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Abstract. Soft wavelet shrinkage and total variation (TV) denoising are
two frequently used techniques for denoising signals and images, while
preserving their discontinuities. In this paper we show that – under spe-
cific circumstances – both methods are equivalent. First we prove that
1-D Haar wavelet shrinkage on a single scale is equivalent to a single step
of TV diffusion or regularisation of two-pixel pairs. Afterwards we show
that wavelet shrinkage on multiple scales can be regarded as a single
step diffusion filtering or regularisation of the Laplacian pyramid of the
signal.

1 Introduction

Image denoising is a field where one is frequently interested in removing noise
without sacrificing important structures such as edges. Since this is not possible
with linear techniques many nonlinear strategies have been proposed in the last
two decades. Two of these classes are wavelet methods [4,6,9] and techniques
based on partial differential equations (PDEs) [10,11,14].

Although both classes serve the same purpose, not many results are available
where their similarities and differences are juxtaposed and their mutual relations
are analysed. However, such an analysis is highly desirable, since it will help to
transfer results from one of these classes to the others. Moreover, a deeper under-
standing of the differences between these classes might be helpful for designing
novel hybrid methods that combine the advantages of the different classes.

The goal of the present paper is to address this problem by analysing relations
between two of the most popular wavelet and PDE based methods: soft wavelet
shrinkage [6] and total variation (TV) denoising [11] in its formulation as a
diffusion flow or a regularisation process. Figure 1 gives an illustration of the
denoising properties of wavelet and TV methods. We observe that the results do
not differ very much. Indeed, we shall prove in our paper that both methods are
very closely related. In order to keep things as simple as possible we base our
analysis on the 1-D case and consider only Haar wavelets. Generalisations and
extensions will be considered in forthcoming publications.
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Fig. 1. (a) Top left: Original MR image. (b) Top right: MR image degraded with
Gaussian noise with standard deviation 50. (c) Bottom left: Wavelet denoising of
(b) using translation invariant soft shrinkage with Haar wavelets. (d) Bottom right:
Total variation diffusion of (b).

Our paper is organised as follows. In Section 2 we prove a fundamental rela-
tion between soft wavelet shrinkage, nonlinear diffusion with TV diffusivity, and
TV regularisation. While Section 2 is concerned with a single wavelet shrinkage
step, Section 3 deals with the multiscale approach. Here we show the equiva-
lence between multiscale wavelet shrinkage and TV diffusion / regularisation on
a Laplacian pyramid. The paper is concluded with a summary in Section 4.

Related Work. Although we are not aware of any method in the literature
that investigates the relations between discrete wavelet shrinkage and TV de-
noising, there are some interesting related techniques that should be mentioned
in this context. Chambolle et al. [4] showed that one may interpret continuous
wavelet shrinkage as regularisation processes in suitable Besov spaces. Durand
and Froment [7] proposed to address the problem of pseudo-Gibbs artifacts in
wavelet denoising by replacing the thresholded wavelet coefficients by coefficients
that minimise the total variation. Their method is also close in spirit to an ap-
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proach by Chan and Zhou [5] who postprocessed images obtained from wavelet
shrinkage by a TV-like regularisation technique. Recently, Malgouyres [8] pro-
posed a hybrid method that uses both wavelet packets and TV approaches. His
experiments showed that it may restore textured regions without introducing
ringing artifacts.

2 Soft Thresholding, TV Diffusion and TV Regularization

2.1 Soft Thresholding

We start by recalling a single Haar wavelet shrinkage step. Let f = (fi)N−1
i=0 be

our initial signal, where N = 2n. Then the analysis step produces the coefficients

ci =
f2i + f2i+1√

2
, di =

f2i − f2i+1√
2

(i = 0, ..., N/2 − 1)

of the scaling functions and the wavelets on the next coarser grid. This step
is followed by the shrinkage operation Sτ (di), where Sτ denotes in general a
nonlinear function which depends on a threshold parameter τ . In this paper we
are interested in the soft thresholding

Sτ (η) =
{

η − τ sgn η if |η| ≥ τ,
0 if |η| < τ.

(1)

Other shrinkage functions will be considered in a forthcoming paper. After the
synthesis step

u2i =
ci + Sτ (di)√

2
=

f2i + f2i+1

2
− 1√

2
Sτ

(
f2i+1 − f2i√

2

)
, (2)

u2i+1 =
ci − Sτ (di)√

2
=

f2i + f2i+1

2
+

1√
2

Sτ

(
f2i+1 − f2i√

2

)

we obtain a new signal u with smaller wavelet coefficients at the first decomposi-
tion level. The basic idea behind this procedure is that small wavelet coefficients
mainly correspond to the noise contained in f while larger ones really signify
basic features, e.g., edges, so that u can be considered as denoised version of f
with preserved edges.

