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of this paper is to present a variational approachto recover a dense disparity map from a set of twoweakly calibrated stereoscopic images. To solve thisproblem, we �rst make full use of the knowledge ofthe so-called fundamental matrix [7] to derive theequations that relate corresponding pixels in thetwo views. The intrinsic and extrinsic parameters ofthe camera are not known. We directly compute thedisparity map from the grey-level image intensitieswithout dealing with any intermediate process suchas recti�cation and we address the problem of ac-curately determining the dense disparity map whilesmoothing and regularizing this disparity map alongthe contours of the grey level image and inhibitingsmoothing across the image discontinuities.The preservation of discontinuities in the dis-parity map is obtained using an anisotropic linearoperator [3, 10] which allows to develop discontinu-ities in the disparity map across the edges of one ofthe 2 images. This important step is achieved byconsidering a well adapted regularization term thathas already proven to be very useful in optical �owestimation.In order to avoid converging to irrelevant min-ima, a focusing strategy embedding our methodin a linear scale-space is used, as it has alreadybeen successfully applied in optical �ow estima-tion [3]. The coarse-scale solution serves thenas initial data for solving the problem at a �nerscale. We have shown that our method leads toa mathematically correct concept and we haveproven the existence and uniqueness of the solutionof the parabolic equation which governs our method.Finally, our approach has been validated on alarge set of synthetic and real stereo data. All theseresults are presented in a previous work [1].



2 Formalism of the matching process2.1 Notation and BackgroundIn this paper we use a projective camera model.This model maps a 3D point M = [X;Y; Z]t toa 2D image point m = [x; y]t through a 3 � 4projection matrix P via sm̂ = PM̂, where s is anonzero scale factor and the notation p̂ is such thatif p = [x; y; : : :]t then p̂ = [x; y; : : : ; 1]t: In the caseof two images acquired by a binocular stereo system,every physical point M in space yields a pair of 2Dprojectionsm1 andm2 on the two images. The 3�4projection matrices are de�ned by the following re-lations: s1m̂1 = P1M̂ s2m̂2 = P2M̂ (1)Assuming that the world coordinate system is as-sociated with the �rst camera, the two projectionmatrices are given byP1 = [Aj0] P2 = [A0RjA0t] (2)where R and t represent the 3 � 3 rotation matrixand the 3 � 1 translation vector de�ning the rigiddisplacement between the two cameras, and 0 de-notes the 3� 1 null vector. The matrices A and A0are the 3 � 3 intrinsic parameters matrices of thetwo views, each depending on �ve parameters andhaving the following well-known form [7]:A = 24 �u ��u cot � u00 �v= sin � v00 0 1 35All these matrices and parameters can be com-puted with good accuracy by means of a classicalcalibration method [7]. In such a case, the system issaid to be calibrated.By eliminating the scalars s1 and s2 associatedwith the projection equations (1) as well as the pointM, an equation relating the pair of projections of thesame 3D point is obtained:m̂2tFm̂1 = 0: (3)For a point m1 = [x; y]t in the �rst image Il, thefundamental matrix F = (fi;j) provides the epipolarline � of equation m̂2tFm̂1 = 0 in the image Ir. Letus introduce the notationa(x; y) := f11x+ f12y + f13; (4)b(x; y) := f21x+ f22y + f23; (5)c(x; y) := f31x+ f32y + f33: (6)Using this notation, the epipolar line � can be writ-ten as a(x; y)x0 + b(x; y)y0 + c(x; y) = 0: (7)

We will use this equation in order to introduce ourspeci�c parameterization of the disparity, developedto yield a simple linear second order di�erential op-erator in the minimization part.2.2 The Disparity TermUnder the Lambertian assumption that corre-sponding pixels have equal grey values, the de-termination of the disparity from the stereo paircomes down to �nding a function h(x; y) :=(u(x; y); v(x; y))t such that Il(x; y) = Ir(x +u(x; y); y + v(x; y)), where the point (x0; y0) = (x +u(x; y); y + v(x; y)) belongs to the epipolar line as-sociated to (x; y):Let us denote by N (resp. T) the unitary normal(resp. tangential) vector of the epipolar line � givenby the equation m̂2tFm̂1 = 0, and byD the unitarydisparity vector associated to the point m1 and m2N = " apa2+b2bpa2+b2 #T = " �bpa2+b2apa2+b2 #D = " upu2+v2vpu2+v2 # (8)Then we havem2 =m1 + �D =m1 � 
N� �T (9)where � = pu2 + v2 represents the disparity. 
 rep-resents the distance (modulus a sign) of the pointm1 to its epipolar line � in the second image and �represents the distance (modulus a sign) of m0, theprojection of the point m1 on the epipolar line �,to the point m2 that lies along the epipolar line �.2.3 The Energy FunctionalLet us now develop an approach to accurately es-timate the �(x; y) function associated to a pair ofstereoscopic images. The easiest possibility wouldbe to proceed in a classical way and try to recoverthis important information using a simple correla-tion scheme. Unfortunately, this naive solution willnot provide a correct and accurate result, in par-ticular in the regions where the disparity map hasdiscontinuities, as is often the case at image edges.It is well known that the disparity map of this classi-cal method tends to be very smooth across the imageboundaries. The idea we would like to formalize anddevelop here is to estimate a �(x; y) function whichis smooth only along the image boundaries and notacross them. This leads us to consider the minimiza-tion of the following energy functional:E(�) = Z
 (Il(x; y) � Ir(x+ h(�(x; yen)))2 dx dy+ C Z
r�tD(rIl)r� dx dy (10)



