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Efficient and Reliable Schemes for Nonlinear
Diffusion Filtering
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Abstract— Nonlinear diffusion filtering is usually per-
formed with explicit schemes. They are only stable for
very small time steps, which leads to poor efficiency and
limits their practical use. Based on a recent discrete nonlin-
ear diffusion scale-space framework we present semi-implicit
schemes which are stable for all time steps. These novel
schemes use an additive operator splitting (AOS) which
guarantees equal treatment of all coordinate axes. They can
be implemented easily in arbitrary dimensions, have good
rotational invariance and reveal a computational complex-
ity and memory requirement which is linear in the number
of pixels. Examples demonstrate that, under typical accu-
racy requirements, AOS schemes are at least ten times more
efficient than the widely-used explicit schemes.
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I. INTRODUCTION

Impressive results are the main reason for using non-
linear diffusion filtering in image processing: unlike lin-
ear diffusion filtering (which is equivalent to convolving
with a Gaussian) edges remain well-localized and can even
be enhanced. Spatial regularizations of this filter class
have a solid mathematical foundation as well-posed scale-
spaces [12], [44], [46], whose parameter influence is well-
understood [6], [25].

Poor efficiency is the main reason for not using nonlin-
ear diffusion filtering: most approaches are based on the
simplest finite difference discretization by means of a so-
called explicit or Euler-forward scheme. This scheme re-
quires very small time steps in order to be stable. Hence
the whole filtering procedure is rather time-consuming.

In the present paper we are going to address this prob-
lem. We present a novel type of separable schemes which
do not suffer from any time step size restriction since all
stability-relevant terms are discretized in an implicit man-
ner. The backbone of these schemes is a Gaussian algo-
rithm for solving a tridiagonal system of linear equations.
It is fast, stable and requires only a few lines program-
ming work. Its forward and backward substitution step
can be regarded as a causal and anticausal filter of a re-
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cursive scheme. The presented algorithms are applicable in
arbitrary dimensions and their computational and storage
effort is linear in the image size. This shows their efficiency.

We prove the reliability of these schemes by verifying
that they satisfy recently established criteria for nonlinear
diffusion scale-spaces [45], [46]. This comes down to check-
ing six simple criteria. If these requirements are fulfilled
we can be sure that the scheme preserves the average grey
value, satisfies a causality property in terms of a maximum-—
minimum—principle, reveals a large class of smoothing Lya-
punov functionals, and converges to a constant steady-state
as the time tends to infinity. It should be noted that the
discrete maximum-minimum principle is a very restrictive
stability criterion (more restrictive than the von Neumann
stability), since it also takes into account the boundary con-
ditions and guarantees that over- and undershoots cannot
appear.

The goal of this paper is to guide the reader in a sys-
tematic way to these so-called additive operator splitting
(AOS) schemes. Specific knowledge in numerical analysis
is not necessary, as we shall refer to the required mate-
rial in the literature whenever it is needed. However, the
reader who is interested in a more detailed introduction to
the matrix algebra which is useful for the present paper,
may find this in Chapter 6 of Ortega’s textbook [35]. As
a prototype of a well-founded nonlinear diffusion filter we
focus on a spatial regularization of the Perona—Malik filter
[37] by Catté, Lions, Morel and Coll [12], and Whitaker
and Pizer [50].

The paper is organized as follows:

Section II gives a brief survey on this diffusion model
(which will call CLMC equation henceforth). In Section
ITI we review the simplest scheme for the 1-D CLMC equa-
tion: the explicit (Euler forward) discretization in time.
We analyze it by means of criteria for discrete nonlinear
diffusion scale-spaces in order to explain why it requires
rather prohibitive time step sizes. As a remedy we study a
semi-implicit discretization for which we show that it sat-
isfies all discrete scale-space criteria (including stability)
even for arbitrary large time steps. It requires to solve
a tridiagonal linear system of equations, which is easily
and efficiently done by a special variant of the well-known
Gaussian elimination algorithm. This so-called Thomas al-
gorithm will be presented in detail, since it forms the core
of the whole scheme.

In Section IV we consider the higher-dimensional case.
It is argued that the simple explicit scheme leads to even
more restrictive stability conditions than in the 1-D case,
while the semi-implicit scheme remains absolutely stable.
However, solving the m-dimensional linear system becomes
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significantly less efficient for dimensions > 2.

As as remedy we present an alternative scheme which
is also semi-implicit, has the same approximation order,
and is absolutely stable, but it can be separated into
one-dimensional processes. Thus, the simple and efficient
Thomas algorithm can be applied again. Unlike classical
multiplicative splitting schemes from the mathematical lit-
erature, we consider an additive operator splitting (AOS).
It ensures that all coordinate axes are treated equally, a
very desirable symmetry property in the context of im-
age processing. Furthermore, we shall check that the AOS
schemes satisfy all criteria for discrete nonlinear scale-
spaces.

The section is concluded by proposing a related method
for the regularization step within the CLMC model. Since
this regularization is based on a Gaussian convolution, it is
natural to regard it as a linear diffusion filter for which one
may also apply splitting techniques based on the Thomas
algorithm.

Section V presents an m-dimensional algorithmic formu-
lation of the AOS schemes and analyses its complexity.

In Section VI we evaluate the results by checking the per-
formance of AOS schemes with respect to rotational invari-
ance and accuracy. This allows us to propose reasonable
time step size and to analyse the accuracy and efficiency
in comparison to the unsplit semi-implicit scheme and the
widely-used explicit scheme.

We conclude the paper with a summary in Section VII.
A shortened preliminary version of this paper can be found
in [47].

Related work. Our work has been influenced by a num-
ber of related approaches which we would like to mention
here.

