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Abstract. Implicit active contour models are widely used in image pro-
cessing and computer vision tasks. Most implementations, however, are
based on explicit updating schemes and are therefore of limited compu-
tational efficiency. In this paper, we present fast algorithms based on the
semi-implicit additive operator splitting (AOS) scheme for both the geo-
metric and the geodesic active contour model. Our experimental results
with synthetic and real-world images demonstrate that one can gain a
speed up by one order of magnitude compared to the widely used explicit
time discretization.

1 Introduction

Level-set-based or so-called implicit active contour models have been used in a
variety of image processing and computer vision tasks [17]. Their main advan-
tages over classical explicit snakes [6] are implicit handling of topological changes,
numerical stability and independence of parametrization. However, their main
drawback is the additional computational complexity. In their simplest imple-
mentation, most approaches are based on an explicit or forward Euler scheme
which demands very small time steps.

To solve this problem, we provide a fast algorithm using an semi-implicit
additive operator splitting (AOS) technique [9,20]. Our approach is suitable both
for the geometric [3,10] and the geodesic active contour model [8,4].

The remainder of this paper is organized as follows: Section 2 introduces the
geometric and the geodesic active contour model. Section 3 describes our numer-
ical implementation of both models based on the AOS scheme. Section 4 presents
results and computation times for the different implementations. Finally, Section
5 concludes the paper.

Related work. A number of fast implementations for implicit snakes have been
proposed. However, most of them concentrate on narrow-band techniques and
multi-scale computations [1,14,13]. In [5], Goldenberg et al. present for geodesic
active contours an AOS strategy in combination with a narrow-band technique.
However, in contrast to our implementation, each iteration in their approach
requires a reinitialization step.
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2 Implicit Active Contour Models

Active contour models (deformable models) are used in a variety of image pro-
cessing tasks, e. g., image segmentation or object tracking. The basic idea is
that the user specifies an initial guess of an interesting contour (e. g. an organ,
a tumour, or a person to be tracked). Then, this contour evolves under smooth-
ness control (internal energy) and image-driven forces (external energy) to the
boundaries of the desired object.

In the classical explicit snake model [6] the contour represented by a closed
planar parametric curve C0(s) = (x(s), y(s)) , s ∈ [0, 1], is embedded into an
energy minimization framework. Apart from energy minimization the parametric
curve can also evolve directly under motion equations derived from geometric
considerations [16].

However, the parametrization of the curve causes difficulties with respect
to topological changes and numerical implementations. Thus, to prevent these
difficulties implicit active contour models have been developed. Here, the basic
idea is to represent the inital curve C0(s) implicitly within a higher dimensional
function, and to evolve this function under a partial differential equation. Usu-
ally, C0 is embedded as a zero level set into a function u0 : IR2 → IR by using
the signed distance function:

u0(x) =




d(x, C0), if x is inside C0
0, if x is on C0

−d(x, C0), if x is outside C0,
(1)

where d(x, C0) denotes the distance from an arbitrary position to the curve.
The implicit geometric active contour model discovered by Caselles et al. [3]

and later on by Malladi et al. [10] includes geometrical considerations similar to
[16]. Let Ω := (0, ax)× (0, ay) be our image domain in IR2. We consider a scalar
image on Ω. Then, using the level set technique [12] the model reads

∂u

∂t
= g(x)|∇u|

(
div

( ∇u
|∇u|

)
+ k

)
on Ω × (0,∞)

u(x, 0) = u0(x) on Ω.

(2)

Here, k is a constant force term comparable to the balloon force known from
explicit models and g : IR2 → (0, 1] denotes a stopping function that slows down
the snake as it approaches selected image features, e. g., edges. Note that normal
and curvature to a level set are given by

n = − ∇u
|∇u| , κ = div

( ∇u
|∇u|

)
=
uxxu

2
y − 2uxuyuxy + uyyu

2
x

(u2x + u2y)3/2 . (3)

In the implicit geodesic active contour model proposed simultaneously by
Caselles et al. [4] and Kichenassamy et al. [8] the function u is embedded into
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an energy functional inspired by the explicit snake model:

∂u

∂t
= |∇u|

(
div

(
g(x)

∇u
|∇u|

)
+ kg(x)

)
on Ω × (0,∞)

u(x, 0) = u0(x) on Ω.

(4)

3 Numerical Implementation

While implicit active contour models avoid several of the difficulties known from
explicit models, their main disadvantage is additional computational complexity.
First, in their simplest implementation, the partial differential equation must be
evaluated on the complete image domain. Second, most approaches are based
on explicit updating schemes which demand very small time steps. While the
first limitation can be addressed by narrow-band and/or multi-scale techniques
[1,17,14], the latter requires different discretizations. In the following we focus
on the second problem and develop semi-implicit schemes for both the geometric
and the geodesic active contour model based on an additive operator splitting
(AOS) technique [9,20]. Note that narrow-band and multi-scale techniques can
be easily combined with our implementation.

