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Abstract

The edge enhancement property of a nonlinear diffusion equation with a suitable
expression for the diffusivity is an important feature for image processing. We present
an algorithm to solve this equation in a wavelet basis and discuss its one dimensional
version in some detail. Sample calculations demonstrate principle effects and treat in
particular the case of highly noise perturbed signals. The results are discussed with
respect to performance, efficiency, choice of parameters and are illustrated by a large
number of figures. Finally, a comparison with a Fourier method and a finite volume
method is performed.
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1 Introduction

Since the work of Grossmann and Morlet [20] wavelets have found wide application in signal
and image processing. These functions fit well in a Fourier transform-like approach without
the drawbacks of trigonometric functions, however. The literature on this subject is rapidly
evolving and we refer to review articles and books such as 7, 12, 32] and others on this
topic.

An important feature of wavelets is the possibility to compress information with quite spec-
tacular results [3. 13]. This induced researchers in the field of numerical analysis to use such
functions as bases in their algorithms for the solution of partial differential equations (PDEs)
(18, 22, 30]. The aim is to set up adaptive algorithms and/or effective preconditioners by
using the inherent hierarchy and orthogonality of a discrete wavelet basis.

Another junction between image processing and the numerical solution of PDEs is the fact
that applying any 'meaningful’ image transform corresponds to the solution of a PDE (1, 2].
The idea is that the numerical solution of a suitable PDE may lead to a practical algorithm
when used in such a way that the original image is taken as initial condition and the solution
of the PDE after some temporal evolution is taken as the output. The convolution with a
Gaussian kernel, for example, is nothing else than solving a linear diffusion equation [21].
This approach has been persued in recent years by considering nonlinear diffusion-type
equations for image processing [6, 9, 10, 28, 29, 33, 34]. Indeed, the results of these authors
demonstrate that this method outperforms the linear models as a preprocessing step for
segmentation, as it blurs or shifts edges much less than the former.

Our motivation for the present work is the following. The cited algorithms for nonlinear
diffusion equations are based on a low order finite difference discretization in space. On
the other hand people often do filtering using wavelet coefficients for compression. An
alternating combination of both seems to give good results [26]. So why not combine both
and use the same basis functions for filtering and for solving the PDE ?

We contribute such an algorithm based on [22] for periodic functions. It is applied to the 1D
case with periodic boundary conditions and permits the observation of typical phenomena.
Note that the smoothing of a noisy signal in one dimension may be a much more delicate
task than the two dimensional case. This is due to the increase of the number of neighbours
in higher dimensions. Of course the treatment of purely two dimensional features such as
the response near corners has to be investigated seperately. The detection of edges and
segments, however, does carry over to this case, since near a straight edge, a 2D image
behaves like a function of one variable.

In the whole text an image is represented by a real valued function f(z) on [0,1] correspond-
ing to the intensity of light. In the discrete case [0, 1] is replaced by a set of equidistant grid
points (pixels). Image processing then starts from f(z) given at these points and aims to
construct a function g(z) that retains the required information. The definition of what this
required information consists of is a major part of the process and may lead to substantially
different methods.

This paper is organized as follows:

Sections 2 and 3 juxtapose the concepts of wavelet and nonlinear diffusion filtering. In
section 4 the numerical algorithm which combines both is presented. After clarifying the
role of the different parameters in section 5, it is used to process signals with jumps and high



noise level in section 6. The study is completed by a comparison with classical algorithms.

2 The wavelet transform and its direct use in image pro-
cessing

Since this paper is meant to focus on the image processing aspect, we will only recall
some essential features of wavelet approximation that will be important in the sequel. An
exhaustive treatment of the subject can be found in [7, 12, 25].

The discrete wavelet approach resides on the concept of multiresolution. A multiresolution
of L2(R) is a sequence of imbedded subspaces V; with

Vi C Vit VieZ (1)

U,ezYs = (R (2)
Nvi={0} | (3)
1€EZ

flz) €V; & f(2z) € Vi (4)

There exists a scaling function ¢(z) serving to construct a basis in each Vj, via

V; = span{¢;i}icz (5)

with . _
dji(z) = 212Xz — 1) j,i€Z (6)

In the classical case this basis is orthonormal, so that
< @ji,®jk >R= bik (7)

+00
with < f,g >r= [ f(z)g(z)dz being the usual L*(R) inner product. The main issue
of the wavelet approach now is to work with the orthogonal complement spaces W; defined
by
Vin=V,eW; (8)
Based on the function ¢(z) one can find a function ¥(z), the so-called mother wavelet, of
which the translates and dilates constitute orthonormal bases of the spaces W;.
W; = span{v;i}iez (9)

generated by the wavelets



vi(r) = 27720208 = i) jieZ (10)

Each function f € L?(R) can now be expressed as

fly = Y ciidiilx) + DD djiv(z) (11)
teZ J=J01EZ
where
¢;i =< f,0;i >r dji =< f,¥5i >R (12)

The transition from f(zr) to the coefficients ¢;i and dj; is called the discrete wavelet trans-
Jorm. Of course, in numerical applications the sums in (11) are truncated which corresponds
to the projection of f into a subspace of V; C L%(R). The decomposition (11) is orthogonal,
as, by construction,

< ViV >R = b1 by (13)
< u"‘_}‘l“\éfk >R 0 J 2 l (14)

in addition to (7).