Implicit splitting-based approaches for linear diffusion
filtering have been proposed in [20], [9], and also in [2], [3],
[52] where their realization as recursive filters is suggested.
Impressive results on improved efficiency by means of recur-
sive filtering can be found in [14], [15], and the close relation
between recursive filters and linear scale-space approaches
has been clarified in [32]. Semidiscrete or fully discrete
analogues of linear diffusion filtering have been proposed
in [34], [26], [4, [38].

In the nonlinear diffusion field one can find several ap-
proaches which aim to be efficient alternatives to the con-
ventional two-level explicit finite-difference scheme, for in-
stance three-level methods [18], semi-implicit approaches
[12], multiplicative splittings [43], multigrid methods [1], fi-
nite element techniques with adaptive mesh coarsening [5],
numerical schemes with wavelets as trial functions [18], and
pseudospectral methods [18]. Even hardware proposals for
nonlinear diffusion filtering can be found in the literature
[36], [19].

Schemes which inherit a large number of the properties
of their continuous counterparts have also been proposed
in the context of curvature-based nonlinear scale-spaces
[8], [10], [11], [13]. Sophisticated algorithms for such pro-
cesses comprise fast level set methods [40], high-order ENO

schemes [41], and implicit algorithms for mean curvature
motion [2], [31].

II. THE CONTINUOUS FILTER PROCESS

In the m-dimensional case the filter of Catté, Lions,
Morel and Coll [12] has the following structure:

Let ©Q := (0,a1) X .... X (0, amm) be our image domain and
consider a (scalar) image as a bounded mapping from {2
into the real numbers IR. Then the CLMC filter calculates
a filtered image u(x,t) of f(z) as a solution of the diffusion
equation

Bu = div (g(|VuU|2) vu) (1)

with the original image as initial state,
u(z,0) = f(z), (2)
and reflecting boundary conditions:
Ohu:=0 on 09, (3)

where n denotes the normal to the image boundary 9f2.

The “time” t is a scale parameter: increasing ¢t leads
to simpler image representations. The whole embedding of
the original image into such a one-parameter family of sim-
plified images is called scale-space. The first representative
of this very general and useful image processing concept,
namely linear diffusion filtering, has been derived in an ax-
iomatic way by Taizo Iijima more than 35 years ago [23],
[48].

In order to reduce smoothing at edges, the diffusivity g is
chosen as a decreasing function of the edge detector |Vu,|.
Here, Vu, is the gradient of a smoothed version of v which
is obtained by convolving v with a Gaussian of standard
deviation o:

Vus, = V(K,*u), 4)

We use the following form for the diffusivity:

K,

1 (s <0)
9(s) = { 1o () (s>0. O

For such rapidly decreasing diffusivities smoothing on both
sides of an edge is much stronger than smoothing across it.
As a result, the gradient at edges may even be enhanced,
see [37] for more details. A plays the role of a contrast
parameter: Structures with |Vu,| > A are regarded as
edges, where the diffusivity is close to 0, while structures
with |Vu,| < A are considered to belong to the interior of
a region. Here the diffusivity is close to 1. In this sense,
the CLMC model serves as a selective smoothing which
prefers intraregional smoothing to interregional blurring.
After some time it leads to segmentation-like results which
are piecewise almost constant.

The parameter ¢ > 0 makes the filter insensitive to
noise at scales smaller than ¢. It is also a regularization
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parameter which guarantees well-posedness of the process:
Catté et al. [12] have shown that their filter has a unique
solution which is infinitely times differentiable for ¢ > 0.
Weickert [44], [46] has proved that it depends continuously
on the original image, satisfies a maximum-minimum prin-
ciple and reveals a large family of smoothing Lyapunov
functionals which guarantee that the solution tends to a
constant image for ¢ — oo. During the whole evolution,
the average grey value remains unaltered.

Equations of this type have been successfully applied to
process medical images, see e.g. [24], [50], [27]. Never-
theless, they are only one representative of a large class of
nonlinear scale-spaces. Overviews of other methods can be
found in [16], [21], [46].

III. ONE-DIMENSIONAL CASE
A. Explicit scheme
A.1 The scheme

The one-dimensional CLMC equation is given by
O = 0, (g(|8zua|2) (‘Lu). (7

Let us now consider the simplest discrete approximation
of this process. A discrete image can be regarded as a
vector f € R, whose components f;, i € J :={1,..., N}
display the grey values at each pixel. Pixel ¢ represents
some location z;, and h is the grid size. We consider dis-
crete times t; := k7, where k € INy and 7 is the time step
size. By u¥ we denote approximations to u(w;, ).

The simplest discretization of (7) with reflecting bound-
ary conditions is given by

ufHL b

ui —

JEN(4)

95 +gf
2h?

(f -

where N (i) is the set of the two neighbours of pixel i
(boundary pixels have only one neighbour).

The diffusivities g* approximate g(|Vu(z:,t)[?). They
can be obtained as follows:

In the spatially discrete case the convolution u, = K, *u
comes down to a multiplication of u € RN with a suitable
matrix H € RY*N . In Section TV-C we shall present an
efficient way to achieve this in the spatial domain. A gra-
dient approximation by central differences gives

1 uk — uk 2
9 =g 3 Z <p27hq> 9)
P,q€N (7)

for some inner pixel i. This expression remains also valid
at the boundary pixels, if we extend the image by reflecting
it at the boundary.

We can write the explicit scheme in matrix—vector nota-
tion as

(10)

with A(u¥) = (a;;(u*)) and

Ftgh .
me o GEeNG)),
aij(uf) = { - S (=10, (11)
neN (i)
0 (else).
This comes down to the iteration scheme
uF ! = (I+7'A(uk)) uF, (12)

where I €IRY is the unit matrix. This scheme is called ez-
plicit, since u*t1 can be directly calculated from u* without
solving a system of equations.

