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Abstract

Shape from shading (SfS) constitutes the problem of recovering
the three-dimensional shape of objects in a scene at hand given a
single two-dimensional input image. While the early years of SfS
research were dominated by orthographic models, perspective models
became popular in the recent years. In this thesis, we extend the
state-of-the-art model by Prados and Faugeras to a more general
model that also allows the handling of specular highlights in images.
We derive a partial differential equation (PDE) corresponding to this
novel model.

We introduce a new numerical solver for this PDE. In contrast
to other methods used in the field, the presented scheme is much
easier to implement. A numerical scale analysis motivates an optimal
choice of a discretisation and gives an upper bound for the time step
size below which the iterative method is stable.

In a comprehensive experimental evaluation we analyse the dif-
ferent components of the newly introduced model. We confirm the
findings of the numerical scale analysis and compare the new iterative
scheme to existing numerical methods from the literature, showing
a substantial increase in performance. An analysis of the different
convergence properties of the numerical methods motivates a hybrid
scheme that allows to improve the performance in some cases. Fur-
thermore, we introduce a non-iterative fast marching (FM) solver
tailored to the new model. In contrast to other FM methods for pre-
vious SfS models, the presented approach does not require any depth
information to be provided a priori. Experimentally, we confirm that
this FM method is very fast and enables the reconstruction of large
scenes.

In addition to introducing these high-performance methods, we
also present two ways to parallelise them. The first approach in-
troduces a novel way to FM on a multi-core CPU architecture. In
a second algorithm, we combine the new iterative method with the
concept of FM. This allows for a massively parallel implementation
on graphics hardware which achieves real-time performance.

Finally, we address several general difficulties SfS can have on
real-world images. By embedding SfS in a framework with other
sophisticated methods from image processing, we introduce a method
which allows to apply SfS to a class of real-world images.
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Zusammenfassung

Die Arbeit beschäftigt sich mit perspektivischem Shape-from-
Shading (SfS). Bei SfS geht es darum, aus einem einzigen, gegebe-
nen zweidimensionalen Bild ein dreidimensionelles Modell der in
dem Bild dargestellten Oberfläche zu rekonstruieren. Bei der En-
twicklung von SfS-Verfahren ist es notwendig, Annahmen über die
Art und Weise zu machen, wie das Ursprungsbild aufgenommen
wurde. In den Anfangszeiten der Forschung in diesem Gebiet war die
gängiste Annahme, dass das Bild mittels orthographischer Projek-
tion erzeugt wurde. In dieser Arbeit wird ein modernerer Ansatz mit
Hilfe perspektivischer Projektion betrachtet. Mit diesen Modellen
sind deutlich bessere Rekonstruktionen möglich als mit orthographis-
chen Verfahren. Basierend auf einem modernen perspektivischen
Modell leiten wir ein neues Modell her, das es uns ermöglicht, deut-
lich schwierigere und realistischere Oberflächen zu rekonstruieren
als mit den bisher bekannten Verfahren. Insbesondere ist es mit
dem neuen Modell möglich, Oberflächen zu rekonstruieren, die helle
Lichtreflexe enthalten. Zu diesem Modell leiten wir eine partielle Dif-
ferentialgleichung her, deren Lösung die gesuchte Oberfläche liefert.

Für die Lösung solcher Differentialgleichungen entwickeln wir ein
numerisches Verfahren. Dieses zeichnet sich im Vergleich zu anderen
Methoden in diesem Gebiet vor allem dadurch aus, dass es deutlich
einfacher zu implementieren ist. Durch eine numerische Skalenanal-
yse motivieren wir die Wahl einer optimalen Diskretisierung und
erhalten ein Stabilitätskriterium für die maximale Zeitschrittweite
in unserem Verfahren.

In einer umfassenden experimentellen Studie analysieren wir die
verschiedenen Komponenten des neuen Modells. Wir bestätigen
die Ergebnisse der Skalenanalyse experimentell und vergleichen das
neue iterative Verfahren mit bekannten Verfahren aus der Literatur.
Dieser Vergleich ergibt, dass das neue Verfahren deutlich schneller
ist. Eine genaue Analyse des Konvergenzverhaltens der verschiede-
nen numerischen Verfahren motiviert ein hybrides Schema, das Vor-
teile verschiedener Verfahren kombiniert, wodurch in einigen Fällen
ein weiterer Performancegewinn erzielt werden kann.

Weiterhin führen wir eine auf das neue Modell zugeschneiderte
Fast-Marching-Methode ein. Im Gegensatz zu Fast-Marching-Me-
thoden zu früheren SfS-Modellen zeichnet sich der vorgestellte Ansatz
dadurch aus, dass zu Beginn keinerlei Tiefeninformation bekannt
sein muss. Experimentell bestätigen wir, dass diese Fast-Marching-
Methode überaus effizient ist und die Rekonstruktion auch größere
Szenen ermöglicht.

Um dieses sehr schnelle numerische Verfahren noch weiter beschle-
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unigen zu können, präsentieren wir noch zwei Wege, dieses zu paral-
lelisieren. Der erste solche Ansatz ist ein neuer Weg, Fast-Marching-
Methoden auf mehrere CPUs zu parallelisieren. In einer zweiten
Methode zeigen wir, wie man die Fast-Marching-Methode mit dem it-
erativen Verfahren kombinieren kann, und wie man diese kombinierte
Methode auf einer Grafikkarte einsetzen kann. Mit dieser Methode
erhalten wir Echtzeitperformance.

Schließlich untersuchen wir noch die Herausforderungen, die bei
SfS auf echten Bildern auftreten. Durch die Kombination von SfS
mit Segmentations- und Interpolationssverfahren erhalten wir ein
Verfahren, das es uns ermöglicht, SfS erfolgreich auf echte Bildern
anzuwenden.
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Chapter 1

Perspective
Shape from Shading

In this chapter, we give a short overview over the general concept of perspec-
tive shape from shading (SfS) and the model aspects involved. Furthermore,
an overview of the contributions made in this thesis as well as the structure
of the thesis is given.

Before actually discussing perspective SfS, we should give a short overview
of the general concept of SfS itself. SfS deals with the reconstruction of a
three-dimensional surface from a single two-dimensional image, in contrast
to other methods in computer vision which frequently require two or even
more images. This is done by exploiting information present in this single
image. For this, several assumptions are made, such as the lighting condi-
tions being known a priori or the depicted surface having certain reflectance
properties. In general, however, the underlying concept which is exploited
is that surface patches that are illuminated by the light source are brighter
than those illuminated by a light source in a flat angle. A good example for
this is Earth. In the morning, when the sun rises, it is not quite as bright
as around noon, when the sun reaches its highest point and hits Earth in
a much steeper angle. If we would take a picture of earth from a sufficient
distance, it would appear brighter in areas where the sun is standing high.

1
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Figure 1.1: Illustration of the concept of 3D-reconstruction. Left: Die
”Arschkarte”. Right: Fake 3D surface loosely depicting the shape of a
buttocks.

Figure 1.11 illustrates the general concept of 3D-reconstruction and it
also shows a fundamental difficulty of SfS: Texture. Methods using more
than one input image frequently rely on sufficient texture information in in-
put images to obtain shape information by using correspondences between
the images. SfS, however, relies on brightness information to reflect differ-
ent exposure to light. Texture, however, violates this concept, as different
colours or surfaces reflect light differently. Later in this thesis, we will
discuss ways to cope with some forms of texture. By itself, the image in
Figure 1.1 is much too difficult for a simple SfS technique out of the box,
the ”reconstruction” shown here is hand-crafted to illustrate the concept.

1.1 Perspective Shape from Shading

One of the crucial assumptions for SfS is the camera projection model. In
the beginning of SfS research (from 1970 towards the end of the 20th cen-
tury), the commonly used projection model was orthographic projection.
Starting in the late 1990s, using perspective projection became more and
more popular. Images acquired with perspective projection look consider-
ably different from images acquired using orthographic projection, as Figure
1.2 illustrates. Another aspect that is frequently considered in perspective

1The term ”Arschkarte” stems from the German idiom ”die Arschkarte ziehen” (to
get the crap card), which stands for having bad luck, to get into the worst of all possible
outcomes of a situation. The word ”Arsch” means ass and the word ”Karte” both means
card and map in German, which forms the basis for the naming of this image.
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model is the physically motivated aspect of a decreasing light intensity
with increasing distance from the light source. This effect is also visible
in Figure 1.2. Generally, perspective projection is much closer to reality,
as both the human visual system and standard photographic equipment
perform roughly a perspective projection, while orthographic projection is
only realistic for objects that are very far away. In addition, as can be
observed in Figure 1.2, perspective images exhibit much more variation in
grey values, i.e. there is more information contained in them, which allows
for a significant improvement of reconstruction quality. In the recent years,
all significant contributions to SfS research have been based on perspective
projection, as the obtainable results are clearly superior, while orthographic
projection suffers from some inherent problems.

Figure 1.2: Renderings of the synthetic Mozart face. Left: Orthographic
projection. Right: Perspective projection.

In this thesis, perspective projection will also be the choice for all novel
models presented. The model aspect of orthographic vs perspective projec-
tion will be discussed in greater depth in Chapter 2, along with the historic
development of SfS models from orthographic models to the most recent
models presented in this thesis.

1.2 Structure and Contributions

In Chapter 2 different SfS models are introduced and discussed. The key
part of that chapter is the introduction of a novel, accurate model for SfS
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and the derivation of the arising partial differential equation (PDE). In this
chapter, a state-of-the-art model for SfS is extended by including specu-
lar reflectance of surfaces into this model. In an extensive experimental
study, the effect of this modelling step is investigated in detail, showing
that the model is still applicable even for surfaces with extreme reflectance
properties, where existing models fail. In addition, we give a quite detailed
survey on SfS models existing in the literature. Key model assumptions like
different projection techniques or assumptions on surface or illuminations
are introduced, discussed, and an overview is given on the impact of these
models in existing SfS models.

Chapter 3 deals with the introduction of an efficient numerical solver for
the PDE derived in Chapter 2. We show that the method is stable under
certain conditions and that it is more efficient than other solvers used for
state-of-the-art SfS algorithms. This study is both done experimentally by
comparing run-times of different solvers as well as theoretically by perform-
ing a numerical scale analysis of the PDE, which also gives a motivation
for the actual numerical realisation. In addition, we show that it is possible
to combine advantages of different numerical schemes to obtain even faster
convergence. The chapter is mainly restricted to iterative solvers. In a sur-
vey part, we give an overview over the many numerical techniques that have
been used for SfS methods in the literature. Furthermore, an introduction
to the mathematical basics of the components for the proposed scheme is
given.

In Chapter 4, an alternative numerical approach for solving the PDE
proposed in Chapter 2 is discussed, a fast marching approach. Fast march-
ing (FM) methods are non-iterative methods which allow for solving a large
class of hyperbolic PDEs very efficiently. We show that this technique is
also applicable at the SfS model presented in this thesis. Usually, FM meth-
ods have the undesirable property that the correct solution of the PDE has
to be known a priori in certain parts of the image. We show that for the
proposed SfS model, it is possible to overcome this problem and to obtain
a very fast non-iterative solver which does not need any Dirichlet data to
be provided by the user. In an extensive experimental study, we investi-
gate the differences in performance between this non-iterative method and
iterative methods. In addition, the numerical effect on the reconstruction
is discussed in detail as well. As in the previous chapter, a broad survey
part gives overview over existing approaches to use FM methods for SfS.

In Chapter 5, we introduce different ways to parallelise the efficient
numerical techniques from the previous chapters. The first such method
introduces a way to parallelise the FM algorithm presented in Chapter 4
on a multi-core CPU architecture. Although FM methods are usually of a
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sequential nature, we introduce a domain decomposition-free approach for
parallelising this numerical solver while using favourable properties of the
SfS model to achieve parallelisability. In a second part, we introduce a way
to massively parallelise SfS on graphics hardware. While iterative solvers
like the Jacobi method are well suited for massively parallel architectures,
FM methods are not. However, since a sequential FM implementation on
the CPU can in many cases easily outperform a massively parallel, iterative
method, with much smaller implementation effort, we show how to combine
the two numerical approaches to a method that combines the efficiency of
a FM scheme with the favourable parallelisation properties of an iterative
solver. By that, we obtain a method that can achieve real-time performance
on standard test images and very reasonable computation times even on
very large input images.

Finally, in Chapter 6 the applicability of SfS methods to actual real-
world images is discussed. We observe that real-world images can be much
more challenging than synthetic images. In this chapter, we introduce a
method that allows for doing SfS on a large class of real-world images.
The method shows how to combine SfS with other techniques from image
processing like segmentation or inpainting methods to obtain convincing
3D reconstructions of real-world images. The proposed approach is efficient
enough to retain interactive performance for the whole method.

The thesis is concluded by a detailed summary of the results of the thesis
and an outlook on possible future improvements both on the model and on
the numerical side in Chapter 7.





Chapter 2

Shape from Shading Models

In this chapter, different models for the shape-from-shading problem is dis-
cussed. There is a fine line between model and numerical issues for an SfS
method.

Any assumptions on the surface, the image acquisition, illumination
conditions or similar issues are clearly aspects of the model. Numerical
issues are discretisation, boundary conditions, the solving technique, and
similar aspects.

The choice of the PDE solved is mainly a decision for the model. How-
ever, the choice of the PDE has an impact on numerical issues as well.
When assembling the PDE, key decisions on the numerical side are being
made already. For example, the choice whether to use a Hamilton-Jacobi-
equation or a Hamilton-Jacobi-Bellman-equation makes a choice between
different solvers: While the Hamilton-Jacobi suggests the use of the method
suggested here, choosing a Hamilton-Jacobi-Bellman-equation suggests the
use of an optimal control approach. In this chapter, the numerical conse-
quences of such decisions will be mainly left aside, they will be discussed in
the next chapter.

7
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2.1 Contributions

In this chapter, new contributions to different areas of SfS research are
presented.

In Section 2.3, a survey on different SfS models from different decades in
SfS research will be given. Most survey papers in the field are concentrated
on just one branch of SfS research. We attempt to give a good overview on
SfS models since the 1960s.

In Section 2.5, an extended model to the one of Prados et al. [67] is
proposed. The main goal of this model is to cope with specular highlights
being present in the image. As to this date, this is very likely the most
advanced SfS model existing. Related publications to this section are [8,12,
96].

In the experimental Section 2.6 of this chapter, an analysis of the model
ingredients will be done in a way that is new in the literature so far, dis-
cussing the influence of the focal length and specular highlights on the
reconstruction quality. In addition to analysis done in the related publica-
tions [12, 97], a detailed investigation on the effects of different parameters
on the quality of the reconstruction of the surface and the effects of different
state-of-the-art approaches to the modelling of the PDE is done. In these
investigations, numerical aspects are not considered. In addition to that,
issues like existing ambiguities even in state-of-the-art models, the problem
of finding suitable error measures, the rendering of the surfaces, and the
dependence of the ground truth on rendering parameters will be discussed.
In the literature on SfS, many of these investigations have not been made
so far, or only at a very basic level.
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2.2 Theoretical Background

Projection

The projection describes a relation between the surface and the image show-
ing the surface. Therefore, assumptions on the surface are important for
SfS models. It is an assumption on how the image is obtained, on the tran-
sition of an actual object to a two-dimensional image depicting this object.
While for synthetic images, one can simulate any projection method, the
most relevant cases are images acquired by a real cameras. In this section,
two simple camera models from computer graphics are discussed. In gen-
eral, it is possible to group SfS models in two classes: models relying on
orthographic and on a perspective projection, respectively.

Perspective projection is a very simple and very common projection
model used in computer graphics. It simulates the behaviour of a pinhole
camera. A pinhole camera is simply a closed box with a very small hole on
one side of the box and film on the other side of the box, the viewing plane
of the camera. An ideal pinhole camera, i.e., a pinhole camera where the
opening is just a single point, can be described by a perspective projection
on a viewing plane between the object and the optical centre of the camera.
The distance between viewing plane and optical centre of the projection is
the same as the size of the box of the pinhole camera. Figure 2.1 illustrates
the relation between perspective projection and a pinhole camera.

Figure 2.1: Left: Pinhole camera model. Right: Perspective projection.

Important notions for perspective projection are the focal length f , which
is the distance between the viewing plane and the projection centre, the
distance r between projection centre and surface. The distance r is often
also referred to as perspective depth and is measured in every pixel of the
image. When discussing the numerics of perspective SfS methods, however,
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one usually defines depth in multiples of the focal length. Pinhole cameras
are relatively close to real cameras.

Perspective models for SfS are generally rather complex, which might
be the main reason why in the beginning of SfS research, an even simpler
projection model has been used: orthographic projection. Orthographic
projection can be understood as a special case of a pinhole camera: a pinhole
camera very far in the distance, infinitely far away from the surface. In
this extreme case, the projection lines become parallel, making the viewing
plane as wide and high as the surface. Figure 2.2 illustrates this kind of
projection.

Figure 2.2: Orthographic projection.
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Surface Reflectance

Another important concept to be aware of are models describing how energy
is reflected on a surface. In computer graphics, there are numerous models
for reflectance. Within this thesis, we consider two rather simple ones:
Lambertian and specular reflectance.

A surface is called a Lambertian surface, if the incoming light is re-
flected only diffusely, i.e., the incoming energy is uniformly reflected into
all directions. This type of reflectance is illustrated in Figure 2.3.

Figure 2.3: Lambertian reflectance: Light is reflected equally in all direc-
tions.

If light is reflected only specularly, the surface acts like an ideal mirror.
Incoming light is reflected in the same angle relative to the surface normal
as its incoming angle. This type of reflectance is illustrated in Figure 2.4.

Figure 2.4: Specular reflectance: Light is reflected like on an ideal mirror.
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In nature, reflectance properties of surfaces can be far more complex.
However, these two models allow for a sufficiently good approximation for
SfS applications. In nearly all SfS models discussed in this the reflectance
properties of a surface will be a combination of these reflectance types. In
most models in the literature, only Lambertian surfaces are considered.

Illumination

In computer graphics, there are many different models for light sources.
Within this thesis, only two of them are relevant: point light sources and
directional light sources. The concept of these light sources is similar to
what has been discussed for projection.

Directional light sources illuminate a surface in a parallel way. For
practical applications, the most important information about a light source
is the direction of the incoming light, also called the light vector, in a specific
point on the surface as well as the intensity of the light. In the case of a
directional light, both the light vector and the light intensity are constant
throughout the scene.

As the name suggests, a point light source is a point from which light is
emitted in all directions. For this type of light source, the light vector points
from the point light source on the point of the surface. This results in light
vectors that depend on the actual shape of the object. In many SfS models
the intensity of the light is assumed to be constant for every surface point
as well, but this is not true in reality. In reality, light intensity decreases
quadratically with the distance to the light source. This light attenuation
factor is considered in more advanced SfS models.
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2.3 Previous Work

Before investigating existing models for SfS, it is necessary to discuss which
components are necessary for such a model. In general, a model for SfS
consists of assumptions on the following components:

1. image acquisition, projection

2. surface reflectance

3. illumination conditions

4. smoothness or continuity of the surface

5. visibility of the surface, existence of shadows

Assumptions on these points are crucial for defining a good model for SfS.
A huge variation of different models can be found in the literature. In the
next sections, the most important ones of them are reviewed.

Orthographic Models

In this section, the focus lies on a certain class of camera models: Models
that use an orthographic projection.

The first use of an orthographic model for SfS was also the very first
publication on SfS: In 1970, Horn proposed a method for SfS in his Ph.D.
thesis [32], which set the basis for many variational SfS methods that have
been subsequently developed. Besides orthographic projection, he assumed
the surface to have only Lambertian reflectance properties.

In addition, he assumed the surface to be illuminated by a single light
source placed infinitely far away from the surface, which emits light of a
single colour and intensity. This leads to parallel illumination. The direction
of this light must be known in this model.

He also assumed the surface to be smooth and fully visible without any
shadows. He introduced the notion of singular points, points of maximum or
minimum brightness, representing points of locally minimal distance from
the viewer or points with normals orthogonal to the viewing direction. It
was stated that for his method to be consistent, the actual shape at these
points must be known. Note that the notion of singular points will be of
special importance in several parts of this thesis. However, in practice, a
slight variation of Horn’s definition of singular points is more appropriate.
In 1995, Kimmel and Bruckstein [43, 82] pointed out that knowledge on
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singular points, in particular their classification in minima and maxima, is
essential for uniqueness and quality of orthographic SfS methods.

Horns model influenced SfS research for several decades. Plenty of SfS
methods have been based on this model, such as more work by Horn [33–35],
Brooks and Horn [14, 37]. In addition to that, Horn and Brooks wrote a
book on the state of SfS in 1989 [38].

In essence, this model by Horn has been the only orthographic model.
The main variations that occurred have been variations in the reflectance
function in the model. Examples for such methods can be found for example
in [3, 50].

In 1999, Zhang et al. [105] reviewed the state of the art of orthographic
SfS. Their conclusion has been that orthographic SfS methods simply do
not work properly. The problems for this lie in the model. Orthographic SfS
is very ambiguous and thus extremely ill-posed. In addition to that, many
numerical methods for orthographic SfS simply do not work. However, in
the recent years there also had been slight progress in the development of
classic SfS methods that produce visually more convincing results [2, 98].

Perspective Models

The idea of a perspective SfS method has been brought up in 1991 by Dupuis
and Oliensis [23,24,56–58,60]. A closely related model has been discussed by
Rouy and Tourin in 1992 [77]. However, the contributions of this paper had
a much larger impact on the numerical side of SfS, which will be discussed
in the next chapter. Their perspective model was a very basic one. They
simply replaced the orthographic projection by a perspective one. By this,
their images included perspective distortions, which is generally beneficial
for SfS methods.

Much more noteworthy is a slight variation of this method, though. In
2003, Tankus et al. [86–90] proposed a method for perspective SfS with two
point-light sources. Again, also for this method there have been ambiguities,
such as images being invariant to a multiplicative factor on the depth.
However, their model has been the first that could actually be applied
to a set of real-world images with reasonable results. Also Prados et al.
[70,71,75] published methods based on similar models. These papers showed
a trend towards more realistic assumptions in SfS methods. A good review
of these methods can be found in survey papers by Falcone et al. [27] and
Durou et al. [26].
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Perspective Shape from Shading with Light
Attenuation

Although the method of Tankus et al. [86–88, 90] produced reasonable re-
sults, it was not the rise of perspective models that put SfS in a posi-
tion where there is hope for actual applications for SfS. This came with
the perspective model with light attenuation introduced by Prados et al.
[67–70, 72–74] in 2004. Briefly spoken, he included the light attenuation
term from physics into his model. In reality, light intensity decreases
quadratically with the distance to the light source. Since it is extremely
difficult to include such a constraint into a general model, Prados intro-
duced a very elegant simplification into his model: He reduced the model
to a single light source located in the projection centre of the perspective
projection. By this simplification, the distance to the light source becomes
identical to the perspective depth, the sought quantity, and makes it easily
possible to include this into the model. Another convenient side effect of
this trick was that shadows are impossible within this model and hence
are not necessary to be included into the model. Prados showed that his
model is well-posed in a sense [74]. His model allowed for impressive re-
sults compared to every other SfS method before. Interestingly, Prados has
not been the first one to come up with the simplification of a point light
source at the projection centre. In 1996, Okatani and Deguchi proposed
a perspective method with exactly this simplification [55]. However, their
method produced significantly worse results, mainly because they did not
incorporate the light attenuation term.

Prados’ model also solved several other problems that existed for most
SfS models. Practically all SfS models, whether they are orthographic or
perspective, always depended on some correct depth data to be provided a
priori. This is not surprising, since all previous models have been ambigu-
ous in some sense. Prados’ method works without that. Providing state
constraint boundary conditions, his method works completely without any
depth data being provided. Visually, his method produced spectacular re-
sults compared to the whole SfS literature up to this point. However, on
real-world images the results have not been perfect. He did a reconstruc-
tion of his face [67], but to get the method actually working on this image
he had to interpolate the image in the eye region and he painted his face
with a matte, white make-up. Nevertheless, the reconstructions looked very
appealing in a quality unseen before.

This led several researchers to use variations of this model. The most im-
portant one is the model by Ahmed and Farag [2], who used non-Lambertian
surfaces, in particular the Oren-Nayar-model, which replaces Lambertian
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reflectance for another diffuse-type reflectance model. The Oren-Nayar
model is particularly well-suited for the reconstruction of faces, which has
been their main application and is very problematic with Prados’ model.

2.4 Ambiguities in Shape from Shading

Models

Many SfS models contain ambiguities. The simplest one is the shift ambigu-
ity for Lambertian SfS models: in a Lambertian model, the depth can only
be determined up to an additive constant, since neither perspective distor-
tion nor any brightness change with the scene being farther away from the
camera plane occur.

For perspective models, this ambiguity does not occur. However, a
very similar ambiguity is one in perspective models that do not incorporate
light attenuation, or even use parallel light. Here, the depth can only be
determined up to a multiplicative constant [87, 90]. In perspective models
that include light attenuation, this ambiguity is resolved as well..

The most famous ambiguity in SfS models is the so-called concave-
convex ambiguity. The most simple setting where such an ambiguity can
occur is the case of the Lambertian SfS model by Horn. For instance, an
orthographic image of the outside of one half of a sphere would be abso-
lutely identical to an image of the inside of the sphere. This is obvious
by looking at the brightness equation of this model, where only derivatives
of the gradient occur, and always squared. Switching from a concave to a
convex surface just introduces a factor −1 to the gradients, which is elimi-
nated by squaring them. It has been shown that perspective models which
incorporate no light attenuation also exhibit a variant of this ambiguity [22].