An image is characterized by a limited extent of information. so that the question arises of
how to treat the boundaries. The simplest way would be to extend the interval where the
image is defined by completing with f(z) = 0 in the exteriour, and using the above mul-
tiresolution of the real line. This, however, introduces a strong singularity at the boundary
which is often inconvenient but could be remedied by a more regular continuation. We
do not adopt this approach here for the main reason that it would lead to complications
with the PDE approach to be studied. Therefore the classical technique of periodization
is applied which consists of imposing periodicity of the approximating function (and its
existing derivatives through regularity). To this aim one can construct a multiresolution of
I-periodic functions, i.e. on the torus T = R/Z. It should be noted that the definition of a
multiresolution on an interval without periodicity is principally opposed to the translational
invariance of the bases in (5) and (9). Among the different constructions on the interval
[0, 1], the one of [8] seems to be the most promising at the moment.

Let us now describe how a multiresolution of L(T) can be obtained from a multiresolution
on L*(R) following [25, 31]. The key point is to map a function f € L*(R) onto a function

f € L¥(T) by the relation

fx)=3 fla+k) (15)

keZ

(periodicity will always be denoted by a tilde). Note that in Fourier space this relation
reads

fo = f(k) keZ (16)

where



. + =
f(-u)=f i) s (17)
defines the continuous Fourier transform in LI(R) N LY(R) and
- 1 _ .
fo= [ f@) ez (18)
0
the Fourier transform in L3(T). Applying this technique to ¢;j; and ;i one obtains [31]

20-1

={f| f(z) = Zcﬁo,.(x)} i>0 (19)
-1
={f1flz)= § djivji(z)} 720 (20)
where in particular
Vo = {f | f(z) = coo boo(z)} (21)

with @go = 1. The definition of a multiresolution in the periodic case carries over directly
from the nonperiodic one described above. A function f(x) € LQ{T] is projected onto Vy

and decomposed into contributions from Vo and W;,(j = 0.. — 1). For conciseness we
set

¥_10 = Goo d_10 = Coo (22)
and obtain |

—1 maz{27-1,0}

Z Y. diivii2) (23)

j=-1 1=0

with

dji =< f, 05 >1 (24)

The decomposition (23) is orthogonal, since, by construction, the orthogonality carries over
from (11) to the torus with

1
< fg>7= ]0 f(2)7(z)dz (25)

Note. that in contrast to the nonperiodic case (11) the sums over i in (19), (20) and (23)
do not spread all over Z and that there is a minimal j, namely jo = 0.

In the present study we apply real valued periodic spline wavelets of even order m and refer
to the appendix for their expressions.

For someone who is not familiar with the wavelet framework it is sufficient to retain the
following properties of the basis {5} :

(1]



- hierarchy in scale ( i.e. localization in frequency space )
- localization in space

- translation invariance

- orthogonality

- regularity, here determined by the order of the spline

Fig. 2.1 gives an illustration of these properties. The upper part displays the function,
the lower part the decomposition in the wavelet coefficient space: each box represents one
coefficient with i being counted from left to right and j from bottom to top, so that the
boxes centers are located at the centers of the corresponding wavelet function. The grey
values represent the amplitude of the coefficient according to a logarithmic scale.

The coefficients in (23) are practically calculated by first interpolating the values f; of the
function f(z) at the N = 2/ equidistant grid points {z; = i/N }i=o,....N—1 thus determining
the coefficients {¢Ji};=o.. 2/—1- Subsequently, a recursive algorithm is applied to obtain
{c;itizo...2-1 and {d;i}izo...22-1> successively down to j = 0 [31]. This transformation
requires O( N log N) operations due to the tree-structure of the multiresolution and the use
of FFT for the fast evaluation of convolutions. Recomposition is done similarly by inverting
each step.

In the remainder of this section we describe the standard way of applying wavelets in image
processing in order to oppose it to the methods described later. It consists, generally speak-
ing, of a scale analysis, i.e. a separation of the image into components on different scales,
similar to Fourier analysis where one determines the amplitudes of frequencies. (Note that
usually the term "frequency” is reserved for the amplitudes of a trigonometric decomposi-
tion, whereas "scale” is related to self-similar structures and therefore used in connection
with wavelets.) The above decomposition is a fast method of obtaining the amplitudes d;;
of the wavelets ¥;; in (23). As these functions are concentrated in Fourier space around the
frequency 27, the sum ¥, dj,"!f!j" (j fixed) may be interpreted as the result of a band pass
filtering. Furthermore, since the functions 1;?;,“- have local character, the bandpass filtering
retains information about localization as well. In fact, the wavelet transform is similar to
windowed Fourier transform with the difference, however, that the window narrows with
increasing frequency (see [11] or [12] for a thorough comparison between windowed Fourier
transform and wavelet transform).

A first application of the wavelet transform is the pure analysis of a signal or image. Let
us illustrate here, how the wavelet transform can be used for the detection of edges. Fig.
2.2a displays a function composed of different steps (it will serve as test case for most of
the reported calculations) after projection on V; with J = 7 and cubic spline wavelets. The
obvious oscillations near the jumps (Gibbs phenomenon) are due to the projection. In all
figures the true interpolating function is plotted, not only the values at the grid points. It
is to be observed, that the presence of steps is related to fine scale coefficients. Indeed, this
transform is well suited for the detection of singularities which can also be of other kind,
e.g. related to the derivative of a function [24]. What, however, if random noise is added,
eg. pu(z) = A-(e(z) - 1) with ¢(z) being a random number in [0,1] and A a positive
amplitude? This has been done in Fig. 2.2b with A = 0.1, i.e. roughly 20% of the height of
the steps. The peaks in fine scales are still present, but it is clear that the identification of
steps will become impossible with this technique if its amplitude increases. Fig. 2.2c shows



the same function as before but with random noise of amplitude A = 1.0 beeing added. We
shall describe a method that permits even in this case to obtain a function consisting of
steps which is relatively close to the non perturbed one.