Such an explicit iteration step is computationally very
cheap: its requires mainly to calculate the three nonvanish-
ing matrix extries per row and to perform a matrix—vector
multiplication. The computational and storage effort is lin-
ear in the pixel number N. But does this explicit scheme
also create a good discrete scale-space and how far can
we come with one step? We can find an answer to these
question by applying a framework for discrete nonlinear
diffusion scale-spaces which we shall review next.

A.2 Criteria for discrete nonlinear diffusion scale-spaces

Recently a scale-space interpretation for the continu-
ous CLMC equation and its anisotropic generalizations
has been established [44], [46]. In addition to invariances
such as the preservation of the average grey value, it has
been shown that — it spite of its contrast-enhancing poten-
tial — these equations create smoothing scale-spaces: the
obey a maximum-minimum principle, have a large class of
smoothing Lyapunov functionals, and converge to a con-
stant steady-state.

It would be desirable to ensure that discrete approxima-
tions do also reveal these qualities exactly. Criteria have
been identified under which one can guarantee that a dis-
crete scheme of type

u =
k+1 Q(uk)uk,

(13)

u = Vk e ]N(), (14)
possesses such properties [45], [46]. All one has to check

are the following criteria for Q(u*) = (gi; (u¥)):

(D1) Continuity in its argument:

Q € C(RN,RV*N) (15)
(D2) Symmetry:
¢ij = Gji Vi,je (16)
(D3) Unit row sum:
Y aij=1 Viel. (17)
JjEJ
(D4) Nonnegativity:
a; >0 Vijed. (18)
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(D5) Positive diagonal:

qii >0 Vied
(D6) Irreducibility:
We can connect any two pixels by a path with
nonvanishing diffusivities. Formally:
For any 4,5 € J there exist ko,...,k. € J with
ko =i and k. = j such that g, # 0 for
p=0,.,r—1.

(19)

p+1

Under these prerequisites the filtering process is well-
posed and satisfies the following discrete scale-space prop-
erties [45], [46]:

(a) Average grey level invariance:

The average grey level y := % > jeg [i is not affected
by the discrete diffusion filter:
1
jed

This invariance is required in scale-space based seg-
mentation algorithms such as the hyperstack [33].
(b) Extremum principle:

. k
min f; < u; < max f;
jed fisui< jed Ji

Vield, VkelNg. (21)
This property is much more than a stability result
which forbids under- and overshoots. It also ensures
that iso-intensity linking towards the original image
is possible. Hence, it states an important causality
property, cf. [22].

(¢) Smoothing Lyapunov sequences:

The process is a simplifying, information-reducing
transform with respect to many aspects:
(i) The p-norms

l[u]l, = (22)

N 1/p
(D 1)
i=1
are decreasing in k for all p > 1.
(if) All even central moments

N
Monlu] = (k- (nEN) (29

are decreasing in k.
(iii) The entropy

N
S[u*] = - Zuf lnuf, (24)
Jj=1

a measure of uncertainty and missing information,
is increasing in k (if f; is positive for all j).
(d) Convergence to a constant steady-state:
lim v =p Vied (25)
k—o0
Thus, the discrete scale-space evolution tends to the
most global image representation that is possible: a
constant image with the same average grey level as f.

A.3 Does the explicit scheme create a discrete scale-space?

Let us now investigate if the explicit scheme (12) satisfies
the criteria (D1)—(D6) for discrete nonlinear scale-spaces.

Let
Qu*) = (gi(u")) == T +TA(u"). (26)

By virtue of (11) we observe that the continuity of @ with
respect to its argument follows directly from the continuity
of the diffusivity g.

The symmetry of @ follows from (11) and the symmetry
of the neighbourhood relation (i € N'(j) <= j € N(i)).

By the construction of A it is also evident that the row
sums of A vanish. Hence, all row sums of @) are 1, which
proves (D3).

Thus, let us investigate the nonnegativity. From a;; > 0
for ¢ # j, we also have ¢;; > 0 for ¢ # j. Thus, we can
focus on the diagonal entries. If they are all positive, both
(D4) and (D5) are satisfied. Since

Gi=1-1 Z asj (27)
J#i
and Y a;; > 0, positive diagonal entries require that
i
< L (28)
T — -
max 3 a;;(u*)
v

In order to show that @ is irreducible, let us assume that
T satisfies this restriction and consider two arbitrary pixels
sy and sq. If 51 < s then the positivity of g implies that

qsq,s1+1 >07 Qs1+1,5142 > 07 Ty Gsa—1,s5 > 0. (29)
If 57 > s then
Gsy,s1—1 >07 Qs —1,51—2 >07 Ty Gsot1,so >0. (30)

This establishes (D6).

From these considerations we conclude that the explicit
scheme creates a discrete scale-space provided that the time
step size satisfies the restriction (28). In image processing
one usually sets h := 1. Since the diffusivity g is bounded
from above by 1, definition (11) allows us to guarantee (28)
for 7 < 1/2.

In practice, this is often a very severe step size restric-
tion. It means that the use of an explicit scheme is limited
rather by its stability than its accuracy. For this reason it
would be interesting to look for schemes with better sta-
bility properties. This shall be done next.

B. Semi-implicit scheme
B.1 The scheme

We consider a slightly more complicated discretization
of (7), namely
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which leads to the scheme

<I - TA(uk)) utHl = gk, (32)
We observe that this scheme does not give the solution u*+!
directly (explicitly): It requires to solve a linear system
first. For this reason it is called a linear-implicit (semi-
implicit) scheme.

Remark. One may also be interested in studying the
(fully) implicit scheme

b+l — ok

= A e, (33)

T
leading to a nonlinear system of equations. This is more
complicated to solve. Below we shall see, however, that
such a high effort is not necessary, since already semi-
implicitness is sufficient to guarantee absolute stability.

