating the locations of extremal entropy change in
time, and tracking the behaviour of these locations over a continuum of information
orders, characteristic curves are created. In analogy with edge detection in linear
scale-space they are called fingerprints. It is conjectured that these fingerprints are
a compact representation of significant image structure. Preliminary experiments
suggest that they might be of use for texture analysis, but more detailed investi-
gations are needed here. The localization of the fingerprint lines is more stable for
the nonlinear diffusion scale-space than for the linear one.

The theoretical and experimental results in Chapter 5 show that investigating
relations between entropy and scale-space is a promising area where much more
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research is desirable. Recent follow-up work by Tanaka et al. [380] and results
by Ferraro et al. [124] confirm this impression by giving further evidence of the
usefulness of scale-space ideas in conjunction with entropy concepts.

1.3.2 Coherence-Enhancing Anisotropic Diffusion

We have already seen that many scale-spaces can be expressed as diffusion equa-
tions. While there is basically only one linear scale-space, an entire world of op-
portunities appears when nonlinear equations are admitted as well. In this context
we shall study a specific nonlinear diffusion model which has been designed for en-
hancing flow-like patterns and closing interrupted lines. This so-called coherence-
enhancing anisotropic diffusion filter is investigated in an m-dimensional setting
in Chapter 6, and its extension to colour images is analysed in Chapter 7.

The work in these chapters has been quite influential. The underlying idea
to steer diffusion filters by means of a structure tensor has been used by other
researchers for restoring images [209], enhancing ridges [363] and corners [319],
visualizing flow fields in computer graphics [306], designing novel shock-capturing
algorithms for hyperbolic conservation laws [152], restoring old copper plates [112],
processing flame images obtained from laser-induced fluorescence spectroscopy
[337], enhancing cell images in 3D electron microscopy [134], and for some medical
applications [30, 244]. Shell is using coherence-enhancing diffusion for processing
3D seismic data for oil exploration. Successful applications in this context may
lead to significant commercial savings.

Coherence-Enhancing Diffusion of Scalar-Valued Images

Early nonlinear diffusion filters such as the Perona—Malik filter [301, 303] use an
equation of type
du = div (g(|Vul?) Vu) (1.16)

where the scalar-valued diffusivity g is a decreasing function in |Vu|?. This ensures
that the diffusion process is slowed down at edges where the gradient is large. We
will call such models, in which the diffusive flux j := —g Vu is parallel to Vu,
isotropic.

In some applications, it would be desirable to have more flexible diffusion filters.
At noisy edges, for instance, one wants to inhibit smoothing across the edge, while
still permitting smoothing along the edge in order to reduce noise. These demands
cannot be satisfied with a scalar-valued diffusivity anymore. A diffusion tensor
D is needed instead that does not only take into account the magnitude of the
gradient (or a regularized version of it), but also its direction. Such a situation,

!This terminology is not used in a consistent manner in the image processing literature.
Sometimes diffusion filters with space-variant diffusivities are already called anisotropic.
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where the flux 7 = —D Vu is in general not parallel to Vu, is called anisotropic in
our terminology. Early anisotropic diffusion models have been proposed by Cottet
and Germain [89, 91] and the author [404, 405].

Another motivation for introducing anisotropy into diffusion filters arises from
the wish to process 1D features. One might e.g. be interested in closing interrupted
lines in a fingerprint image. This requires more sophisticated structure descriptors
than the gradient. A good descriptor of local structure is the structure tensor [132]

J,(Vu,) = K, * (Vu,Vu,) (1.17)

where K, denotes a Gaussian with standard deviation p, and u, := K, * u. The
eigenvalues 11 > o of J, measure the local contrast along the eigendirections vy,
v9. The latter ones describe characteristic local structure directions. If one wants to
enhance coherent structures, one should smooth mainly along the lowest contrast
direction vy with a diffusivity A, that increases with respect to the coherence
(1 — p2)?. This can be accomplished by designing D such that it possesses the
same eigenvectors vy, v2 as J,, and choosing its corresponding eigenvalues as

A= q, (1.18)
- « it py = po,
S a+ (1—a)exp <ﬁ) else,

where C' > 0 is a contrast parameter, and the small constant o > 0 is needed for
theoretical reasons in order to prove well-posedness. This filter has been introduced

(1.19)

by the author in [406]. It performs coherence-enhancing anisotropic diffusion.

Chapter 6 gives a detailed theoretical analysis of this filter and its generalization
to the m-dimensional case. It is shown that it leads to a mathematically well-posed
evolution where local extrema are not enhanced and where causality in terms of a
maximum—minimum principle holds. A family of Lyapunov functionals is derived,
comprising decreasing LP norms, decreasing even central moments and increasing
Shannon-Wiener entropy. For ¢ — oo, the solution tends to the average grey
value of the original image. This shows that coherence-enhancing diffusion filtering
creates a nonlinear scale-space.

In order to evaluate its image enhancement qualities, several experiments are
presented. They show that, unlike previous filters such as the Cottet-Germain
model [91] or mean-curvature motion [13, 207], coherence-enhancing diffusion is
capable of closing interrupted lines in fingerprints. This is caused by its use of
semilocal information obtained by averaging over some integration scale p in the
structure tensor. Furthermore, it is shown that coherence-enhancing diffusion gives
useful results for some other applications including multiscale visualization of the
stripes in nonwoven fabrics and trabecular structures in 2D and 3D CT images of
human bones.
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Coherence-Enhancing Diffusion of Vector-Valued Images

In Chapter 7, coherence-enhancing diffusion filtering is extended to colour im-
ages, and its robustness under degradations by Gaussian noise is demonstrated.
Moreover, a detailed discussion of all model parameters is presented, and selection
criteria for these parameters are suggested.

The naive way to extend a nonlinear diffusion filter to vector-valued images
would be to apply it in each channel separately. Since nonlinear diffusion filters
may enhance features, however, this would lead to the problem that these features
may be formed at different locations in each level. It is therefore recommendable
to introduce some sort of synchronization between the evolutions in the different
channels [144]. A natural way to achieve this is to use the same space-variant
diffusion tensor for all channels. It should depend on a structure descriptor that
simultaneously takes into account the local image structure in all channels. We
thus need a generalization of the structure tensor to vector-valued images. Such a
generalization has been investigated by Di Zenzo [107]. Its first use for steering a
diffusion filter for colour images has been proposed by the author in [405].

Di Zenzo’s idea comes down to summing up the structure tensors in each chan-
nel. This creates a structure tensor of a vector-valued image. Its orthogonal system
of eigenvectors gives the preferred local directions, while its eigenvalues measure
the average local contrast along these directions. Refinements of these ideas would
consider a weighted mean of the structure tensors, where the weight is adapted
to the reliability and the noise level in each channel [60]. In the absence of any a
priori knowledge, one usually chooses equal weights.

The resulting structure tensor for vector-valued images is then used to steer
the joint diffusion tensor in the same way as was described above. Experiments
show that this process gives potentially useful results for simplifying wood sur-
faces, analysing sonograms and microscopic images. Interesting effects can also be
obtained by processing paintings by van Gogh. It appears that van Gogh’s painting
style uses similar effects as coherence-enhancing diffusion filtering: both are em-
phasizing flow-like structures. It is thus not surprising that coherence-enhancing
diffusion has also been used in computer graphics for visualizing flow fields [306].
Here it may be regarded as an alternative to the classical line integration convo-
lution technique by Cabral and Leedom [63].

Since coherence-enhancing diffusion filtering requires several parameters, it is
necessary to clarify their meaning and their scaling behaviour, if the image size is
altered. Such questions are also addressed in Chapter 7, and empirical guidelines
for the selection of these parameters are provided. In particular, it is discussed, how
one can use a specific Lyapunov functional, namely a convex combination of the
variances in each channel, in order to impose an a prior: stopping criterion for the
evolution. If the signal-to-noise ratio of the input image is known, this information
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can be used in the stopping criterion. Experiments demonstrate that the suggested
criterion yields realistic estimates of the optimal stopping time. Moreover, it is
shown that coherence-enhancing diffusion is very robust under additive Gaussian
noise. Even if the noise variance in each channel amounts to four times the signal
variance, such that the human eye can hardly find oriented structures anymore,
coherence-enhancing diffusion continues to smooth along the “correct” direction.
This experimentally observed high robustness is caused by the structure tensor:
Coherence-enhancing diffusion uses the eigenvectors of the structure tensor and the
difference between pairs of its eigenvalues in order to steer the process. Recently
it has been shown that these expressions are invariant under isotropic Gaussian
noise of zero mean [198]. Another theoretical foundation for coherence-enhancing
diffusion of vector-valued images is due to Kimmel et al. [209]. They show that it
can also be derived as steepest descent method in a Beltrami framework inspired
from high-energy physics [209].

1.3.3 Efficient Algorithms

Often the quality of PDE-based methods leaves no reason to complain, but it is
argued that they are too slow for some applications. Here one should keep in mind
that many image processing practitioners have no specific background in numerical
analysis. Hence the simplest — and often slowest — numerical algorithms are applied
to tackle a problem. The design of adequate and efficient PDE-based algorithms for
image processing and computer vision problems is therefore a very important topic.
Such questions are addressed in Chapters 8, 9, and 10, where fast and absolutely
stable algorithms for nonlinear diffusion filtering and variational image restoration
are developed. In order to keep things as simple as possible, isotropic processes are
considered. The basic ideas can also be useful for anisotropic filters, as is sketched
in Chapter 6 and in [412].

It should be noted that there is an important difference between image pro-
cessing and other fields of scientific computing. In most other fields, a diffusion
equation is motivated from some underlying physical problem. Hence, a good nu-
merical method aims at approximating it as closely as possible. This may result
e.g. in high-order methods and sophisticated error estimators. In image process-
ing, there is no physical problem behind the model, and one is interested in having
methods that inherit all qualitative properties of a continuous model rather than
highly precise, but possibly oscillating schemes. Such qualitative properties may in-
clude maximum-minimum principles, smoothing properties in terms of Lyapunov
functionals, invariances such as the preservation of the average grey level, and
convergence as the diffusion time tends to infinity.

Because of these specific requirements, it may not be a good idea to apply
scientific computing programme packages that have been developed and optimized
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for other purposes. The need for a specific class of simple and efficient numerical
methods was the motivation for the work in Chapters 8-10.

Additive Operator Splitting Schemes

In Chapter 8 a novel class of numerical algorithms for diffusion filtering is in-
troduced. The basic principle is explained for m-dimensional isotropic nonlinear
diffusion filters of regularized Perona-Malik type [74]:

Ou = div (g(|Vul?) Vu) = Za‘”l (9(|Vue|?) 05u) (1.20)

where ¢ is a smoothly decreasing positive function, and u, := K, * u denotes a
Gaussian-smoothed version of u. This modification of the Perona—Malik model is
more robust under noise, and it allows to prove well-posedness [74, 412].

In matrix—vector notation, a classical explicit finite difference scheme for (1.20)
is given by

k+1 _ k m
T = Y Ayt (1.21)
-
I=1
where u* = (u¥,...,uk )T denotes the grey values of all N pixels at time level £,

and 7 is the time step size. The matrix—vector product A;(u¥)u* approximates
Oz, (9(|Vty|?) Or,u). This scheme can be explicitly solved for the unknown u**!:

bt = (I-}—Tiﬁll(uk)) u®, (1.22)

where [ is the unit matrix of size N x N. Unfortunately, such an explicit scheme
is only stable if the time step size is very small. Hence, a large number of small
steps are required to reach some “interesting” diffusion time. The explicit scheme
is thus simple, but inefficient in many applications.

In order to obtain an algorithm with better stability properties, a so-called ad-
ditive operator splitting (AOS) scheme can be used instead. The basic idea behind
AOS schemes is to split up an m-dimensional diffusion problem with time step
size 7 into m semi-implicit diffusion problems with time step size m7r. These 1D
problems are very easy to solve, and the desired m-dimensional solution is the
average over all m one-dimensional solutions.

An AOS scheme for (1.20) is given by

uktt = % i (I — mTAl(uk)>1 u*. (1.23)
=1

While (1.22) and (1.23) are not identical, one can show that they have the same
first-order Taylor expansion in 7, and they have the same approximation order
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with respect to the continuous equation (1.20). In Chapter 8 it is proved that
(1.23) is absolutely stable, i.e. in theory, arbitrary large time time steps may be
taken. In practise, one should not overdo it, since the accuracy suffers when 7 is
chosen too large.

It has already been mentioned that the author has developed a theoretical
framework for diffusion scale-spaces not only for the continuous, but also for the
algorithmically important discrete setting [412]. In Chapter 8 it is shown that
the AOS scheme was designed in such a way that it satisfies all requirements for
this discrete scale-space framework. As a consequence, it has the same qualitative
properties as the continuous process: causality in terms of a maximum-minimum
principle, a large family of image simplifying Lyapunov sequences, convergence to
a constant image as k — oo, and conservation of the average grey value (under
suitable boundary conditions).

What is the price one has to pay for these nice properties and for gaining
absolute stability?
Linear systems of equations need to be solved. In each AOS step one has to solve
m tridiagonal systems

(I — mr A (u?)) wit = o” (l=1,...,m) (1.24)

in order to obtain the desired solution u**! = % Yoy wl’”l. Fortunately, these
linear systems are solvable in linear complexity by a simple Gauss algorithm, such
that the overall price is rather low: One AOS step takes about twice as long as one
explicit step. Under realistic accuracy requirements, however, one may use 20 times
larger time step sizes, such that the total efficiency gain is a factor 10. Often only
a few AQOS iterations are needed for simple denoising tasks. On a current 700 MHz
PC, five AOS iterations with a 256 x 256 image take about 0.3 seconds. Further
speed-up is possible by implementing AOS schemes on parallel architectures. This

is described in Chapter 9.

Splitting schemes are well-known in the numerical literature; see e.g. [241].
Classical schemes such as ADI and LOD, however, use multiplicative splittings.
They lead to sequential methods where the final result may depend on the order
in which the 1D diffusions are calculated. This means that rotating an image
by 90 degrees leads to different results, which is unacceptable for many imaging
applications. Such a drawback cannot appear for AOS schemes, since the sum of
the 1D results does not depend on the order.

The efficiency and simplicity of AOS schemes has triggered other researchers
to use them for medical imaging problems [317], for speeding up algorithms for
geodesic active contours [148], and even for numerical simulations of sandpile
growth [168].
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Parallel Algorithms for Regularization Methods and Diffusion Filters

In Chapter 9, connections between numerical techniques for variational image
restoration methods and nonlinear diffusion filters are discussed, and performance
results are reported for parallel implementations of the algorithms. The theoreti-
cal basis for such a comparison has already been presented in Chapters 3 and 4:
Variational image restoration (regularization) may be regarded as fully implicit
time discretization of a diffusion filter. Hence, efficient numerical methods for one
of these frameworks may also be applied for the other.

For the class of convex regularization methods, Schnorr’s nonquadratic regu-
larizer [345] was used. The variational approach was linearized using the Kacanov
method [137, 201], which is closely related to the linearization strategy of Geman
and Reynolds [141]: an auxiliary function is introduced into the functional which
is then minimized in a two-step procedure. It comes down to freezing the non-
linear part in each iteration step and solving a quadratic optimization problem.
Discretizing this problem with finite elements leads to a positive definite linear sys-
tem in each iteration step. It is solved on an SGI Power Challenge using a parallel
conjugate gradient algorithm with Block-Jacobi preconditioning. This algorithm
has been taken from the PETSc library [31, 32] which is based on the message
passing standard MPI [247].

Experiments have shown that the scaling behaviour of the algorithm is very
satisfactory. This indicates that the PETSc code is well parallelized. It appears,
however, that there is some communication overhead between the finite element
programme and the PETSc code which might slow down the total method more
than necessary. In future work it is thus intended to refrain from using general
packages for solving linear systems. An interesting observation showed that one
can speed up the total algorithm significantly by solving the linear system in the
inner loop only in an inexact way before switching back to the outer nonlinear
loop.

For the class of diffusion filters, equation (1.20) has been used in connection
with a diffusivity that allows edge enhancement. Finite differences have been ap-
plied in such a way that one obtains an AOS scheme which requires to solve
tridiagonal systems of equations.

AOS schemes possess two granularities of parallelism:

e Coarse grain parallelism: Diffusion in different directions can be performed
simultaneously on different processors.

e Mid grain parallelism: 1D diffusions along the same direction decouple as
well. Performing e.g. diffusion in z-direction on an image of size 400 x 300
creates 300 independent tridiagonal systems of size 400. They can be dis-
tributed to different processors.
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This mid grain parallelism has been exploited for implementing a three-dimensional
AOS scheme on an SGI Power Challenge. The scaling behaviour was slightly worse
than for the variational approach. The total method, however, was quite efficient.
The experiments indicate than one can expect a speed-up of one order of mag-
nitude by parallelizing AOS schemes. Motivated from these encouraging results
on a shared memory machine, it is planned to study AOS schemes on architec-
tures with distributed memory, such as system area networks with low latency
communication.

At first glance it appears as if the two numerical strategies do not have too much
in common. In Chapter 9, however, it is shown that they are quite related. AOS
schemes are an efficient realization of a semi-implicit discretization, where the non-
linearity is discretized at the old time level and the linear part is approximated in
an implicit manner in order to gain absolute stability. Such a linearization strategy
for parabolic PDEs finds its analogy in the Kacanov method for elliptic equations.
It is also shown that the underlying discretization techniques (finite elements ver-
sus finite differences) lead to similar problems: A finite difference Ka¢anov method
creates a linear system of equations that resembles the one arising from a finite
element Kacanov scheme. These structural analogies can be used to create a com-
mon numerical platform for variational image restoration methods and diffusion
filters.

Efficient Image Segmentation Combining Fast PDE Methods with Wa-
tersheds

We have seen that AOS schemes allow efficient diffusion filtering of images. The
goal of Chapter 10 is to investigate their use in conjunction with a fast morpho-
logical segmentation algorithm.

As prototype for the segmentation method, a watershed algorithm is used that
is based on a waterfall implementation [118]. A well-known disadvantage of wa-
tershed methods is their tendency to create oversegmentations. Much efforts have
been spent in the past to minimize this problem by suitable pre- and postprocess-
ing. In Chapter 10, two AOS algorithms are studied as preprocessing tools: the
AOS scheme for isotropic nonlinear diffusion from Chapter 8, and a novel AOS
algorithm for convex variational image restoration.

The basic idea behind the novel AOS method is as follows. While it is possi-
ble to approximate variational image restoration methods by diffusion filters, this
approximation becomes worse for larger regularization parameters. An alternative
in this case would be to minimize the energy functional

E(u) ::/Q((f—u)z—i-alll(|Vu|2)) do (1.25)
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by evolving its steepest descent equation
O = div (U'(|Vul’)Vu) + = (f — u) (1.26)

for ¢ — o0o. A modified AOS scheme for such a diffusion—reaction equation has
been derived. It has the structure

% 2_: (1_ MOT A (u k))_l ot +7f (1.27)

o+T oa+T

In order to speed up convergence to the steady state, this AOS scheme is embedded
into a Gaussian pyramid framework: The image is sampled down to a coarse level,
a fixed number of AOS iterations is applied, the result is interpolated and used as
input for the next higher level. The AOS iterations with subsequent interpolation
are repeated until the finest level is reached.

Although this nested iteration is relatively simple, it proved to be rather suc-
cessful: Usually 5 iterations per pyramid level are sufficient to give good results.
Typical CPU times are around 0.3 seconds for regularizing a 256 x 256 image on a
700 MHz PC. In the experiments, AOS-based preprocessing is used in combination
with a watershed algorithm and postprocessing by region merging. The total CPU
time for segmenting a 256 x 256 image is in the order of 0.5 seconds.

The results show that PDE-based methods are capable of improving the seg-
mentation quality of the watershed algorithm, and that AOS algorithms are suffi-
ciently fast for this task. Preprocessing with an isotropic edge-enhancing diffusion
filter gives better results than the convex nonquadratic variational approach if the
image is not very much degraded by noise. For noisy images, the convex variational
approach is more robust.

1.3.4 Variational Optic Flow Computation

Estimating displacement fields in image sequences is a fundamental problem in
computer vision. The resulting so-called optic flow field can be used in a number
of applications ranging from robot navigation to second generation video coding.

Variational methods for optic flow computation offer the advantage of creat-
ing dense flow fields. In Chapters 11-13, three approaches for casting optic flow
problems into a variational framework are described.

Optic Flow Computation for Large Displacement Fields

Since temporal undersampling is a common problem in image sequence analysis,
there is a need for optic flow methods that work well also in cases where the
displacements between two frames exceed the order of one pixel. Such a method
is investigated in Chapter 11.
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Let us consider two frames fi(x1,22) and fy(x1,22) of an image sequence. In
image sequence analysis, it is frequently assumed that structures keep their grey
value over time:

fi(@e,22) = folzi4ur, z2tus), (1.28)

where u = (uy,uy)" is the space-variant optic flow field. This equation is called
optic flow constraint (OFC). Here it is centred in fi, but sometimes the OFC is
also centred in fs:

filmi—ur, zo—ua) = foz1,72). (1.29)

Since it is not possible to determine the two unknowns u; and u, from a single
optic flow constraint, additional assumptions are needed to obtain a unique solu-
tion. Often it is assumed that the flow field should be smooth [171]. In 1986, Nagel
and Enkelmann [265] proposed to require piecewise smoothness. They suggested
to compute the optic flow as minimizer of the functional

ENE(U) = /Q(f1($1—u1,$2—U2)—f2($1,332))2d$

+ / (Vu; D(V f1)Vuy + Vuy D(V f1)Vuy) dz,
Q

where a > 0 serves as regularization parameter, and D(V f;) is basically a projec-
tion matrix perpendicular to V f;. The idea is thus to supplement the OFC with
an oriented smoothness constraint that avoids smoothing across image edges.

This technique forms the basis for the method in Chapter 11. However, it has
been modified in several ways:

e The Nagel-Enkelmann method centres the OFC in f,; and the smoothness
constraint in f;. This inconsistency may create errors for large displacements.
The model in Chapter 11 uses thus a formulation where both expressions are
centred in f;.

e The optic flow constraint causes a nonconvex energy functional that may
have many local minima. In order to encourage convergence to the global
minimum, the method is embedded in a linear scale-space that allows to
focus down from coarse to fine scales in small steps.

e Minimizers of the energy functional (1.30) are not invariant under linear
brightness changes of the images f; and f;. This can lead to problems in
the focusing strategy where the dynamic range of the input images strongly
depends on the smoothing. As a remedy, a parameter adaptation strategy
has been introduced leading to a functional which is invariant under linear
brightness changes.
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By considering the steepest descent equations of the energy functional, it is
shown that the oriented smoothness constraint creates an anisotropic diffusion
process with a diffusion tensor that resembles the one used for edge-enhancing
anisotropic diffusion [408]. The Nagel-Enkelmann method can thus be regarded as
an early predecessor of anisotropic scale-space ideas.

Chapter 11 also gives a detailed analysis of the diffusion-reaction system result-
ing from the modified energy functional. In particular, existence and uniqueness
results are proved. The equations are discretized with a semi-implicit finite differ-
ence scheme, and the resulting linear system of equations is solved using symmetric
Gaufl—Seidel iterations. The role of all model parameters is explained in detail and
it is shown that the results are quite robust under parameter variations. As a
consequence, default parameter settings may be used in a number of applications.

Experiments have been carried out with both synthetic and real-world image
sequences. It turns out that the consistent centring of OFC and smoothness con-
straint is just as important as the scale-space focusing strategy in order to obtain
good results in case of large displacements. Comparisons with the performance
evaluation paper by Barron et al. [35] show that the suggested method outper-
forms all classical optic flow methods with 100 % density that are analysed in this
paper. Moreover, displacements of more that 10 pixels can be handled with good
accuracy.

Spatio-Temporal Optic Flow Regularization

Let us now turn our attention to the case in which displacements in the optic flow
field are small. In this situation it makes sense to express the brightness constancy
assumption by a differential version of the optic flow constraint. For an image
sequence f(z1,x9,0), where (z1,z2) € Q denotes the location and 6 € [0,7] is the
time, the differential OFC can be written as

fw1u1+fz2u2+f0 = 0 (130)

This differential OFC can be embedded into a variational framework that incor-
porates an additional smoothness assumption. One can for instance consider the
following convex functional [344, 414]:

E(u,v) = /((f$1u1+fm2u2+f9)2 +a¥ ((Vui? + [Vusl?)) do,  (1.31)
Q

where ¥ is a convex nonquadratic regularizer that reduces smoothing at discon-
tinuities of the flow field. Since only spatial derivatives enter the regularizer, we
have an approach that rewards spatial smoothness. This is characteristic for most
optic flow regularizers. For such methods, two frames are sufficient to compute
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the displacement field. One may minimize this functional by considering its steep-
est descent equations. They are given by a coupled system of two-dimensional
diffusion—reaction equations.

On the other hand, it is evident that image sequences do not only possess
spatial but also temporal coherence. It would thus be more appropriate to replace
spatial regularizers by spatio-temporal ones. This is investigated in Chapter 12.
The resulting energy functional can be written as

E(u,v) = / ((fw1U1+fx2U2+fa)2 + a ¥ ([Vui]? + [Vauo|?)) dzdf  (1.32)

Qx[0,T7]

where V3 := (0,,, Os,,9) " denotes the spatio-temporal nabla operator. Minimizing
this functional by applying steepest descent, one ends up with a three-dimensional
diffusion-reaction system. Two numerical schemes are presented in order to solve
this system: a stabilized variant of a simple explicit scheme, and an AOS algorithm
that resembles (1.27).

Interestingly, only a few spatio-temporal regularizers have been proposed in the
literature so far [44, 259, 264]. It is likely that this has historical reasons: Spatio-
temporal variational methods require more memory, since the entire sequence is
processed simultaneously. For the typical test sequences in computer vision, this
does no longer cause problems when modern PCs or workstations are used. In
the spatio-temporal case, the CPU time to calculate the optic flow for the entire
sequence is only 50 % higher than in the spatial case.

The experiments in Chapter 12 demonstrate that spatio-temporal regulariza-
tion clearly outperforms spatial regularization. Outliers are less frequent, the flow
field is more homogeneous, and the motion boundaries are more accurate. An
evaluation with a synthetic test sequence also shows that the spatio-temporal reg-
ularizer has competitive performance: it has the lowest angular error in a long list
of classic algorithms that are evaluated by Galvin et al. [139].

It should be noted that the spatio-temporal extension that is studied here is
not limited to the specific structure of the data term and the smoothness term.
Any spatial regularization method for optic flow computation can be transformed
into a spatio-temporal variational method: All that one has to do is to extend the
integration domain by the time domain, and to replace the spatial nabla operator
in the regularizer by a spatio-temporal one. Also in other functionals than the one
discussed here, similar improvements have been observed. Spatio-temporal regu-
larization is therefore a general strategy for exploiting the entire image sequence
data in order to optimize the local flow estimation.



26 CHAPTER 1. INTRODUCTION AND OVERVIEW

A Taxonomy for Optic Flow Regularizers

We have already seen that there are fruitful connections between regularization
methods and diffusion filters. In Chapter 13, such connections are investigated
for the case of optic flow regularizers and diffusion methods for vector-valued im-
ages. This leads us to a taxonomy for variational optic flow methods that includes
existing methods as well as novel ones.

We restrict ourselves to rotationally invariant convex regularizers, and we use
the differential optic flow constraint (1.30) as data term in the energy functional.
Convexity enables us to establish well-posedness results and to implement globally
convergent numerical methods.

A general variational approach with spatial regularization has the structure

E(u) := /(% (forur + fruz + fo)> + aV(V], Vu)) dz. (1.33)

Q

where V is a rotationally invariant convex regularizer. It may be chosen in such
a way that the smoothing process respects image or flow discontinuities. As is
described in the previous section, the spatial functional (1.33) may also be extended
to a spatio-temporal energy functional.

The steepest descent equations for (1.33) are given by

atul - awlvuml + 8$2Vu1Z2 - éfwl (f$1u1+f$2u2+f0)7 (134)
815“’2 = a-Tqule +a$2Vu2z2 - éfwz (fz1u1+fw2u2+f0) - (135)

This is a diffusion-reaction system in which the underlying diffusion process has
the structure
Oytti = Oy, V. + Oz, Vi (1=1,2). (1.36)

Such equations also appear for diffusion filtering of vector-valued images. We may
use this diffusion structure to classify optic flow regularizers. If the diffusion process
uses a scalar-valued diffusivity, we call the regularizer isotropic, and for a diffusion
tensor it is named anisotropic. Depending on whether the diffusivity / diffusion
tensor is a function of Vf or Vu, it is called image-driven or flow-driven. This
shows that image-driven approaches are linear in the diffusion part, while flow-
driven ones are nonlinear.

Table 1.1 gives an overview of the different types of optic flow regularizers and
vector-valued diffusion filters that can be found in the literature. Interestingly,
there is a gap in the table: No energy functional is described that uses anisotropic
flow-driven regularizers. Such regularizers would be very useful, though: they could
be designed in such a way that smoothing is permitted along flow discontinuities,
while it is inhibited across them.

One of the main results in Chapter 13 is the construction of anisotropic flow-
driven regularizers. Matrix-valued functions, tensor products and trace operators

i 1T
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Table 1.1: Survey of current optic flow regularizers and the corresponding diffu-
sion processes for vector-valued images. In the linear diffusion cases, formulations
for vector-valued images are unusual, and the citations refer to the scalar-valued
processes. In the optic flow interpretation, f denotes the image sequence, and u is
the optic flow. In the diffusion framework, f may be regarded as the initial state
of the evolving vector-valued image u.

regularizer diffusion process
V(Vf,Vu) Oty = O, Vugy, + 02 Vs,
homogeneous homogeneous
2
> [Vl Oyu; = Auy
i=1
(Horn/Schunck 1981 [171]) (Iijima 1959 [174])
image-driven, isotropic linear isotropic
2
g(IV£P) 2_:1 | Vu;|? Opu; = div (g(|Vf[?) Vu;)
(Alvarez et al. 1999 [11]) (Fritsch 1992 [135])
image-driven, anisotropic linear anisotropic
2
S Vu D(Vf) Vu; Oyu; = div (D(V f) Vu;)
=1
(Nagel 1983 [260]) (Lijima 1962 [176])
flow-driven, isotropic nonlinear isotropic
2
v (; \Vui|2) Byu; = div (xp'(zj IV, ?) Vui)
(Schnorr 1994 [344)) (Gerig et al. 1992 [144])
flow-driven, anisotropic nonlinear anisotropic
? Oyu; = div (D(Vu) Vuy)
? (Weickert 1994 [405])
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are required in order to design such models. The final result, however, looks both
simple and elegant: For every isotropic flow-driven regularizer

2 2
w(;wuiﬁ) - \If(triz:;Vuz-VuiT>, (1.37)

an anisotropic counterpart can be constructed by exchanging the role of ¥ and the
trace operator:

2
tr ( z:; VuiVuiT) . (1.38)

In the latter case, ¥ is regarded as a matrix-valued function. More details can
be found in Chapter 13. There one can also find an experiment which shows that
anisotropic flow-driven regularization performs favourably in comparison to the
previous methods in this taxonomy. Moreover, a design principle is introduced
that explains how to construct other anisotropic regularizers that are rotation-
ally invariant. Interestingly, in turns out that a variational model that has been
proposed by Schnérr in 1994 [344] can be interpreted in this framework. It leads
to two strongly coupled anisotropic diffusion—reaction methods that are useful for
analysing meteorological images.

After closing the gap in the taxonomy, a unifying variational description is de-
veloped in Chapter 13. In comprises all processes in this taxonomy. Well-posedness
is proved for this model, both for the spatial and the spatio-temporal case. In this
way a general theoretical foundation of convex regularization methods for optic
flow computation is established. It is planned to use this taxonomy as a platform
for detailed performance evaluations and for future algorithmic research.

1.4 Extensions

This habilitation thesis is a selection of papers that describe the main road of the
author’s research. This restriction is necessary in order to limit the size of the thesis
and to avoid distracting the reader too much from its main aspects. Nevertheless,
some related side roads should be mentioned as well. In the last five years, the
author has also contributed to the following topics that involve PDE methods in
imaging:

e The deep structure of corner detectors in linear diffusion scale-space has been
analysed showing that corners may be created in scale-space [370, 371].

e Novel numerical schemes for coherence-enhancing anisotropic diffusion have
been introduced. Since they use derivative filters that have been optimized
with respect to rotation invariance, angular errors resulting in dissipative
effects have been reduced significantly [338, 422].
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e Nonlinear diffusion filtering has been applied to a number of medical imaging
problems:

— Segmenting brain images into grey matter, white matter and cere-
brospinal fluid was done using a scale-space based segmentation algo-
rithm named hyperstack. Experiments have been performed in the 2D
setting [277] as well as in 3D [278, 276].

— MR sequences depicting human eye movement have been postprocessed
with a parallel AOS scheme for nonlinear diffusion filtering [379].

— Coherence-enhancing anisotropic diffusion turned out to be well-suited
for orientation detection in trabecular bones [384, 427].

— 3D ultrasound data sets have been processed in order to remove speckle
noise [385].

Some of these activities are documented in a recent survey paper on appli-
cations of PDEs in medical imaging [424].

e A novel AOS scheme with harmonic averaging has been developed for geodesic
active contours [417]. In contrast to a previous AOS scheme for this task [148],
no time-consuming reinitializations of the distance function are required.

e Moving objects in a video sequence have been tracked in [219] by combining
a structure tensor based optic flow method [43, 197] with geodesic active
contours [69, 205].

e The Mumford—Shah functional has been supplemented with a term that mod-
els statistical knowledge about learned shapes. The resulting active contour
models, called diffusion snakes, include a priori knowledge about the ex-
pected objects [93, 94].

e The modified Nagel-Enkelmann optic flow method described in Chapter 11
has also been used in a variational approach for stereo reconstruction [9, 10].

These contributions show that the usefulness of the developed methods is not
limited to the contents presented in Chapters 2—13.
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Chapter 2

Linear Scale-Space Has First
Been Proposed in Japan

Joachim Weickert, Seiji Ishikawa, and Atsushi Imiya.
Journal of Mathematical Imaging and Vision,
Vol. 10, No. 3, 237-252, May 1999.

Abstract

Linear scale-space is considered to be a modern bottom-up tool in com-
puter vision. The American and European vision community, however,
1s unaware of the fact that it has already been axiomatically derived in
1959 in a Japanese paper by Taizo Iijima. This result formed the start-
ing point of vast linear scale-space research in Japan ranging from var-
tous azriomatic derivations over deep structure analysis to applications
to optical character recognition. Since the outcomes of these activities
are unknown to western scale-space researchers, we give an overview of
the contribution to the development of linear scale-space theories and
analyses. In particular, we review four Japanese axiomatic approaches
that substantiate linear scale-space theories proposed between 1959 and
1981. By juxtaposing them to ten American or Furopean azriomatics,
we present an overview of the state-of-the-art in Gaussian scale-space
azxiomatics. Furthermore, we show that many techniques for analysing
linear scale-space have also been pioneered by Japanese researchers.
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2.1 Introduction

A rapidly increasing number of publications, workshops and conferences which are
devoted to scale-space ideas confirms the impression that the scale-space paradigm
belongs to the challenging new topics in computer vision. This is also reflected in
a number of recent books on this subject [127, 382, 381, 230, 369, 412].

In scale-space theory one embeds an image f : R?> — R into a continuous
family {T;f | t > 0} of gradually smoother versions of it. The original image
corresponds to the scale ¢ = 0 and increasing the scale should simplify the image
without creating spurious structures. Since a scale-space introduces a hierarchy
of the image features, it constitutes an important step from a pixel-related image
description to a semantical image description.

Usually a 1983 paper by Witkin [436] or an unpublished 1980 report by Stans-
field [375] are regarded as the first references to the scale-space idea. Witkin
obtained a scale-space representation by convolution of the original image with
Gaussians of increasing width. Koenderink [213] pointed out that this Gaussian
scale-space is equivalent to calculating (73 f)(x) as the solution u(z,t) of the linear
diffusion process

Ou = Zamu =: Au, (2.1)
u(z,0) = fz(x) (2.2)

Soon this linear filtering became very popular in image processing, and many
results have been obtained with respect to the axiomatization, differential geo-
metry, deep structure, and applications of linear diffusion filtering. An excellent
overview of all these aspects can be found in the recent book edited by Sporring,
Nielsen, Florack and Johansen [369].

Perona and Malik [303] pioneered the field of nonlinear diffusion processes,
where the diffusivity is adapted to the underlying image structure. Many regular-
ized variants of the Perona—Malik filter are well-posed and possess scale-space prop-
erties [412]. There exist also generalizations of the latter theories to anisotropic dif-
fusion processes with a diffusion tensor [412] and to dynamic scale-space paradigms
which can be analysed in terms of algebraic invariance theory and differential
and integral geometry [328]. Other important classes of nonlinear scale-spaces are
related to morphology. Some of them are continuous-scale versions of classical
morphological processes such as dilation or erosion [390, 57, 195], others can be
described as intrinsic evolutions of level curves [12, 207, 286, 333]. These geometric
scale-spaces are generated by nonlinear partial differential equations (PDEs) which
are designed to have Euclidean [390, 57, 207, 195], affine [12, 333] or projective
invariances [119, 59, 286, 108]. Overviews of these nonlinear theories can be found
in [104, 382, 412].
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Besides the above mentioned continuous scale-space concepts there has also
been research on how to construct adequate discrete scale-space frameworks, both
for linear [25, 229, 230, 329] and nonlinear diffusion filtering [407, 412]. Since a
more detailed discussion of these algorithmically important frameworks would be
beyond the scope of this paper, we shall focus on continuous theories in the sequel.

This diversity of scale-space approaches has triggered people to investigate
which axiomatic principles are involved in these theories and how they differ
[213, 442, 28, 229, 130, 390, 12, 286, 295, 272, 231, 128|. Apart from a few no-
table exceptions such as the morphological equivalent of Gaussian scale-space [390],
affine morphological scale-space [12] and intrinsic geometric heat flows [286], most
of these axiomatics use (explicitly or implicitly) one requirement: a linearity as-
sumption (superposition principle). Within such a linear framework it was always
possible to derive the Gaussian scale-space as the unique possibility. The fact that
derivations such as [295, 272, 231, 128] have been found recently shows that linear
scale-space axiomatics belong to the current research topics in computer vision.

However, since the linear diffusion equation is well-established in mathematics
and physics since Fourier’s pioneering works in 1822 [133], and image processing
was already an active field in the fifties, one might wonder whether the concept of
Gaussian scale-space is not much older as well. Koenderink [214] states in a very
nice preface discussing how scale-related ideas can be traced back in literature,
poetry, painting and cartography that “the key ideas have been around for cen-
turies and essentially everything important was around by the end of the nineteenth
century.” The goal of the present paper is to supplement these statements by show-
ing that not only the ingredients, but also their final mixture and application to
image processing is much older than generally assumed. To this end we present
four Japanese linear scale-space approaches, which are older than American and
European ones. The first one of them dates back to 1959.

The outline of this paper is as follows: In Section 2.2 we describe the basic ideas
of a one-dimensional axiomatic for Gaussian scale-space that has been discovered
by Taizo lijima in 1959 [174]. Section 2.3 studies a two-dimensional version of this
axiomatic leading to affine Gaussian scale-space. It has been established in 1962. In
1971 Iijima presented a more physical two-dimensional axiomatics of affine Gaus-
sian scale-space [179]. Its principles are sketched in Section 2.4. The next section is
concerned with further scale-space research of lijima and his students. Section 2.6
describes a two-dimensional axiomatic which has been found by Nobuyuki Otsu in
1981 [292]. In Section 2.7 we shall relate all these results to the well-known linear
axiomatics that have been established since 1984. We conclude with a discussion in
Section 2.8. In order to give the reader an impression of the spirit of these Japanese
papers, we stick closely to the notations in the original work. The discussions are
supplemented with remarks on the philosophical background, physical and biolog-
ical motivations, results on the deep structure in scale-space and applications to
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optical character recognition (OCR). A preliminary version of this paper focusing
exclusively on the axiomatic aspects of two of these four Japanese frameworks has
been presented in [420].

2.2 Tijima’s One-Dimensional Axiomatic (1959)

This section presents first some remarks on the historical and philosophical roots of
Japanese scale-space research, and afterwards it describes the axioms and resulting
lemmas and theorems of the earliest scale-space approach.

2.2.1 Historical and Philosophical Background

Japanese scale-space research was initiated by Taizo lijima. After graduating in
electrical engineering and mathematics from Tokyo Institute of Technology in 1948,
he joined the Electrotechnical Laboratory (ETL). In his thesis titled ‘A fundamen-
tal study on electromagnetic radiation’ he derived the third analytical solution of
the radiation equation. During these studies he acquired the mathematical and
physical background for his later scale-space research.

At the ETL Iijima was involved in different research activities on speech and
pattern recognition. Triggered by actual needs such as optical character recognition
(OCR), but also voice typewriting, or medical diagnosis, he wanted to establish a
general theoretical framework for extracting characteristic information of patterns.
This framework should avoid extreme standpoints such as purely deterministic or
purely stochastic classifications, and it should make use of the original physical or
geometric characteristics of the patterns [178].

Besides this problem-driven background, there was also a philosophical motiva-
tion for lijima’s scale-space research. Its principles go back to Zen Buddhism, and
they can be characterized by the sentence “Anything is nothing, nothing is any-
thing”. Applied to the scale-space context this means to obtain the desired informa-
tion, it is necessary to control the unwanted information. The blurred scale-space
evolution may be interpreted as a kind of unwanted information which helps to
understand the semantical content of the unblurred image. In this sense important
information is existing among seemingly unimportant information.

2.2.2 Axioms

lijima’s first axiomatic formulation of the scale-space concept can be found in
a technical paper from 1959 titled ‘Basic theory of pattern observation’ [174]. A
journal version of this paper has been published in 1962 under the title ‘Basic
theory on normalization of pattern (In case of typical one-dimensional pattern)’
[175]. Both papers are written in Japanese. The restriction to the one-dimensional
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case is for simplicity reasons. Extensions to the two-dimensional case are discussed
in Section 2.3.

lijima imposes basic principles which are in accordance with requirements from
observation theory: a robust object recognition should be invariant under changes
in the reflected light intensity, parallel shifts in position, and expansions or con-
tractions of the object. In addition to these three transformations he considers an
observation transformation ® which depends on an observation parameter ¢ and
which transforms the original image g(x) into a blurred version f(z).

More precisely, he calls this class of blurring transformations ‘boke’ (defocus-
ing), and he assumes that it has the structure'

f(z) = ®lg(a’), 2, 0] = / lo(@'), 2,2, 0} de, (2.3)

satisfying four conditions:

(I) Linearity (with respect to multiplications):
If the intensity of a pattern becomes A times its original intensity, then the
same should happen to the observed pattern:

®[Ag(x'),z,0] = A®g(z"),z,0]. (2.4)

(IT) Translation invariance:
Filtering a translated image is the same as translating the filtered image:

®lg(z'—a),z,0] = Plg(z"),z—a,0]. (2.5)

(III) Scale invariance:
If a pattern is spatially enlarged by some factor A\, then there exists a o' =
o'(o,\) such that

Og(2'/A), z,0] = @[g(a'),z/A,0"]. (2.6)
(IV) (Generalized) semigroup property:
If g is observed under a parameter o; and this observation is observed un-

der a parameter oy, then this is equivalent to observing g under a suitable
parameter oj:

@[Cb[g(x"),x',ol],a:,og = B[g(z"), 03], (2.7)

where 03 = 03(071, 02), but not necessarily o3 = 07 + 09.

Later on we shall see that — in order to determine the Gaussian uniquely — this
axiomatic has to be supplemented with a fifth requirement: preservation of posi-
tivity.

!The variable z’ serves as a dummy variable.
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2.2.3 Consequences

In [175] lijima establishes four lemmas that confine the class of integral operators
(2.3) by consecutively imposing conditions (I) up to (IV).

(a) Lemma 1:
If ® has the structure (2.3) and satisfies the linearity axiom (I), then it can
be written as the integral

o0

Bg(x'), 7, 0] = / (&) 6z, 2, o) da. (2.8)

—00

(b) Lemma 2:
If @ is given by (2.8) and satisfies the translation invariance axiom (II), then
it can be written as a convolution operation:

o0

®[g(z"),x,0] = /g(x')qﬁ(x—x',a) dx'. (2.9)

-0

(c) Lemma 3:
If ® is given by (2.9) and satisfies the scale invariance axiom (III), then it
can be written as

o0

®lg(a'), z,0] = /g(x')qﬁ(V(O)(x—iE'))V(U) dz’, (2.10)

—0oQ
where v(0) is an arbitrary function of o.

(d) Lemma 4:
If & is given by (2.10) and satisfies the semigroup axiom (IV), then the
convolution kernel ¢ has the specific structure

o) = 5 [ exp (R rigu)de
(keR, m=1,2,..), (2.11)

or ®[g(z'),z,0] = 0.

The proofs of the first three lemmas are rather short and not very complicated,
whereas the longer proof of Lemma 4 involves some more sophisticated reasonings
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in the Fourier domain: in order to derive the natural numbers m in Lemma 4, he
shows that W¥(¢), the Fourier transform of ¢(u), must satisfy

w(e) = exp (LD ) (212)

(2m)!
for some m € IN. Establishing U(?™(0) = —(2m)! k™ finally yields (2.11).

In a next step lijima simplifies the result of Lemma 4. The case ®[g(z'), z,0] =0
is of no scientific interest and is not considered any further. In equation (2.10) the
function v can be eliminated by rescaling o via v(¢) = k/o. Then the k-dependence
in (2.11) vanishes by means of substitution of variables.

The preceding results immediately yield

Theorem 1 If ® satisfies (2.3) and the azioms (I)-(IV), then it is given by

3g(s'),z,0] = 70 9(2") ( - ) d (2.13)

o o
with
o) = 5o [ exp(-emricu) de
(m=1,2,..). (2.14)

For this family it follows that ¢’ in (III) becomes ¢’ = ¢/, and o3 in (IV)
satisfies
o3 = g?™ 4 ga™. (2.15)

For the special case m = 1 equation (2.14) becomes

¢ (u) = exp (—u;) : (2.16)

which gives

Q)[g(x’), Z, 0] =

/ g(z") exp (7(52;?’)2> dz'. (2.17)

—0o0

1
2\/mo

Thus, ®[g(z'), x, o] is just the convolution between g and a Gaussian with standard
deviation ov/2.

In a subsequent theorem lijima establishes that the case m = 1 is of specific
interest: if one requires that ® is positivity preserving, i.e.

®[f(z'),z,0] >0 Vf(z)>0, Vo>0, (2.18)
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then m = 1 arises by necessity. The proof presents an explicit example, where the
positivity is not preserved for m > 1.

This concludes lijimas axiomatic derivation of the Gaussian kernel by requiring
linearity, translation invariance, scale invariance, semi-group property, and preser-
vation of positivity.

Interestingly, lijima gives also reasons why e.g. the visual perception by a hu-
man is carried out through a lens [178]: an optical lens has a Gaussian-like blurring
profile that be regarded as a natural consequence from elementary observational
principles.

[ijima considered linear scale-space as a first step in his theory of pattern recog-
nition. In [178] one can find an overview of his ideas, the main one-dimensional
results, their motivation from a viewpoint of observation theory and their theoret-
ical foundation as a classification tool for OCR and other problems. This paper is
written in English.

2.3 Iijima’s Two-Dimensional Axiomatic (1962)

Having obtained these one-dimensional results, it was straightforward for Iijima
to generalize them to a two-dimensional scale-space axiomatic. This was done in
a Japanese technical paper from 1962 [176], followed by a journal paper in 1963
[177], which also contains an informative English abstract.

In [177] he considers a blurring transformation of type

F(z) = Bf(@),2,5] = / / S{F(2'), 7,0, S} de', dz, (2.19)

—0o0 —OC

where Y is a symmetric positive definite 2 x 2 matrix. That transformation should
satisfy four conditions:

(I) Linearity (with respect to multiplications):

O[Ff(z'),2,5] = FO[f(z'),2,5] VFeER (2.20)
(IT) Translation invariance:

O[f(x'—a),z,X] = ®[f(z),z—a,X] VaekR (2.21)

(ITI) Scale invariance and closedness under affine transformations:

If the pattern is transformed by an (invertible) matrix A, then there exists
a X' =Y'(3,A) such that

O[f(A'a'),z,X] = ®[f(2)),A 'z, Y] (2.22)
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(IV) (Generalized) semigroup property:
For every ¥; and X5 there exists a X3 = X3(2, X) such that

O|P[f(z"), 2, 21], 2,5 = ®[f(z"),z,Xs3]. (2.23)

These four axioms in combination with the requirement of positivity preservation
are sufficient to derive that the blurring transformation ® is given by the affine
Gaussian scale-space

Of(a'), 2, 5] = / / F (@, 2) du(wr— 2, vy, ) dafdaty,  (2.24)
with . 2 g )
HooU] — 212U Ug + [11US
) = — 2.2
bl 1,%) = 1 o ot ) ew)
and

N o= g2 ( Hir Hi2 ) ’ det ( Hir Hi12 ) - 1 (2.26)

M1z 22 M1z H22

In order to obtain the usual (isotropic) Gaussian scale-space kernel, one has to im-
pose one more axiom, namely invariance under rotations. Adding this rotational
invariance condition to axiom (III) yields the ordinary pure scale invariance con-
dition.

2.4 Tijima’s Two-Dimensional Axiomatic Based
on Physical Principles (1971)

In 1971 Iijima decided to reconsider his scale-space and pattern recognition theory
in order to arrive at a physically consistent reformulation and simplification of his
ideas [179, 181, 182, 180, 183, 184, 185, 186].

As a first step in this theory, two-dimensional affine Gaussian scale-space has
been derived from physical principles. This is treated in a paper that is available
as a complete English translation in [179].

The goal of this paper is to obtain a generalized figure f(r,7) from an original
figure f(r) in a way which is comparable with the defocusing of an optical system.
Two principles are assumed to hold:

(I) Conservation principle:
The blurring transformation does not change the total light energy within
the image. This means that the image satisfies the continuity equation
of (r,7)

5 +divI(r,7) =0 (2.27)
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where the flux I denotes the figure flow, r is the location, 7 serves as a
blurring parameter, and div is the divergence operator in R?.

(IT) Principle of mazimum loss of figure impression:
The figure flow is determined such that

[T VP
) = R

takes its maximum value. Here, R(7) denotes a positive definite matrix which
is the medium constant of the blurring process.

(2.28)

This expression was motivated as follows. Iijima regards f(r,7) as an energy

density distribution and w(r,7) := 3 f(r,7) as a quantity of information
which he coins figure impression. He derives that
d
—— [ w(r,7)dr = /q(r, T)dr (2.29)
dr
R? R?
where q(r,7) := =V f(r,7) I(r,7) is called loss of figure impression.

He measures the flow intensity ||| by defining a norm which relates it to
R(7) via

||| := I* (r,7) R (1) I(r,T). (2.30)
Thus, (2.28) describes just the (squared) loss of figure impression normalized
by the flow intensity.

lijima shows that (2.28) is maximized for
I(r,7) = —R(1) -V f(r,7). (2.31)

Together with the conservation principle this leads to the anisotropic linear diffu-
sion equation
of(r,7)

ST = div (R(r) - V£ (r,7)) (2.32)

which is just the formulation of affine Gaussian scale-space from Section 2.3 as a
partial differential equation. R(7) is a diffusion tensor. lijima calls this equation
the basic equation of figure.

2.5 Further Scale-Space Results by Ilijima and
His Students

[ijima considered scale-space as a useful tool in the context of pattern analysis with
application to character recognition, feature extraction and focus-of-attention. Be-
low we shall sketch some key ideas of his recognition theory as well as its applica-
tions to OCR and deep structure scale-space analysis.
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2.5.1 [Iijima’s Pattern Recognition Theory

In [179] Lijima shows that the basic equation of figure is essentially invariant under
conformal transformations describing multiplication of grey values with a constant,
addition of linear brightness gradients, translations, and affine transformations.
Essentially invariant means that it may be transformed into another anisotropic
linear diffusion equation.

The set of these conformal mappings form an algebraic group, while the set
of affine Gaussian blurring transformations form a semigroup. lijima studies com-
positions of a conformal mapping and a blurring transformation under the name
observational transformations. These transformations are used to construct a the-
ory of pattern classification: two figures are considered as equivalent if they result
from the same original figure by observational transformations.

[ijima compares the invariance of the basic equation of figure under confor-
mal transformations with the invariance of Newton’s basic equations of motion
to Galileo’s transformation, and the invariance of the Maxwell equations to the
Lorentz transformation. It seems that he was fully aware of the future importance
of his discovery when he wrote in [179] that “this paper provides a basis for explor-
ing the recognition theory of visual patterns and solving mathematically the various
problems in visual physiology”.

This subsequent recognition theory is documented in a series of Japanese papers
which are available as full English translations [181, 182, 180, 183, 184, 185, 186].
[ijima regards a Gaussian-blurred figure as an element in a Hilbert space which
can be expanded in an orthonormal function system given in terms of Hermite
polynomials. The similarity between two patterns f and g is a function of the
scalar product (.,.) in this Hilbert space:

_ (9
S = Tl
where ||f]| := +/(f, f) denotes the induced norm.
Gaussian blurring plays a central role in this theory. It should be performed
at the very beginning, because it makes the algorithms insensitive to noise, it
reduces effects of positional deviation, and it allows a coarser sampling. In order
to overcome the problem that blurred patterns become more similar, he devised a
specific canonical transformation. Incorporating all these features has lead lijima
to a scale-space based subspace technique for matching two patterns which he
called simple similarity method. In order to determine the similarity between an
observed pattern and a whole equivalence class of reference patterns (e.g. different
realizations of one letter of the alphabet), Iijima proposed an extension named
multiple similarity method [190]. It is essentially a weighted mean square of the
simple similarity measures between the observed pattern matched with each of the
reference patterns.

(2.33)
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In 1973 Iijima condensed his whole scale-space and pattern classification theory
to a Japanese textbook [187]. It can be regarded as one of the first monographs
on linear scale-space theory.

2.5.2 Applications to Character Recognition

Applications of Iijima’s theory to OCR have been presented in English proceedings
papers at the First USA-Japan Computer Conference in 1972 [189], and at the
First International Joint Conference on Pattern Recognition in 1973 [190]. In [189]
it is described how Iijima, Genchi and Mori have realized the multiple similarity
method in hardware in the optical character reader ASPET/71. Gaussian blurring
was performed by optical defocusing. ASPET/71 was capable of reading 2000
alphanumeric characters per second, and the scale-space part has been regarded
as the reason for its reliability and robustness. Others stated about ASPET/71
that “it has been proved to have better performance than any similar conventional
method” [279]. It is now exhibited at the National Museum of Sciences in Tokyo.
The ASPET/71 was an analog machine, but its commercial variant OCR-V100 by
Toshiba used digital technology fully. Iijima’s multiple similarity method has also
become the main algorithm of Toshiba’s later OCR systems [254].

2.5.3 Deep Structure Analysis

In the eighties Iijima addressed together with Nan-yuan Zhao, a Ph.D. student
of him, the problem of deep structure analysis in scale-space [447]; see also the
discussion in [192]. For a solution f(z,t) of the isotropic linear diffusion equation,
they constructed a curve which comprises the stationary points, i.e. locations (z, t)
with V f(z,t) = 0. This so-called stationary curve r(t) obeys the equation

Hess(f) d:lit) =—-A (Vf(r, t)) (2.34)

They stated criteria for identifying stable viewpoints on the stationary curve, for
instance by requiring that dz(tt) vanishes there without vanishing in a neighbour-
hood. Afterwards they linked these stable viewpoints to a topological scale-space

tree [446], which introduces a scale hierarchy. To each stable point (z;,t;) they

assign a region of interest which is given by a disk with center z; and radius ;.
Applied to an image of Zhao himself, this focus-of-attention method extracted
eyes, nostrils and the mouth as regions of interest [445].

Some of this work on scale-space trees was further pursued by the image pro-
cessing group of Makoto Sato, another former Ph.D. student of Iijima. Sato’s
group established linear scale-space results ranging from deep structure analysis
[335, 336, 401, 83] to the filtering of periodic or spherical patterns [400, 211]. All
cited Sato papers are written in English.



2.6. OTSU’S AXIOMATIC 45

[ijima continued his research on linear scale-space techniques till the nineties
[22]. After 1972 he held professorships at Tokyo Institute of Technology, Tokyo
Engineering University, and the Advanced Institute of Science and Technology. In
spring 1997 he retired at the age of 72. An English bibliography can be found in
[22].

2.6 Otsu’s Two-Dimensional Axiomatic (1981)

[ijima’s scale-space research also inspired other people than his direct students. We
shall illustrate this below by discussing the work of Nobuyuki Otsu on scale-space
axiomatics and deblurring.

2.6.1 Derivation of the Gaussian

In 1981 another Japanese scale-space axiomatic has been established in the Ph.D.
thesis of Nobuyuki Otsu [292]. This thesis, which was mainly concerned with the
extraction of invariants for pattern recognition, was written at the ETL, where
lijima was working in the sixties. Otsu derived two-dimensional Gaussian scale-
space in an axiomatic way by modifying the axioms described in Section 2.2.
Section 4.1 of his thesis is titled ‘Aziomatic derivation of the scale transformation’.
There he considers some transformation of an image f into an image f, for which
the following holds:

(I) Representation as a linear integral operator:
There exists a function W : R? x R? — R such that

Fr) = / W) f0ydr' ¥r e R (2.35)

(IT) Translation invariance:
For all » € R? and for all a € R? it is required that

Flr—a) = / W) (' —a) dr. (2.36)

Since this is just [p, W(r,7'+a) f(r') dr’, and (I) states that fr—a) =
J2 W(r—a,r") f(r") dr', it follows that the integral kernel is symmetric,

W(r,r'+a) = W(r—a,r"), (2.37)
and, thus, it is a convolution kernel:

Wir,r')y = W(r—r"). (2.38)
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(III) Rotation invariance (of the kernel):
For all rotation matrices T and for all r = (z,y)” € R? it is assumed that

W(Ter) = W(r). (2.39)
Hence, W depends only on |r|: W(r) = W (z? + 3?).