First claimed by Prados [67,73], it seems like the perspective SfS model
with light attenuation does not suffer from a concave-convex ambiguity.
It is even implied that this model would be well-posed. At several points
of this thesis, it will become clear that this is not true. Certainly the
ambiguity is not as obvious as in simpler models, but there is some kind
of ambiguity, which is often neglected when discussing related SfS models.
At a later point, an example will be presented where two clearly different
and continuous surfaces have the same brightness function. Since this is a
numerical issue, this can be found in the chapter on the numerics.

Another very interesting point that is closely related to ambiguities is the
existence of different valid solutions at image discontinuities. This, however,
is not an ambiguity in the model, since solutions of the arising PDEs are
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usually assumed to be continuous. However, by imposing boundary condi-
tions at image discontinuities, it is possible to obtain different surfaces that
fit to one brightness function. This is closely related to the numerics used
in the method and will be discussed in the respective chapter.

2.5 Extending the Model

In this section, a new model based on the Phong reflectance model [65,
66], which is well-known from computer graphics, is proposed. It is not
a physically correct model, but it models in a simple way both diffuse
and specular reflection. In addition to that, some ambient illumination
is introduced. This model allows for a – for SfS standards – simple and
easy-to-implement method.

While practically all SfS methods only consider Lambertian surfaces,
the goal of this is simple: to include specular highlights in the model. In
reality, surfaces are never purely Lambertian, they always exhibit some kind
of specular highlights. While for orthographic methods, such models exists,
this has not been done in most modern, perspective SfS models that use
light attenuation, There is one notable exception to this by Ahmed and
Farag [2], who use an entirely different reflectance model, which is focused
on recovery of skin surfaces like human faces. They consider realistic, non-
Lambertian models, however, also neglect specular highlights.

The brightness equation of the Phong reflectance model reads as

I(x) = kaIa +
∑
lights

1

r2

(
kdId cosφ+ ksIs(cos θ)α

)
(2.1)

where I(x) is the normalised grey value of the image pixel located at x.
The cosine in the specular term is replaced by zero if cos θ < 0.

In this brightness equation, Ia, Id, and Is denote the intensities of the
ambient, diffuse, and specular components of reflected light, respectively.
The constants ka, kd, and ks with ka+kd+ks ≤ 1 denote the ratio of ambient,
diffuse, and specular reflection. The contributions due to all light sources
are added up, i.e. practically one needs to compute the contribution due
to each light source separately. For application in SfS, however, the special
case of only one light source will be considered.

Concerning the individual reflection contributions, the ambient light
models light present everywhere in a given scene, i.e. it is a base inten-
sity. In practical applications, where homogeneous reflectance properties
will be assumed for the entire scene, this amounts to simply subtracting
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Iaka in every pixel of the input image and neglect this term afterwards for
the actual implementation of the method.

The intensity of diffusely reflected light in each direction is proportional
to the cosine of the angle φ between surface normal and light source direc-
tion. This is Lambertian reflectance, as has been discussed in the previous
paragraph.

The amount of specular light reflected towards the viewer is proportional
to (cos θ)α, where θ is the angle between the ideal (mirror) reflection direc-
tion of the incoming light and the viewer direction, and α is a constant
which models the roughness of the material. For α →∞ this describes an
ideal mirror reflection.

Another important component in (2.1) is the so-called light attenuation
factor 1/r2, where r is the distance between light source and surface. Since
this term is an effect that actually occurs in reality, it is a very reasonable
assumption to make. Note that this model explicitly excludes light sources
that are very far away like the sun. Such very far light sources would
essentially result in parallel illumination, which would make the model ill-
posed [22]. For a discussion of the theoretical implications of using this
term see [67], where it is also claimed that this term makes SfS something
like well-posed.

In the actual SfS model, a slightly simplified modification of the Phong
reflectance model is used. As mentioned before, only a single light source
is considered. In addition to that, it is required that this light source is
located at the optical centre of the camera, cf. [67, 96]. The fact that
view direction and light source direction are the same in this case simplifies
the model a lot, since the angle between view direction and direction of
specularly reflected light is halved by the surface normal, resulting in θ =
2φ. Finally, while the Phong model originally contains vector-valued light
intensities representing colour information, for SfS applications only the
image brightness is relevant. Hence, grey-valued images are assumed.

With these simplifications, equation (2.1) becomes

I(x) = kaIa +
1

r2

(
kd(~N · ~L)Id + ks(2(~N · ~L)2 − 1)αIs

)
, (2.2)

where ~N = ~n(x)
|~n(x)| denotes the unit normal vector at the surface at point

(x, S(x))>, and where ~L is the unit light vector pointing towards the optical
centre of the camera.

In (2.2), the reformulation

cos θ = cos (2φ) = (cosφ)2−(sinφ)2 = 2(cosφ)2−1 = 2(~N·~L)2−1 (2.3)
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is used.
The Lambertian model, on which most recent SfS methods are based is

a special case of formula (2.2), where ka = ks = 0 and kd = 1.

As the normalised light source direction ~L is given by

~L (S(x)) =
1√
|x|2 + f2

(−x, f)T , (2.4)

the inner product ~N · ~L can be evaluated to

~N · ~L (S(x))

=

(
f∇u(x)− fu(x)

|x|2 + f2
x ,∇u(x) · x+

fu(x)

|x|2 + f2
f

)T
· (−x, f)T

|~n(x)|
√
|x|2 + f2

(2.5)

=

−f∇u(x) · x+
fu(x)

|x|2 + f2
x · x + (∇u(x) · x)f +

fu(x)

|x|2 + f2
f2

|~n(x)|
√
|x|2 + f2

(2.6)

=

fu(x)

|x|2 + f2
|x|2 +

fu(x)

|x|2 + f2
f2

|~n(x)|
√
|x|2 + f2

=
fu(x)

|~n(x)|
√
|x|2 + f2

. (2.7)

By use of r = fu(x), from (2.2)-(2.7) follows

I(x) = kaIa +
1

f2u(x)2

(
kd
u(x)Q(x)

|~n(x)|
Id + ks

(
2u(x)2Q(x)2

|~n(x)|2
− 1

)α
Is

)
,

(2.8)
with

|~n(x)| =
√

f2|∇u(x)|2 + (∇u(x) · x)2 + u(x)2Q(x)2 (2.9)

and
Q(x) =

√
f2/(|x|2 + f2) . (2.10)

The PDE (2.8) is hyperbolic, more specifically it is a Hamilton-Jacobi equa-
tion. Rewriting (2.8) yields the more convenient formulation

(I(x)− kaIa)
f2|~n(x)|
Q(x)u(x)

− kdId
u(x)2

− |~n(x)|ksIs
u(x)3Q(x)

(
2u(x)2Q(x)2

|~n(x)|2
− 1

)α
= 0 .

(2.11)
Assuming in addition that the surface S is visible in the front of the optical
centre, the depth u is strictly positive.
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Then the change of variables v = ln(u) is used, which implies

|~n(x)|
u(x)

=

√
f2|∇u(x)|2 + (∇u(x) · x)2 + u(x)2Q(x)2

u(x)
(2.12)

=

√
f2|∇u(x)|2 + (∇u(x) · x)2 + u(x)2Q(x)2

u(x)2
(2.13)

=
√

f2|∇v(x)|2 + (∇v(x) · x)2 +Q(x)2 , (2.14)

since ∇v(x) =
1

u(x)
∇u(x).

By some further simple computations, one eventually obtains the PDE
of Phong-based perspective Shape from Shading:

J(x)W (x)− kdId exp (−2v(x))

− W (x)ksIs
Q(x)

exp (−2v(x))

(
2Q(x)2

W (x)2
− 1

)α
= 0

(2.15)

where
J(x) = (I(x)− kaIa)f2/Q(x) (2.16)

and
W (x) =

√
f2|∇v|2 + (∇v · x)2 +Q(x)2 . (2.17)

Equation (2.15) is the basis of the numerical implementation, which will
be discussed in the next chapter.

This is a Hamilton-Jacobi-equation, and the solutions to this PDE one
is interested in are continuous viscosity solutions [20]. The Lambertian part
of the PDE (2.15) is convex, as has been shown in a similar context in [67].
The specular part, however, is not convex. Nevertheless, the algorithm
converges in all cases. The investigation on the convexity of the model will
be done in Chapter 4, where convexity will be discussed in a numerical
context and convergence issues in the non-convex areas will be addressed.
Note once again that the purely Lambertian model by Prados et al. is just
a special case of this model. By setting kd = ks = 0, we obtains the same
PDE as in [96].

The remainder of this chapter deals with a detailed experimental eval-
uation of this model. In particular differences between the Phong model
and the purely Lambertian models will be investigated. When doing this,
however, any numerical considerations are neglected, since these are to be
discussed in the next chapter.
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2.6 Tools for Experimental Analysis of the

Model

In this section, the basics on experimental evaluation will be discussed. One
aspect deals with test surfaces. For evaluating the model, synthetic surfaces
are the best choice at this point. For dealing with real-world images, some
extra effort is necessary. A successful technique for this will be discussed in
Chapter 6. However, some images considered in this chapter are motivated
by real-world scenes, like surfaces that have specular highlights. The most
important difference is that the synthetic world is an ideal world, where a
camera can be actually a pinhole camera, surfaces really have properties
as described by our model, and no noise or other disturbing artefacts can
occur.

In the next sections, the most important aspects of perspective SfS
models and their impact on the result will be discussed. These aspects are
the focal length and specularity of the surface. Continuity of the surface is
more an issue of the numerics and will hence be analysed in the experimental
section of the next chapter.

Test Surfaces

For SfS, there are no standard test surfaces the community commonly
agrees on. The attempt closest to this has been done in a survey paper
on orthographic SfS in 1999, where the following three surfaces have been
proposed [105].

Figure 2.5: The Vase surface.
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Figure 2.5 shows the vase surface. This is probably the most simple of
the surfaces. However, the large gradient near the boundary of the vase can
be difficult for perspective SfS, in particular for small focal lengths. This is
irrelevant for its original use in orthographic SfS, though.

Figure 2.6: The Mozart face surface.

The second surface, the Mozart face, is shown in Figure 2.6. This is
probably the most widely-known test surface for SfS. However, the surface,
as it has been originally introduced, contains some errors, such as peaks in
the surface. In most cases, this is ignored in the discussion of experiments
on this surface. However, it is interesting to see how a model can cope with
such artefacts.

In most of the synthetic experiments, these surfaces will be used. In
Section 3.19, one more synthetic surface will be used for demonstrating a
numerical effect at discontinuities.

Rendering Test Surfaces

So far, only test surfaces have been mentioned. However, the input to SfS is
a test image. From a synthetic surface, an input image has to be rendered.
Since we have several parameters here, like the focal length, the position
of the camera, and the shading parameters, it is not surprising that even
for the more prominent test surfaces, no standard test images have become
widely accepted in the community. Therefore, a simple self-written ray-
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tracing program is used to render images for each test case. For more
details on ray tracing, see for instance [85].

Error Measures

Error measures for SfS are a critical issue. For orthographic SfS, this has
already been discussed by Horn [35]. However, Horn’s favourite error mea-
sures are not necessarily the best. Finally, it is suggested simply to consider
a depth error. As will be demonstrated in the next chapter, other error
measures might be also worth considering. For orthographic SfS, using a
depth error is clearly not optimal due to the numerous ambiguities. How-
ever, for perspective SfS with light attenuation, a depth error is a valid and
reasonable choice.

In this paragraph, three error measures will be discussed. The first two
are two types of depth errors that give an impression of how accurately the
depth has been reconstructed and on the distribution of the error. These
two error measures are:

1. The average depth error, which is the sum of all depth errors divided
by the corresponding true depth

1

|Ω|
∑

(i,j)∈Ω

∣∣∣∣ui,j − ui,jui,j

∣∣∣∣ , (2.18)

where u is the computed depth and u is the ground truth depth.

2. The maximal depth error, which uses the same error as the previous
error, but instead of taking the average, takes the maximum

max
(i,j)∈Ω

∣∣∣∣ui,j − ui,jui,j

∣∣∣∣ . (2.19)

This error measure shows how far off the largest outlier is. In most
cases, this error will be used together with the average depth error to
show both sides.

These depth errors are fairly natural choices for an error measure based
on depth. Since depth is the quantity we compute, it is also the most
natural choice for an error measure.

However, in a later experiment the following brightness error will provide
interesting insight as well:

1

|Ω|
∑

(i,j)∈Ω

|Ji,j −Ri,j| (2.20)
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where R is the right-hand side of equation (2.15). This is an unusual choice
for an error measure, since it depends on the discretisation used in the
numerical method itself, and might thus be considered unfair for actual
applications. In most experiments, however, only depth errors will be con-
sidered. This is the common practice of most authors of recent papers on
SfS.

Obtaining the Ground Truth

In a previous paragraph, two of the test surfaces from [105] have been
presented. On the first glance, the intuition might be that these surfaces
constitute the ground truth for all experiments. While this is true for or-
thographic SfS, one needs to be very careful with that for perspective SfS.
Depending on the focal length or how close the camera is to the surface,
parts of the surface might be occluded. Also, a perspective depth is re-
constructed, not surface points. Since an error in depth is considered, the
original surfaces from [105] are no suitable choice for the ground truth.

This is resolved in a very simple way: With the same ray-tracer that
has been used for generating the input images, ground truth depth maps
can be generated by simply writing the length of the traced ray to a file for
every pixel. The length of the traced ray is the ground truth depth in this
pixel. In the next section, different ground truth surfaces for different focal
lengths will be demonstrated for both the vase surface and the Mozart face
surface.

2.7 The Influence of the Focal Length

This section deals with the effect that one parameter in the model has on
the quality of the reconstruction. To our best of knowledge, this has not
been discussed so far in the literature. However, it will give very interesting
insight in the stability of the different approaches. The analysis in this
section will only be done on Lambertian images, and all experiments will
be performed on both optimal control approaches by Prados et al. and
Cristiani et al. as well as a method that solves the PDE (2.15) in the special
case of ka = ks = 0 directly, which is then based on the same reflectance
model as the two optimal control methods. The method based on said PDE
will be called the direct method since it solves a Hamilton-Jacobi equation
directly instead of transforming the PDE to a Hamilton-Jacobi-Bellman
equation first using the Laplace transform to obtain an optimal control
method.
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Intuition says that large focal lengths might constitute a problem for SfS,
since the influence of the perspective distortion and the light attenuation
term become smaller, i.e., the model approaches an orthographic model,
which is known to be ill-posed. On the other hand, small focal lengths may
cause large amounts of occlusions, which might lead to heavy discontinuities
and also increase the difficulty of the reconstruction.

The Vase Experiment

As the first experiment, we will use the vase surface. Figure 2.7 shows
input images and the corresponding ground truth surfaces for different focal
lengths. Of course, with increasing focal length, the distance between object
and camera has to be enlarged as well. With increasing distance, the light
source intensity has to be increased quadratically as well. Table 2.1 shows
the rendering parameters for the different images. The two key observations
in Figure 2.7 are:

• With increasing focal length, the effect of the light attenuation term
becomes smaller, contrast decreases. The image approximates an or-
thographic image.

• At small focal lengths, the ground truth surface becomes more discon-
tinous. This can be observed at the transition between the vase and
the background. For small focal lengths, this is significantly steeper
compared to larger focal lengths.

Table 2.1: Rendering parameters for the vase experiment with varying focal
lengths.

f Size ka Ia kd Id ks Is α h1 h2

125 128× 128 0 0 1 4000 0 0 1 1 1
250 128× 128 0 0 1 25000 0 0 1 1 1
500 128× 128 0 0 1 100000 0 0 1 1 1
1000 128× 128 0 0 1 400000 0 0 1 1 1
2000 128× 128 0 0 1 1600000 0 0 1 1 1
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Figure 2.7: Input images and corresponding ground truth surfaces for the
vase surface for different focal lengths. From top to bottom: f = 125,
f = 250, f = 500, f = 1000, and f = 2000.
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Figures 2.8 and 2.9 show the reconstructions of the images with f =
125 and f = 250 using the model introduced in this chapter. Note that
using the methods of Prados et al. [74] or Cristiani et al. [22] would give
visually quite identical results, hence only one result each is shown. Visually
these reconstructions look good. The scale is correct, only at the transition
between foreground and background the reconstruction is smoothed out
a bit. Note that for the higher focal length, the smoothing artefacts at
the transition become smaller. This makes sense, since the discontinuity is
much less severe in this case.

Figure 2.10 shows the reconstruction for f = 500. Here, the reconstruc-
tion is even better, but we obtain some oscillations at the transition. This is
an effect of the quadratic light attenuation term becoming less important.
In this case, however, the effect is not big enough yet to destroy the result.
If we look at the reconstructions for f = 1000 and f = 2000 in Figures
2.11 and 2.12, which are additionally supplied on a larger scale, we observe
that the oscillations become dominant. For f = 1000, the depth scale of
the vase and the background is still correct, however, for f = 2000 the vase
is estimated on a wrong scale, i.e., behind the background, which is also at
a wrong scale. It is possible to avoid this, which will be tackled in a later
chapter.

Table 2.2 shows the relative depth errors. The errors reflect the im-
pression of the visual inspection of the results. The smallest errors are
obtained for f = 250 and f = 500, while for smaller focal lengths, the
error increases, and for higher focal lengths, the error increases dramati-
cally. This is caused by problems arising at the boundary between vase and
background. For high focal lengths, the attenuation term plays only a very
small role, and hence grey values in the image have more meaning as angles,
while for small focal lengths, the attenuation term plays a significant role
as well. The massive errors for the high focal lengths also reflect the visual
impression.

Table 2.3 shows the maximal depth errors, i.e. the error of the worst
outlier. For the small focal lengths, we see no really bad outliers. However,
starting with f = 500, which is around four times the image size, the first
massive outliers appear. As we can see in Figure 2.10, these outliers are only
in very few spots, which results in the overall error and visual quality being
rather good. At the high focal lengths, however, these outliers become so
frequent that they heavily influence the error and the visual quality of the
reconstruction.

However, the relative depth error is not a good measure for this ex-
periment. Since the range of the z-values of the reconstruction remains
the same for all experiments, but the distance increases with different focal
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Table 2.2: Average depth errors of the vase experiment for different focal
lengths.

Focal length f Direct Method Prados et al. Cristiani et al.
125 3.86% 3.81% 3.44%
250 1.40% 1.42% 1.13%
500 1.80% 1.91% 1.72%
1000 9.67% 9.68% 9.68%
2000 12.98% 12.98% 12.98%

Table 2.3: Maximal depth errors of the vase experiment for different focal
lengths.

Focal length f Direct Method Prados et al. Cristiani et al.
125 18.23% 18.15% 16.05%
250 5.89% 5.88% 5.12%
500 240.5% 240.5% 240.5%
1000 251.5% 251.5% 251.5%
2000 216.7% 216.7% 216.7%

lengths, a 1% depth error is more meaningful for large focal lengths than
for small ones. Therefore, a better measure for this kind of comparison is
to multiply the relative depth error with the distance, or, since the distance
is proportional to the focal length, the focal length. This error measure is
shown in Table 2.4. For this error measure, the failure of the method at
high focal lengths becomes even more obvious, while the negative effect of
the discontinuity at small focal lengths is reduced. Obviously, at f = 250,
the error is by far the best. In conclusion, for these standard methods, a
small focal length is generally beneficial for the reconstruction quality, un-
less discontinuities become too prominent. However, note that in Chapter
3, a numerical method will be introduced that can handle these difficulties.
It will still fail at the transition between vase and background, but be able
to estimate the background correctly. Since the transition boundary only
represents a small fraction of the image, this method will produce very small
errors, at least compared to the ones presented here.
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Table 2.4: Scale-corrected depth errors of the vase experiment for different
focal lengths.

Focal length f Direct Method Prados et al. Cristiani et al.
125 4.825 4.78 4.3
250 3.50 3.55 2.83
500 9.00 9.55 8.60
1000 96.7 96.8 96.8
2000 260 260 260

Figure 2.8: Reconstruction of the Lambertian vase using f = 125. Top:
Ground Truth. Bottom: Reconstruction.
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Figure 2.9: Reconstruction of the Lambertian vase using f = 250. Top:
Ground Truth. Bottom: Reconstruction.

Table 2.5: Maximal scale-corrected depth errors of the vase experiment for
different focal lengths.

Focal length f Direct Method Prados et al. Cristiani et al.
125 22.5 22.68 20.06
250 14.70 14.70 12.80
500 1202 1202 1202
1000 2515 2515 2515
2000 4334 4334 4334
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Figure 2.10: Reconstruction of the Lambertian vase using f = 500. Top:
Ground Truth. Bottom: Reconstruction.
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Figure 2.11: Reconstruction of the Lambertian vase using f = 1000. Top:
Ground Truth. Middle: Reconstruction. Bottom: Reconstruction on a
larger scale.
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Figure 2.12: Reconstruction of the Lambertian vase using f = 2000. Top:
Ground Truth. Middle: Reconstruction. Bottom: Reconstruction on a
larger scale.
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Figure 2.13: Input images and corresponding ground truth surfaces for
the Mozart face surface for different focal lengths. From top to bottom:
f = 125, f = 250, f = 500, f = 1000, and f = 2000.
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The Mozart Experiment

Up to this point, the experimental evaluation shows a clear tendency that
images with small focal length are easier to reconstruct than images with
larger focal lengths. To support this, the same analysis is done on a more
complex image. Figure 2.13 shows the input images for the Mozart face
with different focal lengths. Table 2.6 shows the corresponding rendering
parameters. Since this image is with 256× 256 pixels twice the size of the
vase image in every direction, f = 125 is actually very very close to the
surface, which results in most of the surface being occluded. This becomes
obvious in the ground truths in Figure 2.13.

Figure 2.14 shows the reconstruction of the surface for f = 125. In fact,
even more of the surface is included in the reconstruction than it is in the
ground truth, but the overall shape looks nice. The shape for f = 250
in Figure 2.15, however, is mostly visible and the shape is very close to
the original. Unfortunately, despite the image is significantly larger than
the vase, the first outliers occur again at f = 500, cf. Figure 2.16. The
shape of the remainder of the reconstruction, however, is still flawless. The
amount of outliers increases at f = 1000, cf. Figure 2.17, where the shape
of the remainder is still very well reconstructed. However, at f = 2000 the
amount of outliers is so massive that the appearance of Mozart’s face is now
far from what a face is expected to look like.

Table 2.6: Rendering parameters for the Mozart face experiment with vary-
ing focal lengths.

Focal length Size ka Ia kd Id ks Is α h1 h2

125 256× 256 0 0 1 1800 0 0 1 1 1
250 256× 256 0 0 1 15000 0 0 1 1 1
500 256× 256 0 0 1 100000 0 0 1 1 1
1000 256× 256 0 0 1 400000 0 0 1 1 1
2000 256× 256 0 0 1 1600000 0 0 1 1 1

This is supported by the scale-corrected average and maximal depth
errors shown in Tables 2.7 and. Again, the scale-corrected error becomes
the lowest at f = 250. At f = 500, the first outliers occur, and the errors
above f = 1000 outliers become so dominant that the reconstruction fails.
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Table 2.7: Scale-corrected depth errors of the Mozart face experiment for
different focal lengths.

Focal length f Direct Method Prados et al. Cristiani et al.
125 9.737 9.876 10.08
250 10.30 10.33 9.54
500 24.14 24.29 23.83
1000 102.25 103.15 102.88
2000 264.88 264.88 264.88

Figure 2.14: Reconstruction of the Lambertian Mozart face using f = 125.
Top: Ground Truth. Bottom: Reconstruction.
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Table 2.8: Maximal scale-corrected depth errors of the Mozart face experi-
ment for different focal lengths.

Focal length f Direct Method Prados et al. Cristiani et al.
125 66.28 66.31 64.74
250 83.91 83.89 86.01
500 1513 1513 1513
1000 2966 2961 2961
2000 5942 5942 5942

Figure 2.15: Reconstruction of the Lambertian Mozart face using f = 250.
Top: Ground Truth. Bottom: Reconstruction.
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Figure 2.16: Reconstruction of the Lambertian Mozart face using f = 500.
Top: Ground Truth. Middle: Reconstruction. Bottom: Reconstruction on
a larger scale.
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Figure 2.17: Reconstruction of the Lambertian Mozart face using f = 1000.
Top: Ground Truth. Middle: Reconstruction. Bottom: Reconstruction on
a larger scale.
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Figure 2.18: Reconstruction of the Lambertian Mozart face using f = 2000.
Top: Ground Truth. Middle: Reconstruction. Bottom: Reconstruction on
a larger scale.
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2.8 The Influence of the Specular Term

In this paragraph, the influence of the specular term on the reconstruction
quality will be assessed. In contrast to the previous section, comparison
with the models of Prados et al. [74] and Cristiani et al. [22] does not make
sense, since these models are purely Lambertian and there exists no ex-
tension to their PDEs which would include specular highlights. However,
it does make sense to compare the reconstruction result using the Phong
model to results using no specularity at all, since this will show the impor-
tance of modelling specular highlights. From a different point of view, this
approach shows why Lambertian models fail for images that contain spec-
ular highlights. This will also be addressed for real-world images, but in a
later chapter. In this chapter, the focus lies on synthetic images to demon-
strate the technical soundness of the model and the effect of different types
of specular highlights.