A second standard application of the wavelet transform is the compression of images. It
permits to determine a smoothed function described by only few wavelet coefficients of
which e.g. the L2-norm is close to the one of the original signal. This approach can lead
to very high compression rates [3, 13]. In Fig 2.3 the amplitudes of the signal in Fig. 2.2b
have been set to zero if their absolutie value was below ¢ = 0.01. The simple threshold
filter results in a compression ratio of one forth in this case. It can be observed that in
the interiour of the steps the function is smoothed, but that, in contrast, near the edges
oscillations are enhanced. In particular when the noise level is high this method is not useful
since no distinction can be made between noise and signal (c.f. coefficients in Fig 2.2c).

In the last part of this section we describe the result of what happens when just the fine scale
amplitudes are eliminated from the noisy signal of Fig 2.2c. This operation corresponds to
the projection into subspaces V;(j < J) and may be interpreted as a linear low-pass filtering.
From the graphs in Fig 2.4 we observe that the original curve is only poorly recognizable
since the location of steps is too much blurred due to a lack of high frequencies in this part.
(Fig. 2.4 has been obtained with m = 6 in order to compare it to latter results.)

We conclude that even if it would be possible to detect edges like in Fig. 2.2b, it is
not straightforward and seems to be delicate to define ad hoc an appropriate smoothing
procedure that at the same time takes into account the presence of edges. It has to be
applied in coefficient space, but must treat wavelets near edges differently with respect to
those in the interiour of segments. Indeed, in [24] such a method is described that tries to
exploit the regularity depending convergence of wavelet sums. Its practical implementation,
however, is rather complicated. One reason is the difficulty of tracking features through
different scales, which is a classical problem in image processing [35], [1]. We therefore use a
different strategy here in wedding the wavelet approach with the nonlinear diffusion process
in order to obtain édge-preserving smoothing.

Let us indicate for completeness that there exists a different approach of using the wavelet
transform in image processing and in particular for edge detection [23). It consists roughly
speaking of coding the given function f by the zeros of the functions g; = Pw,f,ie. the
projections of the functions f on the difference spaces W;.

3 The nonlinear diffusion equation

In this section we briefly describe the concept of nonlinear diffusion filters for image pro-
cessing and discuss the equations to be solved later on. For the present study we limit
ourselves to the basic model of Perona and Malik [29] and its modification by [6].

In order to describe the nonlinear diffusion approach let us go back to the removal of noise
for a moment. Noise which is related to high frequencies, i.e. small scales can be removed
by a low-pass-type filtering, i.e. by smoothing. On the other hand, solutions of parabolic
PDEs typically exhibit increasing smoothness with time. Take as an example the Cauchy
problem for the linear diffusion equation. This equation may be interpreted as a process
which gradually damps the spatial frequency proportional to the square of the wavenumber.
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Remember also the equivalence of solving a linear diffusion equation and the convolution
with a Gaussian [21]. Thus, linear diffusion is just another way of expressing smoothing
without generating new details. The key point now is to introduce a nonlinearity in the
diffusion process which is particularly designed for a given task. In our case we are concerned
with smoothing while at the same time preserving or even enhancing edges. It has been
discussed in the previous section that fine scales are required to correctly represent edges
(Fig. 2.2a). A linear diffusion process leads to smoothing in the whole domain. This,
however, is only required in the interior of a segment and not near the edges. Two steps
are therefore to be designed. First the probability for the presence of an edge has to be
estimated. Second, diffusion has to be carried out in such a way that it is large where no
edge is present and small where this is the case. The latter step can be accounted for by a
spatially varying diffusivity which is small near edges and large elsewhere. Whether there
is an edge at a certain point or not can in a first approach be measured by simply taking
the modulus of the gradient at this point.

The mechanism described so far is cast in mathematical form by the equation

dyu = V( D(|Vu|) Vu ) (26)

for the scalar function u(z,t) with |.| being the Euclidean norm. The initial value is

u(z,0) = f(z) (27)

where f is the given image. The boundary conditions have to be chosen in a suitable way.
Homogeneous Neumann or periodic boundary conditions seem to be appropriate as they
lead to conservation of the average grey value of the whole image. In our case we get rid of
boundary conditions by imposing periodicity of u in space (which is convenient for wavelet
or Fourier methods). Moreover we restrict ourselves to the one dimensional setting.

In order to be useful in the way described above, the diffusivity D should fulfil some addi-
tional requirements, e.g.

D(0) = 1
lim D(s) = 0
D e C%[0,00]
D'(s) < 0 (28)

One expression, introduced in [29], is

1

P >0
1+(@ﬂf A€eR (29)

D(|Vu|) =

which will be applied here with a slight modification discussed below.