(IV) Separability:
There exists a function v : R — R such that

W(r) = u(z)u(y). (2.40)
Combining this with (IIT) implies after elementary manipulations that
W(r) = kexple(z”+y”)]

with some parameters k,c¢ € R. In order to arrive at £ > 0 and ¢ < 0,
however, additional constraints are needed.

(V) His next requirement which he names “Normalization of energy” actually
consists of two parts:
Preservation of nonnegativity,

fr)=0  Vf(r)=0, (2.41)

and average grey level invariance,

/ Fr)dr = / F(r)dr. (2.42)

This leads to W(r) > 0 and [, W(r) dr = 1, respectively.

Combining these results gives k = 5 and ¢ = —55. This yields the Gaussian
kernel . s
7ty

wW = — 2.43

(r) 2102 <P ( 202 ) ( )

and concludes the axiomatic derivation of two-dimensional linear scale-space.

2.6.2 Further Results

Section 4.2 of Otsu’s thesis is titled ‘Representation of scale-space transformation
and semigroup’. It is devoted to the N-dimensional Gaussian scale-space. With
p := 0%/2 he defines

rf?

1 Nz €XP (—4—p) * f(r). (2.44)

T(p)f(r) = (dnp)"P
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Using Fourier techniques he shows that the generator of the scale-space transfor-
mation is the Laplacean:

f(r,p) = T(p)f(r) = exp(pA) f(r). (2.45)
This gives

afg;p) = A (exp(pa)f(r)) = Af(r,p).

Thus, f satisfies the isotropic linear diffusion equation.
The formal inversion of the scale-space transformation by means of (2.45) is

fr)y = [T(p)]"" f(r,p)

= exp(—pA) f(r,p)
= (I — pA + %AZ - ) f(r,p).

For the case that p or A%f is small, Otsu proposes to approximate [T(p)]~! by
[I — pA] and to use it for recovering the original image from a blurred one?.

2.7 Relation to Other Work

Having sketched the basic ideas of these Japanese axiomatics, it is natural to ask
about similarities and differences to other approaches. Table 2.1 gives an overview
of the current axiomatics for the continuous Gaussian scale-space. These axioms
and some of their relations can be explained as follows?:

e Convolution kernel:
There exists a family of functions {k; : R — R | £ > 0} such that

(T3 f)(z) = /kt(ac — ') f(z') da'.

In Section 2.6.1 we have already seen that this property can be derived from
the two assumptions:

— Linear integral operator:
There exists a family of kernels {k; | t > 0} with

(T (@) = / ki(a, ') f(o) da.
RN
2This is an ill-posed problem which may lead to unstable results.
30f course, such a table can only give a “favour” of the different approaches, and the precise
description of each axiom may slightly vary from paper to paper. Several relations between the
presented axioms are discussed in [12, 231, 295].
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Table 2.1: Overview of continuous Gaussian scale-space axiomatics (I1 = lijima
[174, 175], 12 = Iijima [176, 177], I3 = Iijima [179], O = Otsu [292], K = Koenderink
[213], Y = Yuille/Poggio [442], B = Babaud et al. [28], L1 = Lindeberg [229], F1 =
Florack et al. [130], A = Alvarez et al. [12], P = Pauwels et al. [295], N = Nielsen
et al. [272], L2 = Lindeberg [231], F2 = Florack [128]).

nN|2 830K |Y |B|Ll|F1l|A| P N|L2|F2
convolution kernel o | e . e | o | o o | o . .
semigroup property o | o . o | o | o | o .
locality .
regularity e | o | o . o | o . .
infinites. generator .
max. loss principle .
causality ° o (o | o .
nonnegativity o | o ° ° ° °
Tikhonov regular. .
aver. grey level invar. o | o o | o o | o
flat kernel for t — oo . .
isometry invariance . o e (o | o ° e | o | o | o .
homogen. & isotropy .
separability . .
scale invariance o | e o | o ° o | o .
valid for dimension 11222 (12{12|1|1|>1|N|12|N|N

Since every continuous linear functional can be written as an integral
operator, it follows that Florack’s topological duality paradigm [128]
can also be interpreted as requiring the existence of a linear integral
operator?.

— Translation invariance:
Let a translation 7, be defined by (7,f)(z) := f(z—a). Then,

.71, =Ty, VaeRY, Vit>0.

Since usually linearity and translation invariance are imposed in conjunction,
we have summarized them under the term “convolution kernel”.

e Semigroup property:

Tyoof = Ti(T,f)  Vt,s>0, Vf.

This property ensures that one can implement the scale-space process as a
cascade smoothing.

4Dirac point distributions and their derivatives are admitted as “functions under the integral”.
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e Locality:
For small ¢ the value of 7} f at any point x is determined by its vicinity:

lim (T:f — Tyg)(z) = o()

t—0+

for all f, g € C* whose derivatives of order > 0 are identical.

e Regularity:
A precise definition of the smoothness requirements for the scale-space op-
erator depends on the author:

— Since the original image creates the scale-space, it is natural to assume

that it is continuously embedded, i.e. lirr}r T; = I. In the linear convolu-
t—0

tion case, this means that k;(x) tends to Dirac’s delta distribution [442]
and its Fourier transform becomes 1 everywhere [130].

— Babaud et al. [28] and Florack [128] consider infinitely times differen-
tiable convolution kernels which are rapidly decreasing functions in =z,
i.e. they are vanishing at oo faster than any inverse of polynomials.

— Lindeberg uses kernels k; which are Borel measurable in ¢ [229], or ker-
nels which converge for ¢ — 0 in the L! norm to the Dirac distribution
[231].

— Alvarez et al. [12] require that

IT:(f + hg) — (T(f) + hg)llo < Cht

for all h,t € [0,1], and for all smooth f, g, where C' may depend on f
and g¢.

— Pauwels et al. [295] assume that the convolution kernel k;(z) is sepa-
rately continuous in x and in ¢.

e Infinitesimal generator:
The existence of

o Tf — f
1m

t—0+ t

=: A[f]
guarantees that the semigroup can be represented by the evolution equation
Owu = Alu.

From the mathematical literature it is well-known that the existence of an
infinitesimal generator follows from the semigroup property when being com-
bined with regularity assumptions [169].
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e Principle of maximum loss of figure impression:

See Section 2.4.

Causality:

The scale-space evolution should not create new level curves when increasing
the scale parameter. If this is satisfied, iso-intensity linking through the scales
is possible and a structure at a coarse scale can (in principle) be traced back
to the original image.

For this reason, Koenderink [213] required that at spatial extrema (with non-
vanishing determinant of the Hessian) isophotes in scale-space are upwards
convex; In two dimensions he showed that at these extrema the diffusion
equation

Owu = a(z,t) Au (2.46)

has to be satisfied. Hereby, a denotes a positive-valued function.

Hummel [173] established the equivalence between causality and a maximum
principle for certain parabolic operators.

We may also derive the causality equation (2.46) and its N-dimensional
generalizations by requiring that local extrema with positive or negative
definite Hessians are not enhanced [28, 231]: This assumption states that
such an extremum in zo at scale t, satisfies

Ou >0 if 2o is a minimum,

ou <0 if 2y is a maximum.

This is just the causality requirement sign(d;u) = sign(Au). Moreover, in
one dimension, nonenhancement of local extrema is equivalent to the re-
quirement that the number of local extrema does not increase [28, 229]. In
higher dimensions, however, diffusion scale-spaces may create new extrema,
see e.g. [442, 228, 98].

Nonnegativity:
If the nonnegativity of the convolution kernel,

ki(xz) >0 Vo, Vt>D0,
is violated, new level crossings may appear for ¢ > 0, such that the causality

property does not hold.

Within a linear framework with spatially continuous convolution kernels,
nonnegativity is equivalent to the monotony requirement [12]

flz) < g(z) Vz
— (L)) < To)e) Vo, Vi>0
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and the preservation of nonnegativity:

f(z) >0 Vz
= (T;f)(x) >0 Vz, Vt>0.

e Tikhonov regularization:
In the one-dimensional case, u is called a Tikhonov regularization of f €
L%(R), if it minimizes the energy functional

Eflu] =/ [(f—u)uii:;& (%)2] da.

R

This concept and an N-dimensional generalization of it has been used by
Nielsen, Florack and Deriche [272]. The first term under the integral en-
sures that u remains close to f, while the second one is responsible for the
smoothness of u: the positive coefficients \; serve as weights which guarantee
smoothness of the i-th derivative.

e Average grey level invariance:
The average grey level invariance

/thd:r:/fda: V>0

RN RN

can be achieved by means of the continuity equation (2.27) in connection with
reflecting or periodic boundary conditions. It boils down to the normalization
condition

/ ki(z)dz =1,
]RN
if we consider linear convolution kernels.

In this case normalization is also equivalent to grey level shift invariance [12]:

T,(0) = 0,
L(f+C) = T(f)+C

for all images f and for all constants C.

e Flat kernel for ¢ — oo:
For t — o0, one expects that the kernel spreads the information uniformly
over the image. Therefore, if the integral over the kernel should remain finite,
it follows that the kernel has to become entirely flat: tli)rc?o ki(z) = 0.
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e Isometry invariance:
Let R € RY be an orthogonal transformation (i.e. det R = +1) and define
(Rf)(z) := f(Rx). Then,

T(Rf)=R(T.f) Vf, Vt>o.

In the one-dimensional case with a linear convolution kernel this invariance
under rotation and mirroring comes down to the symmetry condition k;(z) =

kt(—(l})

e Homogeneity and isotropy:
Koenderink [213] required that the scale-space treats all spatial points equally.
He assumed that the diffusion equation (2.46), which results at extrema from
the causality requirement, should be the same at each spatial position (re-
gardless whether there is an extremum or not) and for all scales. He named
these requirements homogeneity and isotropy®.

e Separability:
The convolution kernel k;(z) with z = (z1,...,zy)" € RY may be split into
N factors, each acting along one coordinate axis:

kt(.T) = kl,t(xl) e kN,t(acN).

e Scale invariance:
Let (Saf)(z) := f(Az). Then there exists some '(\,t) with

S\Ty = T,S).

One may achieve this by requiring that, in the N-dimensional case, the con-
volution kernel k; has the structure

(0 =52 (503

with a continuous, strictly increasing rescaling function W. This means that
all kernels can be derived by stretching a parent kernel such that its area
remains constant [295]. It is evident that this is related to the normalization
condition.

Scale invariance follows also from the semigroup property when being com-
bined with isometry invariance and causality [231]. Moreover, scale invari-
ance, translation invariance and isometry invariance result from the more
general assumption of invariance under the spacetime symmetry group; see
[128] for more details.

5In our terminology, homogeneity and isotropy are much stricter requirements than translation
and isometry invariance. They enable Koenderink to derive Gaussian scale-space under only one
additional assumption (causality).
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We observe that — despite the fact that all presented axiomatics use many
similar requirements — not two of them are identical. Each of the 14 axiomatics
confirms and enhances the evidence that the others give: that Gaussian scale-space
is unique within a linear framework. This theoretical foundation is the backbone
of a lot of successful applications of linear scale-space theory.

Nevertheless, apart from their historical merits, the early Japanese approaches
differ from the well-known axiomatics after 1984 in several aspects:

Firstly, it is interesting to note that all Japanese axiomatics require only quite a
few axioms in order to derive Gaussian scale-space. Even recent approaches which
intend to use a minimal set of first principles do not utilize less axioms.

[ijima’s one- and two-dimensional frameworks from 1959 and 1962, respectively,
do not only belong to the most systematic derivations of Gaussian scale-space, they
appear also rather modern: principles such as nonnegativity and the semigroup
property are typical for axiomatizations after 1990, and also the importance of
scale invariance has been emphasized mainly in recent years. Also affine Gaussian
scale-space which he pioneered in 1962 has been further pursued only recently
[230].

lijima’s physical motivation for affine Gaussian scale-space from 1971 uses only
two principles which reduce the essential features of linear diffusion filtering to a
minimum. In this sense it is written in a similar spirit as Koenderink’s derivation
[213], which also uses two highly condensed requirements (although of very differ-
ent nature). Concepts such as the principle of maximum loss of figure impression
may remind some of the readers of properties of nonlinear scale-spaces like the Eu-
clidean and affine shortening flow [12, 286, 333|: they shrink the Euclidean or affine
perimeter of a closed curve as fast as possible. Moreover, the group-theoretical
studies in [179] prove that Iijima has also pioneered modern scale-space analysis
such as in [12, 286, 328]. The canonical figures used in [179] to set up similar-
ity measures can be regarded as predecessors of the canonical frames that have
become popular in computer vision [258]. Last but not least, Iijima’s anisotropic
diffusion equation (2.32) may be viewed as a linear predecessor of various nonlinear
anisotropic diffusion scale-spaces as considered in [412].

Otsu’s two-dimensional axiomatic is very appealing due to its simplicity: in
contrast to many other approaches it does not require advanced mathematical
techniques like Fourier analysis, complex integrals, or functional analysis in order to
derive the uniqueness of the Gaussian kernel. It is therefore a well-suited approach
even for undergraduate courses in image processing.
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2.8 Discussion

In this paper we have analysed Japanese axiomatics for the linear diffusion scale-
space that have been unknown in the American and European image processing
community. They reveal many interesting qualities which should trigger everyone
who is interested in scale-space theory to have a closer look at them.

The discussed results demonstrate that an entire world of linear scale-space the-
ory has evolved in Japan ranging from axiomatics for isotropic and affine Gaussian
scale-space over group theory and deep structure analysis to hardware implemen-
tations for OCR. The Japanese scale-space paradigm was well-embedded into a
general framework for pattern recognition and object classification [178, 187, 292],
and many results have been established earlier than in America and Europe.

It is surprising that eastern and western scale-space theory have evolved with
basically no interaction: To the best of our knowledge, the first citation of Iijima’s
work by non-Japanese scale-space researchers was made in 1996 [428]. Conversely,
also Japanese work after 1983 was not always aware of American and European
scale-space results. Some (English) papers by Makoto Sato’s group [335, 336, 401,
400] cite both Tijima and Witkin. His paper with the probably most explicit ref-
erence to Iijima’s work has been presented at the ICASSP 87 [335], where Sato
and Wada cite the original Japanese versions of [179, 181] and state: “The notion
same as scale-space filtering was also proposed by T. Iijima in the field of pattern
recognition. He derived a partial differential equation, called basic equation, from
the continuity of the light energy in the waveform observation”.

In 1992 several direct hints to lijima’s scale-space research can be found in the
widespread journal Proceedings of the IEEE [254]. In an invited historical review
of OCR methods written by Mori, Suen and Yanamoto, 10 out of the 193 key
references were papers by Iijima. Concerning his contributions, the authors state
that “the concept of blurring was first introduced into pattern recognition by his
work, whereas it was widely attributed to Marr in the West. lijima’s idea was
derived from his study on modeling the vision observation system. (...) Setting
reasonable conditions for the observation system, he proved that the mathematical
form must be a convolution of a signal f(z') with a Gaussian kernel”. They also
give a recommendation to the non-Japanese audience: “Iijima’s theory is not so
easy to understand, but his recent book [188] is readable, although it is written in
Japanese”.

One can only speculate why nobody paid attention to these passages. Maybe,
because none of the authors referred to one of lijima’s English scale-space papers.
The present paper contains 12 references to English publications by Iijima. They
can be found in many libraries in America and Europe, and a short look at papers
such as [178, 179] should convince everybody that there remains no justification
to deny lijima’s pioneering role in linear scale-space theory because of language
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reasons.

Another reason might be that Iijima’s work came too early to be appreciated:
His theory was mathematically much more demanding than other methods at this
time. At a stage where pattern recognition was still in its infancy and experiment-
ing with very simple methods, it was not easy to make techniques popular, which
are based on advanced mathematics. Also computing facilities were more restricted
in the sixties and seventies than they are today. Despite very remarkable devel-
opments such as the scale-space based optical character readers, it was certainly
more difficult to attract people by presenting computed results that demonstrate
the advantages of a conceptually clean scale-space technique over ad-hoc strategies.

When scale-space became popular in America and Europe in the eighties, the
situation was different: Computing power was much higher, and the pattern recog-
nition and computer vision community had become mature for better founded tech-
niques which take advantage of centuries of research in mathematics and physics.
Today it is possible to establish an international conference solely devoted to scale-
space ideas which attracts people from many countries and disciplines [381]. Would
this have been possible 30 years ago? Certainly not.

Unfortunately, it seems that Iijima was not the only one who has pioneered
the field of partial differential equations in image processing far ahead of his time,
so that his work fell into oblivion for decades. Another example is the fact that
already in 1965 the Nobel prize winner Dennis Gabor — the inventor of optical
holography and the so-called Gabor functions — proposed a deblurring algorithm
based on combining mean curvature flow with backward smoothing along flowlines
[138, 233]. This long-time forgotten method is similar to modern PDE techniques
for image enhancement.

Maybe this review helps a little bit that the pioneering work of these people
receives the acknowledgement that it deserves. It would also be nice if it encourages
the mutual interest between the Japanese and the western scale-space community.
The fact that the same theory has been developed twice in two very different
cultures shows that this theory is natural and that it is worthwhile to study all of
its various aspects.
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Chapter 3

Relations Between Regularization
and Diffusion Filtering

Otmar Scherzer and Joachim Weickert.
Journal of Mathematical Imaging and Vision,
Vol. 12, No. 1, 43-63, February 2000.

Abstract

Regularization may be regarded as diffusion filtering with an implicit
time discretization where one single step is used. Thus, iterated reg-
ularization with small regularization parameters approrimates a dif-
fusion process. The goal of this paper is to analyse relations between
noniterated and iterated reqularization and diffusion filtering in image
processing. In the linear reqularization framework, we show that with
iterated Tikhonov reqularization noise can be better handled than with
noniterated. In the nonlinear framework, two filtering strategies are
considered: the total variation reqularization technique and the diffu-
ston filter technique of Perona and Malik. It is shown that the Perona-
Malik equation decreases the total variation during its evolution. While
noniterated and iterated total variation regularization is well-posed, one
cannot expect to find a minimizing sequence which converges to a min-
imizer of the corresponding energy functional for the Perona-Malik fil-
ter. To overcome this shortcoming, a novel reqularization technique of
the Perona—Malik process is presented that allows to construct a weakly
lower semi-continuous energy functional. In analogy to recently derived
results for a well-posed class of reqularized Perona—Malik filters, we in-
troduce Lyapunov functionals and convergence results for reqularization
methods. Experiments on real-world images illustrate that iterated lin-
ear reqularization performs better than noniterated, while no significant
differences between noniterated and iterated total variation regulariza-
tion have been observed.

o7
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3.1 Introduction

Image restoration is among other topics such as optic flow, stereo, and shape-from-
shading one of the classical inverse problems in image processing and computer
vision [40]. The inverse problem of image restoration consists in recovering informa-
tion about the original image from incomplete or degraded data. Diffusion filtering
has become a popular and well-founded tool for restoration in the image processing
community [382, 412], while mathematicians have unified most techniques to treat
inverse problems under the theory of regularization methods [114, 156, 255, 387].
Therefore it is natural to investigate relations between both approaches, as this
may lead to a deeper understanding and a synthesis of these techniques. This is
the goal of the present paper.

We can base our research on several previous results. In the linear setting,
Torre and Poggio [388] emphasized that differentiation is ill-posed in the sense
of Hadamard, and applying suitable regularization strategies approximates linear
diffusion filtering or — equivalently — Gaussian convolution. Much of the linear
scale-space literature is based on the regularization properties of convolutions with
Gaussians. In particular, differential geometric image analysis is performed by
replacing derivatives by Gaussian-smoothed derivatives; see e.g. [127, 230, 369]
and the references therein. In a very nice work, Nielsen et al. [273] derived linear
diffusion filtering axiomatically from Tikhonov regularization, where the stabilizer
consists of a sum of squared derivatives up to infinite order.

In the nonlinear diffusion framework, natural relations between biased diffu-
sion and regularization theory exist via the Euler equation for the regularization
functional. This Euler equation can be regarded as the steady-state of a suitable
nonlinear diffusion process with a bias term [281, 345, 80]. The regularization
parameter and the diffusion time can be identified if one regards regularization
as time-discrete diffusion filtering with a single implicit time step [253, 378, 339].
A popular specific energy functional arises from unconstrained total variation de-
noising [2, 76, 77]. Constrained total variation also leads to a nonlinear diffusion
process with a bias term using a time-dependent Lagrange multiplier [326].

In spite of these numerous relations, several topics have not been addressed so
far in the literature:

o A comparison of the restoration properties of both approaches: Since regu-
larization corresponds to time-discrete diffusion filtering with a single time
step, it follows that iterated regularization with a small regularization para-
meter gives a better approximation to diffusion filtering. An investigation
whether iterated regularization is better than noniterated leads therefore to
a comparison between regularization and diffusion filtering.

e FEnergy formulations for stabilized Perona—Malik processes: The Perona—Malik



3.2. VARIATIONAL FORMULATIONS OF DIFFUSION PROCESSES 99

filter is the oldest nonlinear diffusion filter [303]. Its ill-posedness has trig-
gered many researchers to introduce regularizations which have shown their
use for image restoration. However, no regularization has been found which
can be linked to the minimization of an appropriate energy functional.

e Lyapunov functionals for reqularization: The smoothing and information-
reducing properties of diffusion filters can be described by Lyapunov func-
tionals such as decreasing LP norms, decreasing even central moments, or
increasing entropy [412]. They constitute important properties for regarding
diffusion filters as scale-spaces. A corresponding scale-space interpretation
of regularization methods where the regularization parameter serves as scale
parameter has been missing so far.

These topics will be discussed in the present paper. It is organized as follows.
Section 3.2 explains the relations between variational formulations of diffusion
processes and regularization strategies. In Section 3.3 we first discuss the noise
propagation for noniterated and iterated Tikhonov regularization for linear prob-
lems. In the nonlinear framework, well-posedness results for total variation reg-
ularization are reviewed and it is explained why one cannot expect to establish
well-posedness for the Perona—Malik filter. We will argue that, if the Perona—Malik
filter admits a smooth solution, however, then it will be total variation reducing. A
novel regularization will be introduced which allows to construct a corresponding
energy functional. Section 3.4 establishes Lyapunov functionals for regularization
methods that are in accordance with those for diffusion filtering. This leads to a
scale-space interpretation for linear and nonlinear regularization. In Section 3.5
we shall present some experiments with noisy real-world images, that compare
the restoration properties of noniterated and iterated regularization in the lin-
ear setting and in the nonlinear total variation framework. Moreover, the novel
Perona—Malik regularization is juxtaposed to the regularization by Catté et al.
[74]. Some preliminary results have been reported in a conference volume [310].

3.2 Variational Formulations of Diffusion Pro-
cesses and the Connection to Regularization
Methods

We consider a general diffusion process of the form

O = V. (9(|Vul?)Vu) on Q x (0,00)
Opu =0 on I x (0,00) (3.1)
u(z,0) = f5(x) on Q.
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Here g is a smooth function satisfying certain properties which will be explained in
the course of the paper; 2 C R? is a bounded domain with piecewise Lipschitzian
boundary I" with unit normal vector n, and f; is a degraded version of the original
image f := fy : Q@ — R. The operator V denotes the nabla operator in R?, i.e.
Vu = (0g, Uy ..., Op,u)”, and V- is its corresponding divergence operator.

For the numerical solution of (3.1) one can use explicit or implicit or semi-implicit
difference schemes with respect to t.

The implicit scheme reads as follows.

{W = V. (g(|Vul|?)Vu) (z,t+h)

u(@,0) = file). (3.2)

Here h > 0 denotes the step-size in t—direction of the implicit difference scheme.

In the following we assume that g is measurable on [0,00[ and there exists a
differentiable function § on [0, oo[ which satisfies §' = g. Then the minimizer of
the functional (for some fixed given u(z,t))

T(u) = |ju-— u(x,t)||ig(m + h/ﬂf}(|Vu|2) dz, (3.3)

satisfies (T"(u),v) = 0 for all v, where (T"(u),v) is the formal Gateaux derivative
of T in direction v:

(T'(u),v) = lim T(u+tv) —T(u)

t—0+ t

= /2(u—f)vd:v+h/2g(\Vu\2)Vqudx.
Q Q

We observe that such a minimizer satisfies (3.2) at time ¢ + h. If the functional T
is convex, then a minimizer of T  is uniquely characterized by the solution of the
equation (3.2) with homogeneous Neumann boundary conditions.

The regularization functional 7'(u) consists of the approximation functional
[u—u(.,)[]72(q) and the stabilizing functional [, §(|Vu|?) dz. The weight  is called
reqularization parameter. The case §(x) = x is called Tikhonov reqularization.

In the next section we summarize some results on regularization and diffusion
filtering and compare the theoretical results developed in both theories.
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3.3 A Survey on Diffusion Filtering and Regu-
larization

We have seen that each time step for the solution of the diffusion process (3.1)
with an implicit, {-discrete scheme is equivalent to the calculation of the minimizer
of the regularization functional (3.3). The numerical solution of the diffusion pro-
cess with an implicit, ¢-discrete iteration scheme is therefore equivalent to iterated
reqularization where on has to minimize iteratively the set of functionals

To(u) = ([t — thns [Py + B /Q 3(IVul?) dz. (3.4)

Here u, is a minimizer of the functional 7,,,n = 1,2,...; and uy := fs5. If the
functionals T;, are convex, then the minimizer of (3.4) denoted by u, is the ap-
proximation of the solution of the diffusion process with an implicit, ¢-discrete
method at time ¢y, ..., t, where t; = Zle h;.

In the following we refer to iterated regularization if h, = h for all n. That corre-
sponds to the solution of the diffusion process with an implicit, ¢-discrete method
using a fixed time step size h = h,,.

If the regularization parameters h,, are adaptively chosen (this corresponds to the
situation that the time discretization in the diffusion process is changed adap-
tively), then the method is called nonstationary regularization. For some recent
results on nonstationary Tikhonov regularization we refer to Hanke and Groetsch
[160]; however, their results do not fit directly into the framework of this paper.
They deal with regularization methods for the stable solution of operator equations

Tu=y, (3.5)

where I is a linear bounded operator from a Hilbert space X into a Hilbert space
Y, and they use nonstationary Tikhonov regularization

min(||7u — yll3 + hallu = a1 ]%)

for the stable solution of the operator equation (3.5), where ||.|x and ||.||y denote
the induced norms in the Hilbert spaces X and Y, respectively.

3.3.1 Error Propagation of Tikhonov Regularization with
Linear Unbounded Operators

In this subsection we consider the problem of computing values of an unbounded
operator L. We will always denote by L : D(L) C H; — H, a closed, densely
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defined unbounded linear operator between two Hilbert spaces H; and Hy. A
typical example is Lu = Vu. The problem of computing values y = Lfy, for
fo € D(L) is then ill-posed in the sense that small perturbations in f, may lead
to data fj satisfying

| fo — fsllLe) <0, (3.6)

but fs ¢ D(L), or even if f5 € D(L), it may happen that Lfs /& Lfy as § — 0,
since the operator L is unbounded. Morozov has studied a stable method for
approximating the value Lfy, when only approximate data f; is available [255].
This method takes as an approximation to y = Lfy the vector yg = Lui, where

u$ minimizes the functional

Trik (u) = llu = follia) + Bl Lulliz@) (b > 0) (3.7)
over D(L).

The functional is strictly convex and therefore, if D(L) is nonempty and convex,
there exists a unique minimizer of the functional Trpyi¢ (u). Thus the method is
well-defined. For more background on the stable evaluation of unbounded opera-
tors we refer to [157].

Let ug := fs5. If L = V, then the sequence {u,},>; of minimizers of the family of
optimization problems

Tiig = lu = tnaallize) + AlIVullfa ), n>1 (3.8)

are identical to the semi-discrete approximations of the differential equation (3.1)
at time nh (n > 1) where g(z) = z.

This shows:

Methods for evaluating unbounded operators can be used for diffusion
filtering and vice versa. However the motivations differ: For evaluating
unbounded operators we solve the optimization and evaluate in a fur-
ther step the unbounded operator. In diffusion filtering we “only” have
to solve the optimization problem.

In the following we compare the error propagation in Tikhonov regularization
with regularization parameter h and the error propagation in iterated Tikhonov
regularization of order N with regularization parameter 4/N. This corresponds to
making an implicit, t-discrete ansatz for a diffusion process with one step h and
an implicit, ¢-discrete ansatz with N steps of step h/N, respectively.
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Tikhonov regularization with regularization parameter h reads as follows:
= (I+hL*L) *fs

where L* is the adjoint operator to L (see e.g. [431] for more details). Tikhonov
regularization of order N with regularization parameter h/N reads as follows:

h -N
Let L*L be an unbounded operator with spectral values

0< X\ < ... < )\n

such that )\, — oo as n — oo. Then

h —N

h - h N
= (I+—=L"L — I+ —L"L .
(+N ) (fs f0)+<+N ) Jo
(I + L ~L*L ) (fs — fo) denotes the propagated error of the initial data f;, which

remains in uy — this corresponds to the error propagation in diffusion filtering
with an implicit, t-discrete method.

Let E\ be the spectral family according to the operator L*L. Then it follows that

431]
(1+ %L*L)N (fs = fo) = /Ooo <1 + %A) - dE\(fs5 — fo) -

h Y h N\ [/ h\? R\
1+ — = 14— ) 24+ (= N
(+N)\) +N)\+<2>(N> A° 4+ +<N) A

we get that

Using

HHhL*) (s~ 10 v

of (1 +2a4+ (M) (N) N4+ + (%)NAN> -~ d|Ex(fs — fo)llf2(0

(3.9)

In noniterated Tikhonov regularization the error propagation is

(I +hL L)~ (fs — fo)”iQ(Q) = /0 (1 4+ hA) 2| Ex(fs = fo)llf2() - (3-10)
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For large values of A (i.e., for highly oscillating noise) the term (1 + hA)™2 in
(3.10) is significantly larger than the term (1+%>\+(g’)(%)2A2+....+(%)NAN)72 in (3.9).
This shows that noise propagation is handled more efficiently by iterated Tikhonov
regularization than by Tikhonov regularization.

Above we analysed the error of the (iterated) Tikhonov regularized solutions and
not the error in evaluating L at the Tikhonov regularized solutions. We emphasize
that the less noise is contained in a data set the better the operator L can be
evaluated. Therefore we conclude that the operator L can be evaluated more accu-
rately with the method of iterated Tikhonov regularization than with noniterated
Tikhonov regularization. This will be confirmed by the experiments in Section 3.5.

3.3.2 Well-Posedness of Regularization with Nonlinear Un-
bounded Operators

In this subsection we discuss some theoretical results on regularization with non-
linear unbounded operators.

Well-Posedness and Convergence for Total Variation Regularization

Total variation regularization goes back to Rudin, Osher and Fatemi [326] and
has been further analysed by many others, e.g. [2, 78, 77, 76, 109, 110, 193, 227,
378, 340, 399]. In the unconstrained formulation of this method the data fy is
approximated by the minimizer of the functional over TV(S2), the space of all
functions with finite total variation norm

TTv(u) = ||u — f5||%2(9) + hTV(u) , (3.11)

where TV(u) := [, [Vu|dz and

/\Vu|da: = sup{—/uV.pd:c:pECé(Q,Rd),w < 1} )
0 0

This expression extends the usual definition of the total variation for smooth func-
tions to functions with jumps [147].

TV-regularization can be also considered as a constrained optimization problem
to find an approximation of f; in the class of functions of finite bounded variation,
where the regularization parameter h serves as a trade-off parameter between
approximation quality and desired smoothness. Using similar arguments it is easy
to see that standard Tikhonov regularization is useful to calculate approximations
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of f5 in the class of differentiable functions. Clearly this method is not suitable to
recover discontinuities in images.

It is easy to see that a smooth minimizer of the functional Trpy; satisfies

h 1

Acar and Vogel [2] proved the following results concerning existence of a minimizer
of (3.11) and concerning stability and convergence of the minimizers:

Theorem 2 (Existence of a minimizer)

Let f5 € L*(Q), then for fized h > 0 a minimizer uy, € TV(Q) of (3.11) exists and
1S UNIque.

Theorem 3 (Stability)
Let fs € L*(Q) and fo € TV(Y). Then for § — 0,

un(fs) = un(fo)

with respect to the LP-norm (1 < p < Z% ). Here up(fs) is the minimizer of (3.11)
and up(fo) is the minimizer of (3.11) where fs is replaced by fo.

Theorem 4 (Convergence)
Let fs € L*(Q) and fo € TV(Q) satisfy || fs — follr2@) <6 .
Then for h := h(d) satisfying % —0asd— 0,

up — fo

with respect to the LP-norm (1 < p < d%'ll).

It is evident that analogous results to Theorem 2, Theorem 3 and 4 also hold
for the minimizers of the iterated total variation reqularization which consists of
minimizing a sequence of functionals

Trjrvv(u) = ||lu— Un_1||iz(9) + h/Q \Vu| dz, (3.13)

where upy_; denotes the minimizer of the functional TJFV\_/l and uy = f;.

This regularization technique corresponds to the implicit, -discrete approximation
of the diffusion process (3.1) with g(x) = /x.
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The Perona—Malik Filter.

In the Perona-Malik filter [303] we have g(s) = 135 and §(s) = In(1 + s). Iterated

Perona—Malik regularization minimizes the family of functionals
Thpp () = llu = un1(2)[IT2i0) + h/ﬂln(l + | Vul?) dz. (3.14)

The functionals Tf’M are not convex and therefore we cannot conclude that the
minimizer of (3.14) (it it exists) satisfies the first order optimality condition

%(u —uy )(@) = V. (l> , (3.15)

1+ |Vul?
with homogeneous Neumann boundary data.

In the following we comment on some aspects of the Perona-Malik regularization
technique. For the definitions of the Sobolev spaces WP and the notion of weak
lower semi-continuity we refer to [5].

1. Neumann boundary conditions: Let €2 be a domain with smooth boundary
0f2. Using trace theorems (see e.g. [5]) it follows that the Neumann boundary
data are well-defined in L2(8%) for any function in W22(). Suppose we
could prove that there exists a minimizer of the functional TlgM’ then this
minimizer must satisfy

/ln(l + V) ds < oo . (3.16)
Q

Elementary calculations show that any function v € WH?(Q2) (p > 1) satisfies
(3.16). Therefore we cannot deduce from (3.16) that the minimizer is in any
Sobolev space WP(Q)(p > 1). Consequently, there exists no theoretical
result that the Neumann boundary conditions are well-defined.

2. Existence of a minimaizer of the functional TI”_-, M The function In(1 + s?) is
not convex, and therefore the functional TlgM(u) is not weakly lower semi-
continuous on WHP(Q) for any 1 < p < oo (see [96, p. 66] and also [95])).
Therefore, there exists a sequence u;, € W'P(Q) with uy — u in WhHP(Q),
but

liminf 75y (ue) < Tpyp(u) -
Consequently, we cannot expect that a minimizing sequence converges (in

W1P(Q)) to a minimizer of the functional Ty - Thus the solution of the
Perona-Malik regularization technique is ill-posed on WP (Q)!
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The diffusion process associated with the Perona—Malik regularization technique

Vu
=V.|——) . 1

The Perona—Malik diffusion filtering technique can be split up in a natural way

1S

into a forward and a backward diffusion process:
1 (1—|Vul?)Au
ou = V.|——=Vu] =
K <1+ |Vu|? ) (1+ |Vu|2)2
=: (a(|Vul]) = b(|Vul)) Au .

Here
) 1
allVul) = G wapy
_ |Vul?
oIV = Ty

Both functions a and b are non-negative. In general the solution of a backward
diffusion equation is severely ill-posed (see e.g. [114]). We argue below that this
nonlinear backward diffusion is well-posed with respect to appropriate norms. In
fact we argue that the backward diffusion equation

vy = —b(|Vv|)Av (3.18)
satisfies
TV (v(.,t) =TV (v(.,0)) =TV (vo(.)) - (3.19)
The intuitive reason for the validity of this is the following: Let v € C?*(Q x [0, T7]).
Then
V| ~ O/ VIEF B = VO (3.20)

VIVuZ+ 52

Using (3.20), (3.18), and integration by parts it follows that

Vo dx

Vv
8 V’U d.’L‘ ~ /—
/g Vel o VR + B2

= /V Vo ‘VUP Avdz
o \V|Vu2+32) (14 |Vv[?)?

2 2
B
@ [Vo?+ 52 (1 + [Vo)?

If v € C*(Q x [0,T]), then the right hand side tends to zero as 8 — 0. These

arguments indicate that
(9,5/ |\Vou|dz =0 .
Q
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Consequently the total variation of v(.,t) does not change in the course of the
evolutionary process (3.20). Indeed, (3.18) may be regarded as a total variation
preserving shock filter in the sense of Osher and Rudin [290].

The diffusion process
Owu = a(|Vul|)Au

is a forward diffusion process which decreases the total variation during the evo-
lution. In summary we have argued that the Perona—Malik diffusion equation de-
creases the total variation during the evolutionary process.

A Regularized Perona—Malik Filter

Although the ill-posedness of the Perona-Malik filter can be handled by applying
regularizing finite difference discretizations [418], it would be desirable to have a
regularization which does not depend on discretization effects. In this subsection
we study a regularized Perona—Malik filter

T8 pag(#) = [lu =t (2] + / (1 +|VLu)de,  (3.21)

where L, is linear and compact from L%(Q2) into C'(Q). The applications which
we have in mind include the case that L, is a convolution operator with a smooth
kernel.

In the following we prove that the functional Tln%—PM attains a minimum:

Theorem 5 The functional T?%-PM is weakly lower semi continuous on L?(f2).

Proof:
Let {us : s € IN} be a sequence in L*(Q) which satisfies

TR.pyv(us) = min{Tg ppp(u) 1u € L*()} .

Then {us} has a weakly convergent subsequence (which is again denoted by {us})
with weak limit u. Since L, is compact from L?(Q) into C*(Q) the sequence
In (14 |VL,us|?) converges uniformly to In (1 + |V L,u[?). In particular, we have

/m (1+ |VLyu,|?) do — / In (1 + |VLyul?) da .
Q Q

Using the weak lower semi-continuity of the norm ||.||>(q) it follows that the func-
tional Tﬁ-PM is weakly lower semi-continuous. O
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The minimizer of the regularized Perona—Malik functional satisfies

VL,u
— Uy = hL:V. | —=1—| . .22
U — Up—1(T) h L2V (1 n |VL7u|2> (3.22)

The corresponding nonlinear diffusion process associated with this regularization
technique is

. VL,u

Regularized Perona-Malik filters have been considered in the literature before
[34, 74, 280, 404, 412]. Catté et al. [74] for instance investigated the nonlinear

diffusion process
Vu
ou=V.| ———= ). 3.24
w=v- () 529

This technique (as well as other previous regularizations) does not have a corre-
sponding formulation as an optimization problem. The differences between (3.23)
and (3.24) will be explained in Section 3.5.

3.4 Lyapunov Functionals for Regularization
Methods

Lyapunov functionals play an important role in continuous diffusion filter-
ing (see [411, 412]). In order to introduce Lyapunov functionals of regularization
methods, we first give a survey on Lyapunov functionals in diffusion filtering. We
consider the diffusion process (here and in the following Q will be a domain with
piecewise smooth boundary)

o =V.(g9(L,(]Vu*))Vu) on Qx (0,T)
u(z,0) = f(x) on (3.25)
Bpu = 0 on T x (0,T)

We assume that the following assumptions hold:
1. fe L*°(Q), with a := ess infycof and b := ess sup,cqf-

2. L, is a compact operator from L?(Q) into CP(Q2) for any p € IN.
3. T >0.

4. For all w € L>(Q,R?) with |w(z)| < K on €, there exists a positive lower
bound v(K) for g.
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The regularizing operator L, may be skipped in (3.25), if one assumes that g(].|?)
is convex from R? to R. Moreover, it is also possible to generalize (3.25) to the
anisotropic case where the diffusivity g is replaced by a diffusion tensor [412].

Under the preceding assumptions it can be shown that (3.25) is well-posed (see
[74, 412]):

Theorem 6 The equation (3.25) has a unique solution u(x,t) which satisfies
u € C((0, T L*() N L*([0, T; H'(2)) (3.26)

O € L*([0,T]; H(Q2)). (3.27)

Moreover,
u € C®(Q x[0,T]) .

The solution fulfills the extremum principle
a <u(z,t) <bonQx(0,T] (3.28)

For fized t the solution depends continuously on f with respect to ||.||12(q)-
This diffusion process leads to the following class of Lyapunov functionals [412]:

Theorem 7 Suppose that u is a solution of (3.25) and that assumptions 1 — 4 are
satisfied. Then the following properties hold.

(a) (Lyapunov functionals) For all v € C?[a,b] with " > 0 on [a,b], the function

V(t) :=o(u(t)) := /Qr(u(ac,t)) dx (3.29)
18 a Lyapunov functional:

1. ¢(u(t)) > ¢(Mf) for allt > 0; here
1
Mf .= @/Qf(x)dx

2.V € C0,00)NCH0,00) and V'(t) <0 for all t > 0.

Moreover, if " > 0 on [a,b], then V(t) = é(u(t)) is a strict Lyapunov
functional:

3. o(u(t)) = ¢(Mf) if and only if u(t) = Mf on Q fort >0 and u(t) =
Mf a.e. onQ fort=0.
4. Ift > 0, then V'(t) = 0 if and only if u(t) = M f on Q.



3.4. LYAPUNOV FUNCTIONALS FOR REGULARIZATION METHODS 71
5. V(0) =V(T) forT > 0if and only if f = M f a.e. onQ andu(t) = M f
a.e. on Q x (0,T).
(b) (Convergence)

1. limy o0 ||u(t) — M fl|Le) =0 for p € [1,00).
2. If Q C R, then the convergence
lim u(z,t) = M f

t—00

18 uniform.

In the sequel we introduce Lyapunov functionals of regularization methods. In
the beginning of this section we discuss existence and uniqueness of the minimizer
of the following regularization functional in H'(f2):

Iu) = [l — fyl[Zaiey + h/ (Vuf?) dz . (3.30)
Q

Lemma 1 Let Q CR?%, d > 1. Moreover, let § satisfy:

g € C°(K) for any compact K C [0, 00|,

and §(0) = min {g(x) : z € [0, 00|} . (3.31)
§(|.1%) is convex from R? to R . (3.32)

Moreover, we assume that there exists a constant ¢ > 0 such that
§(s) > s+ §(0) (3.33)

Then the minimizer of (3.80) exists and is unique in H'(Q).

Proof:
By virtue of (3.33) it follows that

||u—f5||%2(m +h/§(\Vu\2) drz > ||u—f(5||%2(m +h/ c|Vul*dz . (3.34)
Q Q

Suppose now that u, is a sequence such that I(u,) converges to the minimum of
the functional I(.) in H'(2). From (3.34) it follows that u,, has a weakly convergent
subsequence in H'(€2), which we also denote by u,; the weak limit will be denoted
by u,. Since §(|.|*) is convex, the functional [, §(|Vu|?) dz is weakly lower semi-
continuous in H'() (see [96, 95]), and thus

/§(|Vu*|2) de < liminf/§(|Vun|2) d .
Q nelN Q
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Thanks to the the Sobolev embedding theorem (see [5]) it follows that the func-
tional [lu — fs/|7q) is weakly lower semi continuous on H'((2). Consequently

I(u,) <liminf I (u,)

nelN

and thus u, is a minimizer of I in H'(f2). Suppose now that u; and uy are two
minimizers of the functional I. Then, from the optimality condition it follows that

(ur — fs,u9 —ur) + h{g(|Vui|*) Vur, V(ug—u)) = 0 (3.35)

(ug — f5,u9 —ur) + h{g(|Vua|*) Vug, V(ug—u;)) = 0. (3.36)
Consequently,

0 = |lug — ui]|®* + R {g(|Vua*) Vua — g(|Vui|)) Vur, V(ug—uy)) , (3.37)

and, thus, the minimizer of I is unique. O

The minimizer of (3.30) will be denoted by uy, in the remaining of this paper.

In the following we establish the average grey level invariance of regularization
methods.

Theorem 8 Let (3.31), (3.32), (3.833) hold. Then for different values of h the
minimizers of (3.80) are grey-level invariant, i.e., for h >0

/uhdx:/f(;dx.
Q Q
Proof:

Elementary calculations show that the minimizer of (3.30) satisfies, for all v €
H(Q),
(un — fo.0) + h {g(|Vunl*) Vup, Vo) = 0. (3.38)

Taking v = 1 the second term vanishes and the assertion follows. U

Next we establish some basic results on regularization techniques. As we will show
the proofs of the following results can be carried out following the ideas of the
corresponding results in the book of Morozov [255]. However Morozov’s results can
not be applied directly since they are only applicable in the case that §(|z|?) = |z|?,
which is not sufficient for the presentation of this paper. Later these results are
used to establish a family of Lyapunov functionals for regularization methods.
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Lemma 2 Let (8.31), (3.82), (3.83) hold. Then, for any h > 0,
| untt = unl|L2(@) — O fort—0

and for h =0,
||Ut_f5||L2(Q) — 0 fOT‘t—>0+ .

Proof:
If §(|.|?) is convex, then g(|s|?)s is monotone (see e.g. [96]), i.e., for all s,t € R?

(9(1s]*)s — g(|t]*)t, s — t)za > 0.
1. First we consider the case h > 0: from (3.38) it follows by using the notation

hi:=h, hy:=h+1t, uy:=up, U= Upy

that
<U1 — fo,u2 — U1> + hy (g(|Vu1\2)Vu1, V(U2—U1)> = 0,
(U2 — fouz — U1> + ho <9(|VU2|2)VU2, V(U2—U1)> =
Consequently,

[tz — uill 72y + b1 (g(|Vual*) Vg — (| Ve [*) Vur, V(ug—u1))
(©)
= (hi—=ha) - <9(|VU2|2)VU2; V(ug—u1)). (3.39)

Thus, using the Cauchy-Schwarz inequality and the identity (3.39) it follows
that | ol ” ”
U — d 2(Q U2 — U 2(Q)
||U2—U1||%2(n) < |hy — by - 2 LA ;l 2 LI L2($2)
2

which shows the continuity of uy,.

2. If h = 0: There exists a sequence f, € H'(Q) with f, — fs5 in L*(Q).
Consequently, for any h > 0, it follows from the definition of a minimum of
the Tikhonov-like functional that

s = illsey < 15w = Filisey 1 [ 9098y do.
By taking the limit A — 0, it follows that for any n € IN,
. 2 2
}111_15(1) [|un — f6||L2(Q) < |fa— f6||L2(Q) )

which shows the assertion.
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O

In the following we present some monotonicity results for the regularized solutions.

Lemma 2 implies that we can set ug = fs without causing any confusion.

Lemma 3 Let (3.31), (3.82), (3.33) hold. Then [, §(|Vun|?) dz is monotonically
decreasing in h and ||up — f;]|* is monotonically increasing in h.

Proof:
Using the definition of the regularized solution it follows that

lun = follg2@) +h [ §(IVusl?) de
@) 0

< s = il + (b+0) [ (V) do—t [ G Fune?) da
Q Q

< fun — follZaey + b / §(Vun]?) da
Q

v ([ a0vnP s~ [ (Vi) o)

and therefore, for ¢ > 0,

/§(Wuh+t\2)dx—/g(|Vuh\2)da: <o
Q Q

This shows the monotonicity of the functional [, §(|Vuy|?) dz. Using very similar
arguments it can be shown that ||uy — f‘SH%“’(Q) is monotonically increasing in h. OJ

In the following we analyse the behaviour of the functionals [, §(|Vus|?) dz and
||U,h - f6||%2(9) for h — oc.

Lemma 4 Let (3.31), (5.32), (3.83) hold. Then, for h — oo the regularized so-
lution converges (with respect to the L*-norm) to the solution of the optimization
problem

llu — f6||%2(n) = min
under the constraint

/QSA](|VU|2) dz = §(0) meas(?) .
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Proof:
The proof is similar to the proof in the book of Morozov [255, page 35| and thus
omitted. O

In the following lemma we establish the boundedness of the regularized solution.
For the proof of this result we utilize Stampacchia’s Lemma (see [146]).

Lemma 5 Let B be an open domain, u a function in H'(B) and a a real number.
Then u* = max{a,u} € H*(B) and

/|Vu“|2dx§/ Vul*dx .
B B

We are using this result to prove that each regularized solution lies between the
minimal and maximal value of the data f.

Lemma 6 Let (3.31), (3.32), (3.83) hold. Moreover, let
g be monotone in [0, 00/ (3.40)
If f € L*(QY), then for any h > 0 the reqularized solution satisfies
a:=ess inf{f(z):x € Q} <uy <

ess sup{f(z) :z € Q} =:b. (3.41)

Proof:

We verify that the maximum of wy, is less than b. The corresponding assertion for
the minimum values can be proven analogously. Let u? = min{b, u}, then from
Lemma 5 and the assumption (3.40) it follows that

/g(\vuh\Q) dxz/g(wug\?)dx.
Q Q

Since
lun = fsll72g) > lup, = fll 220

it follows from the definition of a regularized solution that uy(z) < b. O

Next we establish the announced family of Lyapunov functionals.

Theorem 9 Let Q C R¢, d = 1,2,3 and let a,b be as in (3.41). Moreover, let
(8.31), (3.82), (3.33), and (8.40) be satisfied. Suppose that up is a solution of
(8.30). Then the following properties hold.
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(a) (Lyapunov functionals for regularization methods) For all r € C?[a,b] with
r" >0, the function

V) = d(up) = / r(un(z)) do (3.42)

Q

is a Lyapunov functional for a reqularization method: Let

1
Mfs = — }
Js \Q\/nf’sdx
Then

1. ¢(up) > ¢(M f5) for all h > 0.

2.V € C[0,00), DV(h) = [, (un)(ur — uo)dz <0, V(h)—V(0) <0
for all h > 0.

Moreover, if r" > 0 on [a,b], then V(h) = ¢(un) is a strict Lyapunov func-
tional:

3. ¢(up) = ¢(Mf5) if and only if up, = M f5 on Q for h > 0 and ug = M f;
a.e. on Q.

4. if h >0, then DV (k) = 0 if and only if up, = M f5 on .

5. V(H)=V(0) for H>O0ifand only if f = M f a.e. on Q and up, = M f
on Q x (0, H].

(b) (Convergence)

d=1: wuy converges uniformly to M fs for h — oo
d=2: hlim |un — M fs|| ey = 0 for any 1 < p < o0
—00

d=3: hlim lun — M f5||zp) = 0 for any 1 < p <6
—00

Proof:

(a) 1. Since r € C?[a,b] with " > 0 on [a,b], we know that r is convex on
[a, b]. Using the grey level invariance and Jensen’s inequality it follows

b(Mfy) = /Q . (fﬁ' /Q un () dm) ay
< /Q|lﬁ| (T‘/Quh(x) d:c) dy

= /Qr(uh(x))dx
— (un) - (3.43)
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2. From Lemma 2 it follows that V' € C|0, oo[. Setting v = 7'(uy,) it follows
from (3.38) and (3.32) that

(un — o, 7" (un)) = —h{g(|Vun|*)Vun, " (up) Vup) . (3.44)

The right hand side is negative since r is convex.
We represent V' (h) — V' (0) in the following way.

V(h) =V (0) = ¢(un) — ¢(uo)
r(un(z)) — r(uo(z)) dz

//0 ¥ (o) + Hun (@) — o () dt (un(z) — uo(x)) da
r'(un(x)) (un(z) — uo(x)) dz
+ /Q i (r' (uo(z)

+1(
- (up(z) — ug(x)) dz

_ / " (u (x))(uh(x)—uo(:c))dx

// (un(@) — 7(1 = 1) (un(x) — uo(x)) dr -

(1 — 1) (up(z) — ug(z))*dtdx .

From (3.44) and the convexity of r it follows that the last two terms
in the above chain of inequalities are negative. Thus the assertion is
proved.

3. Let ¢(up) = ¢(M f5). Let us now show that the estimate (3.43) implies

that u, = const on Q. Suppose that u, # c¢ Since u, € H' (), there
exists a partition 2 = Q; U Qy with [Q4], |Q2] € (0, |2]) and

s\

o)

:J\

un(z) —uo(x))) — '(un(z))) dt -

o= — up dr # updx =: 5.

1
|Ql| Q1 |QQ| Q2

This assertion follows from the Poincare inequality for functions in
Sobolev spaces [117]. From the strict convexity of 7 it follows that

1/ > (Iml 192 )
P = [ updz| = r + —
<|Q| o Q19

€] S22

1 1
S @ o (Uh) dx -+ ‘Q‘ o (Uh) dx

= ﬁ/ﬂr(uh) dx
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If we utilize this result in (3.43) we observe that for h > 0 ¢(uy) =
@(M f5) implies that uj, = const on . Thanks to the average grey value
invariance we finally obtain u, = M f5 on €.

We turn to the case h = 0. From (1.) and (2.) it follows that

(M f5) < ¢(un) < ¢(uo) -
If ¢(ug) = (M f5), then for all > 0

O(M f5) = d(us) -
Thus we have that for all § > 0 uy = M f. Using the continuity of u,
with respect to 6 € [0, 00 (cf. Lemma 2) the assertion follows.

4. The proof is analogous to the proof of the (iv)-assertion in Theorem 3
in [412).
5. Suppose that V(H) = V(0), then from (2.) it follows that

V(h) = const on [0, H] .

Let € > 0. Then for any h € [¢, H] it follows from (4.) that u, = M fs.
Using the continuity of u;, with respect to h € [0, oo[ (cf. Lemma 2) the
assertion follows. The converse direction is obvious.

(b) From Lemma 4 and assumption 3.33 it follows that
/Q\Vuh\de — 0 and ||Jup — Mf5||%2(9) — 0.
This shows that

||’U;h - Mf(;”Hl(Q) — 0.

From the Sobolev embedding theorem it follows that, for h — oo,

d=1: wuy converges uniformly to M fs
d=2: ||uh—Mf5||%p(Q) —0forany 1 <p< oo

(note that we assumed that € is bounded domain)
d=3: ||uh—Mf(5||%p(Q) —0forany 1<p<6

(note that we assumed that € is bounded domain).

g

In Theorem 9 we obtained similar results as for Lyapunov functional of diffusion
operators (see [412]). In (2.) of Theorem 9 the difference between Lyapunov func-
tionals for diffusion processes and regularization methods becomes evident. For
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Lyapunov functionals in diffusion processes we have V'(¢) < 0, and in regulariza-
tion processes we have DV (h) < 0. DV (h) is obtained from V’(¢) by making a
time discrete ansatz at time 0. We note that this is exactly the way we compared
diffusion filtering and regularization techniques in the whole paper. It is therefore
natural that the role of the time derivative in diffusion filtering is replaced by the
time discrete approximation around 0.

Example. In this example we study different regularization techniques which have
been used for denoising of images:

1. Tikhonov regularization: Here we have g(|u?) = |u|%. In this case the as-
sumptions (3.31), (3.32), (3.33) and (3.40) are satisfied.

2. Total variation reqularization: Here we have g(|u|?) = y/|ul?). In this case
the assumption (3.33) is not satisfied.

However, for the modified versions, proposed by Ito and Kunisch [193], where
the functional is replaced by

d(Jul®) = V|ul2 + alul?, with a >0

(3.31), (3.32), (3.33), and (3.40) are satisfied.

For the functional [2, 80]

g(lul*) = v/ul? + 82
the assumption (3.33) is not satisfied. For the modified version
§(luf*) = Vul? + 82 + aluf?
studied in [268], the assumptions (3.31), (3.32), (3.33), and (3.40) are satis-

fied.

For the functional

9(sP?) = 1 Ifl—é (€ < ISJSl)
slsP+3(c—¢  (s]>2)

the assumptions (3.31), (3.32), (3.33), and (3.40) are satisfied. This method
has been proposed by Geman and Yang [142] and was studied extensively by
Chambolle and Lions [76] (see also [268]).
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3. Convex nonquadratic reqularizations: The functional used by Schnérr [345]

o M2 (sl <)
9(sl%) = {N?s|2+(g2—,x)2c,,(2|s|—cp) (Is > ¢,)

satisfies (3.31), (3.32), (3.33), and (3.40), whereas the Green functional [154]
g(Is*) = In(cosh(|s])*)

violates the assumption (3.33).

3.5 Experiments

In this section we illustrate some of the previous regularization strategies by ap-
plying them to noisy real-world images.

Regularization was implemented by using central finite differences. In the linear
case this leads to a linear system of equations with a positive definite system
matrix. It was solved iteratively by a Gau3-Seidel algorithm. It is not difficult to
establish error bounds for its solution, since the residue can be calculated and the
condition number of the matrix may be estimated using Gerschgorin’s theorem.
The Gauf-Seidel iterations were stopped when the relative error in the Euclidean
norm was smaller than 0.0001.

Discretizing stabilized total variation regularization with

@)=y B+
leads to a nonlinear system of equations. It was numerically solved for § = 0.1
by combining convergent fixed point iterations as outer iterations [110] with inner
iterations using the Gauf-Seidel algorithm for solving the linear system of equa-
tions. The fixed point iteration turned out to converge quite rapidly, such that not
more than 20 iterations were necessary.

Figure 3.1 shows three common test images and a noisy variant of each of them:
an outdoor scene with a camera, a magnetic resonance (MR) image of a human
head, and an indoor scene. Gaussian noise with zero mean has been added. Its
variance was chosen to be a quarter, equal and four times the image variance,
respectively.

The goal of our evaluation was to find out which regularization leads to restora-
tions which are closest to the original images. We applied linear and total variation
regularization to the three noisy test images, used 1, 4, and 16 regularization steps
and varied the regularization parameter until the optimal restoration was found.
The distance between some restored image u and the ground truth f, was com-
puted using the signal-to-noise ratio

SNR(u/fo) := 101ogy, (%) (3.45)
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where 02 denotes the variance. The results are shown in Table 3.1, as well as in
Figs. 3.2 and 3.3. This gives rise to the following conclusions:

e In all cases, total variation regularization performed better than Tikhonov
regularization. As expected, total variation regularization leads to visually
sharper edges. The TV-restored images consist of piecewise almost constant
patches.

o In the linear case, iterated Tikhonov regularization produced better restora-
tions than noniterated. Visually, noniterated regularization resulted in im-
ages with more high-frequent fluctuations. This is in complete agreement
with the theoretical considerations in our paper. Improvements caused by
iterating the regularization were mainly seen between 1 and 4 iterations. In-
creasing the iteration number to 16 did hardly lead to further improvements.

e It appears that the theoretical and experimental results in the linear setting
do not necessarily carry over to the nonlinear case with total variation reg-
ularization. For the slightly degraded camera image, iterated regularization
performed worse than noniterated regularization. For the MR image, the
differences are negligible, and the highly degraded office scene allows better
restoration results with iterated regularization.