B.2 Does the semi-implicit scheme create a discrete scale-
space?

In order to establish the semi-implicit scheme (32) as a
discrete scale-space we have to check (D1)—(D6) again.

First we have to show that
B(u*) = (bi;(u*)) == (I - 7A(u*)) (34)

is invertible. This is easily seen, because B is strictly diag-
onally dominant:

[bii] > > |bij]

J#i

Vield (35)

It is well-known from linear algebra that strictly diago-
nally dominant matrices are invertible, see e.g. [35, p. 226].

Thus,
Q) = (qi;(u")) = B~'(u") (36)

exists and the continuity of @) in its argument follows from
the continuity of g. Moreover, the symmetry of A carries
also over to B and @), which establishes (D2).

In order to prove (D3), consider w := (1,...,1)T € R".
Since B has unit row sum, we have Bw = w. This implies
that

w= B 'w = Qu.

(37)

Reading this componentwise shows that ¢ has also unit
row sum.

(D4)—(D6) can be verified in one step. We already know
that B is strictly diagonally dominant. It is also imme-
diately seen that B is irreducible, b;; < 0 for ¢ # j, and
b;; > 0 for all 4. Then a theorem by Varga [42, p. 85] tells
us that Q = B! satisfies

q;i; >0 Vi, j € J (38)
Thus, ) is nonnegative, has positive diagonal and is irre-
ducible.

From these considerations we observe that the semi-
implicit scheme creates a discrete nonlinear diffusion scale-
space for arbitrarily large time steps. In particular, it is

unconditionally stable and does not suffer from any time
step size restriction. Unlike the explicit scheme, it can be
fully adapted to the desired accuracy without the need to
choose small time steps for stability reasons.

B.3 Solving the tridiagonal linear system: The Thomas
algorithm

The semi-implicit scheme requires to solve a linear sys-
tem, where the system matrix is tridiagonal and diagonally
dominant. The most efficient way to do this is the so-called
Thomas algorithm, a Gaussian elimination algorithm for
tridiagonal systems. It can be found in many textbooks on
numerical analysis, e.g. [39, pp. 43-45]. However, since it
builds the backbone of our algorithms and since we want
to keep this paper selfcontained, we survey its algorithmic
features here.

The principle is as follows. Suppose we want to solve a
tridiagonal linear system Bu = d with

a1 51
7" Q2 B
BN-1

an

aN—1
TN -1

TYN-2

Then the Thomas algorithm consists of three steps.

Step 1: LR decomposition
We decompose B into the product of a lower bidiagonal
matrix

1
L 1
L= (40)
In-1 1
and an upper bidiagonal matrix
my T
R= (41)
mN-1 TN-1

mn

Comparing the coefficients shows that r; = 3; for all ¢, and
m; and [; can be obtained as follows:

mi = 0

for ¢t =1,2,..,N—1:
li = fy,-/mi
Mi41 1= Q41 — L Bs

Solving LRu = d for u is done in two steps:

Step 2: Forward substitution
We solve Ly = d for y. This gives

Y1 = d1
for 1 =2,3,...,N:
yi :=di —li_1yi1

Step 3: Backward substitution
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We solve Ru = y for u. This leads to

unN = yN/mN
for i =N-1,N-2,...,1:
u; := (Yi — Bivig1)/my

This completes the Thomas algorithm. It is stable for ev-
ery strictly diagonally dominant system matrix. One may
also regard it as a recursive filtering: The LR decompo-
sition determines the filter coefficients, Step 2 is a causal
filter and Step 3 an anticausal one. The whole scheme is
very efficient: it requires only

2IN-1)+ (N=-1)+1+2(N-1) = 5N -4 (42)
multiplications/divisions, and

(N-1)+(N-1)+(N—-1) = 3N-3 (43)

subtractions. Hence the CPU effort is linear in N. The

same is true for the storage effort.

Applying the Thomas algorithm to the semi-implicit
scheme takes almost twice as long as one iteration of the
explicit scheme, but we may use much larger time steps,
since the scheme is absolutely stable.

IV. HIGHER-DIMENSIONAL CASE
A. Explicit and semi-implicit schemes

The m-dimensional CLMC equation is given by

duu = i B (9 V) Buyu). (44)
=1

We can discretize the m summands of the right hand side in
the same manner as in the 1-D case. Using only one index
for pixel numbering, we may represent the whole image of
size N1 X ... X Np,, as a vector of size N := Ny - - - N,,,. In this
vector—matrix notation we can write the m-dimensional ex-
plicit scheme as

uttt = (I+TZAl(uk)) u (45)
=1
and its semi-implicit counterpart as
m -1
w1 = (I—TZAl(uk)) uk. (46)
=1
In both cases the matrix A; = (asj1)s; corresponds to

derivatives along the [-th coordinate axis. Let us also in-
troduce

Ay = (aij(wF)) = iAl(uk). (47)
=1

What about the reliability of both schemes? Check-
ing the discrete scale-space requirements (D1)—(D6) can be
done in a similar way as in the 1-D case, see [46, Theorem

8] for more details. As in the 1-D case one obtains that the
explicit scheme creates a discrete scale-space for

1
S 4
S Y a(ah) (48)
v j#i

and that the semi-implicit scheme satisfies all requirements
unconditionally.

What does this mean regarding efficiency? In the m-
dimensional case each inner pixel ig has 2m neighbours
with which it is connected via nonvanishing entries in the
io-th row of A. From (11) we see that we can estimate

S < (F et r) swals) (49
i#i ! mse
where hy,...,h,, denote the dimensions of an m-dimensional
pixel. With hy =...=h,, =1 and sup g = 1, restriction (48)
may be replaced by

T < o
Thus, the allowed step size of the explicit scheme becomes
even smaller for higher dimensions.