Let us consider the following equation, which unifies the geometric and the
geodesic model by introducing two additional functions a and b:

∂u

∂t
= a(x)|∇u|div

(
b(x)
|∇u|∇u

)
+ |∇u|kg(x). (5)

Setting a := g, b := 1 yields the geometric model, while a := 1, b := g results
in the geodesic model. For the sake of clarity we assume a constant force k = 0
in the following and discuss the complete model later on. Interpreting the term
b(x)
|∇u| as “diffusivity” we can employ techniques similar to those as described in
[20] in the context of nonlinear diffusion filtering.

To provide a numerical algorithm one has to consider discretizations of space
and time. We employ discrete times tn := nτ , where n ∈ IN0 and τ denotes the
time step size. Additionally, an image is divided by a uniform mesh of spacing
h = 1 into grid nodes xi. To simplify the notation a discrete image is represented
in the following by a vector f ∈ IRN , whose components fi, i ∈ {1, . . . , N},
contain the pixel values. Consequently, pixel i corresponds to some grid node
xi. Thus, using standard notation, un

i denotes the approximation of u(xi, tn).
Hence, following [20], (5) with k = 0 reads in its semi-implicit formulation as

un+1
i = un

i + τ


 ai|∇u|ni

∑
j∈N (i)

(
b

|∇u|
)n

i
+

(
b

|∇u|
)n

j

2
un+1

j − un+1
i

h2


 , (6)

where N (i) denotes the 4-neighborhood of the pixel at position xi. Here, straight-
forward finite difference implementations would give rise to problems when
|∇u| vanishes in the 4-neighborhood. These problems do not appear if one
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uses a finite difference scheme with harmonic averaging [19], thus replacing
1
2

((
b

|∇u|
)n

i
+

(
b

|∇u|
)n

j

)
in (6) by its harmonic counterpart:

un+1
i = un

i + τ


 ai|∇u|ni

∑
j∈N (i)

2(
|∇u|

b

)n

i
+

(
|∇u|

b

)n

j

un+1
j − un+1

i

h2


 . (7)

Note that by evaluating only image positions with |∇u|i �= 0, the denominator
in this scheme cannot vanish. In matrix-vector notation this becomes

un+1 = un + τ


 ∑

l∈{x,y}
Al(un)


un+1, (8)

where Al describes the interaction in l direction. In detail, the matrix Al(un) =
(âijl(un)) is given by

âijl(un) :=




ai|∇u|ni 2
( |∇u|

b )n

i
+( |∇u|

b )n

j

, j ∈ Nl(i)

−ai|∇u|ni
∑

m∈Nl(i)

2
( |∇u|

b )n

i
+( |∇u|

b )n

m

, j = i

0, else,

(9)

where Nl(i) represents the neighboring pixels with respect to direction l ∈ {x, y}.
However, the solution un+1 cannot be directly determined from this scheme.
Instead, it requires to solve a linear system of equations. Its solution is formally
given by

un+1 =


I − τ

∑
l∈{x,y}

Al(un)




−1

un (10)

where I denotes the unit matrix. Reformulating (10) using an AOS approxima-
tion yields

un+1 =
1
2

∑
l∈{x,y}

(I − 2τAl(un))−1
un. (11)

The operators Bl(uk) := I − 2τAl(un) come down to strictly diagonally
dominant tridiagonal linear systems which can be solved very efficiently [11].
Moreover, this scheme is unconditionally stable, thus, we can apply arbitrarily
large time steps.

However, we have so far neglected the constant force term |∇u|kg (cf. (5)).
This term stems from the hyperbolic dilation/erosion equation ∂tu = ±|∇u|.
Consequently, in a numerical implementation the gradient has to be approxi-
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mated by an upwind scheme [12]:

|∇u|ni ≈




|∇−u|ni =
(
max(D−xun

i , 0)
2 +min(D+xun

i , 0)
2 +

max(D−yun
i , 0)

2 +min(D+yun
i , 0)

2
)1/2

, if k ≤ 0

|∇+u|ni =
(
min(D−xun

i , 0)
2 +max(D+xun

i , 0)
2 +

min(D−yun
i , 0)

2 +max(D+yun
i , 0)

2
)1/2

, if k > 0

,

(12)
where D+x, D+y, D−x, and D+y denote forward and backward approximations
of the spatial derivatives (see e. g. [17]). Integrating the constant force term into
(11) is straightforward and yields for k < 0:

un+1 =
1
2

∑
l∈{x,y}

(I − 2τAl(un))−1 (
un + τ |∇−u|nkg) . (13)

Since the dilation/erosion equation approximated on a grid with h = 1 is sta-
ble only for τ ≤ 0.5 [12], the constant force term limits the applicable time step.
Consequently, (13) is stable only for |τkg| ≤ 0.5. However, since g is bounded
by one, k is usually a small fraction of 1.0, and very large time steps (τ > 5.0)
degrade accuracy significantly [20,19], this constraint is not severe.