In those cases where noniterated and iterated regularization performs equally
well, one should give the preference to the faster method. In our case iterated
regularization was more efficient, since it led to matrices with smaller condition
numbers and the Gauf3—Seidel algorithm converged faster. Using for instance multi-
grid methods that solve the linear systems with a constant effort for all condition
numbers would make noniterated total variation regularization favourable.

In a final experiment we juxtapose the regularizations (3.23) and (3.24) of
the Perona—Malik filter. Both processes have been implemented using an explicit
finite difference scheme. The results using the MR image from Figure 3.1(c) are
shown in Figure 3.4, where different values for 7, the standard deviation of the
Gaussian, have been used. For small values of 7, both filters produce rather similar
results, while larger values lead to a completely different behaviour. For (3.23), the
regularization smoothes the diffusive flux, so that it becomes close to 0 everywhere,
and the image remains unaltered. The regularization in (3.24), however, creates a
diffusivity which gets closer to 1 for all image locations, so that the filter creates
blurry results resembling linear diffusion filtering.

3.6 Summary

The goal of this paper was to investigate connections between regularization theory
and the framework of diffusion filtering. The regularization methods we considered
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Figure 3.1: Test images, Q = (0,256)?. (a) ToP LEFT: Camera scene. (b) ToP
RIGHT: Gaussian noise added. (¢) MIDDLE LEFT: Magnetic resonance image.
(d) MIDDLE RIGHT: Gaussian noise added. (e) BorToMm LEFT: Office scene. (f)
BoTTOM RIGHT: Gaussian noise added.
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Figure 3.2: Optimal restoration results for Tikhonov regularization. (a) TOp LEFT:
Camera, 1 iteration. (b) ToP RiGHT: Camera, 16 iterations. (c¢) MIDDLE LEFT:
MR image, 1 iteration. (d) MIDDLE RIGHT: MR image, 16 iterations. (¢) BoTTOM
LEFT: Office, 1 iteration. (f) BorToM RIGHT: Office, 16 iterations.
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Figure 3.3: Optimal restoration results for total variation regularization. (a) Top
LEFT: Camera, 1 iteration. (b) Top RIGHT: Camera, 16 iterations. (¢) MIDDLE
LEFT: MR image, 1 iteration. (d) MIDDLE RIGHT: MR image, 16 iterations. (e)
BottoMm LEFT: Office, 1 iteration. (f) BorTroM RIGHT: Office, 16 iterations.
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Figure 3.4: Comparison of two regularizations of the Perona-Malik filter (¢ = 250).
(a) Top LEFT: Filter (3.23), v = 0.5. (b) TopP RIGHT: Filter (3.24), v = 0.5. (c)
MIDDLE LEFT: Filter (3.23), v = 2. (d) MIDDLE RIGHT: Filter (3.24), v = 2. (e)
Bortom LEFT: Filter (3.23), v = 8. (f) BorToM RIGHT: Filter (3.24), v = 8.
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Table 3.1: Best restoration results for the different methods and images. The total
regularization parameter for N iterations with parameter h is denoted ¢t = Nh,
and SNR describes the signal-to-noise ratio.

image | regularization t SNR

camera | linear, 1 iteration 0.82 | 11.80
camera | linear, 4 iterations | 0.54 | 12.04
camera | linear, 16 iterations | 0.48 | 12.09
MR linear, 1 iteration 2.05 9.61
MR linear, 4 iterations | 1.16 9.91
MR linear, 16 iterations | 1.02 9.93

office linear, 1 iteration 5.7 7.05
office linear, 4 iterations | 3.3 7.64
office linear, 16 iterations | 2.9 7.71
camera | TV, 1 iteration 13.2 | 14.11

camera | TV, 4 iterations 12.8 | 13.98
camera | TV, 16 iterations 12.4 | 13.93
MR TV, 1 iteration 33.75 | 10.67
MR TV, 4 iterations 33.5 | 10.64
MR TV, 16 iterations 33 10.61
office TV, 1 iteration 102 8.11
office TV, 4 iterations 104 8.41
office TV, 16 iterations 106 8.42

were Tikhonov regularization, total variation regularization, and we focused on
linear diffusion filters as well as regularizations of the nonlinear diffusion filter of
Perona and Malik. We have established the following results:

e We analysed the restoration properties of iterated and noniterated regular-
ization both theoretically and experimentally. While linear regularization can
be improved by iteration, there is no clear evidence that this is also the case
in the nonlinear setting.

e We introduced an alternative regularization of the Perona-Malik filter. In
contrast to previous regularization, it allows a formulation as a minimizer of
a suitable energy functional.

e We have established Lyapunov functionals and convergence results for regu-
larization methods using a similar theory as for nonlinear diffusion filtering.

These results can be regarded as contributions towards a deeper understanding as
well as a better justification of both paradigms. It appears interesting to investigate
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the following topics in the future:

e Regularization scale-spaces. So far, scale-space theory was mainly expressed
in terms of parabolic and hyperbolic partial differential equations. Since
scale-space methods have contributed to various interesting computer vi-
sion applications, it seems promising to investigate similar applications for
regularization methods.

e Fully implicit methods for nonlinear diffusion filters using a single time step.
This is equivalent to regularization and may be highly useful, if fast numerical
techniques for solving the arising nonlinear systems of equations are applied.
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Scale-Space Properties of
Nonstationary Iterative
Regularization Methods

Esther Radmoser, Otmar Scherzer, and Joachim Weickert.
Journal of Visual Communication and Image Representation,
Vol. 11, No. 2, 96-114, June 2000.

Abstract

Most scale-space concepts have been expressed as parabolic or hyper-
bolic partial differential equations (PDEs). In this paper we extend our
work on scale-space properties of elliptic PDFEs arising from regular-
1zation methods: we study linear and nonlinear regularization methods
that are applied iteratively and with different regularization param-
eters. For these so-called nonstationary iterative regularization tech-
niques we clarify their relations to both isotropic diffusion filters with a
scalar-valued diffusivity and anisotropic diffuston filters with a diffusion
tensor. We establish scale-space properties for iterative reqularization
methods that are in complete accordance with those for diffusion filter-
ing. In particular, we show that nonstationary iterative regularization
satisfies a causality property in terms of a maximum—minimum princi-
ple, possesses a large class of Lyapunov functionals, and converges to
a constant image as the regularization parameters tend to infinity. We
also establish continuous dependence of the result with respect to the
sequence of reqularization parameters. Numerical experiments in two
and three space dimensions are presented that illustrate the scale-space
behaviour of regqularization methods.

89
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4.1 Introduction

Decades after Iijima’s pioneering axiomatic work in the sixties [175, 421], scale-
spaces have become widely-used tools in image processing and computer vision
[381, 274]. Alvarez et al. [12] have shown that imposing a reasonable set of architec-
tural, invariance and simplification properties automatically leads to scale-spaces
that can be described in terms of partial differential equations.

Partial differential equations may be classified into three main types: parabolic
equations behaving in a diffusion-like manner, hyperbolic processes with wave-like
character, and elliptic PDEs that can be related to variational problems. For more
details on PDEs we refer to Colton [87] and Evans [116].

Examples for PDE-based scale-spaces incude parabolic PDEs such as linear and
nonlinear diffusion scale-spaces [175, 303, 412], but also curvature scale-spaces like
mean-curvature motion [13, 206] and affine morphological scale space [12, 333].
Hyperbolic PDEs with scale-space properties are given by the dilation and erosion
equations arising from continuous-scale morphology [12, 23, 390, 57, 195].

Recently, Scherzer and Weickert [341] showed that a large class of regulariza-
tion methods reveals the same scale-space properties as diffusion filtering, if one
regards the regularization parameter of these elliptic PDEs as a scale parameter.
This class includes the linear Tikhonov regularization as well as many nonlinear
regularization methods that can be regarded as modified total variation (TV) de-
noising strategies.

The goal of the present paper is to extend this theory to regularization methods
that are applied iteratively and with different regularization parameters. This
framework is important since one can show that iterating regularization methods
improves the restoration results in some cases [341], and varying the regularization
parameter can be useful for accelerating the filtering procedure. We also extend our
work by clarifying relations between diffusion filtering with nonmonotone fluxes
or anisotropic diffusion filtering with a diffusion tensor on one hand, and iterated
convex regularization methods on the other hand.

Our paper is organized as follows: In Section 4.2 and 4.3 we survey scale-space
properties of diffusion filtering and noniterated regularization, respectively. Af-
terwards, this framework is extended to iterated nonstationary regularization in
Section 4.4, where detailed proofs are presented. Section 4.5 gives an interpreta-
tion of diffusion filtering with nonmonotone fluxes or diffusion tensors in terms of
iterated convex regularization methods. In Section 4.6 our theory is illustrated by
experiments with 2D MR images and 3D ultrasound data.

Related work. Often there have been fruitful interactions between linear scale-
space techniques and regularization methods. Torre and Poggio [388] emphasized
that differentiation is ill-posed in the sense of Hadamard, and applying suitable
regularization strategies approximates linear diffusion filtering or — equivalently



4.2. DIFFUSION FILTERING 91

— Gaussian convolution. Much of the linear scale-space literature is based on the
regularization properties of convolutions with Gaussians. In particular, differen-
tial geometric image analysis is performed by replacing derivatives by Gaussian-
smoothed derivatives; see e.g. [127, 230, 369] and the references therein. In a very
interesting work, Nielsen et al. [273] derived linear diffusion filtering axiomatically
from Tikhonov regularization, where the stabilizer consists of a sum of squared
derivatives up to infinite order.

Nonlinear diffusion filtering can be regarded both as a restoration method and
a scale-space technique [303, 412]. When considering the restoration properties,
natural relations between biased diffusion and regularization theory exist via the
Euler equation for the regularization functional. This Euler equation can be re-
garded as the steady-state of a suitable nonlinear diffusion process with a bias term
[80, 281, 345]. A popular specific energy functional arises from unconstrained total
variation denoising [2, 76, 77]. Constrained total variation also leads to a nonlin-
ear diffusion process with a bias term using a time-dependent Lagrange multiplier
[326].

Strong and Chan [378] proposed to regard the regularization parameter of total
variation denoising as a scale parameter. The present paper extends and completes
our recent work on scale-space properties for noniterated regularization [341]. Fol-
lowing [253, 339, 378] we interpret the regularization parameter as a diffusion
time by considering regularization as time-discrete diffusion filtering with a single
implicit time step. Numerical implications of this relation are discussed in [419],
and a shorter preliminary version of the present manuscript has been presented at
the Second International Conference on Scale-Space Theories in Computer Vision

[310].

4.2 Diffusion Filtering

In this section we review essential scale-space properties of nonlinear diffusion
filtering. The presented results can also be extended to a broader class of methods
including regularized filters with nonmonotone flux functions and anisotropic filters
with a diffusion tensor. More details and proofs can be found in [412].

We consider a diffusion process of the form!

Owu(z,t) = V.(g9(|Vul?)Vu) (z,1) on  x [0, 00)

Opu(z,t) = 0 on I' x [0, c0) (4.1)
u(z,0) = f(z) on Q.
The image domain 2 C R? is assumed to be bounded with piecewise Lip-

schitzian boundary T" with unit normal vector n, and f € L*(Q) is a degraded

'We denote by (a,b) the open interval with startpoint a and endpoint b, (a,b] denotes the
interval which is open at a and closed at b, and [a, b] denotes the closed interval.



92 CHAPTER 4. NONSTATIONARY ITERATED REGULARIZATION

original image with a := essinfq f and b := esssup, f.
The diffusivity g satisfies the following properties:

1. Smoothness: g € C*([0,00))
2. The flux g(s?)s is monotonically increasing in s.
3. Positivity: g(s) > 0 for all s > 0.

Under these assumptions there exists a unique solution u(z,t) of (4.1), such that
||u(t)||z2(q) is continuous for ¢ > 0. Here and in the following we use the abbrevi-
ation u(t) for u(.,t). It should be noted that this continuity property is necessary
for relating structures over scales and for retrieving the original image for ¢ — 0.
It is one of the fundamental architectural ingredients of scale-space theory. Fur-
thermore, it is possible to show that u(z,t) € C*®(Q x (0, 00)).

Diffusion processes with reflecting boundary conditions preserve the average
grey level:

1
@/u(x’t)dx:Mf forall >0,
Q

with X
Mf:= @/Qf(x)dx

A constant average grey level is essential for scale-space segmentation algorithms
such as the hyperstack [277]. It is also a desirable quality in medical imaging where
grey values measure physical quantities of the depicted object, for instance proton
densities in MR images.

The unique solution of (4.1) fulfills the extremum principle

a < u(z,t) <bonQ x (0,7 (4.2)

The extremum principle is an equivalent formulation of Koenderink’s causality
requirement [173]. Together with the continuity it ensures that level sets can be
traced back in scale.

Another important simplification property can be expressed in terms of Lya-
punov functionals. For all r € C?[a, b] with 7" > 0 on [a, b], the function

V() = p(u(t) == /Q r(u(z, 1)) dz (4.3)
is a Lyapunov functional:

1. Tt is bounded from below: ¢(u(t)) > ¢(M f) for all ¢t > 0.

2. It is smoothly decreasing:
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(a) V € C[0,00) N C0, 00)
(b) V'(t) <0 for all £ > 0.

Lyapunov functionals show that diffusion filters create simplifying transformations:
the special choices 7(s) := |s|P, r(s) := (s — M f)?" and r(s) = sIn(s), respectively,
imply that all LP norms with p > 2 are decreasing, all even central moments
are decreasing, and the entropy S[u(t)] :== — [, u(z,t)Inu(z,t) dz, a measure of
uncertainty and missing information, is increasing with respect to t. Lyapunov
functionals have been used for scale-selection and texture analysis [373], for the
synchronization of different diffusion scale-spaces [277], and for the automatic de-
termination of stopping times [430]. Moreover, they allow to prove that the filtered
image converges to a constant image as ¢ tends to co: limy_ ||u(t) — M fl|Lr(0) =
0 for p € [1,00). For d =1 we have even uniform convergence.

4.3 Regularization

An interesting relation between nonlinear diffusion filtering and regularization
methods becomes evident when considering an implicit time discretization [253,
339, 378]. The first step of an implicit scheme with step-size h in t—direction reads
as follows.

uah)=u@l) — g (g(|Vul2)Vu) (z, h)
Opu(z,h) = 0 .
u(z,0) = f(z).

In the following we assume the existence of a differentiable function g on [0, 00)
which satisfies ¢’ = ¢g. Then the minimizer of the functional

T(u) = lu = fI2, 0 + b / §(|Vuf?) dz (4.5)

satisfies (4.4). This can be seen by calculating the formal Gateaux derivative of T
in direction v, i.e.

(T'(u),v) = lim T(u+ttv) = T(u)

t—0t t

:/2(u—f)vd:v+h/29(\Vu|2)Vquda:.
0 0

We remark that for the numerical solution of parabolic differential equations
several numerical schemes rely on implicit time discretizations, since they are un-
conditionally stable, i.e., for any choice of the time discretization the solution is
stable with respect to data perturbations. In our context the unconditional stability
of time implicit numerical schemes for solving the parabolic differential equation
could as well be derived from regularization theory.
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Since a minimizer of (4.5) satisfies (7"(u),v) = 0 for all v, we can conclude that
the minimizer satisfies the differential equation (4.4). If the functional T is convex,
then a minimizer of 7" is uniquely characterized by the solution of equation (4.4).

T'(u) is a typical regularization functional consisting of the approximation func-

tional |lu — f”i%n) and the stabilizing functional [, §(|Vu|?) dz. The weight & is
called regularization parameter. An extensive discussion of regularization methods
can be found in [114].

Now we sketch our scale-space theory for a broad class of regularization methods.
For proofs and full details we refer to [341]. Let g satisfy the following properties.

I. g(.) is continuous for any compact K C [0, c0).
II. §(0) =min{g(z) : z € [0,00)} > 0.
1. §(].]?) is convex from R? to R.
IV. There exists a constant ¢ > 0 such that g(s) — §(0) > cs.
V. § is monotone in [0, c0).

These assumptions guarantee existence and uniqueness of a minimizer wu; for the
regularization functional (4.5) in the Sobolev space®* H' ().
III. implies that g(|.|?)., where g = §' is monotone, i.e., for all s;, s, € R?

(9([s11*)s1 = g(Is2|*)52, 51 — 52) > 0.
Assumptions 1.-V. are satisfied for the following regularization techniques:

1. Tikhonov regularization:
g(lsl*) = |s/*.

2. The modified total variation regularization of Ito and Kunisch [193]:
i(sP) = /IsP + als’, with a > 0.
3. The modified total variation regularization of Nashed and Scherzer [268]:

glsl*) = Vs> + B2 + als".

4. The regularization of Geman and Yang [142] and Chambolle and Lions [76]:

ALK (s<e)
g(ls]*) = 1 |f| -3 (e < |SJ <2)
slsP+35 (5 —¢ (Is| > 2)-

2A function f belongs to the Sobolev space H™(Q) if f and all its derivatives up to order m
belong to L?(£2). For more details on Sobolev spaces we refer to Adams [5].
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5. Schnorr’s [345] convex nonquadratic regularization:

005 = { o ezl o) (js1 < <)
Alsl* + (Ah=A)e,(2]s] = ¢,) (Isl > cp).
Assumption IV. on g is violated for the total variation regularization in its original
formulation by Rudin et al. [326]. Note that for TV-regularization |Vu| only exists
as a measure (see [117]). Therefore, we cannot set g(1/-) = /- to obtain TV-
regularization. Consequently, we cannot derive an equivalent optimality condition
for a minimizer of (4.5). In this case our mathematical framework cannot guarantee
existence of a minimizer of (4.5) in H'(€2), and in turn we have no existence theory
for the partial differential equation (4.4). However, this does not mean that it is
impossible to establish similar results by using other mathematical tools in the
proofs; see e.g. the recent existence and uniqueness results by Andreu et al. [21].

The functional ||up||z2(q) can also be shown to be continuous in h > 0. Regard-
ing spatial smoothness, the solution belongs to H?(2). This result is weaker than
for the diffusion case where we have C* results.

In analogy to diffusion filtering, the average grey level invariance

/uhd:c =/fdac forallh >0
Q Q

and the extremum principle
a<up,<b forallh>0

can be established.
Moreover, Lyapunov functionals for regularization methods can be constructed
in a similar way. For all r € C?[a, b] with 7" > 0, the function

V() = 6(w) = [ rlun(o)do (16
is a Lyapunov functional:
1. Tt is bounded from below: ¢(up) > ¢(M f) for all h > 0.
2. It is continuous and decreasing with respect to the original image:

(a) V e C0,0),
(b) DV (h) := [, " (up)(un — up) <0, for all b > 0.
(c) V(h) —V(0) <0 for all h > 0.
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Here, a difference between Lyapunov functionals for diffusion processes and
regularization methods becomes evident. For Lyapunov functionals in diffusion
processes we have V'(t) < 0, and in regularization processes we have DV (h) < 0.
DV (h) is obtained from V'(t) by making a time discrete ansatz at time 0. We note
that this is exactly the way we compared diffusion filtering and regularization
techniques. It is therefore natural that the role of the time derivative in diffusion
filtering is replaced by the time discrete approximation around 0.

Again, these Lyapunov functionals allow to prove convergence of the filtered
images to a constant image as h — oo. For d = 3, however, the convergence result
is slightly weaker than in the diffusion case.

d=1: uy converges uniformly to M f for h — oo
d=2: hlim |un — M f||ra) = 0 for any 1 < p < 0o
—00

d=3: hlim |un — M f||zpo) =0 for any 1 <p <6
—00

4.4 Iterated Regularization

Regularization can be applied iteratively where the regularized solution of the
previous step serves as initial image for the next iteration. For small regularization
parameters, iterated regularization becomes therefore a good approximation to a
nonlinear diffusion filter.

Let us consider an iterative regularization process with a sequence of pos-

itive regularization parameters H := (hg)gew. With T := (tx)rew we denote
the sequence of corresponding “diffusion times”, i.e., t; = Zle h;. Note that
tk - tk,1 == hk-

The n-th iteration of the nonstationary iterative regularization method reads
as follows:

ut(x,t) — uM(z,t, 1)

= V.(g(|Vu*]®)Vu?) (,t) t € (tn-1,tn], € Q

t— tn—l
Opu(z,t) = 0 zel
ut(z,0) = f(z) r €N

(4.7)
where now t —t,,_; serves as the regularization parameter in the interval (¢,_1, t,].
The superscript H at u refers to the fact that u is dependent on the discretization
time in ¢ direction. In the following we establish a scale-space theory for non-
stationary iterated regularization. The terminology “iterative” refers to the fact
that Tikhonov regularization is implemented iteratively. The terminology “non-
stationary” refers to the fact that the parameters hy may vary during the iterative
process.
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A minimizer u € H*(Q) of the functional

T (u) = llu — ™ (ta-1) |72 + (t = ta1) /QQ(WUF) dz, (4.8)

satisfies (4.7) at time ¢ € (t,_1, t,]. If the functional T}* is strictly convex, then a
minimizer of T, is uniquely characterized by the solution of equation (4.7). Under
these assumptions the minimizer of (4.8) exists and is unique in H'(Q) (cf. [341]).

Moreover, the spatial smoothness increases in each iteration step: a more de-
tailed analysis using techniques from [437] shows that after n iterations the solution
belongs to the Sobolev space H?*(Q) for fixed ¢t € (¢, 1,t,] (provided the diffusiv-
ity g is sufficiently smooth). This suggests that, if one uses the regularized solution
for calculating derivatives of order 2n, one should perform at least n iterations.

As for noniterated regularization, the average grey level invariance, temporal
continuity in the L?-norm and a maximum principle hold, if the function § satisfies
I. — V. This can be seen, by noting that in the interval (¢, 1,1%,] iterated regular-
ization is noniterated regularization with initial data u*(¢,_;) and regularization
parameter ¢t — t,_1. The results in [341] imply that in each interval [t,_1,%,] the
average grey level invariance holds, the function u”(t) is bounded by the maximal
and minimal values of u*(¢,_1), and the function is continuous with respect to .
The rest of the assertion follows by an inductive argument.

Using these properties we are able to establish a Ljapunov theory for iterated
regularization.

Theorem 10 (Lyapunov functionals for nonstationary regularization)
Let © C R, d = 1,2,3 with smooth boundary. Let f € L>®()) with essential
minimal value a and essential marimal value b. Moreover, let H be a sequence

of positive numbers hy, satisfying limyg_,o, hy = 0o. Then the following properties
hold:

(a) For all r € C?[a,b] with " > 0, the function

VA = p(ut(2)) = / r (w2, 1)) da (4.9)
Q
is a Lyapunov functional for iterative reqularization:

1. It is bounded from below: ¢(u*(t)) > ¢(Mf) for all t > 0,
2. It is continuous and decreasing with respect to the original image:
(a) V* € C[0,0),
(b) DVH(t) == [, r'(u(z,t) (u¥(z,t) — u¥(z,tn1)) dz <0,
for all t € (tn—1,tn],
(c) VR(t) = V™ (tn_1) <0 for allt € (tp_1,tn)-
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Moreover, if " > 0 on [a,b], then V*(t) is a strict Lyapunov functional:
3. d(u(t)) = ¢(Mf) for all t € [0,00) if and only if
uM(t) = Mf onQ fort >0, andu™(.,0) = M f almost everywhere
on Q.
4. If t > 0, then DV*(t) = 0 if and only if u™(t) = M f on Q.
5. V(T) = V*(0) for T > 0 if and only if
f = Mf almost everywhere on €, and u™(t) = M f on Q x (0,T].
(b) (Convergence)

d=1: u™(t,) converges uniformly to M f for n — oo
d=2: lim ||[u™(t,) — M f||re) = 0 for any 1 < p < o0
n—oo
d=5: Tim [[t*(t,) — M flls0) = 0 for any 1 < p <6
n—oo
Proof:
Using the general result in [341] it follows that the assertions claimed in part (a)
hold on the subintervals (t,_1,%,]. Moreover, from the results in [341] it follows
that continuity of u(.,t), with respect to t, also holds on [t, 1,t,]. By induction
with respect to n the assertions of part (a) follow.

We turn to a verification of the assertions of part (b): since u*(t,) satisfies the
first order optimality condition for a minimum of the functional Tfn{ we get

<uH(tn), U>L2(Q) + (tp — th1) <g(\VuH(tn)\2)Vu%(tn), VU>L2(Q)
= (u"(tan), U>L2(Q)

and taking v = u*(t,) shows that
[u™ E)l 220y + (tn = taot) (g(I VU™ () ) VU™ (tn), u™(th)) 12 g
= (u(ta-1),u™(tn)) 12(q) -

Since <g(|VuH(tn)|2)Vu”(tn),Vu”(tn)>L2(Q) is positive, which follows from the
convexity of g, we find that u*(t,) is uniformly bounded in L?(2).
Since u*(t,) minimizes the functional T} we immediately get that

||UH(tn) - uﬂ(tn—l)“i%m + (tn - tnfl) / g(‘vuﬂ(xatn)|2) dx

Q

< (t —tos) /Q (VP (@, 1 1)) da. (4.10)

Thus, the sequence [, §(|Vu™(t,)|?) dz is monotonically decreasing in n.
Now we show that

/Q AV (1)) da — /Q 3(0) da (4.11)
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for n — oo. Since u*(t,) is the minimizing element of (4.8) (for ¢t = t,), we have

(tn=tas) [ G0V @) P) e < VS =)oy + (tata0) [ 3(0) o

Q

Dividing the inequality by h, =, —t,_1 and noting that h,, — oo shows that

lim [ §(|Vu®(t,)]?) dz < /Qg(O)dx.

n—00 0

Together with II. we get

lim [ §(Vu™(t,)?) dz = / 4(0) da. (4.12)
Since u*(t,) is uniformly bounded in L?(f2), it has a weakly convergent subse-
quence. Using IV. it follows that the weak limit is a constant function. Since iter-
ative regularization is grey level invariant, we find that the limit is the constant
function M f. Moreover, from (4.12) it follows that the H'-seminorm is strongly
convergent to 0. Thus, the sequence {u”(t,)}nen itself is strongly convergent, i.e.

By virtue of the Sobolev embedding theorem [5] it follows in particular that we
obtain the following convergence results for n — oo.

d=1: w*(t,) converges uniformly to M f
d=2: ||u™(t,) — Mf||%p(m — 0 forany 1 <p < oo
d=3: ||u™(t,) — Mf||%p(m —0forany 1 <p<6
This concludes the proof. O

The assumption that the sequence of regularization parameters Ay tends to in-
finity does not restrict practical applications. It actually suggest that in numerical
simulations a monotonically increasing step size in time is very appropriate. Such
an adaptation strategy would use small time steps in the beginning when much is
happening, and afterwards, when the diffusion process slows down, the time step
size becomes larger.

The previous result holds independently of the sequence H = {hy }ren. For numer-
ical realizations of nonstationary iterated regularization it is important to verify
continuous dependence of u*(t) with respect H. In order to prove this result we
first show that the functional u*(¢) is Lipschitz continuous. Let H be a sequence of
positive regularization parameters and let 7 be the according sequence of diffusion
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times. Moreover, let 71 and 75 be two positive numbers in the interval (¢ 1, tg].
Then

(w(m1) = u(te-1), V) r2) + (11 — te—1) (g(|u(m)|?) Vu(r), Vv>L2(Q) =0

and

(u(r2) — ultir), ) gy + (72 — tim) gu(r2) P Vuu(ra), Vo) ) = 0.

Taking the difference of both equations gives

(u(m) — U(TQ)a“>L2(Q)
+ (11— te=1) {g(u(m)?)

7)) Vu(n) — g(Ju(72)[?) Vu(7a), VU) 120
- (n—m) g(|Vu(7-2)|2)

Vu(r
Vu(rs), V) a0y = 0.

Taking v = u(7;) — u(72) and using the monotonicity of g(|.|?). gives:

To — T
MHU(TZ) - U(tk—1)||L2(Q)- (4.13)

u(7m) — ult 2 <
lum) = wm) e < 7

In particular for 7, and 75 both greater than ¢;_; + €, with € > 0,

|u(m1) — u(72)||r2(0) < Cel2 — 7],

where C. is independent of the particular choice of H as long as t;_; is an element
of H.

With this Lipschitz continuity we are able to prove continuous dependence of
u®(t) on H.

Lemma 7 Let H", n € IN and H be sequences of positive reqularization param-
eters, where each sequence converges to infinity. Let T", n € IN and T be the
according sequences of diffusion times. Let

ty — 1 for n — oo, uniformly in k.

Then
|u®(t) — ™" ()| L2y — O for any t € [0, 00).

Proof:

By means of the assumption on uniform convergence of ¢} to t; we get that, for
any t € (tg—1,1), there exists a sufficiently large index ng € IN such that for all
n > ng also t € (7 ,,t%). Using that u*"(¢) minimizes the functional 7T/*" and
u*(t) minimizes the functional T/* we get
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0 = (an(t)—u”n(tzfl),vﬁzm)
+ (=) (g(IVe™ (1)) Vu™ (), Vo) 2 @)

and

0 = (W"(t) — uM(ti-1),v)r20) (4.14)

+ (=t (g (VU () 2) VU (), V) 12(q).
Choosing v := u*(t) — u*" (t) and subtracting these two equations gives

[ (@) = w117, @) W () — ut (), uP (1) — u () 2@

+ (= t;_1) <g(\Vu (1)) Vu(t) — g(|Vu™" (1)) Vu* (1),
V(u(t) —u* (1) 20

— (th—1 —t;H)< (IVu™ (t)| )VuP(t), V(u™(t) — u™ () 120) = 0.

Using that g(].|?). is monotone, it follows from (4.14) that

[u?(®) = ™ Olleay < Nlu™(te-1) — ™ () 2w

th_1 — 10
%ﬁdnuﬂ(t) - uH(tk—l)”L?(Q). (4.15)

Finally, we apply an inductive argument with respect to k. Let

|u*(te—1) — u™ (t}_1) || 12(e) = 0 for n — oo.

For k = 0 this is trivially satisfied, since u?(.,0) = u*"(.,0) = f. Then it follows
from (4.15) that, for any ¢ € (tx_1, tx),

|u*(t) — u™" ()] L2() — 0 for n — oc.
Now, let t = ;.

o If t} > t;, then we have t = t;, € (t}_,,t}) and analogously as above one can
show that (4.15) holds with ¢ replaced by ;. Repeating the above arguments
we find that

|u™(te) — w™" (&) || 12() — 0 for n — oco.

o Ift} <tg, then let t; < ¢} fixed. Then it follows from triangle inequality that

lu?(te) — u™ ()|l r2) < Nlu™(to) — u™" (to)llr2() +
|u(tk) — u*(to) || z2() + |u™” (to) — UHn(tZ)HL?(Q)
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The second and third term on the right hand side of the last inequality are
of the order max{|to —tx|, |to —t}|} (cf. (4.13)) (independent of n) - note that
ty converges uniformly to ¢;. Since ¢} — ¢, we can choose ¢, in such a way
that max{|to — tg|, |to — t}|} becomes arbitrarily small. Moreover, the first
term tends to zero, since tj is an interior point of (¢x_1,t). These arguments
show that

(1) — w*" (65 2@y — 0.

Hence, the lemma is proved. U

We can use this lemma to show continuous dependence of V*(t) on H:

Theorem 11 Let the assumptions of Lemma 7 hold. Then for, any t € [0, 00),
VHE() = V(1) — 0.

Proof:
Using the Cauchy-Schwarz inequality it follows that

1

iy r(t (e, 1) — (@ @)\ \7
i =V @|§(A( (o, 0) = (@, )d>

. Hu%(t) — " (t

Mzze

By virtue of Lemma 7 it follows that ||u?(¢) —u™" (¢)|| 2 tends to zero. Since 7 is
continuously differentiable, the first expression on the right hand side is bounded
and the proof is accomplished. [l

4.5 Extensions to the Nonconvex Case and to
Anisotropic Filters

The previous sections analyse relations between regularization methods and diffu-
sion filters for the case that §(|s|?) is convex in s. This implies that the diffusive
flux is monotonously increasing in s in the sense that

{g(|s])s — g(tDt,s —t) > 0 forall s,tec R

In the context of diffusion filtering, however, nonmonotone fluxes leading to forward—
backward diffusion processes are used frequently. While the earliest representative
of this class, the Perona—Malik filter [303] is ill-posed, several well-posed forward—
backward diffusion filters have been proposed afterwards; see e.g. [74, 412]. They
offer the interesting property that they can enhance features like edges or flow-line
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structures without renouncing smoothing properties in terms of Lyapunov func-
tionals. It is also possible to replace the scalar-valued diffusivity g by a diffusion
tensor D allowing true anisotropic behaviour.

These extensions are covered by the diffusion model

ow(z,t) = V.(D(J,(Vu,))Vu) (z,1) on Q x [0, 00)
(DVu,n) = 0 on I' x [0, c0) (4.16)
u(z,0) = f(x) on §)

where u, := K, * u denotes the convolution of u with a Gaussian K, of standard
deviation o, and J, is the so-called structure tensor [132]

J,(Vu,) = K, * (Vu,Vul),

a very useful matrix for the analysis of edges, corners and coherent structures. This
model formulation comprises the regularized diffusion filter of Catté et al. [74] as
well as edge-enhancing anisotropic diffusion filtering [408] and coherence-enhancing
anisotropic diffusion filtering [415].

By assuming that the diffusion tensor D is a symmetric matrix-valued C'*°
function of J, that remains uniformly positive definite, one can prove that all
theoretical results from Section 4.2 carry over [412]. Well-posedness is achieved in
the nonconvex case by the Gaussian smoothing in u,; see also [74].

Because of the Gaussian convolutions there is no straightforward way to de-
rive a diffusion filter of this type as a minimizer of some energy functional. It is,
however, instructive to study a semi-implicit time discretization of such a filter: it
approximates the diffusion tensor D at the old time level and the remainder of the
divergence expression at the new level. Such a discretization gives

u(z,t) —u (2, t,_1)
t— tn—l

= V. (D(J,(Vu(z,t,1))) Vu*(z,1)) . (4.17)

It can be regarded as an iterative regularization scheme where

THw) = o= ()P

o=ty ) / (Va) D, (Vak(tn 1) Vude  (4.18)

is minimized. Now we are approximating a possibly nonconvex smoothing problem
by a sequence of quadratic (and hence convex) regularization functionals.® As a
consequence, the theoretical results for iterated regularization that we derived in
Section 4.4 may also be extended to this case.

3This convexification by freezing the nonlinear part also relates our method to the adaptive
linearization technique of Geman and Reynolds [141, 81] and the so-called Kaganov method from
elasticity theory [137, 165, 419].
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4.6 Experiments

The numerical experiments are performed using the software package DIFFPACK
from the University of Oslo / Numerical Objects [97]. We have implemented the
diffusion equation with §(|Vu|*) = /|Vul?2 + 82 + «|Vu|? which is a modified
total variation regularization. For this diffusion filtering our theoretical results are
applicable. The term «a|Vu|? is only of theoretical interest; in numerical realiza-
tions, the discretized version of the gradient is bounded, and there is no visible
difference between using very small values of o (in which the theoretical results
are applicable) and o = 0 (where our theoretical results do not hold).

Our experiments were carried out for different sequences of time-steps and
various smoothing parameters 5. The influence of the parameter settings is as
follows.

The impact of 8 on the numerical reconstruction is hardly viewable in the range
from B = 1072 to 10~*. Even the convergence rate is, although slower for smaller
5, hardly affected.

For small values of regularization parameters h (up to approximately 5.0),
there is no visible difference between iterated and noniterated regularization. The
effect can only be seen for larger values of h. This is illustrated in Figure 4.2.
It shows the result of noniterated and iterated regularization applied to the 2D
MR image from Figure 4.1(a). The results are depicted at times ¢t = 10, 30, and
100, respectively. For noniterated regularization this is achieved in one step, and
for iterated regularization the regularization parameter h = 1 was chosen and
10, 30, or 100 iterations were performed. We observe that differences between
the two methods are very small. They only become evident when subtracting
one image from the other. This also indicates that even the semi-group property
of regularization methods is well approximated in practice. It should be noted
that the semi-group property is an ideal continuous concept which can only be
approximated in time-discrete algorithms for partial differential equations.

As can be seen from the previous sections, the scale-space framework for nonit-
erated and iterated regularization methods carries over to higher space dimensions.
In the next figure we present results from a three-dimensional ultrasound data set
of a fetus with 80 x 80 x 80 voxels. Also in this case the differences between noniter-
ated and iterated regularization are very small and iterated regularization appears
to give slightly smoother results. This is in complete accordance with the theory
in Section 4.4.

4.7 Conclusions

The novelty of our paper consists of establishing sequences of parameter dependent
elliptic boundary value problems, namely nonstationary iterated regularization
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Figure 4.1: Test images. (a) Left: MR image with additive Gaussian noise (SNR =
1). (b) Right: Rendering of a three-dimensional ultrasound data set of a human
fetus.

methods, as scale-space techniques. They satisfy the same scale-space properties
as nonlinear diffusion filtering. The key ingredient for understanding this relation is
the interpretation of iterated regularization methods as time-implicit or time-semi-
implicit approximations to diffusion processes. In this sense, the scale-space theory
of regularization methods is also a novel semi-discrete theory to diffusion filtering.
This time-discrete framework completes the theory of diffusion scale-spaces where
up to now only results for the continuous, the space-discrete and the fully discrete
setting have been formulated [412].

The synthesis of regularization techniques and diffusion methods may lead to
a deeper understanding of both fields, and it is likely that many more results can
be transferred from one of these areas to the other. It would e.g. be interesting
to study how results for optimal parameter selection in regularization methods
can be used for diffusion filtering, or to further investigate the use of the iter-
ated anisotropic functional (4.18) in the context of regularization theory. It is also
promising to analyse and juxtapose efficient numerical techniques developed in
both frameworks. First steps in this direction are reported in [419].
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trian Fonds zur Forderung der wissenschaftlichen Forschung, SFB 1310, and J.W.
received financial support from the EU-TMR project VIRGO. The authors thank
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difference

difference

one iteration, t=100 100 iterations, t=100 difference

Figure 4.2: Results for the MR image from Figure 4.1(a) with noniterated and
iterated regularization (8 = 0.001). The left column shows the results for non-
iterated, the middle column for iterated regularization. The images in the right
column depict the modulus of the differences between the results for the iterated
and noniterated method.



4.7. CONCLUSIONS 107

1 iteration, t=8 4 iterations, t=8

1 iteration, t=20 10 iterations, t=20

Figure 4.3: Results for the three-dimensional ultrasound data from Figure 4.1(b)
with 8 = 0.001. The left column shows the renderings for noniterated, the right
column for iterated regularization. The regularization parameter for iterated reg-
ularization was h = 2.
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Chapter 5

Information Measures in
Scale-Spaces

Jon Sporring and Joachim Weickert.

IEEFE Transactions on Information Theory,
Vol. 45, No. 3, 1051-1058, April 1999.

Abstract

This paper investigates Rényi’s generalized entropies under linear and
nonlinear scale-space evolutions of images. Scale-spaces are useful com-
puter vision concepts for both scale analysis and image restoration. We
regard images as densities and prove monotony and smoothness prop-
erties for the generalized entropies. The scale-space extended general-
1zed entropies are applied to global scale selection and size estimations.
Finally, we introduce an entropy-based fingerprint description for tex-
tures.

109
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5.1 Introduction

In recent years multiscale techniques have gained a lot of attention in the image
processing community. Typical examples are pyramid and wavelet decompositions.
They represent images at a small number of scales and have proven their use for
many image processing tasks. Another important class of multiscale techniques
consists of so-called scale-space representations [175, 420, 436, 213]. They embed
an original image into a continuous family of subsequently simpler versions. Many
scale-spaces can be formulated as the evolution of the initial image under a suitable
linear or nonlinear diffusion process. Such an image evolution is useful for tasks
such as feature extraction, scale selection, and segmentation, see [230, 382, 369]
and the references therein.

Information theoretical concepts such as the Shannon—-Wiener entropy [356,
434], Rényi’s generalized entropies [316, 314, 315], and the Kullback-Leibler dis-
tance [220] have made contributions to image analysis; for instance Brink and
Pendock [55], Brink [54], and Sahoo et al. [327] have used them for local image
thresholding, and Vehel et al. [396] and Chaudhuri and Sarkar [82] study images
in a multifractal setting. It is not difficult to see that the generalized entropies,
the multifractal spectrum, the grey-value moments and the grey-value histogram
itself are equivalent representations: they can be transformed into each other by
one-to-one mappings. More details can be found in Appendix 5.6.

Since scale-spaces simplify images, it is only natural to investigate their sim-
plification properties in terms of information measures. Already in 1949, Shannon
mentioned that the Shannon-Wiener entropy decreases under averaging transfor-
mations [356, p. 52]. In 1993 Illner and Neunzert [191] studied a biased diffusion
process, where the original image evolves towards a background image b along a
path where its Kullback-Leibler distance with respect to b increases monotoni-
cally. Jagersand [196] used the Kullback-Leibler distance in linear scale-space for
focus-of-attention. Oomes and Snoeren [287] used the entropy relative to a back-
ground measure to estimate the size of objects in images. Sporring [368] applied
the Shannon—Wiener entropy in linear scale-space to perform scale selection in
textures and showed the monotone behaviour using concepts from thermodynam-
ics. Weickert [412] proved monotony of the Shannon-Wiener entropy in linear
and nonlinear diffusion scale-spaces by regarding it as a Lyapunov functional.
Lyaponov functionals have been used for scale-space synchronization [277] and for
a uniform sampling of the scale axis with respect to its information content [430].
The fractal dimension in scale-spaces has been investigated by Peleg et al. [298],
Barth et al. [36], and Pei et al. [297]. Relations between Shannon—-Wiener entropy
and multiscale concepts in terms of wavelets have been established by Krim and
Brooks [217], where inequality theory was applied to propose optimal measures for
feature-directed segmentation.
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The present paper extends previous work in this field by studying both theo-
retical aspects and the practical potential of generalized entropies in a linear and
nonlinear multiscale setting. Generalized entropies are complete in the sense that
they allow for a reconstruction of the grey-value histogram (see Appendix 5.6). A
scale-space extension is used to complement the entropies with spatial information.
We prove monotony and smoothness properties with respect to the information
order and the scale parameter. We use the scale-space behaviour of generalized
entropies for scale selection and size estimation, and we introduce a fingerprint-
like description for textures. The results indicate that our extensions broaden the
potential use of entropy methods in image analysis. Some preliminary results in
this paper have been presented at conferences [368, 372].

Throughout this paper we identify an image by its two-dimensional distribution
of light on a rectangular image domain. It should be noted that this representation
is invariant under multiplication with, but not under addition of, a constant. It
is important to note that this two-dimensional distribution is not the grey-value
histogram.

The outline of our paper is as follows. In Section 5.2 will be given a brief
introduction to linear and nonlinear scale-spaces. Then in Section 5.3 we will in-
vestigate a scale-space extension of the generalized entropies. Finally in Section 5.4
we will describe some applications in image processing. A conclusion is given in
Section 5.5.

5.2 A Short Introduction to Scale-Spaces

The images considered in this work are all discrete, but for simplicity we will in this
section introduce two scale-spaces in the continuous setting. Discrete scale-space
aspects are discussed by Lindeberg [230] for the linear framework, and by Weickert
[412] for the nonlinear setting. Scale-spaces can be considered as an alternative to
traditional smoothing methods from statistics [359].

In scale-space theory one embeds an image p(x) : R*> — R into a continuous
family {p(x,t) | t > 0} of gradually smoother versions of it. The original image
corresponds to the scale ¢ = 0, and increasing the scale should simplify the image
without creating spurious structures. Since a scale-space creates a hierarchy of
the image features, it constitutes an important step from a pixel-related image
description to a semantical image description.

It has been shown that partial differential equations are the suitable framework
for scale-spaces [12]. The oldest and best studied scale-space obtains a simplified
version p(x,t) of p(x) as the solution of the linear diffusion process with p(x) as
initial value.

atp = 6z1$1p + a$2;v2p’ (5]‘)



112 CHAPTER 5. INFORMATION MEASURES IN SCALE-SPACES

p(x,0) = p(x), (5.2)

where x = (z1,22)". It is well-known from the mathematical literature that the
solution p(x,t) can be calculated by convolving p(x) with a Gaussian of standard
deviation o = /2t

p(X,t) = (Cft*p)(x)v (53)
Gi(x) = 4—me‘hi'. (5.4)

This process is called Gaussian scale-space or linear scale-space. It was first dis-
covered by Iijima [175, 420] and became popular two decades later by the work
of Witkin [436] and Koenderink [213]. A detailed treatment of the various aspects
of Gaussian scale-space theory can be found in [230, 127, 369] and the references
therein.

Unfortunately, Gaussian smoothing also blurs and dislocates semantically im-
portant features such as edges. This has triggered people to study nonlinear scale-
spaces. Perona and Malik [303] proposed to replace the linear diffusion equa-
tion (5.1) by the nonlinear diffusion process

o =V - (g(|Vp|) Vp), (5.5)

where V = (9,,9,)7, and the diffusivity g(|Vp|) is a decreasing function of |Vp|.
The idea is to regard |Vp| as an edge detector and to encourage smoothing within
a region over smoothing across boundaries. Thus, locations where the gradient is
large have a large likelihood of being an edge, and the diffusivity is reduced.

In our experiments we consider a nonlinear diffusion process where the diffu-
sivity is given by [80]

1
V14 [Vp]2/A2

Such a choice guarantees that the nonlinear diffusion filter is well-posed.
This is one of the simplest representative of nonlinear scale-spaces. Overviews
of other nonlinear scale-spaces can be found in [382, 412].

9(IVpl) = (A>0). (5.6)

5.3 Generalized Entropies

Let us now consider a discrete image p = (p1,...,pn)T, where p; > 0 for all 4.
Note that a single index is used for the two-dimensional enumeration of pixels. Its
family of generalized entropies is defined as,

l-«o

1 AN
Sa(p) := log > _ 1 (5.7)
i=1
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for a # 1. The limit from left and right at o = 1 is the Shannon—Wiener entropy,

N
Si(p) == _ pilogp;, (5.8)
=1

and we might as well consider it as part of the continuum. The parameter « is
called information order.

Let the vector-valued function p(t) = (pi(t),...,pn(t))T be the linear or non-
linear scale-space extension, where the continuous parameter ¢t denotes scale. These
scale-spaces can be obtained by a spatial discretization of Equation 5.1 or 5.5 with
reflecting boundary conditions.

We will now discuss some details of the mathematical structure of generalized
entropies.

Proposition 1 The generalized entropies are decreasing in c.
Proof: Follows immediately from [316, 167]. O

Proposition 2 The generalized entropies So(p(t)) are increasing in t for a > 0,
constant for a = 0, and decreasing for a < 0. Fort — oo, they converge to Sy.

Proof: The proof is based on a result from [412, Theorem 5|: For a discrete
image p(t), which is obtained from a spatially discrete diffusion scale-space, the
following holds. The expression

®(p(1)) =) _r(mit)) (5.9)

i=1
is decreasing in ¢ for every smooth convex function r. Moreover, tlim pi(t) = 1/N
— 00

for all 4.
Using this we first prove the monotony of S, with respect to ¢t. Let o > 1 and
s > 0. Since r(s) = s* satisfies

() = a(a—1)s* 2 > 0, (5.10)

it follows that r is convex. Thus,

N

o(p(t) = Y _r(pi(t) = > i) (5.11)

is decreasing in ¢ and

"~ log ®(p(1)) (5.12)
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is increasing in .
Similar reasonings can be applied to establish monotony for the cases 0 < a < 1
and a < 0.

For o = 1 we obtain the Shannon—Wiener entropy for which monotony has
already been shown in [412].

Let o = 0. Then

N
So(p(t)) = logZp?(t) = log N = const. Vt. (5.13)
i=1

To verify the asymptotic behaviour of the generalized entropies we utilize

. 1
im p;(t) = . (5.14)
For o # 1 this gives
1 B
t]l)rgsa(p(t)) = 1 _alog;m :logN: So, (515)
and a =1 yields
Y11
tlirglo Si(p(t)) = — Zl N log N log N = S,. (5.16)
This completes the proof. [l

The following smoothness results constitute the basis for studying derivatives
of generalized entropies as will be done in Section 5.4.

Proposition 3 The generalized entropies are C® for o # 1 and at least C* in
a = 1. For linear scale-space they are C* in t, and for the nonlinear scale-space
they are C! in t.

Proof: In order to prove smoothness with respect to «, we first consider the
case o # 1. Then S, is the product of the two C* functions ﬁ and log Zfil s,
and thus also C* in a.
The smoothness in o = 1 is verified by applying ’Hopital’s rule. Straightfor-
ward calculations show that
0Sa _ 2y pilogpi)? — (., pilogpi)?

cly1—>n% da 2 ' (5:17)

Thus, aa% exists and S, is in C!.
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For linear scale-space, C* in ¢ follows directly from the fact that G;(z) is in
C* with respect to ¢. In the nonlinear case, C! in ¢ is a consequence of the fact
that the solution p(¢) is in C! with respect to ¢. This is proven in [412, Theorem
4]. O

Figure 5.1 illustrates the monotony of the generalized entropies both in scale
and order for both scale-spaces.

The figures have been created by finite difference algorithms which preserve
the monotony properties established in this section [429].

5.4 Experiments

We will in this section demonstrate some applications for the generalized entropies
in image processing. We will consider the change of entropies by logarithmic scale,

_0S.(p(1))

ca(p(t)) - 8(logt) ’ (518)

since this appears to be the natural parameter (at least for linear scale-space)
[213],][130],]230, section 8.7.1],[372]. We emphasize that the generalized entropies
are global measures and are thus best suited for images with homogeneous textures.

5.4.1 Shannon—Wiener Entropy and Zooming

This section analyses the zooming behaviour of the Shannon-Wiener entropy in
linear scale-space.

Figure 5.2 (top left and right) shows images from a laboratory experiment. The
camera is placed fronto-parallel to a plane with a simple texture: pieces of paper
with discs arranged in a regular manner. A sequence is produced as a series of
increasing zoom values.

In Figure 5.2 (bottom) we plot the scale o = /2t of the point of maximum en-
tropy change against the mean size of the discs. As can be seen the relation is close
to linear. It appears that in linear scale-space the point of maximal entropy change
by logarithmic scale corresponds to the size of the dominating image structures.

5.4.2 Spatial Extent of Structures

In this section we show that the scaling behaviour in linear scale-space carries over
to the generalized entropies, and that they can be used to simultaneously measure
the size of light and dark structures. We shall also see that the latter cannot be
done with the Shannon-Wiener entropy.
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Figure 5.1: Examples of some generalized entropies. (a) Topr: A 512 x 512 grey-
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scale-space.



5.4. EXPERIMENTS 117

level003 level013

100

Pixels
Pixels

150

200

250

50 100 150 200 250 50 100 150 200 250
Pixels Pixels

Zooming

25

N
o
T

=
[$]
T

=
o
T

std at Maximum Change

[$3]

20 30 40 50 60 70
Estimated Diameter

0 I I

Figure 5.2: A zooming sequence. (a) ToP: First and last image. (b) BorTOM: The
0 = 4/t/2 values maximizing c¢; (p(t)) versus the estimated disc sizes.



118 CHAPTER 5. INFORMATION MEASURES IN SCALE-SPACES

The idea is as follows: The definition of the generalized entropies implies that
entropies for large positive « focus on high grey-values (white areas), while for
large negative value they analyse low grey-values (dark areas).

We expect that c,(p(t)) is especially high for structures of diameter d, when
the variance 0% = t/2 of the Gaussian is close to the variance of the structures.
Let us for simplicity consider a random variable with uniform probability density
function whose support is a disc of diameter d. Its variance is,

) 2w pd/2 r2 d2
= ———7rdrdp = —. 1
= [ o= (>19)

Hence we expect a light (or dark) structure of diameter d to have a significant
entropy change by logarithmic scale at time 0%/2 = d?/16. This size estimate
remains qualitatively correct for non-disc structures. In this case, it gives the size
of the largest minimal diameter.

Figure 5.3 shows the result of a performance analysis.

The size estimate (5.19) has been applied to a number of simple sinusoidal
images with structures (half wavelengths) between 1 and 257 pixels. As can be
seen in the bottom graph, for sufficiently large structures the estimated sizes are
close to the true size. Although by definition, the generalized entropies are not
symmetric in order, both have a similar scaling behaviour which is close to linear.

In Figure 5.4 we show an experiment on a texture with a more complicated
periodicity.

This real image has been created by the Belousov—Zhabotinsky reaction [199].
From orders +20 we find dominating low intensity values corresponding to a diam-
eter 7.2, while the dominating high intensity values suggest structures of diameter
3.5. From this we conclude that the distance between the light spiral arms in the
mean is approximately 7.2 pixels, and the width of the spiral arms is approximately
3.5 pixels. In spite of the fact that the disc model (5.19) is not very appropriate
for the line like structure, the size estimates are in the correct order of magnitude.

The Shannon—Wiener entropy cannot be used for size estimation since it is a
mixture of information from both light and dark areas. Thus is does not allow for
a distinction between fore- and background.

5.4.3 Fingerprints for Entropies in Scale-Space

Section 5.4.1 and 5.4.2 have shown that the scales of extremal entropy change carry
significant information for selected information orders. Thus it would be interesting
to introduce a compact description of the extremal changes for the continuum of
information orders. In analogy with edge analysis in linear scale-space [442] we
call such a description a fingerprint image. In Figure 5.5 fingerprint images for two
texture are given, both in the linear and nonlinear scale-space.
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Figure 5.4: (a) LEFT: Spiral generated by a chemical reaction. (b) RIGHT: Entropy
changes for orders 20 (top curve) and -20 (bottom curve).

The fingerprint lines are the extrema of c,(p(t)) in ¢. Our monotony results
immediately imply the following consequences: If there is only one fingerprint
line for a given positive order, then it corresponds to a maximum (likewise to a
minimum for negative orders); see also Figure 5.3. For almost all orders there will
be an odd number of fingerprint lines, which correspond to alternating maxima
and minima. This can be seen for instance in the middle right graph in Figure 5.5.
For information order 60, the leftmost line is a maximum followed by alternating
minima and maxima.

It appears that the location of the fingerprint lines is more stable over infor-
mation orders for the nonlinear scale-space than for the linear one. Due to the
reduced diffusivity of the nonlinear scale-space, the fingerprint lines are shifted
towards higher scales.

5.5 Conclusions

In this paper we have investigated entropies as a means for extracting information
from scale-spaces. This has lead to the following contributions.

e Monotony and smoothness properties for the Shannon—Wiener entropy and
Rényi’s generalized entropies have been proven for the linear and a nonlinear
diffusion scale-space. The proofs hold also for all other nonlinear diffusion
scale-spaces treated in [412].
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e We have illustrated that the generalized entropies can be used to perform size
measurements for periodic textures. This is not possible with the Shannon—
Wiener entropy. We have proceeded to define a fingerprint image for entropies
in scale-space and analysed some of its basic properties. The localization of
the fingerprint lines can be improved using nonlinear instead of linear scale-
space.

The following topics appear promising for future work.

e In the context of texture analysis, it would be interesting to perform an
in-depth study on the relation between the fingerprint topology and the
structure of the texture.

e This paper has focused on the maximal entropy change by scale to estimate
the size of image structures. The minimal change by scale, however, indicates
especially stable scales with respect to evolution time. We expect these scales
to be good candidates for stopping times in nonlinear diffusion scale-spaces.

e The entropies in this paper are global measures. For topics such as focus-of-
attention it would be interesting to study local variants of them.

It should be emphasized that the analysis carried out in this paper is directly
transferable to the analysis of multifractals, grey-value moments, and grey-value
histograms.
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Project VIRGO. We thank Peter Johansen, Mads Nielsen, Luc Florack, Ole Fogh
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5.6 Appendix. Relations to Grey-Value Moments,
Histograms, and Multifractal Spectra

The grey-value moments of an image are defined as,

ma(p) = > _pi- (5.20)

From the definition of S, in (5.7) it is clear that there is a one-to-one relation to
M-
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Let the image (pi,...,pny)T consist of M distinct grey-values vy, ..., vy oc-
curring fi,..., far times. We may use this grey-value histogram f to rewrite the
moments as,

M
ma(p) = fivd. (5.21)
j=1
Considering the moments my, ..., my 1 gives the relation:
[ me ] [ 1 1 ... 1 1T A ]
my U1 (%) e Um f2
my | =| v ui ... Wy f3 (5.22)
| M1 | pM—t M-l v%‘l 1L fmr ]

The system matrix is a so-called Vandermonde matrix. By induction over M the

determinant can be shown to be IT (vm —wy). Since v;,5 = 1,..., M are
1<n<m<M

distinct, the matrix is invertible (but ill-conditioned). Thus there is a one-to-one

relation between the moments my, ..., my_; and the histogram fi,..., fu.

The equivalence of the multifractal spectrum and the generalized entropies is
discussed in [163].
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Chapter 6

Coherence-Enhancing Diffusion
Filtering

Joachim Weickert.
International Journal of Computer Vision,
Vol. 31, No. 2/3, 111-127, April 1999.

Abstract

The completion of interrupted lines or the enhancement of flow-like
structures 1s a challenging task in computer vision, human vision, and
image processing. We address this problem by presenting a multiscale
method in which a nonlinear diffusion filter is steered by the so-called
interest operator (second-moment matriz, structure tensor). An m-
dimensional formulation of this method is analysed with respect to its
well-posedness and scale-space properties. An efficient scheme is pre-
sented which uses a stabilization by a semi-implicit additive operator
splitting (AOS), and the scale-space behaviour of this method is illus-
trated by applying it to both 2-D and 3-D images.
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6.1 Introduction

Oriented flow-like structures arise in many computer vision and image processing
problems: Within the field of texture analysis they appear for instance in the au-
tomatic grading of fabrics or wood surfaces, but they are also of importance for
fingerprint analysis in forensic applications. They are present in many scientific
imaging problems ranging from fluid dynamics to meteorology, and last but not
least in medical imaging, for instance in the analysis of trabecular structures in
bones. Interestingly, related tasks such as gap completion or the completion of in-
terrupted lines also play a role in human vision tasks such as perceptual grouping.
Moreover, the success of paintings by Munch or van Gogh suggests that empha-
sizing flow-like structures may create effects which fascinate many people.