The model (26), (27), (29) contains one parameter only, the scalar A that plays the role of
a contrast parameter. To illustrate this, consider for simplicity a one dimensional form of
(26). Introducing the flux



o(s) = sD(|s) (30)

yields

du = 0,(d(0:u)) = ¢'(Oru) Ozzu (31)
Plugging (29) into (30) leads to

@' (0:u) >0 if |0zul < A
¢ (0:u) <0 if |0zul > A (32)

Hence, the sign of ¢ in (31) may become negative (near strong edges) which locally leads
to a backward diffusion problem. It can be shown by deriving (31) with respect to z that
indeed the gradient |3;ui| at an edge increases in this case [29]. It is for this reason that the
equation can no longer be classified in a standard way. Furthermore it is conjectured that
it is not possible to prove existence and uniqueness for this initial boundary value problem
with general initial data [6].

Note that the above behaviour is closely related to the speed of decrease towards zero in
(29). If e.g. the square in the denominator is removed, only forward diffusion is possible
and the initial boundary value problem is well-posed. Unfortunatly, the resulting equation
is not very useful for our purposes, since it does no longer allow edge enhancement. Edges
become smeared similiar to the linear diffusion case with constant diffusivity.

In addition to difficulties in theory a second drawback of (26),(27),(29) is of practical nature.
The Perona-Malik filter interprets strong noise (which causes large gradients) as edges and
therefore tends to preserve it,

As a remedy for these theoretical and practical problems, [6] suggest to introduce a pres-
moothing when evaluating the diffusivity. They replace (29) by

1

:T}V_SA—_[E)_[)E Ae R (33)

D(IvS(u)l) =

with S being a smoothing operator described in the following sections (similiar regulariza-
tions have been proposed by [27] as well). This modification ensures better noise elimination
and allows to prove existence and uniqueness of the solution for the corresponding initial
value problem [6]. Following [6, 27) it can be shown that u = const. is the only steady
solution of these equations with the above boundary conditions. Concerning the smoothing
operator S it should be recalled that the spatial discretization which has to be introduced
for the numerical solution of the nonlinear diffusion equation has an additional smoothing
effect: for a fixed resolution the representable features cannot become arbitrarily fine. In
some cases the regularizing effect of the spatial discretization is already sufficient to carry
out the computations with (29), i.e. without explicit smoothing as in (33) (c.f. sections
5-7). Nitzberg and Shiota [27] investigated the loss of regularization by locally increasing
the spatial resolution with an adaptive mesh. The solution then exhibits a strong irregular
behaviour and tends to destabilize.



Finally, we note that due to the divergence form of (26) the integral of u is invariant for
appropriate boundary conditions, in particular if u is required to be periodic. This means
that the average grey level of a picture is unchanged. Such a property should be enherited
by a numerical method for this problem, and we will see that this is the case for the applied
spatial discretization. On the other hand, the range R = max{u} — min{u} is not conserved
and tends to zero for a convergent numerical method. An additional rescaling mechanism
may in this case preserve the contrast and will be discussed later.

4 Solving the nonlinear diffusion equation in a wavelet basis

The method for the solution of (31), (33) on the torus T that we describe here is of Petrov-
Galerkin type (also termed method of weighted residuals [5]) and has been developed in [22].
As we will see below, it requires the operator which is inverted in each step to be linear
with constant coefficients. This can be achieved by means of an appropriate temporal
discretization which is described first.

A straightforward implicit time scheme is excluded since the particular form of the diffusivity
would lead to the inversion of a nonlinear system which is too costly. One can of course apply
an explicit discretization of second order (Adams-Bashforth) which amounts to replacing

dyu = 0y(D dzu) (34)

Junt! — 4y 4 un!
2At
where the upper index denotes the time level.
However, as expected, the scheme suffers from severe stability restrictions. A simple remedy
can in some cases be the addition of a stabilizing term on both sides of the equation. It is
discretized in an implicit way on one side and in an explicit way on the other side without
modifying the order of the scheme. Here we take in a natural way the Laplacian and obtain

= 20,(D 8,u)* — 8;(D du)"" (35)

0w — v0zu = 0.((D — v)0ru) (36)
leading to
i n+1 n+1 _ 4 n 1 n-1
oAt YOzt = At T oAt

(37)
+ 20D - v)0u)*  — (8:(D — v)dzu)""!

which is still of second order in time. Such schemes have been applied successfully e.g.
in computational fluid dynamics [16]. The scalar v is chosen to optimize the numerical
stability of the algorithm (c.f. below). Scheme (37) leads to solving

(0 —vdz)u"*t! =g (38)
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for u™*! in each time step (o = 5}17) which will be described now.

The periodic function u™*! is developed in a wavelet sum (23). The method of weighted
residuals consists of inserting this sum into (38) and applying the scalar product with
suitable test functions 8},,. One thus obtains the following equations for the unknown
coefficients dj;

Zdji < (o - Varr)'f’jiséfm >17 = < gyéfm >T (39)
Jt

l=-1,...,J -1
m=0,...,max(2 - 1,0)

where the linearity of the operator (o — v0;;) and the scalar product have been used. The
test functions 6, are in our case chosen so as to diagonalize the matrix on the left hand
side of (39). This is accomplished when

(U - Ua.r:}éfm = 'I;fm {40)
l=—-1,...,J-1
m=0,...,max(2’ - 1,0)

Due to the orthogonality of the wavelets :f;_,-,—, equation (39) reads

dim =< 9,0im >T (41)

The functions 6;,, can be determined from (40) in Fourier space

(B = ~omde kez (42)

and what remains is to find an efficient way of evaluating the scalar products in (41). [22]
have constructed a tree-structured algorithm that works similar to the wavelet transform
described in section 2 and resembles the non-standard form of an operator as defined by
[4]. It uses the wavelet coefficients dj; as well as the scaling coefficients ¢;; of the function
g to which filters are applied that are based on the scalar products '

< é.'_m,l.éjg >r and < é;.m,éji >T (43)

These filters are calculated once and for all (relatively costly) which does not allow the
coefficients o and v to change during the temporal evolution, hence, together with (42), the
requirement of constant coefficients.