The Haar wavelet transform in (2) introduces a splitting of the signal f into
successive two–pixel parts (f2i f2i+1) (i = 0, ..., N/2). In the following we want to
interpret a single wavelet shrinkage step as nonlinear diffusion of these successive
two–pixel signals.

2.2 TV Diffusion

The basic idea behind nonlinear diffusion filtering is to obtain a family u(x, t)
of filtered versions of a signal f(x) as the solution of a suitable diffusion process
with f(x) as initial condition [10]:

ut = (g(ux)ux)x, (3)
u(x, 0) = f(x)
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where subscripts denote partial derivatives and the time t is a simplification
parameter: larger values correspond to stronger filtering.

Motivated by the wavelet splitting in the Haar basis, we are interested in
space-discrete diffusion of two–pixel signals (f0, f1). We do not allow any flow
over the signal boundary, i.e. we deal with the extended sequence f0, f0, f1, f1
where the boundary values have been mirrored. For this simple setting a space-
discrete version of the diffusion equation (3) in both pixels can be written as

u̇0 = g(u1 − u0)(u1 − u0), u̇1 = −g(u1 − u0)(u1 − u0), (4)

where u0(0) = f0, u1(0) = f1, and the pixel size is assumed to be 1. Setting
w(t) := u1(t) − u0(t) and η := f1 − f0, we obtain the initial value problem

ẇ = −2 g(w)w,

w(0) = η

by subtracting both equations in (4).
We are interested in the TV diffusivity g(w) = 1/|w| since – unlike most other

commonly used diffusivities – it does not require to specify additional contrast
parameters. Moreover, it has a number of favourable qualitative properties [1,2].
By straightforward computation, the corresponding initial value problem

ẇ = −2 sgn w,

w(0) = η.

has the solution

w(t) =
{

η − 2 t sgn η if t ≤ |η|/2,
0 if t > |η|/2.

Since u̇0 + u̇1 = 0 and u0(0) + u1(0) = f0 + f1, we see further that the average
grey value is preserved:

u0(t) + u1(t) = f0 + f1.

By the definition of w it follows that

ui(t) =
f0 + f1

2
− (−1)i w(t)

2
(i = 0, 1)

=
f0 + f1

2
− (−1)i

{ |η|/2 − t sgn η if t ≤ |η|/2,
0 if t > |η|/2.

By (2) and (1) this coincides with the Haar wavelet shrinkage with soft thresh-
olding, where the threshold parameter τ is related to the diffusion time t by
τ =

√
2 t.

2.3 TV Regularization

Nonlinear diffusion filtering of signals is related to variational methods for signal
restoration [12]. Here the basic idea is to use the minimiser u of

Ef (u) := ||f − u||2L2
+ α

∫
ϕ(ux) dx (5)
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as denoised version of the initial signal f(x). Via the Euler–Lagrange equation
it follows that this minimiser coincides with the solution of

u − f

α
= (g(ux)ux)x,

where g(s) = ϕ′(s)
2s . This can be considered as a time discretisation of the diffusion

filter (3), where the regularization parameter α approximates the stopping time
of the diffusion process [12].

Again we are only interested in the two–pixel model (f0, f1). We consider a
space-discrete variant of (5), namely

Ef (u1, u2) = (f0 − u0)2 + (f1 − u1)2 + α ϕ(u1 − u0), (6)

for the TV potential function ϕ(s) = 2|s| corresponding to the TV diffusivity
g(s) = 1/|s|. Straightforward computation results in the following minimiser of
(6)

ui = fi + (−1)i α (i = 0, 1)

=
f0 + f1

2
− (−1)i

{ |η|/2 − α sgn η if α ≤ |η|/2,
0 if α > |η|/2.

By (2) and (1) this coincides with a single Haar wavelet shrinkage step on (f0, f1)
with soft threshold Sτ , where the threshold parameter τ is related to the regu-
larisation parameter by τ =

√
2 α.

In summary, the nonlinear diffusion with TV diffusivity and the variational
method (6) with TV regularisation applied to the successive two–pixel parts
(f2i, f2i+1) of f coincide with a single step of Haar wavelet shrinkage with soft
thresholding. The threshold parameter τ is related to the diffusion time t and
to the regularisation parameter α by

τ =
√

2 t =
√

2 α.