Analysing flow-like patterns is an active research topic for certainly more than
one decade; see for instance Kass and Witkin [200]. Besides methods such as Ga-
bor filters or steerable filters, many of these approaches are equivalent to the
so-called structure tensor (interest operator, second moment matrix) [132, 313]. In
the meantime this field has even entered textbooks [153], and it can be regarded
as well-established.

Much less attention has been paid to the question how to enhance flow-like
patterns. Poor quality of fingerprint or trabecular bone images is not unusual. In
those cases it would be desirable to have a tool which improves the quality of flow-
like structures without destroying for instance semantically important singularities
like the minutiae in fingerprints.

For problems like the grading of fabrics or applications to fluid dynamics it is
also useful to have a multiscale simplification of the original image by embedding it
into a scale-space in order to obtain a subsequently coarser, more global impression
of the main flow-like structures. Of course, such a scale-space should take into
account the coherence of the structures by smoothing mainly along their preferred
orientation instead of perpendicular to it.

Since flow-like structures can also be present in higher dimensional data sets,
e.g. 3-D images of trabecular bones, it should be possible to generalize such a
method to arbitrary dimensions.

The preceding problems will be addressed in this paper by presenting an m-
dimensional scale-space for the enhancement of coherent structures. The underly-
ing concept can be motivated from ideas of Perona and Malik for improving edge
detection by creating a feedback loop of an edge detector and a nonlinear diffusion
process [303]. In a similar way we embed a classical method for describing flow-
like structures — namely the structure tensor approach — into a nonlinear diffusion
process. This turns a method for analysing coherent pattern into a technique for
enhancing and simplifying them. In contrast to most nonlinear diffusion filters,
however, we use an approach where the process is steered by a diffusion tensor
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instead of a scalar-valued diffusivity. This enables true anisotropic behaviour by
adapting the diffusion process not only to the location, but allowing also different
smoothing in different directions. We shall see that this filter belongs to a class of
nonlinear diffusion methods for which many well-posedness and scale-space prop-
erties can be proved. This is also in contrast to the Perona—Malik filter, whose
continuous formulation is only locally well-posed [202]. Details of the numerical
implementation will be discussed as well. In particular, an efficient novel stabi-
lization technique based on a semi-implicit additive operator splitting (AOS) is
presented. It extends previous encouraging experiments with AOS schemes for
nonlinear diffusion filtering with a scalar-valued diffusivity to the fully anisotropic
case with a diffusion tensor. All theoretical and numerical discussions hold in the
m-~dimensional case. As examples, results from 2-D and 3-D implementations are
presented.

The outline of the papers is as follows: Section 6.2 surveys the underlying
structure tensor method for describing coherence in images. This method is used
in Section 6.3 for constructing a nonlinear diffusion process which smoothes along
coherent flow-like structures. This process is called coherence-enhancing diffusion
(CED). Section 6.4 gives a detailed analysis of the theoretical properties of a more
general class of diffusion filters comprising CED. In Section 6.5 numerical and
algorithmical questions are addressed; in particular, a more efficient alternative to
the explicit scheme is presented. Section 6.6 applies CED to 2-D and 3-D images
from different application areas. The paper is concluded with a summary in Section
6.7. Some results in this paper have been presented earlier at conferences [406, 427].

Related work. Since the work of Perona and Malik [303] numerous nonlinear
diffusion filters have been proposed; see e.g. [382, 411] for an overview. Never-
theless, most of them use a (spatially varying) scalar diffusivity, not a diffusion
tensor. Thus, they act inhomogeneously (nonuniformly) on the image, but — in our
terminology — they remain isotropic.

True anisotropic diffusion filtering is studied in the reaction-diffusion model
of Cottet and Germain [91]. Its diffusion tensor uses the eigenvectors vy || Vu,,
vy L Vu, and its eigenvalues are given by

)\1 = 0, (61)

n|Vue|*
T (Vg | Jo)? (n > 0). (6.2)
This choice is similar to our method it that sense that it diffuses mainly along
strongly anisotropic structures. However, there are two important differences: First,
we observe that this diffusion tensor cannot be treated within a scale-space frame-
work using uniformly positive definite diffusion tensors. Moreover, the Cottet—
Germain model uses an additional reaction term which leads to nontrivial steady-
states and qualifies it as a pure restoration method without scale-space ambitions.

A
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Second, the eigendirections of D are adapted to Vu,, not to the eigendirections
of the structure tensor. We shall see that the introduction of an integration scale
in the structure tensor is an essential model feature in order to obtain reliable
orientation estimates for flow-like structures. Recently Cottet and El Ayyadi have
proposed a modified image restoration model which replaces the spatial regular-
ization by a temporal regularization [90].

Nitzberg and Shiota [280] pioneered shape-adapted Gaussian smoothing, where
the shape of an anisotropic Gaussian convolution kernel is a function of the struc-
ture tensor. Later on similar proposals have been made in [232, 440] and supple-
mented with scale-selection methods [6]. It should be noted that a common feature
of all the preceding shape-adapted Gaussian smoothing methods is the combina-
tion of isotropic smoothing inside a region with anisotropic smoothing along edges.
Space-variant Gaussian blurring is, however, not equivalent to an inhomogeneous
diffusion process, and it does not preserve the average grey value. Anisotropic dif-
fusion filters with isotropic diffusion within regions and anisotropic diffusion along
edges can be found in [408] and the references therein. These methods are different
from the present approach: CED is basically a pure 1-D diffusion, where a minimal
amount of isotropic smoothing is added only for regularization purposes.

Other anisotropic partial differential equations for smoothing images rely on
morphological methods such as the mean-curvature motion (geometric heat equa-
tion, Fuclidean shortening flow) [207, 13]

ou = ug = |Vu|curv(u) (6.3)

with & being the direction perpendicular to Vu.

Since mean-curvature motion propagates isophotes in inner normal direction
with curvature-dependent speed, we should not expect that such completely local
methods are capable of closing interrupted line-like structures. The same holds for
the affine invariant version of this process [12, 333]. All these methods do not take
into account semilocal information as can be gained from the structure tensor.
Recent results by Carmona and Zhong [66] confirm the importance of semilocal
estimates of the smoothing direction also for equations of mean-curvature type, if
one is interested in specific goals such as enhancement of line-like structures.

Three-dimensional nonlinear diffusion filters have been investigated first by
Gerig et al. [144] in the isotropic case, and by Rambaux and Garcon [312] in the
edge-enhancing anisotropic case. A generalization of coherence-enhancing aniso-
tropic diffusion to higher dimensions was first proposed in [427]. A recent three-
dimensional PDE-based filter by Krissian et al. [218] and a 3-D reaction-diffusion
process by Payot et al. [296] may be related to these anisotropic diffusion tech-
niques.

The discussion above shows that the distinctive features of our approach is a
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Figure 6.1: Local orientation in a fingerprint image. FRoM Top LEFT TO BoT-
TOM RIGHT: (a) Original fingerprint, Q = (0,200)2. (b) Orientation of smoothed
gradient, 0 = 0.5. (c¢) Orientation of smoothed gradient, 0 = 5. (d) Structure
tensor orientation, o = 0.5, p = 4.

semi-local analysis by means of the structure tensor combined with 1-D diffusion
along one of its eigenvectors.

6.2 The Structure Tensor

First we review a reliable tool for analysing coherent flow-like structures. Consider
an m-dimensional image domain Q := (0,a;) X - - - X (0, a,,,), and let an image u(x)
be represented by a bounded mapping u : 2 — R.

A very simple structure descriptor is given by Vu,, the gradient of a Gaussian-
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smoothed version of u:

— 1 |
K,(z) = (@ro?ynlz - eXp (—ﬁ) , (6.4)
us(z,t) = (Kyxu(.,t))(z) (o >0). (6.5)

The standard deviation o denotes the noise scale, since it makes the edge detector
ignorant of details smaller than O(c). Convolution on a finite domain Q can be
defined as convolution between K, and % on R™, where % denotes an extension of
u by mirroring. This results in applying no-flux boundary conditions.

Although Vu, is useful for detecting edges, it is unsuited for finding parallel
structures, as we can see from Figure 6.1. The left image shows an original fin-
gerprint. Figure 6.1(b),(c) illustrates the gradient orientation using grey values:
vertical gradients are depicted in black, and horizontal ones in white. We observe
that for small o high fluctuations remain, while larger o lead to entirely useless
results. This is due to the fact that for larger ¢ neighbouring gradients with the
same orientation, but opposite sign cancel one another. Gradient smoothing aver-
ages directions instead of orientations'. To make the structure descriptor invariant
under sign changes, we may replace Vu, by its tensor product

Jo(Vu,) := Vu, ® Vu, := Vu,Vul. (6.6)

This matrix is symmetric and positive semidefinite, and its eigenvectors are par-
allel and orthogonal to Vu,, respectively. The corresponding eigenvalues |Vu, |2
and 0 describe just the contrast in the eigendirections. Now that we have replaced
directions by orientations, we can average the orientations by applying a compo-
nentwise convolution with a Gaussian K :

J,(Vu,) = K, % (Vu, ® Vu,) (p>0). (6.7)

This matrix is named structure tensor, interest operator or second-moment matrix.
It is useful for many different tasks, for instance for analysing flow-like textures
[313], corners and T-junctions [132, 280], shape cues [232] and spatio—temporal
image sequences [197]. Equivalent approaches have been discovered independently
in [42, 200]. A book by Jdhne [197] gives a nice overview of these methods and
clarifies their mutual relations.

It is not hard to verify that the symmetric matrix J, is positive semidefinite.
Let its eigenvalues pq,...,1,, be ordered such that

M1 2 fo 2 e 2 Uy (6.8)

'In our terminology, gradients with opposite sign share the same orientation, but point in
opposite directions.
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and let {ws,...,w,} denote the corresponding orthonormal set of eigenvectors.
Since the eigenvalues integrate the variation of the grey values within a neigh-
bourhood of size O(p), they describe the average contrast in the eigendirections
W1,-..,Wy,. Thus, the integration scale p should reflect the characteristic size of the
texture. Usually, it is large in comparison to the noise scale . The eigenvector w,,
corresponds to the smallest eigenvalue pu,,. It is the orientation with the lowest
fluctuations, the so-called coherence orientation?.

Figure 6.1(d) depicts the coherence orientation for the fingerprint image. We
observe that it is exactly the desired average orientation of the lines. It should
be noted how well the singularity corresponds to the singularity in the original
fingerprint image.

The eigenvalues of J, provide useful information on the coherence of a structure,
i.e. the actual amount of anisotropy. As a measure for the coherence, one can define

Z . (6.9)

It becomes large for strongly differing eigenvalues, and it tends to zero for isotropic
structures.

6.3 Coherence-Enhancing Anisotropic Diffusion
in m Dimensions

Now that we know how to analyse coherent structures, we draw our attention to
the question of how to enhance them. This can be done by embedding the structure
tensor analysis into a nonlinear diffusion filter.

The principle of nonlinear diffusion filtering is as follows. One calculates a
processed version u(x,t) of f(z) with a scale parameter ¢ > 0 as the solution of a
diffusion equation with f as initial condition and reflecting boundary conditions:

Oww=div(DVu) on  Qx(0,00), (6.10)
u(z,0) = f(z) on  Q, (6.11)
(DVu,n)=0 on 99 x (0,00). (6.12)

Hereby, n denotes the outer normal and (., .) the usual inner product. If one wants
to adapt the diffusion process to the image itself one should choose the symmetric
positive definite diffusion tensor D = (d;;) € R™*™ as a function of the local image

2For the case that we have p identical minimal eigenvalues, one may regard every orientation
within the span of wy,_py1,...,wn as a coherence orientation. For natural images, this situation
happens almost never and can be neglected.
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structure. In the case of enhancing flow-like patterns, it is natural to adapt the
diffusion tensor D to the structure tensor J,(Vu,).

How should this function look like? For enhancing coherence in images with
flow-like structures, we need a smoothing process which acts mainly along the
flow direction w,, (with the notations from Section 6.2) and the smoothing should
increase with the strength of its orientation given by the coherence x. This may
be achieved in the following way:

We construct D such that it has the same eigenvectors as J, and its eigenvalues
are given by

fori =1,....m — 1, and by

« if k=0,
Am = { a+ (1—a)exp (=) else. (6.14)

C > 0 serves as a threshold parameter: For k > C' we get \,, ® 1, and k < C
leads to A\,, ~ «a. The exponential function and the small positive parameter
a € (0, 1) were introduced mainly for two theoretical reasons: First, this guarantees
that the smoothness of the structure tensor carries over to the diffusion tensor.
The second reason is that the process never stops: Even if the structure becomes
isotropic (k — 0), there remains some small linear diffusion with diffusivity o > 0.
Thus, o serves as a regularization parameter which keeps the diffusion tensor
uniformly positive definite. In the next section we shall see that these are useful
requirements in order to establish many theoretical properties for CED.

6.4 A General Well-Posedness and Scale-Space
Framework

Coherence-enhancing anisotropic diffusion filtering can be regarded as a special
case within a more general framework for nonlinear diffusion filtering, for which
many well-posedness and scale-space properties can be found. This framework shall
be analysed now.

6.4.1 Well-Posedness Properties

We study a diffusion filter with the following properties:

Assume that f: Q2 — R is bounded, p>0, and o >0.
Let azzigf f, b:=sup f, and consider the problem
Q

Oww = div (D(J,(Vu,)) Vu)  on  Q x (0,00),
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u(z,0) = f(z) on &
(D(J,(Vug))Vu, n)y =0 on 09 x (0,00),

where the diffusion tensor D = (d;;) satisfies the following properties:

(C1) Smoothness:
D c Coo(Rme’Rmxm).

(C2) Symmetry:
d;ij(J)=dj;(J) for all symmetric matrices J € R™*™.

(C3) Uniform positive definiteness:
If w: Q — R? satisfies |w(z)| < K on Q, there exists a positive lower bound
v(K) for the eigenvalues of D(J,(w)).

This filter class is denoted by (FP,). Evidently, coherence-enhancing anisotropic
diffusion satisfies the preceding requirements. Under the assumptions (P.) the
following theorem, which generalizes and extends results from [74, 408], can be
proved.

Theorem 12 (Well-posedness properties, smoothness, and extremum
principle)
The problem (P.) has a unique solution u(zx,t) in the distributional sense, which
1s smooth for t > 0:

u€C®(2x(0,00)).

This solution depends continuously on f with respect to || . || 2y, and it fulfills the
extremum principle

a<u(z,t) <b on € x(0,00). (6.15)
Proof: See Appendix 6.8.1.

Some remarks are in order.

(a) We observe a strong smoothing effect which is characteristic for many dif-
fusion processes: boundedness of the initial image is sufficient to obtain an
infinitely often differentiable solution for arbitrary small positive times. Ad-
ditional requirements — for instance that f should be uniformly continuous
in order to apply the theory of viscosity solutions — are not necessary in our
case.

(b) The continuous dependence of the solution on the initial image has signif-
icant practical impact as it ensures stability with respect to perturbations
of the original image. This is of importance when considering stereo image
pairs, spatio-temporal image sequences or slices from medical CT or MRI
sequences, since we know that similar images remain similar after filtering.
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(c) The extremum principle offers the practical advantage that, if we start for
instance with an image within the range [0, 255], we will never obtain results
with grey value such as 257.

(d) Coherence-enhancing anisotropic diffusion in not the only filter which is cov-
ered by the theorem above. The well-posedness theory (as well as the subse-
quent scale-space framework) comprises the regularized Perona—Malik filter
by Catté, Lions, Morel and Coll [74] as well as the edge-enhancing anisotropic
diffusion filter described in [408]. It is also possible to establish a semidiscrete
and fully discrete well-posedness and scale-space theory which proceeds in
the same way; see [412] for more details.

6.4.2 Scale-Space Properties

Scale-space representations embed an image f into a family {7;f [t > 0} of grad-
ually smoother, simplified versions of it. Long before this concept became popular
in the western world by the work of Witkin [436] and Koenderink [213], it had
been discovered and axiomatically justified in Japan by Iijima [175, 420]. Most ax-
iomatic scale-space representations are devoted to the linear diffusion scale-space
(Gaussian scale-space), but one can also create nonlinear scale-spaces which can
be classified in a unique way [12, 390, 286]. All these approaches are uncommitted,
since their unique classification does not give us the liberty to incorporate a-priori
knowledge.

Anisotropic nonlinear diffusion filtering, however, does offer the possibility to
incorporate knowledge into its evolution. So let us now study some of its scale-space
properties.

It is evident that the filter class (P,) satisfies typical scale-space properties
such as the semi-group property, invariance under Euclidean image transforma-
tions, grey-level shifts, or contrast reversion. Moreover, since it can be written in
divergence form and uses reflecting boundary conditions, it is also not hard to
verify that the average grey level

1
po= —/f(x) dzx (6.16)
]
Q
is not affected by nonlinear diffusion filtering [412, pp. 63-64]:

1
Q

Average grey level invariance is a property in which diffusion scale-spaces differ
from morphological scale-spaces. In general, the evolution PDEs of the latter ones
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are not of divergence form and do not preserve the mean grey value. A constant
average grey level is useful for scale-space based segmentation algorithms such as
the hyperstack [277, 398]. It is also a desirable quality for applications in medical
imaging where grey values measure physical qualities of the depicted object.

Causality in Terms of Nonenhancement of Local Extrema.

Let us now turn to the question in which sense an evolution equation of type (P.)
can be considered as a smoothing, information-reducing image transformation.

Koenderink [213] required that a scale-space evolution should not create new
level curves when increasing the scale parameter. If this is satisfied, iso-intensity
linking through the scales is possible and a structure at a coarse scale can (in
principle) be traced back to the original image (causality). For this reason, he
required that at spatial extrema with nonvanishing determinant of the Hessian
isophotes in scale-space are upwards convex. He showed that this constraint can
be written as

sign(Oyu) = sign(Au). (6.18)

A sufficient condition for the causality equation (6.18) to hold is requiring that
local extrema with positive or negative definite Hessians are not enhanced: an
extremum in & at scale 6 satisfies d;u > 0 if £ is a minimum, and Oyu < 0 if &
is a maximum. This implication is easily seen: In the first case, for instance, the
eigenvalues 7y,...,n,, of Hess(u) are positive. Thus,

Au = tr(Hess(u)) = ini >0, (6.19)

which gives just the causality requirement (6.18).

Nonenhancement of local extrema has first been used by Babaud et al. [28] in
the context of linear diffusion filtering. However, it is also satisfied by nonlinear
diffusion scale-spaces, as we shall see now.?

Theorem 13 (Nonenhancement of local extrema).
Let u be the unique solution of (P.) and consider some 6 > 0. Suppose that & € )
is a local extremum of u(.,0) with nonvanishing Hessian. Then,

owu(€,0) <0, if € is a local mazimum, (6.20)
owu(€,0) >0, if € is a local minimum. (6.21)

3As in the linear diffusion case, nonenhancement of local extrema generally does not imply
that their number is nonincreasing for dimensions m > 2 ; cf. [320].
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Proof: See Appendix 6.8.2.

Nonenhancement of local extrema is just one possibility to end up with Koen-
derink’s causality requirement. Another way to establish causality is via the ex-
tremum principle (6.15) following Hummel’s reasoning; see [173] for more details.

Lyapunov Functionals and Behaviour for ¢ — oo.

Interestingly, causality in terms of nonenhancement of local extrema can be re-
garded as a first representative of a much larger class of smoothing properties of
nonlinear diffusion filtering. Other representatives result from studying the Lya-
punov functionals of these processes. Lyapunov functionals are energy-like expres-
sions which decrease during the evolution and which have a lower bound. They
can be useful for finding attractors of a process for ¢ — oo. The theorem below
establishes a class of Lyapunov functionals and shows that processes of type (P.)
converge to a flat steady-state which is given by the average grey value of the orig-
inal image. This is a desirable property for scale-spaces, since such a steady-state
can be regarded as the coarsest, most global representation of the original image.

Theorem 14 (Lyapunov functionals and behaviour for ¢t — o).
Suppose that u is the solution of (P,) and let a, b, p be defined as in (P.) and
(6.16). Then the following properties are valid:

(a) (Lyapunov functionals)

For all r € C?[a, b] which are convex on [a,b] the function

V(t) :== ®(u(t)) == /r(u(x,t)) dx (6.22)

Q

1s a Lyapunov functional:

(i) It is bounded from below by the value of ® for a constant image with the
same average grey level:

O(u(t)) = ®(Mf) V >0, (6.23)

where (M f)(z) = p.

(ii) V(t) is continuous in 0, and decreasing for all t > 0.

(b) (Convergence)
u(z,t) converges to a constant image with the same average grey value:

lim [fu(t) — M o) = 0 (6.24)

for all p € [1,00).
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Proof: See Appendix 6.8.3.

What are interesting representatives of this family of Lyapunov functionals?
Considering the Lyapunov functions associated with r(s) := |s[P, r(s) := (s—u)*"
and 7(s) := s In s, respectively, the preceding theorem gives the following corollary.

Corollary 1 (Special Lyapunov functionals).
Let u be the solution of (P.) and a and p be defined as in (P.) and (6.16). Then
the following functions are decreasing for t € [0, 00):

(¢) fu@®lle) ~ for allp=> 2.

(b) Mo [u(t)] = \(12_| / (u(z, ) — p)?" dz

for all n € IN.
() Hlu(t)] = / w(z, 1) n(u(z, 1)) dz,
if a > 0. ?

Corollary 1 offers multiple possibilities of how to interpret nonlinear anisotropic
diffusion filtering as a smoothing transformation.

As a special case of (a) it follows that the energy ||u(?) ||i2(ﬂ) is reduced by diffu-
sion. Using Parseval’s equality we know that a decreasing energy is also equivalent
to a decreasing sum of the squared Fourier coefficients.

Part (b) gives a probabilistic interpretation of anisotropic diffusion filtering.
Consider the intensity in an image f as a random variable Z; with distribution
Fy(z), i.e. Fy(z) is the probability that an arbitrary grey value Z; of f does not
exceed z. By the average grey level invariance, i is equal to the expected value

EZu(t) = /ZdFu(t)(Z), (625)
R

and it follows that My,[u(t)] is just the even central moment

/ (z—EZu(t)>2n dF, ) (2). (6.26)

R

The second central moment (the variance) characterizes the spread of the inten-
sity about its mean. It is a common tool for constructing measures for the relative
smoothness of the intensity distribution. The fourth moment is frequently used
to describe the relative flatness of the grey value distribution. Higher moments
are more difficult to interpret, although they do provide important information
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for tasks like texture discrimination [150, pp. 414-415]. All decreasing even mo-
ments demonstrate that the image becomes smoother during diffusion filtering.
Hence, local enhancement effects, which object to increase central moments, are
overcompensated by smoothing in other areas.

If we choose another probabilistic model of images, then part (c) characterizes
the information-theoretical side of our scale-space. Provided the initial image f is
strictly positive on 2, we may regard it also as a two-dimensional density.* Then,

Stu(t)] = — / w(z, ) In(u(z, 1) dz (6.27)

Q

is called the entropy of u(t), a measure of uncertainty and missing information [61].
Since anisotropic diffusion filters increase the entropy, the corresponding scale-
space embeds the genuine image f into a family of subsequently likelier versions
of it which contain less information. Moreover, for ¢ — oo, the process reaches
the state with the lowest possible information, namely a constant image. This
information-reducing property indicates that anisotropic diffusion might be gener-
ally useful in the context of image compression. In particular, it helps to explain
the success of nonlinear diffusion filtering as a preprocessing step for subsampling
as observed in [131]. The interpretation of the entropy in terms of Lyapunov func-
tionals carries also over to generalized entropies, see [372] for more details.

From all the previous considerations, we recognize that anisotropic diffusion
does really simplify the original image in a steady way.

6.5 Numerical Aspects

To approximate CED numerically, we replace the derivatives by finite differences.
Since continuous CED has the structure

Ou =Y _ O, (dij0a,u), (6.28)

ij=1

its simplest discretization is given by the finite difference scheme

Ulc+1 . Uk m -
i,j=1

In this notation, U describes a vector containing the values at each pixel. The

upper index denotes the time level and L;; is a central difference approximation

to the operator 9, (d;;0s; ).

4Without loss of generality we omit the normalization.
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Since (6.29) can be rewritten as

Uk = (1 + At Zm: ij) Ut (6.30)

,j=1

we observe that U**! can be calculated explicitly from U* without any matrix
inversions. For this reason it is called an explicit scheme.

Unfortunately, such explicit schemes require very small time steps At in order
to be stable. Therefore, it is desirable to replace (6.30) by an implicit scheme which
has the same first-order Taylor expansion in At, but better stability properties.
One possibility is the AOS-stabilized scheme

Uttt = % Zm: (I - mAthl) B (I + At zm: 3 L;“j) U*. (6.31)

1=1 i=1 j#i

This method achieves a stabilization through the nonnegative matrices of type
(I—mAtLE)~!. They describe a semi-implicit discretization of the diffusion caused
by the [-th diagonal entry of the diffusion tensor. The typically used step size
At = 2 is about one order of magnitude larger than the ones for which an explicit
scheme of type (6.29) is stable in 2-D or 3-D. For the standard approximations
with central derivatives within a (3 x 3)-stencil, the matrix inversions in (6.31)
come down to solving diagonally dominant tridiagonal systems of linear equations.
This can be performed in linear complexity with a modified Gaussian algorithm
(Thomas algorithm). It should be noted that (6.31) uses an additive operator
splitting (AOS) instead of the usual multiplicative operator splitting from the
mathematical literature such as [241]. This guarantees that all axes are treated
in the same way. AOS schemes have been introduced in [429] as an efficient and
reliable method for isotropic nonlinear diffusion filtering, which perform well on
parallel computer architectures [430]. Equation (6.31) shows one way how to extend
them to anisotropic processes with a diffusion tensor.
The final CED algorithm is as follows:

1. Calculation of the structure tensor in each pixel. This requires one convo-
lution with a Gaussian K,, and ) ;" k = sm(m + 1) convolutions with
K,. The convolutions were implemented in the spatial domain exploiting the
separability and symmetry of the Gaussian.

2. Principal axis transformation of the structure tensor in each pixel. In our
case this was done by a cyclic Jacobi algorithm [352].

3. Calculation of the diffusion tensor in each pixel. Here a significant speed-up
is possible by creating a look-up table for the function (6.14) at the beginning
of the programme run.
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4. Calculation of

= (I—i-Atf:Zij)U’“.

=1 ji

5. For [ =1, ..., m: calculation of
-1
W= (1= maerh) v*
by means of the Thomas algorithm [429].

6. Calculation of .

1
Uk—|—1 P ZVVlk_'—l-

m
=1

This algorithm is computationally less complex than it looks at first glance:
typical execution times for one iteration on a HP 9000/889 are 0.3 seconds for a
256 x 256 image and 9 seconds for a 64 x 64 x 64 image.

6.6 Examples

Figure 6.2 illustrates the importance of choosing the appropriate smoothing direc-
tion in anisotropic processes. In Figure 6.2(b) mean curvature motion is applied
to the fingerprint image. We observe that — although mean curvature motion is a
completely anisotropic technique with many merits in computer vision — it cannot
be used for closing interrupted line-like structures: topologically connected struc-
tures remain connected, but gaps become larger, since both ends move in opposite
directions. MCM does not exploit any semilocal information.

Figure 6.2(c) shows the effect of coherence-enhancing anisotropic diffusion where
« and the integration scale p are set to 0. This model is close in spirit of the Cottet—
Germain filter [91]. For such a model it is difficult to find a useful noise scale o for
smoothing along flow-like structures: for ¢ — 0, Vu becomes eigenvector of D and
the diffusion is halted, since the corresponding eigenvalue ), is zero. If o becomes
larger, the effect illustrated in Figure 6.1(c) dominates: opposite gradients cancel
one another leading to more or less random smoothing directions.

Coherence-enhancing diffusion filtering with a nonvanishing integration scale
is depicted in Figure 6.2(d). We observe that diffusion along the coherence orien-
tation wy is well-suited for closing interrupted lines in flow-like textures. Due to
its reduced diffusivity at noncoherent structures, the location of the semantically
important singularity in the fingerprint remains the same. This is an important
prerequisite that any image processing method has to satisfy if it is to be applied to
fingerprint analysis. In this and all subsequent CED images the parameters C' = 1,
and o = 0.001 have been used.
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|

Figure 6.2: Anisotropic equations applied to the fingerprint image. (a) TOP LEFT:
Original image. (b) TorP RIGHT: Mean curvature motion, ¢ = 10. (c) BorTOM
LEFT: Anisotropic diffusion similar to the Cottet—Germain model, o = 0, 0 = 2,
t = 20. (d) BorToM RIGHT: Coherence-enhancing anisotropic diffusion, o = 0.5,
p=4,t=20.
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Figure 6.3: Scale-space behaviour of coherence-enhancing diffusion (¢ = 0.5, p =
2). (a) Top LEFT: Original fabric image, Q = (0,257). (b) ToP RIGHT: ¢t = 20.
(c) Borrom LEFT: ¢t = 120. (d) BorTOM RIGHT: ¢ = 640.
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Figure 6.4: Image restoration using coherence-enhancing anisotropic diffusion. (a)
LEFT: “Selfportrait” by van Gogh (Saint-Rémy, 1889; Paris, Museé d’Orsay), 2 =
(0,215) x (0,275). (b) RIGHT: Filtered, o0 = 0.5, p =4, t = 6.

Figure 6.3 depicts the scale-space behaviour of coherence-enhancing anisotropic
diffusion applied to a fabric image arising in computer aided quality control. The
temporal behaviour of this diffusion filter seems to be appropriate for visualizing
coherent fibre agglomerations (stripes) at different scales, a difficult problem for
the automatic grading of nonwovens.

Let us now investigate the impact of coherence-enhancing diffusion on images,
which are not typical texture images, but still reveal a flow-like character. To this
end, we shall process expressionistic paintings by Vincent van Gogh.

Fig. 6.4 shows the restoration properties of coherence-enhancing anisotropic
diffusion when being applied to a selfportrait of the artist [391]. We observe that
the diffusion filter can close interrupted lines and enhance the flow-like character
which is typical for van Gogh paintings.

The next painting we are concerned with is called “Road with Cypress and
Star” [393]. It is depicted in Fig. 6.5. In order to demonstrate the influence of
the integration scale p, all filter parameters are fixed except for p. In Fig. 6.5(b)
we observe that a value for p which is too small does not lead to the visually
dominant coherence orientation and, thus, the filtered structures reveal a lot of
undesired fluctuations. Increasing the value for p improves the image significantly
(Fig. 6.5(c)). Interestingly, a further increasing of p does hardly alter this result
(Fig. 6.5(d)), which indicates that this van Gogh painting possesses a uniform
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Figure 6.5: Impact of the integration scale on coherence-enhancing anisotropic
diffusion (o = 0.5, t = 8). (a) Top LEFT: “Road with Cypress and Star” by
van Gogh (Auvers-sur-Oise, 1890; Otterlo, Rijksmuseum Kroller-Miiller), Q =
(0,203) x (0,290). (b) Top RIGHT: Filtered with p = 1. (c) BoTTOM LEFT:
p=4.(d) BorTtoM RIGHT: p = 6.
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Figure 6.6: (a) Top: High resolution slipring CT scan of a femural bone, show-
ing the trabecular formation. Slice thickness 1 mm, field of view 6 cm. Q =
(0,300) % (0,186). (b) BorToM LEFT: Filtered by coherence-enhancing anisotropic
diffusion, 0=0.5, p=6, t=16. (¢) BorTOM RIGHT: Ditto with t=128.

“texture scale” reflecting the characteristic painting style of the artist.

Figure 6.6 illustrates the potential of CED for medical applications. It depicts
a human bone. Its internal structure has a distinctive texture through the pres-
ence of tiny elongated bony structural elements, the trabeculae. There is evidence
that the trabecular formation is for a great deal determined by the external load
[438, 249, 29]. For this reason the trabecular structure constitute an important clin-
ical parameter in orthopedics. Examples are the control of recovery after surgical
procedures, such as the placement or removal of metal implants, quantifying the
rate of progression of rheumatism and osteoporosis, the determination of left-right
deviations of symmetry in the load or establishing optimal load corrections for
physiotherapy. The high resolution of contemporary CT using slipring technology
and MR scanners now enables in vivo analysis of detailed trabecular structure.

While in vivo analysis of the trabecular bone by means of a structure tensor
is investigated in [384, 275], the present paper points out ways to enhance the
coherence information in medical images, in order to ease such an analysis.

From Figure 6.6(b),(c) we observe that CED is indeed capable of closing inter-
rupted lines. Parallel flow-like structures are enhanced and a subsequent coherence
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Figure 6.7: Three-dimensional CED applied to a CT data set of size 256 x 256 x 128.
LErFT COLUMN: 2-D sections depicting slice no. 180 in x, no. 128 in y, and no. 100
in z, respectively. RIGHT COLUMN: Filtered, 0 =0.5, p=6, t=4.
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analysis becomes much easier. Increasing the time ¢ gives a coarser representation
of the coherence. The entire evolution creates a task-driven scale-space which is
dedicated to flow-like patterns.

In medical applications physicians often insist in only very small amounts of
smoothing, in order to reduce some noise without affecting clinically relevant struc-
tures too much. Simplifications as in Figure 6.6(c) would be considered as mis-
leading. Figure 6.7 shows the results for two iterations of three-dimensional CED
filtering. The data set reveals a size of 256 x 256 x 128, and the voxel dimensions
are 0.25 x 0.25 x 0.5 mm?3. It depicts a CT scan of a foot area by means of a Philips
SR8000 slipring CT at 140 kV. Even for 3-D data sets, such a slight preprocessing
using only a few iterations can easily be performed within the acquisition time.
The price of a suitable hardware would be a small fraction of the price for a CT
scanner.

It should be noted that in some 3-D applications it might also be desirable to
smooth along two directions instead of one as in CED. Diffusion methods of this
type have been studied by Rambaux and Gargon [312]. They are 3-D versions of
the edge-enhancing anisotropic diffusion filter from [408].

6.7 Summary and Conclusions

In the present paper we have treated the problem of enhancing flow-like patterns.
For such tasks a reliable measurement of local orientation is needed. Our exper-
iments demonstrate that the structure tensor satisfies this requirement. Unlike
many other applications, we do not restrict its application to pure image analysis,
we use it as a tool for steering a scale-space evolution.

To this end, we evolve the original image by means of a nonlinear anisotropic
diffusion equation. Its diffusion tensor reflects the local image structure by using
the same set of eigenvectors as the structure tensor. The eigenvalues are chosen in
such a way that diffusion acts mainly along the direction with the highest coher-
ence, and becomes stronger when the coherence increases. The resulting coherence-
enhancing diffusion (CED) process gives a theoretically well-founded scale-space
representation: proofs have been presented which show that its unique solution
is stable under perturbations of the initial image, satisfies Koenderink’s causality
requirement, and creates a large family of Lyapunov functionals which ensure that
the process is image simplifying and converges to a constant steady-state.

This theoretical framework is valid in any dimension. We have also presented an
m-~dimensional numerical scheme where a stabilization based on additive operator
splitting (AOS) allows time steps which are one order of magnitude larger than in
the explicit case.

Finally, the use of CED was illustrated by applying it to 2-D and 3-D data
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sets. The results indicate a variety of possible application areas ranging from com-
puter aided quality control over fingerprint enhancement to medical imaging. This,
however, gives only one aspect of the filter concept. Coherence-enhancing diffusion
allows also generalizations to vector-valued images. Details in this direction can
be found in [416].

Acknowledgments. The author thanks Robert Maas and Stiliyan Kalitzin for
useful comments on a draft version of this paper, and Wiro Niessen for providing
the 3-D trabecular bone data set.

6.8 Appendix

6.8.1 Proof of Theorem 12

(a) Existence, Uniqueness and Regularity
Existence, uniqueness and regularity are straightforward anisotropic exten-
sions of the proof for the isotropic case studied by Catté, Lions, Morel and
Coll [74], and the extremum principle follows from Stampacchia’s truncation
method (cf. [52], p. 211); see [412] for more details.

(b) Continuous Dependence on the Initial Image
In order to discuss the continuous dependence on f, let us first define some
useful notations. Let H'(2) be the Sobolev space of functions u(z) € L*()
with all distributional derivatives of first order being in L?(Q). We equip
H'(Q) with the norm

m 1/2
el 2= (Il + D 10mullEa(a)) (6.32)
=1

and identify it with its dual space. Let L?(0,7; H'(Q2)) be the space of func-
tions u, strongly measurable on [0, 7] with range in H!(Q2) (for the Lebesgue
measure dt on [0,7]) such that

T
1/2
1wl rmi o) = </||U(t)||?{1(n) dt) < 0. (6.33)
0

The first part of the proof is similar to the uniqueness proof in [74]. Let
fyh € L*(Q) be two initial values and u, w the corresponding solutions.
Then one shows that

5 7 @) —w®)ia@ < IVult)= V@)l - (ID(J,(Vue(t)))

D(J,(Vws () llso)ree (@) - [[Vu(t) ||z
- v ||Vu(t)—Vw(t)||iz(m (6.34)
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m
where ||Bl|o := nax > |bij| for B = (b;;) € R™™, and v denotes the lower
=1l..m ,]:1
positive bound for the eigenvalues of D.

In order to apply the Gronwall-Bellman lemma, we have to estimate

(ID(p(Vuo(t))) = D(J,(Vws (t)))lloo) e (@)

by ||u(t)—w(?t)||2()- By the boundedness of Vu, and Vw,, and the smooth-
ness property (Cl) we know that there exists a Lipschitz constant L such
that

(1D (T, (Ve (t))) = D(J,(Vws () lloo) Lo ()
< L esssup | Vu(t) —Vw(t)||2 (6.35)

€
By iteratively reflecting (2 at its boundaries we get a partitioning R™ = U Q;.

13
Using Jensen’s inequality, our definition of convolution on a finite domain (2,
and this partitioning we obtain

(1D, (Vo (1))~ DU, (T () e
< Leesssup / IV KL )13 (G~ @) o) dy)

IN

L. (Zlgé%f IVEIE) " llu(t) = w(®)lle)
= ¢ [lu(t) = w(®) 20 (6.36)

with some finite constant c¢. Plugging (6.36) into (6.34) gives

5 77 160 =0 @i
< ZIVu®)llawllult) —w®)lli ) V|| Vu(t) = Vu(t) |z

—ta —b
—v ||Vu(t) = Vw(t)|[22q)-
To get at the right hand side a quadratic expression in ||Vu(t)—Vw(?)||12(q)
we use |ab| < % + % and end up with

()0 ®)am) < o 1VuOIRe) - 1) 0 (1) ey

Applying the Gronwall-Bellman lemma [51, pp. 156-157] yields

t
02
-0l < 15=AlEey-exp (5 - [ IFu(6) ey ds )
0
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Next we show that f [Vu(s)][F2(0y ds is finite:

t T
J19u@) gy ds < [ 190y ds
0 0

< l/ /(Vu(x,s),DVu(x,s)) dz

Q

ds

A

[==)
H

ds

_ _/ /u(x,s)-div (DVu(x,s)) dx

Q

<
o

~

1
< 5 [ 1Ol 1o ds

0

<

1
< o ||U||L2(0,T;H1(Q)) ||at“||L2(0,T;H1(Q))-

By virtue of the existence proof in [74], we know that the right-hand of this
estimate exists. Now, let ¢ > 0 and choose

2

0 = e-exp<2 5

||U||L2 (0,T;HY(Q)) * ||8tu||L2(0,T;H1(Q))>'
Then for || f—hllL2@) < 0, the preceding results imply
lu(t) —w(t)|i2@ <€ Vtel[0,T],

which proves the continuous dependence on the initial data. O

6.8.2 Proof of Theorem 13
Let D(J,(Vu,)) =: (dij(J,(Vu,))). Then we have

ou = ii (Ozzd,] Vu,,.))) O;u
i=1 j=1
+ iid Jo(Vig)) Op;a; . (6.37)
i=1 j=1

Since Vu(€,0) = 0 and 0,,d;;(J,(Vu,(&,6))) is bounded, the first term of the
right-hand side of (6.37) vanishes in (£, 0).
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We know that the diffusion tensor D := D(J,(Vu,(&,6))) is positive definite.
Hence, there exists an orthogonal transformation S € R™*™ such that

STDS = diag(Ai, ..., Am) =: A

with Aq,...,\,, being the positive eigenvalues of D.
Now, let us assume that (£,60) is a local maximum where the Hessian H :=
Hess(u(€, 0)) and, thus, B := (b;;) := STHS are negative definite. Then we have

bi; <0 (’L: 1,...,m),

and by the invariance of the trace with respect to orthogonal transformations it
follows that

owu(€,0) = tr(DH)
= tr(STDSSTHS)
(AB)

I3

< 0.

If £ is a local minimum of u(z,#), one proceeds in the same way utilizing the
positive definiteness of the Hessian. [l

6.8.3 Proof of Theorem 14

(a) (i) Let r € C?%[a,b] be convex on [a,b]. Using the average grey level invari-
ance and Jensen’s inequality we obtain, for all ¢ > 0,

S(Mf) = /r<ﬁ/u(x,t)dx) dy

Q

< /(ﬁ/r(u(x,t))d:g> dy

Q Q

= /T(u(a:,t)) dx
D(u(t)). (6.38)

(ii) Let us start by proving the continuity of V(¢) in 0. Thanks to the
maximum-minimum principle, we may choose a constant

L= !
max |7 (s)]
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such that for all ¢ > 0, the Lipschitz condition

r(u(z, 1) =r(f(2))] < L lu(z,t)=f(z)]

is verified almost everywhere on (2. From this and the Cauchy-Schwarz
inequality, we get

VO -VO) < (9" Ir(u®) ()l

202 L [Ju(t) ~ fllz)-

From [74] we know that u € C([0,T];L*(2)). Thus, the limit ¢ — 0%
gives the announced continuity in 0.

By Theorem 12 and the boundedness of 7’ on [a, b], we know that V is
differentiable for ¢t > 0 and V'(t) = [, 7'(u) u, dz. Thus, the divergence
theorem yields

<
<

V'(t) = ' (u) div (DVu) dz

r'(u) (DVu,n) dS
=0

r"(u) (Vu, DVu) dzx
>0 >0

I
O O T O

<

(b) By the grey level shift invariance we know that v := u — M f satisfies the
diffusion equation as well. We multiply this equation by v, integrate, and use
the divergence theorem to obtain

/vvt dz = —/(W,D(J,,(wa))vm dz.

Q
Since Vv, is bounded, we can find some v > 0 such that
1d
2 dt
For t > 0, there exists some g with v(zg) = 0. Therefore, we may apply
Poincaré’s inequality (cf. [7, p. 122]), which tells us that

(IvllE@) < =¥ IVollis )

||U||i2(9) < Co ||VU||i2(Q)

with some constant Cy = Cy(£2) > 0. This yields

d
%”UH?J?(Q) < =20 Co |v]|F2 0y
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and hence the exponential decay of ||v||r 2y to 0.

By the maximum principle, we know that ||v(%)|| () is bounded by || f —
M f|lueo (- Thus, for ¢ € IN, ¢ > 2, we get

o)l < If=Mfliwiq - lv@®F2@) — 0,
and, for 1 < p < g < oo, Holder’s inequality gives

IIU(t)IILp(Q) < |Q|(1/P)—(1/Q) . ||U(t)||Lq(Q) - 0.

This proves the assertion. O
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Chapter 7

Coherence-Enhancing Diffusion of
Colour Images

Joachim Weickert.

Image and Vision Computing,
Vol. 17, No. 3-4, 201-212, March 1999.

Abstract

Many image processing problems require the enhancement of coher-
ent flow-like structures. This can be accomplished in a natural way by
combining anisotropic diffusion filtering and texture analysis by means
of the structure tensor (second-moment matriz, interest operator). In
this paper an extension of these ideas to vector-valued images is pre-
sented. A structure tensor for vector-valued images is constructed as
the mean of the structure tensors of each channel. This idea general-
1zes Di Zenzo’s gradient for colour images by introducing an additional
integration scale. The common structure tensor is used for steering the
diffusion processes in each channel. The additional integration scale
turns out to be crucial for orientation smoothing and it leads to signif-
tcantly tmproved filter results. After analysing the role of all filter pa-
rameters, examples from different application areas are presented, and
it its demonstrated that this type of diffusion filtering is highly robust
under additive Gaussian noise.
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7.1 Introduction

Flow-like structures appear in many image processing problems, for instance the
automatic assessment of wood surfaces or fabrics, fingerprint analysis, or scientific
image processing in oceanography [197]. Most humans consider flow-like structures
as pleasant, harmonic, or at least interesting. Thus, it is not surprising that also
artists like van Gogh or Munch have emphasized these features in their paintings.

Some images containing flow-like patterns are of poor quality, such that it be-
comes necessary to enhance them by closing interrupted lines'. Moreover, in many
“natural” images, colour plays an important role and it would be desirable to
make use of this additional information. Vector-valued image processing material
with coherent structures, however, can also arise in meteorology and oceanog-
raphy, if information is collected at different channels corresponding to different
wavelengths.

In the present paper we shall address the problem of enhancing such flow-like
structures in vector-valued images. To this end, we first have to analyse their co-
herence. This is done by generalizing a well-established tool from texture analysis,
the structure tensor (second-moment matrix, interest operator) to vector-valued
images. Its eigenvectors and eigenvalues provide us with all required information.
This coherence descriptor enables us to construct a diffusion tensor which steers
the diffusion process in each channel in such a way that diffusion is encouraged
along the preferred structure orientation.

The paper is organized as follows. Section 7.2 gives a review of the structure
tensor concept and it presents its generalization to vector-valued images. Then we
discuss in Section 7.3 how this information is used for designing an appropriate
diffusion process. Its parameters are analysed in Section 7.4, and its properties are
illustrated by several examples in Section 7.5. We conclude with a summary in
Section 7.6.

Related work. The work presented here makes a synthesis of two earlier ideas
of the author: Using a common structure tensor for diffusing vector-valued images
was proposed in [405], while scalar-valued coherence-enhancing anisotropic diffu-
sion goes back to [406]. Its distinctive feature is the combination of colour texture
processing based on structure tensor analysis with a nonvanishing integration scale.

This concept also generalizes work of Whitaker and Gerig [432] for isotropic dif-
fusion of vector-valued images with a common scalar diffusivity to the anisotropic
case with a common diffusion tensor. Recently, different techniques which are
based on partial differential equations (PDEs) have been applied to colour images
[50, 75, 210, 308, 332, 355]. Among them, the ones by Chambolle [75] and Sapiro
and Ringach [332] reveal the most structural similarities to our approach. How-

1This problem can even be related to finding illusory contours.



7.2. ANALYSING COHERENT STRUCTURES 159

ever, their goal is edge-preserving smoothing, while the method presented here
achieves coherence-enhancement by looking at an additional, much larger scale:
the integration scale. We shall see that this is a very essential model feature which
guarantees stable orientation estimates. This additional integration scale is also
the main difference to the anisotropic diffusion approach of Cottet and Germain
[91] for scalar images.

Related anisotropic techniques which convolve with a Gaussian, whose shape is
adapted to a second moment matrix, have been pioneered by Nitzberg and Shiota
[280], and further pursued by Lindeberg and Garding [232] and Yang et al. [440].
Unlike our approach they do not utilize the difference of the eigenvalues of the
structure tensor as a coherence measure, and they focus on scalar images. In this
sense they are more similar to the methods presented in [408], but they are not
equivalent to a diffusion process in divergence form, which is capable of preserving
the average grey value.

PDE methods for texture smoothing or enhancement often create a feature vec-
tor image by means of Gabor techniques, apply a nonlinear vector-valued diffusion
to this feature image, and assemble the filtered texture from the processed features.
Techniques in this spirit have been proposed by Whitaker and Gerig [432], Rubner
and Tomasi [324], and Kimmel et al. [210]. Although these methods make use of
generalized gradients for vector-valued images in the sense of Kreyzsig [216] and Di
Zenzo [107], they do not take into account the integration scale. Recently, a PDE-
based smoothing method which utilizes Gabor filters and which works directly on
the image (instead of the feature vector image) has been studied by Carmona and
Zhong [66]. Most of the preceding texture processing methods were designed for
grey-scale images, and techniques such as [324, 210, 66| do not necessarily lead to
diffusion processes in divergence form.

Since our method works on colour textures and may serve to create visually
more pleasant structures with increased coherence, it is not surprising that it gives
perceptually similar results as the line integral convolution method by Cabral and
Leedom [63], which has become a popular tool in computer graphics. A preliminary
version of the present paper can be found in a proceedings volume [409].

7.2 Analysing Coherent Structures

For analysing coherent flow-like structures, we first focus on scalar images. Con-
sider a rectangular image domain € := (0,a1) X (0, az), and let an image u(z) be
represented by a bounded mapping u : {2 — R

A very simple structure descriptor is given by Vu,, the gradient of a Gaussian-
smoothed version of u:

K@) = — -exp(—%), (7.1)

2mwo?
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Figure 7.1: Local orientation in a fingerprint image. (a) Top LEFT: Original
fingerprint, Q = (0,256)2. (b) ToP RIGHT: Orientation of smoothed gradient,
o = 0.5. (¢) BorTroM LEFT: Orientation of smoothed gradient, o = 5. (d) BoT-
TOM RIGHT: Structure tensor orientation, o = 0.5, p = 4. Adapted from [406].

uo(z,t) = (K, *u(.,t))(x) (o0 > 0). (7.2)

The standard deviation o denotes the noise scale, since it makes the edge detector
ignorant of details smaller than O(o). Although Vu, is useful for detecting edges,
it is unsuited for finding parallel structures, as we can see from Figure 7.1.

The left image shows an original fingerprint. Figure 7.1(b),(c) depict the gra-
dient orientation using colours: vertical gradients are depicted in red, horizontal
ones in green etc. We observe that for small ¢ high fluctuations remain, while
larger o lead to entirely useless results. This is due to the fact that for larger
o neighbouring gradients with same orientation, but opposite sign cancel each



7.2. ANALYSING COHERENT STRUCTURES 161

other. Gradient smoothing averages directions instead of orientations?. To make
the structure descriptor invariant under sign changes, we may replace Vu, by its
tensor product

Jo(Vug) := Vu,Vul. (7.3)

This matrix is symmetric and positive semidefinite, and its eigenvectors are parallel
and orthogonal to Vu,, respectively. The corresponding eigenvalues |Vu,|? and 0
describe the contrast in the eigendirections. Now that we have replaced directions
by orientations, we can average the orientations by applying a componentwise
convolution with a Gaussian K :

J,(Vu,) = K, * (Vu,Vul)  (p>0). (7.4)

This matrix is named structure tensor, interest operator or second-moment matriz.
It is useful for many different tasks, for instance for analysing flow-like textures
[313], corners and T-junctions [132, 161, 280], shape cues [230] and spatio—temporal
image sequences [197]. Equivalent approaches may also be found in [200, 42]. A
book by Jahne [197] gives a nice overview of these methods and clarifies their
equivalence.

Ji1 Ji2

It is not hard to verify that the symmetric matrix J, = <j12 j22) is positive

semidefinite. Its eigenvalues can be calculated as

iy = % (tr(Jp) £ /te2(J,) - 4det(Jp)) | (7.5)

where tr(J,) = ji1 + Joo, det(J,) = j11je2 — j5, and py > po. The corresponding
orthonormal set of eigenvectors {w:, w,} is given by w; = (cos @, sin ¢)T, where ¢
satisfies

212

tan(2¢) = .
Ji1r — J22

(7.6)
The eigenvalues integrate the variation of the grey values within a neighbourhood
of size O(p). They describe the average contrast in the eigendirections. Thus, the
integration scale p should reflect the characteristic size of the texture. Usually, it
is large in comparison to the noise scale o. The eigenvector wy corresponds to
the smaller eigenvalue py. It is the orientation with the lowest fluctuations, the
so-called coherence orientation.

Figure 7.1(d) depicts this direction. We observe that it is exactly the desired
average orientation. It should also be noted how well the singularities correspond
to the singularities in the original fingerprint image.

2In our terminology, gradients with opposite sign share the same orientation, but point in
opposite directions.
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Not only the eigenvectors, but also the eigenvalues provide useful information.
Constant areas are characterized by p; = ps = 0, straight edges give p1 > us = 0,
and corners yield p; > ps > 0. The expression

ko= (= p2)? = (Jn—je)’ + 4450 (7.7)

becomes large for anisotropic structures. It measures the coherence within a win-
dow of scale p, and its value can range from 0 to co.

The reason why we prefer this coherence measure over the popular normalized
coherence measure

RN

_ (m—m)® (G — )+ 455 (7.8)

(p1 + p2)? (J11 + Jo2)? '
which attains values between 0 and 1, is that the normalized coherence measure
is discontinuous for p; = pe = 0. This may lead to unreliable coherence estimates
in flat image regions. A simple example can illustrate the problem: if p; = uy | 0,
then kK — 0, while o = 0 and p; | 0lead to K — 1. The latter limit also contradicts
the intuition that a homogeneous region should reveal no anisotropy.

Now that we have analysed the structure tensor for scalar-valued images, we
can draw our attention to the vector-valued case. We denote a vector-valued image
by @ : Q@ — R™ and its channels by u;, i = 1,...,m. Di Zenzo [107] proposed an
edge detector for vector images by considering the eigenvalues and eigenvectors of

Z Vu (V)T (7.9)

If we extend his idea by introducing a noise and integration scale, this comes down
to averaging the structure tensors of each channel in a common structure tensor
m
Tp(Viig) =Y wid,(Vui,) (7.10)
i=1
with > w; = 1 and w; > 0 for all . An interpretation of this structure tensor for
vector-valued images in terms of eigenvalues and eigenvectors carries immediately
over from the scalar case.
In absence of specific a-priori knowledge or if one has a colour model where all
channels have a similar meaning, range and reliability, one usually chooses equal
weights:

wi=— i=1,..,m. (7.11)

In those cases where measurements in some channels are less reliable or more noisy,
one may choose the weights as a function of the noise variance o7 such that [60]:

i=1,..,m. (7.12)
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If the noise variance turns out to be signal dependent, these weights can be adapted
locally resulting in an inhomogeneous treatment of the pixels [60].

7.3 Diffusing Colour Images

Now that we have a tool for analysing coherence in vector images, we can try to
enhance it.

This may be achieved by using anisotropic diffusion filtering. In the scalar case
the idea is as follows: One obtains a processed version u(z,t) of an image f(z)
with a scale parameter ¢ > 0 as the solution of a diffusion equation

Oyu = div (D Vu), (7.13)

with f as initial condition,
u(z,0) = f(z), (7.14)

and reflecting boundary conditions:
(DVu, i) = 0. (7.15)

Hereby, 77 denotes the outer normal and (.,.) the usual Euclidean scalar product.

The diffusion tensor D is a positive definite 2 X 2 matrix, which steers the
diffusion process: its eigenvalues determine the diffusivities in the directions of the
eigenvectors. In the nonlinear case one adapts the diffusion tensor to the evolving
image, for instance to reduce undesired smoothing across edges; see [412] and the
references therein. The use of a diffusion tensor allows a more flexible, orientation-
dependent filter design than early nonlinear diffusion filters [303, 74| which use
only scalar-valued diffusivities.

The simplest idea to process vector images would be to diffuse each channel
separately. If the diffusion tensor depends on the local image structure, however,
this causes a risk that a structure (e.g. an edge) evolves at different locations for
different channels. Thus, it is plausible to synchronize the evolution by a common
diffusion tensor for all channels. In this case the vector-valued diffusion filter has
the following structure (i = 1, ...,m):

(DVu;, i) = 0. (7.18)

Since D should take into account information from all channels, a natural choice
would be to make it a function of J,(Vi,), the structure tensor for vector images.
How should this function look like? For enhancing coherence in vector images,
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we need a smoothing process which acts mainly along the coherence direction ws
(with the notations from Section 7.2) and the smoothing should increase with the
coherence (u;—po)?. This may be achieved in the following way:

We require that D should possess the same eigenvectors wy, wo as the structure
tensor J,(Vd,). The eigenvalues of D are chosen as

)\1 = «w (719)
{ o if 1 = g,

a+ (1—a)exp (ﬁ) else

Ay 1= (7.20)

with C' > 0 and a small parameter a € (0,1).

We observe that A\, is an increasing function with respect to the coherence
(u1—p2)?. Since the corresponding eigenvector wy describes the coherence direction,
we have constructed a diffusion process acting preferably along coherent structures.

The exponential function and the positive parameter o were introduced mainly
for two theoretical reasons: First, the exponential function guarantees that the
smoothness of the structure tensor carries over to the diffusion tensor, and that A,
does not exceed 1. This bound is a typical scaling convention in nonlinear diffusion
filtering. Second, the positivity of o guarantees that the process never stops: Even
if the structure becomes isotropic ((p1—pu2)?> — 0), there remains some small linear
diffusion with diffusivity @ > 0. Thus, the diffusion tensor is uniformly positive
definite.

Exploiting the smoothness and uniform positive definiteness properties, we may
find a well-founded scale-space interpretation in a similar way as for the scalar-
valued anisotropic diffusion filters from [405]. This scale-space representation sim-
plifies the vector image with respect to many aspects: within each channel maxima
decrease, minima increase, all LP-norms (2 < p < oo) decrease, even central mo-
ments are diminished, and the entropy increases. Moreover, the solution depends
continuously on the original image. For ¢ — oo, all channels tend to a constant
image. The average value within each channel remains unaltered during the whole
evolution. Existence and uniqueness results for this initial boundary value problem
can be obtained in a similar way as in [74]. For a more detailed treatment of the
well-posedness and scale-space theory for scalar-valued anisotropic diffusion filters
in the continuous and discrete setting, the reader is referred to [412].