However, this does not necessarily imply that the semi-
implicit scheme becomes superior. There appears a new
problem as well: Although the actual structure of the ma-
trix A depends on the pixel numbering, it is not possible
anymore to order the pixels in such a way that in the i-th
row all nonvanishing matix elements can be found within
the positions [i,4 — m] to [¢,4 + m]: Usually, the matrix
reveals a much larger bandwidth. Applying direct algo-
rithms such as Gaussian elimination would destroy the ze-
ros within the band and would lead to an immense stor-
age and computation effort. Hence, iterative algorithms
have to be applied. Classical methods like Gaufi—Seidel or
SOR do not need additional storage and convergence can
be guaranteed for the special structure of A. This conver-
gence, however, is rather slow. Faster iterative methods
such as the SSOR-CG algorithm [30, pp. 154-161] need
significantly more storage, which can become prohibitive
for large images. A typical problem of iterative methods
is also that their convergence becomes slower for larger T,
since this increases the condition number of the system ma-
trix. Multigrid methods [7] appear to be one possibility to
circumvent many of these problems, but their implementa-
tion is more complicated.

Recapitulating, we see that for dimensions > 2 the semi-
implicit scheme remains absolutely stable, but it is difficult
to take full advantage of this because of the problems to
solve the arising linear system as efficiently as it was pos-
sible in the 1-D case with the Thomas algorithm.

(50)

B. AOS schemes

In order to address the abovementioned problem let us
consider a modification of the semi-implicit scheme (46),
namely the additive operator splitting (AOS) scheme

m

uFtl = % Z (I - mTAl(uk))_1 u®.

=1

(51)
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Several points should be noted:

o The explicit scheme (45), the semi-implicit scheme (46)
and the AOS scheme (51) have the same first-order
Taylor expansions in 7. It is easy to see that all
schemes are O(T+h? + ...+ h2,) approximations to the
continuous equation. From this viewpoint, all schemes
are consistent to the original equation. One should not
make the mistake to regard the AOS scheme as an al-
gebraically incorrect reformulation of the semi-implicit
scheme: The explicit scheme is also different from the
semi-implicit one, but it approximates the same con-
tinuous diffusion process.

e The operators

Bi(u*) := I —m7rA4;(u¥) (52)
describe one-dimensional diffusion processes along the
z; axes. Thus, under a suitable pixel numbering they
come down to strictly diagonally dominant tridiago-
nal matrices which can be inverted in an efficient and
stable way by the Thomas algorithm from Section ITI-
B.3.

o Since it is an additive splitting, all coordinate axes are
treated in exactly the same manner. This is in contrast
to conventional splitting techniques from the literature
[17], [28], [30], [51]. They are multiplicative splittings
such as the locally one-dimensional (LOD) scheme

m —

ubtt = H(I—TAl(uk)) 1u’“.

=1

(53)

Since in the general nonlinear case the split operators
do not commute, the result of multiplicative splittings
will depend on the order of the one-dimensional oper-
ators. This disadvantage will be discussed in Section
VI in more detail.

B.1 Does the AOS scheme create a discrete scale-space?

The discussed properties suggest that the AOS scheme
is an interesting candidate for an efficient discrete diffu-
sion scale-space. Thus, let us now assess its reliability by
checking the criteria (D1)—(D6).

Many reasonings carry over from the 1-D semi-implicit
scheme: First we observe that Q; := (gij1)ij == Bl_1 exist,
since By is strictly diagonally dominant. Also the continu-

ity of
1 m
Q= R;Ql

in its argument is a direct consequence of the continuous
diffusivity g and the construction of A;.

In the same way the symmetry of ) goes back to the
symmetry of A;. Note that the symmetry of A; is inde-
pendent of the pixel numbering: a permutation of their
numbering transforms 4; into PA;P~! for some permuta-
tion matrix P. Since P! = PT and there exists a pixel
numbering such that A; is transformed into a symmetric
tridiagonal matrix just as in the 1-D case, it is clear that
A; has to be symmetric.

(54)

With the same reasoning as in ITI-B.2, we know that not
only B, but also @); has row sum 1. Thus, ) has also unit
row sum.

To verify (D4), we observe that B; = (b;;1)i; is strictly
diagonally dominant, b;; > 0 for all 4, and b;;; < 0 for ¢ #
j- Under these circumstances we may conclude from [29,
p. 192] that Q; = B, ! is nonnegative in all components.
This implies the nonnegativity of Q.

Let us now check (D5) and (D6) in one step. Since
By, I = 1,...,m represent one-dimensional diffusion oper-
ators, it follows that there exist permutation matrices P,
I =1,...,m such that P,B,;P! is not only diagonally dom-
inant, but also tridiagonal and block irreducible!. Within
each irreducible matrix block, we have a positive diago-
nal and nonnegative off-diagonals. Applying again Varga’s
theorem [42, p. 85], we conclude that the inverse of each
block contains only positive elements. From this it follows
that a;, o1 # 0 for some g, jo € J implies that g; ;i > 0.
Thus, the irreducibility of A = 7", A; carries over to
Q@ =13, Qi and (D6) is satisfied. In particular, since
A; is constructed such that a;; # 0 for all ¢ € J, it is clear
that @ contains only positive diagonal elements. Therefore,
(D5) is verified as well.

These discussions show that the AOS scheme creates
a discrete nonlinear diffusion scale-space for all time step
sizes.

C. Regularization

This section describes a simple method for calculating
the presmoothing u, = K, *u in a way which is consistent
with the ideas presented above.