It is remarkable that TV diffusion and TV regularisation give identical evolutions
in the two-pixel case, if one identifies the diffusion time t with the regularisation
parameter α. From the considerations in [12] one would only expect that the
processes approximate each other.

3 Multiscale Approach

So far we have only considered soft wavelet shrinkage on a single scale. In this
section, we interpret multiscale soft shrinkage with Haar wavelets as application
of nonlinear TV based diffusion to two–pixel groups of hierarchical signals.

Let us start with wavelet shrinkage again. Two steps of Haar wavelet shrink-
age are described by the filter bank in Figure 2. As usual we apply the z-
transform notation f(z) =

∑N−1
i=0 fiz

−i. Then Hi(z) (i = 0, 1) denotes the
convolution of f with the low pass filter (i = 0) and the high pass filter (i = 1),
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Fig. 2. Two steps of Haar wavelet shrinkage with H0(z) = 1+z√
2
and H1(z) = 1−z√

2
.

i.e. f(z)Hi(z), 2 ↓ and 2 ↑ downsampling and upsampling by 2, respectively,
and the circle soft thresholding by Sτ . Finally • signifies addition; see also [13].
To obtain more scales we further split the upper branch of the inner filter bank
cycle and so on.

We briefly recall the concept of Gaussian and Laplacian pyramids [3]. The
Gaussian pyramid we are interested in is the sequence of H0–smoothed and
subsampled versions of an initial signal f given by

f = f (0) −→ f (1) −→ . . . −→ f (n),

where

f
(j+1)
i = (f j

2i + f j
2i+1)/

√
2 (j = 0, . . . , n − 1; i = 0, . . . , N/2j+1 − 1).

Let Pf (j) denote the prolongated version of f (j) given by

Pf
(j)
2i = Pf

(j)
2i+1 = f

(j)
i /

√
2 (j = 1, . . . , n; i = 0, . . . , N/2j − 1). (7)

Then the corresponding Laplacian pyramid is the sequence

f − Pf (1) −→ f (1) − Pf (2) −→ . . . −→ f (n−1) − Pf (n) −→ f (n).

By
f (j) = Pf (j+1) +

(
f (j) − Pf (j+1)

)
(j = n − 1, . . . , 0)

we can reconstruct f from its Laplacian pyramid.
Let difft denote the operator of nonlinear diffusion with TV diffusivity and

stopping time t, applied to the successive two–pixel parts of a signal. By Sub-
section 2.2 we know that difft performs like a single wavelet shrinkage step
with soft threshold parameter τ =

√
2t. Further, we see that the upper branch

and the lower branch of the filter bank in Figure 2 are given by Pf (1) and
difft(f) − Pf (1) = difft(f − Pf (1)), respectively, where the later equation fol-
lows (although difft is a nonlinear operator) by (7) and (2). Thus, one wavelet
shrinkage step is given by

u = Pf (1) + difft(f − Pf (1)).

Now the multiscale Haar wavelet shrinkage up to scale n can be described by
successive application of difft to the Laplacian pyramid:

u(n) = f (n) (8)
u(j) = Pu(j+1) + difft(f (j) − Pf (j+1)) (j = n − 1, . . . , 0).

The result of the multiscale wavelet shrinkage is u = u(0).
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4 Summary

In this paper we have seen that wavelet soft shrinkage on a single scale with
Haar wavelets and threshold parameter τ is equivalent to TV-based nonlinear
diffusion of two-pixel signal pairs with diffusion time t = τ/

√
2. Moreover, it is

also equivalent to TV regularisation of two-pixel pairs with regularisation pa-
rameter α = τ/

√
2. This might give rise to the conjecture that TV diffusion and

regularisation yield identical results in general. Finally we showed that wavelet
shrinkage on multiple scales is nothing but applying two-pixel TV diffusion or
regularisation on the Laplacian pyramid of the signal.

These results are not only theoretically interesting, they may also have a
number of practically relevant consequences. Firstly, they may help to make
TV-based methods more popular for tasks such as image compression where
wavelets constitute the state-of-the-art. Wavelet ideas may also help to make
such PDE methods computationally more efficient. On the other hand, it is
worth noting that PDE-based methods have no problems with translation and
rotation invariance. Understanding their relation to wavelet methods might help
to solve such well-known problems in the wavelet setting in a better way.

In our future work we intend to consider more advanced wavelet methods,
to analyse the multidimensional case in detail, and to investigate possibilities to
design hybrid methods that share the advantages of PDE-based techniques and
wavelets.
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