7.4 Parameter Selection

The preceding model contains several parameters which have to be specified in
practical situations. The goal of this section is to clarify their meaning and to
present empirical guidelines for their selection.
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We have already seen that the regularization parameter v was introduced to
ensure a small amount of isotropic diffusion and to limit the spectral condition
number of the diffusion tensor to 1/«. This parameter is mainly important for
theoretical reasons. In practice, it can be fixed to a small value, and no adaptation
to the actual image material is required.

The parameter C' is a threshold parameter. Strucures with coherence measures
(1 — p2)? < C are regarded as almost isotropic, and the diffusion along the
coherence direction wsy tends to a. For (u; — p)? > C, the diffusion along the
coherence direction wy tends to its maximal value, which is limited by 1. One
possibility to determine a good practical value for C' is to calculate a cumulate
histogram for (u; — p12)? evaluated for the initial image f, and to set C to a certain
quantile of this histogram. For instance, if one estimates that 95 % of the image
locations have strongly preferred one-dimensional structures, one may set C to the
95 % quantile of the process.

Since the time ¢ is an inherent parameter in each continuous diffusion process, it
has nothing to do with its discretization. The common tradition in image analysis,
however, is to assign unit length to a pixel. In this case, a different discretization
has to be regarded as a rescaling of the image domain. The scaling behaviour of
diffusion processes implies that a spatial rescaling which replaces x by [z, has
to replace ¢t by 3?t. This means for instance that a subsampling in each image
direction by a factor 2 results in a four times faster image evolution. Moreover,
typical finite difference implementations reveal a computational effort which is
proportional to the pixel number. This gives another speed-up by a factor 4, such
that the whole calculation becomes 16 times faster.

There remains another question to be addressed: what is a suitable stopping
time ¢ of the process?? Let us first address this question for scalar-valued images. In
a classic linear scale-space representation based on the diffusion process d,u = Au,
the time ¢ corresponds to a convolution with a Gaussian of standard deviation
o = v/2t. Thus, specifying at spatial smoothing radius ¢ immediately determines
the stopping time t¢.

In the nonlinear diffusion case, the smoothing is nonuniform and the time ¢ is
not directly related to a spatial scale. Other intuitive measures like counting the
number of extrema are also problematic for diffusion filters, since it is well-known
that for linear and nonlinear diffusion filters in dimensions > 2, the number of local
extrema does not necessarily decrease in a monotone way: creation of extrema is
not an exception but an event which happens generically [320].

However, it is possible to define average measures for the globality of the repre-
sentation which reveal monotone behaviour. By identifying it as a Lyapunov func-

3Tt should be observed that this question only appears when regarding the diffusion process
as a restoration method. Considering it as a scale-space means that one is interested in the entire
evolution.
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tional of a large class of scalar-valued nonlinear diffusion filters, Weickert [405, 412]
has shown that the variance n%(u(t)) is monotonically decreasing. This reasoning
immediately carries over to vector-valued images, where one may define the vari-
ance as a suitable convex combination of the variances in each channel:

W(i(t) =Y B (1)) (7.21)

with 3, 3i =1 and §; > 0 for all i. We also know that n?(@(c0)) = 0, since every
channel converges to a constant image. Therefore, the relative variance

spld(t)) = —=- (7.22)

decreases monotonically from 1 to 0. It gives the average locality of #(t) and its
value can be used to measure the distance of #(t) from the initial state f and the
final state @(c0). Prescribing a certain value for s provides us with an a-posteriori
criterion for the stopping time of the nonlinear diffusion process. Moreover, this
strategy frees the users from any recalculations of the stopping time, if the image is
resampled. Practical applications to the restoration of scalar valued medical images
have demonstrated the usefulness and simplicity of this criterion [430, 278].

The relative variance can also be used as a heuristic guideline for restoring
images with a known signal-to-noise ratio (SNR). Let us illustrate this for a simple
example where a degraded image ¢ is a noisy variant of some original image f By
defining the SNR as the ratio between the variance of the original image and the
noise variance, one knows that

((qi : +1ﬁ' (7.23)

An ideal diffusion filter which works optimally for a denoising task would first
eliminate the noise before significantly affecting the signal. For such a filter, one
should choose the stopping time 7" such that the relative variance satisfies

sg((T)) = ——— (7.24)

This stopping time is uniquely determined, as we know that sz(i(t)) is monotone
in ¢. In practice, such a stopping criterion may underestimate the optimal stopping
time, since even a well-adapted diffusion filter cannot completely avoid influencing
the signal to a certain amount while eliminating the noise. Nevertheless, in Section
7.5 we shall see that (7.24) can give results which are rather close to the optimal
value.
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The local scale o and the integration scale p of the structure tensor should be
adapted to the noise and the texture scale of the problem. In many cases it is
not very difficult to get parameter estimates which work well over the whole image
domain. In other situations, one may want to find local estimates by applying scale
selection strategies as proposed by Lindeberg [230]. The next section will show an
example which illustrates the impact of the integration scale.

7.5 Examples

Coherence-enhancing anisotropic diffusion can be implemented by means of stan-
dard finite-difference methods from the numerical literature; see [427] for some
implementational details as well as extensions to higher dimensions. In the follow-
ing test examples we used the RGB channels to regard colour images as vector
images. Since the variances in all channels were comparable and no additional a
priori knowledge was available, equal weights were assigned to all channels. The
parameter o was set to 0.001.

Figure 7.2 shows the well-known mandrill test image and its processed version
for different integration scales p. The case p = 0 is depicted in Figure 7.2(b).
This choice is essentially a colour extension of the greyscale model by Cottet and
Germain [91], and its smoothing direction wy is identical with the Chambolle and
Sapiro—Ringach filters [75, 332]. As can be seen from Figure 7.1(b), the reason
for the limited performance of this filter in the context of orientation smooth-
ing lies in highly fluctuating local orientation estimates. The introduction of an
additional integration scale stabilizes these estimates and leads to a significantly
improved smoothing along coherent structures such as the mandrill’s hair. This
effect, depicted in Figure 7.2(c)—(f), shows that the integration scale is an impor-
tant feature for the success of any orientation diffusion scheme. It should be equal
to or larger than the texture scale. Overestimating it is significantly less critical
than underestimations.

Figure 7.3 analyses the behaviour of coherence-enhancing diffusion for noisy
input images. The mandrill image has been corrupted with additive Gaussian noise
and the filtered results were depicted at those times when the {? distance to the
uncorrupted mandrill image was minimal. The observable high robustness confirms
the theoretically established stability of a broad class of nonlinear diffusion filters
under perturbations of the original image [412]. Even for a SNR of only 0.25 and
a noise scale of only o = 1 pixel, it is possible to correctly restore many coherent
structures which are hardly visible for a human observer.

Table 7.1 shows that in this case coherence-enhancing diffusion was able to
reduce the [? distance to the original image by a factor 15.58. Table 7.2 and Figure
7.4 illustrate the denoising behaviour when using the stopping criterion (7.24). We
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Figure 7.2: Coherence-enhancing diffusion of the mandrill test image with different
integration scales p. C was set to the 99 % quantile. (a) Top LEFT: Original,
Q = (0,512)% (b) Top RiGHT: Filtered with 0 = 1, p = 0, ¢t = 40 (c) MIDDLE
LEFT: Ditto with p = 5. (d) MIDDLE RIGHT: p = 10. (e) BoTTOM LEFT: p = 15.
(f) BorToM RIGHT: p = 20.
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Figure 7.3: Robustness of coherence-enhancing diffusion under noise (¢ =1, p =
12, X was set to the 99% quantile). (a) TopP LEFT: Mandrill image with additive
Gaussian noise. 7, = 56.2, SNR = 1. (b) Top RIGHT: Optimal restoration of (a).
t =6.4. (c) MIDDLE LEFT: 0,, = 79.0, SNR = 0.5. (d) MIDDLE RIGHT: Optimal
restoration of (c). t = 16.5. (e) BorTOM LEFT: 0, = 1124, SNR = 0.25. (f)
BoTTOoM RIGHT: Optimal restoration of (e). t = 46.0.
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Table 7.1: Restoration properties of coherence-enhancing diffusion applied to the
mandrill image with additive Gaussian noise with zero mean. 7, denotes the stan-
dard deviation of the noise, and n? is the average image variance per channel. T is
the optimal stopping time with respect to the minimization of §(t), the I? distance
between () and the uncorrupted original image.

SNR 4 2 1.0 0.5 0.25
T 28.1 39.7| 562 79.0 112.4
T 1.3 2.7 6.4 16.5 46.0
n?(t=0) | 3945.34 | 4730.24 | 6308.89 | 9384.54 | 15761.21
n?(t=T) | 2990.08 | 2917.97 | 2807.48 | 2669.16 | 2502.25
5(t=0) | 787.50 | 1571.88 | 3149.99 | 6224.20 | 12599.97
S(t=T) | 299.13| 41521 | 547.20 | 678.24 | 808.29
5(0)/8(T) 263| 379| 576| 9.18 15.58

Table 7.2: Restoration properties of coherence-enhancing diffusion when applying
the stopping time criterion instead of the optimal stopping time.

SNR 4 2 1.0 0.5 0.25
n 281| 397 562| 790| 1124
T 0.7 1.3 2.4 48 9.0
n2(t=0) | 3945.34 | 4730.24 | 6308.89 | 9384.54 | 15761.21
n2(t="T) | 3155.85 | 3144.92 | 3143.47 | 3119.03 | 3145.70
5(t=0) | 787.50 | 1571.88 | 3149.99 | 6224.20 | 12599.97
S(t=T) | 299.13| 415.21 | 547.20 | 678.24 | 808.29
5(0)/8(T) 246 | 348 | b5.14| 793 1255
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Figure 7.4: Optimal stopping time vs. automatic stopping time. (a) LEFT: Optimal
restoration of mandrill image with additive Gaussian noise (SNR = 1). (b) R1GHT:
Restoration according to the stopping criterion (7.24).

observe that the improvements in the {? distance are not much worse than in the
optimal case.

After these discussions on the restoration properties of coherence-enhancing
diffusion, let us now have a look at its scale-space qualities. Figure 7.5 depicts the
evolution of a wood surface under three diffusion scale-spaces.

The first column shows the results when isotropic linear diffusion with the
unit matrix as diffusion tensor is applied. Since this scale-space is designed to
be uncommitted, it blurs all features in a uniform way. In the middle column
evolution under nonlinear isotropic diffusion filtering can be seen. This method is
based on an extension of the techniques from [303, 74] to vector images; see [432]
for more details. It can be regarded as an edge-preserving smoothing where the
(scalar-valued) diffusivity is low whenever 3. |V, ,|? is large. It tends to preserve
high contrasts, but it is ignorant of the flow-like image character. The right column
shows the effect of coherence-enhancing anisotropic diffusion. We observe that it
gives a flow-like gradual simplification of the original image. It is our believe that an
evolution of this type will be potentially useful for the automatic grading of wood
surfaces. This would be in accordance with the good results of coherence-enhancing
diffusion filtering for the grading of scalar-valued nonwoven fabric images that were
reported in [406].

Other potential application fields where one might be interested in processing
coherent structures are sketched in Figure 7.6 and 7.7. They describe problems
from analysing sonograms and medical images from light microscopy, respectively.

Since coherence-enhancing anisotropic colour diffusion seems to create opti-
cally pleasant structures, it is tempting to apply it to van Gogh paintings which
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Figure 7.5: Scale-space evolution of a wood surface under different diffusion pro-
cesses Top: Original image, Q = (0, 256)%. LEFT COLUMN: Linear diffusion, top to
bottom: ¢ = 0, 2, 10, 50. MIDDLE COLUMN: Isotropic nonlinear diffusion (A = 10,
o =1),t =0, 20, 200, 2000. RIGHT COLUMN: Coherence-enhancing nonlinear
diffusion (C =17.6, 0 =1, p=5), t = 0, 20, 200, 2000.
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Figure 7.6: Coherence-enhancing diffusion of a sonogram. It is a local frequency
analysis of the Danish word hej. The horizontal axis is the time axis, the verti-
cal axis describes the logarithm of the frequency, and the colours display their
intensities. One is interested in estimating the distance between the different
lines, and in interpolating such that sampling artifacts become smaller. (a) LEFT:
Q = (0,168) x (0,192). (b) RiGHT: Filtered (C' = 28.5 (99 % quantile), o = 1,
p =10, t = 50).

emphasize such coherent structures. Thus, in a last example the temporal evolu-
tion of the “Starry Night” painting is shown in Figure 7.8 [392]. While the image
becomes gradually simpler, its flow-like character, which is typical for many van
Gogh paintings, is maintained for a very long time. The coherence-enhancing effect
even creates full moon.

7.6 Conclusions

In this paper a filter for enhancing coherent structures in vector-valued images has
been presented. It is based on two ideas: a generalized structure tensor for vector
images, and anisotropic nonlinear diffusion filtering with a diffusion tensor. We
have shown that its main distinction from other colour diffusion models lies in an
additional integration scale which gives a semilocal average over the preferred ori-
entation. This integration leads to significantly improved smoothing orientations,
which is of importance for the enhancement of one-dimensional structures. We have
clarified the role of the necessary parameters and proposed heuristics for their selec-
tion. Examples have been presented which show that coherence-enhancing colour
diffusion is very robust under noise and of potential interest in various application
areas.
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Figure 7.7: Coherence-enhancing colour diffusion for simplifying medical images.
This is of potential interest for easing their automatic evaluation by subsequent
image processing methods. (a) LEFT: Light microscopy image of a columnar ep-
ithelium of the gall bladder, 2 = (0,125) x (0,212). (b) MIDDLE: Filtered (o = 1,
p=30,C =1,t=30). (c) Ditto with ¢t = 100.
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Figure 7.8: Coherence-enhancing anisotropic diffusion of an expressionistic painting
(C = 4.6 (99 % quantile), 0 = 1, p = 4). (a) ToP LEFT: “Starry Night” by van
Gogh (Saint-Rémy, 1889; New York, The Museum of Modern Art), 2 = (0, 500) x

(0,406). (b) Top RIGHT: ¢t = 15. (¢) BorTOM LEFT: ¢t = 300. (d) BoTTOM
RiIGHT: t = 3000.
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Chapter 8

Efficient and Reliable Schemes for
Nonlinear Diffusion Filtering

Joachim Weickert, Bart M. ter Haar Romeny, and Max A. Viergever.
IEFEE Transactions on Image Processing,
Vol. 8, No. 3, 398-410, March 1998.

Abstract

Nonlinear diffusion filtering is usually performed with explicit schemes.
They are only stable for very small time steps, which leads to poor effi-
ciency and limits their practical use. Based on a recent discrete nonlin-
ear diffusion scale-space framework we present semi-implicit schemes
which are stable for all time steps. These novel schemes use an additive
operator splitting (AOS) which guarantees equal treatment of all coor-
dinate axes. They can be implemented easily in arbitrary dimensions,
have good rotational invariance and reveal a computational complex-
ity and memory requirement which is linear in the number of pizels.
Ezxamples demonstrate that, under typical accuracy requirements, AOS
schemes are at least ten times more efficient than the widely-used ex-
plicit schemes.
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8.1 Introduction

Impressive results are the main reason for using nonlinear diffusion filtering in
image processing: unlike linear diffusion filtering (which is equivalent to convolving
with a Gaussian) edges remain well-localized and can even be enhanced. Spatial
regularizations of this filter class have a solid mathematical foundation as well-
posed scale-spaces [74, 408, 412], whose parameter influence is well-understood
[37, 226].

Poor efficiency is the main reason for not using nonlinear diffusion filtering: most
approaches are based on the simplest finite difference discretization by means of
a so-called explicit or Euler-forward scheme. This scheme requires very small time
steps in order to be stable. Hence the whole filtering procedure is rather time-
consuming.

In the present paper we are going to address this problem. We present a novel type
of separable schemes which do not suffer from any time step size restriction since
all stability-relevant terms are discretized in an implicit manner. The backbone of
these schemes is a Gaussian algorithm for solving a tridiagonal system of linear
equations. It is fast, stable and requires only a few lines programming work. Its
forward and backward substitution step can be regarded as a causal and anticausal
filter of a recursive scheme. The presented algorithms are applicable in arbitrary
dimensions and their computational and storage effort is linear in the image size.
This shows their efficiency.

We prove the reliability of these schemes by verifying that they satisfy recently
established criteria for nonlinear diffusion scale-spaces [407, 412]. This comes down
to checking six simple criteria. If these requirements are fulfilled we can be sure
that the scheme preserves the average grey value, satisfies a causality property
in terms of a maximum-minimum-principle, reveals a large class of smoothing
Lyapunov functionals, and converges to a constant steady-state as the time tends to
infinity. It should be noted that the discrete maximum—minimum principle is a very
restrictive stability criterion (more restrictive than the von Neumann stability),
since it also takes into account the boundary conditions and guarantees that over-
and undershoots cannot appear.

The goal of this paper is to guide the reader in a systematic way to these so-
called additive operator splitting (AOS) schemes. Specific knowledge in numerical
analysis is not necessary, as we shall refer to the required material in the literature
whenever it is needed. However, the reader who is interested in a more detailed
introduction to the matrix algebra which is useful for the present paper, may find
this in Chapter 6 of Ortega’s textbook [289]. As a prototype of a well-founded
nonlinear diffusion filter we focus on a spatial regularization of the Perona—Malik
filter [303] by Catté, Lions, Morel and Coll [74], and Whitaker and Pizer [433].

The paper is organized as follows:
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Section 8.2 gives a brief survey on this diffusion model (which will call CLMC
equation henceforth). In Section 8.3 we review the simplest scheme for the 1-D
CLMC equation: the explicit (Euler forward) discretization in time. We analyse it
by means of criteria for discrete nonlinear diffusion scale-spaces in order to explain
why it requires rather prohibitive time step sizes. As a remedy we study a semi-
implicit discretization for which we show that it satisfies all discrete scale-space
criteria (including stability) even for arbitrary large time steps. It requires to solve
a tridiagonal linear system of equations, which is easily and efficiently done by a
special variant of the well-known Gaussian elimination algorithm. This so-called
Thomas algorithm will be presented in detail, since it forms the core of the whole
scheme.

In Section 8.4 we consider the higher-dimensional case. It is argued that the simple
explicit scheme leads to even more restrictive stability conditions than in the 1-D
case, while the semi-implicit scheme remains absolutely stable. However, solving
the m-dimensional linear system becomes significantly less efficient for dimensions
> 2.

As as remedy we present an alternative scheme which is also semi-implicit, has the
same approximation order, and is absolutely stable, but it can be separated into
one-dimensional processes. Thus, the simple and efficient Thomas algorithm can
be applied again. Unlike classical multiplicative splitting schemes from the math-
ematical literature, we consider an additive operator splitting (AOS). It ensures
that all coordinate axes are treated equally, a very desirable symmetry property
in the context of image processing. Furthermore, we shall check that the AOS
schemes satisfy all criteria for discrete nonlinear scale-spaces.

The section is concluded by proposing a related method for the regularization
step within the CLMC model. Since this regularization is based on a Gaussian
convolution, it is natural to regard it as a linear diffusion filter for which one may
also apply splitting techniques based on the Thomas algorithm.

Section 8.5 presents an m-dimensional algorithmic formulation of the AOS schemes
and analyses its complexity.

In Section 8.6 we evaluate the results by checking the performance of AOS schemes
with respect to rotational invariance and accuracy. This allows us to propose rea-
sonable time step size and to analyse the accuracy and efficiency in comparison to
the unsplit semi-implicit scheme and the widely-used explicit scheme.

We conclude the paper with a summary in Section 8.7. A shortened preliminary
version of this paper can be found in [410].

Related work. Our work has been influenced by a number of related approaches
which we would like to mention here.

Implicit splitting-based approaches for linear diffusion filtering have been proposed
in [151, 64], and also in [8, 14, 444] where their realization as recursive filters is
suggested. Impressive results on improved efficiency by means of recursive filtering
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can be found in [102, 103], and the close relation between recursive filters and linear
scale-space approaches has been clarified in [273]. Semidiscrete or fully discrete
analogues of linear diffusion filtering have been proposed in [282, 229, 25, 329).
In the nonlinear diffusion field one can find several approaches which aim to be
efficient alternatives to the conventional two-level explicit finite-difference scheme,
for instance three-level methods [136], semi-implicit approaches [74], multiplicative
splittings [403], multigrid methods [4], finite element techniques with adaptive
mesh coarsening [33], numerical schemes with wavelets as trial functions [136],
and pseudospectral methods [136]. Even hardware proposals for nonlinear diffusion
filtering can be found in the literature [302, 145].

Schemes which inherit a large number of the properties of their continuous coun-
terparts have also been proposed in the context of curvature-based nonlinear scale-
spaces [58, 72, 73, 86]. Sophisticated algorithms for such processes comprise fast
level set methods [353], high-order ENO schemes [357], and implicit algorithms for
mean curvature motion [8, 271].

8.2 The Continuous Filter Process

In the m-dimensional case the filter of Catté, Lions, Morel and Coll [74] has the
following structure:

Let ©Q := (0,a1) X .... x (0, a,) be our image domain and consider a (scalar) image
as a bounded mapping from {2 into the real numbers R. Then the CLMC filter
calculates a filtered image u(z,t) of f(x) as a solution of the diffusion equation

O = div (g(\Vug\Q) Vu) (8.1)
with the original image as initial state,
u(z,0) = f(x), (8.2)
and reflecting boundary conditions:
Opu:=0 on 01, (8.3)

where n denotes the normal to the image boundary 0f2.

The “time” t is a scale parameter: increasing ¢ leads to simpler image represen-
tations. The whole embedding of the original image into such a one-parameter
family of simplified images is called scale-space. The first representative of this
very general and useful image processing concept, namely linear diffusion filtering,
has been derived in an axiomatic way by Taizo lijima more than 35 years ago
[175, 420].
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In order to reduce smoothing at edges, the diffusivity g is chosen as a decreasing
function of the edge detector |Vu,|. Here, Vu, is the gradient of a smoothed version
of u which is obtained by convolving u with a Gaussian of standard deviation o:

Vu, = V(K,*u), (8.4)

K, L. 2 (8.5)
= 5 X —_— ] . .
7 (2mo2)m/2 P\ 7202

We use the following form for the diffusivity:

1 s <0)
9(s) = { 1 oxp (22) (s> 0) (8.6)
For such rapidly decreasing diffusivities smoothing on both sides of an edge is much
stronger than smoothing across it. As a result, the gradient at edges may even be
enhanced, see [303] for more details. A plays the role of a contrast parameter:
Structures with |Vu,| > X are regarded as edges, where the diffusivity is close to
0, while structures with |Vu,| < A are considered to belong to the interior of a
region. Here the diffusivity is close to 1. In this sense, the CLMC model serves
as a selective smoothing which prefers intraregional smoothing to interregional
blurring. After some time it leads to segmentation-like results which are piecewise
almost constant.

The parameter o > 0 makes the filter insensitive to noise at scales smaller than o. It
is also a regularization parameter which guarantees well-posedness of the process:
Catté et al. [74] have shown that their filter has a unique solution which is infinitely
times differentiable for t > 0. Weickert [408, 412] has proved that it depends
continuously on the original image, satisfies a maximum-minimum principle and
reveals a large family of smoothing Lyapunov functionals which guarantee that
the solution tends to a constant image for ¢ — oo. During the whole evolution, the
average grey value remains unaltered.

Equations of this type have been successfully applied to process medical images, see
e.g. [222, 433, 235]. Nevertheless, they are only one representative of a large class of
nonlinear scale-spaces. Overviews of other methods can be found in [104, 382, 412].

8.3 One-Dimensional Case

8.3.1 Explicit Scheme
The Scheme

The one-dimensional CLMC equation is given by

Bu = 0, (g(|8wu(,|2) axu). (8.7)
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Let us now consider the simplest discrete approximation of this process. A discrete
image can be regarded as a vector f € RV, whose components f;,i € J :={1,..., N}
display the grey values at each pixel. Pixel ¢ represents some location x;, and A is
the grid size. We consider discrete times t; := k7, where k£ € INy and 7 is the time
step size. By u¥ we denote approximations to u(z;, ).

The simplest discretization of (8.7) with reflecting boundary conditions is given
by

k+1 ok ko ok
u;i T — 9; + 4
I = ) (55)
JEN (D)

where N (7) is the set of the two neighbours of pixel i (boundary pixels have only
one neighbour).

The diffusivities g¥ approximate g(|Vu(x;,t;)[?). They can be obtained as follows:
In the spatially discrete case the convolution u, = K, * u comes down to a mul-
tiplication of u € RY with a suitable matrix H € R¥*Y_ In Section 8.4.3 we

shall present an efficient way to achieve this in the spatial domain. A gradient
approximation by central differences gives

P 1 uk — b\’
a=95 2 |5 (8.9)

P,qEN (3)

for some inner pixel ¢. This expression remains also valid at the boundary pixels,
if we extend the image by reflecting it at the boundary.
We can write the explicit scheme in matrix—vector notation as

k+1 _ ,k
T
with A(u¥) = (a;;(v*)) and
ktgk .
e GENE),
ai;(uf) = ¢ — X HEE o (G=1), (8.11)
neN (z)
0 (else).
This comes down to the iteration scheme
ubtt = <I + TA(uk)) uk, (8.12)

where I €RY is the unit matrix. This scheme is called explicit, since u**' can be
directly calculated from u* without solving a system of equations.

Such an explicit iteration step is computationally very cheap: its requires mainly to
calculate the three nonvanishing matrix extries per row and to perform a matrix—
vector multiplication. The computational and storage effort is linear in the pixel
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number N. But does this explicit scheme also create a good discrete scale-space
and how far can we come with one step? We can find an answer to these question
by applying a framework for discrete nonlinear diffusion scale-spaces which we
shall review next.

Criteria for Discrete Nonlinear Diffusion Scale-Spaces

Recently a scale-space interpretation for the continuous CLMC equation and its
anisotropic generalizations has been established [408, 412]. In addition to invari-
ances such as the preservation of the average grey value, it has been shown that — it
spite of its contrast-enhancing potential — these equations create smoothing scale-
spaces: the obey a maximum—-minimum principle, have a large class of smoothing
Lyapunov functionals, and converge to a constant steady-state.

It would be desirable to ensure that discrete approximations do also reveal these
qualities ezactly. Criteria have been identified under which one can guarantee that
a discrete scheme of type

u = f, (8.13)
uF = QuF) uF, Vk € INy, (8.14)

possesses such properties [407, 412]. All one has to check are the following criteria

for Q(u*) = (gi;(u*)):

(D1) Continuity in its argument:

Q € C(RY,RV*N) (8.15)
(D2) Symmetry:
(D3) Unit row sum:
jed
(D4) Nonnegativity:
(D4) Positive diagonal:

(D6) Irreducibility:
We can connect any two pixels by a path with nonvanishing diffusivities.
Formally: For any ¢, 5 € J there exist ky,...,k, € J with kg=1 and k, =7 such
that qxx,,, # 0 for p=10,...,r—1.
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Under these prerequisites the filtering process is well-posed and satisfies the fol-
lowing discrete scale-space properties [407, 412]:

(a) Average grey level invariance
The average grey level p := + Ly, jes [i1s not affected by the discrete diffusion
filter:

1
N Zuf =pu  VkeN,. (8.20)

jed
This invariance is required in scale-space based segmentation algorithms such
as the hyperstack [277].

(b) Eztremum principle:
min f; < uf < max f; ViedJ, VkeéeNN,. (8.21)
Jj€J jeJ

This property is much more than a stability result which forbids under-
and overshoots. It also ensures that iso-intensity linking towards the original
image is possible. Hence, it states an important causality property, cf. [173].

(c) Smoothing Lyapunov sequences:
The process is a simplifying, information-reducing transform with respect to
many aspects:

(i) The p-norms

k - kip) P
[l = (D k) (8.22)
=1

are decreasing in k for all p > 1.

(ii) All even central moments

N
Moy, [u D (uf—p)™ (neN) (8.23)

Jj=1

ZIH

are decreasing in k.

(iii) The entropy
N
— Zuf Inuf, (8.24)
j=1

a measure of uncertainty and missing information, is increasing in & (if
f; is positive for all j).
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(d) Convergence to a constant steady-state:
limuf=p Vied (8.25)
k—00

Thus, the discrete scale-space evolution tends to the most global image rep-
resentation that is possible: a constant image with the same average grey
level as f.

Does the Explicit Scheme Create a Discrete Scale-Space?

Let us now investigate if the explicit scheme (8.12) satisfies the criteria (D1)—(D6)
for discrete nonlinear scale-spaces. Let

QF) = (gi;(u®)) == I + TAF). (8.26)

By virtue of (8.11) we observe that the continuity of ) with respect to its argument
follows directly from the continuity of the diffusivity g.

The symmetry of @ follows from (8.11) and the symmetry of the neighbourhood
relation (i € N(j) <= j € N(i)).

By the construction of A it is also evident that the row sums of A vanish. Hence,
all row sums of @) are 1, which proves (D3).

Thus, let us investigate the nonnegativity. From a;; > 0 for 7 # j, we also have
gij > 0for ¢ # j. Thus, we can focus on the diagonal entries. If they are all positive,
both (D4) and (D5) are satisfied. Since

¢Gi =1- Tzaij (8.27)

J#
and ) a;; > 0, positive diagonal entries require that
J#i
! (8.28)
T : .
max ) aj;(u*)
b#

In order to show that () is irreducible, let us assume that 7 satisfies this restriction
and consider two arbitrary pixels s; and so. If s; < s, then the positivity of g
implies that

Gs1,51+1 > 07 Gs141,5142 > 07 Tty Gsa—1,s0 >0. (829)

If s1 > s then

Gs1,51—1 > 07 Gs1—1,51—2 > 07 Ty Gso+1,52 > 0. (830)

This establishes (D6).
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From these considerations we conclude that the explicit scheme creates a discrete
scale-space provided that the time step size satisfies the restriction (8.28). In image
processing one usually sets h := 1. Since the diffusivity g is bounded from above
by 1, definition (8.11) allows us to guarantee (8.28) for 7 < 1/2.

In practice, this is often a very severe step size restriction. It means that the use
of an explicit scheme is limited rather by its stability than its accuracy. For this
reason it would be interesting to look for schemes with better stability properties.
This shall be done next.

8.3.2 Semi-Implicit Scheme
The Scheme

We consider a slightly more complicated discretization of (8.7), namely

= A(uF)uFtt, (8.31)
which leads to the scheme
(1 - TA(uk)) uFtt = ok, (8.32)

We observe that this scheme does not give the solution u**! directly (explicitly):
It requires to solve a linear system first. For this reason it is called a linear-implicit
(semi-implicit) scheme.

Remark. One may also be interested in studying the (fully) implicit scheme

k1 _ ok

= A(u*) (8.33)
-

leading to a nonlinear system of equations. This is more complicated to solve.
Below we shall see, however, that such a high effort is not necessary, since already
semi-implicitness is sufficient to guarantee absolute stability.

Does the Semi-Implicit Scheme Create a Discrete Scale-Space?

In order to establish the semi-implicit scheme (8.32) as a discrete scale-space we
have to check (D1)—(D6) again.
First we have to show that

B(w") = (b;;(u*) == (I —TA(U")) (8.34)
is invertible. This is easily seen, because B is strictly diagonally dominant:

bl > > |by|  Vie . (8.35)
J#i
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It is well-known from linear algebra that strictly diagonally dominant matrices are
invertible, see e.g. [289, p. 226]. Thus,

Q(u*) = (g5(u")) == B~'(u") (8.36)

exists and the continuity of () in its argument follows from the continuity of g.
Moreover, the symmetry of A carries also over to B and ), which establishes (D2).

In order to prove (D3), consider w := (1, ...,1)T € R". Since B has unit row sum,
we have Bw = w. This implies that

w= B 'w = Qu. (8.37)

Reading this componentwise shows that () has also unit row sum.
(D4)—(D6) can be verified in one step. We already know that B is strictly diagonally
dominant. It is also immediately seen that B is irreducible, b;; < 0 for 7 # j, and
bi; > 0 for all . Then a theorem by Varga [395, p. 85] tells us that Q = B!
satisfies

qij > 0 Vi, j € J (838)

Thus, @ is nonnegative, has positive diagonal and is irreducible.

From these considerations we observe that the semi-implicit scheme creates a dis-
crete nonlinear diffusion scale-space for arbitrarily large time steps. In particular,
it is unconditionally stable and does not suffer from any time step size restriction.
Unlike the explicit scheme, it can be fully adapted to the desired accuracy without
the need to choose small time steps for stability reasons.

Solving the Tridiagonal Linear System: The Thomas Algorithm

The semi-implicit scheme requires to solve a linear system, where the system matrix
is tridiagonal and diagonally dominant. The most efficient way to do this is the so-
called Thomas algorithm, a Gaussian elimination algorithm for tridiagonal systems.
It can be found in many textbooks on numerical analysis, e.g. [352, pp. 43-45].
However, since it builds the backbone of our algorithms and since we want to keep
this paper selfcontained, we survey its algorithmic features here.

The principle is as follows. Suppose we want to solve a tridiagonal linear system
Bu = d with

ar B

N o o

B= (8.39)

YN—2 ONn—1 Bn-1
YN-1 an

Then the Thomas algorithm consists of three steps.
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Step 1: LR decomposition

We decompose B into the product of a lower bidiagonal matrix

1
L 1
L= ) ) (8.40)
In-1 1
and an upper bidiagonal matrix
mi1 T
R= (8.41)
my-1 TN-1
mpy

Comparing the coefficients shows that r; = [; for all 7, and m; and [; can be
obtained as follows:

my =0y

for 1 =1,2,..,N—1:
li = i/m;
Mit1 = Qip1 — 153

Solving LRu = d for u is done in two steps:

Step 2: Forward substitution
We solve Ly = d for y. This gives

Y1 =dy
for i=2,3,... N:
Yi =di — i1y

Step 3: Backward substitution
We solve Ru = y for u. This leads to

un = yn/mn
for i=N—-1,N-2, .., 1:
U; = (yz - ﬁiui—l—l)/mi
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This completes the Thomas algorithm. It is stable for every strictly diagonally
dominant system matrix. One may also regard it as a recursive filtering: The LR
decomposition determines the filter coefficients, Step 2 is a causal filter and Step
3 an anticausal one. The whole scheme is very efficient: it requires only

2N-1)+(N-1)+1+2(N—1) = 5N —4 (8.42)
multiplications/divisions, and
(N-1)+(N-1)+(N—-1) = 3N-3 (8.43)

subtractions. Hence the CPU effort is linear in N. The same is true for the storage
effort.

Applying the Thomas algorithm to the semi-implicit scheme takes almost twice
as long as one iteration of the explicit scheme, but we may use much larger time
steps, since the scheme is absolutely stable.

8.4 Higher-Dimensional Case

8.4.1 Explicit and Semi-Implicit Schemes

The m-dimensional CLMC equation is given by

du = Z%( (Vo ?) 8z1u>. (8.44)

We can discretize the m summands of the right hand side in the same manner
as in the 1-D case. Using only one index for pixel numbering, we may represent
the whole image of size N7 x ... x N, as a vector of size N := N;---N,,. In this
vector—matrix notation we can write the m-dimensional explicit scheme as

m
ubtl = (I + TZAl(uk)) u® (8.45)
1=1
and its semi-implicit counterpart as

uktt = (I - TiAl(uk))_l uf. (8.46)

In both cases the matrix A; = (a;;);; corresponds to derivatives along the I-th
coordinate axis. Let us also introduce

AWy = (a;j(u ZAl . (8.47)
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What about the reliability of both schemes? Checking the discrete scale-space
requirements (D1)—(D6) can be done in a similar way as in the 1-D case, see [412,
Theorem 8| for more details. As in the 1-D case one obtains that the explicit
scheme creates a discrete scale-space for
1

max Y a;;(uF)’

b
and that the semi-implicit scheme satisfies all requirements unconditionally.
What does this mean regarding efficiency? In the m-dimensional case each inner
pixel 7y has 2m neighbours with which it is connected via nonvanishing entries in
the ip-th row of A. From (8.11) we see that we can estimate

2 2
Z ai;(uf) < (—2 +..+ —2) sup g(s) (8.49)
— hi h
J#
where hq,...,h,, denote the dimensions of an m-dimensional pixel. With h; =...=
hm=1 and sup g(s) = 1, restriction (8.48) may be replaced by

T < (8.48)

! 8.50

T< 5 (8.50)
Thus, the allowed step size of the explicit scheme becomes even smaller for higher
dimensions.
However, this does not necessarily imply that the semi-implicit scheme becomes
superior. There appears a new problem as well: Although the actual structure of
the matrix A depends on the pixel numbering, it is not possible anymore to order
the pixels in such a way that in the i-th row all nonvanishing matix elements can be
found within the positions [¢,7—m)] to [i,i+m]: Usually, the matrix reveals a much
larger bandwidth. Applying direct algorithms such as Gaussian elimination would
destroy the zeros within the band and would lead to an immense storage and com-
putation effort. Hence, iterative algorithms have to be applied. Classical methods
like Gaufl—Seidel or SOR do not need additional storage and convergence can be
guaranteed for the special structure of A. This convergence, however, is rather
slow. Faster iterative methods such as the SSOR-CG algorithm [250, pp. 154-161]
need significantly more storage, which can become prohibitive for large images.
A typical problem of iterative methods is also that their convergence becomes
slower for larger 7, since this increases the condition number of the system matrix.
Multigrid methods [53] appear to be one possibility to circumvent many of these
problems, but their implementation is more complicated.
Recapitulating, we see that for dimensions > 2 the semi-implicit scheme remains
absolutely stable, but it is difficult to take full advantage of this because of the
problems to solve the arising linear system as efficiently as it was possible in the
1-D case with the Thomas algorithm.
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8.4.2 AOS Schemes

In order to address the abovementioned problem let us consider a modification
of the semi-implicit scheme (8.46), namely the additive operator splitting (AOS)
scheme

uktt = % i (I — mTAl(uk)>1 u*. (8.51)
=1

Several points should be noted:

e The explicit scheme (8.45), the semi-implicit scheme (8.46) and the AOS
scheme (8.51) have the same first-order Taylor expansions in 7. It is easy to
see that all schemes are O(7+hi+...+h2,) approximations to the continuous
equation. From this viewpoint, all schemes are consistent to the original
equation. One should not make the mistake to regard the AOS scheme as an
algebraically incorrect reformulation of the semi-implicit scheme: The explicit
scheme is also different from the semi-implicit one, but it approximates the
same continuous diffusion process.

e The operators
By(u) == T —mrA(u") (8.52)

describe one-dimensional diffusion processes along the z; axes. Thus, under
a suitable pixel numbering they come down to strictly diagonally dominant
tridiagonal matrices which can be inverted in an efficient and stable way by
the Thomas algorithm from Section 8.3.2.

e Since it is an additive splitting, all coordinate axes are treated in exactly the
same manner. This is in contrast to conventional splitting techniques from
the literature [111, 241, 250, 439]. They are multiplicative splittings such as
the locally one-dimensional (LOD) scheme

ubtt = ﬁ <I - TAl(uk)) B uf. (8.53)

=1

Since in the general nonlinear case the split operators do not commute,
the result of multiplicative splittings will depend on the order of the one-
dimensional operators. This disadvantage will be discussed in Section 8.6 in
more detail.

Does the AOS Scheme Create a Discrete Scale-Space?

The discussed properties suggest that the AOS scheme is an interesting candidate
for an efficient discrete diffusion scale-space. Thus, let us now assess its reliability
by checking the criteria (D1)—(D6).
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Many reasonings carry over from the 1-D semi-implicit scheme: First we observe
that Q; := (gi;1)ij := B; ' exist, since B is strictly diagonally dominant. Also the
continuity of

Q=Y (8.54)
=1

in its argument is a direct consequence of the continuous diffusivity ¢ and the
construction of A;.

In the same way the symmetry of () goes back to the symmetry of A;. Note
that the symmetry of A; is independent of the pixel numbering: a permutation of
their numbering transforms A; into PA; P! for some permutation matrix P. Since
P~! = PT and there exists a pixel numbering such that A; is transformed into a
symmetric tridiagonal matrix just as in the 1-D case, it is clear that A; has to be
symmetric.

With the same reasoning as in 8.3.2, we know that not only B;, but also ); has
row sum 1. Thus, ) has also unit row sum.

To verify (D4), we observe that B, = (b;;); is strictly diagonally dominant, b;; > 0
for all 4, and b;;; < 0 for 7 # j. Under these circumstances we may conclude from
[245, p. 192] that @, = B;l is nonnegative in all components. This implies the
nonnegativity of Q.

Let us now check (D5) and (D6) in one step. Since B;, [ = 1, ..., m represent one-
dimensional diffusion operators, it follows that there exist permutation matrices
P, 1 =1,...,m such that P,B,P! is not only diagonally dominant, but also tridi-
agonal and block irreducible!. Within each irreducible matrix block, we have a
positive diagonal and nonnegative off-diagonals. Applying again Varga’s theorem
[395, p. 85], we conclude that the inverse of each block contains only positive ele-
ments. From this it follows that a;,;,; # 0 for some %, jo € J implies that ¢;,;,; > 0.
Thus, the irreducibility of A = Y""| A; carries over to @ = = >"", @, and (D6)
is satisfied. In particular, since A; is constructed such that a;; # 0 for all 7 € J, it
is clear that @) contains only positive diagonal elements. Therefore, (D5) is verified
as well.

These discussions show that the AOS scheme creates a discrete nonlinear diffusion
scale-space for all time step sizes.

8.4.3 Regularization

This section describes a simple method for calculating the presmoothing u, =
K, xu in a way which is consistent with the ideas presented above.

!Each of the N/N; blocks represents the pixels where all components except for the [—th are
identical.
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It is well-known that Gaussian convolution with standard deviation o is equivalent
to linear diffusion filtering (g = 1) for some time 7' = ¢?/2. Thus we may use the
(semi-)implicit? scheme again in order to obtain a stable algorithm. Several things
make the situation even easier than in the nonlinear setting:

e Frequently, o is in the order of the pixel size. In this case we may regularize
in a single step by filtering once with a time step size T = 02 /2.

e The linear diffusion process is separable. Therefore, the order of the one-
dimensional approximations is not of importance and we may also use a
multiplicative splitting:

Puf =] S, (8.55)
=1

e The system in step [ can be decomposed into N/N; tridiagonal systems with
the same system matrix. Thus, the LR decomposition needs to be done only
once for an N; x N;-matrix of type

14+r7  —r
-y 142r, —m
) - ) (8.56)
—r; 14+2r;, —n

-1 14n

with 7, := 7/h?. Therefore, the main effort boils down to performing N/N;
times the same forward and backward substitution step from the Thomas
algorithm. This requires only 3N—2 multiplications/divisions and 2N—2 sub-
tractions. Such an effort is comparable with the recursive filters presented in
[14, 8, 444], but unlike those Fourier-based methods, the algorithm presented
here allows an adequate treatment of the reflecting boundary conditions and
preserves the average grey value.

8.5 Algorithmic Structure

8.5.1 AOS Algorithm

We may summarize our considerations in the following algorithm for one AOS step
in m dimensions.

2Semi-implicit and implicit are identical in the linear case.
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input: u = u"

regularization: v := K, xu
(according to 8.4.3)

calculate diffusivity g(|Vv|?)
(approximate Vv by central differences)
(use look-up table for evaluating g)

create copy: f=u
initialize sum: v :=0

for [=1,...m:
calculate v := (ml —m?7A)"'f
(solve N/N, tridiagonal systems of
size N; with Thomas algorithm 8.3.2)
update: u:=u-+v

n+1

output: u=u

8.5.2 Complexity

In order to assess the complexity of AOS algorithms, let us consider dimensions
m > 2 and focus on terms of order N.

From the preceding algorithm we recognize that only the four vectors u, v, g, and
f are required. Thus, since all calculations may be performed in single precision,
the main storage effort is 4V x 4 Bytes. This is independent of the dimension m.
Table 8.1 summarizes the relevant computational requirements for each step of
the AOS algorithm. We observe that the effort is proportional to the number N
of pixels and the dimension m. The total effort is only 11mN multiplications or
divisions, (10m — 1) N additions or subtractions, and N look-ups in a table. This is
less than twice the typical effort needed for an explicit scheme, a rather low price
for gaining absolute stability.

8.6 Evaluation

We have seen that AOS schemes with large time steps still reveal average grey
value invariance, stability based on extremum principle, Lyapunov functionals,
and convergence to a constant steady-state. Thus, they are legitimate when being
considered as a pure discrete process which is not intended to approximate a
continuous process.

But does this mean that it is recommendable to consider arbitrarily large time
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Table 8.1: Main operations for one m-dimensional AOS step (M/D: multiplications
or divisions; A/S: additions or subtractions; LUT: look-up operations in a table).

task M/D A/S | LUT
regularization 3mN 2mN
calculate |Vovl|? 2mN | (2m-1)N
calculate diffusivity N
create system matrix mN 3mN
Thomas algorithms omN 3mN
total 11mN | (10m-1)N N

step sizes? In the extreme case: can one filter an image in one step?

In this case we should expect problems with those properties which a naturally
linked to continuous ideas and which can only be satisfied approximately by dis-
crete schemes: rotational invariance and accuracy.

A loss of rotational invariance becomes visible as a preference of certain directions,
while a loss of accuracy becomes evident in those cases where filtering with time
step nr differs visually from n times filtering with 7. So let us now check these
approximation effects by applying a 2-D AOS scheme to two test images.

First we check the rotational invariance. Since the AOS scheme is consistent to
the original equation, we should expect good rotational invariance for small spatial
and temporal steps.

Figure 8.1 is used as a test for rotational invariance. It depicts a Gaussian-like
image and its filtered versions. For 7 = 0.25 both the explicit and AOS scheme are
visually undistinguishable. This step size is also the stability limit for the explicit
scheme, while the AOS scheme allows to increase 7 further. We see that for 7 <5
no significant changes appear. Thus, AOS may be used with 20 times larger time
steps than the explicit scheme. On the other hand, even for 7 = 20 the deviations
from a perfect circular structure are not very severe.

What about the accuracy? Figure 8.2 depicts the filtering of a brain image. The
situation is similar as in Figure 8.1: For 7 = 0.25 the explicit and the AOS scheme
are undistinguishable. The AOS scheme remains close to these results up to 7 = 5.
For 7 = 20 we get more severe deviations: the filtering effect becomes weaker.
This is a typical behaviour for implicit schemes with large time steps: implicit
techniques always remain on the “save” side (by orienting the diffusion on the
“smoother” future rather than on the “rougher” past), while their deviation from
the true solution becomes larger with increasing step size. Thus, their filtering
effect on the final image at a specified time decreases with increasing time step
size. Again 7 = 5 is a good compromise between efficiency and accuracy.
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Figure 8.1: Nonlinear diffusion filtering of a Gaussian-like test image (A = 8,
o = 1.5). (a) Top LEFT: Original image, Q = (0,101)2. (b) ToP RicHT: Explicit
scheme, 800 iterations, 7 = 0.25. (¢) MIDDLE LEFT: AOS scheme, 800 iterations,
7 = 0.25. (d) MIDDLE RIGHT: AOS scheme, 200 iterations, 7 = 1. (¢) BoTTOM
LEFT: AOS scheme, 40 iterations, 7 = 5. (f) BorTroM RIGHT: AOS scheme, 10
iterations, 7 = 20.
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Figure 8.2: Nonlinear diffusion filtering of a medical image (A = 2, 0 = 1). (a)
Top LEFT: Original image, 2 = (0,255) x (0,308). (b) Top MIDDLE: Explicit
scheme, 800 iterations, 7 = 0.25. (¢) Torp RIGHT: AOS scheme, 800 iterations,
7 = 0.25. (d) BorTom LEFT: AOS scheme, 200 iterations, 7 = 1. (e) BoTTOM
MIDDLE: AOS scheme, 40 iterations, 7 = 5. (f) BorToOM RIGHT: AOS scheme,
10 iterations, 7 = 20.
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After these visual inspections we shall investigate the accuracy more quantitatively.
To this end we perform a comparison between the explicit scheme (8.45), the semi-
implicit scheme (8.46) and the AOS scheme (8.51). Since no analytical solution to
the CLMC equation is known, we have to use a good numerical approximation
to a test example as a standard for comparison. In our case we took the explicit
scheme with the small step size 7 = 0.1 and applied it 2000 times to the test image
from Fig. 8.2.

The linear system of the 2-D semi-implicit scheme is solved by a Gaufi—Seidel
algorithm. Iterative methods of this type are quite popular for nonlinear PDEs in
image processing [8, 271], since they are easy to implement and they do not require
additional memory. Let the diffusion operator

m

B(u*) = T—7)_ AuF) (8.57)

=1

be decomposed into the strictly lower triangular matrix L, the diagonal matrix
D, and the strictly upper triangular matrix U. Then the Gauf3—Seidel method
k+1 of the semi-implicit scheme

approximates the solution u
B(u*)u*t = uF (8.58)
by a sequence of vectors y™ with

y O = gk (8.59)

Y

y™) = (L+ D)t (uk —Uy™)  (n>0). (8.60)

Every second step we calculate the residue

r .= By™ — uF, (8.61)
and we stop the iteration process if its {2 norm [|[r®||y = (32, [r{™|2)1/2 satisfies
Ir™lly < allr (8.62)

with some accuracy parameter a = 0.01 or a = 0.1.

Table 8.2 compares the explicit scheme, the semi-implicit scheme with accuracies
a = 0.01 and a = 0.1, respectively, and the AOS scheme.

If v denotes our reference solution (explicit scheme, 7 = 0.1), then we calculate
the relative {2 error of an approximation u as

lu — vl

ol (8.63)

First we observe that the explicit scheme with 7 = 0.25 reveals a very small error,
while the semi-implicit method with a = 0.01 is not only less accurate, but also



8.6. EVALUATION 201

Table 8.2: Comparison of nonlinear diffusion schemes.

scheme 7 | CPU time | rel. {? error
explicit 0.25 65.65 s 0.14 %
semi-implicit | 0.25 | 145.65 s 0.27 %
(@=001) | 05| 92625 | 0.68%
1 62.97 s 1.05 %
2 43.58 s 1.46 %
5 27.62 s 1.97 %
10 19.49 s 2.26 %
20 12.45 s 2.74 %
50 5.54 s 3.77 %
semi-implicit | 0.25 | 106.43 s 0.83 %
(@=01) | 05 | 72045 | 1.00%

1 36.70 s 1.40 %
2 23.53 s 1.83 %
5 12.30 s 2.51 %
10 7.00 s 3.27 %
20 3.53 s 419 %
50 1.17 s 5.43 %
AOS 0.25 | 114.04 s 0.73 %
0.5 56.55 s 1.32 %
1 28.56 s 1.66 %
2 14.25 s 1.83 %
5 5.80 s 2.22 %
10 2.95 s 2.73 %
20 1.52's 3.37 %

90 0.67 s 4.29 %
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slower for 7 = 0.25 and 0.5. For 7 > 1 the semi-implicit scheme becomes faster
than the explicit one. On the other hand, the GauB-Seidel algorithm slows down
for larger 7, since this increases the condition number of the system matrix. Hence,
the overall CPU time per semi-implicit step increases with increasing 7. If we relax
the accuracy from o = 0.01 to a = 0.1, the semi-implicit scheme becomes faster,
but the /2 error also increases. For 7 > 0.5, the AOS scheme becomes the fastest
method. Interestingly, for 7 > 2, it is also more accurate than the semi-implicit
scheme with oo = 0.1.

It is worth noticing that there is a fundamental difference between errors in the
AOS scheme and errors which are introduced by an insufficient number of Gaufi—
Seidel iterations: unlike AOS errors which are compatible with the discrete scale-
space framework, Gauf3—Seidel errors can violate these requirements. Thus, prop-
erties such as the average grey level invariance are no more satisfied in an exact
manner. In order to avoid these difficulties, one would have to apply more Gaufi—
Seidel iterations, which will finally destroy all efficiency advantages compared to
the explicit scheme; see also [271].

Figure 8.3 gives a graphical representation of Table 8.2, which allows us to find
the most efficient schemes for a desired accuracy. We observe that for very high
accuracy requirements the explicit scheme is most appropriate®. This is at the
expense of a hight overall computational effort. On the other hand, even relaxing
the accuracy requirements to a relative (? error of 1 % does not permit to find
a more efficient technique. For errors between 1 % and 1.7 % the semi-implicit
scheme with o = 0.1 is fastest, and for errors larger than 1.7 % AOS schemes
become rapidly superior. In our previous experiments we have observed that the
accuracy of AOS with 7 = 5 appears to be tolerable for many applications. This
corresponds to an error of about 2.2 %. In this case, AOS is almost 2.5 times
more efficient than the semi-implicit scheme with o = 0.1, more than 3.5 times
faster than the semi-implicit scheme with o = 0.01, and about 11 times more
efficient than the explicit scheme. Although these relations have been illustrated by
one example only, additional experiments have indicated that these basic relations
between explicit, semi-implicit and AOS discretizations carry over to a large class of
images: The accuracy requirements of many practical problems allow an efficiency
gain by one order of magnitude. All one has to do is to replace the explicit scheme
by an AOS scheme with 20 times larger time step sizes.

It should be noted that the AOS scheme calculate the average of operators of type
(I—m7A;)"L. They describe 1-D diffusions with a step size m7. Since multiplicative
splittings such as the LOD scheme (8.53) use operators of type (I — 7A4;)"!, one
can expect that they give even better accuracy. However, multiplicative splittings

30ne can achieve even higher accuracy by methods which are of second order in time, for
instance predictor—corrector techniques [412]. Such a high accuracy, however, is rarely required
in image processing.
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Figure 8.3: Tradeoff between efficiency and accuracy of nonlinear diffusion solvers.
The data were calculated on the test image from Fig. 8.2, size 2 = (0,255) x
(0,308). Filter parameters: A = 2, 0 = 1. Stopping time: 7' = 200. Hardware: one
R10000 processor on an SGI Challenge XL.
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Figure 8.4: (Non-)Commutation of nonlinear diffusion operators. The difference
between filtering prior to rotation by 90 degrees, and rotation prior to filtering is
depicted. Test image: Figure 8.2 (A = 2, 0 = 1, 7 = 20, 10 iterations). (a) LEFT:
A multiplicative splitting such as LOD treats x and y axes differently. (b) R1GHT:
Additive operator splitting (AOS) treats all axes equally.

for nonlinear problems reveal one big disadvantage, which makes their use in many
image processing applications problematic: In the general nonlinear case the split
operators do not commute any longer. Thus, the result of multiplicative splittings
depends on the order of the one-dimensional operators, and the grid axes are
treated differently. In practice, this means that these schemes produce different
results if the image is rotated by 90 degrees. Such an undesirable effect is illustrated
in Fig. 8.4. Since AOS schemes apply the 1-D operators in parallel instead of
sequentially, they do not suffer from this limitation.

Moreover, most multiplicative splittings lead to a nonsymmetric system matrix
Q(u*). This violates criterion (D2) for discrete diffusion scale-spaces. For this rea-
son, we have not considered these approaches in the present paper.

Finally we check the relation between the computational effort and the number of
pixels. Table 8.3 shows the measured CPU times on a single R10000 processor of
an SGI Challenge XL and on an HP 900-755, both for 2-D and 3-D images.

For small image sizes the computing times reveal good proportionality to the
overall number of pixel. This is what we expect from theory. Because of Cache
limitations, the CPU time per pixel becomes slightly higher for huger data sets:
We also observe that this deviation from the linear scaling behaviour is machine
dependent. The HP remains closer to the linear scaling behaviour than the SGI.
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Table 8.3: Measured CPU times for one AOS iteration.
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image size SGI HP
64 x 64 0.0086 s | 0.0168 s
128 x 128 0.0324 s | 0.0676 s
256 x 256 0.134s | 0.307 s
512 x 512 0.711 s 1.63 s
1024 x 1024 6.35 s 7.38 s
2048 x 2048 27.8 s 34.0 s
4096 x 4096 145 s

8192 x 8192 724 s

16 x 16 x 16 0.0159 s | 0.0331 s
32 x 32 x 32 0.116 s | 0.304 s
64 x 64 x 64 1.15 s 245 s
128 x 128 x 128 134 s 20.1s
256 x 256 x 256 237 s

512 x 512 x 256 1340 s

On the other hand, with its CPU memory of 1 GByte the SGI permits even to
process data sets of size 8192 x 8192 and 512 x 512 x 256.

Three-dimensional data sets from medicine with typical sizes such as 256 x 256 x 64
can be processed in less than one minute per AOS iteration (both on the HP and
the SGI). In many practical applications less than 10 iterations are sufficient for
the denoising of such data sets.

Recapping we have observed that — although the desired approximation quality is
of course purpose dependent — under typical circumstances 20 times larger step
sizes than the stability limit of the explicit scheme appear reasonable. They give
an efficiency gain of a factor ten*. Especially for large data sets such as 3-D med-
ical data this is often the difference between not applicable and applicable. We
are currently testing our schemes for the filtering of 3-D ultrasound images and
preprocessing 3-D MR data for segmentation. In both cases first results are en-
couraging.

4We have seen that an m-dimensional AOS scheme averages 1-D operators with an effective
step size of m7. Thus, for higher dimensions m one should reduce the step size in order to have
the same accuracy. However, since explicit schemes also have to decrease the step size for larger
m in the same way, the factor 10 remains valid for every dimension.
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8.7 Conclusions

We have presented absolutely stable additive operator splitting (AOS) schemes
for the nonlinear diffusion filter of Catté et al. and Whitaker and Pizer. These
schemes satisfy all criteria for discrete nonlinear diffusion scale-spaces and are easy
to implement in any dimension. Both computational and storage effort is linear
in the number of pixels. Experiments have shown that under realistic accuracy
requirements one can gain an increase of efficiency by a factor 10. This makes this
type of schemes attractive for applications such as medical 3D data sets.
Implementations of AOS schemes on parallel architectures are studied in [430].
These experiments demonstrate that it is possible to gain a speed-up by another
order of magnitude by exploiting the intrinsic parallelism of AOS schemes. Last but
not least, there are also ways to generalize AOS schemes to anisotropic diffusion
filters with diffusion tensors; a first proposal in this direction can be found in [412,
Section 4.4.2].