The Vase Experiment

As before, the first experiment will be the vase image. This time, a fixed fo-
cal length is used, but different shading parameters. There are two relevant
parameters:

• The ratio between the specular and the diffuse term. In the experi-
ment, the starting point will be the purely diffuse case shown in the
previous paragraph. Then, the importance of the specular part will
be subsequently increased.

• The second parameter is the exponent α in the specular term, which
describes the tightness of the specular highlight. All experiments will
be done for two different choices of this parameter to investigate its
effect.

Since the ground truth solely depends on the focal length and the camera
position, there is no need to render new ground truths, since this has already
been done in the previous section, cf. Figure 2.7. For this experiment the
f = 500 case is chosen, since at this focal length the first artifacts at
the transition between foreground and background occured. This way, it
is possible to investigate whether specular highlights have any positive or
negative effect on this.
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Figure 2.19: Input images of the vase surface with different specular terms.
For all images holds α = 5 and kd = 1 − ks. Top left to bottom right:
ks = 0, ks = 0.1, ks = 0.2, ks = 0.3, ks = 0.4, ks = 0.3, ks = 0.6, ks = 0.7,
ks = 0.8
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Figure 2.20: Input images vase surface with different specular terms. For
all images holds α = 10 and kd = 1− ks. Top left to bottom right: ks = 0,
ks = 0.1, ks = 0.2, ks = 0.3, ks = 0.4, ks = 0.3, ks = 0.6, ks = 0.7, ks = 0.8
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Table 2.9: Rendering parameters for the Vase experiment with varying
specularities.

f Size ka Ia kd Id ks Is α h1 h2

500 128× 128 0 0 1.0 100000 0.0 100000 5 1 1
500 128× 128 0 0 0.9 100000 0.1 100000 5 1 1
500 128× 128 0 0 0.8 100000 0.2 100000 5 1 1
500 128× 128 0 0 0.7 100000 0.3 100000 5 1 1
500 128× 128 0 0 0.6 100000 0.4 100000 5 1 1
500 128× 128 0 0 0.5 100000 0.5 100000 5 1 1
500 128× 128 0 0 0.4 100000 0.6 100000 5 1 1
500 128× 128 0 0 0.3 100000 0.7 100000 5 1 1
500 128× 128 0 0 0.2 100000 0.8 100000 5 1 1
500 128× 128 0 0 1.0 100000 0.0 100000 10 1 1
500 128× 128 0 0 0.9 100000 0.1 100000 10 1 1
500 128× 128 0 0 0.8 100000 0.2 100000 10 1 1
500 128× 128 0 0 0.7 100000 0.3 100000 10 1 1
500 128× 128 0 0 0.6 100000 0.4 100000 10 1 1
500 128× 128 0 0 0.5 100000 0.5 100000 10 1 1
500 128× 128 0 0 0.4 100000 0.6 100000 10 1 1
500 128× 128 0 0 0.3 100000 0.7 100000 10 1 1
500 128× 128 0 0 0.2 100000 0.8 100000 10 1 1

To see the importance of including specular highlights in the model, all
experiments will be compared to the reconstruction obtained by using a
purely Lambertian model.

Figure 2.19 depicts the input images of the vase for this experiment
for α = 5, 2.20 for α = 10. Table 2.9 illustrates the detailed rendering
parameters. Note that for all experiments, ka = 0 is chosen. Since this is a
synthetic experiment, the ambient light would be just an additive constant
to the brightness of every pixel, which would be subtracted from every
pixel by the algorithm. Using ambient light only makes sense for real-world
images, where some ambient light is present in the scene. Since the focus
of this section lies on synthetic images, ka is always set to 0 here.

Note that, while the vase looks like a simple experiment, this is actually
a quite difficult surface to reconstruct. The focus lies on the surface for
f = 500, since this is an order of magnitude for the focal length that is
similar to real-world applications, compared to the small image size. In
the previous paragraph this image turned out to be the first image where
massive outliers near the boundary occur. One of the issues in this chapter
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is the effect of specular highlights on such outliers.

Visual Impression

Before turning to numerical results, the visual impression of the results is
certainly a key thing for SfS applications. While it is possible to argue
which error measure is the right one for the reconstruction of a surface, it is
rather simple to judge visually whether a reconstruction is good or bad, in
particular if it is possible to compare it to the ground truth. The result of
the base case, ks = 0, has been already presented in the previous paragraph,
cf. Figure 2.10. Since this is a purely Lambertian experiment, the effect of
the specular term obviously cannot be observed here.

Figures 2.21-2.28 visualise the reconstructions using both the Lamber-
tian and the Phong model for the input images with different specularities
and α = 5. Figures 2.29-2.36 depict the respective reconstructions for
α = 10.

The first couple of images for α = 5 are very similar to the original
shape. In contrast to the reconstruction of the Lambertian image, which is
illustrated in in Figure 2.16, the outliers seem to have disappeared. At least
visually, this continues for increasing amounts of specular highlights up to
ks = 0.5, where the first outliers at the boundary appear again. Then,
with further increasing ks, this effect is getting worse. At ks = 0.8, the
effect is very large and large parts of the surface are missing in the Phong
reconstruction.

The Lambertian reconstruction generally seem to be a bit less sensitive
to outliers at the boundary than the Phong reconstruction. However, for
these images, it is possible to observe another very drastic effect: All of
the reconstructions are much too close to the camera and much too steep.
The Lambertian reconstructions quickly lose their shape, introducing very
high gradients and being much too close to the camera. This is caused
by the specular highlights, which are misinterpreted by the algorithm as
close points, since a key model ingredient is the light attenuation term,
which causes brighter points to be interpreted as close points. Without the
specular correction term in the Phong model, this causes much too close
and too steep reconstructions.

For α = 10, the observed effects become even stronger. The Lambertian
reconstructions are all too close, closer for increasing ks and even steeper in
their shape than for α = 5. In addition to that effect, also outliers at the
transition between foreground and background appear more frequently for
the higher exponent. For the Phong reconstruction, similar effects appear.
Again, the shape is preserved much more accurately, and in the begin-
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ning outliers at the transition between foreground and background do not
appear, in contrast to the Lambertian image. However, for images where
specular highlights dominate, also the outliers at the boundary become very
dominant. For the most extreme image with ks = 0.8 and α = 10, shown in
Figure 2.36, only very few parts of the vase remain. Without knowing the
input image, it would be hard to figure out what the surface is supposed to
be. This effect is similar for the Lambertian reconstruction, but not quite
as bad.

In general, the Phong reconstructions seem a lot more convincing than
the ones using the Lambertian model, which indicates that the modelling
of specular highlights makes sense for SfS. However, the impression of the
reconstruction is disturbed by the presence of many outliers for images
with dominant specular highlights. In a later chapter, though, a numerical
method will be presented which enables to reduce these outliers drastically
and give convincing results even for these extreme images.
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Figure 2.21: Reconstruction of the vase for kd = 0.9, ks = 0.1, α = 5.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.22: Reconstruction of the vase for kd = 0.8, ks = 0.2, α = 5.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.23: Reconstruction of the vase for kd = 0.7, ks = 0.3, α = 5.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.24: Reconstruction of the vase for kd = 0.6, ks = 0.4, α = 5.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.25: Reconstruction of the vase for kd = 0.5, ks = 0.5, α = 5.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.26: Reconstruction of the vase for kd = 0.4, ks = 0.6, α = 5.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.27: Reconstruction of the vase for kd = 0.3, ks = 0.7, α = 5.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.28: Reconstruction of the vase for kd = 0.2, ks = 0.8, α = 5.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.29: Reconstruction of the vase for kd = 0.9, ks = 0.1, α = 10.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.30: Reconstruction of the vase for kd = 0.8, ks = 0.2, α = 10.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.31: Reconstruction of the vase for kd = 0.7, ks = 0.3, α = 10.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.32: Reconstruction of the vase for kd = 0.6, ks = 0.4, α = 10.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.33: Reconstruction of the vase for kd = 0.5, ks = 0.5, α = 10.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.34: Reconstruction of the vase for kd = 0.4, ks = 0.6, α = 10.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.35: Reconstruction of the vase for kd = 0.3, ks = 0.7, α = 10.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.36: Reconstruction of the vase for kd = 0.2, ks = 0.8, α = 10.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Table 2.10: Depth errors for the vase experiment with varying specularities.

Input Image Lambertian Model Phong Model
kd ks α Avg. Error Max. Error Avg. Error Max. Error
0.9 0.1 5 4.18% 5.21% 1.22% 2.78%
0.8 0.2 5 8.91% 10.63% 2.35% 4.88%
0.7 0.3 5 14.08% 16.40% 3.75% 7.24%
0.6 0.4 5 19.80% 22.60% 6.23% 10.72%
0.5 0.5 5 26.16% 29.16% 10.86% 16.46%
0.4 0.6 5 33.38% 36.64% 16.89% 24.00%
0.3 0.7 5 41.72% 45.13% 23.87% 33.56%
0.2 0.8 5 51.72% 55.20% 52.12% 210.43%
0.9 0.1 10 3.94% 5.21% 1.45% 3.00%
0.8 0.2 10 8.41% 10.63% 2.83% 5.32%
0.7 0.3 10 13.31% 16.19% 4.61% 8.00%
0.6 0.4 10 18.82% 22.40% 7.02% 11.41%
0.5 0.5 10 25.06% 29.16% 12.62% 21.47%
0.4 0.6 10 32.14% 36.64% 22.36% 52.89%
0.3 0.7 10 40.31% 45.13% 41.30% 108.68%
0.2 0.8 10 50.18% 55.19% 77.92% 239.11%
0.9 0.1 20 3.64% 5.21% 1.94% 162.62%
0.8 0.2 20 7.75% 10.40% 3.46% 5.78%
0.7 0.3 20 12.37% 16.18% 5.32% 8.35%
0.6 0.4 20 17.47% 22.20% 8.58% 12.54%
0.5 0.5 20 23.45% 28.97% 16.48% 159.41%
0.4 0.6 20 30.28% 36.47% 28.62% 183.04%
0.3 0.7 20 38.22% 44.84% 46.07% 221.88%
0.2 0.8 20 47.96% 54.96% 83.44% 292.25%

Quantitative Evaluation

The second part of the evaluation of this experiment is the discussion of
the depth errors. In this analysis, numerical issues will be neglected, since
they are the subject of the next chapter. However, this also means some
side effects may remain unexplained here. Table 2.10 shows the average and
maximal depth errors for the reconstructions of the vase with both models.
In addition to the images shown, another set of images with α = 20, i.e. a
very high exponent, is included in this table.

Looking at the maximal errors, the impression on outliers from the visual
investigation is supported. Except for α = 20, the outliers remain below
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20% of the depth until ks = 0.5, only for even more extreme images, extreme
outliers occur again. For very extreme images, in particular for high values
of α, these outliers become so dominant that the average error becomes
very large as well and for the most extreme images at α ≥ 20 they even
exceed the error of the Lambertian reconstruction.

In contrast to that, the Lambertian reconstructions do not exhibit many
outliers, the maximal errors get larger, but never very far above the average
error. The Lambertian model can cope much better with outliers than
the Phong model. However, the average errors increase with increasing
importance of specular highlights. For ks = 0.4, the average error of this
method reaches around 20% already, while the reconstruction using the
Phong model remains at reasonable 7% in this range.

In terms of the average depth error, it is also very clear that for im-
ages containing specular highlights, the Phong model beats the Lambertian
model at the reconstruction. However, the presence of a large amount of
outliers for extreme images makes the overall performance of the Phong
model a bit disappointing so far. This, however, is partially caused by the
numerics, which will be introduced only in the next chapter. Later in this
thesis, another numerical method will be presented that reduces the outliers
drastically and makes it possible to obtain significantly better depth errors
as well.

The Mozart Experiment

To investigate the effect of the specular term on a more complex image,
the Mozart surface is again the second test case. Since the Mozart surface
has a higher resolution, the images are rendered in four times the size, i.e.
256× 256. In the vase test case, only images and reconstructions for α = 5
and α = 10 have been shown. Since this image is larger and the effect
is actually visible, results for α = 20 will be presented in this chapter as
well. Aside from that, exactly the same test parameters will be used for
this surface as well. Figures 2.37, 2.38, and 2.39 show the input images
for α = 5, α = 10, and α = 20. Table 2.11 shows the respective input
parameters.
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Figure 2.37: Input images for the Mozart face surface with different specular
terms. For all images holds α = 5 and kd = 1 − ks. Top left to bottom
right: ks = 0, ks = 0.1, ks = 0.2, ks = 0.3, ks = 0.4, ks = 0.3, ks = 0.6,
ks = 0.7, ks = 0.8.
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Table 2.11: Rendering parameters for the Mozart face experiment with
varying specularities.

f Size ka Ia kd Id ks Is α h1 h2

500 256× 256 0 0 1.0 100000 0.0 100000 5 1 1
500 256× 256 0 0 0.9 100000 0.1 100000 5 1 1
500 256× 256 0 0 0.8 100000 0.2 100000 5 1 1
500 256× 256 0 0 0.7 100000 0.3 100000 5 1 1
500 256× 256 0 0 0.6 100000 0.4 100000 5 1 1
500 256× 256 0 0 0.5 100000 0.5 100000 5 1 1
500 256× 256 0 0 0.4 100000 0.6 100000 5 1 1
500 256× 256 0 0 0.3 100000 0.7 100000 5 1 1
500 256× 256 0 0 0.2 100000 0.8 100000 5 1 1
500 256× 256 0 0 1.0 100000 0.0 100000 10 1 1
500 256× 256 0 0 0.9 100000 0.1 100000 10 1 1
500 256× 256 0 0 0.8 100000 0.2 100000 10 1 1
500 256× 256 0 0 0.7 100000 0.3 100000 10 1 1
500 256× 256 0 0 0.6 100000 0.4 100000 10 1 1
500 256× 256 0 0 0.5 100000 0.5 100000 10 1 1
500 256× 256 0 0 0.4 100000 0.6 100000 10 1 1
500 256× 256 0 0 0.3 100000 0.7 100000 10 1 1
500 256× 256 0 0 0.2 100000 0.8 100000 10 1 1
500 256× 256 0 0 1.0 100000 0.0 100000 20 1 1
500 256× 256 0 0 0.9 100000 0.1 100000 20 1 1
500 256× 256 0 0 0.8 100000 0.2 100000 20 1 1
500 256× 256 0 0 0.7 100000 0.3 100000 20 1 1
500 256× 256 0 0 0.6 100000 0.4 100000 20 1 1
500 256× 256 0 0 0.5 100000 0.5 100000 20 1 1
500 256× 256 0 0 0.4 100000 0.6 100000 20 1 1
500 256× 256 0 0 0.3 100000 0.7 100000 20 1 1
500 256× 256 0 0 0.2 100000 0.8 100000 20 1 1
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Figure 2.38: Input images for the Mozart face surface with different specular
terms. For all images holds α = 10 and kd = 1 − ks. Top left to bottom
right: ks = 0, ks = 0.1, ks = 0.2, ks = 0.3, ks = 0.4, ks = 0.3, ks = 0.6,
ks = 0.7, ks = 0.8.
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Figure 2.39: Input images for the Mozart face surface with different specular
terms. For all images holds α = 20 and kd = 1 − ks. Top left to bottom
right: ks = 0, ks = 0.1, ks = 0.2, ks = 0.3, ks = 0.4, ks = 0.3, ks = 0.6,
ks = 0.7, ks = 0.8.
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Visual Evaluation

Again, the first and possibly most important evaluation of this experiment is
the visual assessment of the reconstruction quality. The purely Lambertian
experiment on the Mozart face for f = 500 contained a significant amount
of outliers, cf. Figure 2.16. The depth error, however, was very acceptable,
cf. Tables 2.7 and 2.8, as was the visual quality of the result when omitting
the outliers.

For this experiment, in addition to the results for α = 5 in Figures 2.40-
2.47 and the results for α = 10 in Figures 2.48-2.55, also the results for
α = 20 are shown in Figures 2.56-2.63.

In principle, the effects observed are very similar to the vase experiment.
For large amounts of specular highlights, the Lambertian reconstructions
are a lot too close, i.e., the depth values are much too small. In addition, the
face gets distorted for these reconstructions very early. For high amounts
of specular highlights, it is impossible to see a face in the reconstructions.

For the Phong reconstructions, the outliers starting at around ks = 0.5
become much more prominent than for the vase experiment. In the plots
of the surfaces, this becomes clear when holes in the reconstruction arise.
These holes are strong outliers which are omitted from the plot. Starting at
ks = 0.6, large parts of the reconstruction are already dominated by outliers.
For the most extreme images, the holes get larger and larger, and less of a
face remains. However, except for the reconstruction with ks = 0.2 at large
values of α, it is still possible to recognise a face. Also, the reconstructions
remain at an approximately correct depth scale, at least unless the outliers
become too dominant.

Again, the Phong reconstructions are much better than the Lambertian
ones. However, outliers are again a problem, even more for this larger image
with more edges. The more robust numerical method in Chapter 4 will also
lead to much more convincing results for this experiment.

Quantitative Evaluation

The depth errors for all the experiments can be found in Table 2.12. The re-
sults are in accordance with the vase experiment and the visual evaluation.
While the average depth errors are constantly increasing for the Lamber-
tian reconstruction with increasing ks, they remain much more stable for
the Phong reconstruction, resulting in reasonable errors up to ks = 0.4.
However, for larger ks, outliers become dominant, resulting in very large
maximal depth errors. For the most extreme images, outliers become so
dominant that the average depth error becomes as bad as for the Lamber-
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tian reconstruction.
Essentially, the conclusion of this experiment is the same as the con-

clusion of the vase experiment: The Phong method is better for the re-
construction of images with specular highlights, however, for very extreme
images, outliers become an issue, at least for the numerical method used
here.

Table 2.12: Depth errors for the Mozart face experiment with varying spec-
ularities.

Input Image Lambertian Model Phong Model
kd ks α Avg. Error Max. Error Avg. Error Max. Error
0.9 0.1 5 6.24% 179.03% 3.43% 197.07%
0.8 0.2 5 10.42% 25.37% 3.14% 19.70%
0.7 0.3 5 15.23% 29.88% 3.65% 40.17%
0.6 0.4 5 20.54% 34.99% 4.82% 43.49%
0.5 0.5 5 26.54% 40.56% 8.53% 49.35%
0.4 0.6 5 33.38% 46.75% 15.01% 118.82%
0.3 0.7 5 41.32% 53.80% 27.80% 150.06%
0.2 0.8 5 51.07% 62.23% 64.76% 222.05%
0.9 0.1 10 6.01% 179.03% 3.84% 197.07%
0.8 0.2 10 9.75% 25.09% 3.14% 114.02%
0.7 0.3 10 14.23% 29.78% 4.00% 41.27%
0.6 0.4 10 19.16% 34.85% 6.01% 44.65%
0.5 0.5 10 24.81% 40.23% 11.64% 126.99%
0.4 0.6 10 31.30% 46.41% 25.04% 149.22%
0.3 0.7 10 38.88% 53.47% 50.45% 182.65%
0.2 0.8 10 48.44% 61.94% 88.73% 271.87%
0.9 0.1 20 6.24% 179.03% 4.71% 197.07%
0.8 0.2 20 9.12% 25.03% 4.19% 132.07%
0.7 0.3 20 13.23% 29.50% 5.39% 134.98%
0.6 0.4 20 17.79% 34.55% 8.61% 145.20%
0.5 0.5 20 23.02% 39.93% 18.74% 161.68%
0.4 0.6 20 29.12% 46.11% 31.22% 186.09%
0.3 0.7 20 36.24% 53.01% 55.24% 226.60%
0.2 0.8 20 45.34% 61.38% 108.23% 292.57%
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Figure 2.40: Reconstruction of the Mozart face for kd = 0.9, ks = 0.1, α = 5.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.41: Reconstruction of the Mozart face for kd = 0.8, ks = 0.2, α = 5.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.42: Reconstruction of the Mozart face for kd = 0.7, ks = 0.3, α = 5.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.43: Reconstruction of the Mozart face for kd = 0.6, ks = 0.4, α = 5.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.44: Reconstruction of the Mozart face for kd = 0.5, ks = 0.5, α = 5.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.45: Reconstruction of the Mozart face for kd = 0.4, ks = 0.6, α = 5.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.46: Reconstruction of the Mozart face for kd = 0.3, ks = 0.7, α = 5.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.



78 CHAPTER 2. SHAPE FROM SHADING MODELS

Figure 2.47: Reconstruction of the Mozart face for kd = 0.2, ks = 0.8, α = 5.
Top: Ground truth. Middle: Reconstruction using the Lambertian model.
Bottom: Reconstruction using the Phong model.
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Figure 2.48: Reconstruction of the Mozart face for kd = 0.9, ks = 0.1, α =
10. Top: Ground truth. Middle: Reconstruction using the Lambertian
model. Bottom: Reconstruction using the Phong model.
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Figure 2.49: Reconstruction of the Mozart face for kd = 0.8, ks = 0.2, α =
10. Top: Ground truth. Middle: Reconstruction using the Lambertian
model. Bottom: Reconstruction using the Phong model.
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Figure 2.50: Reconstruction of the Mozart face for kd = 0.7, ks = 0.3, α =
10. Top: Ground truth. Middle: Reconstruction using the Lambertian
model. Bottom: Reconstruction using the Phong model.
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Figure 2.51: Reconstruction of the Mozart face for kd = 0.6, ks = 0.4, α =
10. Top: Ground truth. Middle: Reconstruction using the Lambertian
model. Bottom: Reconstruction using the Phong model.
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Figure 2.52: Reconstruction of the Mozart face for kd = 0.5, ks = 0.5, α =
10. Top: Ground truth. Middle: Reconstruction using the Lambertian
model. Bottom: Reconstruction using the Phong model.
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Figure 2.53: Reconstruction of the Mozart face for kd = 0.4, ks = 0.6, α =
10. Top: Ground truth. Middle: Reconstruction using the Lambertian
model. Bottom: Reconstruction using the Phong model.
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Figure 2.54: Reconstruction of the Mozart face for kd = 0.3, ks = 0.7, α =
10. Top: Ground truth. Middle: Reconstruction using the Lambertian
model. Bottom: Reconstruction using the Phong model.



86 CHAPTER 2. SHAPE FROM SHADING MODELS

Figure 2.55: Reconstruction of the Mozart face for kd = 0.2, ks = 0.8, α =
10. Top: Ground truth. Middle: Reconstruction using the Lambertian
model. Bottom: Reconstruction using the Phong model.
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Figure 2.56: Reconstruction of the Mozart face for kd = 0.9, ks = 0.1, α =
20. Top: Ground truth. Middle: Reconstruction using the Lambertian
model. Bottom: Reconstruction using the Phong model.



88 CHAPTER 2. SHAPE FROM SHADING MODELS

Figure 2.57: Reconstruction of the Mozart face for kd = 0.8, ks = 0.2, α =
20. Top: Ground truth. Middle: Reconstruction using the Lambertian
model. Bottom: Reconstruction using the Phong model.
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Figure 2.58: Reconstruction of the Mozart face for kd = 0.7, ks = 0.3, α =
20. Top: Ground truth. Middle: Reconstruction using the Lambertian
model. Bottom: Reconstruction using the Phong model.
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Figure 2.59: Reconstruction of the Mozart face for kd = 0.6, ks = 0.4, α =
20. Top: Ground truth. Middle: Reconstruction using the Lambertian
model. Bottom: Reconstruction using the Phong model.
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Figure 2.60: Reconstruction of the Mozart face for kd = 0.5, ks = 0.5, α =
20. Top: Ground truth. Middle: Reconstruction using the Lambertian
model. Bottom: Reconstruction using the Phong model.
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Figure 2.61: Reconstruction of the Mozart face for kd = 0.4, ks = 0.6, α =
20. Top: Ground truth. Middle: Reconstruction using the Lambertian
model. Bottom: Reconstruction using the Phong model.
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Figure 2.62: Reconstruction of the Mozart face for kd = 0.3, ks = 0.7, α =
20. Top: Ground truth. Middle: Reconstruction using the Lambertian
model. Bottom: Reconstruction using the Phong model.
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Figure 2.63: Reconstruction of the Mozart face for kd = 0.2, ks = 0.8, α =
20. Top: Ground truth. Middle: Reconstruction using the Lambertian
model. Bottom: Reconstruction using the Phong model.



2.9. FINAL CONCLUSIONS 95

2.9 Final Conclusions

In this chapter, a new SfS model with its corresponding PDE has been
introduced, which allowed to model specular highlights. In the experimental
evaluation, the effect of different parameters in the SfS models like focal
length or specular highlights have been discussed. This leads to interesting
conclusions on the difficulty of SfS methods for different types of images
and the suitability of different models for these images.

However, the conclusions from this chapter cannot be final. Several ef-
fects, especially outliers at discontinuities, occurred, which might be caused
by numerical method. Therefore, it is crucial to discuss numerical issues.

This will be done in the next chapter. Starting from the model PDE
presented in this chapter, an efficient numerical method will be introduced.
The chapter will also deal with performance issues, comparing the numerical
method in this chapter to the numerical methods of Prados et al. and
Cristiani et al. In addition to that, also other numerical methods based on
other SfS methods will be briefly addressed.