The fast evaluation of (41) is based on the observation that the scalar products in (43) vanish
for |l — j| being sufficiently large which can easily be justified by considering the product in
Fourier space. The support of (1,3_,-.'),: extends all over Z with the amplitudes being centered
around 27. They decrease due to the regularity of the wavelet, in particular proportional to
1/k™*! for spline wavelets of order m. For numerical calculations one may assume a zero
value for distances sufficiently large from 27/, depending on the required precision. As to be
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seen from (42) , the support of (Oim ), has a similar behaviour (somewhat faster exponential
decay for k — oc) so that the scalar products in (43) vanish if the numerical supports in
Fourier space are disjoint. This is e.g. already the case for |l — 7] > 1 when requiring a
precision of 107% in the scalar products and using quintic spline wavelets (m=6) [22].
Another point to be mentioned is the evaluation of the nonlinear term 0:((D — v)0zu)
starting from the wavelet coefficients of u. The outer derivative can be eliminated by
partial integration (leading to the derivation of @ which is done in Fourier space). The
remainder is evaluated in a pseudospectral-like way, i.e. by calculating its values on the
grid points and reinterpolating. Recall that the interpolating step is done in O(N log N)
operations due to the use of FFT.

An additional feature of this algorithm is that it permits local refinement of the spatial
discretization in a straightforward manner by locally adding supplementary trial functions
J)_,-,- and the corresponding test functions 0;;. This will not be used in the present study
since in image processing it is not reasonable to work with a spatial resolution substantially
below the pixel size. It may, however, be of interest to use this feature for coarsening the
grid where this is possible in order to save computation time. We refer to [22] and [17],
which also describe the present algorithm in more detail.

The remainder of this section is devoted to additional features that have been added to
the cited algorithm. In what concerns the smoothing operator S(u) mentioned in (33)
for the calculation of the diffusivity, it is natural to employ the wavelet spectrum of u
to this aim. A function w which is in Vy due to the applied wavelet discretization is
projected into ‘:"_;5 c V; (Js < J) by just cancelling the amplitudes d;; with j > Js. This
type of smoothing is similar to a low pass Fourier filtering, very cheap and constitutes an
advantageous property of the present representation of u.

Let us also indicate that from the continuous point of view the mean value of u does not
change in the evolution governed by (31) with periodic boundary conditions. Since it is
represented by the coefficient d_1o of 15_1,0 = 1 (the functions J;J-,- have zero mean for
j > 0), this coefficient is no longer an unknown but a constant equal to its initial value.
The mean of the signal can thus be conserved exactly without effort.

Finally, we add some remarks on the beforementioned rescaling that has been applied in
some cases. As indicated, the only steady state of the diffusion model alone, eqs. (26),
(33), is the constant function representing the mean of the initial state. When analyzing an
image in practice, it is often convenient to rescale the output when persuing the diffusion
process for a long time. Otherwise, the range (global contrast) would decrease too strongly.
When the solution more and more approaches the constant, the gradients decrease and
the impact of the nonlinearity diminishes as well. Rescaling the function after each time
step of the diffusion process, the gradients are increased and the nonlinearity maintains its
importance. This leads to a modified mechanism that generates - by definition - non-trivial
steady solutions even with pre-smoothing.

When devising such a process for noisy signals, it is somewhat problematic to use a proce-
dure that conserves the values of the extrema since these can occur at very different points
which may lead to oscillatory behaviour. It is therefore more convenient to conserve the
L?-norm, i.e. the energie of the signal where the above reasoning applies as well. From
a computational point of view this can be realized very easily, since the wavelet coeffi-
cients directly represent the L?-norm. The rescaling is therefore done in coefficient space,

12



an advantage of this type of representation of the signal. The quantity conserved in the
corresponding calculations is thus

J-1 -1

e:fl(u—ﬁ}"dz = 3 > ()’ (44)
0 j=0  i=0

where the mean T is substracted by disregarding d_; o as described above. This procedure
does not alter the average grey value, i.e. the arithmetic mean of the signal.

When employing this additional step we are aware of the fact that an underlying PDE
cannot be formulated and that the procedure as a whole of course is no more a diffusion
mechanism. The practical results however seem to justify its employment under certain
conditions so that we applied the above rescaling for tests in some cases.

Let us note in an aside that non-trivial steady solutions can also be obtained by degenerated
diffusivities that become in exactly zero above some critical value of the gradient. This leads
to complete suppression of the diffusion process when, near an edge, the gradient exceeds
this quantity. However this can only carry over to the discrete system if a finite volume type
discretization is used. For a Galerkin scheme this is not guaranteed and can therefore not
be used in the present case. Nontrivial steady states may also be obtained by the adaptive
choice of A = A(t) [29] or an additional reaction term (9, 10, 28].

5 Demonstration of principal effects

Before reporting on signal processing computations it is convenient to clarify in this section
the role of the different parameters.