Acknowledgements. We would like to thank Robert Maas for careful proofread-
ing and helpful hints.
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Abstract

Variational segmentation and nonlinear diffusion approaches have been
very active research areas in the fields of image processing and com-
puter viston during the last years. In the present paper, we review re-
cent advances in the development of efficient numerical algorithms for
these approaches. The performance of parallel implementations of these
algorithms on general-purpose hardware is assessed. A mathematically
clear connection between variational models and nonlinear diffusion fil-
ters is presented that allows to interpret one approach as an approxima-
tion of the other, and vice versa. Extending this continuous connection
to the fully discrete setting enables us to derive many structural similar-
ities between efficient numerical algorithms for both frameworks. These
results provide a perspective for uniform implementations of nonlinear
variational models and diffusion filters on parallel architectures.
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9.1 Introduction

Variational approaches for image processing and computer vision have been the
subject of considerable interest during the last years. A growing community has
focused on various research problems including the mathematical foundations of
image segmentation [253], nonlinear regularization approaches to image restora-
tion [326, 142|, stochastic modeling of spatial context [225, 435], and in on wide
range of corresponding applications [299, 300]. In each case, the approach is formu-
lated in terms of an energy functional which precisely specifies the criteria being
used for assessing the output of a processing stage. Often results from various
branches of mathematics like functional analysis, convex optimization, or numeri-
cal mathematics, for example, can successfully be applied to clarify the properties
of a variational approach. As a result, variational modeling has contributed much
to the fields of image processing and computer vision during the last years.
Parallel to this development, the application of partial differential equations (PDEs)
to image processing has been a very active field of research [382, 381, 412, 70, 274].
Research problems that motivated corresponding work include nonlinear exten-
sions to the linear scale-space paradigm [12], corresponding curve evolutions [333],
active contours and surfaces [67, 239], and sound mathematical models for image
enhancement through local backward diffusion. For reviews, we refer to [411, 412].
In many cases, these approaches are superior to conventional existing image pro-
cessing methods and thus provide new perspectives for various application areas
like, for example, medical image analysis. Consequently, there is an increasing
interest in efficient numerical algorithms enabling implementations of these com-
putationally demanding approaches that work at acceptable computing speed. For
example, a challenging task concerns the fast processing of 3D medical image data
with a PDE-based approach such that interactivity becomes feasible.

In the present paper, we review recent advances in the development of efficient nu-
merical algorithms for both variational modeling approaches [164, 165] and PDE-
based approaches [429, 430] to nonlinear adaptive image processing. Numerical
experiments with parallel implementations of these algorithms on general-purpose
hardware are reported. Although the underlying mathematical models appear to
be quite different (non—quadratic minimization problems vs. nonlinear evolution
equations), we show that they are related and can lead to very similar algorithms.
One important tool to understand these close relations is a connection which has
recently been exploited in [341, 311] to establish scale-space properties for reg-
ularization methods. In the present paper we extend this close relation for the
continuous case to discrete formulations by deriving various relations between effi-
cient numerical algorithms for both frameworks. It is our hope that such a unified
description of the structural similarities may also shed light on how the algorithmic
advances reported may get more interrelated in future work.
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The remainder of this paper is organized as follows. Section 9.2 reviews non-
quadratic variational models for adaptive image processings and discusses a con-
nection to approaches based on nonlinear parabolic evolution equations. Section
9.3 is devoted to efficient numerical approximations by means of finite elements
and finite difference methods. It describes a linearization technique as well as cor-
responding algorithms suited to compute minimizing functions efficiently. Further-
more it is shown how similar ideas can be used for diffusion filtering, and how they
can be modified towards an even more efficient additive splitting scheme. Numer-
ical experiments with parallel implementations of our algorithms using general-
purpose hardware are reported in Section 9.4. We conclude with pointing out
possible directions of further research in Section 9.5.

9.2 Continuous Formulations

9.2.1 Variational Approaches

In this section, we sketch the mathematical formulation of a variational approach
for adaptive image processing. For a more detailed account we refer to [348].

Let g : x € 2 — R denote the grey-value function of a given image defined over
an m-dimensional image domain {2 C R™. The goal is to find a filtered version u
of the original image ¢ such that v minimizes a suitable energy functional which
precisely specifies the optimization criterion of our processing step. We consider
minimization problems of the following form:

1
u=arginf J(v), J(v)= —/ {(v -9+ a- /\(|Vv|)}dx (9.1)
vEH 2 Q
where H is some Hilbert space and a > 0 serves as a weight factor. The function

A depends on the gradient of admissible functions v and is piecewise defined:

o) — Aow($) (0<s<¢)
)\( ) N { /\high(s) (8 > C).

Typical definitions include Aoy (s) ~ s% and Apigh(s) ~ s or Apign(s) ~ const. (cf.,
e.g., [48, 140, 47]). Accordingly, the functional (9.1) can be written in a form which
is easier to interpret:

J(U):_[/(U—Q)de'i‘a/)\low(|Vv|)d:E+oz/)\high(|V1}|)dw. (9.2)
Q {z:|Vv|<c} {z:|Vv|>c}

The first term of the right hand side of (9.2) measures the similarity between func-
tions v and given image data g. The second term measures the smoothness of func-
tions v within regions with a low gradient of v. The third term measures properties
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Figure 9.1: Nonlinear adaptive smoothing of a 1D-signal

of functions v where v refers to local features in terms of significant variations. For
example, using Apign(s) ~ s, this term measures the length of iso—contour lines of
v summed up over the local contrast (cf. [347]). As a result, algorithms minimizing
the functional (9.1) lead to an approximation of the given image function g with a
piecewise smooth function u. Since the domains of integration in (9.2) depend on
the solution u itself, the corresponding local smoothing process generating v from
g is nonlinear and adaptive. Figures 9.1 and 9.2 show examples.

Vanishing of the first variation of the functional J in (9.1) yields a variational
equation determining minimizing functions u:

L(u,v) := /Q {(u —g)v+ap(|Vu|)Vu - Vv}da: =0 WweH (9.3)

where the so—called diffusivity function p(-) is derived from A(-) as

X(s)

2. (9.4)

p(s) =

Partial integration in (9.3) shows that u is also a (weak) solution to the Euler
equation

adiv (p(|Vu|)Vu) — (u—g) =0 (9.5)
with reflecting (homogeneous Neumann) boundary conditions:
0
% — 0 ondQ, (9.6)

where n denotes the normal to the image boundary 0f2.

9.2.2 Related Diffusion Filters
Diffusion Filters with Monotone Fluxes

Interestingly, the preceding variational approach has strong connections to nonlin-
ear diffusion filtering. This shall be explained in the sequel.
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Figure 9.2: Top: Variational restoration of a mammography. BorToM: The images
from above as 3D-plots.
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A simple nonlinear diffusion filter can be constructed as follows. A processed ver-
sion u(x,t) of the original image g(x) is obtained by solving the diffusion equation

Bu = div <,0(|Vu|) Vu) (9.7)
with the original image as initial state,

u(z,0) = g(z), (9-8)
and reflecting boundary conditions:

g—z = 0 on 09. (9.9)
The “time” t is a scale parameter: larger values lead to “simpler” image represen-
tations. One can assure well-posedness of the diffusion filter if the diffusivity p(s)
creates a flux p(s) - s that is monotonically increasing for s > 0. Such diffusivities
p arise from equation (9.4) when the smoothness potential A is convex.
By writing the Euler equation (9.5) as

u—4g

= div (p(|vu|)vu) (9.10)

it becomes clear that variational image restoration with regularization parameter
« approximates a diffusion filter at time o: indeed, (9.10) is nothing more than an
implicit time discretization of the diffusion equation (9.7). This relation has been
exploited in [341, 311] for establishing various relations between variational image
restoration and nonlinear diffusion filtering.

One would expect that this discretization is of higher accuracy for smaller a.
However, Figure 9.3 shows that also for rather large o, the approximation remains
surprisingly good. In this example we have used a diffusivity of type

pls) = ———— (9.11)

1+ s2/v?

with ¥ = 2. It can be derived from the convex potential

A(s) = 2024/1 + s2/v2. (9.12)

This example illustrates that variational image restoration and nonlinear diffusion
filtering are basically equivalent. As a consequence, efficient numerical methods for
one of these paradigms can also be used for the other.

We note that the diffusivity (9.11) is a decreasing function. As a consequence
diffusion is small at those locations where the gradient is large which in turn
reduces blurring at edges.
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Figure 9.3: Comparison between the nonlinear diffusion filter (9.7) and the vari-
ational image restoration (9.10). (a) LEFT COLUMN: Temporal evolution of the
diffusion filter, t = 10, 30, 100. (b) RiIGHT COLUMN: Variational restoration with
regularization parameters o = 10, 30, 100.
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Diffusion Filters with Nonmonotone Fluxes

Intuitively, one would expect that edges are better preserved if the diffusivity
decreases more rapidly. For instance, a diffusivity of type

1 (s =0)
pls) = { L-exp (22) (s> 0) (9-13)
decreases more rapidly than (9.11).
However, the corresponding potential A is only convex for gradient magnitudes that
do not exceed v: the factor 3.315 ensures that the flux = sp(s) is increasing for
|s| < v and decreasing for |s| > v. Thus, v is a contrast parameter separating low-
contrast regions with (smoothing) forward diffusion from high-contrast locations
where backward diffusion may enhance edges [303]. In this case, we should not
expect the existence of a unique solution which is stable.
However, it is possible to regularize diffusion filters with nonmonotone fluxes in
such a way that they become well-posed [74]. This can be achieved by replacing
the edge detector |Vu| in p(|Vu|) by a Gaussian derivative based edge detector
[Vug|:

Vu, = V(K,*u), (9.14)

K. = b _@ (9.15)
T = Groryl exp 557 ) - .

After some time this filter creates segmentation-like results which are piecewise
almost constant. This is illustrated in Figure 9.4. For ¢ — oo, however, the image
converges to a constant grey-value function [412]. Well-posedness results for this
filter can be found in [74, 412] and a scale-space interpretation is given in [412].
Because of the Gaussian convolution there is no straightforward way to express
such regularized diffusion filters as minimizers of energy functionals. However,
there are possibilities to approximate them by a sequence of quadratic variational
approaches; see [311] for details. Regularized filters with nonmonotone fluxes offer
additional perspectives in terms of contrast enhancement, and they can be treated
with the same numerical techniques that are used for unregularized diffusion filters
with monotone fluxes.

9.3 Discrete Formulations

9.3.1 Variational Approach
Linearization

The goal of this section is to replace the nonlinear equation (9.3) by a sequence of
linear equations. Their solution methods are well understood and suited for parallel
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Figure 9.4: Temporal evolution of the regularized nonlinear diffusion filter with
nonmonotone flux function.
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implementations. In the following, we describe a particular linearization technique
introduced to image processing by Geman and Reynolds [141] and further studied
in [81, 165]. For alternative linearization techniques and a comparison within a
more general framework we refer to [165].

The key idea is to replace the non-quadratic functional (9.1) — from which equation
(9.3) is derived — by a sequence of quadratic functionals. Following Geman and
Reynolds [141], we introduce an auxiliary function w and consider the problem of
minimizing

J(v,w) == /Q {(v — g’ +a- (wVv]* +¢(w)) }dm (9.16)

where the function 1(-) depends on A(-) in (9.1) and is chosen such that J(v,w)
is convex in w, and

J(v) = inf J (v, w).

w

The minimization of (9.16) is accomplished by the following two—step procedure
(k denotes the iteration index):

wh = arginf J(uF, w), (9.17)
w1 = arginf J(u, w*). (9.18)

Variational calculus shows that equation (9.18) is equivalent to
/ {(u’”rl —g)v + aw"VuFtt. Vvdx}dx =0. (9.19)
Q

After discretization, u**! can be computed as solution to a linear system of equa-
tions.

Making equation (9.17) more explicit, however, is not as straightforward as with
equation (9.18), in the general case. Nevertheless, the computation of w* is not
difficult due to the convexity of J (v, w) with respect to w. In the particular case
of a convex original functional (9.1) equation (9.17) explicitly reads:

w" = p(|Vut))

with p(-) from (9.4). Note that in this case equation (9.19) amounts to “freeze”
the nonlinear part of equation (9.3) for one iteration step. To our knowledge, this
so-called Kacanov method has been introduced more than 30 years ago [201, 137].
Nevertheless, it turned out to be both efficient and competitive with respect to
other techniques (see Section 9.4 and [165]).
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Finite Element Discretization

In this section we explain briefly how a discrete version of the variational approach
(9.3) can be obtained using the finite element method. Note that the linear system
corresponding to (9.19) can easily be computed by replacing p(|Vu|) in (9.3) with
w”. For a sound introduction to the finite element method we refer to, e.g., [84].
The finite element method can be extended easily to adaptive algorithms with
a coarse resolution in homogeneous regions and a fine one near edges. For more
details on such speed-up techniques we refer to [347] in the context of variational
image restoration, and to [33, 305] in the context of nonlinear diffusion filtering.

The basic idea behind the finite element method is the restriction of optimization
problems to finite-dimensional subspaces. Let {¢1, ..., #x} be basis functions of a
finite-dimensional subspace H;, C H. Then, the restriction of (9.3) to Hj, reads:

L(up, ;) =0, Vi=1,..,N, (9.20)
with minimizer uy, € span{@s, ..., o5 }. If we define the mappings

I: RN — Hh; u— Z ’U,ngSj , (921)

J

and
L;(u) :== L(I(u),¢;), u= (uq,.., uN)T, (9.22)

then the solution of (9.20) is equivalent to the solution of the nonlinear system:
L(u)=0, L= (Ly..Ly)". (9.23)

For the case of two-dimensional (2D) grey-value images we use piecewise linear
basis functions as follows. The first step is to triangulate the underlying image
domain, in this case the rectangular area Q = [0, N; — 1] x [0, Ny — 1], as illustrated
in Figure 9.5.

Next, we assign to each mesh node P;; a basis function ¢;; which is uniquely
defined by the following conditions:

bij(x) is linear within each triangle dy ,
¢ij(x) =1 at node P;; ,
¢ij(x) =0 at every node Py, # P, ; .

Given discrete grey-value images, and elements of the subspace H; in general,
images are represented by simply interpolating the values of corresponding nodal
variables v; ; in a piecewise linear fashion:

. N1 XN
I:R™M™ 2—>Hh, V—)E Uz’,j¢i,j

1,
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Figure 9.5: LEFT: Triangulation of the rectangular image domain €2 with mesh
width 1. The nodes correspond to pixel positions. RIGHT: An interior node uc
with adjacent triangles d; and the corresponding p-values (for piecewise linear
basis functions p(k) = p(|Vu|) = const. for each triangle dy).

with grey-value v; ;. From (9.21) and (9.22) we thus obtain:
> (ukg — i) / PrPi; dx + Zuk,l/ p(IVup)Voy, - Vi de =0.  (9.24)
kLl Q kLl 2

These integrals vanish for all pairs of nodes (4, j) and (k, ) which have no triangle in
common. The remaining integrals can be computed analytically to obtain a sparse
system of nonlinear equations in terms of the nodal variables of the solution image
u. Additional details and applications to different variational problems can be
found in [348].

The expressions in (9.24) are weighted sums. Applying the linearization technique
described in Section 9.3.1, that is “freezing” the nonlinear part as in equation
(9.19), the nonlinear system (9.24) reduces to a linear system of type

Bfu"™ =b, (9.25)

where
B*=D+R(u*), b=Dg.

The matrices D and R are sparse, since they describe convolutions within a 3 x 3
neighbourhood. For some inner node, the corresponding stencil notations are given
by

1 |1
0135
AR (9.26)
1 | 1
7120
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for D, and by
0 % — P(2)42'P(3) 11_2
L e | 3o o OB (9.27)
12 2 +a p(l);p(ﬁ) +a 9(5)39(6) 12 2
% % — p(S);p(ﬁ) 0

for the system matrix B*. It should be noted that the entries p(.) are functions of
u”: see also Figure 9.5. The necessary modifications of these stencils at boundary
points are automatically obtained by taking into consideration the correct domain
of integration in (9.24). It is not hard to see that B* is symmetric and positive

definite.

9.3.2 Nonlinear Diffusion Filtering
Diffusion Interpretation of the Kacanov Method

It is instructive to study also a finite difference discretization of the Kacanov
method for variational image restoration: it follows that such a discretization can
be regarded as a fixed point iteration for solving the implicitly time-discretized
diffusion equation (9.10). This will shown next.

A discrete m-dimensional image can be regarded as a vector g€ RY, whose compo-
nents g;, i € {1, ..., N}, denote the grey-values at the pixels. Pixel i represents the
location z;. By u; and p; we denote approximations to u(z;,t) and p(|Vu(z;, 1)),
respectively, where the gradient is replaced by central differences. For more details
on the finite difference method for PDEs we refer to [256].

A spatial finite difference discretization of (9.10) is given by

m

Ui — 9 _ Z Pj '2*' pi (u; — u), (9.28)
@ I=1 jENi(i)

where N (%) consists of the two neighbours of pixel i along the [ direction (boundary
pixels may have only one neighbour). In vector-matrix notation this becomes

B~ Y A, (9.29)

where A; describes the diffusive interaction in direction /.
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This equation can be rewritten in fixed point structure as

u = (I -« i Al(u)) B g. (9.30)

A corresponding fixed point iteration is given by
m -1
utl = (I — O‘Z Al(uk)> g (9.31)
1=1

This is nothing else but the finite difference approximation

k+1 _ m
R - R ZAl(uk) utt (9.32)
e
=1
to the Kacanov method (9.19), whose Euler equation is given by
ukHl _ g
Y79 gy (p(|Vuk|) vuk“). (9.33)
e

The fixed point iteration (9.31) requires to solve the sequence of linear systems

(I - aiAl(uk)) utt = g (9.34)

with £ = 1,...,00. Since this method is globally convergent, we may use an ar-

bitrary initial vector u®. A natural choice is u°
k+1

:= g. In practice, one stops the
iterations when u®* and u are sufficiently close, or when the residue obtained
from plugging u* into (9.29) is close to 0.
The system matrix for the finite difference Kac¢anov scheme (9.34) can be repre-
sented by a convolution stencil of the type

N)+p(C
oN)44(C) 0

| 4 @ 2HAC) | o o) 10(C)
o PEEC) | o sS)TA(C)

o () o 2E)H(O) (9.35)

S} p(C) 0

where the diffusivity p(C) refers to some inner pixel, and p(N), p(W), p(E), and
p(S) represent the northern, western, eastern, and southern neighbours, respec-
tively. They are all functions of u*. We observe large structural similarities to the
finite element Kacanov method. Both the finite difference and the finite element
method boil down to the solution of a sequence of linear systems of equations with
a sparse and symmetric positive definite system matrix.
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A Semi-Implicit Scheme for Nonlinear Diffusion Filtering

If one is interested in solving the nonlinear diffusion equation (9.7) for some time
a, one may proceed iteratively in n steps with step size 7 = a/n. Let us denote
by u® the finite difference approximation at time k7. One possibility for a finite
difference discretization to (9.7) is the scheme

— =) A (9.36)
with u® := g. We observe that we have to solve n linear systems of type

(I—TiAl(uk)) ubtl = b, (9.37)

Since this scheme does not give the solution u**! directly (explicitly), but requires

to solve a linear system first, it is called a linear-implicit (semi-implicit) method.
Its system matrix has the same structure as the one used in the finite difference
Kac¢anov method.

In the 1-D case the system matrix is tridiagonal and diagonally dominant. For
such a system a Gaussian algorithm for tridiagonal systems (also called Thomas
algorithm) is stable and solves the problem with linear complexity, both with
respect to memory and computational time [256, Section 2.9].

For dimensions m > 2, however, it is not possible to order the pixels in such a
way that in the i-th row all nonvanishing elements of the system matrix can be
found within the positions [7,7 — m] to [i,7 + m]: Usually, the matrix possesses a
much larger bandwidth. Applying direct algorithms such as Gaussian elimination
would destroy the zeros within the band and would lead to an immense storage
and computation effort. Classical iterative algorithms like the Jacobi or Gaufi-
Seidel method slow down for large 7, since this increases the condition number of
the system matrix. Just like in the finite element case, a preconditioned conjugate
gradient technique will be more efficient; see also [334].

This shows that there is also a large amount of structural similarities between
discrete variational approaches and discrete nonlinear diffusion filters. In contrast
to variational image restoration, however, the number of linear systems to be solved
is a-priori fixed to n and no a posterior: stopping criterion is required. Clearly,
choosing a larger n leads to smaller time step sizes and improves the approximation
quality.

A possible speed advantage of semi-implicit nonlinear diffusion filtering as com-
pared to the Kacanov method for variational image restoration may result from the
fact that the time step size 7 is usually smaller than the regularization parameter
a. Therefore, nonlinear diffusion filtering has a better-conditioned system matrix
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than variational image restoration. Thus, one may expect that iterative solvers for
linear systems whose convergence depends on the condition number will converge
faster for nonlinear diffusion filters. This also applies to preconditioned conjugate
gradient methods, although to a much smaller degree than in classical iterative
solvers.

AOS Schemes for Nonlinear Diffusion Filtering

Next we discuss a modification of the semi-implicit scheme
m ~1
ubtl = (1 _ TZAl(uk)) ut (9.38)
1=1

which leads to a further speed improvement. It takes advantage from two obser-
vations that we made in the last section:

1. It is computationally easier to solve linear equations stemming from 1-D
diffusions than those from higher-dimensional diffusion processes.

2. For accuracy reasons, diffusion filtering often uses not too large time step
sizes T.

Now the idea is to replace (9.38) by the additive operator splitting (AOS) scheme
[429]

m
+1 Z (I — mrA(u )) "k, (9.39)
=1

Such a scheme has several interesting properties:
First, the operators I — m7A;(u*) describe one-dimensional diffusion processes
along the z; axes. Under a consecutive pixel numbering along the direction [ they
lead to strictly diagonally dominant tridiagonal matrices. The corresponding linear
systems of equations can be solved directly in an efficient and stable way by the
Thomas algorithm. Its forward elimination and backward substitution step can be
regarded as a causal and an anticausal recursive filter, respectively.
Moreover, (9.39) has the same first-order Taylor expansion in 7 as the semi-implicit
scheme: although both methods are algebraically different, they are O(r + h? +
..+ hZ%) approximations to the continuous equation. Thus, the approximation
quality improves with decreasing 7, and the solutions from the AOS scheme and
the semi-implicit one become more and more similar.
Since AOS is an additive splitting, it is assured that all coordinate axes are treated
in exactly the same manner. This is in contrast to the finite element discretization
from Section 9.3.1 and to conventional splitting techniques from the literature,
which are multiplicative [241]. They may produce different results if the image is
rotated by 90 degrees.
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Recently a general framework for discrete nonlinear diffusion scale-spaces has been
established, which guarantees that the discretization reveals the same scale-space
properties as its continuous counterpart [407, 412]. One can verify [429] that the
AOS scheme creates such a discrete nonlinear diffusion scale-space for every step
size 7. As a consequence, it preserves the average grey level pu, satisfies a causality
property in terms of a maximum-minimum principle, and converges to a constant
steady state. Moreover, the process is a simplifying, information-reducing trans-
form with respect to many aspects: The p-norms

N 1/p
= (o) =) (9.40)

and all even central moments

N

1 n
Monfu] = (= o) (941)
7j=1
are decreasing in k, and the entropy
N
S[u*] = — Zuf In uf, (9.42)
j=1

a measure of uncertainty and missing information, is increasing in k (if u; is positive
for all 7).

For further algorithmic details and a performance analysis of AOS schemes we
refer to [429]. There it is demonstrated that, under typical accuracy requirements,
AOS schemes are one order of magnitude more efficient than the commonly used
schemes for nonlinear diffusion filtering. In Section 9.4 we will see that a speed-up
by another order of magnitude is possible by parallel implementations.

9.4 Parallel Implementations

9.4.1 Variational Approaches

To solve the linear system (9.25) successively as part of the two-step iteration
(9.17)-(9.18), we implemented an inexact version of the well-known conjugate
gradient (CG) method along with several preconditioners on a multi-processor
SGI Power-Challenge machine at the Regional Computer Center (RRZ) of the
University of Hamburg. We used the software package PETSc (Portable Extensible
Toolkit for Scientific Computing) [32, 31], which is based on the message passing
standard MPI [247].
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Figure 9.6: LEFT: Convergence of the variational method for various accuracies
rtol of the linear solver for a 256 x 256 pixel sized image (computed with 16
processing units). RIGHT: Computational costs of different preconditioners for
exact (left: rtol = 107%) and inexact linear solvers (right: rtol = 107!) (computed
with 1 processing unit).

Among the class of iterative Krylov subspace solvers (cf., e.g., [203]), the CG—
method is nearly optimal for the class of matrices B* considered here (sparse,
symmetric, positive definite). “Inexact” refers to the stopping criterion rtol - ||r*|o,
that is comparing the relative reduction of the initial linear residuals r* = B¥u*—b
to a threshold. It turned out in our experiments that the rather crude criterion
rtol = 0.1 leads to a fast inner loop of the iteration (9.17)—(9.18) without loosing
both convergence of the overall iteration and (consequently) quality of the com-
puted result (Fig. 9.6, left). In all experiments the stopping criterion of the overall
iteration (9.17)—(9.18) was rtol = 0.001 with respect to the nonlinear residuals
of the system (9.24). We note that convergence of the Ka¢anov method using
an “inexact” inner loop has not been proven yet. For hints on how this may be
accomplished we refer to the work of Axelsson [27].

To improve the condition number and, in turn, the speed of convergence, precon-
ditioners L, R were applied to the linear system (9.25):

(L—lBkR—l)Ru]H—l — L—lb

Classical preconditioners are obtained through either an additive matrix splitting
(like Jacobi—, SOR~-, or SSOR-preconditioning) or a multiplicative matrix split-
ting (e.g. ILU or ICC factorizations). The approach of domain decomposition is an
alternative way of preconditioning (Block—Jacobi or Block-Gauss—Seidel, for ex-
ample), which is more suited for parallel implementations [360]. Figure 9.6, right,
shows the influence of various preconditioners on the convergence speed for both
exact and inexact linear solvers. Interestingly, the picture in Figure 9.6 on the
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Figure 9.7: LEFT: Computational costs as a function of the image size (1 processing
unit, rtol = 0.1, Block-Jacobi preconditioning). RIGHT: Speed-up factor as a
function of the number of processing units used.

right shows that, by using an inexact linear solver, a simple preconditioner like
Block—-Jacobi performs much like a computationally more involved preconditioner
(ILU factorization, for example). In fact, the less expensive Block—Jacobi precon-
ditioner combined with the inexact solver turned out to be best and reduced the
computational amount by one order of magnitude. Figure 9.7, left, depicts the de-
pendency of the computation time on the image size. Fig. 9.7, right, finally shows
a nearly optimal linear increase of the speed—up factor as a function of the number
of processing units (18 units were available to us). This proves the efficiency of the
parallel implementation.

These results show that the combination of appropriate problem—specific numerical
concepts (Kacanov linearization, inexact linear CG solver, Block—Jacobi precondi-
tioning) with an efficient parallel implementation yields a reduction of the overall
computational costs of two orders of magnitude. Using more massive parallelism
a further reduction of one order of magnitude should be feasible, enabling the
processing of 2D images in quasi-real-time (2-3 frames per second). Furthermore,
application of the AOS scheme to the variational approach, based on the rela-
tionship to nonlinear diffusion filters described in Sections 9.2.2 and 9.3.2, will be
considered in future work.

9.4.2 Nonlinear Diffusion Filtering

For nonlinear diffusion filtering, the AOS schemes described in Section 9.3.2 work
efficiently on sequential computer architectures. However, they also offer two in-
trinsic levels of parallelism: coarse grain parallelism and mid grain parallelism.

The coarse grain parallelism can be described as follows. The result u**! of an
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m-dimensional AOS scheme can be regarded as the average of m filters of type

-1

Pt = (I — mTAl(uk)> u® (I=1,..,m).

Since vi*T,... vi**! can be calculated independently from each other, it is possible
to distribute their computation to different processors of a parallel machine.
Often parallel computers offer more processors than the dimensionality m of the
problem. In this case it is interesting to exploit the mid grain parallelism which
is described next. Let N; denote the number of pixels in the j direction. Then
(I — m7Ay(u*))~" creates [, N; one-dimensional diffusion processes along the /
direction. Since these processes are completely independent from each other, they
can be computed in parallel.

As a demonstrator for a mid grain parallelization we have implemented a three-
dimensional AOS scheme on an SGI Power Challenge XL with eight 195 MHz
R10000 processors and 1 MByte of joint secondary cache [430]. The test image is
a 3-D ultrasound data set of size 138 x 208 x 138 which depicts a 10-weeks old
human fetus.

We used the AOS scheme for the regularized nonlinear diffusion filter from Section
9.2.2. The contrast parameter v was set to the 40% quantile of the cumulative
histogram for V(K  f), and the standard deviation o of the Gaussian was chosen
as the unit length of the cubic voxel. For our test image 8 iterations with 7 = 10
were sufficient to yield satisfactory denoising, as is seen in Fig. 9.8. Note the
significantly improved visibility of the skull and the hands.

The implementation of the parallel AOS scheme was done in two steps: First
we have further optimized our existing sequential AOS code by using the C+-+-
based dedicated TULIP library!. This feature has led to a speed-up by a factor of
three. In a second step the optimized code has been split up into functions acting
only within 2-D slices of the 3-D image. These slices were then distributed to the
different processors.

Table 9.1 shows the measured execution times as a function of the number of pro-
cessors. We observe that an implementation of AOS schemes on a few processors is
already sufficient for filtering 3-D medical data sets within their typical acquisition
time.

The total execution time 7" of an algorithm on a parallel system is given by

T,
T=T,+-2+T(p), (9.43)
p

where T, and T, are the sequential and parallel components, respectively, and
Ts.(p) is the synchronization time for the parallel processes.

LTuLip has been developed by Karel Zuiderveld and Fred Appelman (Image Sciences Institute,
Utrecht) using cache memory addressing in a sophisticated way in order to speed up the way of
accessing neighbouring voxels.
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Figure 9.8: Rendering of a 3-D ultrasound image of a 10-week old fetus. LEFT:

Original. RIGHT: Filtered.

Table 9.1: Execution time 7" for eight AOS iterations on an SGI Power Challenge

for an image of size 138 x 208 x 138 using a varying number of processors.

# proc. | exec. time T | speed-up | efficiency
1 158.22 s 1.00 100.0 %
2 93.11 s 1.70 85.0 %
3 71.48 s 2.21 73.7 %
4 59.75 s 2.64 66.0 %
5 51.96 s 3.05 61.0 %

If we neglect Ts.(p), we find from Table 9.1 that T ~ 25.5s, that means about 84
% of the code is executed in parallel. The sequential part is mainly caused by I/O
from and to the harddisk, and from the need to create copies of the volume data.
For more iterations we may expect further improvement with respect to the scaling
behaviour. The measured data indicate that due to parallel implementations, an
efficiency increase by one order of magnitude is realistic.
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9.5 Conclusion and Further Work

In the image processing literature, numerical methods for diffusion filtering and
for variational restoration methods are treated separately, and often algorithms
are applied that seem to be unrelated at first glance. It is also common for PDE
methods in image processing that either finite element or finite difference methods
are used.

In the present paper we have presented a unifying numerical viewpoint, both for
variational approaches and diffusion filtering on the one hand, but also for finite
element and finite difference methods on the other hand.

This allowed us to demonstrate a large degree of structural similarities between the
different efficient algorithms. For two of these methods we have presented parallel
implementations on general-purpose hardware and assessed their performance for
2D and 3D image restoration problems.

Our work has been triggered by recent results on the close relations between varia-
tional image restoration methods and nonlinear diffusion scale-spaces. Since these
results have been established in a continuous context, it became interesting to
study similar relations also at an algorithmic level. It is our hope that our work
provides a unifying basis for efficient parallel implementations of these two ap-
proaches, and that it makes them attractive for many challenging real-life appli-
cations.

Our further work will include the investigation of numerical multigrid schemes
and their connections to the algorithms described in the present paper, as well as
corresponding implementations on more massively parallel architectures.
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tional Science Foundation (DFG), as well as by the Real-World Computing Part-
nership (RWCP), the EU-TMR project VIRGO, the Fonds zur Foérderung der
Wissenschaftlichen Forschung (Austria), SFB F1310 (Austria), and the Fonds zur
Forderung der Gewerblichen Forschung (FFF), Project 200354 (Austria).



Chapter 10

Efficient Image Segmentation
Using Partial Differential
Equations and Morphology

Joachim Weickert.
Pattern Recognition, in press.

Abstract

The goal of this paper is to investigate segmentation methods that com-
bine fast preprocessing algorithms using partial differential equations
(PDFEs) with a watershed transformation with region merging. We con-
sider two well-founded PDE methods: a nonlinear isotropic diffusion
filter that permits edge enhancement, and a convexr nonquadratic vari-
ational 1mage restoration method which gives good denoising. For the
diffusion filter, an efficient algorithm is applied using an additive op-
erator splitting (AOS) that leads to recursive and separable filters. For
the variational restoration method, a novel algorithm is developed that
uses AOS schemes within a Gaussian pyramid decomposition. Exam-
ples demonstrate that preprocessing by these PDE techniques signifi-
cantly improves the watershed segmentation, and that the resulting seg-
mentation method gives better results than some traditional techniques.
The algorithm has linear complexity and it can be used for arbitrary
dimensional data sets. The typical CPU time for segmenting a 2562
image on a modern PC is far below one second.
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10.1 Introduction

Segmentation is one of the bottlenecks of many image analysis and computer vision
tasks ranging from medical image processing to robot navigation. Ideally it should
be efficient to compute and correspond well with the physical objects depicted in
the image. This also requires that segmentation gives a complete partitioning of
the image such that object contours are closed and no dangling edges exist.

In the last decade much research on PDE-based regularization methods has been
carried out; see e.g. [70, 381, 274, 412] for recent overviews. Although the promising
results suggest that they might be attractive as a preprocessing step for many
subsequent image analysis methods, little research has actually been carried out
which combines PDE-based preprocessing methods with other techniques. One of
the problems was that PDE-based methods have been considered as being too slow
in order to become an adequate partner for efficient other methods. This shows
the need to further develop efficient algorithms for PDE-based techniques.

The goal of the present paper is to address these topics in the following way:

e Image segmentation is achieved by means of a watershed algorithm. This
popular morphological method is more more than an edge detector: it gives a
true image partitioning without dangling edges. The watershed segmentation
is sufficiently fast for most applications, but it suffers from the limitation that
many irrelevant minima cause an oversegmentation.

e In order to reduce the oversegmentation problem we study the use of two
PDE-based techniques for preprocessing the image before segmentation: the
nonlinear diffusion technique by Catté et al. [74] which allows edge enhance-
ment, and a nonquadratic variational restoration technique of Schnorr [345]
and Charbonnier et al. [80] which is well-suited for edge-preserving image
denoising. These methods have been chosen as simple prototypes of PDEs
that are mathematically well-founded: they are well-posed in the sense of
Hadamard in that they have a unique solution which is stable with respect
to perturbations of the original image.

e As an efficient algorithm for the nonlinear diffusion filter we apply a recently
developed method based on an additive operator splitting (AOS) [429]. It
leads to separable and recursive filters. For the nonquadratic variational im-
age restoration method, we develop a novel algorithm: minimization of the
energy functional is achieved by considering a steepest descent method that
leads to a diffusion-reaction PDE. This PDE is then solved by a modified
AQOS algorithm that is embedded in a Gaussian pyramid decomposition.

The resulting segmentation algorithms can be generalized in a straightforward way
to arbitrary dimensional data sets. Their complexity is linear in the pixel number,
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and they produce identical results when the image is rotated by 90 degrees. An
overall CPU time of less than one second for segmenting a 2562 image on a typical
PC or workstation makes them attractive for many time-critical applications.

The paper is organized as follows. Section 10.2 sketches the basic structure of the
contrast-enhancing nonlinear diffusion filter and the convex nonquadratic restora-
tion method. In Section 10.3 we discuss efficient and reliable numerical techniques
for these methods. They are based on an additive operator splitting. For approxi-
mating the variational restoration method, these AOS techniques are extended to
novel pyramid AOS schemes. In Section 10.4 we describe the watershed algorithm
with region merging, and in Section 10.5 we illustrate the usefulness of the com-
bined segmentation process by applying it to several examples and comparing it
with classic approaches. The paper is concluded with a summary in Section 10.6.

Related work. The work presented here has been influenced by several related
approaches. Closest in terms of efficient PDE-based regularization methods is the
work of Acton [3] on multigrid versions for nonlinear diffusion filtering. They are,
however not based on AOS schemes and they do not use methods with a reac-
tion term. It is common to supplement watershed segmentations with tools for
reducing the oversegmentation problem. An algorithm by Orphanoudakis et al.
[288] also uses region merging for this purpose, but it applies statistical instead
of PDE-based smoothing strategies. Promising results of combining watershed al-
gorithms with nonlinear diffusion have been described recently by De Vleeschauer
et al. [100] and Sijbers et al. [358]. Investigations of watershed algorithms within
scale-space hierarchies have been carried out by Griffin et al. [155], Olsen [283],
Sramek and Wrbka [374], and Olsen and Sporring [284] for the linear diffusion
scale-space, and by Jackway [194] for the dilation—erosion scale-space. A nonmor-
phological segmentation algorithm based on nonlinear diffusion scale-spaces has
been studied by Niessen et al. [277, 276]. This discussion shows that the novelty
of our approach consist of developing pyramid AOS algorithms for efficient PDE-
based regularization, and combining fast AOS-based algorithms with an important
morphological segmentation tool, the watershed algorithm. This results in a fast
segmentation method. A preliminary version of the present manuscript has been
presented at a conference [413].

10.2 PDE-Based Regularization

Below two prototypes for well-posed PDE-based regularization techniques are pre-
sented. The first one allows contrast enhancement, while the second one can be
expressed as an energy minimization method. These two methods are only repre-
sentatives of a much larger class of diffusion-based smoothing methods. For a more
detailed treatment of this topic the reader is referred to [412].
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10.2.1 The Nonlinear Diffusion Filter of Catté et al.

In the m-dimensional case the filter of Catté, Lions, Morel and Coll [74] has the
following structure:

Let ©Q := (0,a1) X .... X (0, ay,) be our image domain and consider a (scalar) image
f(z) as a bounded mapping from €2 into the real numbers R. Then a filtered image
u(z,t) of f(x) is calculated by solving the diffusion equation with the original
image as initial state, and reflecting boundary conditions:

Bu = div (g(\vu,m vu) (10.1)
u(z,0) = f(x), (10.2)
Opttlaa = 0, (10.3)

where n denotes the normal to the image boundary 0f).

The “time” t is a scale parameter: larger values lead to simpler image represen-
tations. In order to reduce smoothing at edges, the diffusivity g is chosen as a
decreasing function of the edge detector |Vu,|?, where Vu, is the gradient of a
Gaussian-smoothed version of u:

Vu, = V(K,*u), (10.4)

Ky =~ e (20 (10.5)
= rotyml exp =l R .

We use the diffusivity

) 1 (s> =0)
g9(s) = { —3.315) (s2 > 0). (10.6)

1 —exp ((S/)\)g

For such rapidly decreasing diffusivities, smoothing on both sides of an edge is
much stronger than smoothing across it. This selective smoothing process prefers
intraregional smoothing to interregional blurring. The factor 3.315 ensures that
the flux ®(s) := sg(s?) is increasing for |s| < X and decreasing for |s| > \. Thus,
A is a contrast parameter separating low-contrast regions with (smoothing) for-
ward diffusion from high-contrast locations where backward diffusion may enhance
edges [303]. After some time this filter creates segmentation-like results which are
piecewise almost constant. For ¢ — oo, however, the image becomes completely
flat [412]. Well-posedness results for this filter can be found in [74, 412] and a
scale-space interpretation in terms of an extremum principle as well as decreasing
variance, decreasing energy, and increasing entropy is given in [412].

The effect of this diffusion filter is illustrated in Figure 10.1 (c),(d). We observe
that it creates piecewise almost constant regions that are separated by sharp edges.
If the images are very noisy, however, the filter performance deteriorates near edges
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where it tends to preserve these noisy structures by decreasing the diffusivity. In
the next scetion we are concerned with a related method that is better suited for
noise elimination than isotropic nonlinear diffusion filtering.

10.2.2 Variational Image Restoration

Many variational methods for image restoration (such as [345, 80, 104]) obtain a
filtered version of some degraded image f as the minimizer of an energy functional
of type

() ::/((u—f)2 + aU(|Vup)) da, (10.7)

where the regularizer U is an increasing function. The first summand encourages
similarity between the restored image and the original one, while the second sum-
mand rewards smoothness. The smoothness weight o > 0 is called regularization
parameter.

From variational calculus it follows that the minimizer of E;(u) satisfies the so-
called Euler-Lagrange equation

0 = div (‘Il'(\Vu|2)Vu) +1(f—u) (10.8)
This can be regarded as the steady-state (t — o) of the diffusion-reaction process

a

Bu = div (qﬂ(\vu\?)w) +1(f —w) (10.9)

This shows the close connection between variational image restoration and diffusion
filtering. Indeed, much more relations have been discovered recently; see [341] for
more details. In our case the convex potential [268]

U(|Vul?) = A1+ |[Vul2/X2 +¢|Vul> (A, e>0) (10.10)
is used. The corresponding diffusivity in (10.9) is given by its derivative

1

+ €.
V14 |Vul2/A?

Choosing a potential function ¥(s?) that is convex in s allows to guarantee well-
posedness and stable algorithms [345]. For nonconvex potentials as in [281, 140],
several well-posedness questions are open. Moreover, the diffusion—reaction equa-
tion (10.2.2) converges globally (i.e. for all initial values) to the solution of the
Euler-Lagrange equation (10.8). It should be noted that the convex potential im-
plies that the corresponding diffusive flux ®(s) = sW¥’(s?) is increasing in s. Thus,

(| Vul?) =

(10.11)
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Figure 10.1: (a) Top LEFT: test image. (b) Tor RIGHT: Gaussian noise with
zero mean added. (¢) MIDDLE LEFT: nonlinear diffusion filtering of (a). (d) MIb-
DLE RIGHT: nonlinear diffusion filtering of (b). (¢) BOoTTOM LEFT: variational
restoration of (a). (f) BoTrToM RIGHT: variational restoration of (b).
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backward diffusion does not appear and edge enhancement is not possible. Never-
theless, since the diffusivity ¥'(|Vu|?) is decreasing in |Vu|?, smoothing at edges is
reduced and discontinuities are better preserved than in linear smoothing methods.
Figure 10.1(e),(f) depicts the filter performance of this method. It has a remarkable
robustness under noise, but, in contrast to the nonlinear diffusion filter of Catté et
al., it cannot enhance edges. This situation can be handled by more sophisticated
diffusion filters such as edge-enhancing anisotropic diffusion [408]. They, however,
require more complicated numerical algorithms that are beyond the scope of the
present paper.

10.3 Efficient Algorithms for PDE-Based Regu-
larization

10.3.1 Limitations of Conventional Schemes

Let us first consider finite difference approximations to the m-dimensional diffusion
filter of Catté et al..
A discrete m-dimensional image can be regarded as a vector f € RV, whose com-
ponents f;, ¢ € {1,..., N} display the grey values at the pixels. Pixel 7 represents
the location x;. Let h; denote the grid size in the [ direction. We consider discrete
times t; := k7, where k € INy and 7 is the time step size. By uf and g* we denote
approximations to u(x;, tx) and g(|Vue(z;, tx)|?), respectively, where the gradient
is replaced by central differences.
The simplest discretization of the diffusion equation with reflecting boundary con-
ditions is given by
uhtt —
Z > gJ +gZ C_ k). (10.12)

I=1 jeN(s)

where V(%) consists of the two neighbours of pixel 7 along the [ direction (boundary
pixels may have only one neighbour). In vector-matrix notation this becomes

= iAl(uk) u®, (10.13)

A; describes the diffusive interaction in [/ direction. One can calculate u**! directly
(explicitly) from u* without any matrix inversion:

Uk —

ubtt = (I—Fsz:Al(uk)) u”. (10.14)
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For this reason it is called explicit scheme. Each explicit iteration step can be
performed very fast, but the step size has to be very small: one can show [429]
that in order to guarantee stability, the step size must satisfy

1
T S ~—m 2 -
Zl:l h?
For most practical applications, this restriction requires to use a very high number

of iterations, such that the explicit scheme is rather slow.
Thus, we consider a slightly more complicated discretization next, namely

(10.15)

uk+1

—uk m

— = > Ay(uF) uF (10.16)
I=1

This scheme does not give the solution u*! directly (explicitly): It requires to

solve a linear system first. It is called a linear-implicit (semi-implicit) scheme. The

solution u**! is given by

bt = (I—Tzil:Al(uk))l uk. (10.17)

This scheme is absolutely stable [412].

In the 1-D case the system matrix is tridiagonal and diagonally dominant. For
such a system a Gaussian algorithm for tridiagonal systems (also called Thomas
algorithm) solves the problem in linear complexity [429].

For dimensions m > 2, however, it is not possible to order the pixels in such a
way that in the i-th row all nonvanishing elements of the system matrix can be
found within the positions [i,7 — m] to [i,i + m]: Usually, the matrix reveals a
much larger bandwidth. Applying direct algorithms such as Gaussian elimination
would destroy the zeros within the band and would lead to an immense storage and
computation effort. Typical iterative algorithms become slow for large 7, since this
increases the condition number of the system matrix. Thus, in spite of its absolute
stability, the semi-implicit scheme is often not much faster than the explicit one.

10.3.2 AOS Schemes

In order to address the preceding problem we consider a modification of (10.17),
namely the additive operator splitting (AOS) scheme [429]

1 & -1
uktt = — l_zl (I — mTAl(uk)> uk. (10.18)
The operators By(u¥) := I — m7A;(u*) describe one-dimensional diffusion pro-

cesses along the x; axes. Under a consecutive pixel numbering along the direction
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[ they come down to strictly diagonally dominant tridiagonal matrices which can
be efficiently inverted by the Thomas algorithm.

Moreover, (10.18) has the same first-order Taylor expansion in 7 as the explicit
and semi-implicit scheme: all methods are O(7 + h? + ... + h2,) approximations to
the continuous equation.

Since it is an additive splitting, all coordinate axes are treated in exactly the same
manner. This is in contrast to conventional splitting techniques from the literature,
which are multiplicative [241]. They may produce different results if the image is
rotated by 90 degrees.

Recently a general framework for discrete nonlinear diffusion scale-spaces has been
discovered, which guarantees that the discretization reveals the same scale-space
properties as its continuous counterpart [412]. One can verify [429] that the AOS
scheme creates such a discrete nonlinear diffusion scale-space for every (!) step
size 7. As a consequence, it preserves the average grey level p, satisfies a causality
property in terms of a maximum-minimum principle, and converges to a constant
steady state. Moreover, the process is a simplifying, information-reducing trans-
form with respect to many aspects: The p-norms

N
bl o= (O |uf|P)'/? (10.19)
i=1
and all even central moments
1 X
Mon[u¥] := = D () — )™ (10.20)
7j=1

are decreasing in k, and the entropy
N
S[uF] := — Z uf Inub, (10.21)
7j=1

a measure of uncertainty and missing information, is increasing in & (if f; is positive
for all 7).

Table 10.1 summarizes the features of the discussed schemes. Full algorithmic
details of AOS schemes can be found in [429], and a parallel implementation for
processing 3-D images is described in [419].

Many nonlinear diffusion problems require only the elimination of noise and some
small-scale details. Often this can be accomplished with no more than 5 iterations
in sufficient precision. We shall see that this takes about half a second for a 2562
image on current PCs or workstations.
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Table 10.1: Schemes that create discrete nonlinear diffusion scale-spaces.

scheme formula stability costs/iter. | effic.
explicit (I +73 Ai(u )) uF T< % very low | low
=1 > h%
_ - i=1"
semi-impl. | uF*! = (I Ty Al(u )) uf T < 00 high fair
=1
1 m —1I
AOS uhtl = — % (I mTtA;(u )) ubF | 7 < o0 low high
m =1

10.3.3 Pyramid AOS

Let us now investigate a novel extension of the AOS framework to the variational
image restoration method. In matrix-vector notation a semi-implicit discretization
of (10.9) is given by

uk+1 . uk m
= AW U a(f ). (10.22)

1=1

Solving for u**! yields
m -1 k T
+ 5/

el (7o T N 4wl B el 10.2
u ( 1+z2 l(u)> 1+ (10.23)

In analogy to the previous section we may approximate this scheme by its AOS

variant -
1 & b4 I
=) ( mT_ (uk)> L) (10.24)
m =1 1 + p 1 + o

which again comes down to recursive filtering.

In contrast to the pure diffusion filter, however, we are now interested in approxi-
mating the steady-state solution for ¢ — oo. Even with large time step sizes, the
diffusion process will mainly act within a fairly small vicinity around each pixel.
Thus, many iterations are required if the image size is large. In order to speed up
the process, we may embed the AOS scheme into a pyramid framework. The idea
is as follows:

e create a Gaussian pyramid decomposition [62] with the smoothing mask
(137

e adapt the filter parameters to the downsampled image. The scaling behaviour
of diffusion—reaction processes requires that a must be divided by 4 if one
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reduces the image size by a factor 2. Since the smoothing mask (i, %, i)

reduces the contrast of an ideal step edge by 25 %, it follows that the contrast
parameter A has to be multiplied by 0.75.

e start with the coarsest level (a 2 x 2 image), and apply a specified number
of AOS iterations.

e expand this solution to the next finer level by linear interpolation, and use
it as initial value for AOS iterations at this level.

e proceed in the same way until convergence at the finest level is reached.

Figure 10.2 illustrates the effect of pyramid AOS. Typically, five iterations are
sufficient in order to obtain good convergence at each level. Since the Gaussian
pyramid decomposition can be performed with linear complexity, the overall com-
plexity remains linear as well. We shall see that regularizing a 256% image on a
current PC or workstation with this pyramid AOS scheme requires only around
0.5 CPU seconds.

It should be noted that the pyramid embedding converges to the same regularized
image than pure AOS iterations would do, since the convex variational approach is
globally convergent. However, pyramid AOS converges faster because of its better
initial data that are provided by the previous pyramid level.

10.4 Watershed Segmentation with Region Merg-
ing

The preceding PDE-based regularization techniques lead to simplified images where
noise and unimportant fine-scale details have been removed.

In order to create a true segmentation, we have to postprocess the regularized
image by a technique which gives an edge map without dangling edges. This edge
map should lead to a partitioning of the entire image into a finite number of regions,
it should handle the semantically important corners and junctions gracefully, and
— last but not least — it should be fast. Classical gradient-based edge detectors
such as a Sobel operator or Kirsch masks are not sufficient for this task, as they
do not give closed contours. This also holds for more sophisticated variants such
as the Canny edge detector [65].

We found a watershed technique [41, 248] based on the squared gradient mag-
nitude very useful for these purposes. Such a technique regards an image as a
landscape where the intensity values correspond to the elevation. Areas where a
rain drop would drain to the same minimum are denoted as catchment basins, and
the lines separating adjacent catchment basins are called watersheds. Watersheds
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Figure 10.2: (a) Top: Gaussian pyramid of a noisy test image. (b) BoTrTOM:
regularized by pyramid AOS.
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are a morphological technique, since they are invariant under monotone grey scale-
transformations. They lead to an image segmentation into regions, and they can
describe edge junctions [266]. This is in contrast to edge detectors based on zero-
crossings of differential operators such as the Laplacian-of-Gaussian [242]: they do
not allow to detect T-junctions [388].

We use Fairfield’s watershed algorithm [118]. Our code is based on an implemen-
tation of Oltmans [285], where the Pascal code has been transferred into C and
minor modifications have been included in order to optimize its performance.
The basic idea of this algorithm is sliding downhill on the gradient squared surface
until one arrives at a local minimum. Then one replaces all pixels along this path
by the image intensity at its corresponding extremum. This algorithm has linear
complexity. The squared image gradient is calculated by Sobel operators.
Watershed algorithms often create too many segments. Although this oversegmen-
tation is less dominant in the PDE-regularized image than in the original one, it
may still lead to problems. Numerous ways have been proposed in order to deal
with the oversegmentation problem, for instance by using markers [248, 267], re-
gion merging [397, 237, 288], or scale-space techniques [155, 194, 283]. In our case
we shall see that a simple region merging strategy is adequate.

In such a step, adjacent regions are merged if their contrast difference is below a
specified threshold. This contrast parameter can be related to the contrast para-
meter A of the PDE-based regularization, thus it does not constitute an additional
parameter. Finding a connected region where neighbouring pixels do not differ by
more than a specified contrast value can be performed in linear complexity and
the result is independent of the order in which the algorithm runs through the
pixels. Thus, the entire segmentation algorithm is invariant under image rotations
by 90 degrees and it reveals a linear total complexity.

A watershed segmentation of a 2562 image with subsequent region merging takes
about 0.2 CPU seconds on a PC or workstation. Thus, the overall segmentation
time including the PDE-based regularization is far less than 1 second.

10.5 Experiments

Figure 10.3 illustrates how preprocessing by nonlinear diffusion filtering greatly
reduces the number of segments in a medical MR image. We also observe that
under nonlinear diffusion the segment boundaries remain well located and need
not be traced back in order to improve their localization. As can be seen for in-
stance at the cerebellum, the segments correspond well with the depicted physical
objects. Moreover, segmentation of elongated objects does not create any problem.
For comparison purposes with a classic approach, Figure 10.3(e) shows the result
of an edge detector based on Sobel operators. Here the gradient magnitude has
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to be postprocessed in order to give useful information. But even with sophisti-
cated postprocessing strategies such as hysteresis thresholding and nonmaximum
suppression, there remains one significant difference to a watershed segmentation:
the contours are not closed. Hence such an operator does not give a partitioning
of the image domain into segments. The latter one can be achieved by considering
level sets of a differential operator such as the zero crossings of the Laplacian in
Figure 10.3(f). In this case fairly large Gaussians are required in order to prevent
oversegmentation. As a result, image structures become much more dislocated
that in the watershed approach with nonlinear diffusion as preprocessing. This is
clearly visible when comparing the contours of the cerebellum in Figs. 10.3(d) and
(f). Another difference between these two approaches consists of the behaviour at
junctions: as already mentioned and as is visible in Figure 10.3(f), zero crossings
cannot meet at T-junctions, whereas watersheds do.

In Figure 10.4 it is shown that the merging step can be essential for avoiding the
oversegmentation problems in the watershed algorithm. Nonlinear diffusion may
create almost piecewise constant areas, but small fluctuations within such an area
introduce many semantically irrelevant catchment basins. Such fluctuations can
also be caused by quantization errors, e.g. by storing grey values in a bytewise
manner. Merging adjacent regions with similar grey values constitutes a simple
remedy for these problems.

Finally, Figure 10.5 gives a comparison between the two PDE-based regularization
techniques. The results are in complete accordance with those from Figure 10.1.
The contrast-enhancing nonlinear diffusion method gives more realistic results for
images with less noise, as can be seen from the segmentation of the arms and legs
in Figure 10.5(c). However, in a more noisy situation, the quality of this method
degrades significantly. The variational method that does not allow contrast en-
hancement, on the other hand, does not reach the qualities of nonlinear diffusion
preprocessing (Fig. 10.5(e)), but is very stable under noise (Fig. 10.5(f)). It is
thus the better preprocessing method for noisy images. Again it should be empha-
sized that there exist more sophisticated nonlinear diffusion methods that combine
the advantages of both approaches studied here [408]. Their efficient algorithmic
realization, however, is more complicated and requires further research.

Table 10.2 presents precise CPU times for our segmentation algorithm both for a
workstation (Sun Ultra 60) and a PC (Pentium II MMX, 440 Mhz), when 2562
images are processed and a GNU C compiler is used. On both architectures, prepro-
cessing by means of nonlinear diffusion or variational restoration can be achieved
in about 0.5 seconds, while the watershed transformation with region merging
takes 0.2 seconds. This shows that the complete algorithm allows to segment 2562
images in much less than a second. With a PC with 700 MHz it is even possible to
segment two such images in less than one second. Moreover, it should be taken into
account that the AOS algorithm, which is the most time consuming subroutine
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Figure 10.3: (a) Top LEFT: MR image. (b) ToP RIGHT: nonlinear diffusion fil-
tering of (a). (¢) MIDDLE LEFT: segmentation of (a). (d) MIDDLE RIGHT: seg-
mentation of (b). (¢) BorToM LEFT: Sobel operator applied to (a). (f) BorTom
RIGHT: Zero crossings of the Laplacian-of-Gaussian of (a).
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Figure 10.4: (a) ToP LEFT: test image. (b) Top RIGHT: nonlinear diffusion filter-
ing of (a). (c) BorToM LEFT: segmentation of (b) without merging. (d) BorTOM
RIGHT: segmentation of (b) with merging.
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Figure 10.5: (a) Top LEFT: hallway scene. (b) TopP RIGHT: Gaussian noise added.
(c) MIDDLE LEFT: segmentation of (a) with nonlinear diffusion as preprocessing.
(d) MIDDLE RIGHT: segmentation of (b) with nonlinear diffusion as preprocessing.
(e) BorTOM LEFT: segmentation of (a) with variational restoration as prepro-
cessing. (f) BorToM RIGHT: segmentation of (b) with variational restoration as
preprocessing.
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Table 10.2: CPU times for the different steps of the segmentation algorithm when
2562 images are processed.

method Sun Ultra 60 | PC (Pentium II MMX, 440 Mhz)
nonlinear diffusion 0.494 s 0.591 s

(5 iterations)

variational restoration 0.407 s 0.516 s

(5 iterations per level)

watershed transformation 0.162 s 0.199 s

with region merging

of the entire method, is very well-suited for parallel computing [419]. Therefore,
further speed up can be achieved in a straightforward way.

10.6 Summary

We have presented efficient algorithms for two prototypes of PDE-based regular-
ization techniques. These regularizations simplify subsequent segmentation tasks
significantly, such that already a simple watershed algorithm with region merging
gives good results. These segmentation techniques are very fast thanks to the use
of AOS schemes and a novel pyramid AOS algorithm. This makes them attractive
for many time-critical applications. All axes are treated equally, since the result
is independent of the pixel ordering. The entire algorithm can be extended in a
straightforward way to m-dimensional data, and the linear complexity in the pixel
number remains valid in any dimension.
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Chapter 11

Reliable Estimation of Dense
Optical Flow Fields with Large
Displacements
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Vol. 39, No. 1, 41-56, August 2000.