Chapter 3

Numerical Methods for
Shape from Shading

In this chapter, numerical methods for SfS are investigated. First, a review
of the numerical paths explored for SfS methods since the 1970s is given. Af-
terwards, the focus lies on state-of-the-art techniques based on the model by
Prados et al. [74]. A general numerical framework for the simplified model
and the extension presented in the previous chapter is introduced. We will
discuss the underlying PDE and do a numerical scale analysis to motivate
the exact numerical implementation is given. Advanced techniques to ac-
celerate the convergence of the method are presented, as well as a detailed
discussion of the efficiency properties of the different numerical approaches
and their benefits and drawbacks. Based on that, a novel, optimised method
that combines the benefits of all these methods is proposed.

3.1 Contributions

There are several novelties in this chapter. The main contribution is a
direct method for SfS, which solves directly the Hamilton-Jacobi equation
of the Phong model introduced in the previous chapter. Combined with
introducing several advanced acceleration techniques, an easy-to-code and
fast method is obtained. The construction of the method is accompanied by
a numerical scale analysis, which motivates several discretisation choices.
Such an analysis is a novelty in image processing applications. Furthermore,
the efficiency and convergence properties of different numerical schemes
are investigated, which leads to interesting conclusions on the differences

97
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between the methods and allows for another novelty, a hybrid method that
combines different methods to gain an advantage in terms of performance
and accuracy. Finally, the effect of discontinuities on the reconstruction
quality is discussed and the relations of these effects to the discretisation
are pointed out.

3.2 Hamilton-Jacobi equations and

Hamilton-Jacobi-Bellman equations

Most modern SfS methods are based on solving Hamilton-Jacobi and Hamil-
ton-Jacobi-Bellman equations.

A Hamilton-Jacobi equation (HJ equation) is a first-order partial dif-
ferential equation for a function u : Ω → R, Ω ⊂ Rn open, of the form

H(x, u,Du) , (3.1)

where x ∈ Ω and Du being the Jacobian of u. The function H is called
a Hamiltonian. Generally, HJ equations are hyperbolic PDEs, i.e., they
describe waves or transportation processes.

In addition to the PDE, suitable boundary conditions have to be im-
posed. Common boundary conditions for HJ equations are e.g. state con-
straint boundary conditions or von Neumann boundary conditions. These
will be addressed later in this chapter.

Viscosity Solutions

Let
F (x, u(x), Du(x)) = 0 (3.2)

with x ∈ Ω be a Hamilton-Jacobi equation.
The solutions of Hamilton-Jacobi equations are only defined in terms of

viscosity solutions. First of all, one needs to define what a viscosity solution
is.

Definition 3.1. A function v ∈ C(Ω) is called a viscosity subsolution of
(3.2), if for any ϕ ∈ C1(Ω), the inequality

F (x0, u(x0), Dϕ(x0)) ≤ 0 (3.3)

holds at any local maximum point x0 ∈ Ω of u − ϕ. u is called a viscosity
supersolution of (3.2), if the inequality

F (x0, u(x0), Dϕ(x0)) ≥ 0 (3.4)
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holds at any local maximum point x0 ∈ Ω of u− ϕ.
Finally, u is called a viscosity solution of (3.2), if is both a viscosity

subsolution and a viscosity supersolution.

Whenever dealing with HJ equations, solving the PDE means looking
for viscosity solutions of the PDE. The following proposition answers the
question whether a viscosity solution actually solves the PDE.

Proposition 3.2. 1. If v is a viscosity solution of (3.2), then (3.2) is
satisfied for every x where u is differentiable.

2. If u is locally Lipschitz continuous and is a viscosity solution of (3.2),
then (3.2) is satisfied almost everywhere in Ω.

The proof for this proposition can be found on page 31 of [4].

3.3 Discretisation

In order to present the basic components of the numerical method, we
employ the following notation:

• vni,j denotes the approximation of v (ih1, jh2, nτ).

• i and j are the coordinates of the pixel (i, j) in x1- and x2-direction
relative to the projection centre, respectively.

A key ingredient of any numerical method for a PDE is the discretisation
of derivatives. In this section, we discuss the most important concepts for
the discretisation of both derivatives in time and space.

Time Derivatives

Many SfS methods use iterative methods to solve the PDE. The methods
discussed and introduced in this chapter follow the same approach. In most
cases, this is done by introducing an artificial time into the PDE, e.g. the
first-order HJ equation

0 = H(x, u,∇u) (3.5)

which only depends on u and its spatial derivatives. Now, one intro-
duced an additional dependency for u on a time t and constructs the time-
dependent PDE

ut = H(x, u,∇u) . (3.6)
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The latter PDE now describes an evolving process in time, with the
limit of its solutions for t→∞ being the solution of the first PDE. By this,
it is possible to construct an easy-to-code iterative scheme for the numerical
solution for this PDE. For this, however, the temporal derivative ut has to
be discretised. For the methods discussed in this chapter, a standard Euler
forward discretisation is sufficient. It reads as

unt ≈
un+1 − un

τ
(3.7)

at the n-th iteration step, i.e. at time τn for a suitable time step size
τ > 0. un denotes the unknown function u at iteration n or time τn. The
choice of the time step size τ is not arbitrary. There usually is an upper
bound for the time step size which is necessary to ensure stability of the
numerical process. Such considerations will play a role later in this chapter.

Spatial Derivatives

Obviously, the PDE (3.6) not only depends on derivatives in time, but also
on derivatives in space. Since the image data is only given on a discrete grid
and so is the resulting depth field for SfS, it is necessary to find suitable
approximations for spatial derivatives as well.

For now, all considerations will be done in 1−D only, a 1−D stencil is
used for any partial derivative. For some methods, more complex derivative
approximations that compute directional derivatives are used, but they shall
not be discussed at this point.

The most simple approximation for a first derivative is an approximation
using central differences:

ux ≈
ui+1 − ui−1

2h
(3.8)

In this notation, h denotes the grid size. However, such a central ap-
proximation is usually not stable for hyperbolic PDEs. Another approach
would be to use forward differences

ux ≈
ui+1 − ui

h
(3.9)

or backward differences

ux ≈
ui+1 − ui

h
. (3.10)

Using a one-sided derivative approximation in the right direction is a
good and stable approximation for the purpose of solving hyperbolic PDEs.
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However, the wrong one-sided differences may produce unstable results as
well. It might vary over the image which one-sided differences are correct,
i.e., just using forward or backward differences is not a good choice as well.

A good solution to this problem, an upwind discretisation, has been pro-
posed for SfS by Rouy and Tourin in 1992 [77], which is based on [61]. They
propose a technique to choose the right direction for one-sided differences.
They propose to use the following derivative discretisation:

ux =
1

h
min {0, ui+1 − ui, ui−1 − ui} . (3.11)

This derivative approximation takes the one-sided derivative in the di-
rection from where the information is coming from. This is exactly the right
approach for SfS applications. However, this is not a consistent derivative
approximation. In the case of Eikonal equations in which Rouy and Tourin
used this approximation, the approximation was actually consistent, since
in that case, partial derivatives only appear squared. However, for SfS it is
necessary to use partial derivatives that are not squared. In that case, the
last expression in the minimum in (3.11) has the wrong sign. Therefore, if
the minimum turns out to take the value of ui−1 − ui, the sign needs to be
reversed to ui − ui−1 in order to actually obtain a consistent derivative ap-
proximation. This upwind discretisation will be the basis of the numerical
method introduced in this chapter.



102 CHAPTER 3. NUMERICAL METHODS FOR SFS

3.4 Previous Numerical Methods

There exists a vast amount of literature on numerical methods for SfS in
general. It would be far beyond the scope of this thesis to attempt a full
review of the existing literature. Instead, we will concentrate on the most
important papers here. This review of previous work should at least give a
good impression on previous research in this field. Many of the numerical
methods used for SfS come from the time when orthographic models have
been used for SfS. Therefore the first part of this review will consist of
a survey of the most important numerical concepts for classic SfS. Also,
we try to give an overview on the most important numerical methods for
perspective SfS. A special focus lies here on the most modern methods that
are based on Prados’ perspective model with light attenuation.

Readers interested in more references related to SfS may take a look
at the website of Durou [25], who made a publication list with SfS-related
papers including BibTeX entries for all of them.

3.5 Numerical Methods for Orthographic

Shape from Shading

For orthographic SfS, a lot of numerical approaches have been employed.
The first SfS method by Horn in 1970 [32] used characteristic strips to
solve the problem. Essentially, the method consisted of solving a system of
five ordinary differential equations. Details on this method can be found
in [32,33,35,38]. The characteristic strips method was one of very few non-
iterative methods for orthographic SfS. In 1988, Bruckstein [15] proposed a
much simpler contour-based non-iterative method which gave qualitatively
similar results.

Classic SfS methods have been dominated by variational methods, usu-
ally with the following concept: The squared difference between brightness
function of the surface and the grey values of the image is integrated over
the whole image domain. This functional is minimised by solving its Euler-
Lagrange equations. In general, the squared difference between brightness
function and image grey value, which is often also called the data term, is
not enough for obtaining a working method. For this reason, most authors
use a so-called smoothness term, which employs additional constraints such
as smoothness of the reconstructed surface. The best-known method of this
type is the one by Horn and Brooks [36]. Ikeuchi and Horn [39] suggested
a numerical strategy to avoid unbound gradients by applying stereographic
projection to the gradient. A similar strategy has been done by Smith in
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1973 [83], who used orthographic projection of the Gaussian sphere onto
a plane tangent instead of stereographic projection. The last method has
not been explicitly formulated as a variational approach, however, it can be
rationalised as a variational method, as done by Horn and Brooks in [37].
In 1993, Vega and Yang published a method for improving the stability of
the algorithm by Horn and Brooks by using a geometrical interpretation of
this algorithm [93].

In essence, all these variational methods are based on the same numerical
approach. Derivatives are mostly approximated using central differences.
The only major difference lies in smoothness terms. For instance, Zheng
and Chellappa introduced a method that employed an intensity gradient
constraint instead of an assumption on the regularity of the surface gra-
dient [108]. Malik and Maydan introduced a method that required not
smoothness of the image, but only piecewise smoothness [52].

One issue that is often neglected in the discussion of classic SfS methods
is the fact that the variational methods that formed the basis of classic SfS
research did not actually reconstruct the depth of the surface. They only
aimed at reconstructing the gradient of the depth, or the direction of the
surface normal, which is equivalent. This solution is obtained by solving
the Euler-Lagrange equations in the unknown functions p and q, which
correspond to the x- and y-derivatives of the depth, respectively. To obtain
the actual depth and thereby the shape of the surface, it was necessary to
recover the depth from the gradient information. Methods that do so are
called depth-from-gradient methods. The best-known such method is the
one Frankot and Chellappa published in 1988 [28], which integrated the
gradient field in the frequency domain. There is also more recent work on
depth-from-gradient methods by Agrawal et al. [1], for more methods in this
field see the references within that paper. Note these depth-from-gradient
methods did not only serve the purpose to recover the final depth, it was
also necessary to apply them after each or at least every couple of iterations,
since the numerical methods yield inconsistent gradient fields which do not
correspond to any surface, and the depth-from-gradient methods project
the iterated solution to a legal gradient field.

One exception to this is a work by Horn and Brooks [37], who proposed a
variational method for direct depth recovery. However, they obtained a di-
vergent scheme. In [94,98], a variational direct method has been developed,
which yields to a convergent scheme.

There are plenty other methods for classic SfS which are based on very
different numerical ideas, like geometric aspects [51,62], conjugate gradient
methods [48], only locally recovering the shape [49,63,103], linear approxi-
mation of the reflectance function [6,91], only to name a couple of examples.
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The most comprehensive survey work on numerical methods for classic
SfS up to the mid-1990s can be found in the paper of Zhang et al. [105],
which also introduces the synthetic test surfaces that have been most fre-
quently used in most SfS publications. However, the conclusion of said
paper was that classic SfS would not work at all. This is not entirely true.
In [94, 98], it is shown that using direct depth recovery, i.e. a numeri-
cal method directly aimed at recovering the depth without the need for a
depth-from-gradient method and adaptive smoothness terms, it is possible
to obtain visually convincing results even for orthographic SfS. The numer-
ical method was, as traditional numerical approaches, based on minimising
an energy functional using the Euler-Lagrange formalism. There are other
methods like the one by Ahmed and Farag [2], which use an optimal control
formalism based on the numerical framework Prados used for his modern
perspective method [67] for classic SfS. They also obtain reasonable results.

3.6 Perspective Shape from Shading and

Optimal Control Approaches

Since the 1990s, several groups came up with optimal control approaches for
SfS. Based on the dynamic programming principle [5], an optimal control
method introduces a cost functional, which is a functional of the state and
certain control variables. The method then consists of finding a path that
minimises this cost functional. For SfS applications, this can be interpreted
as paths towards the solution. In the relevant case for SfS, the optimal
control in each point always corresponds with the direction of the charac-
teristic line, i.e. the direction into which information is being propagated.
Generally, most SfS methods using optimal control approaches are based
on a perspective model.

The first to come up with an optimal control approach have been Dupuis
and Oliensis between 1991 and 1994 [23,24,56–60]. However, about the same
time, Rouy and Tourin proposed their method for perspective SfS solving
a Hamilton-Jacobi-Bellman equation [77].

However, not all SfS method use optimal control approaches. In particu-
lar, there are some publications dealing with discontinuous surfaces. For ex-
ample, in 1992 Kimmel and Bruckstein [42] used techniques from differential
geometry, fluid dynamics, and numerical analysis an orthographic method
that can deal with discontinuous surfaces. In 2000, Soravia [84] discussed
SfS with discontinuous intensity functions by solving HJ-equations with
discontinuous coefficients. Another perspective SfS method which finds the
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surface by synthesis of the image has been proposed by Courteille et al. in
2004 [19].

A very advanced numerical scheme for perspective SfS without light
attenuation has been presented by Tankus et al. in 2003 [86–90]. They use
a fast marching (FM) method for SfS, which is a very efficient solver. FM
methods will be discussed in further detail in the next chapter.

There exist survey papers on perspective SfS, naturally mainly dealing
with optimal control approaches, such as the work by Falcone et al. from
2003 [27] and the more general survey of Durou et al. [26].

The most successful optimal control approaches, however, are those us-
ing the perspective SfS model with light attenuation by Prados. A review
of the most important numerical schemes based on this model can be found
in [8, 12]. These methods are also the most influential previous numerical
approaches for perspective SfS in general.

Prados’ Approach

The most influential optimal control method goes back to Prados et al.
[67, 74]. Based on work by Rouy and Tourin [77], they proposed a frame-
work for SfS methods. While the main advance for SfS lies in the improved
model, the numerical method to solve it is also interesting. By straight-
forward application of the brightness equation in the perspective case, one
obtains a Hamilton-Jacobi equation. By means of a Legendre transform,
this can be transformed into a so-called Hamilton-Jacobi-Bellman (HJB)
equation, which is also a hyperbolic PDE. However, the HJB equation for
Lambertian perspective SfS with light attenuation derived by Prados con-
tains a supremum over the unit circle in the Hamiltonian. The point in the
unit circle at which this supremum, which is actually a maximum since the
unit circle is compact, is attained is called the optimal control. In essence,
they use an upwind discretisation in space and introduce an artificial time
and solve the HJB equation iteratively. However, a crucial part in their nu-
merical part is the determination of the optimal control in each pixel in each
iteration step. This is done by analytically finding extremal points in the
unit circle by standard calculus. This is quite an expensive step, though.
As done in the direct iterative method presented in this chapter, they use
a Gauß-Seidel-like solver to accelerate convergence. For more details on
optimal control methods, cf. [4, 47].
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Cristiani’s Approach

As Prados’ approach, the approach by Cristiani et al. [22] is based on the
perspective SfS model with light attenuation. As Prados’ method, it is an
optimal control approach. However, while Prados computes the optimal
control within the unit circle analytically, Cristiani samples the unit circle
and determines the optimal control by comparing these sampled points.
In addition to that, he uses a different derivative approximation, a semi-
Lagrangian method [21], which takes upwind derivatives in the direction of
the optimal control instead of the principal axes of the coordinate system.
This increases the rotational invariance of the method and is generally a
little more stable. Their results are competitive with the ones of Prados’
method, although on close inspection, small artefacts caused by the sam-
pling can occur. A finer sampling can reduce this effect, but at the expense
of a higher computational effort. In a standard configuration, their method
is a bit faster than Prados’ method.

Farag’s Approach

The work by Farag et al. [2] is numerically very similar to Prados’ work.
The main difference for this method lies on the model side, which has al-
ready been discussed in the previous chapter. However, with their different
model, they use a different derivative approximation as well. Instead of an
upwind discretisation, they use a Lax-Friedrichs scheme. This scheme has,
compared to an upwind scheme, the major drawback that it is much more
diffusive, making the reconstruction of hard edges more difficult. Its advan-
tage lies in the applicability to a larger range of Hamiltonians, in particular
many non-convex Hamiltonians, which is of advantage for their different
model. Except this detail, their method is practically identical to Prados’
framework. A major drawback of their numerical method, though, is that it
is not suited for employing in a fast marching method, since such methods
rely on upwind-type derivative discretisation. Fast marching methods will
be the focus of the next chapter.
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3.7 Iteratively solving the PDE

Regardless of the Hamiltonian being used, by introducing an artificial time
as in (3.6) the iterative scheme

un+1 = un − τH(x, u,∇u) (3.12)

is obtained.
This equation is not fully discretised yet. Besides a suitable choice for

the spatial derivative discretisation, which has been discussed in Section
3.3, it must be specified from which iteration step the data of u in the
Hamiltonian is taken. The simplest choice for this would be an explicit
time discretisation. In an explicit scheme, all u data in the Hamiltonian is
taken from the old time slice, which results in the scheme

un+1 = un − τH(x, un,∇un) . (3.13)

An alternative scheme would be a fully implicit scheme, reading as

un+1 = un − τH(x, un+1,∇un+1) . (3.14)

Generally, implicit schemes are more stable than explicit schemes. How-
ever, they are computationally much more involved, since depending on the
complexity of the Hamiltonian, highly nonlinear systems of equations have
to be solved. Fortunately, there is a third way: Take some parts from the
new time slice n + 1 and others from the old one. This is called a semi-
implicit scheme. Obviously, depending on the structure of the Hamiltonian,
there might be different ways of doing that.

Before actually proposing a discretisation for the SfS PDE and reviewing
the discretisations that were chosen for the optimal control methods for
the Lambertian model, a numerical scale analysis of the Phong SfS PDE
(2.15) will be done in the next section. This analysis will give insight into
numerical properties of the PDE and will give indication for good choices
of the discretisation.
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Table 3.1: Units

Term Unit
[f], [x1], [x2] m

[v], [ka], [kd], [ks], [Id], [Is] 1
[vx], [vy] 1/m
[I], [Ia] 1/m2

3.8 Numerical Scale Analysis of the Shape

from Shading Equation

In this section, a numerical scale analysis of the SfS PDE for the Phong
model (2.15) is performed. While this is a known technique e.g. in the
context of computational fluid dynamics [53], applying it in a computer
vision context is a novelty. Certainly, such an analysis is not restricted to
the problem of SfS and will have merit in other image processing and com-
puter vision contexts as well to motivate, analyse, and improve numerical
methods.

In a numerical scale analysis, the variables of interest are expressed via
a reference value times a normalised dimensionless new variable. This may
help in assessing the relationship between occurring terms and in under-
standing of the behaviour of numerical solutions. It also helps to find a
suitable constraint on the size of the time step.

Dimension of the Model

As a side effect of such a proceeding, it is possible to check if the dimensions
in a new model are put together correctly. Table 3.1 shows the units of the
occurring terms in the PDE (2.15). It follows easily, that [Q] = 1 and
[J ] = 1

m2m
2 = 1. For [W ] one obtains

[W ] =

√
m2

m2
+
(m
m

+
m

m

)2

+ 12 =
√

12 = 1 (3.15)

so that the composition of terms in the PDE (2.15) is dimensionless, which
is perfectly correct.
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Notations

In the following investigations scaling in the point location x = (x1, x2)T

and in the focal length f is employed. More specifically, the notation

x := xref · x̂ and f := fref · f̂ (3.16)

with the obvious reference values xref and fref is used, and where x̂ =
(x̂1, x̂2)T , f̂ are the scaled variables.

Note that the reference values x̂1, x̂2 and f̂ should be understood as
multiples of a characteristic pixel size h, compare the dimensions given in
Table 3.1.

Also, define the notion of a squared ratio via

γ :=
x2

ref

f 2
ref

. (3.17)

The Diffuse Term

In the first part of the analysis, the main part of the diffuse part of the
PDE is discussed. In this analysis, the diffuse source term is not considered
and will be the subject of a later paragraph.

Lemma 3.3. For the term J(x)W (x) of the model (2.15) holds

J(x)W (x) = f 3
ref ·

(I(x)− kaIa) f̂ 2

Q̂γ

·Wγ (3.18)

where

Q̂γ :=
f̂√

|x̂|2 · γ + f̂ 2

, Wγ :=

√
f̂ 2|∇v|2 + γ(∇v · x̂)2 +

1

f 2
ref

· Q̂2
γ .

(3.19)

Proof. The proof consists of two parts, one for J and one for W .
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For J(x) one obtains

(I(x)− kaIa) f2

Q(x)

= (I(x)− kaIa)
(
fref · f̂

)2

√
|xref · x̂|2 +

(
fref · f̂

)2

fref · f̂
(3.20)

= fref (I(x)− kaIa) f̂ 2 ·

√
|x̂|2 · x2

ref + f̂ 2 · f 2
ref

f̂
(3.21)

= f 2
ref ·

(I(x)− kaIa) f̂ 2

Q̂γ

. (3.22)

We now turn to the term W (x). Plugging in the terms from (3.16), a simple
computation gives√

f2|∇v|2 + (∇v · x)2 +Q(x)2

=

√√√√√√(fref · f̂
)2

|∇v|2 + (xref∇v · x̂)2 +

(
fref · f̂

)2

|xref · x̂|2 +
(
fref · f̂

)2(3.23)

= fref ·Wγ . (3.24)

The multiplication of the results from (3.22) and (3.24) concludes the proof.

Consider now the range of variables in (3.18) and (3.19):

• (I(x)− kaIa) is in [0, 1].

• f̂ is in (0, 1]; one may set f̂ = 1.

• x̂1, x̂2 are in [−1, 1].

• γ is typically in the range of
[

1
2
, 1
]

in the experiments. This implies

Q̂γ ∈ (0, 1].

• fref is typically of the order 102 to 106 (times h) in the experiments.

These aspects lead to some conclusions:

(a) By the factor f 3
ref it becomes clear that the PDE is quite stiff. More-

over, this problem becomes even more significant for large focal lengths.
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(b) The term 1/f 2
ref · Q̂2

γ is virtually unimportant. Its strongest contri-
bution is close to the projection centre, roughly decreasing quadrat-
ically. In the experiments, this means it decreases to approximately
10−1 · 1/f 2

ref with the distance from the centre.

(c) The factor 1/Q̂γ grows from 1 at the image centre to (2γ + f̂ 2)/f̂ at
the image boundary. In the experiments, this is roughly a factor of
2− 3 for x̂ near the image boundary.

(d) If x̂ is close to the image corners, i.e., for x̂ ≈ (±1,±1)T , one obtains
a notable contribution from the term γ(∇v · x̂)2.

These conclusions show that the spatially dependent contributions involved
in the part J(x)W (x) of the PDE are important close to the boundary,
see (c)-(d). Moreover, the factor f 3

ref appears in (3.18) which indicates a
strong contribution of the Lambertian part within the Phong SfS model
(2.15). The term 1/f 2

ref · Q̂2
γ is of negligible size compared to all other

contributions.

The Specular Term

Now the contribution by the specular term is considered.

Lemma 3.4. For

A :=

(
2Q(x)2

W (x)2
− 1

)α
(3.25)

it holds A ∈ [0, 1].

Proof. Rewrite the term below the bracket yields

2Q2

W 2
− 1 =

2Q2 − f2|∇v|2 + (∇v · x)2 +Q2

W 2
=

Q2 − f2|∇v|2 + (∇v · x)2

W 2
.

(3.26)
Since it is possible to draw a factor f 2

ref out of the nominator and the
denominator in (3.26), in total no contribution in terms of a factor fref

arises. By (2.17) holds A ∈ [−1, 1]. Then A ∈ [0, 1] follows since a negative
number will be mapped to zero by the Phong reflectance rule.

Slightly rearranging the specular term from (2.15) gives

ksIs exp (−2v(x))A · W (x)

Q(x)
. (3.27)
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Thus, the specular term is similar to J(x)W (x), see (2.15)-(2.17), which
can be written as

J(x)W (x) = (I(x)− kaIa)f2 ·
W (x)

Q(x)
. (3.28)

The result of a comparison of terms in (3.18) and (3.28) is then summarised
via

Proposition 3.5. For the specular term of the Phong SfS model (2.15)-
(2.17) holds

ksIs exp (−2v(x))A · W (x)

Q(x)
= fref exp (−2v(x)) · ksIs

Q̂γ

A ·Wγ . (3.29)

A comparison of results in Lemma 3.3 (setting f̂ := 1) and Proposition
3.5 reveals an important mechanism of the Phong-based SfS model. The
factor f 3

ref in (3.18) is considerably larger than the factor fref in (3.29).
This implies that only at highlights an important contribution due to the
specular term is obtained, since only there the factor exp (−2v) in (3.29) is
of the same order of magnitude as f 2

ref . In the other parts of the image, the
terms also occuring in the Lambertian SfS model dominate the setting.