On one hand there are parameters for the numerical algorithm such as the number of grid
points N, the regularity m of the spline wavelets and the stability parameter v. On the
other hand the continuous model (26), (33) is characterized by the reference gradient A and
the amount of pre-smoothing. Finally, the influence of rescaling in each time step will be
considered. ' '

In problems of signal or image processing the number of samples or grid points can usu-
ally not be chosen at will but is imposed by the application. All calculations reported
in this study have been done with N = 128, corresponding to eight embedded subspaces
Vi,3=0,..,7.

The influence of the stabilizing factor v is difficult to be quantified exactly, since the nu-
merical stability of the scheme depends on the instantaneous values of the nonlinear term.
Let us however note that for large A, i.e. in the linear diffusion limit, the scheme becomes
completely implicit and unconditionally L2%-stable with » = 1. A semi-implicit scheme like
the present one may remain unconditionally stable provided the explicit contribution is
sufficiently small. Even if the scheme becomes only conditionally stable, the critical time
step is generally larger than for the corresponding explicit scheme (e.g. [15]). In all the
cases where this was tested for the present nonlinear diffusion equation we found substantial
stabilization, so that the value v = 1 was used throughoutly. For illustration we indicate
that e.g. the calculation of Fig. 5.1b below could not be carried out with a time step of
At = 10~ and v = 0, since meaningless high frequency oscillations occured.
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Let us now turn to the choice of the diffusivity, which is characterized by the value of A. For
the continuous model it has been discussed that gradients larger than A may be increased
by the nonlinear mechanism whereas smaller gradients are damped. This carries over to the
discrete system and is illustrated in Fig. 5.1. The initial condition is u(z,0) = sin(2rz—0.7),
chosen in order not to exhibit the same symmetries as the dyadic wavelet basis (as would be
the case e.g. for u = sin(2nz)). The different curves in one picture display the solution at the
first 10 time steps and thereby give an impression of the temporal evolution. For A = 10 it is
to be observed that the diffusion process is approximately linear: the shape of the solution
remains unchanged like it would be the case for D = const.. Setting A = 4 one observes a
first phase of nonlinear diffusion which is characterized by the fact that large slopes change
only slightly (near the zero crossings of the second spatial derivative) while moderate slopes
decrease. As a result the sine function is flattened around its extrema. After some time the
linear contribution predominates and the solution recovers its sinusoidal shape. For A = 2
the nonlinear effect becomes stronger as being displayed by the third part of the figure.
From Fig. 5.1 it can also be observed how the exchange by diffusion is hindered when A
gets smaller: the difference in level between the right hand side and the left hand side of
the solution equilibrates much slower. Let us note in an aside that the results of Fig. 5.1
remain almost unchanged when varying the degree of the spline wavelets. This has been
verified for m = 4 and m = 12.

It should also be recalled that the formation of steps out of a very smooth function like
discussed here is a severe test case. The extrema of the slope are not very pronounced so
that the location of the steps to be created by the algorithm is subject to uncertainity due
to numerical effects such as round off errors. As pointed out in section 3 we are locally
faced with a backward diffusion process. This is an ill-posed problem and can lead to the
typical numerical phenomena related to this situation. In our case we remark a tendency
to oscillatory behaviour when decreasing the time step size. The calculations in Fig. 5.2
have been done under the same conditions as the one in Fig. 5.1c, but with At = 1073
and At = 1074, respectively. It should be noted that this effect is not due to the wavelet
discretization in space which is applied here. It has been observed similiarly with a finite
volume scheme (cf. section 7).

Independently of the above, the oscillations of course increase with the regularity of the
basis functions. They become somewhat smaller in the cubic case (m = 4) and somewhat
stronger for m = 12. Note, however, that the order m = 6 which has been used in Fig. 5.2
is already fairly high.

We shall now discuss different ways to face the described numerical problems. The simplest
one would be to use large time steps and large values of A only. However, this eliminaties
the advantages of the nonlinear diffusion model if pushed too far.

As described in section 4, the diffusivity can also be determined for a filtered version of
the instantaneous solution instead of the true one. This has a strong regularizing effect
and makes the results less dependent on numerical parameters like the time step size or the
order of the spline wavelets. Fig 5.3 displays the result under the same conditions as in Fig.
5.2a, but with J, = J — 2, i.e. the the two finest scales of the solution do not enter in the
calculation of the diffusivity. Observe for example the higher smoothness of the solution in
the laps of time before the pronounced steps are formed.

Another option is the rescaling procedure described at the end of the previous section. In
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addition to the local edge enhancement of nonlinear diffusion, this mechanism leads to a
global increase of the gradients. It does not avoid ill-posedness, but it allows the choice of
a larger A and increases the lifetime of edges. Thus edge detection becomes easier. In Fig.
5.4a, rescaling depends on the extrema of the solution (compare to Fig. 5.1b where apart
from rescaling the same parameters were used). Part b of Fig. 5.4 shows the evolution with
At = 1073, The presmoothing from above can be used to diminish the oscillatory tendency
and gives the result depicted in Fig. 5.4c. The alternative procedure of conserving the
L%-norm described in (44) has been applied in Fig. 5.5.

6 Computational results for the detection of steps

In this section we report calculations that aim to reconstruct a "step-function” from a
perturbed signal (cf. Fig. 2.2).

Let us start with a low degree of noise and take the signal from Fig. 2.2b as initial condition
for our iterative method. One observes that the step sized function is recovered without
any problem after 10 iterations. No presmoothing or rescaling needs to be applied. The
Gibbs phenomenon present in Fig. 2.2a is of course not recovered (recall that everywhere
the entire interpolating function is depicted). The result of Fig. 6.1 is obviously better than
the direct wavelet filtering either by amplitude or by scale.