Abstract

In this paper we show that a classic optical flow technique by Nagel
and Enkelmann (1986) can be regarded as an early anisotropic diffusion
method with a diffusion tensor. We introduce three improvements into
the model formulation that (i) avoid inconsistencies caused by centering
the brightness term and the smoothness term in different images, (ii)
use a linear scale-space focusing strateqy from coarse to fine scales for
avoiding convergence to physically irrelevant local minima, and (iii)
create an enerqy functional that is invariant under linear brightness
changes. Applying a gradient descent method to the resulting energy
functional leads to a system of diffusion—reaction equations. We prove
that this system has a unique solution under realistic assumptions on
the wnitial data, and we present an efficient linear implicit numerical
scheme in detail. Our method creates flow fields with 100 % density over
the entire image domain, it is robust under a large range of parameter
variations, and it can recover displacement fields that are far beyond the
typical one-pizel limits which are characteristic for many differential
methods for determining optical flow. We show that it performs better
than the optical flow methods with 100 % density that are evaluated by
Barron et al. (1994). Our software is available from the Internet.
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11.1 Introduction

The goal of optical flow computations is to estimate a so-called optical flow field
which represents the apparent shift of greyvalue structures in the image plane.
Recovering this displacement field is a key problem in computer vision and much
research has been devoted to this field during the last two decades. For a survey of
these activities we refer to Mitiche and Bouthemy [251], and performance evalua-
tions of some of the most popular algorithms include papers of Barron et al. [35],
Jahne and Haussecker [198], and Galvin et al. [139].

One important class of optical flow methods consists of so-called differential methods.
Often they are considered as useful only in the case of small displacement fields.
The goal of the present paper is to show that a combination of linear and nonlin-
ear scale-space ideas may lead to a well-posed differential method that allows to
recover the optical flow between two images with high accuracy, even in the case
of large displacement fields.

We consider two images I(x,y) and I(z,y) (defined on R? to simplify the dis-
cussion) which represent two consecutive views in a sequence of images. Un-
der the assumption that corresponding pixels have equal grey values, the de-
termination of the optical flow from I; to I, comes down to finding a function

h(z,y) = (u(zx,y),v(z,y)) such that
L(z,y) = Lz +u(z,y).y+v(,y),  V(zy) eR. (11.1)

To compute h(z,y) the preceding equality is usually linearized yielding the so-
called linearized optical flow constraint

L(z) — L(Z) = (VL,(T), h(T)) vz (11.2)

where T := (z,y). The linearized optical flow constraint is based on the assumption
that the object displacements h(Z) are small or that the image is slowly varying
in space. In other cases, this linearization is no longer valid.

Frequently, instead of equation (11.1), the alternative equality

11(31‘ - u(x,y),y - v(x,y)) = IZ(xay)’ V(.ﬁ,y) € ]RQ (113)

is used. In this case the displacement h(z,y) is centred in the image Ir(x,y).

The determination of optical flow is a classic ill-posed problem in computer vision
[40], and it requires to be supplemented with additional regularizing assumptions.
The regularization by Horn and Schunck [171] reflects the assumption that the
optical flow field varies smoothly in space. However, since many natural image
sequences are better described in terms of piecewise smooth flow fields separated
by discontinuities, much research has been done to modify the Horn and Schunck
approach in order to permit such discontinuous flow fields [26, 44, 45, 49, 85, 105,
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159, 166, 221, 246, 265, 270, 309, 344, 414]. A survey of these approaches will be
presented at the end of this section.

An important improvement of the Horn and Schunck method has been achieved
by Nagel and Enkelmann [265] in 1986 (see also [260]). They consider the following
minimization problem:

Enu(h) = /Rgfl(x—u(w,y),y—v(x,y))—12<x,y>>2dmdy (11.4)

+c / (Vu'D (VI,) Vu+ Vo' D (V1) Vv) dzdy
R2

where ¢ is a positive constant and D (V1;) is a regularized projection matrix in
the direction perpendicular of VI;:

D\VL)=——— Id ;. 11.
o= e (%) (%) g o

In this formulation, /d denotes the identity matrix. The advantage of this method
is that it inhibits blurring of the flow across boundaries of I; at locations where
V| > \

In spite of its merits, however, this method still leaves room for improvements:

(i) The Nagel-Enkelmann model uses an optical flow constraint which is centred
in Iy, while the projection matrix D in the smoothness term depends on ;.
This inconsistency may create artifacts for large displacement fields.

(ii) Refraining from a linearization of the optical flow constraint has the con-
sequence that the energy functional (11.6) may be nonconvex. In this case
popular algorithms such as gradient descent methods may get trapped in
physically irrelevant local minima.

(iii) Minimizers of the energy functional (11.4) are not invariant under linear
brightness changes of the images I; and 5.

In the present paper we will address these points by introducing three improve-
ments into the Nagel-Enkelmann model:

(i) We design an energy functional that consistently centers both the optical
flow constraint and the smoothness constraint in the same image.

(ii) We encourage convergence to the global energy minimum by embedding the
method into a linear scale-space framework that allows to focus down from
coarse to fine scales in small steps.



252 CHAPTER 11. OPTICAL FLOW WITH LARGE DISPLACEMENTS

(iii) We introduce an adaptation of the parameters ¢ and A to the dynamic range
of the images such that the resulting energy functional is invariant under lin-
ear brightness rescalings. This adaptation is particularly useful in the context
of our scale-space focusing which alters the dynamic range of the images.

Applying the gradient descent method to our model leads to a coupled system of
two diffusion—reaction equations, for which we establish the existence of a unique
solution. Interestingly, these equations can be related to anisotropic diffusion fil-
tering with a diffusion tensor. We present an efficient numerical scheme that is
based on a linear implicit finite difference discretization. Afterwards, we discuss
the role of the model parameters and demonstrate that our model allows very
accurate recovery of optic flow fields for a large range of parameters. This is done
by considering both synthetic image sequences, for which ground truth flow fields
exist, as well as a real-world test sequence. Owing to the scale-space focusing, our
model is particularly suited for recovering large displacement fields.

The paper is organized as follows: In Section 11.2 we describe our optical flow
method that incorporates the three improvements, and we show that the Nagel-
Enkelmann method and its modifications are closely related to anisotropic diffusion
filtering. In Section 11.3 we present existence and uniqueness results for the non-
linear parabolic system that arises from using the gradient descent method for
minimizing the energy functionals. Section 11.4 describes an efficient numerical
discretization of this system based on a linear implicit finite difference scheme.
Section 11.5 clarifies the role of the model parameters, and in Section 11.6 we
present experimental results on synthetic and real-world image sequences. Finally,
in Section 11.7 we conclude with a summary.

Related work. Proesmans et al. [309, 308] studied a related approach that also
dispenses with a linearization of the optical flow constraint in order to allow for
larger displacements. Their method, however, requires six coupled partial differ-
ential equations and its nonlinear diffusion process uses a scalar-valued diffusivity
instead of a diffusion tensor. Their discontinuity-preserving smoothing is flow-
driven while ours is image-driven. Another PDE technique that is similar in vein
to the work of Proesmans et al. is a stereo method by Shah [354]. Other flow-
driven regularizations with discontinuity-preserving properties include the work of
Aubert et al. [26], Cohen [85], Deriche et al. [105], Hinterberger [170], Kumar et
al. [221], Schnorr [344], Weickert [414], and Weickert and Schnérr [423]. Related
stochastic regularization approaches have been studied by Black and Anandan
[44, 45], Blanc-Féraud et al. [49], Heitz and Bouthemy [166], and Mémin and Pérez
[246]. The image-driven anisotropic Nagel-Enkelmann approach has been subject
to many subsequent studies. Examples include later work by Nagel [261, 264] as
well as research by Schnérr [342, 343] and Snyder [361]. A multigrid realization
of this method has been described by Enkelmann [115], and a related pyramid
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framework is studied by Anandan [20]. An isotropic image-driven optic flow reg-
ularization is investigated by Alvarez et al. [11]. With respect to embeddings into
a linear scale-space framework our method can be also be related to the optical
flow approach of Florack et al. [129]. Their method differs from ours in that it is
purely linear, applies scale selection mechanisms and does not use discontinuity-
preserving nonlinear smoothness terms. Our focusing strategy for avoiding to end
up in irrelevant local minima also resembles the graduated non-convezity (GNC)
algorithms of Blake and Zisserman [48]. A preliminary version of our work has
been presented at a conference [17], and a related optical flow method has been
used by Hinterberger [170] to generate a movie between two images.

11.2 The Model

In this section we consider three modifications of the Nagel-Enkelmann model in
order to improve its performance in the case of large displacement fields. We also
discuss relations between this method and anisotropic diffusion filtering.

11.2.1 Consistent Centering

We have seen that the energy functional (11.4) uses an optical flow constraint and
a smoothness term that are centred in different images. Our experiments showed
that this inconsistency may lead to artifacts when the displacement field is large.
As a remedy, we consider a modified energy functional where both the optical flow
constraint and the smoothness constraint are related to Ii:

B0 = [ (haw) = L+ u(e.p).y+ o) dody

+c / (Vu"D (V1) Vu+ Vo' D (VL) Vo) dedy.  (11.6)
R2

The associated Euler-Lagrange equations are given by the PDE system

cdiv (D (VI)) Vu)+(Il(f)—IQ(T—FE(T)))%(T—HL(T)) = 0, (11.7)
cdiv (D (V1)) Vv)+(II(E)—IQ(§+E(E)))68—I;(E+E(§)) = 0. (11.8)

In this paper, we are interested in solutions of the equations (11.7)-(11.8) in the
case of large displacement fields and images that are not necessarily slowly varying
in space. Therefore, we do not use the linearized optic flow constraint (11.2) in the
above system.
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11.2.2 Relations to Anisotropic Diffusion Filtering

We obtain the solutions of the Euler-Lagrange equations (11.7)-(11.8) by calcu-
lating the asymptotic state (¢t — 0o0) of the parabolic system

ou 8[2

o = cdiv (D (V6L) Vu) + (L(Z) — L(Z + h(T))) a—x(mﬁ(f)), (11.9)
ov . _ O
5 = cdiv (D (VL) Vo) + (I(Z) — L(Z + h(Z))) a—y(x+h($)).(11.10)

These equations do also arise when the steepest descent method is applied in order
to minimize the energy (11.6).

Interestingly, this coupled system of diffusion—reaction equations reveals a diffu-
sion tensor which resembles the one used for edge-enhancing anisotropic diffusion
filtering. Indeed, D(V1I;) has the eigenvectors v; := VI, and v, := VI{. The
corresponding eigenvalues are given by

)\2
VI >+ \?

We observe, that \; + A2 = 1 holds independently of VI;. In the interior of objects
we have |VI;| — 0, and therefore A\; — 1/2 and Ay — 1/2. At ideal edges where
|VI| — oo, we obtain Ay — 0 and Ay — 1. Thus, we have isotropic behaviour
within regions, and at image boundaries the process smoothes anisotropically along
the edge. This behaviour is very similar to edge-enhancing anisotropic diffusion
filtering [408], and it is also close in spirit to the modified mean-curvature motion
considered in [13]. In this sense, one may regard the Nagel-Enkelmann method as
an early predecessor of modern PDE techniques for image restoration.

One structural difference, however, should be observed: the optical flow equations
(11.9)—(11.10) use a temporally constant diffusion tensor, while the nonlinear dif-
fusion tensor of anisotropic diffusion filtering is a function of the evolving image
itself. Hence, the Nagel-Enkelmann model is anisotropic and space-variant, but
it remains linear in its diffusion part. Related linear anisotropic diffusion filters
have been pioneered by lijima in the sixties and seventies in the context of optical
character recognition; see [421] and the references therein. For a detailed treat-
ment of anisotropic diffusion filtering we refer to [412], an axiomatic classification
of mean-curvature motion and related morphological PDEs for image analysis is
presented in [12], and recent collections of papers on PDE-based image smoothing
methods include [38, 70, 381, 274].
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11.2.3 Recovering Large Displacements by Scale-Space Fo-
cusing

The energy functional (11.6) may be nonconvex due to its data term without lin-
earization. In this case we cannot expect the uniqueness of solutions of the elliptic
system (11.7)-(11.8). As a consequence, the asymptotic state of the parabolic sys-
tem (11.9)-(11.10), which we use for approximating the optical flow, depends on
the initial data. Typically, we may expect that the algorithm converges to a local
minimizer of the energy functional (11.6) that is located in the vicinity of the ini-
tial data. When we have small displacements in the scene, the natural choice is to
take u = v = 0 as initialization of the flow. For large displacement fields, however,
this may not work, and we need better initial data. To this end, we embed our
method into a linear scale-space framework [175, 421]. Considering the problem
at a coarse scale avoids that the algorithm gets trapped in physically irrelevant
local minima. The coarse-scale solution serves then as initial data for solving the
problem at a finer scale. Scale focusing has a long tradition in linear scale-space
theory (see e.g. Bergholm [39] for an early approach), and in spite of the fact that
some theoretical questions remain open, it has not lost its popularity. For more
details on linear scale-space theory we refer to [127, 187, 188, 230, 369]. Using a
scale-space approach enables us also to perform a finer and more reliable scale
focusing as would be the case for related pyramid or multigrid approaches.

We proceed as follows. First, we introduce a linear scale factor in the parabolic
PDE system in order to end up with

Oy . -
5 = div (D (VI{) Vu,)
+ (I7 (@) — I§(T + he(7))) %I; (T + he(T)), (11.13)
0V, . -
o5 = ¢ div (D (VI7) Vu,)
HE@ - B+ R @) a+h@) L)

where I := G, * I}, IS := Gy x I, hy(Z) := (uy(T), v, (T)), and G, * I; represents
the convolution of I; with a Gaussian of standard deviation o.

The convolution with a Gaussian blends the information in the images and allows
us to recover a connection between the objects in I; and I5. In our application, this
global support property that is characteristic for linear diffusion scale-spaces is very
important. It makes them favourable over morphological scale-spaces in the sense
of [12], since the latter ones cannot transport information between topologically
disconnected objects.

We start with a large initial scale gy. Then we compute the optical flow (u,, Vs,)
at scale oy as the asymptotic state of the solution of the above PDE system using
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as initial data u = v = 0. Next, we choose a number of scales 7,, < 7,,_1 < .... < 09,
and for each scale o; we compute the optical flow (u,,, v,,) as the asymptotic state
of the above PDE system with initial data (u,,_,, vs,_,). The final computed flow
corresponds to the smallest scale o,,. In accordance with the logarithmic sampling
strategy in linear scale-space theory [213], we choose o; := n'cy with some decay
rate n € (0,1).

11.2.4 Invariance Under Linear Greyvalue Transformations

A remaining shortcoming of the modified model is that the energy E(h) is not
invariant under grey level transformation of the form (Iy, Iy) — (kI, kl5), where
k is a constant. Therefore, the choice of the parameters depends strongly on the
image contrast. This is especially problematic when the method is embedded in
the scale-space focusing strategy, since the amount of smoothing influences the
contrast range in the regularized images G, x I; and G, * I.

We address this problem by normalizing the parameters ¢ and A in such a way
that the energy E(h) becomes invariant under grey level transformation of the
form (I, 1) — (kIy, kly). We compute ¢ and A by means of two parameters o and

s € (0,1) that are calculated via

(07

max(|(VG, * 1) (T)[?)’

C =

A
s = / H|VGU*11|(Z)dZ
0

where M|y, «1,|(2) represents the normalized histogram of |VG, * I;|. We name
s the isotropy fraction. When s — 0, the diffusion operator becomes anisotropic

at all locations, and when s — 1, it leads to isotropic diffusion everywhere. So
now ¢ = c¢(a, VG, x I), and A = A(s, VG, * I;). With this normalization of ¢

and ), the energy F(h) is invariant under grey level transformation of the form
(I, 1) — (kIy, k). In practical applications of our method it is thus sufficient
to specify the parameters a and s instead of ¢ and A. The parameters ¢ and A
are then automatically adjusted to the dynamic image range in each step of the

focusing procedure.

11.3 Existence and Uniqueness of the Parabolic
System

In this section we show the existence and uniqueness of solutions of the parabolic
system (11.13)-(11.14) where D (VI?) is given by (11.5). The parameters ¢ and A
can be arbitrary positive real numbers. In particular, they may be determined as
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described in the previous section. First we introduce an abstract framework where
we study the above system. This framework is used to show the existence and
uniqueness of the solutions afterwards.

11.3.1 Abstract Framework

For simplicity we assume that the images are defined on the entire space R?. We
assume that the input images I; and I, belong to the functional space L?(R2). Let
H = L*(R?) x L*(R?), and let us denote by A : D(A) C H — H the differential

operator defined by

_ (div(D(VI) Vu,)
A(h) = —c ( div (D (VI{) Vu,) ) ’

where D(A) is the domain of the mapping A. If I; € L?(R?) then I7 € WH™(R?),
so VI7 is bounded and the eigenvalues of the diffusion tensor D (VI{) are strictly

positive. Therefore, as ¢ > 0, the operator A(h) is a maximal monotone operator.
For more details about maximal monotone operators we refer to Brezis [51]. Next,
let us introduce the function ' : H — H defined by

F(h)= (I{ — I5(Id+ h)) VI (Id + h).

Then the abstract evolution problem can be written as

(11.15)

D + Ah, = F(h) in H, ¥t € [0, 7]
BO’(O) = EO in H.

Any classical solution h, € C*([0,T]; H) N C([0,T]; D(A)) of (11.15) is given by

R (1) = S(OF + / " S(t — $) (R, (3))ds, (11.16)

where {S(t) }+>0 is the contraction semi-group associated to the homogeneous prob-
lem.

Definition. We say that h € C([0,T]; H) is a generalized solution of (11.15) if it
satisfies (11.16).

11.3.2 Existence and Uniqueness Result

In order to prove existence and uniqueness, we have to establish a lemma first.

Lemma 8 Suppose that I I, € L*(R?), then F is Lipschitz-continuous, and the
Lipschitz constant L depends on the functions Iy and I, and on o.
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Proof:

First we note that if I I, € L*(R?), then we have in particular that I5 € Wh>(R?)
and I? € L*°(R?). Let hy,hy € H. For the i-th component of F(h;) — F(hs),
1 = 1,2, we have the following pointwise estimate.

|Ey(h) = Fi(ho)| = |(I7 — I (Id + h1))O;I5 (Id + hy)

—(I7 = I3 (Id + he)) 3,15 (Id + hs) |,

IS (Id + h1)O IS (Id + hy) — IS (Id + he)O IS (Id + hy)|
+7] 1015 (Id + ha) — 0,15 (Id + ho),

1 — _

§|5i(|120\2)(1d +hi) = (|15 °) (1d + hy)|

[ oo - [0:15 (Id + ha) = O;15 (Id + hy),

1 _ _
§CLz‘p(az‘(\Ig\2)) “|hy = ha| + [ |loo - CLip(Bi15) - [hy — ha

IN

IN

1 o
= (§Cup(3i(\fé’l2)) + 7 lloo - CLip(aifé’)) |h1 — hal,

where Cr;,(f) denotes the Lipschitz constant of the function f.
We finally deduce that

[F(h1) = F(h)lla = [[Fa(ha) — Fi(ho)llz2 + | Fa(hn) — Fa(ho) |12
2
1 -
< 3 (3Cun@ ) + 1l Cun(@)) - s~ Pl
=1

We conclude the proof of the lemma by setting

2

1
Li= 3 (500 GER) + 1 Cran@irD)).

i=1

This shows the assertion. g
Now we can state the existence and uniqueness result for problem (11.13)-(11.14).

Theorem 15 Suppose that I, I, € L*(R?) then, for all = H, there exists a
unique generalized solution h,(t) € C ([0,00); H) of (11.13)-(11.14).

Proof:

The assumptions on I; and I, allow us to apply Lemma 8. Assume that hy(t)
and hy(t) are solutions of (11.16) for initial conditions h(0) and hy(0), then we
have, using the fact that A is monotone (which yields ||S(¢) f||z# < || f||l#), and the
Lipschitz continuity of F' the following estimate.

1ha(t) = ha(®)llr < IIE(U)—52(0)||H+L/0t||ﬁ1(8)—ﬁz(S)IIHdS-
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Applying the Gronwall-Bellman lemma [51] gives
1h1(t) = ho ()] < €".[|h1(0) = ha(0)]|r,

which yields uniqueness of the solution if it exists. Now consider the Banach space
defined by

E = {h e C([0,00); H) : sup IA(&) ]| me™"" < oo}

endowed with the norm |[h||g = sups [[h(t)||ze "

Let ¢ : E — C([0,00); H) be defined by

t
o(h)(t) = S(t)h + / S(t — s)F(h(s))ds.
0
If K > L, then ¢(F) C E, and ¢ is £-Lipschitz since

I¢(h1) = 6(h)lle = supllg(ha)(t) — p(h2)(t)l|we™"",

>0

t
< sup/ LilTos(5) = o) || s =K
0

>0

t
< supL||El—EQ||E'€_Kt/ ef*ds
£>0 0
Lo —Kt( Kt
< Squ”hl_hQHE"e (e™"—1)
£>0
L
< —=||h1 — hsl|B-
< Ll Falls

We deduce that ¢ is a contraction, and by Banach’s fixed point theorem there exists
a unique h, such that ¢(h,) = h,. This is the generalized solution of (11.15), and
the proof is concluded. g

Remark. We notice that our existence and uniqueness proof is based on rather
weak assumptions on the initial images I; and I,. We only assumed square inte-
grability. They do not have to be continuous and may even be corrupted by noise
or quantization artifacts, as is common for real-world images. The behaviour of
the solution when o goes to 0 is a challenging mathematical problem. If I; and I
are not sufficiently smooth, we cannot expect a good asymptotic behaviour when
o tends to 0. This suggests that the original images [; and I, should always be
preprocessed by some small amount of Gaussian smoothing. In our experiments
we shall also observe that it can be advantageous to stop the focusing procedure
when o attains the order of the pixel size.
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11.4 Numerical Scheme

Next we describe an efficient algorithm for our optical flow model. We discretize
the parabolic system (11.13)-(11.14) by finite differences (see e.g. [256] for an
introduction to this subject). All spatial derivatives are approximated by central
differences, and for the discretization in ¢ direction we use a linear implicit scheme.
Let D(VG, * I;) =: (¢ °). Then our linear implicit scheme has the structure

b ¢
k+1 k k+1 k+1 k+1 k+1
Uiy — Wiy _ Qit1,j + Qijj Yiprj = Wiy | Gio1y+ Gij Uio1j = Ui
W= ¢ 3 + 2
T 2 hy 2 hy
k+1 k+1 k+1 k+1
4 Gt F G Vi — Yy Cigmt T Giyg Yigo1 Yy
2 2
k+1 k+1 k+1 k+1
bivrger 4 big Yipigen — Uiy bicagor+ big Yicago T Uiy
2 2hi1ho 2 2hiho
k+1 k+1 k+1 k+1
Cbiprga Fbig Vit T % iy i Uity — Uy
2 2h1ho 2 2h1hs
_ -k _ _ —k
+120(Tij + hi ;) <11 (Tij) — L(Tij + by ;)
kLo (Tog + By ) + 08 Dy (T + )
uly] 2’$ xz’-? z;] IUZ,] 25y xlaj Z,]
k4172 (= 7k k+1 — 7k — 7k
—U; 5 I2,z(33i,j + h‘i,j) — U Loy (Tij + hz’,j) Lo (Tij + hi,j)7(11'17)
k+1 k k+1 k+1 k+1 k+1
Yij —Yj _ Qit1,j + Qijj Yitrj — Yy Gio1g iy Vicry T Yy
= ¢ 2 2
T 2 hi 2 hy
k+1 k+1 k+1 k+1
Cij+1 + Cijj Yigt1 — Yy Cij—1+ Gy Vi1 — Vi
+ > + 5
2 h2 2 h2
k+1 k+1 k+1 k+1
bigrer +bij Vv — Vi bicago1 i Yty — Vi
2 2h1h2 2 2h1h2
k41 k+1 k+1 . k+l
Ui i Vo TV by F0iy Vit T Vi
2 2h1hgy 2 2h1hy

— _ I—
+1ay(Tij + by j) (Il(xi,j) — L(Tij + by ;)
. _ —k . _ —k
+ g oz (Tij + hi ;) + 7 1oy (T 5 + hi,j))
_ —k _ —k _ —k

Although this scheme might look fairly complicated at first glance, it is actu-
ally straightforward to implement. The notations are almost selfexplaining: for
instance, 7 is the time step size, h; and h, denote the pixel size in z and y direc-
tion, respectively, uf ; approximates u, in some grid point Z;; at time k7, and I ,

is an approximation to G * %. We calculate values of type I5(T; +Ef’j) by linear
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interpolation.

The idea behind linear implicit schemes is to use implicit discretizations in order
to improve stability properties, as long that they lead to linear systems of equa-
tions. Implicit means that unknowns of the new time level appear on both sides
of the equation. For nonlinear equations, fully implicit methods would require a
computationally expensive solution of nonlinear systems of equations. The com-
putationally less expensive linear implicit methods avoid this by using suitable
Taylor expansions, such that the resulting system of equations become linear. In
our case we achieved this by using the first-order Taylor expansion

—kt1 _ —k
I (@i + h ) ~ LT+ hz’,j)
_ —k
+ (u fjl fg) Lo o (Tij + hy ;)
_ —k
+ (vfft - Uf,j) Loy (Tij + hy ;)

2y

in a fully implicit discretization, and by discretizing G, * 6;2 and G, * 31; in an
explicit way. A consistency analysis shows that the preceding scheme is of second
order in space and of first order in time.

We solve the resulting linear system of equations iteratively by a symmetric Gauf3—
Seidel algorithm. In order to explain its structure let us suppose that we want to
solve a linear system A% = b where A = D — L —U and D is a diagonal matrix, L
a strictly lower triangular matrix, and U a strictly upper triangular matrix. Then
the symmetric Gaufl—Seidel iterations are given by

(D — L)w”+1/2> = b+Ua™,
( ) (n+1) _— E+Lw(n+1/2)

where the upper index denotes the iteration index. The systems are solved directly
using forward and backward elimination, respectively.

In an earlier version of our work [17] we have studied an explicit scheme that did
not require to solve linear systems of equations. The linear implicit approach that
we employ in the meantime, however, has led to a speed-up of one to two orders
of magnitude, since it allows significantly larger time step sizes without creating
stability problems.

11.5 Parameters

Our algorithm for computing the optical flow depends on a number of parameters
that have an intuitive meaning:

e The regularization parameter « specifies the balance between the smoothing
term and the optical flow constraint. Larger values lead to smoother flow
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fields by filling in information from image edges where flow measurements
with higher reliability are available.

e The isotropy fraction s determines the contrast parameter A via the cumu-
lative histogram of the image gradient magnitude. Choosing e.g. s := 0.7
means that the smoothness term diffuses isotropically at 70 % of all image
locations, while 30 % of all locations are assumed to belong to image edges,
where smoothing is performed anisotropically along the edge.

e The scale 0y denotes the standard deviation of the largest Gaussian. In gen-
eral, oy is chosen according to the maximum displacement expected.

e The decay rate n € (0,1) for the computation of the scales o, := n™0y. We
may expect a good focusing if 7 is close to 1.

e The smallest scale is given by o,,. It should be close to the inner scale of the
image in order to achieve optimal flow localization.

e The time step size 7 and the stopping time 7" for solving the system (11.13)-
(11.14) at each scale o, are pure numerical parameters. We experienced that
fixing 7 := 10 and 7" := 500 creates results that are sufficiently close to the
asymptotic state. Using smaller values of 7 or larger values of 7" slowed down
the algorithm without improving the quality of the flow fields.

In the next section we will see that the results of our method are hardly affected
by fairly large parameter variations. As a consequence default values can be used
for most of the parameters.

11.6 Experimental Results

Figure 11.1 shows our first experiment. We use a synthetic image composed of four
black squares on a white background. Each square moves in a different direction
and with a different displacement magnitude: under the assumption that the = axis
is oriented from left to right and the y axis from top to bottom, the left square on
the top moves with (u,v) = (5, 10), the right square on the top is displaced with
(u,v) = (—10,0), the left square on the bottom is shifted by (u,v) = (0, —5), and
the right square on the bottom undergoes a translation by (—10,—10). In order
to visualize the flow field (u,v) we use two grey level images (ug, vy) defined by
Ug = 128 4+ 12u and vy = 128 4 12v. In Figure 11.1 we notice that the flow
estimates improve significantly by focusing down from oy := 10 to g5y := 0.8: flow
discontinuities evolve and the calculated flow fields approximate the true motion
field more and more.
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Figure 11.1: Computation of the optical flow for the square images with o = 0.6,
s = 0.1, and n = 0.95. (a) FIRsT Row, LEFT PAIR: Original image pair. (b)
SECOND Row, LEFT PAIR: Optical flow components (u, v) for 6y = 10. (¢) THIRD
Row, LEFT PAIR: Optical flow result after focusing down to 012 = 5.7. (d) FIRST
Row, RIGHT PAIR: 095 = 2.9. (e) SECOND Row, RIGHT PAIR: 03; = 1.4, (f)
THIRD Row, RIGHT PAIR: 059 = 0.8.

This qualitative observation is confirmed in the quantitative evaluations carried
out in Figure 11.2. The left plot shows the average angular errors in the four
squares of the first frame. The angular error ¥, has been calculated in the same
way as in Barron et al. [35] using

(11.19)

( Uelhe + Ve + 1 )
v, := arccos

V(w2402 +1)(u2 + 02 + 1)

where (u,, v.) denotes the correct flow, and (ue, v¢) is the estimated flow. The right
plot depicts the Euclidean error \/(ue — u.)? + (v, — v.)? averaged over all pixels
within the four squares of the first frame.

In both cases we observe that the error is reduced drastically by focusing down
in scale-space until it reaches a very small value when the Gaussian width ¢ ap-
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Angular Error Avarage Euchidean Error
a0 3 1
25 4
20 3
15 2 |
10
5 ' 4
0 a4
o }
FRBESRBLEZEARE{ED ~HoRSCLEeEIEnRED
- T T R I — - P — - ] P MmN ™N-=D O 000 CQ B0
Sigma s'mm

Figure 11.2: LEFT: Average angular error of the optic flow calculations for the
squares in the first frame of Figure 11.1. R1GHT: Corresponding average Euclidean
erTor.

Figure 11.3: Result when the optical flow constraint and the smoothness constraint
are centred in different images. Images and parameters are identical with those in
Figure 11.1.

proaches the inner scale of the image. Further reduction of o leads to slightly larger
errors. It appears that this is caused by discretization and quantization effects. We
evaluated the error only in the interior of the squares because of the constant
background. The flow is not defined correctly in this area in the sense that any
displacement of the background is compatible with the image sequence.

Figure 11.3 demonstrates the importance of consistent centering of the optical flow
constraint and the smoothness constraint. In this experiment the smoothness term
follows the gradient of I, while the optic flow term is centred in Iy, i.e. we are
looking for displacements from I; to 5. Since the boundary locations of I; and I,
differ for large displacements, it is not surprising that the optical flow field that
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g

Figure 11.4: Tllustration of the occlusion problem. A square is moving from I; to
I5. The shadowed region in the image I; has no correspondence in I,.

respects the discontinuities of I, is “leaking” at the boundaries of I;.

We notice that when an object moves across the image sequence, the background
is partially occluded. This occlusion problem is illustrated in Figure 11.4. In the
direction of the object motion a region of the background is occluded, so the points
of this region (the shadowed area of Figure 11.4) have no correspondence in Iy,
and the optical flow constraint is no longer valid. In this background region some
slight inhomogeneities appear as can be seen in Figure 11.1. However, we observed
that the smoothness term of the energy helps to reduce such effects.

For the following experiment we use the classical Hamburg taxi test sequence.
These data are available from ftp://csd.uwo.ca in the directory pub/vision.
Instead of taking two consecutive frames — as is usually done — we consider the
frames 15 and 19. The dark car at the left creates a largest displacement magnitude
of approximately 12 pixels. In Figures 11.5 and 11.6 we present the computed flow.
The computed maximal flow magnitude is 11.68, which is a good approximation
of the actual displacement of the dark car. It is interesting to note that, although
the movement of the pedestrian in the upper left part of the scene is difficult to
recognize in the greyscale plot in Figure 11.5, the vector plot in Figure 11.6 shows
that this motion is not suppressed.

In Figs. 11.7 and 11.8 we show the results of our method for the marbled block
sequence. This sequence is copyright by H.-H. Nagel (KOGS/IAKS, University of
Karlsruhe, Germany). It has been recorded and first evaluated by Michael Otte
[293] and it is available from http://i21www.ira.uka.de/image_sequences. The
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Figure 11.5: Computation of the optical flow for the taxi sequence (frames 15 and
19) with a = 0.6, s = 0.1, 09 = 10, 0,, = 0.8, and 7 = 0.95.

marbled block sequence described a real-world scene where the camera is moving.
In our experiments we took the frame 20 and 25, and we used the same parameters
as for the taxi scene.

Next we perform quantitative comparisons with classic optical flow techniques
from the survey paper of Barron et al. [35]. This is done using their ground truth
data as well as the evaluation utilities that are available from ftp://csd.uwo.ca
in the directory pub/vision. It should be noted that the results in [35] have
been achieved with test sequences where the displacements are small, while our
method is designed for large displacement fields. Moreover, their methods also used
a presmoothing in time which involves more than two frames, whereas we use only
two frames. In spite of these limitations we are going to show that we can obtain
competitive results with our method.

In the comparison we focus on those methods in [35] that create flow fields with
100% density. For many subsequent tasks such as the inference of egomotion and
surface structure this is a very desirable property. Local methods that yield a lower
density may have to be supplemented with additional strategies for filling in infor-
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Figure 11.6: Vector plot of the optical flow from Figure 11.5.

mation at locations where no results are available. Their practical performance may
thus depend heavily on this postprocessing. Variational approaches with smooth-
ness terms do not require such a postprocessing step as they automatically yield
flow fields with 100 % density.

In Figures 11.9 and 11.10 we show the computed optical flow for the Square2 se-
quence that depicts a square moving with velocity (4/3,—4/3). Table 11.1 gives a
comparison with the results of Barron et al. for some classic optic flow techniques
that create flow fields with 100 % density. It can be seen that our proposed tech-
nique reveals smaller errors than these methods. In particular, this also shows that
our three modifications improve Nagel’s method substantially. While the imple-
mentation of Nagel’s method in [35] gives an angular error of 34.57°, our method
reveals an error of 10.97°. In this example Barron et al. assume that the back-
ground moves in the same direction as the square. However, as the background is
constant the displacement is not well defined in this area. If we focus our attention
on the error of the computed flow within the interior of the square we obtain an
average angular error of 0.85. This shows that the computed flow is very accurate
in the interior of the square.

Next we draw our attention to the most complex synthetic test sequence from
[35], the Yosemite sequence with cloudy sky. It contains displacements of up to
five pixels. Our optical flow results are shown in Figures 11.11 and 11.12, and a
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Figure 11.7: Optical flow results for the marbled block sequence (frames 20 and
25) with & = 0.6, s = 0.1, 09 = 10, 0, = 0.8, and 7 = 0.95.
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Figure 11.8: Vector plot of the optical flow from Figure 11.7.
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Figure 11.9: Computation of the optical flow for the Square2 sequence with o = 0.6,
s=0.1, 0y =10, 0, = 1, and n = 0.95.

juxtaposition with other methods can be found in Table 11.2. Again our technique
outperforms all methods from [35] which yield flow fields with 100 % density. With
an angular error of 5.53° it even reaches the estimation quality of typical methods
with 30 % density, and the standard deviation of 7.40° is lower than the standard
deviation of all methods that have been evaluated in [35]: the best method (Lucas
and Kanade with A > 5.0) had an average angular error of 3.22° with a standard
deviation of 8.92° and a density of only 8.7 %.

In order to evaluate the robustness of our algorithm with respect to the choice of
parameters we present in Table 11.3 the errors for the Yosemite sequence taking
different values of the parameters. To simplify the presentation, we fixed the finest
scale to o, := 1, and as numerical parameters we used 7 := 10 and 71" := 500.
These parameters are almost independent of the image and can therefore be set to
default values. Hence, we vary only the parameters «, s, n and o¢ in Table 11.3.
First of all it can be seen that our method outperforms all methods in [35] with
100 % density not only in case of optimized parameters, but also for a rather large
range of parameter settings. Let us now study the parameter influence in more
detail.
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Figure 11.10: Vector plot of the optical flow from Figure 11.9.

Table 11.1: Comparison between the results from [35] with 100 % density and our
method for the Square2 sequence.

Technique Aver. Error | Stand. Deviat. | Density
Horn and Schunck (original) 47.21° 14.60° 100%
Horn and Schunck (modified) 32.81° 13.67° 100%
Nagel 34.57° 14.38° 100%
Anandan (unthresholded) 31.46° 18.31° 100%
Singh (step 1) 49.03° 21.38° | 100%
Singh (step 2) 46.12° 18.64° |  100%
our method 10.97° 9.60° 100%

One important observation from Table 11.3 is that the decay parameter 7 has
an important influence of the result: values around 0.5, as are implicitly used by
typical pyramid-based focusing algorithms, are by far not optimal. A slow focusing
with n = 0.95 gives significantly better results. Our experience with other images
suggests that 7 may be fixed to this value for all applications.

Choosing too a small value for the isotropy fraction s does hardly worsen the
results, while for larger values the smoothness term becomes isotropic almost ev-
erywhere and approximates the Horn and Schunck scheme [171]. In order to avoid
the resulting deteriorations, we propose to fix s := 0.1, which means that the
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Figure 11.11: Computation of the optical flow for the Yosemite sequence with
a=0.6,s=0.1,09=05,0,=1, and n = 0.95.

method smoothes anisotropically at 90% of all locations.

Regarding the smoothness parameter a, our method appeared to be rather robust
with respect to over- and underestimations. We have thus used a fixed value of 0.6
for all experiments in the present paper.

As already mentioned, the initial scale oy should be chosen such that it covers the
largest expected displacements. We found that overestimations are less critical than
underestimations. This also confirms the use of the focusing strategy. Too small
values increase the danger of ending up in a physically irrelevant local minimum.
Actually, oy was basically the only parameter that we had to adapt in order to
analyse different image sequences. Since it has a clear physical interpretation, this
adaptation was simple.

Remark. More detailed information about the experiments in this section can be
found at http://serdis.dis.ulpgc.es/~1lalvarez/research/demos. In partic-
ular, some movies to illustrate the focusing strategy are presented. At this site we
also provide a window oriented image processing software named XMegaWave (see
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Table 11.2: Comparison between the results from [35] with 100 % density and our
method for the Yosemite sequence.

Technique Aver. Error | Stand. Deviat. | Density
Horn and Schunck (original) 31.69° 31.18° 100%
Horn and Schunck (modified) 9.78° 16.19° 100%
Nagel 10.22° 16.51° |  100%
Anandan (unthresholded) 13.36° 15.64° | 100%
Uras et al. (unthresholded) 8.94° 15.61° 100%
Singh (step 2) 10.03° 13.13° 100%
our method 5.53° 7.40° 100%

Table 11.3: Errors for the Yosemite sequence, using different parameters of the

algorithm
smoothness | init. scale | isotr. fract. | decay rate || angul. error | stand. dev.
o 00 s Ui
0.4 ) 0.1 0.90 5.61° 7.46°
0.5 7 7 K 9.57° 7.41°
0.6 7 7 K 9.53° 7.37°
0.7 7 K K 5.56° 7.33°
1.0 ” 7 K 5.69° 7.24°
0.6 1 0.1 0.90 16.83° 15.23°
7 2.5 7 K 5.92° 7.31°
7 ) 7 7 5.55° 7.37°
7 10 7 7 5.54° 7.37°
” 15 K K 5.81° 8.45°
0.6 ) 0.01 0.90 5.70° 7.92
7 7 0.1 K 9.53° 7.37°
7 7 0.2 K 5.70° 7.31°
” ” 0.5 K 6.38° 8.14°
7 ” 0.8 7 7.31° 9.76°
7 7 0.9 K 7.64° 10.37°
7 7 0.99 K 8.04° 11.21°
0.6 ) 0.1 0.50 7.25° 7.58°
7 7 7 0.70 6.14° 7.36°
7 ” " 0.80 5.75° 7.33°
7 ” 7 0.95 5.53° 7.40°
7 7 7 0.99 5.56° 7.45°
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Figure 11.12: Vector plot of the optical flow from Figure 11.11.

[149]) which includes the algorithm that we have developed in this paper.

11.7 Conclusions

Usually, when computer vision researchers deal with variational methods for op-
tical flow calculations, they linearize the optical flow constraint. Except for those
cases where the images vary sufficiently slowly in space, linearization, however,
does only work for small displacements. In this paper we introduced three im-
provements into a classical method by Nagel and Enkelmann where no lineariza-
tion is used. We identified this method as two coupled linear anisotropic diffusion
filters with a nonlinear reaction term. We showed that this parabolic system is
well-posed from a mathematical viewpoint, and we presented a linear implicit fi-
nite difference scheme for its efficient numerical solution. In order to avoid that
the algorithms converges to physically irrelevant local minima, we embedded it
into a linear scale-space approach for focusing the solution from a coarse to a fine
scale. A detailed quantitative analysis using test sequences with ground truth data
showed the following results.

e The method can recover displacements of more than 10 pixels with good
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accuracy.

e It performs significantly better than Nagel’s original method and all other
methods with 100 % density that are evaluated by Barron et al. [35].

e The performance hardly deteriorated for quite a large range of parameters.
This allows to use default parameter settings for many applications.

In spite of these favourable properties, there are still possibilities for further im-
provements and extensions of this algorithm. For instance, we expect that our
method can benefit from results obtained from preceding frames. One can inter-
polate the flow in the previous frames in order to have a first estimation of the
flow in the current frame [44]. If this first estimation is a reasonable initial guess
for our algorithm, there is no need to introduce large scale corrections by using
large values for oy. A smaller initial scale oy speeds up the focusing procedure and
makes the algorithm faster. As an example for another extension possibility, we
are currently investigating the use of our method for related matching problems
such as 3D reconstructions from greyscale and colour stereo pairs [10, 16]. It is our
hope that our method that combines anisotropic diffusion-reaction equations with
linear scale-space techniques may serve as a motivation to study other combina-
tions of linear and nonlinear scale-space approaches for solving computer vision
problems.

Acknowledgement. This work has been supported by the European TMR net-
work Viscosity Solutions and Their Applications.
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Chapter 12

Variational Optic Flow
Computation with a
Spatio-Temporal Smoothness
Constaint

Joachim Weickert and Christoph Schnorr.
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Abstract

Nonquadratic variational reqularization is a well-known and powerful
approach for the discontinuity-preserving computation of optic flow.
In the present paper, we consider an extension of flow-driven spatial
smoothness terms to spatio-temporal reqularizers. Qur method leads to
a rotationally invariant and time symmetric convex optimization prob-
lem. It has a unique minimum that can be found in a stable way by
standard algorithms such as gradient descent. Since the convexity guar-
antees global convergence, the result does not depend on the flow initial-
1zation. Two iterative algorithms are presented that are not difficult to
implement. Qualitative and quantitative results for synthetic and real-
world scenes show that our spatio-temporal approach (i) improves optic
flow fields significantly, (ii) smoothes out background noise efficiently,
and (i) preserves true motion boundaries. The computational costs
are only 50 % higher than for a pure spatial approach applied to all
subsequent image pairs of the sequence.
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12.1 Introduction

Variational methods in image processing and computer vision have attracted a lot
of interest in recent years. They offer the advantage of providing a clear math-
ematical formalism for all model assumptions. Minimizing the resulting energy
functionals gives solutions that are optimal with respect to the specified assump-
tions.

One of the earliest application areas of variational methods within computer vi-
sion is the estimation of optic flow [171]. The optic flow field of an image sequence
describes the displacement of brightness patterns over time. Applications of optic
flow range from vision-based robot navigation to second-generation video com-
pression. Numerous methods for calculating optic flow have been proposed in the
last two decades; see e.g. the survey papers of Mitiche and Bouthemy [251], and
Stiller and Konrad [377]. Performance evaluations of some of the most popular al-
gorithms have been carried out by Barron et al. [35] and Galvin et al. [139]. These
papers also showed that variational optic low methods belong to the techniques
that perform well. In contrast to many other optic flow methods, they offer the
advantage of creating flow fields with 100 % density, such that no postprocessing
by interpolation becomes necessary.

Variational optic flow methods have been pioneered by Horn and Schunck [171]
and improved by Nagel [260] and many others. Approaches of this type calculate
optic flow as the minimizer of an energy functional, which consists of a data term
and a smoothness term. The data term involves optic flow constraints such as the
assumption that corresponding pixels in different frames should reveal the same
grey value. The smoothness term usually requires that the optic flow field should
vary smoothly in space. Such a term may be modified in an image-driven way
in order to suppress smoothing at image boundaries; see e.g. [11, 18, 260, 342,
361]. Recently also flow-driven modifications have been proposed which reduce
smoothing at flow discontinuities [26, 85, 105, 221, 309, 344, 414]. These nonlinear
methods have already led to rather good results in spite of the fact that the
smoothness term imposed only spatial smoothness of the flow field. They work
locally in time and do not make use of the temporal coherence within the sequence.
The goal of this paper is to investigate an extension of spatial flow-driven smooth-
ness terms to spatio-temporal flow-driven regularizations. Such an extension makes
consequent use of the available data, and it leads to equations which are hardly
more complicated than in the pure spatial case. Our experiments on synthetic and
real-world sequences, however, show that this approach leads to significantly more
robust results.

Our paper is organized as follows. In Section 12.2 we review optic flow approaches
with spatial smoothness terms, and Section 12.3 describes our novel method using
a spatio-temporal smoothness constraint. A simple numerical algorithm is derived
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in Section 12.4, and Section 12.5 analyses the performance of our approach by
applying it to synthetic and real-world image sequences. The paper is concluded
with a summary in Section 12.6. We have presented a shorter preliminary version
of this work at a national symposium [423].

Related work. While spatial smoothness assumptions are common in the optic
flow literature, spatio-temporal approaches are significantly less frequent.

An interesting extension of a smoothness constraint into the temporal domain has
been proposed by Nagel [264]. He derived the model for a spatio-temporal oriented
smoothness constraint, but did not present any experiments. Nagel’s constraint
was image-driven, since it reduces smoothing across image discontinuities. Our
approach is flow-driven due to the more direct constraint that smoothing at flow
discontinuities should be reduced. For a more detailed account on image- and
flow-driven regularizers and a well-posedness framework for both types we refer to
[425].

Other temporal smoothness assumptions that have been studied in the literature
include the work of Murray and Buxton [259], Black and Anandan [44], and Black
[46]. Their assumptions lead to nonconvex optimization problems which may have
many local minima and for which it is difficult to find algorithms that are both
efficient and converge to a global minimum. Algorithms that converge to a global
minimum (such as simulated annealing [394]) are computationally very expensive,
while methods that are more efficient (such as graduated non-convexity algorithms
[48]) may get trapped in local minima. Our method leads to a nonquadratic convez
optimization problem. It has a unique global minimum that can be found in a
reliable way by using standard techniques from convex optimization, for instance
gradient descent methods. Since their convergence is global, every arbitrary flow
initialization leads to the same solution: the global minimum of the functional.
This property is an important quality of a robust algorithm.

Another difference between the methods considered in [46, 44, 259] and our ap-
proach is that our method uses a genuinely continuous formulation and derives a
discrete algorithm afterwards by discretizing the corresponding partial differential
equations. The continuous formulation has the advantage of being rotationally in-
variant. Applying the well-established theory of discretization methods allows us
to derive a numerically consistent scheme. It guarantees that rotational invariance
is fulfilled up to an error of order O(5z) where N denotes the number of pixels
in z or y direction. Results of this type cannot be established in genuinely dis-
crete formulations. The discrete models in [46, 44, 259, for instance, approximate
continuous processes that are not rotationally invariant.

The approaches of Black and Anandan [44] and Black [46] use a model which
applies incremental minimization over time. Such a technique is highly useful for
tasks such as robotics where images have to be processed online and only infor-
mation from the past is accessible. Our approach, however, is designed for batch
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mode since it is symmetric with respect to past and future. Methods of this type
are useful if a video sequence is to be processed offline. In this case there is infor-
mation available both from the past and from the future and there is no reason for
using only a part of it. Temporal symmetry also guarantees that the first frame is
processed in the same way as the last one.

The nonlinear regularization approach that we use is similar to nonquadratic con-
vex regularization methods for image restoration [79, 81, 345, 376]. Stochastic
counterparts to these techniques are given by Bayesian methods using Markov
random field approaches [101, 141].

12.2 Spatial Smoothness Terms

Let us denote an image sequence by some real-valued function f(z,y,z) where
(x,y) denotes the location within some rectangular image domain 2 and z € [0, T
is the time. Many variational optic flow calculations determine the optic flow vector
(u,v)T based on two assumptions:

1. Corresponding features are supposed to maintain their intensity over time.
A differential formulation of this brightness constancy assumption leads to
the optic flow constraint (OFC) equation

fau+ fyv+ f, =0, (12.1)

where the subscripts denote partial derivatives. Numerous generalizations
exist where multiple constraint equations are used, or different “conserved
quantities” (replacing intensity) are considered; see e.g. [24, 126, 389, 402].
One may also relax the OFC equation taking into account illumination
changes [88, 252, 269]. In case of large magnitude displacements a nondiffer-
ential form of the optic flow constraint without any linearization should be
used; see e.g. [18].

Evidently, the single equation (12.1) is not sufficient to determine the two
unknown functions v and v uniquely (aperture problem). In order to obtain
a unique flow field, a second constraint is needed.

2. Such a second constraint may impose that the flow field should vary (piece-
wise) smoothly in space. This can be achieved if

/\If (|Vul* + [Vv|?) dzdy (12.2)
Q

is small, where ¥ : R — R is an increasing differentiable function and
V := (0, 9,)T denotes the 2D nabla operator. This assumption is called
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smoothness constraint. In the sequel we shall assume that ¥(s?) is convex in
s, and that there exist constants ci,cy > 0 with ¢;5? < ¥(s?) < ¢p5? for all
s. In this case the optic flow problem becomes well-posed. Examples for ¥
will be presented at the end of this section.

In order to satisfy both the optic flow and the smoothness constraint as good as
possible, they are assembled into a single energy functional to be minimized:

E(u,v) = /((fwu—i-fyv F AP oWV + | VoP))dedy  (12.3)
Q

where the reqularization parameter o > 0 specifies the weight of the second sum-
mand (smoothness term, regularizer) relative to the first one (data term). Larger
values for o lead to smoother flow fields. Some authors have proposed optimization
tools to compute this parameter; see e.g. [386].

Using steepest descent for the minimization of (12.3) gives the diffusion-reaction
system

uw = div (¥ (|Vul*+|Vv[?) Vu) = Lfa(fou+ fyv + f2), (12.4)
v, = div (U (|Vul’+[Vv]?) Vo) = L, (fou+ fyv + f2), (12.5)

where U’ is the derivative of ¥ with respect to its argument, and div denotes the
2D divergence operator, i.e. div (}) := 0,a+0,b. The diffusion time ¢ is an artificial
evolution parameter which should not be mixed up with the time z of the image
sequence f(z,y,z). For t — oo, the solution (u,v) gives the minimum of E(u,v).
It is unique since ¥(s?) is convex in s.

The diffusivity in both equations is given by ¥ (|Vu|?+|Vv|?). It steers the activity
of the smoothing process: diffusion is strong at locations where the diffusivity is
large, and smoothing is reduced at places where the diffusivity is small. We shall
now consider some examples which demonstrate how the choice of ¥ influences
the smoothing process.

1. Horn and Schunck [171] considered the linear case ¥(s?) = s?. This cor-
responds to the constant diffusivity ¥’(s?) = 1. Therefore, the smoothing
activity of the Horn and Schunck method does not depend on the flow vari-
ation s* = |Vu|? +|Vv|?. As a consequence, the flow is also smoothed across
motion boundaries. This explains a well-known drawback of this method: a
blurry flow field which is ignorant of the true motion boundaries.

2. Many modifications have been proposed to alleviate this problem. Nagel [260]
for instance reduced diffusion across image boundaries with large |V f|. Thus,
this method considers an tmage-driven smoothness term for the flow field. In
many cases this modification outperforms the Horn and Schunck approach.
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In specific situations, however, image discontinuities may not coincide with
flow discontinuities: strongly textured rigid objects, for example, have numer-
ous texture edges which are not motion boundaries. Then an image-driven
smoothness term would lead to an oversegmentation and it would be desir-
able to replace it by one which respects flow discontinuities instead of image
discontinuities.

A flow-driven smoothness term can be constructed by using a nonlinear
convex regularizer W(s?) which creates a decreasing diffusivity ¥'(s?). This
ensures that the smoothing is reduced at locations where the flow magnitude
is small. In the context of optic flow, such methods have been considered by
Schnorr [344] and Weickert [414]. One may for instance consider the regular-

izer
U(s?) i=es? + (1 —e) A2 /1 + 52/ )2 (12.6)
with 0 <e < 1 and A > 0. It leads to the diffusivity

1—¢

We observe that A can be regarded as a contrast parameter: If the flow
variation s? = |Vu|?+|Vwv|? is large compared to \?, then the diffusivity is
close to 0, and for s? < \? the diffusivity tends to 1. Choosing a very small
value for A relates this method to total variation regularization, a powerful
denoising technique permitting discontinuous solutions [326]. The parameter

V(s?) =€+ (12.7)

¢ is only required for proving well-posedness. In practical applications it can
be fixed to some small value, e.g. £ := 1075,

Other flow-driven smoothness terms from the literature [26, 85, 105, 221]
replace the regularizer ¥ (|Vu|?>+Vv|?) by ¥(|Vu|?)+¥(|Vv|?). This leads to
two diffusion-reaction equations where the joint diffusivity ¥'(|Vu|?>+|Vv|?)
is replaced by W'(|Vu|?) and ¥'(]Vwv|?), respectively. Hence, the coupling
between the two equations becomes weaker and flow discontinuities may be
formed at different locations for v and v. It should also be mentioned that
in general such models are not rotationally invariant.

12.3 Spatio-Temporal Smoothness Terms

The methods that we have discussed so far work locally in time: two frames are
sufficient to calculate the optic flow field. In general, however, we have much more
data at our disposal, namely the entire image sequence. It would thus be consequent
if we use this full information for computing the optic flow field. In this way we
may expect more robust results.
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Using the knowledge from the previous section it is not difficult to extend the
smoothness constraint into the temporal domain. Instead of calculating the optic
flow (u,v) as the minimizer of the two-dimensional integral (12.3) for each time
frame z, we now minimize a single three-dimensional integral whose solution is the
optic flow for all frames z € [0, T7:

E(u,v) = /((fmu+ fo+£) + a (V2 + |V3v|2)) dedydz  (12.8)

Qx[0,T]

where Vj := (9,,0,,0,)" denotes the spatio-temporal nabla operator. The corre-
sponding steepest descent equations are given by

u = VB (¥ (|Yul*+[W0]*) Vu) — L fa(fou+ fyv+ f2), (12.9)
v, = Vi (U (|Vul+[V0]?) o) — 2 f,(fou+ fyo+ f2).  (12.10)

In contrast to the two-dimensional diffusion-reaction system (12.4)—(12.5) we now
have a three-dimensional problem. In the present paper we study this process for
the nonlinear regularizer given in (12.6).

The diffusion part in (12.9)-(12.10) has the same structure as nonlinear diffu-
sion filters for regularizing three-dimensional vector-valued images. Such methods
have first been applied by Gerig et al. [144] in the context of medical imaging.
The latter approach, however, uses diffusivities from [303] which may create ill-
posed processes. This cannot happen in our case, where convex smoothness terms
in the energy functional create well-posed diffusion—reaction processes. The well-
posedness proof is a straightforward extension of the results in [344] to the spatio-
temporal case. For a more detailed discussion of nonlinear diffusion filtering we
refer to [382, 412].

12.4 Numerical Aspects

We approximate the 2-D diffusion-reaction system (12.4)—(12.5) and its 3-D coun-
terpart (12.9)-(12.10) by finite differences. Derivatives in z, y and z are approx-
imated by central differences, and for the discretization in t direction we use a
slightly modified explicit (Euler forward) scheme.

Each iteration step proceeds as follows. Let 7 be the step size in ¢ direction and let
[zi, fyi and f,; denote central difference approximations of f;, f, and f, in some
pixel 4, respectively. Let the flow components for the first iteration be initialized

by 0. The (k+1)-th iteration calculates the unknown flow components u¥*! and
v¥*! using known values from level k:
up - uf k., k k+1 k
7 1 T
f = Zaij uj - Efzz (fzzuz + fyivi + fzz)7 (12]—]—)
J
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E+1
v;
E— Z a5 v] - Ifyz fmzu + fyzvk+1 + fzz) (12.12)
The matrix entries afj result from a standard discretization of the divergence ex-
pressions:
gk gk
Zam Uy = Z J72 . (Uf —uf), (12.13)
JEN(3)

where N (i) denotes the set of (4 in 2-D, 6 in 3-D) neighbours of pixel i, and ¥'*
approximates the diffusivity ¥'(|Vu|? + |Vv|?) in pixel ¢ at time level k. In (12.11)
and (12.12), one expression in the reaction term is approximated at time level k+1

in order to improve stability. Note that this scheme can still be solved explicitly
for ¥ and vt

s U; +TZ] ij ] Tfm(fyzv +fzz)

kL — i : (12.14)
U(H_l _ U +TZ] CLZ] U] - _fyz (f:mu +fzz) (12 15)
7 1+ T 2 .

We used the time step size 7 = 1/4 in the 2-D case and 7 = 1/6 in the 3-D
case. For the linear case with W(s?) = s2, one can verify that this choice of step
sizes comes down to applying a Jacobi algorithm to the discretized Euler-Lagrange
equations. If the discrete image gradient does not vanish at one point, the system
matrix of these equations is irreducibly diagonally dominant. This guarantees the
existence of a unique solution of the linear system and global convergence of the
Jacobi iterations [256]. The iterations were stopped when the Euclidean norm of
the relative residue dropped below 0.001. In the 2-D case with an image pair with
200 x 200 pixels, one can perform 20 iterations per CPU second on a 700 MHz
PC. The itypical number of iterations to reach the desired accuracy is in the range
between 100 and 1000. By relaxing the accuracy requirements, one can also stop
the process much earlier.