Note also that this qualitative assessment relies on the magnitude of kd
and ks.

The Diffuse Source Term

Now turn to the diffuse source term, kdId exp (−2v(x)) from (2.15). Also in
this case, an important contribution may only arise at highlights. Moreover,
no factor fref arises as in (3.29). Thus, the diffuse source term is rather small
compared to the other parts of (2.15).
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3.9 The Numerical Method

For actually solving the PDE, the method of artificial time as described in
Section 3.3 is used.

Dropping for abbreviation the dependence on spatial and temporal vari-
ables, the augmented, time-dependent PDE reading as

vt = f−3
ref JW − f

−3
ref

WksIs
Q

exp (−2v)

(
2Q2

W 2
− 1

)α
︸ ︷︷ ︸

=: B

−f−3
ref kdId exp (−2v)

(3.30)
is to be solved.
In defining τ , the knowledge from the numerical scale analysis and com-

putation in a pointwise fashion is used, i.e., τ = τi,j. The reason for this
is the spatially dependent factor analysed in the previous section, see the
conclusions (c) and (d) there. If we would define τ as a constant number
globally for the whole image, it would need to satisfy the stability condition
near the image boundary, which is the critical region in this context. This
would come at the price of converging very slowly in the centre region of
the image. Since the aim is to compute the steady state defined by vt = 0,
a pointwise choice of τ is feasible.

The discretisation of I(x) and Q(x) is simple as these terms can be
evaluated pointwise at all pixels (i, j). This naturally results in a consistent
approximation of these terms.

The Source Terms

Being a factor within the part of the scheme where upwinding is employed,
ksIse

−2v is discretised at pixel (i, j) using the known data at point (i, j),
i.e., setting ksIse

−2vni,j . This is also adequate as the corresponding specular
term in practice only yields notable contributions at highlights; compare
the discussion after Proposition 3.5.

Finally, consider the diffuse source term f−3
ref kdIde

−2v. Source terms like
this typically enforce the use of very small time step sizes when evaluated
explicitly, leading to very long computational times. However, in the nu-
merical scale analysis it became clear that this source term generally yields
a very small contribution, and even at highlights its contribution is of one
order in fref lower than the specular contribution. Thus, it can be discre-
tised it in an explicit way:

f−3
ref kdIde

−2v(x,t)|(x,t)=(ih1,jh2,nτ) ≈ f−3
ref kdIde

−2vni,j . (3.31)
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This is in contrast to previous works [67, 96] where the intuition to dis-
cretise source terms implicitly was employed, and it gives a computational
advantage w.r.t. efficiency.

Scheme summary. The scheme and its obvious properties by construc-
tion can be summarised via

Proposition 3.6. Let B̂ denote the discretised version of term B from
(3.30). Then one obtains pixelwise the consistent discretisation

vn+1
i,j = vni,j − τB̂ − τf−3

ref kdIde
−2vni,j . (3.32)

As the method is explicit, there is a stability condition on the time step
size [18].

3.10 Gauß-Seidel-type Iteration

At pixel (i, j) the data

vi,j+1

vi−1,j vi,j vi+1,j

vi,j−1

(3.33)

are used within the upwind differences. Consider for the moment that the
iteration is done pixel-wise from left to right and, beginning with the top
line, from top to bottom over the computational grid. Thus, ascending in i
and descending in j, incorporate already computed values into the scheme.
In the considered case, this gives

vx1(x, t)|(x,t)=(ih1,jh2,t) ≈ min

(
0,
vni+1,j − vni,j

h1

, (−)
vn+1
i−1,j − vni,j

h1

)
,(3.34)

vx2(x, t)|(x,t)=(ih1,jh2,t) ≈ min

(
0,
vn+1
i,j+1 − vni,j

h2

, (−)
vni,j−1 − vni,j

h2

)
.(3.35)

where (−) means that this term needs to be multiplied by a factor −1
if it is the smallest term in the minimum expression.

3.11 Fast Sweeping

While a Gauß-Seidel-like technique generally speeds up convergence of a
method compared to a fully explicit scheme, a Gauß-Seidel-like scheme
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usually passes over an image always in the same direction. This can give a
directional bias to the solution and have bad convergence properties based
on the actual problem. If information needs to propagate against the direc-
tion in which the scheme passes over the image, there will be no advantage
in the Gauß-Seidel-like approach any more compared to a fully explicit
scheme. However, by changing the direction in which the image is pro-
cessed, it is possible to overcome this problem. Such a technique is called
fast sweeping.

Now, a sweeping technique adopted from the works [106, 107] is used.
The reason behind the use of this technique is as follows. Staying within
the Gauß-Seidel-type framework, in a pixel (i, j) updated values are always
taken into account just from the left, see (3.34), and from above, see (3.35).
Therefore, information is numerically propagated faster in the directions
“from left to right” and “from top to bottom” as in all other possible direc-
tions. As a remedy, one may switch the iteration directions in the following
cyclic fashion:

1. Left → Right, and Top → Bottom

2. Top → Bottom, and Right → Left

3. Right → Left, and Bottom → Top

4. Bottom → Top, and Left → Right

Exactly this procedure is called sweeping. Defining the sweepings as above
different values vn+1

i±1,j±1 are needed to be taken into account in (3.34)-(3.35)
depending on the sweeping direction.
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3.12 A Direct Method

As mentioned before, optimal control approaches for Prados’ model aim
at solving a Hamilton-Jacobi-Bellman equation which is derived from a
Hamilton-Jacobi equation using the Legendre transform. In this section, a
direct method will be presented that aims at solving the Hamilton-Jacobi
equation directly. A natural step would be to do this first for the Lambertian
model and then extend the numerics to the extended model presented in
Section 2.5. This has been done in [96]. However, since the Lambertian
model is only a special case of the Phong model, this section introduces the
direct numerical method for the Phong model as well.

Cascading Multigrid

In addition to the sweeping and Gauß-Seidel-type technique, another way
to accelerate the convergence speed of the method is a multigrid technique
[7]. The principle can be explained quite easily. Since the computational
complexity of the method is worse than linear in the number of pixels, it
can be beneficial to sample the input image down to a coarser grid, solve
the PDE on this coarser grid and use the result as an initialisation for the
method on the actual grid. Certainly, this can be iterated to even coarser
grids which are subsequently refined. For simplicity, only downsampling
by a factor 2 in every dimension will be considered. Consequently, this
method will only be evaluated on images with sizes of powers of two in
every dimension.

Downsampling of the Image

A natural way of downsampling the image would be to use some standard
interpolation technique like linear or cubic interpolation. However, for the
application of SfS, this is clearly the wrong approach. Since greater depths
generally correspond to darker pixels and the visual impression of the down-
sampled image is not important, the correct way to sample the image down
is to take the minimum of the four pixels that are merged to one pixel.
Therefore, just passing over the image and merging blocks of 2×2 pixels to
one image in this way is the downsampling method used for this application.

In addition to the downsampling of the input image itself, the recon-
struction parameters have to be adjusted. The best way to do that is to
adjust the grid widths according to the downsampling. In fact, the only
adjustment that is necessary when sampling an image down one level is to
double the mesh widths h1 and h2. All other parameters remain the same.
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Prolongating the Solution to a Finer Grid

A natural way of prolongating the solution on a coarse grid to the next
finer grid would be to interpolate the solution. However, for SfS, this might
not be correct. The worst thing that could happen is that the interpolated
values are too low. For that reason, the most simple and generally correct
way is just to repeat the value of a pixel to its neighbours. With that
proceeding, no new minima in depth are created and the depth field remains
consistent.

As it was necessary to double the mesh widths when switching to a
coarser grid, it is equally important to halve the mesh widths when changing
to a finer grid.

Iterating on Coarser Levels

The idea is clear: Iterate on a coarse level, then refine, iterate, refine, etc.,
unless the finest level is reached. One question, however, still remains:
When to stop iterating on a coarse level? Basically, there are two different
approaches to this.

• Iterate on the coarse levels until convergence, i.e. until a certain
threshold for the maximum change in depth is reached.

• Iterate a fixed number of just a few iterations on coarse levels, and
only iterate until convergence on finer levels.

Both approaches have merit. Therefore, we implemented both of them.
In the experimental evaluation of this chapter, a discussion on the differ-
ence between these two approaches will take place and their effect on the
computation time will be investigated.

Boundary Conditions

The upwind discretisation employed in (3.34)-(3.35) has the benefit to give
automatically reasonable results for the state constraints boundary condi-
tions that should be used [67]. The state constraint boundary conditions
can be realised via Dirichlet boundary conditions with a function ϕ ≡ +∞
(in practice, just a very large number is used) at the image boundary.

Note that for this specific upwind discretisation, von Neumann bound-
ary conditions are the same as state constraints boundary conditions, since
for state constraint boundary conditions the derivative outside of the im-
age domain the expression in the minimum always evaluates to a positive
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value, and is therefore neglected. Likewise, for Neumann boundary pix-
els, the boundary pixel value is just repeated outside of the image domain,
which results in the respective difference in the minimum term being auto-
matically equal to zero. Therefore, these two types of boundary conditions
are identical within this discretisation scheme.

3.13 Stability

A meaningful stability notion is a discrete maximum-principle: monotony
means that given an initial bound on the data, this bound is conveyed to all
later times by a monotone method. This is a stability notion since viscosity
solutions also obey this kind of comparison principle.

An explicit scheme like (3.32) is typically conditionally stable: The use of
too large time step sizes leads to instability of numerical solutions. In order
to ensure the validity of the discrete maximum-principle, a local version of it
has to be used, namely that the update is not allowed to become smaller or
larger than the neighbouring data within the stencil. If this condition is met
pixel-wise, the validity of the global discrete maximum-principle follows.

In order to realise the described concept, it turns out that it is useful to
consider in a first step the update formula (3.32) without the diffuse source
term. Since the term f−3

ref JW and the specular term arise additively in

B̂ = f−3
ref JW − f

−3
ref

WksIs
Q

exp (−2v)

(
2Q2

W 2
− 1

)α
, (3.36)

one may add up the resulting constraints. The diffuse part is discussed
separately at the end of this paragraph.

It is useful for the analysis to introduce a simplified notion for the spatial
mesh width: let

h := min (h1, h2) . (3.37)

Now, different contributions to the stability condition are assembled.

Lemma 3.7. The term f−3
ref JW in B̂ implies a restriction

τi,j ≤
Q̂γh

(Ii,j − kaIa) f̂ 2

√
2f̂ 2 + γ (x̂1 + x̂2)2

(3.38)

up to first order in f−1
ref on the time step size, where x = (x1, x2) are the

pixel coordinates.
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Remark 3.8. At the end of this paragraph, it is shown that terms of first
order in f−1

ref do not give a meaningful contribution to the stability condition.

Proof of Lemma 3.7. A local discrete maximum principle is valid pro-
vided τ satisfies the condition∣∣τf−3

ref JW
∣∣ ≤ δv , (3.39)

where

δv = max (|vi+1,j − vi,j| , |vi−1,j − vi,j| , |vi,j+1 − vi,j| , |vi,j−1 − vi,j|) .
(3.40)

By (3.39)–(3.40) it is ensured that the update introduced via τi,jf
−3
ref JW

stays within the convex hull of the data {vi+1,j, vi,j, vi−1,j, vi,j+1, vi,j−1} that
contribute in the computational stencil. The values in δv are taken from
time level n or n+ 1, depending on the sweeping direction, respectively.

Employing the abbreviation ∇v̂ for the discretisation of ∇v within W ,
one computes

|∇v̂|2 ≤
(√

2δv2/h2
)2

= 2δv2/h2 , (3.41)

(∇v̂ · x)2 ≤ ((x1 + x2) δv/h)2 = (x1 + x2)2 δv2/h2 , (3.42)

where x = (x1, x2) denotes the pixel coordinates. At the pixel with index
(i, j) this is equal to (ih1, jh2), i.e. a scaling by use of xref is not taken into
account in the above formulation.

Denoting by Ŵ the discretised version of W and using Q̂2
i,j ≤ 1, one

obtains

Ŵ ≤ fref ·

√
2f̂ 2 + γ (x̂1 + x̂2)2

h2
δv2 +

1

f 2
ref

. (3.43)

This infers

f−3
ref JW

∣∣
(i,j)
≤ (Ii,j − kaIa) f̂ 2

Q̂γ

·

√
2f̂ 2 + γ (x̂1 + x̂2)2

h2
δv2 +

1

f 2
ref

(3.44)

where Q̂γ depends on (i, j). By identifying the root term in (3.44) with
the Euclidean norm of an expression of the format

√
a2 + b2, employ the
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triangle inequality to obtain:√
2f̂ 2 + γ (x̂1 + x̂2)2

h2
δv2 +

1

f 2
ref

≤ 1

fref

+ δv ·

√
2f̂ 2 + γ (x̂1 + x̂2)2

h2

=
δv

h
·
(

h

δv · fref

+

√
2f̂ 2 + γ (x̂1 + x̂2)2

)
. (3.45)

This implies∣∣τf−3
ref JW

∣∣ ≤ δv (3.46)

⇔ τ · δv
h

(Ii,j − kaIa) f̂ 2

Q̂γ

(
h

δv · fref

+

√
2f̂ 2 + γ (x̂1 + x̂2)2

)
≤ δv ,

or, equivalently,

τ ≤ Q̂γh

(Ii,j − kaIa) f̂ 2

√
2f̂ 2 + γ (x̂1 + x̂2)2

− f−1
ref τh ·

(Ii,j − kaIa) f̂ 2

δv · Q̂γ︸ ︷︷ ︸
∈ O(f−1

ref )

. (3.47)

Neglecting as announced the last term since it is in O(f−1
ref ) gives the desired

result.

Now approach the factor exp (−2vni,j) occurring in the specular term and
the diffuse source term.

Lemma 3.9. Let umin denote the minimal distance an object is away from
the camera. Assume the validity of the following model assumption:

u ≥ umin > 0 . (3.48)

Then one finds

exp (−2vni,j) ≤ exp (−2 ln (umin)) =
1

u2
min

. (3.49)

Furthermore, since the images are preprocessed to eliminate pixels with grey
value 0, there exists an upper bound umax on u.
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Remark 3.10. The assumption (3.48) is not a restriction. This avoids
division by zero. Moreover, the situation that an object is directly before the
camera is not of practical interest.

Remark 3.11. The assumption of having no ’black pixels’ is usually made
for SfS algorithms without a detailed explanation as given here, see e.g.
[67, 74].

Proof of Lemma 3.9. As I is normalised, by substituting f2u2 for r2 in
(2.2) one obtains

Ii,j − kaIa ≤
1

f2u2
. (3.50)

After some trivial manipulations, the latter inequality leads to

u ≤ 1

f
√
β
, where β := min

i,j
(Ii,j − kaIa) , (3.51)

and where β > 0 since ’black pixels’ are eliminated in a preprocessing step.
Thus, by (3.51) one can impose an upper bound umax on the reconstruction
depth.

Furthermore, by (3.50) fix umin via

f2 max
i,j

(Ii,j − kaIa) =
1

u2
min

. (3.52)

To summarise, (3.49) follows by

u ∈ [umin, umax] ⇒ ln(u) ∈ [ln (umin) , ln (umax)] . (3.53)

Having the result of Lemma 3.9, it is now possible to approach the
specular term.

Lemma 3.12. The specular term implies the stability restriction

τi,j ≤
Q̂γh

ksIs

√
2f̂ 2 + γ (x̂1 + x̂2)2

. (3.54)

Proof. By Lemma 3.4, the factor(
2Q2

i,j

Ŵ 2
− 1

)α
(3.55)
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within the discretised specular term

f−2
ref

ŴγksIs

Q̂γ

exp (−2vni,j)

(
2Q2

i,j

Ŵ 2
− 1

)α
(3.56)

can be estimated by 1. Thus, by Lemma 3.4 and Lemma 3.12, find analo-
gously as in Lemma 3.7 the estimate

τi,j ≤
f 2

refu
2
minQ̂γh

ksIs

√
2f̂ 2 + γ (x̂1 + x̂2)2

. (3.57)

By (3.52), since maxi,j (Ii,j − kaIa) ∈ (0, 1], the number f 2
refu

2
min is in general

larger than 1. This implies the estimate (3.54).

Now turn to the diffuse source term

f−3
ref kdIde

−2vni,j . (3.58)

As by Lemma 3.9, one could estimate e−2vni,j by u−2
min. Then (3.52) shows

that f−2
ref u

−2
min is identical to maxi,j (Ii,j − kaIa). A factor f−1

ref remains. This
factor leaves the time step size restriction due to the diffuse source term of
the same order O(f−1

ref ) as the term

f−1
ref τh ·

(Ii,j − kaIa) f̂ 2

δv · Q̂γ

(3.59)

neglected after (3.47). Up to the correct signs before the terms, this can be
summarised via

Proposition 3.13. The stability investigation incorporates the following
contributions to the time step restriction:

τf−1
ref ·

(
(Ii,j − kaIa) f̂ 2

δv · Q̂γ

h+ kdId

)
≤ δv . (3.60)

The restrictions from (3.60) are in practice not of importance, since the
remaining terms impose a much harder constraint. Moreover, heuristically
the terms multiplied with τ may only become large enough to be of some
significance if δv is close to zero, in which case any minor oscillation violating
stability is not visible in any of the tests.

This can be summarised, incorporating the results of Lemma 3.7 and
Lemma 3.12, by
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Proposition 3.14. For the SfS application, the time step size τi,j can be
estimated as

CFL · Q̂γh√
2f̂ 2 + γ (x̂1 + x̂2)2

·

(
1

ksIs
+

1

(Ii,j − kaIa) f̂ 2

)
(3.61)

where one usually sets CFL := 0.9 < 1.

3.14 Effectiveness of the Gauß-Seidel-like

Method and Fast Sweeping

In this first evaluation of the numerical method, the goal is to test two of
the ingredients of the numerical solver for their influence on the convergence
speed. To give one result directly in advance, they do not have an actual
effect on the numerical result. However, both the Gauß-Seidel-like scheme
and the fast sweeping certainly will have an influence on the number of
iterations needed and the time in which the algorithm converges.

This will be the last section in this chapter where results without the
Gauß-Seidel-like scheme or fast sweeping will be considered. Note that for
results with fast sweeping, one iteration will be a full sweeping cycle, i.e.
one iteration with fast sweeping is comparable to four iterations without
fast sweeping.

3.15 Comparison of the Different Schemes

Another interesting point of the evaluation of the numerical scheme is com-
parison against other numerical schemes. Existing methods that are based
on similar models are the optimal control schemes of Prados et al. and
Cristiani et al. However, since these schemes are only for Lambertian sur-
faces, the method presented in this chapter is restricted to the Lambertian
case as well. For the optimal control approaches, a similar Gauß-Seidel-like
scheme has been proposed by the authors [22, 74]. However, they did not
use fast sweeping. Since fast sweeping improves the performance of these
methods as well, a comparison of all methods using fast sweeping will give
a better comparison of the underlying numerical scheme.

Table 3.2 shows the run times and number of iteration for the different
schemes on different images. To give a general impression, the table contains
all the run times for the focal length experiment in Chapter 2. The tests
have been performed without any parallelisation on an Intel Core2 Duo
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Table 3.2: Comparison of the run times for the different methods for Lam-
bertian methods. All times are given in seconds.

Number of Iterations Run Time
Surface f Direct Prados Cristiani Direct Prados Cristiani

Vase 125 61 21 19 2.04 9.83 6.68
Vase 250 83 26 26 2.75 12.12 8.88
Vase 500 64 31 24 2.12 13.58 7.96
Vase 1000 44 19 19 1.26 4.97 5.20

Mozart 125 140 26 29 19.27 49.30 42.57
Mozart 250 78 30 27 10.45 56.79 37.30
Mozart 500 89 33 29 11.89 60.40 39.21
Mozart 1000 102 79 55 11.59 115.92 61.87

E4600 at 2.4 GHz with 2 MB Cache running Linux. The visual results can
be found in Section 2.7. As stopping criterion for all experiments a change
of less than 10−4 in the logarithmic depth v in one iteration for all pixels has
been employed. For Cristiani’s method, the unit circle has been sampled in
eight directions and three rings, which improves the performance compared
to more directions. Frequently, even more samples are used for this method,
eight directions is the minimum that actually gives convincing results.

This experiment demonstrates that the direct method is significantly
faster than the optimal control approaches. Despite taking a lot more it-
erations, iterations are so much faster that in the end, this method still
has a large advantage in terms of computation time. Generally, the direct
approach benefits a little from larger focal lengths, while optimal control
approaches perform similarly for different focal lengths.

In a second experiment, the run times for different specularities shall be
discussed. Again, the images at f = 500 are used, the visual results and
errors can be found in Section 2.8. Table 3.3 shows iteration numbers and
run times for different specular highlights for the vase experiment, Table
3.4 the results for the Mozart face experiment.

This gives interesting results. For very small amounts of specular high-
lights, the direct method outperforms the optimal control approaches. How-
ever, for images where specular highlights dominate, the direct method
needs significantly more iterations to converge and becomes slower. This
is not so surprising, because after all, the optimal control approaches still
solve the easier problem of a Lambertian surface, despite the image contains
specular highlights. It is not surprising that the run times remain about
constant for these Lambertian models. On the other hand, the Phong PDE
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Table 3.3: Comparison of the run times for the different methods on spec-
ular images of the vase. All times are given in seconds.

Number of Iterations Run Time
ks α Direct Prados Cristiani Direct Prados Cristiani
0.1 5 62 27 22 2.44 12.19 7.58
0.2 5 59 22 18 2.35 10.17 6.29
0.3 5 54 20 18 2.10 9.18 6.21
0.4 5 81 19 15 3.17 8.74 5.22
0.5 5 140 20 15 5.54 9.26 5.36
0.6 5 209 21 15 8.30 9.71 5.20
0.7 5 279 22 17 10.95 10.26 6.19
0.8 5 366 22 18 12.46 10.34 6.31
0.1 10 62 26 22 2.48 11.84 7.62
0.2 10 60 21 21 2.36 9.60 7.33
0.3 10 59 20 17 2.34 9.30 5.88
0.4 10 73 21 18 2.90 9.73 6.23
0.5 10 157 22 19 6.27 10.26 6.58
0.6 10 393 23 20 15.56 10.60 6.95
0.7 10 414 23 20 15.93 10.84 7.02
0.8 10 1290 23 19 42.57 10.77 6.60
0.1 20 66 27 22 2.59 12.32 7.64
0.2 20 57 20 21 2.27 9.12 7.28
0.3 20 55 20 19 2.20 9.29 6.59
0.4 20 86 19 19 3.46 8.88 6.59
0.5 20 308 22 19 12.34 10.19 6.56
0.6 20 524 22 21 20.44 10.20 7.30
0.7 20 1791 23 23 67.87 10.82 8.01
0.8 20 3823 22 24 124.97 10.27 8.38
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Table 3.4: Comparison of the run times for the different methods on spec-
ular images of the Mozart face. All times are given in seconds.

Number of Iterations Run Time
ks α Direct Prados Cristiani Direct Prados Cristiani
0.1 5 88 32 30 13.77 60.03 41.25
0.2 5 85 31 30 13.50 57.97 41.35
0.3 5 83 30 33 13.08 56.43 45.55
0.4 5 88 29 33 13.79 54.64 45.51
0.5 5 141 28 33 22.10 52.68 45.55
0.6 5 250 27 34 38.91 50.71 46.96
0.7 5 286 27 34 42.88 51.32 47.05
0.8 5 385 26 32 46.53 49.23 44.18
0.1 10 87 34 30 13.52 63.22 40.86
0.2 10 91 31 30 14.34 57.13 40.71
0.3 10 89 29 30 14.02 53.25 40.89
0.4 10 89 28 31 14.02 51.95 42.22
0.5 10 159 27 32 25.04 50.32 42.97
0.6 10 725 26 33 112.72 47.95 44.58
0.7 10 769 25 30 110.06 46.19 41.64
0.8 10 1372 24 31 152.77 44.85 42.02
0.1 20 97 33 30 15.26 60.11 40.05
0.2 20 91 31 31 14.40 57.69 41.86
0.3 20 85 29 31 13.55 53.46 42.29
0.4 20 91 27 32 14.42 49.88 43.52
0.5 20 426 26 31 66.38 47.85 41.91
0.6 20 617 25 32 93.82 46.65 43.32
0.7 20 1970 24 29 279.20 44.60 39.25
0.8 20 3689 21 24 326.5 39.19 32.47

is significantly more complex, so the higher run time for the Phong recon-
struction is not surprising. For increasing α, the reconstruction becomes
even more difficult.

3.16 Effectiveness of the Cascading

Multigrid Method

In this paragraph, the effect of the cascading multigrid method shall be
evaluated. As mentioned before, there is a key decision to be made when
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actually applying the cascading multigrid method: how far to iterate the
solution on coarse grids. In this section both variants will be addressed.
Since the results are qualitatively the same, the focus will lie on run times.
As usual, the evaluation will be done on the vase and the Mozart face,
whose reconstructions and depth errors have been discussed in Chapter 2.

Table 3.5 shows the run times and number of iterations on the finest level
for the Lambertian vase experiment for all the three numerical methods for
both variants of the cascading multigrid. For the results of all methods,
both the Gauß-Seidel-like scheme and fast sweeping have been employed.