4 Experimental Results

With the AOS-based implementation it is possible to choose time steps much
larger than in explicit updating schemes. Consequently, the evolution of the con-
tour to its final location requires only a small number of iterations compared to
explicit algorithms. However, a semi-implicit AOS iteration is more expensive
than its explicit counterpart. In order to compare both approaches, we imple-
mented the AOS-based models according to (13). For the explicit scheme we
employed standard techniques [17,2]. In addition, we used a stopping criterion
to indicate that the curve has reached a stable steady state. Every time a cer-
tain period ∆tk has elapsed, the average gray value of the evolving image u is
calculated. E. g., when setting ∆tk = 50 and τ = 0.25, the average gray value
is computed every 200 iterations. The process stops if two consecutive mea-
surements differ by less than an accuracy parameter α. In all experiments the
parameters for the stopping criterion were set to ∆tk = 50 and α ∈ {0.01, 0.1}.

To assess the final placement of the contour with regard to the underlying
algorithm, a simple distance measure was developed. Given a result contour
and a reference contour, we calculated for each pixel on the result contour the
distance to the nearest pixel on the reference contour. Averaging these values
yields the distance between the two contours. As reference contour we used in
all cases the explicit implementation with a small time step τ = 0.1.

We applied both algorithms to sample images (cf. Figures 1–3). A stopping
function according to the Perona-Malik diffusivity [15] was used:

g(x) =
1

1 + |∇fσ(x)|2/λ2 , (14)
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Fig. 1. AOS-based geometric active contour model on a synthetic image (size 128×128,
τ = 5.0, k = −0.1, σ = 0.5, λ = 1). From left to right: 10, 150, 250 iterations.

Fig. 2. AOS-based geodesic active contour model on hall-and-monitor image (size 352×
240, τ = 5.0, k = −0.02, σ = 0.5, λ = 1). From left to right: 100, 500, 1000 iterations.

Fig. 3. AOS-based geometric active contour model on medical image (size 284 × 284,
τ = 5.0, k = −0.1, σ = 1, λ = 1.5). From left to right: 50, 150, 300 iterations.

where fσ denotes the convolution of image f with a Gaussian kernel of standard
deviation σ and λ is a contrast factor. While close to edges (high gradient mag-
nitudes) of the image f , the stopping function approaches zero, it reaches one
in flat image areas (low gradient magnitudes). To extract the person in the hall-
and-monitor sequence we replaced the gradient term in the above equation by
the results of a motion detector [7]. In each case the image u0 was intialized to a
signed distance function [18,14,17] from a mask that covered nearly the complete
image domain. Table 1 summarizes the results calculated on a standard personal
computer with 1.4 GHz. As expected, the AOS-based implementation reduced
the number of iterations on the average by a factor of 20. Due to the coarse
stopping criterion the reduction varies from 18 to 22. Furthermore, we observe
that an AOS-based iteration is about twice as expensive, and in some cases three
times as expensive as an explicit iteration. Combining those results, we observe
that using AOS-based implementations of implicit active contour models yields
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Table 1. Comparison of explicit and AOS-based schemes

geometric model (explicit scheme)
image τ k iterations CPU time distance (pixels)

synthetic image 0.25 -0.1 20200 49.0 s 0
hall-and-monitor image 0.25 -0.1 20000 324.5 s 0
medical image 0.25 -0.1 6600 126.3 s 0.01

geometric model (AOS scheme)
image τ k iterations CPU time distance (pixels)

synthetic image 5.0 -0.1 950 7.4 s 0.75
hall-and-monitor image 5.0 -0.1 1040 54.0 s 0.87
medical image 5.0 -0.1 370 25.0 s 0.48

geodesic model (explicit scheme)
image τ k iterations CPU time distance (pixels)

synthetic image 0.25 -0.02 10400 36.9 s 0
hall-and-monitor image 0.25 -0.02 30800 634.9 s 0
medical image 0.25 -0.05 12200 306.1 s 0.01

geodesic model (AOS scheme)
image τ k iterations CPU time distance (pixels)

synthetic image 5.0 -0.02 480 4.2 s 1
hall-and-monitor image 5.0 -0.02 1390 70.2 s 1.79
medical image 5.0 -0.05 640 36.8 s 1.32

a significant speedup. In our examples the speedup ranges from a factor of 5 to
a factor of 9. Additionally, we applied the simple distance measure to the final
contours of the AOS-based and the explicit algorithms. The distance column in
Table 1 shows the average distance (in pixels) of the contours to the reference
contour obtained by an explicit algorithm with τ = 0.1. In all cases the results
indicate that the accuracy of the final placement is sufficient with respect to
the underlying segmentation task. We should note that the accuracy might be
further improved by refining the simple stopping criterion.

5 Conclusions

We have presented fast algorithms for both the geometric and the geodesic active
contour model. Our implementation based on the additive operator splitting
scheme outperforms other widely used explicit updating schemes clearly. Future
work will comprise the integration of narrow-band and multi-scale techniques
and should further improve the computational efficiency.
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