The explicit scheme (12.11),(12.12) has been chosen for simplicity reasons. In order
to gain more efficiency, it is also possible to replace it by a slightly more complicated
semi-implicit approximation, for instance the additive operator splitting (AOS)
scheme considered in [414]. In matrix—vector notation, such an AOS scheme is
given by

1 & _
= = Z (I + 2% f2 — mr A (u®, o)) '
m

=1

(u* = Zfo (f*+ 1)), (12.16)
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ot = Z (I + %f;] — mr A (uF, vk))_1

=1

(v* = 21, (farb+1.)), (12.17)

1
m

where m denotes the dimension (m = 2 for the spatial case, m = 3 for the spatio—
temporal one), I is the unit matrix, and the matrix A; describes the diffusive
interaction in [ direction. Although one AOS step is about twice as expensive as
an explicit step, the AOS scheme is one order of magnitude more efficient than the
explicit scheme since one may use 20 times larger time step sizes. For more details
on AOS schemes we refer to [429]. The computational complexity and the memory
requirement of both the explicit and the AOS scheme are linear in the number of
pixels respectively voxels.

The explicit scheme (12.11),(12.12) has been chosen for simplicity reasons. In order
to gain absolute stability, it is also possible to replace it by a slightly more com-
plicated semi-implicit approximation, for instance the additive operator splitting
(AOS) scheme considered in [414].

It should be noted that the 3-D scheme requires only about 50 % more computing
time than a corresponding 2-D scheme that is applied to all subsequent frame pairs
of an image sequence: 2-D diffusion within a 4-neighbourhood is replaced by 3-D
diffusion within a 6-neighbourhood. The main difference is an increased memory
requirement, since, in the 3-D case, the whole sequence is processed simultaneously.
For the typical test sequences in computer vision, this does not lead to problems
when modern PCs or workstations are used: On a computer with 512 MB memory
one can process sequences with sizes up to 256 x 256 x 128.

12.5 Experiments

In this section we illustrate the behaviour of our method by applying it to three
test image sequences. We compare pure 2D processing (eqns. (12.4)—(12.5)) with
3D processing (eqns. (12.9)—(12.10)).

Figure 1 depicts one frame from a hallway scene where a person is moving towards
the camera. The calculated optic flow results are shown in Figure 2. For pure
spatial regularization we observe that outliers dominate, and that it is difficult to
achieve good motion segmentation by thresholding the optic flow vectors. Spatio-
temporal regularization, on the other hand, creates a more homogeneous motion
field within the contour of the person, and motion segmentation is much more
realistic.

Figure 3 shows the results of our comparison for the famous Hamburg taxi se-
quence. It is available via anonymous ftp from the site ftp://csd.uwo.ca under
the directory pub/vision. Also for this sequence one observes that spatio-temporal
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processing leads to more realistic motion segmentation. Moreover, it is less sensi-
tive to noise than a pure spatial processing. It is worth emphasizing that in this and
in the previous example, the same parameters have been used for both methods,
and no presmoothing of any kind has been applied. All smoothing effects are thus
caused by the regularizers. Figure 4 shows that the better smoothing behaviour of
spatio-temporal regularizers may also reduce temporal aliasing problems: for the
pedestrian in the taxi scene, pure spatial processing gives an optic flow field that
points in the wrong direction, while spatio-temporal processing creates coherent
optic flow vectors pointing in the correct direction.

After these qualitative comparisons, let us now turn our attention to a quantitative
validation. To this end we consider a synthetic street sequence for which ground
truth flow data are available. We obtained it from

http://www.cs.otago.ac.nz/research/vision/Downloads/

It has been created by Galvin et al. [139] for evaluating eight optic flow algorithms,
and it is one of a few nontrivial test sequences with ground truth data, where mo-
tion boundaries are important. We used the full sequence from the web, consisting
of 20 frames of size 200 x 200 pixels. An interesting detail is depicted in Figure
5(a), and the corresponding ground truth flow field and the calculated ones are
given in Figures 5(b),(c),(d), respectively. For assessing the performance of our
method, we calculated the angular error

(12.18)

( Ule + VeV + 1 )
Y, := arccos

V(w2 402+ 1)(u2 + 02 + 1)

where (u., v.) denotes the correct flow, and (u.,v.) is the estimated flow (cf. also
[35]). In order to make our method comparable with the other approaches, we ap-
plied some presmoothing by convolving the images with a Gaussian with standard
deviation o. Preprocessing steps of this type are common for evaluating optic flow
algorithms [35].

With optimized parameters for o, o and A we obtained an average angular error of
6.62° for the spatial approach, and 4.85° for the spatio-temporal approach. Table
12.1 shows that best method that has been reported by Galvin et al. [139] was a
thresholded version of the Lucas-Kanade algorithm [234]. It achieved an average
angular error of 4.98°, but the density of its flow field was only 32.1 %, while our
method creates flow fields with 100 % density. The best full density method in
[139] was an algorithm by Proesmans et al. [309] with an average angular error of
7.41°. This shows that our spatio-temporal method has very good performance.
Also for less optimal parameter settings, the results remained competitive.
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Technique Angular Error Density
Lucas & Kanade T 498 321 %
Singh (step 2) 6.18°  77.6 %
Horn & Schunck MT 6.62° 46.3 %
Uraset al. T 6.93° 54.2 %
Proesmans et al. 7.41° 100.0 %
Singh (step 1) 7.87°  812%
Lucas & Kanande 8.93° 741 %
Horn & Schunck M 9.24° 741 %
Uras et al. 10.19°  77.6 %
Anandan T 10.58°  53.7 %
Lucas & Kanade MT 11.17° 277 %
Anandan 11.63° 776 %
Camus (3 images) 13.69° 100.0 %
Horn & Schunck T 14.67°  76.7 %
Camus (15 images) 14.73° 100.0 %
Horn & Schunck 15.02° 923 %
Nagel T 19.23° 321 %
Lucas & Kanade M 23.35° 741 %
Nagel 24.43° 658 %
Weickert & Schnorr 2D 6.62° 100.0 %
Weickert & Schnérr 3D 4.85° 100.0 %

287

Table 12.1: Comparison between the results from Galvin et al. [139] and our results
for the synthetic street sequence.
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Figure 12.1: (a) LEFT: Frame 8 of a hallway sequence of size 256 x 256 x 16 pixels.
A person is moving towards the camera. (b) RIGHT: Detail.

12.6 Conclusions and Further Work

We have presented a nonlinear spatio-temporal regularization approach for the
computation of piecewise smooth optic flow. It leads to a convex nonquadratic
optimization problem which has a unique minimum that can be recovered by
a globally convergent gradient descent algorithm. The model has a rotationally
invariant continuous formulation, it is symmetric in time and it avoids smooth-
ing over spatial and temporal flow discontinuities. Qualitative and quantitative
comparisons showed a significant improvement over pure 2D processing at low
additional computational costs.

It appears that the limited computer memory was the main reason why spatio-
temporal optic flow regularizers have been used so rarely in the past. Since this
is no longer a problem, it is likely that these methods will gain more importance
in the future. It should also be noted that the spatio-temporal extension that we
studied here is of course not limited to the specific nonlinear flow-driven regularizer
that we used in this paper. It is a general strategy for exploiting the entire image
sequence data for reliable optic flow estimation within a variational framework.
Based on these encouraging results we are currently investigating the design of
highly efficient optic flow algorithms for sequential and parallel computer archi-
tectures. Some of these techniques will be based on our recent research on efficient
algorithms for variational image restoration and nonlinear diffusion filtering [419).
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Figure 12.2: Computed flow fields using the hallway sequence. FROM LEFT TO
RIGHT: (a) Grey value plot of the optic flow magnitude for 2-D processing
(eqns. (12.4)—(12.5)). Note how outliers dominate the image such that other regions
get scaled down. (b) Vector plot of the optic flow field for 2-D processing, subsam-
pled by a factor 2. For better visibility, vectors w with |w| < 0.2 pixels have not
been drawn. (c) Optic flow magnitude for 3-D processing (eqns. (12.9)—(12.10)).
(d) Vector plot for 3-D processing, subsampled by a factor 2, and thresholded at
0.2 pixels. The proposed extension of adaptive smoothing to the temporal axis
gives a much more coherent and complete result.
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Figure 12.3: (a) Top: Frame 10 of the well-known Hamburg taxi scene (20 frames
of size 256 x 190). (b) BorTOM LEFT: Optic flow field for 2-D processing, subsam-
pled by factor 4 and thresholded at 0.2 pixels for better visibility. (c) BoTTOM
RIGHT: Result for 3-D processing. Spatio-temporal regularization improves the vec-
tor fields significantly, smoothes out background noise, and preserves true motion
boundaries.
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Figure 12.4: (a) LEFT: Magnification showing the pedestrian in the upper left part
of the taxi scene (9 x 20 pixels). The pedestrian moves to the left. (b) MIDDLE:
Optic flow field for 2-D processing, subsampled by a factor 2, and thresholded at
0.2 pixels. The 2-D processing smoothes out the noisy local motion data (normal
flow). Temporal aliasing, however, creates an erroneous motion to the right. (c)
RiGgHT: Optic flow field for 3-D processing, subsampled by a factor 2. The 3D
processing computes a coherent flow field for the “rigid part” of the pedestrian.
The motion is in the correct direction. Regions with moving limbs are interpreted
as noise at such a small spatial scale.
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Figure 12.5: (a) Top LEFT: Detail from a synthetic street scene (128 x 128 pixels).
(b) Top RIGHT: Exact optic flow field, subsampled by a factor 3 and scaled by
2 for improving visibility. (¢) BorToM LEFT: Optic flow field for 2-D processing
(0 = 0.8, « = 800, A = 0.04). (d) BorTOM RIGHT: Result for 3-D processing
(0 = 0.6, & = 250, A = 0.05).
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Abstract

Many differential methods for the recovery of the optic flow field from
an tmage sequence can be expressed in terms of a variational problem
where the optic flow minimizes some energy. Typically, these energy
functionals consist of two terms: a data term, which requires e.g. that
a brightness constancy assumption holds, and a reqularizer that en-
courages global or piecewise smoothness of the flow field. In this pa-
per we present a systematic classification of rotation tnvariant conver
reqularizers by exploring their connection to diffusion filters for mul-
tichannel 1mages. This taxonomy provides a unifying framework for
data-driven and flow-driven, isotropic and anisotropic, as well as spa-
tial and spatio-temporal reqularizers. While some of these techniques
are classic methods from the literature, others are derived here for the
first time. We prove that all these methods are well-posed: they posses a
unique solution that depends in a continuous way on the initial data. An
interesting structural relation between isotropic and anisotropic flow-
driven reqularizers is identified, and a design criterion is proposed for
constructing anisotropic flow-driven regularizers in a simple and direct
way from isotropic ones. Its use is illustrated by several examples.
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13.1 Introduction

Even after two decades of intensive research, robust motion estimation continues to
be a key problem in computer vision. Motion is linked to the notion of optic flow,
the displacement field of corresponding pixels in subsequent frames of an image
sequence. Optic flow provides information that is important for many applications,
ranging from the estimation of motion parameters for robot navigation to the
design of second generation video coding algorithms. Surveys of the state-of-the-
art in motion computation can be found in papers by Mitiche and Bouthemy [251],
and Stiller and Konrad [377]. For a performance evaluation of some of the most
popular algorithms we refer to Barron et al. [35] and Galvin et al. [139].

Bertero et al. [40] pointed out that, depending on its formulation, optic flow calcu-
lations may be ill-conditioned or even ill-posed. It is therefore natural to introduce
additional smoothness constraints in order to stabilize or regularize the process.
This way has been pioneered by Horn and Schunck [171] and improved by Nagel
[260] and many others. Variationals approaches of this type calculate optic flow as
the minimizer of an energy functional, which consists of a data term and a smooth-
ness term. Formulations in terms of energy functionals allow a conceptually clear
formalism without any hidden model assumptions, and several evaluations have
shown that these methods perform well [35, 139].

The data term in the energy functional involves optic flow constraints such as the
assumption that corresponding pixels in different frames should reveal the same
grey value. The smoothness term usually requires that the optic flow field should
vary smoothly in space [171]. Such a term may be modified in an image-driven
way in order to suppress smoothing at or across image boundaries [11, 260]. As an
alternative, flow-driven modifications have been proposed which reduce smoothing
across flow discontinuities [45, 85, 105, 221, 309, 344, 414]. Most smoothness terms
require only spatial smoothness. Spatio-temporal smoothness terms have been con-
sidered to a much smaller extent [44, 259, 264, 426]. Since smoothness terms fill
in information from regions where reliable flow estimates exist to regions where
no estimates are possible, they create dense flow fields. In many applications, this
is a desirable quality which distinguishes regularization methods from other op-
tic flow algorithms. The latter ones create non-dense flow fields, that have to be
postprocessed by interpolation, if 100 % density is required.

Modeling the optic flow recovery problem in terms of continuous energy functionals
offers the advantage of having a formulation that is as independent of the pixel
grid as possible. A correct continuous model can be rotation invariant, and the use
of well-established numerical methods shows how this rotation invariance can be
approximated in a mathematically consistent way.

From both a theoretical and practical point of view, it can be attractive to use
energy functionals that are conver. They have a unique minimum, and this global
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minimum can be found in a stable way by using standard techniques from convex
optimization, for instance gradient descent methods. Having a unique minimum
allows to use globally convergent algorithms, where every arbitrary flow initial-
ization leads to the same solution: the global minimum of the functional. This
property is an important quality of a robust algorithm. Nonconver energy func-
tionals, on the other hand, may have many local minima, and it is difficult to find
algorithms that are both efficient and converge to a global minimum. Typical al-
gorithms which converge to a global minimum (such as simulated annealing [394])
are computationally very expensive, while methods which are more efficient (such
as graduated non-convexity algorithms [48]) may get trapped in a local minimum.
Minimizing continuous energy functionals leads in a natural way to partial differ-
ential equations (PDEs): applying gradient descent, for instance, yields a system
of coupled diffusion—reactions equations for the two flow components. The fastly
emerging use of PDE-based image restoration methods [381, 274], such as nonlinear
diffusion filtering and total variation denoising, has motivated many researchers to
apply similar ideas to estimate optic flow [11, 26, 85, 105, 170, 221, 270, 309, 344,
414]. A systematic framework that links the diffusion and optic flow paradigms,
however, has not been studied so far. Furthermore, from the framework of diffu-
sion filtering it is also well-known that anisotropic filters with a diffusion tensor
have more degrees of freedom than isotropic ones with scalar-valued diffusivities.
These additional degrees of freedom can be used to obtain better results in specific
situations [412]. However, similar nonlinear anisotropic regularizers have not been
considered in the optic flow literature so far.

The goal of the present paper is to address these issues. We present a theoretical
framework for a broad class of regularization methods for optic flow estimation.
For the reasons explained above, we focus on models that allow a formulation in
terms of convex and rotation invariant continuous energy functionals. We consider
image-driven and flow-driven models, isotropic and anisotropic ones, as well as
models with spatial and spatio-temporal smoothing terms. We prove that all these
approaches are well-posed in the sense of Hadamard: they have a unique solution
that depends in a continuous (and therefore predictable) way on the input data.
We shall see that our taxonomy includes not only many existing models, but also
interesting novel ones. In particular, we will derive novel regularization functionals
for optic flow estimation that are flow-driven and anisotropic. They are the optic
flow analogues of anisotropic diffusion filters with a diffusion tensor. Many of the
spatio-temporal methods have not been proposed before as well. With the increased
computational possibilities of modern computers it is likely that they will become
more important in the future. In the present paper we also focus on interesting
relations between isotropic and anisotropic flow-driven methods. They allow us to
formulate a general design principle which explains how one can create anisotropic
optic flow regularizers from isotropic ones.
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Our paper is organized as follows. In Section 13.2 we first review and classify exist-
ing image-driven and isotropic flow-driven models, before we derive a novel energy
functional leading to anisotropic flow driven models. Then we show how one has
to modify all models with a spatial smoothness term in order to obtain methods
with spatio-temporal regularization. A unifying energy functional is derived that
incorporates the previous models as well as novel ones. Its well-posedness is estab-
lished in Section 13.3. In Section 13.4 we take advantage of structural similarities
between isotropic and anisotropic approaches in order to formulate a design prin-
ciple for anisotropic optic flow regularizers. Section 13.5 illustrates the behaviour
of the different optic flow regularizers by applying them to two real-world exam-
ples. We conclude with a summary in Section 13.6. Some preliminary results of
our paper have been published in a conference volume [351].

13.2 A Framework for Convex Regularizers

13.2.1 Spatial Regularizers
Basic Structure

In order to formalize the optic flow estimation problem, let us consider a real-valued
image sequence f(z,y,6), where (x,y) denotes the location within the image do-
main Q € R?, and the time parameter 0 € [0, T|] specifies the frame. The optic flow
field (ui(z,y,0),us(x,y,0)) describes the displacement between two subsequent
frames 6 and 0+ 1, i.e. f(z,y,0) and f(x+ui(z,y,0),y+ua2(x,y,0),0+ 1) should
depict the same image detail. Frequently it is assumed that image objects keep
their grey value over time:

f(ac,y,ﬁ) - f(fIJ + Ul(x;y,o),y + U2($,y,0),0 + 1) = 0 (131)

Such a model assumes that illumination changes do not appear, and that occlusions
or disocclusions do not happen. Numerous generalizations to multiple constraint
equations and/or different “conserved quantities” (replacing intensity) exist; see
e.g. [126, 402]. However, since the goal of the present paper is to study different
regularizers, we restrict ourselves to (13.1). If the spatial and temporal sampling
is sufficiently fine, we may replace (13.1) by its first order Taylor approximation

fwul + fyUQ + fa = 0, (132)

where the subscripts z, y and € denote partial derivatives. This so-called optic flow
constraint (OFC) forms the basis of many differential methods for estimating the
optic flow. Evidently such a single equation is not sufficient to determine the two
unknown functions u; and us uniquely. In order to recover a unique flow field, we
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need an additional assumption. Regularization-based optic flow methods use as
additional assumption the requirement that the optic flow field should be smooth
(or at least piecewise smooth). The basic idea is to recover the optic flow as a
minimizer of some energy functional of type

Ewbm):i/«ﬁm+Jwy+ﬁf+aVGUJMth0dmw (13.3)

Q

where V := (9,,9,)" denotes the spatial nabla operator, and u := (uy,u2)”. The
first term in the energy functional is a data term requiring that the OFC be ful-
filled, while the second term penalizes deviations from (piecewise) smoothness. The
smoothness term V(V f, Vuy, Vuy) is called regularizer, and the positive smooth-
ness weight « is the reqularization parameter. One would expect that the specific
choice of the regularizer has a strong influence on the result. Therefore, let us
discuss different classes of convex regularizers next.

Homogeneous Regularization

In 1981 Horn and Schunck [171] pioneered the field of regularization methods for
optic flow computations. They used the regularizer

VH(Vf, Vul, V’U,Q) = ‘VU1‘2 + |VU2‘2. (134)
It is a classic result from the calculus of variations [92, 113] that — under mild

regularity conditions — a minimizer (uj, us) of some energy functional

E(uq,us) := /G(m,y,ul,ug,Vul,VuQ) dx dy (13.5)
Q

satisfies necessarily the so-called Euler-Lagrange equations

0,Guy, + 0,Guy, — Gy = 0, (13.6)
085Gy, + 0yGuyy — Gy = 0 (13.7)

with homogeneous Neumann boundary conditions:

Opu; =0 on 012, (13.8)
Ontia = 0 on 0. (13.9)

Hereby, n is a vector normal to the image boundary 0f2.
Applying this framework to the minimization of the Horn and Schunck functional
leads to the PDEs

Aul - éfw(fwul + fyu2 + fa) - 0, (1310)
Auy — 2 f(four + fyua + fo) = 0, (13.11)
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where A := 0,y + 0y, denotes the Laplace operator. These equations can be re-
garded as the steady state (¢ — oo) of the diffusion—reaction system

dur = Auy — = fo(faur + fyus + fo), (13.12)
Ouas = Aug — éfy(fmu1 + fyus + fo), (13.13)

where ¢ denotes an artificial evolution parameter that should not be mixed up with
the time 6 of the image sequence. These equations also arise when minimizing the
Horn and Schunck functional using steepest descent. Schnérr [342] has established
well-posedness by showing that this functional has a unique minimizer in H*(2) x
H'(Q) that depends continuously on the input data f. Recently, Hinterberger [170]
proved similar well-posedness results for a related model where the L?(£2) norm in
the data term is replaced by the L!'(Q) norm.

We observe that the underlying diffusion process in the Horn and Schunck approach
is the linear diffusion equation

Oyu; = Au; = div (g V) (13.14)

with g := 1 and 7 = 1, 2. This equation is well-known for its regularizing properties
and has been extensively used in the context of Gaussian scale-space; see [369] and
the references therein. It smoothes, however, in a completely homogeneous way,
since its diffusivity g equals 1 everywhere. As a consequence, it also blurs across
semantically important flow discontinuities. This is the reason why the Horn and
Schunck approach creates rather blurry optic flow fields. The regularizers described
in the sequel are attempts to overcome this limitation.

Isotropic Image-Driven Regularization

It seems plausible that motion boundaries are a subset of the image boundaries.
Thus, a simple way to prevent smoothing at motion boundaries consists of intro-
ducing a weight function into the Horn and Schunck regularizers that becomes
small at image edges. This modification yields the regularizer

Vit(Vf, Vui, Vug) == g(|IVf?) ([Vu]* + [Vuel?), (13.15)

where g is a decreasing, strictly positive function. This regularizer has been pro-
posed and theoretically analysed by Alvarez et al. [11]. They used a data term
based on (13.1) instead of (13.2). Although this leads to a nonconvex optimiza-
tion problem, they could establish the existence of a unique solution (u;,us) €
C([0, T]; HY(Q) x HY(Q)) of the corresponding diffusion-reaction system. Here we
use the linearized data term (13.2), such that the corresponding diffusion—reaction
equations are given by

O = div (9(IVf1?) Vur) — L fo(faur + fyus + fo), (13.16)
Opus = div (g(|VfI*) Vua) = 3 fy(faur + fyua + fo). (13.17)
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The underlying diffusion process is
dwu; = div (g(|Vf[*) Vu,) (i=1,2). (13.18)

It uses a scalar-valued diffusivity ¢ that depends on the image gradient. Such a
method can therefore be classified as inhomogeneous, isotropic and image-driven.
Isotropic refers to the fact that a scalar-valued diffusivity guarantees a direction-
independent smoothing behaviour, while inhomogeneous means that this behaviour
may be space-dependent. Since the diffusivity does not depend on the flow itself,
the diffusion process is linear. For more details on this terminology and diffusion
filtering in image processing, we refer to [412]. Homogeneous regularization arises
as a special case of (13.15) when g(|V f|?) := 1 is considered.

Anisotropic Image-Driven Regularization

An early anisotropic modification of the Horn and Schunck functional is due to
Nagel [260]; see also [18, 115, 261, 265, 342, 343, 361]. The basic idea is to reduce
smoothing across image boundaries, while encouraging smoothing along image
boundaries. This is achieved by considering the regularizer

Var(Vf,Vuy, Vuy) := Vul D(Vf)Vui + Vul D(V f)Vus. (13.19)

D(Vf) is a regularized projection matrix perpendicular to V f:
1

D(Vf)i= = (VfVfT + N 13.20

(V1) = oo (V/ VI 4 XD). (13.20)

where I denotes the unit matrix. This methods leads to the diffusion—reaction

equations
Oy = div (D(Vf) Vu,) — éfx(f:cul + fyus + fo), (13.21)
Oy = div (D(Vf)Vug) — éfy(fxul + fyus + fo). (13.22)

The usage of a diffusion tensor D(V f) instead of a scalar-valued diffusivity allows a
direction-dependent smoothing behaviour. This method can therefore be classified
as anisotropic. Since the diffusion tensor depends on the image f but not on the
unknown flow, it is a purely image-driven process that is linear in its diffusion
part. Well-posedness in the function space H!(Q) x H!(€) has been established by
Schnorr [342].
The eigenvectors of D are v, := V£, vy := Vf+, and the corresponding eigenvalues
are given by
)\2

MV = NG (13.23)

V24X

A2(|V f1) VI 2

(13.24)
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In the interior of objects we have |V f| — 0, and therefore A\; — 1/2 and Ay — 1/2.
At ideal edges where |V f| — oo, we obtain A\; — 0 and Ay — 1. Thus, we have
isotropic behaviour within regions, and at image boundaries the process smoothes
anisotropically along the edge. This behaviour is very similar to edge-enhancing
anisotropic diffusion filtering [412]. In contrast to edge-enhancing anisotropic dif-
fusion, however, Nagel’s optic flow technique is linear. It is interesting to note that
only recently it has been pointed out that the Nagel method may be regarded as
an early predecessor of anisotropic diffusion filtering [18].

Homogeneous and isotropic image-driven regularizers are special cases of (13.19),

where D(Vf) := I and D(Vf) := g(|Vf|*)I are chosen.

Isotropic Flow-Driven Regularization

Image-driven regularization methods may create oversegmentations for strongly
textured objects: in this case we have much more image boundaries than motion
boundaries. In order to reduce smoothing only at motion boundaries, one may
consider using a purely flow-driven regularizer. This, however, is at the expense
of refraining from quadratic optimization problems. In earlier work [344, 414], the
authors considered regularizers of type

Vie(Vf, Vuy, Vug) = U (|Vuy|* + [Vu,?), (13.25)

where ¥(s?) is a differentiable and increasing function that is convex in s, for
instance

U(s?) 1= es®+ (1—e)A*V/1+s2/X2 (0<e< 1, A>0). (13.26)
Regularizer of type (13.25) lead to the diffusion-reaction system

atul = div (\I}I(|VU1‘2 + ‘V’LLQ‘Q) Vul) - ifw(fwul + fyU,Q + fg), (1327)
Oup = div (V'(|Vur]’ + [Vusl?) Vus) = 2 f,(four + fyus + fo), (13.28)

where U’ denotes the derivative of ¥ with respect to its argument. The scalar-
valued diffusivity ¥'(|Vu,|? + |[Vug|?) shows that this model is isotropic and flow-
driven. In general, the diffusion process is nonlinear now. For the specific regularizer
(13.26), for instance, the diffusivity is given by

1—
V(s?) = e+ ——o (13.29)

V14 s2/\?
Since this nonlinear diffusivity is decreasing in its argument, smoothing at flow dis-

continuities is inhibited. For the specific choice ¥(s?) := s%, however, homogeneous
regularization with diffusivity ¥/(s?) = 1 is recovered again.
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The preceding diffusion—reaction system uses a common diffusivity for both chan-
nels. This avoids that edges are formed at different locations in each channel. The
same coupling also appears in isotropic nonlinear diffusion filters for vector-valued
images as considered by Gerig et al. [144], and Whitaker and Gerig [432]. Nonlinear
flow-driven regularizers with different diffusivities for each channel are discussed
in Section 13.4.

Anisotropic Flow-Driven Regularization

We have seen that there exist isotropic and anisotropic image-driven regularizers
as well as isotropic flow-driven ones. Thus, our taxonomy would be incomplete
without having discussed anisotropic flow-driven regularizers. In the context of
nonlinear diffusion filtering, anisotropic models with a diffusion tensor instead of a
scalar-valued diffusivity offer advantages for images with noisy edges or interrupted
structures [416].

How can one construct related optic flow methods? Let us first have a look at dif-
fusion filtering of multichannel images. In the nonlinear anisotropic case, Weickert
[405, 416] and Kimmel et al. [209] proposed to filter a multichannel image by using
a joint diffusion tensor that depends on the gradients of all image channels. Our
goal is thus to find an optic flow regularizer that leads to a coupled diffusion—
reaction system where the same flux-dependent diffusion tensor D(Vuy, Vug) is
used in each equation.

In order to derive this novel class of regularizers, we have to introduce some defi-
nitions first. As in the previous section, we consider an increasing smooth function
U (s?) that is convex in s. Let us assume that A is some symmetric n x n matrix
with orthonormal eigenvectors wy,...,w, and corresponding eigenvalues o1,...,0,.
Then we may formally extend the scalar-valued function ¥(z) to a matrix-valued
function W(A) by defining W(A) as the matrix with eigenvectors wy,...,w, and
eigenvalues ¥(ay),...,¥(0,):

U(A) = V(o) ww] . (13.30)

This definition can be motivated from the case where W(z) is represented by
a power series Y . ckz¥. It is easy to show that the corresponding matrix-
valued power series - cx AF has the eigenvectors wy,...,w, with the eigenvalues
U(01),...,¥(0,). Considering power series a common way to introduce matrix-
valued functions; see [125] for a more details. The interpretation in terms of power
series allows us to identify the scalar-valued function ¥ with its matrix-valued
counterpart. In this way one may also define the derivative of W(A) by differenti-
ating its power series. This leads to the simple representation

V(A) = V(o) waw]. (13.31)
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Another definition that is useful for our considerations below is the trace of a
quadratic matrix A = (a;;). It is the sum of its diagonal elements, or — equivalently
— the sum of its eigenvalues:

tr(A) := Za“ = Zoi. (13.32)
With these notations we consider the regularizer

Var(Vf, Vui, Vug) = tr¥ (Vu; Vu] + VuaVug) . (13.33)

Its argument
J = Vu,Vul + VuyVui (13.34)

is a symmetric and positive semidefinite 2 x 2 matrix. Hence, there exist two
orthonormal eigenvectors vy, v9 with corresponding nonnegative eigenvalues 1, fis.
These eigenvalues specify the contrast of the vector-valued image (u,us) in the
directions v; and v, respectively. This concept has been introduced by Di Zenzo for
edge analysis of multichannel images [107]. It can be regarded as a generalization
of the structure tensor [132], and it is related to the first fundamental form in
differential geometry [216].

Our result below states that the regularizer (13.33) leads to the desired nonlinear
anisotropic diffusion-reaction system.

Proposition 4 (Anisotropic Flow-Driven Regularization)
For the energy functional (13.8) with the reqularizer (13.83), the corresponding
steepest descent diffusion—reaction system is given by

duy = div (V' (Vuy, Vui + VupVul) Vuy)

— aSolfour + fyus + fo), (13.35)
Ouy = div (\Il' (Vu1Vu1T + VUQVug) Vuz)
— Lfy(fata + fyua + fo). (13.36)

Proof. Calculating the Euler-Lagrange equations to

E(uq,ug) :== / ((fxul + fyuo + f0)2 + atr¥ (Vu1Vu1T + VuQVug) ) dz dy

! (13.37)

yields

0y Ouy, (trU(J)) + 8,0, (trU(J)) — 2 fo(four + fyua + fo) = 0, (13.38)
aﬁaﬂzm (tr¥(J)) + 0y 0y, (trw(J)) - %fy(fzul + fyus + fo) = 0 (13.39)
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with J as defined in (13.34).
In order to simplify the evaluation of the first and second summand in both equa-
tions, we replace (x,y) by (z1,22), and denote by e; the unit vector in z; direction.
Together with the identities

U(J) = U(w) vl + 0 (ug) vevd (13.40)
tr(ab’) = a', (13.41)
div(a) = Z O, (e] a) (13.42)

it follows that

Z awiawcmi (tr¥(J))

Z Ouitr (V'() 00, T

(13:34) Z@witr (V'(J) (e;Vul + Vugel))

= ZawitrZ\Il’ 1) vjv] (€;Vug + Vuge;] )

Za u«zw ) (70,90 + 07 Ty aye))
2 Z O, Z ' (i) (ef Uj)(“j Vug)

225 (J)Vug)

2 div (V'(J) Vuy) (k=1,2). (13.43)

,\ ,\ ,\
b & b

Nz [k [ Il
x» = =

Plugging this result into the Euler-Lagrange equations concludes the proof. [

It should be noted that, in general, the eigenvalues W'(u;) and W' (us) of the dif-
fusion tensor are not equal. Therefore, we have a real anisotropic diffusion process
with different behaviour in different directions. Homogeneous regularization is a
special case of the regularizer (13.33), if ¥(s?) := s2.

An interesting similarity between the isotropic regularizer (13.25) and its anisotropic

counterpart (13.33) becomes explicit when writing (13.25) as
V[F(Vf, V’Ltl, VU:Q) = (tI‘(VU1VU’{ =+ VUQVU;)) . (1344)

This shows that it is sufficient to exchange the role of the trace operator and
the penalty function ¥ to switch between both regularization techniques. Another
structural similarity will be discussed in Section 13.4.
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13.2.2 A Unifying Framework

Let us now make a synthesis of all previously discussed models. Table 13.1 gives
an overview of the smoothness terms that we have investigated so far.

Table 13.1: Classification of regularizers for optic flow models.

isotropic anisotropic
2 2
image-driven | g(|Vf[*) Y |[Vu? | 3 Vul D(Vf)Vu;
i=1 i=1

2 2
flow-driven \j (Z |Vu,~|2) tr ( VuiVuiT>
=1 =1

One may regard these regularizers as special cases of two more general models.
Using the compact notation Vu := (Vus, Vuy), the first model has the structure

Vi(Vf,Vu) == ¥ (trVuTD(Vf)Vu). (13.45)

For ¥(s?) := s?, this model comprises pure image-driven models, regardless whether
they are isotropic (D(V f) := g(|V f|?)I) or anisotropic. Isotropic flow-driven mod-
els arise for D := I. In the general case, the model may be both image-driven and
flow-driven.

The second model can be written as

Vo(Vf,Vu) = tr¥ (Vu D(Vf)VuT). (13.46)

It comprises the anisotropic flow-driven case and its combinations with image-
driven approaches. Note the large structural similarities between (13.45) and (13.46).
Both models can be assembled to the regularizer

V(Vf,Vu) = (1-5)¥ (trVu"D(V f)Vu)
+ Btr¥ (VuD(Vf)Vu") (13.47)

where the paramter § € [0, 1] determines the anisotropy. This regularizer is em-
bedded into the general optic flow functional

E(u) = / ((f$u1+ Fyua + fo)? + aV(V, vu)) dz dy. (13.48)

Q

From the perspective of regularization, Table 1 reveals another useful classification
in this context: while image-driven models correspond to the class of quadratic
regularizers [40], flow—driven models belong to the more general class of non—
quadratic convex regularizers. This latter class has been suggested in [80, 349, 376]
for generalizing the well-known quadratic regularization approaches used for early
computational vision.
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13.2.3 Spatio-Temporal Regularizers

All regularizers that we have discussed so far use only spatial smoothness con-
straints. Thus, it would be natural to impose some amount of (piecewise) temporal
smoothness as well. Using our results from the previous section it is straightfor-
ward to extend the smoothness constraint into the temporal domain. Instead of
calculating the optic flow (u1,us) as the minimizer of the two-dimensional integral
(13.48) for each time frame @, we now minimize a single three-dimensional integral
whose solution is the optic flow for all frames 6 € [0, 7]

E(u) == / ((f$u1+fyuQ+fg)2 + OzV(ng,Vgu)) drdydd  (13.49)

Qx[0,T]

where Vj := (9,,0,,0p)7 denotes the spatio-temporal nabla operator.

The corresponding diffusion-reaction systems of spatio-temporal energy function-
als have the same structure as the pure spatial ones that we investigated so far.
The only difference is that the spatial nabla operator V has to be replaced by its
spatio-temporal analogue V5. Thus, one has to solve 3D diffusion-reaction systems
instead of 2D ones.

Not many spatio-temporal regularizers have been studied in the literature so far.
To the best of our knowledge, there have been no attempts to investigate rotation
invariant spatio-temporal models that use homogeneous, isotropic image-driven,
or anisotropic flow-driven regularizers.

Nagel [264] suggested an extension of his anisotropic image-driven smoothness
constraint, where the diffusion tensor (13.20) is replaced by

1
D(Wf) = AT (BT + X)), (13.50)
Its eigenvalues are given by
/\2
VBf]? + A2
M%) = oty = M%) (1352

Isotropic flow-driven spatio-temporal regularizers have been studied by the authors
in [426]. They showed that it outperforms a corresponding spatial regularizer at
low additional computing time, if an entire image stack is to be processed.

It appears that the limited memory of previous computer architectures prevented
many researchers from studying approaches with spatio-temporal regularizers,
since they require to keep the entire image stack in the computer memory. On
contemporary PCs or workstations, however, this is no longer a problem, if typical
stack sizes are used (e.g. 32 frames with 256 x 256 pixels). It is thus likely that
spatio-temporal regularizers will become more important in the future.
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13.3 Well-Posedness Properties

In this section we shall prove that the energy functionals (13.48) and (13.49), re-
spectively, admit a unique solution that continuously depends on the initial data.
These favourable properties are the consequence of embedding the optic flow con-
straint (13.2) into a convex regularization approach.

13.3.1 Prerequisites and Main Result

We assume that the regularizer ¥ : R — R satisfies the following properties:
e U(.) is differentiable and increasing.
e U(s?) is strictly convex in s.

e There exist constants ci,co > 0 such that

c15° <U(s%) < cps®, Vs. (13.53)

Furthermore, we consider only matrices D(V f) that are symmetric and positive
definite.
As function space of admissible optic flow fields we use

H o= {u=(ui,u)" | ui, p,u; € L*(), Vi, j}, (13.54)

endowed with the scalar product

(u,v)y ::/ (u"v + trVuVo") day -+ - day, (13.55)
Q
and its induced norm
e = (u,w)37". (13.56)

In what follows, (b,u) denotes the action of some linear continuous functional
b € H*, i.e. some element of the dual space H*, on some vector field u € H.

We consider image sequences f € H, whose spatial derivatives f,, and f,, are
linearly independent in L?(£2) and have finite L*(£2) norm.

These prerequisites enable us to state the following well-posedness result.

Theorem 16 (Well-Posedness)
Under the preceding assumptions, the optic flow methods (13.48) and (13.49) admit
a unique solution in H. This solution depends continuously on the image sequence

f.
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Before turning to the proof, we would like to comment on the choice of the regular
function space H. Camera sensors always create blurred image data, and its is
quite common to smooth the image sequence even further, e.g. by convolving with
a Gaussian before applying an optic flow algorithm [35]. With such input data one
cannot expect to obtain discontinuous displacement fields in a strict mathemat-
ical sense. It should, however, be mentioned that one can still approximate the
discontinuous situation with functions in A having large, but finite gradients. If
one is interested in admitting real discontinuous flow fields, one can try to estab-
lish well-posedness results for functions of bounded variation, as has been done by
Aubert, Deriche, and Kornprobst [26] for a specific optic flow model. In this case
the mathematical analysis becomes more complicated.

In order to verify our theorem, we need to consider matrix-valued convexity es-
timates, and we have to pay special attention to the case when the data term
degenerates. This shall be done next.

13.3.2 Convexity

We wish to show that the functional F(u) is strictly convex over H. To this end,
we may disregard linear and constant terms in F(u) and consider the functional
F(u) defined by

F(u) := /Q((VfTu)Qﬂ—aV(Vf,Vu)) dzy - - - dz,

= E(u)+ (bu)+c (13.57)

where
bou) = —2 /Q £2(VFT0) day - - - da, (13.58)
c = —/Qf,,?dxl---dxn. (13.59)

Strict convexity is a crucial property for the existence of a unique global minimizing
optical flow field u of F(u) determined as the root of the equation

F'(u)=b (13.60)

for any linear functional b € H*. We proceed in several steps. First, we consider
the smoothness terms Vi(V f, Vu) and V5(V f, Vu) separately. This can be done
because the sum of convex functions is again convex. Then we consider all terms
together, that is the functional F'(u).
The term

Vi(Vf,Vu) = ¥ (trVu"D(V f)Vu) (13.61)
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belongs to the class of smoothness terms which were considered in earlier work on
isotropic nonlinear diffusion of multichannel images (e.g. [346]). To see this, let

vec (Vu) = ( gz; ) (13.62)

denote the vector obtained by stacking the columns of Vu one upon the other,
and let |- |p denote the norm induced by the scalar product

(vee (Var), vee (V) , = vec (Va)” ( D (va ) D(OV p )vec (Vo) (13.63)

Then Vi can be rewritten as
U (trVu"D(V f)Vu) = U(|vec (Vu)|3), (13.64)

and the framework in [346] is applicable.

The second anisotropic and flow—driven smoothness term
Va(Vf,Vu) = tr¥ (VuD(Vf)Vu") (13.65)

is new in the context of optical low computation. Note that by contrast to term
Vi, the function ¥ is matrix-valued. The strict convexity of V; is stated in

Proposition 5 (Matrix-Valued Convexity)
Let ¥ : R — R be strictly conver, A and B two positive semidefinite symmetric
matrices with A # B, and 7 € (0,1). Then

tr¥((1—-7)A+7B) < (1—-71)tr¥(A) + 7tr¥(B). (13.66)
Proof. Put C := (1-7)A+7B. Since A, B, C are symmetric, there are orthonormal

systems of eigenvectors {u;}, {v;}, {w;} and real-valued eigenvalues {«;}, {5;}, {7}
such that

A= ZaiuiuiT , B= ZﬁiviviT , C= Z%wiw? ) (13.67)
Expanding the vectors u;, v; with respect to the system {w;} gives

u; = Z(%’ij)wj , U= Z(viij)wj. (13.68)

J J
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With this we obtain

J
= (1-7) Z ouiuy + TZﬁiUiU;-T
= (-1 Yy (@ www] +7Y 0 8y (0w wyw]
i j ¢

J

= Z<(1—T)Z(u?wj)2ai+rZ(viij)2ﬁ,-)ijjT. (13.69)

i %

Comparing the coefficients shows that 7; is a convex combination of {¢;} and {£; }:

2

vio= (=7 (wfw) e +7Y (0] w;)*Bi, Vi (13.70)

Since ¥ : R — R is strictly convex and Y~ (u] w;)* = >°,(v] w;)? = 1 for all 7, we
obtain

¥ (C) = Y W(y) (13.71)

_ Z v ((1 —7) ) (w0 + 7 Z(%ij)zﬁz)

i

< D (=1 Dl ) wes) + 7 Y (wF ) ¥(5)
= (=) D0 D (uF )W) + 7 30 D0 ) U(5)
= (1-7) tr\Il(jl)-i—Ttr\If(B) J (13.72)

This concludes the convexity proof. ]

13.3.3 Degeneracy of the Data Term

So far we have shown the strict convexity of the smoothness term V(V f, Vu)
in (13.57). To show that also F'(u) is strictly convex, we may use the equivalent
condition that F’(u) is strongly monotone [443]:

3¢ >0 (F'(u)— F'(v),u—v) > cullu—v|3, Yu,veH. (13.73)

Note that the smoothness term fulfills this condition because it is convex, as we
have just shown. Exploiting relation (13.73) for the smoothness term itself, we
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obtain
(F'(u) = F'(v), u =)
> /Q (VfTquT(u —v) = VoV (u—v) + 'tr(V(u —v)V(u— U)T)> dx

= / ((VfTw)2 + oz'\Vw\Q) dz , Vw:=u—veH, (13.74)
"

with some constant o' and dz := dxidze (without loss of generality we consider
the case ) C R?). Thus, it remains to show that

/((VfTw)2+a’|Vw|2)dx > enllwlly, VweH. (13.75)
Q

This is not straightforward, because V f may vanish in some image regions. There-
fore, the first term on the left side in (13.75) cannot simply be bounded away from
zero with the smallest eigenvalue of V fV fT. This difficulty has been dealt with
in [342]. For the sake of completeness, we sketch the corresponding proof. We use
the following abbreviations:

le,’wg € LQ(Q), (wl,wz)o = / w1Wsa dz y ‘wl‘o = (wl,wl)(l)/Q (1376)
Q

and |w|e == esssup,eq (w(x)|.

Now assume that (13.75) were not true. Then there exists a sequence {w,} C H
with ||w,||y = 1, such that

/ ((VfTwn)2 + 0/|an|2) dr — 0 for n— 0. (13.77)
Q
Using the Poincaré inequality [448]
/ (v—5)2dzs < C(Q) / VolPde  Vue HY(Q), (13.78)
Q Q

where v := |lﬁ| [, vdz, it follows from (13.77) and (13.78) that

\w, — wyls — 0, (13.79)
with @, := ﬁ Jo Wy dz. By means of
IVFTwlg < 2| fal% hwrlg + 21fo, |2 [walg (13.80)

and (13.79), we obtain
VT (w, —w,)E — 0. (13.81)
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Hence, by virtue of (13.77) and (13.81) it follows that

|VfTu_)n|0 - ‘vawn + VfT(u_]n - wn)|0
S |vawn|O+ |VfT(wn_wn)|0
< IV Twl +o// Va2 dz + |V £ (1 — wn)o
Q
— 0. (13.82)

Using temporarily the notation

D= lewlny q = fmszn (1383)
we estimate:
p+ai = Ipls+lals+2 ()
(P, @)
> |pls + lale — 21plo g
Iplo + lalg — 2 [plo g0 lo 1l
(P, @)o
> |plg + lals — (pl§ + lalg)
|p\0 |Q|o
D;q)o
= (pB+1aR) (1 g ') | (13.84)
\p|0 \Q|o
Resubstituting (13.83) gives
_ _ _ fm afa: 0
VST B2 > (@l forl}+ Tl fonl?) (1—M | (13.85)
|fm1|0 |fm2|0

Since f;, and f,, are linearly independent, it follows that

1 W fedol o (13.86)

|f$1|0|fw2|0 -

With this and (13.82), we conclude from (13.85) that
@ — 0, (13.87)
and, by virtue of (13.77) and (13.79), we obtain
lwall < [lwn = @nlls + [@nll — 0. (13.88)

This contradicts our assumptions that ||wy,||% = 1. Consequently, (13.75) must
hold true.
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13.3.4 Existence, Uniqueness, and Continuous Dependence
on the Data

It is a well-established result (see, e.g., [443]) that property (13.73) together with
the Lipschitz continuity of the operator F' (which holds true under mild conditions
with respect to the data V f, fy, cf. [342, 350]) ensure the existence of a unique and
globally minimizing optical vector field u that continuously depends on the data.
To understand the latter property, suppose we are given two image sequences and
corresponding functionals b, by (cf. (13.57)) and minimizers w1, us:

F'(u) = b, (13.89)
F'(us) = by (13.90)

By virtue of (13.73) we have

Cmllur —uallz < (F'(wr) = F'(ug), ur—us)
S ||F,(’U,1)—F,(’U,2)| H* ul_u2||’){- (1391)
Thus,
1
||U,1 — u2||H S a ||b1 — b2| H* Vbl,bg . (1392)

This equation states that, for a slight change of the image sequence data, the
corresponding optical flow field cannot arbitrarily jump but gradually changes,
too. It is therefore an important robustness property.

13.4 Extensions

All regularizers that we have discussed so far can be motivated from existing
nonlinear diffusion methods for multichannel images, where a joint diffusivity or
diffusion tensor for all channels is used. As one might expect, this is not the
only way to construct useful optic flow regularizers. In particular, there exists a
more general design principle for anisotropic flow-driven regularizers which we will
discuss next.

Our key observation for deriving this principle is an interesting relation between
anisotropic flow-driven regularizers and isotropic flow-driven ones: the anisotropic
regularizer tr¥(J) can be expressed by means of the eigenvalues py, us of J as

Var(Vf,Vui, Vug) = U(u1) + ¥ (us), (13.93)
while its isotropic counterpart W(tr.JJ) can be written as

V}F(Vf, Vul, VU/Q) = \I/(,lu + ,UQ). (1394)
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This observation motivates us to formulate the following design principle for rota-
tionally invariant anisotropic flow-driven regularizers:

Design Principle (Rotationally Invariant Anisotropic Regularizers)
Assume that we are given some isotropic regularizer V(3 |Vu;*) with a non-
quadratic function V¥, and a decomposition of its arqgument

Z |Vu]? = Zpg, (13.95)

where the p; are rotationally invariant expressions. Then the reqularizer y U(p;)
1s rotationally invariant and anisotropic.

Examples

1. The decomposion that has been used in (13.93) and (13.94) to transit from
an isotropic to an anisotropic model was the trace identity

|Vuy > + |Vug|> = py + o, (13.96)
where 1, and py are the eigenvalues of J = Vu; Vul + Vuy,Vul.
2. Schnérr [344] proposed the regularizer
Vars(Vf, Vui, Vuy) = U (divu) + ¥ (rot *u) + ¥ (sh?u)  (13.97)

with u := (u1,u2)7, the curl operator rotu := ug, — u1,, and the shear op-
erator shu := /(usy — u15)% + (U1y + u2,)?. Applying the design principle,
one can derive this expression from the identity [212]

\Vui|? + |Vug|? = % (div 24 + rot 2u + sh 2u) ) (13.98)
Using the regularizer (13.97) in the functional (13.3) leads to the highly

anisotropic diffusion-reaction system
Ouy = Oy ((\Il'(div 2u) + W' (sh®u)) uge + (U (divu) — U'(sh?u)) ugy)
+ (( (sh?u) 4+ W' (rot *u)) uiy + (¥'(sh *u) — ¥'(rot *u)) ug,)
fo(faur + fyuz + fo), (13.99)
Oug = ((‘Il' (sh *u) — ¥'(rot *u)) ury + (¥'(shu) + V' (rot *u)) us,)
+ ((‘Il' (div*u) — U'(sh®u)) u1, + (¥'(divu) + ¥ (sh®u)) usy)
fy(four + fyua + fo). (13.100)
Note that now the coupling between both equations is more complicated
than in the previous cases, where a joint diffusivity or a joint diffusion tensor
has been used. We are not aware of similar diffusion filters for multichannel

images. Well-posedness properties in H! () x H! () and experimental results
for this optic flow method are presented in [344, 350].
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3. Requiring that the p; in (13.95) be rotationally invariant ensures the rotation

invariance of the anisotropic regularizer. If we dispense with rotation invari-
ance, the design principle can still be used. As an example, let us study the
flow-driven regularization methods that are considered in [26, 85, 105, 221].
They use a regularizer of type

Ve(Vf, Vuy, Vug) = U(|Vu|?) + (| Vuy|?). (13.101)

According to our design principle, we may regard this regularizer as an
anisotropic version of the isotropic regularizer (13.25). However, the decom-
position of its argument into |Vu;|*> and |Vus|? is not rotationally invariant.
The corresponding diffusion-reaction system is given by

8tu1 = div (‘I’I(|VU1|2) Vul) - éfw(fwul + fyU,Q + fg), (13102)
Owup = div (\I’I(|VU2|2) Vuz) — %fy(fzul + fyus + fp), (13.103)

which shows that both systems are completely decoupled in their diffusion
terms. Thus, flow discontinuities may be created at different locations for
each channel. The same decoupling appears also for some other PDE-based
optic flow methods such as [309].

While each of the two diffusion processes is isotropic, the overall process
reveals some anisotropy: in general, the two diffusivities ¥'(|Vu;|?) and
U'(|Vuz|?) are not identical. For this approach, well-posedness results in
BV(2) have been established by Aubert et al. [26]. They used a regularized
data term that cannot degenerate and where the L?(£2) norm is replaced by
the L}(2) norm.

Besides this model there is also a number of related stochastic methods that
lead to discrete models which are not consistent approximations to rotation
invariant processes [44, 45, 49, 166, 246, 259]. Nonconvex regularizers are
typically used in these approaches. Discrete spatio-temporal versions of the
regularizer (13.101) are investigated in [44, 259].

It is a challenging open question whether there exist more useful rotation invariant
convex regularizers than the ones we have just discussed. This is one of our current
research topics.

13.5 Experiments

Although the main goal of our paper is to provide a taxonomy for convex regular-
izers and to analyse their theoretical foundations, we will in this section present
some qualitative experiments that show specific features of each method. We will
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focus on spatial regularizers. We discretized the corresponding diffusion-reaction
equations by means on an explicit finite difference scheme. For a more detailed dis-
cussion on numerical issues and a comparison between spatial and spatio-temporal
regularization in the case of flow-driven isotropic smoothing, the reader is referred
to [426].

In our first experiment we used the marbled block sequence of Otte and Nagel
(KOGS/IAKS, University of Karlsruhe, Germany) [293]. These images can be
downloaded from the web site http://i21www.ira.uka.de/image-sequences.
The sequence consists of 31 frames of size 512 x 512. In our case we only used
frame 16 and 17. The input images have been preprocessed by a convolution with
a Gaussian of standard deviation o = 1, and the regularization parameter « has
been set to 10000. For image-driven models, we used as contrast parameter A := 1,
and for flow-driven methods A := 0.01 was used. The iterations were stopped when
the Euclidean norm of the residue dropped by a factor of 100. Figure 13.1 depicts
the results for the optic flow magnitude, while Figure 13.2 shows the flow fields
as vector plot. For better visibility, we also show a detail of the flow magnitude
images in Figure 13.3.

As expected, one can observe that the homogeneous regularization of Horn and
Schunck creates very smooth flow fields. It is, however, unsuited to respect any
flow discontinuities.

Isotropic image-driven reduces smoothing at all image edges. This may create an
oversegmentation of the flow fields, as can be seen from the flow artifacts result-
ing from the texture of the marbled floor. This oversegmentation influences in
particular the flow magnitude, while the flow direction appears to be more stable.
Anisotropic image-driven regularization permits smoothing along image edges.
This leads to a more homogeneous flow field than the one from isotropic image-
driven smoothing. Larger structures of the marble texture, however, are still visible
in this case as well.

Flow-driven models are performing better here. The marble texture, which corre-
sponds to image discontinuities but not to flow discontinuities, does hardly perturb
the flow field. Figure 13.3 shows that, similar to the image-driven case, anisotropic
regularization is less affected by these texture artifacts that isotropic smoothing,
although the differences are a bit smaller. This shows that anisotropic flow-driven
regularization is an interesting technique for optic flow problems where flow dis-
continuities are important and highly textured image structures are present.

In a second example we sketch a possible application field for more advanced
anisotropic flow-driven regularizers. Figure 13.4 shows the result of an optic flow
technique with the div-rot-shear regularizion (13.97). This regularization is in
particular useful for applications where the kinematic behaviour of moving ob-
jects plays an important role: The divergence term, for instance, may signal an
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Figure 13.1: (a) ToP LEFT: Frame 16 of the marbled block sequence (512 x 512
pixels). (b) ToP RIGHT: Optic flow magnitude between Frame 16 and 17 for ho-
mogeneous regularization. (¢) MIDDLE LEFT: Result for image-driven isotropic
regularization (d) MIDDLE RIGHT: Image-driven anisotropic regularization. (e)
BoTTOM LEFT: Flow-driven isotropic regularization (f) BoTTOM RIGHT: Flow-
driven anisotropic regularization.
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Figure 13.2: (a) Top LEFT: Frame 16 of the marble block sequence. (b)
Top RIGHT: Optic flow magnitude for homogeneous regularization. (¢) MID-
DLE LEFT: Image-driven isotropic regularization (d) MIDDLE RIGHT: Image-driven
anisotropic regularization. (¢) BOTTOM LEFT: Flow-driven isotropic regularization
(f) BorToM RIGHT: Flow-driven anisotropic regularization. In order to improved
visibility, the flow fields have been subsampled by a factor 8, and their magnitude
has been scaled by a factor 6.
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Figure 13.3: (a) ToP LEFT: Detail from the lower right part of Frame 16 (128 x 128
pixels). (b) TopP RIGHT: Optic flow magnitude for homogeneous regularization. (c)
MIDDLE LEFT: Image-driven isotropic regularization (d) MIDDLE RIGHT: Image-
driven anisotropic regularization. (e) BOTTOM LEFT: Flow-driven isotropic regu-
larization (f) BOTTOM RIGHT: Flow-driven anisotropic regularization. For better
visibility, the grey values of the optic flow results been transformed by a gamma
correction with v = 0.4.
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Figure 13.4: LEFT: Frame from a cyclone image sequence. RIGHT: Optic flow field
with the regularizer (13.97).

approaching object, while the vorticity term analyses turbulent behaviour. It is
thus not surprising that such an approach works well for the meteorological image
in this figure.

13.6 Summary and Conclusions

The goal of this paper was to derive a diffusion theory for optic flow functionals.
Minimizing optic flow functionals by steepest descent leads to a set of two coupled
diffusion-reaction systems. Since similar equations appear for diffusion filtering of
multi-channel images, the question arises whether there are optic flow analogues
to the various kinds of diffusion filters.

We saw that image-driven optic flow regularizers correspond to linear diffusion fil-
ters, while flow-driven regularizers create nonlinear diffusion processes. Pure spa-
tial regularizers can be expressed as 2D diffusion-reaction processes, and spatio-
temporal regularizers may be regarded as generalizations to the 3D case. This
taxonomy helped us not only to classify existing methods within a unifying frame-
work, but also to identify gaps, where no models are available in the current
literature. We filled these gaps by deriving suitable methods with the specified
properties, and we proved well-posedness for the class of convex diffusion-based
optic flow regularization methods.

One important novelty along these lines was the derivation of regularizers that
can be related to anisotropic diffusion filters with a matrix-valued diffusion tensor.
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This also enabled us to propose a design principle for anisotropic regularizers, and
we discovered an interesting structural similarity between isotropic and anisotropic
models: it is sufficient to exchange the role of the trace operator and the penalty
function in order to switch between the two models.

We are convinced that these relations are only the starting point for many more
fruitful interactions between the theories of diffusion filtering and variational optic
flow methods. Diffusion filtering has progressed very much in recent years, and
so it appears appealing to incorporate recent results from this area into optic
flow methods. Conversely, it is clear that novel optic flow regularizers can also be
regarded as energy functionals for suitable diffusion filters. It should also be men-
tioned that our taxonomy for regularizers is not restricted to optic flow problems.
These regularizers can be used in all applications where vector-valued data are
to be processed, be it colour images, multispectral data, or displacement fields in
other applications (e.g. stereo reconstruction or registration of medical images).
We also hope that our taxonomy provides a unifying platform for algorithms for
the entire class of convex variational optic flow methods. Our future plans are to
use such a platform for a systematic comparison of different numerical methods.
Another point on our agenda is an investigation of alternative rotation-invariant
decompositions that can be applied to construct useful anisotropic regularizers.

Acknowledgement. C. S. completed his doctoral thesis under the supervision of
Prof. Nagel in 1991. He is grateful to Prof. Nagel who introduced him to the field
of computer vision.
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