In all the experiments except one, the direct method achieves a decent
speed-up when iterating until convergence on coarse levels. For only a few
iterations on coarse levels, the direct method even becomes slower in many
cases. The main reason for this can be seen in the convergence analysis
from Section 3.17: While iterations are generally much faster than for the
optimal control approaches, more iterations are needed to get to a good
estimate. Five iterations on the coarse levels are simply not enough for the
method to obtain a decent estimate. On the finest level, one ends up with
an estimate that is worse than the initial estimate in the method on a single
grid. For the optimal control approaches, this is different. On the coarse
grids, these methods are only a few iterations away from convergence, which
results in no big difference between iterating until convergence and the fixed
number of iterations. In some cases, the fixed number of iterations even
performs slightly better. The direct method gains the best improvement in
terms of final run time on large and on images with a small focal length,
while the optimal control approaches achieve similar speed-ups through all
experiments, with Cristiani’s method being a bit better on the small image.

3.17 Convergence Analysis

In the previous section, it became clear that the direct method takes signifi-
cantly more iterations to converge than optimal control approaches. Never-
theless its run times were significantly smaller than for the optimal control
approaches. This raises an interesting question: How exactly do the two
methods reach that result? Do they converge in the same way? One way to
evaluate this is to observe one type of error during iteration of the method:
The maximum change in logarithmic depth. For the Lambertian experi-
ment with f = 500, graphs of this error for both experiments can be found
in Figure 3.1. The errors are plotted on a logarithmic scale.
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Table 3.5: Comparison of the cascading multigrid performance for all meth-
ods (Direct, Prados, and Cristiani). If the iteration number on coarser levels
is marked as ∞, then until convergence is meant, ”-” means no cascading
multigrid has been used. The convergence threshold is always 10−4. All
times are given in seconds.

Iters Iterations (finest) Run Time
Surface (coarse) f D P C D P C

Vase - 125 61 21 19 2.04 9.83 6.68
Vase ∞ 125 28 7 8 1.22 3.18 3.17
Vase 5 125 113 7 8 3.82 3.05 3.16
Vase - 250 83 26 26 2.75 12.12 8.88
Vase ∞ 250 32 13 8 1.29 6.88 3.34
Vase 5 250 185 13 8 6.22 6.53 3.24
Vase - 500 64 31 24 2.12 13.58 7.96
Vase ∞ 500 28 14 7 1.19 7.19 3.04
Vase 5 500 176 14 7 5.91 6.71 2.80
Vase - 1000 44 19 19 1.26 4.97 5.20
Vase ∞ 1000 57 4 5 1.74 1.86 1.82
Vase 5 1000 68 4 5 2.03 1.76 1.74

Mozart - 125 140 26 29 19.27 49.30 42.57
Mozart ∞ 125 81 14 17 12.60 19.97 25.65
Mozart 5 125 189 14 17 25.42 19.98 25.07
Mozart - 250 78 30 27 10.45 56.79 37.30
Mozart ∞ 250 35 14 12 6.54 23.68 19.47
Mozart 5 250 285 14 12 38.83 22.62 18.73
Mozart - 500 89 33 29 11.89 60.40 39.21
Mozart ∞ 500 51 18 15 9.14 38.54 25.26
Mozart 5 500 246 19 15 33.13 37.49 22.95
Mozart - 1000 102 79 55 11.59 115.92 61.87
Mozart ∞ 1000 74 25 23 9.50 40.15 29.23
Mozart 5 1000 122 25 23 14.42 37.77 27.83
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Figure 3.1: Development of the iteration error on vase and Mozart face
(both f = 500) for the different schemes using a threshold of 10−4.

3.18 A Hybrid Method

The key observation in the previous section is that the optimal control
approaches take only very few iterations to get from about 10−3 to 10−4,
while the direct method takes significantly less time to converge to a maxi-
mal change per pixel of 10−3. The natural way to proceed now is to combine
both numerical techniques. For that, a very simple approach is followed:
up to a certain maximal change per pixel the direct method is used, and
then the iteration switches to one of the optimal control approaches.

Since Cristiani’s method is generally faster than Prados’ method, it
should be the better choice for this experiment. For both the vase and the
Mozart face, three experiments will be done:

1. Both algorithms are ran separately on the images to a stopping con-
dition of 10−6, which is significantly larger than the usually employed
stopping condition. However, this will emphasize the effect of the
experiment.

2. The direct method will iterate to a stopping condition of 10−3, after-
wards the method is switched to Cristiani’s optimal control scheme
until the stopping condition of 10−6 is reached.

3. In principle the same as in the second experiment, just with 10−4 as
the intermediate stopping condition.

Figure 3.2 shows the plots of the convergence behaviour of both methods
running separately. Figure 3.3 shows the convergence behaviour of the
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Figure 3.2: Development of the iteration error on vase and Mozart face
(both f = 500) for the different schemes using a threshold of 10−6.

Table 3.6: Iteration Numbers and run times of the standard (S) methods
vs. the hybrid (H) method.

Direct Method Cristiani’s method Total
Exp N/H Th. Iters Time Th. Iters Time Time
M S 10−6 202 26.49 - - - 26.49
M S - - - 10−6 33 44.82 44.82
M H 10−3 48 6.45 10−6 20 26.82 33.27
M H 10−4 89 11.82 10−6 20 27.40 39.22
V S 10−6 217 7.10 - - - 7.10
V S - - - 10−6 28 9.48 9.48
V H 10−3 23 0.77 10−6 19 6.44 7.21
V H 10−4 64 2.16 10−6 14 4.83 6.99

hybrid method using the 10−3 threshold, Figure 3.4 the one of the hybrid
method using the 10−4 threshold. Table 3.6 shows the run times of the
experiments including the run times of each part of the hybrid method.

The non-hybrid results confirm what has also come clear in the previous
paragraph. Up to an error of around 10−3, the schemes need about the same
amount of iterations. Since the iterations of the direct method are com-
putationally less expensive, it should make sense to do the first iterations
using this method. Also, Cristiani’s method seems to converge faster in
the end than Prados’ method. In the actual hybrid method another effect
becomes clear. If one iterates the method up to a maximal change of 10−3,
then the next maximal change for the subsequent optimal control method
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Figure 3.3: Development of the iteration error on vase and Mozart face
(both f = 500) for the hybrid scheme using an intermediate threshold of
10−3. Top row: Initial iteration using the direct method. Bottom row:
Iterating until convergence using Cristiani’s method.

will not be 10−3. In fact, it is much closer to 0.05. However, this is an im-
mense improvement compared to the original error at the first iteration for
this method. For the Mozart experiment, the result is very clear. It helps
to improve the convergence of Cristiani’s method to do the first couple of
iterations, but it is not possible to outperform the direct method. For the
vase, the results are similar. However, for a suitably chosen threshold it is
actually possible to even slightly beat the run time of the direct method.

This leads to the conclusion that a combined method cannot improve
the performance of the direct method, since the part that is iterated with
an optimal control method will still take at least about as long as using
the direct method for the whole iteration. However, it is an interesting way
to speed up optimal control methods. By doing the first iterations with
the direct method, it is possible to obtain a significant improvement in
the performance on this method. Taking into consideration that, although
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Figure 3.4: Development of the iteration error on vase (V) and Mozart (M)
face (both f = 500) for the hybrid scheme using an intermediate threshold
of 10−4. Top row: Initial iteration using the direct method. Bottom row:
Iterating until convergence using Cristiani’s method.

qualitatively the methods are equally good, the optimal control approaches
exhibit a slightly smaller depth error on some experiments, this might be
a good way to improve these methods even a bit further. For practical
applications, though, this is hardly relevant, since the direct method will
generally be superior.

3.19 Discontinuities

A very interesting point of the method is the handling of discontinuities.
Since in a Lambertian setting, the results of the different numerical schemes
are basically equivalent, only the direct numerical method presented in
Section 3.12 will be used for this evaluation.

Figure 3.5 shows a very instructive test surface and the respective input
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Figure 3.5: Discontinuity test. Pyramid input image and ground truth
surface.

Figure 3.6: Reconstruction of the pyramid with no additional constraints.

image: an upside-down pyramid. The complexity of the pyramid is very
limited. Except the fact that it contains several edges, the shape is a very
simple one. However, it features a very large distance from the edge of the
pyramid to the background plane. What happens at this discontinuity?
How does it affect the reconstruction quality. Why does it happen?

Figure 3.6 shows the result of the reconstruction. The discontinuity is
not preserved at all. However, the shape of the pyramid appears correct,
only the background seems to be affected. Figure 3.7 shows the same recon-
struction. However, this time, an additional Dirichlet constraint has been
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Figure 3.7: Reconstruction of the pyramid with Dirichlet condition on the
innermost pixels of the background.

applied within the image: The innermost pixels of the background, i.e., the
pixels directly adjacent to the pyramid, are set to their true depth values
and are not changed while iterating. The result is impressive, a practically
perfect reconstruction is obtained. In a third step, the opposite is done. In-
stead of setting the innermost pixels of the background to their true depth,
the outermost pixels of the pyramid are set to their true value. Figure
3.8 shows the corresponding result. It is identical to the result of the first
reconstruction.

Why is this the case? In fact, it is caused by the upwind discretisation,
which takes depth derivatives in a pixel only if the neighbouring pixel is
smaller than the central pixel of the stencil, cf. equation (3.11). In fact, for
the pyramid surface, the closest pixels are in fact the outermost pixels of
the pyramid. Although the iterative method comes from large depth values
and approaches monotonically decreasing, the actual shape information is
propagating from small to large depth values. Therefore, when supplying
the true, large values at the innermost pixels of the boundary, none of this
information propagates to the pyramid, since the depth values are smaller in
this direction. Even more importantly, none of the depth information of the
edge of the pyramid can propagate to the background, since the values there
are fixed. Without that constraint, the algorithm would try to construct
the background in a way that it fits continuously to the edge of the pyramid.
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Figure 3.8: Reconstruction of the pyramid with Dirichlet condition on the
outermost pixels of the pyramid.

Since information only propagates from near depth values to far depth
values, the reconstruction at near depth values is never distorted. This also
explains why the opposite experiment did not make any difference compared
to the first one. Information does not propagate from the background to
the pyramid anyway, so enforcing the grey value at the edge of the pyramid
to block faulty information from the background does not change anything.

In fact, information for hyperbolic PDEs like the one considered here
always propagates along characteristic lines. In this application with the
upwind discretisation, characteristic lines always point against gradient di-
rection. For the upwind scheme, the depth gradient is the direction where
the surface depth gets smaller in the fastest way. Therefore, information
propagates from small pixels to large pixels. This will play a crucial role
in the next chapter, where a different numerical method for this problem is
introduced that exploits this property of the PDE.

At discontinuities, the method is certainly not well-posed since solu-
tions may differ depending on the boundary conditions employed at the
boundaries of the continuity segments, as has been demonstrated in this
section.
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Figure 3.9: Average depth and brightness errors of the pyramid experiment.
Brightness error given in grey values (0− 255).

Condition Depth Error Brightness Error
None 8.69% 2.48

Background 1.79% 2.74
Pyramid 8.69% 2.48

3.20 Depth Error vs. Brightness Error

In the previous paragraph, the SfS method reconstructed a continuous sur-
face from an image of a discontinuous surface. Obviously, this results in
rather large depth errors. However, the method does not optimise a depth
error. In fact, the PDE has been derived from the brightness equation.
Now, the question arises, in terms of brightness, is the solution obtained
in the previous paragraph correct? Within Chapter 2, it would not have
been possible to answer that question. However, with the discretisation of
spatial derivatives, it is possible to numerically compute the brightness of
the surface from the depth and the gradient of the surface. The gradient is
obviously computed with the standard upwind scheme which has also been
used in the method itself. This approach corresponds to computing the
brightness error introduced in Section 2.6.

Table 3.20 shows the depth and brightness errors of this experiment.
While the depth errors differ drastically, the brightness errors are always
low. Note that the brightness errors here are computed from the image
brightness computed in double precision, while the input image is quan-
tised into 256 grey values. Obviously, the ground truth and the continuous
solution are both correct surfaces corresponding to the grey value image.
In this sense, the numerical SfS method is again ambiguous. However, re-
member that the method is only claimed to be well-posed for continuous
surfaces. This example clearly is not continuous.

Now, the question remains: Is the depth error a valid error measure,
or should one rather consider a different error measure? Or is even a com-
pletely other error measure a valid one? Horn [35] discussed that question
in an orthographic framework. However, his conclusion that the best error
would be a depth error is questionable, in particular in the setting where
he discussed it. I have been using the brightness error as an error measure
for an orthographic SfS before [98]. In a perspective setting, though, say-
ing that the brightness error would be the right error measure is a bit too
much. After all, the goal is to recover a shape, not an image. Most authors
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of recent SfS seem to share that opinion, since everybody is using the depth
error as error measure of choice. However, when looking at depth errors,
one should always be aware of discontinuities in the original surface and
that they can create ambiguities.

3.21 Final Remarks

In this chapter, a direct method for the Phong SfS model has been intro-
duced. A detailed discussion of discretisation and other numerical issues
has been done. In addition to the discretisation and the iterative method,
advanced acceleration techniques like fast sweeping and a cascading multi-
grid method have been proposed. The choice of the discretisation has been
motivated by a numerical scale analysis, an approach that is new to image
processing applications.

The direct method turned out to have a superior performance to optimal
control approaches known from the literature. In the next chapter, another
numerical method for the Phong SfS model will be introduced. In addition
to an even better performance, this method has additional merit in the
quality of the reconstructions.





Chapter 4

Fast Marching Methods for
Shape from Shading

4.1 Contributions

In this chapter, a fast marching (FM) method for the novel non-Lambertian
SfS model presented in Chapter 2 is introduced. For previous FM meth-
ods for SfS, one drawback has always been the necessity of correct depth
information being provided at singular points. In contrast to these meth-
ods, a very effective technique of getting very precise estimates at singular
points is introduced in this chapter. This leads to convincing and stable
results. Finally, the applicability of the method to large real-world images
is demonstrated, which shows the computational efficiency of this method.
The FM method discussed here has been published in [95].

4.2 Fast Marching Methods and Shape

from Shading

While SfS methods have been developed since the late 1960s, the fast march-
ing (FM) concept is a much newer one. The concept of FM methods has
been brought up by Tsitsiklis in 1995 [92] as a fast solver for Hamilton-
Jacobi equations. The same concept has also been developed by Helmsen
et al. [30] and Sethian [79–81] in 1996. In contrast to Tsitsiklis’ method,
the latter two methods are targeted on algorithms using an upwind discreti-
sation of Eikonal equations. While the three methods have been developed

139
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independently of each other under different names, it was Sethian who gave
this algorithm the name ”Fast Marching method”.

Although orthographic SfS can be easily formulated as an Eikonal equa-
tion, and while an upwind discretisation has already been applied to SfS in
1992 by Rouy and Tourin [77], it took quite a long time until FM methods
reached the SfS world. In the 1990s, Kimmel and Bruckstein [42–44,46,82]
were the first that proposed algorithms for orthographic SfS based on level
sets. Since FM is a technique to solve level-set problems in a fast way,
these methods form the basis for the first SfS method using a FM. This was
introduced in 2001 by Kimmel and Sethian [45], who applied Sethian’s FM
solver to the previously developed level-set approach for orthographic SfS.

After three more years, in 2004, Tankus et al. [87] were the first to
apply the FM concept to perspective SfS. Their method is already based on
a rather advanced SfS model, which does not include light attenuation, but
performed well enough to give quite satisfying results on a limited set of
real-world images. Tankus et al. applied their method to small patches of
endoscopic images. To this end, they linearised the PDE on which their SfS
is based on. They also proposed an iterated version of their FM method,
which allowed for slightly improved results [89]. In their comparison [90],
they also compared to Prados’ method. Qualitatively, their results were
inferior to those of Prados’ iterative method, which might have been caused
by their linearisation of the PDE.

Finally, Prados et al. suggested a FM method for his Hamilton-Jacobi
framework [76], on which also his perspective Lambertian SfS method in-
cluding light attenuation. He claims his method would work for all Hamil-
tonians suited to his framework. However, their publication on this lacks an
extensive discussion on reconstruction quality and performance, only one
synthetic experiment is shown to prove the concept [76].

All the FM methods for SfS so far have one drawback: They depend
on certain depth information to be given. For the SfS method to work, the
correct depth must be given at all singular points, which coincide with the
local minima in depth. For Tankus’ method, which is based on a SfS model
without light attenuation, it is not possible to avoid this, since such models
are ambiguous with respect to multiplicative factors on the depth.

In this chapter, we will introduce a FM method based on the SfS model
introduced in Chapter 2. In addition to a working FM method for this
model, also the issue of estimating the correct depth at singular points is
discussed. In the Lambertian SfS case, this estimate can also be used as
initial data for the FM method Prados suggested.
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4.3 Convexity of the Hamiltonian

Although Rouy and Tourin [77] only discuss the applicability of an upwind
discretisation, it is intuitively clear that in this case, an upwind scheme
is also applicable in the non-convex regions, since information propagates
from local depth minima, and specular highlights are concentrated to local
depth minima. Loosely spoken, as long as the solution propagates from
small to large depth values, the upwind discretisation looks in the right
direction. The validity of this argument will be verified experimentally at
a later point in this chapter.

4.4 A FM Method for Perspective Phong

Shape from Shading

There are many extensive descriptions of the FM method available in the
literature, see especially [81].

The basic principle behind the FM scheme applied in the SfS setting
is to advance monotonically a front from the foreground of the depicted
object to the background. Thereby, the pixels are distinguished by the
labels ’known’, ’trial’ and ’far’, respectively, referring thereby via ’known’
and ’trial’ to the corresponding 3-D depth.

In the beginning, all pixels are labelled as ’far’ with their depth val-
ues set to infinity. However, since the FM method propagates information
from the foreground to the background, it relies on correct depth values
being supplied in the pixel which is most in the foreground, i.e. the pixel
with minimum depth. In the case of complex images which consist of mul-
tiple segments, for each of these segments the correct depth in the point
with minimum depth must be supplied. These points are called singular
points. These singular points are then marked as ’trial’, which concludes
the initialisation of the method.

For FM methods on SfS it is common to just require this data to be
provided. Other methods like [74] and the iterative scheme proposed in
Chapter 3, however, do not require the knowledge of given initial depth
data. Therefore the goal is to estimate very precisely the locations of sin-
gular points and obtain a SfS method using the FM scheme that does not
rely on any depth information to be provided. The task of estimating this
data will be the subject of the next section.

The ’trial’ candidate with the smallest computed depth is then marked
as ’known’, taking the computed 3-D depth in this point as the estimate.
The pixels adjacent in terms of the stencil to the new set of known points are
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updated with respect to their label, marking them as ’trial’. The described
process is then repeated until all image pixels are marked ’known’.

Fixed-Point Iteration

Updating the depth at ’trial’ points consists of solving the discrete form
of the model PDE for v in this point. In contrast to other SfS techniques
using FM, one needs to solve a nonlinear equation. This is not trivial in
this case, since near the solution, the derivative of the model PDE is very
low, making standard solvers like the Newton method diverge in most cases.
To avoid this, employ the Regula Falsi: Starting with two values v1 and v2

such that v1 < v2 and the left-hand side L of the model PDE is negative in
v1 and positive in v2, one chooses

v3 :=
L(v2)v2 − L(v1)v1

L(v2)− L(v1)
, (4.1)

which is between v1 and v2. If L at v3 is negative, set v1 := v3, otherwise
set v2 := v3. Repeating this until v1 and v2 are very close together yields
an estimate for the solution in this pixel.

Note that computing the derivatives involves computing a minimum.
Depending on v1, v2 and v3, these minima might change within the estima-
tion process. Thus, it is necessary to update the values of v1, v2, v3 during
the process.

4.5 Initialisation at Singular Points

The FM methods for SFS rely on the knowledge of ground truth data at
singular points, i.e. at points with locally minimal depth. However, in
general this kind of data is not given. Thus, these depth values need to
be estimated. In the experimental section, it will be shown that a good
estimate is crucial for the reconstruction quality.

In most other works, this issue is neglected. In [87], the problem is
solved by obtaining an initial estimate for the depth using an orthographic
SfS method. Their perspective method, however, is not comparable with
the one used in this paper, since they neglect the light attenuation term. By
doing this, their solution is invariant to multiplicative scalings of the depth.
To obtain a working method for the model discussed here, one either needs
to know the correct depth at singular points or to estimate both the singular
points and their depth.

In this section, ways to estimate the locations of singular points and
estimate their depths as correctly as possible will be introduced.
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Lambertian Case

For simplicity, we first focus on the Lambertian case, i.e. ka = ks = 0, kd =
1. In this model, the brightness of a pixel is determined by two main factors:
(i) The angle between surface normal and light source direction φ and (ii)
the light attenuation because of the distance of the surface point to the
light source. Directly from the model one obtains the simple equation

I = Id
cosφ

u2f 2
. (4.2)

Assuming the surface to be continuously differentiable, the points of mini-
mal depth are the points where the derivatives of the depth vanish, which
means the surface normal points directly to the viewer. This results in
φ = 0, which leads by use of cos 0 = 1 and re-arranging (4.2) to

u =

√
Id

1

If 2
. (4.3)

Knowing the coordinates of singular points, one can compute the depth. It
remains to determine the coordinates of singular points. Singular points are
local minima in depth. Since minima in depth mean both less attenuation
and a maximum Lambertian reflectance, this suggests that local maxima
in image brightness are the singular points. At the image boundary, it
might happen that the brightness maxima do not satisfy φ = 0. In this
case, there can be errors. However, in most cases, this does not affect the
reconstruction quality significantly.

Due to sampling and quantisation artefacts, it is possible that this es-
timate might be slightly off, both in the location of singular points and in
the estimated depth. This effect is usually rather small.

In conclusion, the proposal is to search local maxima in the image and
estimate their depth according to equation (4.3). Boundary pixels should
not be considered, since the estimate might be incorrect due to φ not being
zero. The points obtained in this way should be marked as ’trial’ points
for the subsequent FM method. In the Phong case which follows, the same
approach is used.

Phong Case

To obtain a good estimate for singular points in the general case, review
the model equation again. Essentially, one has

I = kaIa +
kdId cosφ+ ksIs (cos θ)α

u2f 2
. (4.4)
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At singular points, one obtains φ = θ = 0, which simplifies equation (4.4)
to

I = kaIa +
kdId + ksIs

u2f 2
. (4.5)

Now, after shifting the grey values down by the ambient brightness to I −
kaIa, it is possible to separate diffuse and specular light and compute the
diffuse brightness I ′ by

I ′ =
kdId

kdId + ksIs
(I − kaIa) . (4.6)

Now, one can make use of the equation (4.3) using I ′ instead of I. An
alternative, equivalent approach to this is to solve the Phong brightness
equation directly for φ = θ = 0, which gives the same result.

4.6 Method Error

The proposed procedure may lead to even more accurate results than with
the iterative case. As shown before, the solution in the iterative case is
somewhat viscous. It was possible to observe that looking at the depth
estimate at local minima of the depth. Here, the estimate of the depth at
singular points, which coincide with local minima in depth up to discreti-
sation artefacts, is exact. Since singular points are never updated – and
even if they would be, it would not change anything since both vx and vy
would be 0 within the discretisation – this methodical error is avoided here.
This can in many cases produce much better results. Later in this chapter,
plenty of examples will be given in which the results obtained by the FM
method are actually superior to the results obtained by the direct, iterative
method from the previous chapter.

4.7 Real-Time Shape from Shading

Unlike the iterative method presented in Chapter 3, which essentially has
quadratic complexity, a näıve implementation of a FM method has com-
plexity O(n log n). Note that there are even variants of FM methods that
have only linear complexity [104], however, these methods use quantisation
of the output domain to achieve this. For SfS, such a quantisation is far
from trivial, since the computation is done in a logarithmic scale, and it is
not obvious how to quantise depth. Certainly, it would be possible to use
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a rather fine quantisation to technically obtain linear complexity, however,
this would lead to a linear complexity with a high constant, which may be
inferior to O(n log n) for practical applications. In this section, it will be
demonstrated that even with a straightforward implementation, impressive
computation times can be achieved.

4.8 Performance and Accuracy

In this section the goal is to evaluate performance and accuracy of recon-
structions using the FM method. The tests are run on the same synthetic
images as before.

Lambertian Case

As test images for the Lambertian case, the vase and the Mozart face at
different focal lengths are used. Table 4.1 shows the error rates of the recon-
structions using the FM method presented in this chapter in comparison to
the iterative, direct method used before. Here, something very interesting
happens. While the errors at low focal lengths are virtually equivalent, at
higher focal lengths the errors of the reconstruction using the FM scheme
even go down instead of up. A look at the maximal error column reveals
the reason for this: practically no outliers occur. For the vase, even the
maximal depth errors are negligible., For the Mozart face smaller outliers
occur, but the overall error is still very low, which suggests these outliers
are infrequent. At the transition between vase and background, the FM
method seems to be a lot more stable.

The main reason for this lives in the way information is propagated.
The local maxima in both segments, vase and background, are determined
individually at the initialisation. By this, both vase and background are
in the right distance to the camera. Now the information propagates and
meets at the transition. When the fronts meet, only very few pixels are left
that could exhibit outliers. This causes outliers to be very infrequent.

The improved reconstruction quality can also be inspected visually in
Figures 4.1 and 4.2. On the first glance, all the reconstructions seem perfect,
under consideration of the fact that for f = 125, hardly anything of the
surface is visible at all. Only at very close inspection it is possible to make
out small differences between the reconstructions.