The main part of this section will now be devoted to the treatment of highly noise pertubed
signals. As been discussed in section 2 direct wavelet based filtering is not satisfactory. In
particular supressing wavelet coefficients with amplitudes below a threshold is unreasonable
since signal and noise can no longer be distinguished by a difference in the magnitude of
the wavelet amplitudes. The following figures take as initial signal the data from Fig. 2.2¢
(using m = 6 here). The time step in all computations has been chosen for stability reasons
mainly. It has been kept constant to permit easy comparison.

First of all it is to be seen that even with a very high pertubation the initial signal is
recovered with satisfactory accuracy (cf. Fig. 6.2b). Furthermore, Fig. 6.2 gives an idea of
the influence of presmoothing. It succeeds in suppressing fine-scale oscillations. Too much of
it however does not lead to pronounced edges as to be seen in Fig. 6.2c. In the present case,
J, = 5 seems to be a good choice. Fig. 6.2c illustrates that when applying the nonlinear
diffusion method one has to decide on when to stop the iterations. If carried out too long,
the solution will be a constant, and all the information is lost. Criteria for estimating
an appropriate final time could perhaps be developped form diffusion based arguments [6]
or by calculating the variation ) |0;u| dz of the solution. We do not go further in this
direction here, but propose as a remedy the rescaling mechanism discussed in the previous
section. The graphs of Fig. 6.3 have been obtained with this additional feature, the other
parameters are the same as in Fig. 6.2. Since in each step the gradient of u is increased the
diffusion mechanism is diminished. This leads to longer integration in time. The results of
Fig. 6.3ab are more satisfactory than the corresponding ones before in that the edges are
more pronounced and the downward jump in the right part is better detected. Fig. 6.3c
shows that for extremely long calculations ("long” depending on the choice of parameters)
the finite gradient of the numerical solution still induces diffusion leading together with
the present rescaling to erroneous peak-like solutions. Note, however, that in this figure
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already the second curve at time t; = 107> gives a very good result and that the last one
corresponds to 50t,.

An interesting question is how to choose the value of A. We saw that if it is too large, steps
do not form sufficiently, if it is too small, in particular when much noise is present, unwanted
solutions may be created. Fig. 6.4 corresponds to Fig. 6.3.b with A = 1. The number of
iterations had to be augmented since the smaller A, the lower the average diffusion. It can
be seen that a satisfactory solution is obtained which exhibits nicely pronounced steps. If
however A is further decreased, the formation of finer structures has to be inhibited by
stronger presmoothing.

In the last figure of this section a comparison is made for different degrees of regularity
of the wavelet functions. Apart from the order m of the spline wavelets the parameters
have been chosen the same as in Fig. 6.3. As expected, the oscillatory tendency of the
solution is increased with m. On the other hand the steps become steeper, therefore the
long time behaviour of the solution is better, since diffusion between adjacent segments is
better suppressed.

The results presented in this section show that the nonlinear diffusion wavelet method leads
to correct detection of steps in a highly pertubed signal. The choice of paramters depends
on the signal, but some hints can be drawn from our experience. The basis functions should
not be too regular to avoid oscillatory behaviour. A good choice for the order is m = 6, i.e.
quintic spline wavelets. Some presmoothing should be applied (more if m is large). The
experiments indicate that rescaling can counterbalance a large value of A chosen not to get
erroneous peaks.

7 Comparison with a Fourier and a finite volume method

In this section we complete the picture by two supplementary methods which cover the high
regularity and the low regularity end, respectively.

The Fourier method is classical (c.f. [5] for spectral methods). For the present problem the
same time scheme is chosen, i.e. (37). The solution of (38) can be obtained very efficiently in
Fourier space. The evaluation of the right hand side g is done by the pseudospectral method
consisting of evaluating derivatives in Fourier space and products with non-constant factors
in physical space, i.e. on the grid points.

The Fourier method requires O( N log N) operations per time step with N being the number
of grid points. This is the same order as for the wavelet method of sections 4 to 6.
Following the argumentation for the wavelet technique one may also obtain the average grey
value conservation of the Fourier method.

For the finite volume technique we use again time scheme (37). The spatial approximation
at a grid point z; is accomplished by means of

Ui

Uigl — Vi, Uip] — U Ui — Vi1, Ui
) (Eolety) Bt

Az (Az)? Az

0:( D(|0zv]) 9:u) = D(| (45)

with D from (33). It leads together with the standard discretization of d;;u to a second
order scheme in space and time. :
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The values v; in (45) denote the presmoothing v = S(u) from (33). For this purpose it is
in the present context convenient to apply a convolution of the periodized values u; with a
Gaussian kernel

L -2

K = - 46
o(2) T ¢ _ (46)
Since the solution v(t) of the initial value problem
6:‘&. = Urr {47)
u(0,z) = f(z)
with f € L%(R) is given by the convolution
v(t,z) = K g(z) * f(z) (48)

a presmoothing may be carried out by discretizing the linear diffusion equation. We used
one step of the unconditionally stable, implicit Euler scheme and obtained v; as a solution
of

Vi — U Vig1 — 20; + Vi

r (Az)?

(49)

with 7 = 02/2.