It is well-known that Gaussian convolution with stan-
dard deviation o is equivalent to linear diffusion filtering
(g = 1) for some time T = ¢2/2. Thus we may use the
(semi-)implicit? scheme again in order to obtain a stable
algorithm. Several things make the situation even easier
than in the nonlinear setting:

o Frequently, o is in the order of the pixel size. In this
case we may regularize in a single step by filtering once
with a time step size T = 02 /2.

e The linear diffusion process is separable. Therefore,
the order of the one-dimensional approximations is not
of importance and we may also use a multiplicative
splitting:

e | S (55)
=1

o The system in step ! can be decomposed into N/N,
tridiagonal systems with the same system matrix.
Thus, the LR decomposition needs to be done only

!Each of the N/N; blocks represents the pixels where all compo-
nents except for the [—th are identical.
2Semi-implicit and implicit are identical in the linear case.
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once for an N; X N;-matrix of type

147
—r

-]

1+2r;, —1

. . (56)
-r 1+2r -n
- 1+n
with r; := 7/h}. Therefore, the main effort boils down
to performing N/N; times the same forward and back-
ward substitution step from the Thomas algorithm.
This requires only 3N—2 multiplications/divisions and
2N —2 subtractions. Such an effort is comparable with
the recursive filters presented in [3], [2], [52], but unlike
those Fourier-based methods, the algorithm presented
here allows an adequate treatment of the reflecting
boundary conditions and preserves the average grey
value.

V. ALGORITHMIC STRUCTURE
A. AOS algorithm

We may summarize our considerations in the following
algorithm for one AOS step in m dimensions.

n

input: w=wu

regularization: wv:= K, *u
(according to IV-C)

calculate diffusivity g(|Vv|?)
(approximate Vv by central differences)
(use look-up table for evaluating g)

create copy: fi=u

initialize sum: wu:=0

for l=1,...,m:
calculate v := (mI —m?74;)7 ' f:
(solve N/N; tridiagonal systems of
size N; with Thomas algorithm III-B.3)
update: wuw:=u+v

u=u"t!

output:

B. Complexity

In order to assess the complexity of AOS algorithms, let
us consider dimensions m > 2 and focus on terms of order
N.

From the preceding algorithm we recognize that only the
four vectors u, v, g, and f are required. Thus, since all
calculations may be performed in single precision, the main
storage effort is 4N x 4 Bytes. This is independent of the
dimension m.

Table I summarizes the relevant computational require-
ments for each step of the AOS algorithm. We observe that
the effort is proportional to the number N of pixels and the
dimension m. The total effort is only 11m./N multiplications
or divisions, (10m — 1) N additions or subtractions, and N
look-ups in a table. This is less than twice the typical ef-
fort needed for an explicit scheme, a rather low price for
gaining absolute stability.

TABLE I
MAIN OPERATIONS FOR ONE m-DIMENSIONAL AOS STEP (M/D:
MULTIPLICATIONS OR DIVISIONS; A/S: ADDITIONS OR
SUBTRACTIONS; LUT: LOOK-UP OPERATIONS IN A TABLE).

task M/D A/S | LUT
regularization 3mN 2mN
calculate |Vo|? 2mN | (2m-1)N
calculate diffusivity N
create system matrix mN 3mN
Thomas algorithms 5mN 3mN
total 11mN | (10m-1)N N

VI. EVALUATION

We have seen that AOS schemes with large time steps
still reveal average grey value invariance, stability based
on extremum principle, Lyapunov functionals, and conver-
gence to a constant steady-state. Thus, they are legitimate
when being considered as a pure discrete process which is
not intended to approximate a continuous process.

But does this mean that it is recommendable to consider
arbitrarily large time step sizes? In the extreme case: can
one filter an image in one step?

In this case we should expect problems with those prop-
erties which a naturally linked to continuous ideas and
which can only be satisfied approximately by discrete
schemes: rotational invariance and accuracy.

A loss of rotational invariance becomes visible as a pref-
erence of certain directions, while a loss of accuracy be-
comes evident in those cases where filtering with time step
nt differs visually from n times filtering with 7. So let us
now check these approximation effects by applying a 2-D
AOS scheme to two test images.

First we check the rotational invariance. Since the AOS
scheme is consistent to the original equation, we should ex-
pect good rotational invariance for small spatial and tem-
poral steps.

Figure 1 is used as a test for rotational invariance. It
depicts a Gaussian-like image and its filtered versions. For
7 = 0.25 both the explicit and AOS scheme are visually
undistinguishable. This step size is also the stability limit
for the explicit scheme, while the AOS scheme allows to
increase T further. We see that for 7 < 5 no significant
changes appear. Thus, AOS may be used with 20 times
larger time steps than the explicit scheme. On the other
hand, even for 7 = 20 the deviations from a perfect circular
structure are not very severe.

What about the accuracy? Figure 2 depicts the filtering
of a brain image. The situation is similar as in Figure 1:
For 7 = 0.25 the explicit and the AOS scheme are undistin-
guishable. The AOS scheme remains close to these results
up to 7 & 5. For 7 = 20 we get more severe deviations:
the filtering effect becomes weaker. This is a typical be-
haviour for implicit schemes with large time steps: implicit
techniques always remain on the “safe” side (by orienting
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the diffusion on the “smoother” future rather than on the
“rougher” past), while their deviation from the true solu-
tion becomes larger with increasing step size. Thus, their
filtering effect on the final image at a specified time de-
creases with increasing time step size. Again 7 = 5 is a
good compromise between efficiency and accuracy.

After these visual inspections we shall investigate the ac-
curacy more quantitatively. To this end we perform a com-
parison between the explicit scheme (45), the semi-implicit
scheme (46) and the AOS scheme (51). Since no analyti-
cal solution to the CLMC equation is known, we have to
use a good numerical approximation to a test example as a
standard for comparison. In our case we took the explicit
scheme with the small step size 7 = 0.1 and applied it 2000
times to the test image from Fig. 2.