Finally, an important point for the effectiveness of the methods are the
run times. Table 4.2 shows the run times of this experiment for both the
FM method and the direct iterative method. It is very obvious that the
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FM method beats the direct method in terms of performance very easily.
For the small vase image, the method is around a factor 10 faster. For the
larger Mozart face images, the advantage even increases to a factor of about
15.

Specular Highlights

As before, the next experiment is the investigation of the effect of spec-
ular highlights on the method. For this experiment, it is possible to do
more different single experiments. Since these experiments exhibit specular
highlights, the correct choice for the reconstruction model is obviously the
Phong model. However, in the previous chapters, interesting effects oc-
curred when using the Lambertian model on these images. Therefore, four
test scenarios are considered: FM method using the Phong model, Direct
iterative method using the Phong model, FM method using the Lambertian
model, and the Direct iterative method using the Lambertian model.

The error rates for all these experiments can be found in Tables 4.3 and
4.4 for the vase surface and in Tables 4.6 and 4.7 for the Mozart face surface.
The first observation is similar to the previous paragraph: reconstructions
using the FM method hardly contain any outliers. Even for the most ex-
treme images, the method is stable enough to not contain any outliers above
5% for the vase. For the Mozart face, the outliers are constantly at around
30%, which is not surprising since the original surface contains outliers that
are not reconstructed. Overall, the errors are very small when compared to
the iterative method. This, however, does not hold in the same way for the
reconstructions using the Lambertian model. The error rates go up for the
FM method there as well. This suggests that the error made in these re-
constructions is actually the model error, while for the reconstructions with
the right model, a large portion of the error is caused by frequent outliers.

Figures 4.3-4.6 show some selected reconstructions of vase and Mozart
face using the Phong FM method. Again, unlike the iterative reconstruc-
tions, the reconstructions are almost perfect with hardly any outliers. All
the reconstructions are on the right scale.

In contrast to that, Figures 4.7-4.10 show the reconstructions using the
Lambertian FM method. The results are much worse. Still, no significant
outliers occur, but the shapes are distorted like for the iterative method and
they are much too close to the camera, in particular those for the extreme
images. This confirms that the errors in this case are actual model errors.

Finally, Tables 4.5 and 4.8 show the run times for the experiments using
the Phong model. While for the iterative method larger run times are
obtained for images with strong specular highlights, the run times for the
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FM methods remain constant with increasing ks, resulting in speedups of
up to 750, even for the small vase image. This is a massive speedup, which
clearly shows that the FM method is by far superior to the iterative method
when it comes to computational efficiency.

Table 4.1: Comparison of errors of the FM method to the iterative approach.

FM Method Iterative Method
Image Size f Avg. Err. Max. Err. Avg. Err. Max. Err.
Vase 1282 125 3.87% 18.26% 3.86% 18.23%
Vase 1282 250 1.42% 5.91% 1.40% 5.89%
Vase 1282 500 0.56% 2.20% 1.80% 240.45%
Vase 1282 1000 0.21% 0.58% 9.67% 251.50%
Vase 1282 2000 0.24% 0.47% 12.98% 216.71%

Mozart 2562 125 7.78% 53.02% 7.79% 53.00%
Mozart 2562 250 4.13% 33.56% 4.12% 33.56%
Mozart 2562 500 2.63% 33.66% 4.82% 302.63%
Mozart 2562 1000 1.43% 9.62% 10.22% 296.13%
Mozart 2562 2000 0.90% 33.29% 13.24% 297.09%

Table 4.2: Comparison of run times of the FM method to the iterative
approach. All times given in seconds.

Image Size f Run Time FM Run Time Direct
Vase 128× 128 125 0.20 2.04
Vase 128× 128 250 0.18 2.75
Vase 128× 128 500 0.18 2.12
Vase 128× 128 1000 0.18 1.26

Mozart 256× 256 125 0.92 19.27
Mozart 256× 256 250 0.79 10.45
Mozart 256× 256 500 0.74 11.89
Mozart 256× 256 1000 0.79 11.59
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Figure 4.1: Reconstruction results of the Lambertian vase for different focal
lengths using the FM method.

Figure 4.2: Reconstruction results of the Lambertian Mozart face for dif-
ferent focal lengths using the FM method.
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Table 4.3: Comparison of errors of the FM method to the iterative approach
on specular images of the vase.

Phong Model
FM Direct

ks α Avg. Err. Max. Err. Avg. Err. Max. Err.
0.1 5 0.83% 2.57% 1.22% 2.78%
0.2 5 1.06% 2.96% 2.35% 4.88%
0.3 5 1.27% 3.30% 3.75% 7.24%
0.4 5 1.45% 3.64% 6.23% 10.72%
0.5 5 1.63% 3.81% 10.86% 16.46%
0.6 5 1.79% 4.11% 16.89% 24.00%
0.7 5 1.94% 4.37% 23.87% 33.56%
0.8 5 2.07% 4.59% 52.12% 201.43%
0.1 10 0.81% 2.41% 1.45% 3.00%
0.2 10 0.96% 2.62% 2.83% 5.32%
0.3 10 1.10% 2.69% 4.61% 8.00%
0.4 10 1.24% 2.93% 7.02% 11.41%
0.5 10 1.37% 3.14% 12.62% 21.47%
0.6 10 1.52% 3.41% 22.36% 52.89%
0.7 10 1.64% 3.60% 41.30% 180.68%
0.8 10 1.75% 3.80% 77.92% 239.11%
0.1 20 0.77% 2.32% 1.94% 162.62%
0.2 20 0.89% 2.25% 3.46% 5.78%
0.3 20 0.99% 2.35% 5.32% 8.35%
0.4 20 1.09% 2.32% 8.58% 12.54%
0.5 20 1.18% 2.47% 16.48% 159.41%
0.6 20 1.28% 2.63% 28.62% 183.04%
0.7 20 1.38% 2.61% 46.07% 221.88%
0.8 20 1.47% 2.74% 83.44% 292.25%
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Table 4.4: Comparison of errors of the FM method to the iterative approach
on specular images of the vase.

Lambertian Model
FM Direct

ks α Avg. Err. Max. Err. Avg. Err. Max. Err.
0.1 5 5.91% 7.57% 4.18% 5.21%
0.2 5 11.50% 13.19% 8.91% 10.63%
0.3 5 17.36% 19.10% 14.08% 16.40%
0.4 5 23.64% 25.35% 19.80% 22.60%
0.5 5 30.31% 31.96% 26.16% 29.16%
0.6 5 37.77% 39.35% 33.38% 36.64%
0.7 5 46.19% 47.62% 41.72% 45.13%
0.8 5 56.12% 57.35% 51.72% 55.20%
0.1 10 5.87% 7.42% 3.94% 5.21%
0.2 10 11.39% 12.90% 8.41% 10.63%
0.3 10 17.09% 18.56% 13.31% 16.19%
0.4 10 23.33% 24.79% 18.82% 22.40%
0.5 10 30.10% 31.50% 25.06% 29.16%
0.6 10 37.56% 38.90% 32.14% 36.64%
0.7 10 45.98% 47.20% 40.31% 45.13%
0.8 10 55.94% 56.99% 50.18% 55.19%
0.1 20 5.83% 7.33% 3.64% 5.21%
0.2 20 11.17% 12.58% 7.75% 10.40%
0.3 20 16.96% 18.29% 12.37% 16.18%
0.4 20 23.05% 24.32% 17.47% 22.20%
0.5 20 29.81% 31.02% 23.45% 28.97%
0.6 20 37.27% 38.41% 30.28% 36.47%
0.7 20 45.61% 46.68% 38.22% 44.84%
0.8 20 55.61% 56.53% 47.96% 54.96%
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Table 4.5: Comparison of run times of the FM method to the iterative
approach on specular images of the vase. All times given in seconds.

ks α Run Time FM Run Time Direct
0.1 5 0.228014 2.44415
0.2 5 0.208013 2.35215
0.3 5 0.208013 2.10413
0.4 5 0.204013 3.1722
0.5 5 0.204013 5.54835
0.6 5 0.204013 8.30852
0.7 5 0.208013 10.9567
0.8 5 0.204013 12.4648
0.1 10 0.212014 2.48015
0.2 10 0.212014 2.36415
0.3 10 0.212014 2.34415
0.4 10 0.212014 2.90418
0.5 10 0.208013 6.27639
0.6 10 0.208013 15.569
0.7 10 0.212014 15.933
0.8 10 0.204013 42.5787
0.1 20 0.216014 2.59616
0.2 20 0.212013 2.27214
0.3 20 0.212013 2.20814
0.4 20 0.208013 3.46422
0.5 20 0.216014 12.3408
0.6 20 0.276018 20.4413
0.7 20 0.208013 67.8722
0.8 20 0.212013 124.976
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Table 4.6: Comparison of errors of the FM method to the iterative approach
on specular images of the Mozart face.

Phong Model
FM Direct

ks α Avg. Err. Max. Err. Avg. Err. Max. Err.
0.1 5 2.98% 33.66% 3.43% 197.07%
0.2 5 3.37% 34.00% 3.14% 109.70%
0.3 5 3.67% 34.00% 3.65% 40.17%
0.4 5 3.94% 34.10% 4.82% 43.49%
0.5 5 4.33% 34.07% 8.53% 49.35%
0.6 5 4.70% 33.14% 15.01% 118.82%
0.7 5 5.00% 32.69% 27.80% 150.06%
0.8 5 5.22% 32.32% 64.76% 222.05%
0.1 10 2.89% 33.98% 3.84% 197.07%
0.2 10 3.22% 34.07% 3.14% 114.02%
0.3 10 3.52% 34.10% 4.00% 41.27%
0.4 10 3.79% 34.40% 6.01% 44.65%
0.5 10 4.07% 34.41% 11.64% 126.99%
0.6 10 4.39% 33.60% 25.04% 149.22%
0.7 10 4.67% 32.91% 50.45% 182.65%
0.8 10 4.89% 32.69% 88.73% 271.87%
0.1 20 2.80% 34.03% 4.71% 197.07%
0.2 20 2.98% 34.34% 4.19% 132.07%
0.3 20 3.23% 34.73% 5.39% 134.98%
0.4 20 3.45% 34.78% 8.61% 145.20%
0.5 20 3.70% 35.15% 18.74% 161.68%
0.6 20 3.97% 34.84% 31.22% 186.09%
0.7 20 4.13% 34.08% 55.24% 226.60%
0.8 20 4.31% 33.53% 108.23% 292.57%
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Table 4.7: Comparison of errors of the FM method to the iterative approach
on specular images of the Mozart face.

Lambertian Model
FM Direct

ks α Avg. Err. Max. Err. Avg. Err. Max. Err.
0.1 5 7.85% 26.82% 6.24% 179.03%
0.2 5 13.47% 25.86% 10.42% 25.37%
0.3 5 19.24% 30.51% 15.23% 29.88%
0.4 5 25.41% 35.76% 20.54% 34.99%
0.5 5 32.26% 41.42% 26.54% 40.56%
0.6 5 39.66% 47.64% 33.38% 46.75%
0.7 5 47.91% 54.66% 41.32% 53.80%
0.8 5 57.56% 62.99% 51.07% 62.23%
0.1 10 7.71% 27.11% 6.01% 179.03%
0.2 10 13.21% 25.65% 9.75% 25.09%
0.3 10 19.08% 30.54% 14.23% 29.78%
0.4 10 25.24% 35.77% 19.16% 34.85%
0.5 10 31.96% 41.27% 24.81% 40.23%
0.6 10 39.41% 47.51% 31.30% 46.41%
0.7 10 47.68% 54.57% 38.88% 53.47%
0.8 10 57.40% 62.91% 48.44% 61.94%
0.1 20 7.53% 27.17% 6.24% 179.03%
0.2 20 12.90% 25.65% 9.12% 25.03%
0.3 20 18.68% 30.34% 13.23% 29.50%
0.4 20 24.87% 35.58% 17.79% 34.55%
0.5 20 31.54% 41.12% 23.02% 39.93%
0.6 20 39.00% 47.38% 29.12% 46.11%
0.7 20 47.31% 54.31% 36.24% 53.01%
0.8 20 57.06% 62.60% 45.34% 61.38%
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Table 4.8: Comparison of run times of the FM method to the iterative
approach on specular images of the Mozart face. All times given in seconds.

ks α Run Time FM Run Time Direct
0.1 5 0.88 13.77
0.2 5 0.87 13.50
0.3 5 0.87 13.08
0.4 5 0.85 13.79
0.5 5 0.84 22.10
0.6 5 0.86 38.91
0.7 5 0.85 42.88
0.8 5 0.85 46.53
0.1 10 0.88 13.52
0.2 10 0.87 14.34
0.3 10 0.87 14.02
0.4 10 0.88 14.02
0.5 10 0.87 25.04
0.6 10 0.86 112.7
0.7 10 0.86 110.0
0.8 10 0.86 152.7
0.1 20 0.89 15.26
0.2 20 0.89 14.40
0.3 20 0.88 13.55
0.4 20 0.87 14.42
0.5 20 0.88 66.38
0.6 20 0.89 93.82
0.7 20 0.89 279.2
0.8 20 0.88 326.5
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Figure 4.3: Reconstruction results of the vase for ks = 0.2, 0.5, 0.8, α = 5
using the Phong FM method.
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Figure 4.4: Reconstruction results of the vase for ks = 0.2, 0.5, 0.8, α = 20
using the Phong FM method.
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Figure 4.5: Reconstruction results of the Mozart face for ks = 0.2, 0.5, 0.8,
α = 5 using the Phong FM method.
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Figure 4.6: Reconstruction results of the Mozart face for ks = 0.2, 0.5, 0.8,
α = 20 using the Phong FM method.
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Figure 4.7: Reconstruction results of the vase for ks = 0.2, 0.5, 0.8, α = 5
using the Lambertian FM method.
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Figure 4.8: Reconstruction results of the vase for ks = 0.2, 0.5, 0.8, α = 20
using the Lambertian FM method.
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Figure 4.9: Reconstruction results of the Mozart face for ks = 0.2, 0.5, 0.8,
α = 5 using the Lambertian FM method.
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Figure 4.10: Reconstruction results of the Mozart face for ks = 0.2, 0.5, 0.8,
α = 20 using the Lambertian FM method.
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4.9 Real-World Images

So far, no experiments on real images have been shown. SfS on real-world
images is a difficult task. However, in this section results will be shown on
some real images. These images are chosen carefully, i.e., images are chosen
that are possible to reconstruct. It is possible to tackle more difficult images
than that, but this shall be discussed in an extra chapter.

There are a couple of differences between synthetic and non-synthetic
images. To list only the most important ones,

1. Real surfaces are not Lambertian. They do not even fit to the Phong
model. In reality, surfaces are much more complex than the simple
models used for it.

2. Reality has no point light surfaces. Every light source has an exten-
sion.

3. Light sources are not in the optical centre of the camera. We can put
them close to it, but not exactly in that location. This might cause
occlusions and shadows in the image.

4. Light can be reflected on a surface and reflected to other surfaces.
This is usually not modelled, in particular if there are surrounding
objects not present in the scene to be reconstructed.

5. Real cameras are no ideal pinhole cameras. While we can build a
pinhole camera from cardboard, we will not actually use that to take
pictures. We buy a commercial camera with a lens. These are no
actual pinhole cameras.

6. Scenes might not have uniform reflectance properties.

7. While the synthetic images discussed so far have been of size 256×256
maximum, photos taken by modern cameras can have sizes of several
megapixels.

With synthetic images, it is possible to control all these things, and
create a world that fits perfectly to all model assumptions. However, reality
differs from that. The question is only whether a model is close enough to
reality to produce convincing results. A standard photo camera is somewhat
close to a pinhole camera. A camera flash is not exactly in the optical centre,
but close to it. Surfaces exhibit specular highlights, which do not follow
the Phong model, but the model might be close enough anyway to produce
satisfactory results.
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Another important issue is the size of the images. In fact, this is the
main reason this experiment has not been included in previous chapters.
Real images can be large. With the conventional iterative algorithms, the
reconstruction can take a considerable amount of time. While this is not as
drastic with the method presented in Chapter 3 as with the optimal control
approaches, computation times can still be quite large. In this section, not
only the visual reconstruction quality, but also the reconstruction time on
large real-world images will be evaluated. This demonstrates quite impres-
sively the advantage of the fast marching method in terms of computational
complexity.

Figure 4.11 shows a real input image of three chess figures. The image
has been taking with a normal digital camera with built-in flash. The
original size of the image is 3264×2448, the focal length has been provided
by the camera, and the standard parameters ks = 0.7, α = 10 have been
used. Figure 4.12 shows the reconstruction results using both the iterative
method and the FM method. Both reconstructions are visually quite good,
however, as experienced before, the direct method suffers from outliers at
discontinuities. This is not the case for the FM method. Overall, the FM
results appears a bit better.

Figure 4.11: Photograph of three chess figures.
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Figure 4.12: Reconstruction of the chess figures using the direct method
and the FM method.

Finally, Table 4.9 shows the run times of the FM method on the full
image and a downsampled one to 408× 306 pixels. Here, the performance
advantage of the FM method becomes very clear. Even though cascading
multigrid has been used to accelerate the direct method, the reconstruction
of the full image still takes almost three hours, while the FM method con-
verges in around two minutes. Also, the comparison to the smaller image
shows that the advantage in computation time grows with an increasing
size of the problem. For practical applications on large data sets, the FM
method is clearly superior.



166 CHAPTER 4. FAST MARCHING METHODS FOR SFS

Table 4.9: Comparison of run times of the FM method to the iterative
approach for the chess image. All times given in seconds.

Size Run Time FM Run Time Direct Method
408× 306 1.52 32.91

3264× 2448 133.34 11423



Chapter 5

Parallelisation of Shape
from Shading Methods

In the previous chapter, a method was presented that massively improved
the performance of the SfS method. The quality of the reconstruction has
not been compromised, it has even been improved in some cases. On normal
test images for SfS, which usually are in the range of up to 256×256 pixels,
computation times close to real-time have been achieved. For very large
images of eight Megapixels, the computation times were still staying in a
modest range of around two minutes, which is the computation time of a
small 256× 256 image for many SfS methods.

Nevertheless, one question always remains: Can it be even faster? Cer-
tainly, it might be possible to implement small computational tricks like
lookup tables for expensive functions like the exponential function or square
roots. Another possibility would be to use an O(n) variant of the FM al-
gorithm [104], which involves quantisation of the depth, which could com-
promise quality if not done very carefully. However, the potential of these
acceleration technique is somewhat limited.

In the recent years, there has been another trend towards improvements
in computational efficiency: parallelisation. Parallelisation bears a much
greater potential for speed-ups than small numerical improvements. This
trend has mainly been driven by affordable multi-core CPUs and the in-
creasing popularity of graphics cards suitable for highly parallel computa-
tions. In this chapter, the potential of possible parallelisations of the FM
SfS method will be discussed. The evaluation of this will be more a proof
of concept, an investigation whether further performance improvements are
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still possible. In particular on the GPU side, there might be other options
to improve the performance, only one possible path is explored here.

5.1 Contributions

In this chapter, two ways of parallelising the FM method for perspective
SfS using the Phong model will be presented. One of these methods runs
on machines with more than one CPU core, which allows for non-massive
parallelisation. The related publication to this is [10], where this method is
discussed in a more general context. However, here we concentrate on the
application to the SfS method. In a second part, a way to parallelise SfS
massively on a GPU is introduced. This has not been published so far.

5.2 Parallelisation of the FM Approach

Parallelising the FM method is a difficult task. By itself, the FM method
is very badly suited for parallelisation. As information propagates over the
image, only very few pixels are to be computed simultaneously, usually only
between two and four pixels at once. After updating these pixels, a global
operation on all the pixels marked as trial has to be performed: The pixel
with the smallest value has to be determined, and afterwards its neighbours
have to be updated. Updating four pixels is certainly not enough to make
parallelisation efficient, but in a näıve approach the FM method does not
contain more potential of parallelisation.

A more efficient way to make FM methods suited for parallel computing
is to decompose the domain in different subdomains. One such technique
has been proposed in [31]. In this method, the image is evenly split in do-
mains of equal size, and within each domain, the propagating wave fronts
are computed on separate threads. When wave fronts collide, i.e. a wave
front hits the boundary of its domain, rather complex correction computa-
tions have to be performed.

A much simpler and easier to implement way to parallelise a FM method
is described in [10]. Here, different seeds, i.e. different local minima in case
of the SfS problem are assigned to different threads, and only at collisions
of two wave fronts, which may occur anywhere in the image, it has to be
checked which wave front has the better, i.e. lower, result. This involves
only very few checks. In the mentioned paper, the method is described
in detail and evaluated in the more abstract context of a general Eikonal
equation.
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For the purpose of SfS, it is sufficient to describe the general idea and a
rough description of the implementation. It is the same implementation that
has been used in [10], just for the perspective SfS with Phong PDE, which
is not exactly an Eikonal equation, but quite close to it. The algorithm can
be summarised to the following steps:

1. Local minima in depth are determined and initial values computed,
as described in the chapter on the single-threaded FM method.

2. These local minima are assigned to the different threads in a bal-
anced way. In practice, the set of seeds is split in two halves in a
way that each of the two threads contains the same number of seeds.
When dealing with more than two threads, these two halves are again
split in half, usually with alternating splitting direction. In computer
graphics, such a splitting concept is related to a kd-tree.

3. Each of the threads starts computing its solution using the normal FM
method. However, when updating a pixel, each thread checks whether
another thread has already updated this pixel. If that is the case, it
compares its value to the previously computed value. If the previously
computed value is larger, it is overwritten and the algorithm proceeds
as usual. If it is lower, the other wave front has a better solution.
In this case, the propagation stops at this point, removing this pixel
from the list of trial points and continuing as usual.

4. The algorithm terminates when all threads converge.

This is a very simple, but effective procedure to parallelise a FM on a
multi-core architecture. In the following, this method will be applied to SfS
on a dual-core CPU, comparing the run times to the sequential algorithm
described in the previous chapter.

The Hardware

The experiments are done on the same hardware as the experiments in the
chapters before, an Intel Core2 Duo E4600 at 2.4 GHz with 2 MB cache
and 2 GB of RAM, running Linux.

Results

To evaluate the performance of this approach, it is evaluated on two test im-
ages from the previous chapters: the standard vase test image (Lambertian,
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Table 5.1: Run times of parallelised FM on a dual-core CPU.

Image Size One Thread Two Threads Speed-up factor
Vase 128× 128 176ms 91ms 1.93
Chess 3264× 2448 132.2s 78.98s 1.67

f = 500) and the chess set test image used to evaluate the single-threaded
FM method. Since the results are qualitatively the same compared to the
results using the single-threaded FM method and only the run times differ,
there is no need to show the reconstructions again, they can be found in
the respective chapters.

Table 5.1 shows the run times using one and two threads on the dual-
core CPU. For the very easy experiment of the vase, an almost perfect
speed-up of 1.93 is obtained using two threads. The best possible speed-
up that could have been achieved here would be a factor 2. However, for
the more complex experiment of the chess figures, also the achieved speed-
up becomes smaller, since the domain decomposition is more complex as
well and hence not as optimal. For this experiment, a speed-up of 1.67 is
achieved, which is still reasonable.

5.3 A Parallel Block FM method

In the previous section, a non-massive parallelisation of the FM method
on multi-core CPUs has been introduced. Now, is there also a chance
to parallelise FM SfS massively on a GPU? Usually, for the unmodified
FM method, this is hardly possible. When a pixel is accepted, four pixels
need to be updated independently of each other, then the method must be
synchronised again. While this might still be somehow suitable for non-
massive parallelisation, this would perform very badly on a GPU, since
copying these four pixels into the shared memory of the graphics card alone
and back after updating would be slower than updating these four pixels
on the CPU.

However, there is a way in-between FM and an iterative method. Split-
ting up the image into blocks of suitable size for parallelisation, it is possible
to use a FM-like idea on these blocks. Initialising all pixels as in the itera-
tive method and iterate them all, independently of each other, parallely on
the GPU, until convergence. Since these blocks are relatively small and the
computation can be done parallely on the GPU, this can be done rather
fast. Then, the block containing the closest point is marked as accepted
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and the neighbouring blocks are updated, in parallel and iteratively on the
CPU. This is repeated until all blocks are marked accepted. The idea on
which this method is based is similar to the one in [40]. In the following, a
description of the actually implemented algorithm is given. The algorithm
has been implemented using the CUDA framework by NVIDIA [54].

Details on the Implementation

The basic setup for this method is quite simple. First, the image domain is
split into square blocks with side lengths that are powers of 2. In practice,
this means side lengths of up to 16 pixels, since the shared memory of each
processor on the GPU is very limited, and 32× 32 depth values are already
too much for this very restricted memory, which is necessary to achieve good
performance. The actual FM method is running on these blocks instead of
pixels. The FM part of the algorithm is still done on the CPU, using a
single thread.

First, as for the normal FM method, local brightness maxima are deter-
mined and the blocks marked as trial and put into a heap. All pixels in the
resulting depth field are initialised to a very large value. The normalised
brightness of the input image is transferred into the texture memory of the
graphics card. The depth field to store the result is transferred into the
global memory of the graphics card

Then, the blocks that contain local brightness maxima are updated. An
update of a block is done in the following way: First, the block is transferred
into shared memory. In addition to the mere block, also one pixel around the
boundary of the block is transferred to shared memory. Then, one iteration
of the iterative method is performed, parallely, using a Jacobi solver. The
use of a Jacobi solver actually has a very big advantage in this case. For a
Jacobi solver, computations on each pixel are independent of the results of
the computation of the other pixels. The Gauß-Seidel-like scheme and the
fast sweeping method used in the sequential method are abandoned here.