Hence, v* and ul*! with i = 1,..., N are each determined by a cyclic tridiagonal system
which may be solved with linear effort by an adapted Gaussian algorithm (see e.g. [14]).
Therefore the finite volume method requires only O(N) operations.

It is easily verified that the preceeding scheme fulfills the redistribution property of [19] and
thus preserves the average grey value of the original image.

The following figures compare the two methods of this section with the wavelet-based algo-
rithm. Fig. 7.1 has been obtained with the initial condition of section 5, a small time step
and no presmoothing. The Fourier method (Fig. 7.1a) develops small scale oscillations all
over the domain. These are first of all generated by the Gibbs phenomenon near the edges.
Due to the global nature of the trial functions, problems arising in the backward diffusion
areas are spread out to those parts where forward diffusion should produce a nearly constant
solution. This makes the use of the Fourier method as a numerical tool for the nonlinear
diffusion equation without presmoothing very doubtful. If a rescaling procedure is added,
the results get even worse. '

The finite volume method (Fig. 7.1c) has the most local character of the three techniques, as
it uses only information of a (3 x 1) mask, Consequently, smooth behaviour of the solution
in the forward and steep behaviour in the backward diffusion region is very well separated.
The wavelet method (Fig. 7.1b) benefits from the local character of its basis as well. The
Gibbs phenomenon is hardly visible for spline wavelets of order six. The regularity of these
functions leads to a smoother solution than for the finite volume method.

As already stated, practical calculations generally require the use of presmoothing for the
diffusivity. With this additional feature the differences between the three methods vanish
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almost completely, see Fig. 7.2. For comparison the same presmoothing by a "litteral”
convolution with a Gaussian has been applied in these calculations. '

Let us terminate this section by some remarks on stability and computational cost. The
computational efficiency highly depends on implementational issues. Qualitatively it can be
stated that the wavelet method is the slowest and the Fourier method the fastest one. The
Fourier and wavelet method allow an easy and very fast implementation of presmoothing
in wavelet or Fourier space. For the finite volume method this may be carried out in
a second diffusion step. Advantages of the finite volume technique become evident for
the discretization in the case of homogeneous Neumann boundary conditions, since the
resulting tridiagonal systems can be solved about twice as fast as cyclic tridiagonal ones
from periodization.

It has been observed that the stability of all three methods mainly depends on the time
scheme. Since the same scheme has been used throughoutly, no significant stability differ-
ences appeared.

8 Conclusion

The present contribution discusses in detail the mechaniscm of nonlinear diffusion from a
phenomenological and from a numerical point of view. Approximations of different spatial
regularity have been considered focussing in particular on the use of a spline wavelet basis.
We think that the presented technique of solving a nonlinear diffusion equation in a wavelet
basis can be used as a complementary step for signal analysis with wavelets. It permits
e.g. in a first step to eliminate fine scale noise without affecting the sharpness of edges that
are present in the underlying signal. A subsequent wavelet analysis in the classical manner
should then give a more pronounced result.

Acknowledgement. This research was supported by grants from DFG, ZPM and Stiftung
Innovation des Landes Rheinland-Pfalz.

Appendix

The spline wavelets used in the present calculations are defined by the following formula
that are taken from [31]. For the nonperiodic case of a spline multiresolution of L?( R) one
has

Aoy sin™(w€)
*O = G Py G (m) 50
a(e) = sin” (x¢) (51)
(€)™ \/ P (sin?(7))
B(E) = sin?™(7€/2) Prn—1(cos?(m€/2)) (—itr (52)

(r&/2™ Prn—1(sin?(7€/2)) Prm-1(sin®(n¢))
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for the cardinal Lagrange spline, the scaling function, and the mother wavelet, respectively.

The m-th order polynomial Py,

Pn(z) = z am '

is determined by

sin? ez
and can be calculated via
ag =1 r=0,...,m
al = m ((r=i)2r=2i+1)al™" = 2(r-i+1)%alZ}) i=1,...

(53)

(54)

(55)

7. (56)

Periodization is obtained by sampling in frequency space as described in section 2. This
defines the periodic multiresolution and gives the following expressions for the (discrete)
Fourier transform of the interpolatory filter L, and the decomposition filters G, and H,

respectively
— 1 i k:r
— 1 kx
(T = 5 AGD
— 1 o kT
(Gi)e = 7 G(5)
with

i) = v/ Pm-1 (singw)

Pm_l(sm

Hw) = V2 cosm(w)\/P ml(lsflsrig(; )
Gw) = V2sin™ w)J imlls;;;s(;)) e 2w
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Fig. 2.2a: Interpolating spline function for step shaped data, no noise, m = 4.
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Fig. 6.4: A small value of A while rescaling with the energy norm, m = 6, A = 1, At = 1074,
the function is plotted for ¢t = 0,0.01,0.02,....
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Fig. 6.5: Different regularity of the spline wavelet basis, A=4,At =107, J, = 5, the
function is plotted for ¢ = 0,0.001,0.002,.... a)y m =4 ,b) m = 12.
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Fig. 7.1: Different algorithms applied to the sine function, A = 2, At = 107* , no pres-
moothing, the function is plotted for ¢ = 0,0.01,0.02,.... a) Fourier method, b) wavelet
method with m = 6, c) finite volume method.
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Fig. 7.2: Different algorithms applied to the noisy signal, A = 4, At = 5.107° , presmoothing
by Gaussian, the function is plotted for ¢ = 0,0.001, 0.002,.... a) Fourier method, b) wavelet
method with . = 6, c) finite volume method.
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