The linear system of the 2-D semi-implicit scheme is
solved by a Gaufi—Seidel algorithm. Iterative methods of
this type are quite popular for nonlinear PDEs in image
processing [2], [31], since they are easy to implement and
they do not require additional memory. Let the diffusion
operator

Bu*) = T-71) A(u") (57)
=1

be decomposed into the strictly lower triangular matrix L,

the diagonal matrix D, and the strictly upper triangular

matrix U. Then the Gaufl—Seidel method approximates

the solution u**! of the semi-implicit scheme
B(u®)uftt = o* (58)
by a sequence of vectors y(™ with
y@ = (59)
y™ = (L+D)7(w -Uy™)  (n20). (60)
Every second step we calculate the residue
(") = By(™ — y* (61)

and we stop the iteration process if its I2 norm |[r(™ ||, =
(3, Ir™2)1/2 satisfies

™2 < aflr @] (62)
with some accuracy parameter a = 0.01 or a = 0.1.

Table II compares the explicit scheme, the semi-implicit
scheme with accuracies @ = 0.01 and o = 0.1, respectively,
and the AOS scheme.

If v denotes our reference solution (explicit scheme,
7 = 0.1), then we calculate the relative I? error of an ap-
proximation u as

llu — vll2
o]l

First we observe that the explicit scheme with 7 = 0.25
reveals a very small error, while the semi-implicit method
with @ = 0.01 is not only less accurate, but also slower
for 7 = 0.25 and 0.5. For 7 > 1 the semi-implicit scheme
becomes faster than the explicit one. On the other hand,

(63)

TABLE II
COMPARISON OF NONLINEAR DIFFUSION SCHEMES.

scheme 7 | CPU time | rel. I error
explicit 0.25 65.65 s 0.14 %
semi-implicit | 0.25 145.65 s 0.27 %
(@=0.01) | 0.5 | 92.62s 0.68 %
1 62.97 s 1.05 %
2 43.58 s 1.46 %
5 27.62 s 1.97 %
10 19.49 s 2.26 %
20 12.45 s 2.74 %
50 5.54s 3.77 %
semi-implicit | 0.25 106.43 s 0.83 %
(@=01) | 05 | 72.04s 1.00 %
1 36.70 s 1.40 %
2 23.53 s 1.83 %
5 12.30 s 2.51 %
10 7.00 s 3.27T%
20 3.53 s 419 %
50 1.17 s 5.43 %
AOS 0.25 114.04 s 0.73 %
0.5 56.55 s 1.32 %
1 28.56 s 1.66 %
2 14.25 s 1.83 %
5 5.80 s 2.22 %
10 2.95 s 2.73 %
20 1.52s 3.37%
50 0.67 s 4.29 %

the Gauf-Seidel algorithm slows down for larger 7, since
this increases the condition number of the system matrix.
Hence, the overall CPU time per semi-implicit step in-
creases with increasing 7. If we relax the accuracy from
a = 0.01 to a = 0.1, the semi-implicit scheme becomes
faster, but the I? error also increases. For 7 > 0.5, the
AOS scheme becomes the fastest method. Interestingly,
for 7 > 2, it is also more accurate than the semi-implicit
scheme with a = 0.1.

It is worth noticing that there is a fundamental differ-
ence between errors in the AOS scheme and errors which
are introduced by an insufficient number of Gauf3—Seidel
iterations: unlike AOS errors which are compatible with
the discrete scale-space framework, Gaufi—Seidel errors can
violate these requirements. Thus, properties such as the av-
erage grey level invariance are no more satisfied in an exact
manner. In order to avoid these difficulties, one would have
to apply more Gaufl—Seidel iterations, which will finally
destroy all efficiency advantages compared to the explicit
scheme; see also [31].

Figure 3 gives a graphical representation of Table II,
which allows us to find the most efficient schemes for a de-
sired accuracy. We observe that for very high accuracy re-
quirements the explicit scheme is most appropriate®. This

30ne can achieve even higher accuracy by methods which are of
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is at the expense of a hight overall computational effort.
On the other hand, even relaxing the accuracy require-
ments to a relative 12 error of 1 % does not permit us to
find a more efficient technique. For errors between 1 % and
1.7 % the semi-implicit scheme with o = 0.1 is fastest, and
for errors larger than 1.7 % AOS schemes become rapidly
superior. In our previous experiments we have observed
that the accuracy of AOS with 7 = 5 appears to be toler-
able for many applications. This corresponds to an error
of about 2.2 %. In this case, AOS is almost 2.5 times
more efficient than the semi-implicit scheme with a = 0.1,
more than 3.5 times faster than the semi-implicit scheme
with o = 0.01, and about 11 times more efficient than the
explicit scheme. Although these relations have been illus-
trated by one example only, additional experiments have
indicated that these basic relations between explicit, semi-
implicit and AQOS discretizations carry over to a large class
of images: The accuracy requirements of many practical
problems allow an efficiency gain by one order of magni-
tude. All one has to do is to replace the explicit scheme by
an AOS scheme with 20 times larger time step sizes.

It should be noted that the AOS schemes calculate the
average of operators of type (I —m7A;)~!. They describe
1-D diffusions with a step size m7. Since multiplicative
splittings such as the LOD scheme (53) use operators of
type (I—7A;)~!, one can expect that they give even better
accuracy. However, multiplicative splittings for nonlinear
problems reveal one big disadvantage, which makes their
use in many image processing applications problematic: In
the general nonlinear case the split operators do not com-
mute any longer. Thus, the result of multiplicative split-
tings depends on the order of the one-dimensional opera-
tors, and the grid axes are treated differently. In practice,
this means that these schemes produce different results if
the image is rotated by 90 degrees. Such an undesirable
effect is illustrated in Fig. 4. Since AOS schemes apply
the 1-D operators in parallel instead of sequentially, they
do not suffer from this limitation.