Here, 
 denotes the image domain, C is a positiveconstant, andD(rIl) is a regularized projection ma-trix perpendicular to rIl:D (rIl) = (� @Il@y�@Il@x � � @Il@y�@Il@x �t + �2Id)jrIlj2 + 2�2 (11)where Id denotes the identity matrix. This projec-tion has been introduced by Nagel and Enkelmannin the context of optic �ow estimation. We use ithere because of its simplicity (the underlying secondorder di�erential operator is linear) and because thismethod has demonstrated its performance numeroustimes in the context of optical �ow estimations [3].2.4 Minimizing the EnergyIn order to minimize our energy functional, wesolve its associated Euler�Lagrange equationC div (D (rIl) r�)+ �Il � I�r � a( @Ir@y )��b( @Ir@x )�pa2+b2 = 0We obtain a solution of the above equation bycalculating the asymptotic state (t!1) of the par-abolic equation@�@t = C div (D (rIl) r�)+ �Il � I�r � a�@Ir@y �� � b �@Ir@x ��pa2 + b2 (12)We observe that in this di�usion�reaction methodthe matrix D(rIl) plays the role of a di�usion ten-sor. Its eigenvectors are v1 := rIl and v2 := rI?l ,and the corresponding eigenvalues are given by�1(jrIlj) = �2jrIlj2+2�2�2(jrIlj) = jrIlj2+�2jrIlj2+2�2In the interior of objects we have jrIlj ! 0, andtherefore �1 ! 1=2 and �2 ! 1=2. At ideal edgeswhere jrIlj ! 1, we obtain �1 ! 0 and �2 ! 1.Thus, we have isotropic behavior within regions, andat image boundaries the process smoothes anisotrop-ically along the edge.2.5 A Linear Scale-Space Approach toRecover Large DisparitiesIn general, the Euler�Lagrange equation (2.4) willhave multiple solutions. As a consequence, the as-ymptotic state of the parabolic equation, which weuse for approximating the disparity, will depend onthe initial data. Typically, we may expect that the

algorithm converges to a local minimum of the en-ergy functional (10) that is located in the vicinity ofthe initial data. To avoid convergence to irrelevantlocal minima, we embed our method into a linearscale-space framework [13]. Considering the prob-lem at a coarse scale avoids that the algorithm getstrapped in physically irrelevant local minima.The basic idea of embedding our method in lin-ear scale-space is as follows : we replace the im-ages Il and Ir by I�l := G� � Il and I�r := G� � Ir,where � is the convolution operator, and G� de-notes a Gaussian with standard deviation �. Westart with a large initial scale �0. Then we com-pute the disparity ��0 at scale �0 as the asymptoticstate of the solution using some initial approxima-tion (see below). Next, we choose a number of scales�n < �n�1 < :::: < �0, and for each scale �i wecompute the disparity ��ias the asymptotic stateof the above PDE with initial data ��i�1 The �naldisparity corresponds to the smallest scale �n. Inaccordance with the logarithmic sampling strategyin linear scale-space theory, we choose �i := �i�0with some decay rate � 2 (0; 1). A detailed analysisof the usefulness of such a focusing strategy in thecontext of a related optic �ow problem can be foundin [3].Our method is governed by the evolution equation@��@t = C div (D (rI�l ) r��)+ �I�l � I�;��r � a�@I�r@y ��� � b�@I�r@x ���pa2 + b2 (13)For the initial value ��00 (x; y) we consider two pos-sibilities. The �rst one is to take a constant valuewhich depends, in general, on a rough a priori es-timation of the expected disparity, following an es-timation of the depth where the interesting objectsare located.3 Experimental ResultsIn Figure 1 we present the calculated disparity(pu2 + v2) using the classical correlation method(bottom left) and using our method with the cor-relation technique as initialization (bottom right).Two epipolar lines are depicted in the right image.They correspond to the points represented by a crossaround the left eye and the nose in the left image.Figure 2 shows several views of the 3-D reconstruc-tion of the face in the stereo pair, using the disparitymap obtained by our method. The reconstructionlooks very realistic.



Figure 1: Top: the original stereo pair. Bottomleft: the computed disparity map using a correlationwindow of size 13� 13. Bottom right: our method(�0 = 7, �n = 0:8, � = 1, s = 0:5, � = 0:95), withthe correlation result as initialization.

Figure 2: Four views of the 3-D reconstruction ofthe stereo pair in Figure 1, using the disparity mapfrom our method.
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