Moreover, most multiplicative splittings lead to a non-
symmetric system matrix Q(u¥). This violates criterion
(D2) for discrete diffusion scale-spaces. For this reason, we
have not considered these approaches in the present paper.

Finally we check the relation between the computational
effort and the number of pixels. Table III shows the mea-
sured CPU times on a single R10000 processor of an SGI
Challenge XL and on an HP 900-755, both for 2-D and 3-D
images.

For small image sizes the computing times reveal good
proportionality to the overall number of pixels. This is
what we expect from theory. Because of cache limitations,
the CPU time per pixel becomes slightly higher for larger
data sets: We also observe that this deviation from the
linear scaling behaviour is machine dependent. The HP
remains closer to the linear scaling behaviour than the SGI.
On the other hand, with its CPU memory of 1 GByte the
SGI permits even to process data sets of size 8192 x 8192

second order in time, for instance predictor—corrector techniques [46].
Such a high accuracy, however, is rarely required in image processing.

TABLE III
MEASURED CPU TIMES FOR ONE AOS ITERATION.

image size SGI HP
64 x 64 0.0086 s | 0.0168 s
128 x 128 0.0324 s | 0.0676 s
256 x 256 0.134s | 0.307s
512 x 512 0.711 s 1.63 s
1024 x 1024 6.35 s 7.38 s
2048 x 2048 27.8 s 340 s
4096 x 4096 145 s

8192 x 8192 724 s

16 x 16 x 16 0.0159 s | 0.0331 s
32 %32 x 32 0.116 s | 0.304 s
64 x 64 x 64 1.15s 2.45 s
128 x 128 x 128 13.4 s 20.1 s
256 x 256 x 256 237 s

512 x 512 x 256 1340 s

and 512 x 512 x 256.

Three-dimensional data sets from medicine with typical
sizes such as 256 x 256 x 64 can be processed in less than one
minute per AOS iteration (both on the HP and the SGI).
In many practical applications less than 10 iterations are
sufficient for the denoising of such data sets.

Recapping we have observed that — although the desired
approximation quality is of course purpose dependent —
under typical circumstances 20 times larger step sizes than
the stability limit of the explicit scheme appear reasonable.
They give an efficiency gain of a factor ten*. Especially
for large data sets such as 3-D medical data this is often
the difference between not applicable and applicable. We
are currently testing our schemes for the filtering of 3-D
ultrasound images and preprocessing 3-D MR data for seg-
mentation. In both cases first results are encouraging.

VII. CONCLUSIONS

We have presented absolutely stable additive operator
splitting (AOS) schemes for the nonlinear diffusion filter of
Catté et al. and Whitaker and Pizer. These schemes sat-
isfy all criteria for discrete nonlinear diffusion scale-spaces
and are easy to implement in any dimension. Both com-
putational and storage effort is linear in the number of
pixels. Experiments have shown that under realistic accu-
racy requirements one can gain an increase of efficiency by
a factor 10. This makes this type of schemes attractive for
applications such as medical 3D data sets.

Implementations of AOS schemes on parallel architec-
tures are studied in [49]. These experiments demonstrate
that it is possible to gain a speed-up by another order of

4We have seen that an m-dimensional AOS scheme averages 1-D
operators with an effective step size of mr. Thus, for higher dimen-
sions m one should reduce the step size in order to have the same
accuracy. However, since explicit schemes also have to decrease the
step size for larger m in the same way, the factor 10 remains valid for
every dimension.
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magnitude by exploiting the intrinsic parallelism of AOS
schemes. Last but not least, there are also ways to gen-
eralize AOS schemes to anisotropic diffusion filters with
diffusion tensors; a first proposal in this direction can be
found in [46, Section 4.4.2].
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Fig. 1. Nonlinear diffusion filtering of a Gaussian-like test image
(A =8, 0 = 1.5). (a) Top LEFT: Original image, @ = (0,101)2.
(b) Top RiGHT: Explicit scheme, 800 iterations, 7 = 0.25. (c)
MIDDLE LEFT: AOS scheme, 800 iterations, 7 = 0.25. (d) MID-
DLE RIGHT: AOS scheme, 200 iterations, 7 = 1. (e) BOTTOM  Fig. 2. Nonlinear diffusion filtering of a medical image (A = 2,
LerT: AOS scheme, 40 iterations, 7 = 5. (f) BorTOM RIGHT: o =1). (a) Top LEFT: Original image, Q = (0, 255) x (0, 308).
AOS scheme, 10 iterations, 7 = 20. (b) Top RiGHT: Explicit scheme, 800 iterations, 7 = 0.25. (c)
MIDDLE LEFT: AOS scheme, 800 iterations, 7 = 0.25. (d) Mip-
DLE RIGHT: AOS scheme, 200 iterations, 7 = 1. (e) BoTTOoM
LEFT: AOS scheme, 40 iterations, 7 = 5. (f) BoTToM RIGHT:
AOS scheme, 10 iterations, 7 = 20.
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Fig. 3. Tradeoff between efficiency and accuracy of nonlinear diffu-
sion solvers. The data were calculated on the test image from
Fig. 2, size Q = (0,255) x (0,308). Filter parameters: A = 2,
o = 1. Stopping time: 7' = 200. Hardware: one R10000 proces-
sor on an SGI Challenge XL.

Fig. 4. (Non-)Commutation of nonlinear diffusion operators. The
difference between filtering prior to rotation by 90 degrees, and
rotation prior to filtering is depicted. Test image: Figure 2 (A =
2, 0 = 1, 7 = 20, 10 iterations). (a) LEFT: A multiplicative
splitting such as LOD treats x and y axes differently. (b) RIGHT:
Additive operator splitting (AOS) treats all axes equally.