After one iteration has been performed, all threads are synchronised and
the next iteration begins. This is repeated until convergence. At blocks of
16× 16 pixels, this usually happens in significantly less than 100 iterations,
which is far less than the several thousand iterations needed for convergence
on a large image. After the block converged, the result is written back to
the global memory of the graphics card. In the case that a block has
never been updated before, the first iteration is actually an initialisation.
Since all values are set to very large, or infinity, the pixels are initialised
in the same way as described in the previous chapter, depending on the
shading parameters, which have also been transferred to shared memory
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for performance reasons.
This update is done for all the initial trial blocks. Since the graphics

card can only update a few blocks at once, a limited set of blocks is given to
the graphics card at once. Usually, this lies in the range of 16 to 32 blocks
at once, which are then scheduled to the actual processors by the graphics
card.

Before writing back a block to global memory after convergence, another
thing is done. The minimum value of the block is determined by a minimum
reduction [54]. Essentially, the block is split in two halves in x-direction,
and each pixel in the left part compares itself to its corresponding pixel
in the right part. If it is smaller, it overwrites its value with the value of
the other pixel. This is done recursively until the leftmost column in the
block contains the minimum pixels of each row. Afterwards, an analogous
procedure is done in y-direction, but only in the first column. At the end of
this procedure, the top left pixel contains the minimum value of the block,
this value is returned by the update and used as the value of the block
within the heap for the FM method. A similar technique is used for the
absolute difference between to iterations, just that here the maximum of
the differences is determined. Note that for performing a Jacobi-iteration,
it is necessary to reserve twice the space anyway, so these minimum or
maximum computations can be done without losing the actual depth data
that is iterated.

Once all initial trial blocks have been updated, the normal FM routine
commences. First, the block containing the smallest pixel is determined.
This block is marked accepted, and its neighbours are set to trial and up-
dated. Note that now, only up to four blocks are to be updated, which is
not ideal in terms of performance. We perform this update in the same
way as described above. After these blocks are updated, and also their val-
ues are updated in the trial heap, the next smallest block is accepted and
its non-accepted neighbours updated. This is repeated until all blocks are
accepted.

At the end, the resulting depth data is written back from the global
memory of the graphics card to the RAM of the host and saved to the hard
disk. In the performance evaluation, the initialisation phase, e.g. loading
the image to the host memory, and saving the file to the hard disk are
excluded from the run times, since these steps are not part of the actual
method and depend severely on the hardware used.
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The Hardware

We do the experiments on the same hardware as the experiments in the
chapters before, an Intel Core2 Duo E4600 at 2.4 GHz with 2 MB cache and
2 GB of RAM, running Linux. For this experiment, though, the graphics
card is also relevant. It is a NVIDIA GeForce GTX 260+, 896 MB GDDR3
RAM, 216 streaming multiprocessors.

Experimental Results

The algorithm will be tested on three scales:

• A very small image. Here, one cannot expect a significant speed-up.
The results may even become worse.

• A medium-sized image. For that, another image of a chess figure is
used, shown in Figure 5.1. This image has size 2112× 2112, a size of
4.46 Megapixels.

• A large image. Again, the chess image shown in Figure 4.11 is used.

First of all, the results of all methods are visually and qualitatively
identical to the ones obtained using the plain FM method. Figure 5.2 shows
the reconstruction of the single chess figure. The reconstruction quality is
quite good, comparable to the results obtained for the three figures.

The most important issue, however, are the run times in this case. For
all experiments, blocks of size 16× 16 pixels have been used. For the initial
iteration of all blocks, up to 16 blocks have been processed at once. In the
actual FM evolution, however, only up to four blocks have to be updated
simultaneously, on average only about three blocks, therefore in this case
only about three blocks are updated simultaneously. This is a major issue
in the parallelisation of the FM method, since only one block is given to
a processor on the graphics card at once, computing only three blocks is
certainly not optimal for this architecture.

Nevertheless, as Table 5.2 shows, the results are still quite convincing.
At the smallest problem size of only 128× 128 pixels (or 8× 8 blocks), the
result already improves significantly to just 32 milliseconds computation
time. While even at this small problem, there is already a considerable
advantage to the single-threaded result, at large problem sizes speed-up
factors of almost 10 can be achieved, compared to the single core FM im-
plementation, compared to the iterative method, the speed-up even lies in
the range of almost a factor 900.
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Figure 5.1: Input image: A chess queen.

Figure 5.2: Reconstruction result of the queen image.
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Table 5.2: Run times of the FM method vs. the parallel block FM method
on the GPU.

Image Size FM Block FM Speed-up
Vase 128× 128 176ms 32ms 5.5

Queen 2112× 2112 45.76s 7.78 5.9
Chess figures 3264× 2448 132.2s 12.60s 10.5

Usually, when bringing a method to the GPU, one hopes to achieve a
speed-up in the range of a factor 30 to 40. However, since the FM method
is extremely difficult to parallelise, a factor 10 is a good result. After all,
it is possible to perform perspective SfS including specular highlights on
an eight Megapixel image in 13 seconds, which is good considering the fact
that even the fastest iterative method available takes more than three hours
and even a FM method takes more than two minutes.

5.4 Conclusions

With the results presented in this chapter, SfS can be considered to run in
real-time. For a problem size of 128× 128 pixels, which is very common in
SfS applications, a reconstruction is possible in just 32 ms, or 31.25 frames
per second. And even for very large image sizes of eight Megapixels, it is
possible to achieve convincing results in just a couple of seconds.

An important point one should note is that all this can be done on
standard PC hardware. At the present date (beginning of 2010), the CPU
used for all the computations is worse than the average CPU included in
PCs sold to end-users. Also, in particular for gaming PCs, there are many
customers who buy more expensive and stronger graphics cards than the
GLX 260 that has been used here. Naturally, the computation times will
even reduce further with faster hardware becoming available. However, I
think the results obtained here give a good impression on what performance
is possible for SfS using efficient algorithms, from single-core systems up to
parallel computing on a GPU.





Chapter 6

Shape from Shading on
Real-World Images

So far, almost exclusively synthetic experiments have been discussed. The
only exception to this were the chess images in the previous chapters, where
reasonable results have been obtained. In said chapters, however, the focus
has been the computation time. In this chapter, the quality of SfS methods
on real-world images will be discussed. Also, it will be addressed in which
cases SfS methods fail and what can be done about it.

6.1 Contributions

In this chapter, the applicability of SfS on real-world images is assessed.
Measures to make SfS workable on a large class of images are discussed. To
this end, a sophisticated pipeline using advanced segmentation techniques,
local adaptive thresholding, morphological operations, image inpainting us-
ing anisotropic diffusion, and advanced SfS methods are employed. A re-
lated publication is [100]. In the end of the chapter, ideas on making SfS
working for other classes of objects are discussed.

6.2 Shape from Shading is not Enough

Remembering the chess experiment, one might think ”SfS seems to work on
real-world images”. This, however, is not true in general. As an example,
consider the input image shown in Figure 6.1. It shows an espresso cup,
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Figure 6.1: Photograph of a cup.

acquired by a digital camera with flash. Is it possible to obtain a reason-
able reconstruction of this cup using SfS? Applying the Lambertian model
by Prados, which is the basis for all recent SfS methods, one obtains the
reconstruction shown in Figure 6.2. Certainly, this is not convincing.

Figure 6.2: Lambertian reconstruction of the unmodified cup image.

Now, one might argue: But there are specular highlights in the scene,
why not using a more advanced model? Therefore, we apply the SfS model
using the Phong surface model. Unlike the purely Lambertian one, this is
not parameter-free (cf. Section 2.5). So one needs to estimate the relation
between specular and diffuse light contributions and the tightness of the
highlight. Manually optimised, the result shown in Figure 6.3 is obtained.
It shows more or less the same systematic errors as the purely Lambertian
one, only the outliers get more significant. However, it is clear that at the
texture on the cup and the background bad things happen. Dealing with
specular highlights certainly improves the reconstruction, but there is much
more work to do.
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Figure 6.3: Lambertian reconstruction of the unmodified cup image.

In the following, this problem will be tackled for this class of real-world
images. In general, these are images of an object of interest in front of
some background. The object of interest, however, does not have uniform
reflectance properties. Here, the object is textured. This holds for a fairly
large class of objects, but certainly not all. For the rest of this chapter,
the focus will mainly concentrate on this class of images. At the end of the
chapter, some hints on how to deal with other objects will be given as well.

6.3 Problem 1: The Background

The first apparent violation of the model assumptions in the espresso cup
image are the different surfaces present in the image. The background
clearly has different reflectance properties than the cup itself. In the model,
it is assumed that this not to the case. The goal is now to concentrate solely
on the foreground object, the cup.

Finding the Region of Interest – Segmentation

In a first step one separates the object of interest from the background.
This is necessary since both have incompatible reflectance properties. For
this task one uses the active contour model of Chan and Vese [17]. This
is a classic level-set-based method that exploits the grey-value difference
between object and background.

The Chan-Vese model segments the image domain Ω ⊂ R2 into two
regions by minimising the difference between the image intensity f(x) :
Ω → R and its average value in each region. Additional constraints are
imposed on the length of the region boundary C and on the area inside C.
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This comes down to minimising the energy

E (C, c1, c2) = µ length(C) + ν area(inside(C))

+
∫

inside(C)

(f − c1)2dx +
∫

outside(C)

(f − c2)2dx,
(6.1)

where c1 and c2 are the average values of f inside and outside C, and µ ≥ 0
and ν ≥ 0 are weighting parameters. These weights are important to tune
the object detection: A large µ will give a coarse segmentation, while a
small µ will detect fine details. As a region-based segmentation model,
the Chan-Vese method is fast and robust with respect to initialisation and
noise.

In order to further improve the localisation of the object contour, one
uses the Chan-Vese result as initialisation for the edge-based geodesic active
contour model [16, 41]. The governing evolution equation is given by

∂tφ = |∇φ| div
(
g (|∇fσ|) ∇φ|∇φ|

)
on Ω× [0,∞),

φ(x, 0) = φ0(x) on Ω,
(6.2)

where φ(x, t) is a level-set function, φ0 a suitable initialisation and ∇ =
(∂x, ∂y)

> is the gradient operator. The edge stopping function g draws
the contour towards nearby edges in the presmoothed image fσ, which is
obtained by convolving f with a Gaussian with standard deviation σ. The
function g(s2) is decreasing in s. In this application one chooses the Perona-
Malik diffusivity gPM(s2) = (1 + s2/λ2)−1, where λ > 0 is some contrast
parameter [64]. If the object is bounded by a pronounced edge, the edge-
based active contours will generally result in a sharper segmentation than
the sole use of the Chan-Vese model.

The Result

It is possible to see the systematic errors both in the Lambertian and Phong
case, but the purely Lambertian case is essentially parameter-free, cf. Sec-
tion 2.5, only Lambertian reflectance is used for the evaluation of this step.

Figure 6.4 shows the obtained segmentation for the cup image. For
the segmentation, the intensity of the image was used. Figure 6.5 shows
the reconstruction obtained by applying perspective Lambertian SfS only
within this mask. Outside the mask, state constraints boundary conditions
have been imposed, which are equivalent to Neumann boundary conditions
when using upwinding, cf. Section 3.12. Clearly, this improves the recon-
struction of the cup. It is has the wrong shape, but on its boundaries, the
reconstruction is substantially better.
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Figure 6.4: Segmented version of the cup image.

Figure 6.5: Lambertian reconstruction of the segmented image.

6.4 Problem 2: The Texture

Generally, real-world objects do not have a constant albedo. To apply SfS
one needs to ensure that the albedo does not vary within the segmented
contour. In this approach, the goal is to detect regions of differing albedo
and fill in neighbourhood information to obtain homogeneous reflectance
properties. In the case of the cup image, the texture on the surface has a
different albedo than the rest of the cup. The goal is now to detect this
region and deal with the violation of the model assumption of a constant
albedo.

In order to identify regions with fluctuating albedo one uses an adaptive
thresholding algorithm that works on local windows [78]. Adaptive thresh-
olding is robust with respect to varying illumination conditions within the
scene and is widely used, for instance in document analysis. Note that by
slightly enlarging the identified regions by morphological erosion it is possi-
ble to improve the subsequent interpolation result, preventing artefacts at
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the boundaries.
The next step is to interpolate the image in these regions. For this task

edge-enhancing anisotropic diffusion (EED) is used [101]. It was shown
to perform better for image inpainting and scattered data interpolation
than other PDE-based methods [102]. The main idea behind EED is to
allow smoothing within homogeneous regions and along image edges, but
to reduce smoothing across them. To this end it makes use of a diffusion
tensor. In the region that that is to be inpainted steady-state diffusion
equation

0 = div
(
g(∇uσ∇u>σ )∇u

)
, (6.3)

with the boundary conditions specified by the surrounding data is solved.
Here uσ is a smoothed version of the evolving image u, obtained by con-
volving it with a Gaussian of standard deviation σ. The scalar-valued dif-
fusivity g is applied to the eigenvalues of the structure tensor ∇uσ∇u>σ ,
while leaving its eigenvectors unchanged. This way, the first eigenvector of
the diffusion tensor is parallel to the edge detector ∇uσ. The desired filter
effect comes from the fact that the corresponding eigenvalue is given by
g(|∇uσ|2), such that smoothing is reduced at edges, where |∇uσ| is large.
The second eigenvector is orthogonal to ∇uσ with corresponding eigenvalue
1. For the diffusivity g one typically chooses the Charbonnier diffusivity
gC(s2) = (1 + s2/λ2)−1/2, with contrast parameter λ > 0.

The interpolated image can be seen as an albedo-corrected version of
the original image, which now satisfies the assumption of a surface with
homogeneous reflectance properties.

The Result

Again, first an investigation of the effect only using a Lambertian SfS model
is done, since the systematic errors can be seen there as well, but the method
is parameter-free.

First, perform an adaptive thresholding on the image within the cup
area, taking a 100× 100 window. This gives the inpainting region, which is
the black template in Figure 6.6.

After a morphological erosion of this inpainting region in order to enlarge
its size, we apply EED with the parameters λ = 2 and σ = 0.3 to inpaint
the image there. The inpainted image is shown in Figure 6.7. This image
can be regarded as a constant albedo version of the original image, within
the segmented area. Note that this image still contains specular highlights.
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Figure 6.6: Inpainting region obtained by adaptive thresholding.

Figure 6.7: Inpainted image of the espresso cup.

Now we reconstruct the surface from the segmented and inpainted data.
Figure 6.8 shows the corresponding reconstruction. The shape of the cup
obtained by this Lambertian reconstruction looks quite reasonable. How-
ever, the cup is estimated much too close to the camera, in particular at
specular highlights. Note that the handle, which is pointing slightly towards
the background in the original image, is still pulled to the front.

6.5 Dealing with Specular Highlights

Now the only thing left to do is what has been discussed in Chapter 2: deal-
ing with specular highlights by applying the more advanced Phong model.
As discussed, we essentially have two parameters now, which has to be fine-
tuned manually to obtain the result shown in Figure 6.9. Now the edgy
artefacts on the surface are gone, the shape of the cup is recovered quite
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Figure 6.8: Reconstruction of the inpainted cup image using a Lambertian
model

well. The most significant improvement can be observed at the handle,
which is reconstructed rather good now, and points to the right direction.

Figure 6.9: Reconstruction of the cup using the Phong model.

Finally Figure 6.10 shows a rendered version of the final reconstruction,
with the input image used as texture. The result looks convincing.

6.6 Additional Experiments

In this section, the effectiveness of the method is demonstrated at two addi-
tional experiments. In the first experiment, the image of a computer mouse
has been taken. Figure 6.11 shows the corresponding input image. As be-
fore, the first step consists of segmenting the mouse from the background.
To that, the segmentation method introduced in Section 6.3 is used. Since
this image has a substantially higher contrast in the hue channel of the HSV
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Figure 6.10: Rendered version of the final reconstruction of the espresso
cup.

Figure 6.11: Photograph of a computer mouse on a table.

colour space 1 [29] than in the brightness of the image, it is of benefit to use
this channel for the segmentation. One obtains the mask shown in Figure
6.12.

The next step is again straightforward. First apply adaptive threshold-
ing to the image to detect the texture. Note that the texture in this case

1Of course, this only works since the input image is a colour image from a digital
camera.
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Figure 6.12: Segmentation result for the mouse image.

Figure 6.13: Inpainting mask for the mouse image.

not only consists of the logo of the company of the mouse manufacturer, but
also the ridges between the buttons are considered as undesired ”texture”.
This is particularly important since in these ridges, shadows occur, which
are a violation to the model assumptions. The result of the adaptive thresh-
olding can be inspected in Figure 6.13. After morphologically enlarging the
textured region, again, the missing information is interpolated using EED.
Figure 6.14 shows the resulting input image.

In the final step, reconstruct the surface. The final result can be found
in Figure 6.15.

The second experiment aims at reconstructing the shape of a popular
German mathematics handbook [13]. The input image can be found in Fig-
ure 6.16. Despite the simplicity of the shape of a book, this is a particularly
challenging experiment, since the book contains a lot of texture.

Although reconstruction of the shape in this experiment is quite diffi-
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Figure 6.14: Final preprocessed input image for the mouse image.

Figure 6.15: Reconstruction of the computer mouse.

cult, the segmentation is rather easy, in particular if using the hue channel
for the segmentation again, one obtains a practically perfect segmentation,
shown in Figure 6.17. As usual, the next step consists of finding the tex-
ture by adaptive thresholding. The result of this is shown in Figure 6.18.
Interpolation with EED yields the result shown in Figure 6.19.

Finally, it is possible to reconstruct the surface of the book as shown
in Figure 6.20. Clearly, this reconstruction is significantly better than the
unprocessed one. It is not completely perfect, however, the shape of the
book can clearly be seen. This reconstruction is a decent estimate of the
surface of the book.
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Figure 6.16: Photograph of a book.

6.7 Summary of the Method

In this section, the steps taken to deal with real-world images are sum-
marised. In essence, the method consists of the following steps:

1. Background segmentation: The goal of this step is to remove the back-
ground of the image from the reconstruction to avoid issued caused
by different surfaces in the background. First, use the Chan-Vese seg-
mentation method to obtain a foreground-background segmentation.
The advantage of this method is its robustness. However, the result-
ing segmentation does not precisely fit to the object boundaries. If
the input image is a colour image, it might be possible to use the hue
channel instead of the image brightness for the segmentation to obtain
even better results. Using the segmentation result from the previous
step as initialisation, one obtains a more accurate reconstruction of
the boundary. Using this segmentation, one obtains a reasonable re-
construction without any background artefacts.

2. Texture Removal: In the next step, first determine the texture region
by making use of local adaptive thresholding. Using this method, one
obtains good estimates for the textured part of the surface. Then,
morphologically enlarge this region, remove the grey value information
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Figure 6.17: Segmentation result for the book image.

within this region from the image and fill in the missing information
by inpainting using anisotropic edge-enhancing diffusion.

3. Surface Reconstruction: Finally, reconstruct the surface using the
model presented in Chapter 2. On the presented test images, this
gives very convincing results.

The overall performance of the method is good. The whole preprocessing
pipeline only takes a couple of seconds. Even using the iterative SfS method,
the overall performance on the espresso cup image sized 306× 204 pixels is
less than 30 seconds.

6.8 Other Classes of Real-World Images

To conclude this chapter, an interesting point to address is what to do on
other real-world images. Certainly the most simple case of a real-world
image are the chess input images discussed earlier. These images are not
textured, so it is sufficient to just segment the objects of interest from the
background. Even textured images like the ones presented in this chapter
are possible to reconstruct.
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Figure 6.18: Inpainting mask for the book image.

What will happen with surfaces that are globally textured? Or what if
there are different surfaces in one scene, which are all to be reconstructed?
There exists no SfS framework that can deal with such images, however, it
is possible to give ideas how to deal with such scenarios.

Different Objects

Dealing with different object is actually very simple: if one manage to
segment these objects from each other, the only thing to do is to supply
different parameters to each of the segments and do the reconstruction in
each of the segments separately. This sounds trivial, but is essentially the
only possible way to deal with such a case. In a purely Lambertian setting,
this comes down to estimating the relation between the albedo factors of
the different segments.

To automatise this, it might be possible to invent ways to estimate the
albedo in different regions. Besides actual measurement of the reflectance
properties of objects, which is possible to do if the objects are physically
accessible, other information might be used to estimate the albedo. Such in-
formation might include, but is not limited to: defocus information, stereo
information (if images from other viewpoints are available), photometric
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Figure 6.19: Final preprocessed input image for the book image.

Figure 6.20: Reconstruction of the book.

stereo information (if images under other illumination conditions are avail-
able). In these cases, it might be possible to roughly estimate the depth
somewhere in the segments, and by that estimate the albedo. The simplest
way, however, would be the user providing this information. In the case of
different specularities, that information has to be determined or provided
as well.
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Fully Textured Images

Another thing that might happen is that a surface is completely textured.
In this case, the remaining information might not be sufficient to inpaint.
If the texture can be sharply segmented, the situation is practically the
same as in the previous case: In each segment, the reflectance parameters
of the respective colour needs to be determined. The easiest way to do this
is again by user interaction.

Colour Gradients

Another issue that can arise is that objects do not have a texture that can
be sharply segmented. One such example are colour gradients, where an
object or a segment of an object has one colour on one side and another
colour on the other side, with a smooth transition in between. In this case,
further assumptions are necessary, like assuming a linear transition. With
such an assumption and the reflectance parameters at several points of the
object, it may be possible to interpolate good reflectance parameters over
the entire object. For the reconstruction, it is then sufficient to use the
right parameters adaptively in every pixel. Estimating such information,
however, might be difficult without additional user input.



Chapter 7

Summary and Outlook

The goal of this chapter is to summarise the contributions and findings from
this thesis. Furthermore, we will look at the state of SfS up to this point
and discuss possible ways to explore in this field.

7.1 Summary

One part of this thesis was to give a survey of the current state-of-the-art of
SfS method, both on the model and on the numerical side. In addition to
that, we introduced a novel, more sophisticated SfS model which allowed for
more accurate reconstructions. We also derived efficient numerical schemes
for this model and explored parallelisation techniques for these algorithms.
Finally, we looked at real-world images and discussed ways to cope with the
challenges presented by them. In this section, we summarise the scientific
contributions made in this thesis on models, numerics, parallelisation, and
application of SfS.

Model Improvements

On the model side, we

• derived a novel model for SfS. This model was based on the state-of-
the-art model by Prados et al. We extended this standard model by
introducing specular highlights into the model.

• derived a Hamilton-Jacobi PDE for this model, which presents the
basis for all numerical methods introduced in this thesis.

193
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• did an extensive experimental evaluation of the effect of including
specular highlights into the model. Even for surfaces with extreme
reflectance properties, we managed to obtain decent reconstructions.
We verified that using the right reconstruction parameters we can ob-
tain good reconstructions, while purely Lambertian reconstructions
were significantly worse even on surfaces with moderate specular high-
lights.

Numerical Methods

On the numerical side,

• we proposed an iterative method that directly solves the Hamilton-
Jacobi equation of the model, in contrast to previous numerical tech-
niques which solved an equivalent Hamilton-Jacobi-Bellman equa-
tion using techniques from dynamic programming or semi-Lagrangian
methods. The proposed method turned out to be much more efficient
than the existing techniques in the literature.

• by doing a numerical scale analysis, we motivated the numerical scheme.
By identifying the most dominant terms in the PDE, we could choose
a suitable discretisation tailored to our model.

• by using an advanced Gauß-Seidel-like solver along with a fast sweep-
ing technique we managed to further improve the performance of the
method.

• we derived a stability criterion on the time step size for this numerical
method.

• we analysed the convergence properties of our numerical scheme and
one competing numerical scheme to identify their strengths and weak-
nesses. We proposed a hybrid scheme that combines advantages of
different strategies to further improve the performance.

• we introduced a non-iterative fast marching method for the same
model. While fast marching methods need Dirichlet data at certain
points in the image, we showed that for the presented SfS model, it is
possible to obtain this data in a different way, and by that obtain a
very fast numerical method which does not rely on any Dirichlet data
to be provided by the user.

• we experimentally investigated the differences in the performance be-
tween fast marching and the iterative methods on actual test images.
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• we experimentally investigated the numerical differences in the final
reconstruction between the fast marching method and the iterative
method. It turned out that in some cases, fast marching is not only
a faster solver, but it can also be more accurate.

Parallelisation

We explored ways to parallelise the very efficient, but difficult to parallelise,
fast marching method. We did this in two ways:

• By distributing the singular seed points obtained at initialisation of
the FM method to different threads, we were able to distribute the
work load to different processors on a multi-core CPU architecture.
The main issue in this approach was to handle collisions between the
wave fronts of the evolutions of the fast marching method for each
thread. With this approach, we managed to outperform other par-
allelisation approaches for fast marching methods which decomposed
the image domain in different parts and handle collisions only at the
boundary between these sections. An important feature of SfS for the
success of the presented approach was that in most scenes, there are
several singular points, and these singular points are not necessarily
distributed over the whole image.

• By combining the iterative numerical method we derived with the
fast marching method, we succeeded in bringing a fast-marching-like
method to a massively parallel architecture. While fast marching
methods are not suited for massive parallelisation, we split the image
in small blocks, on which we solved the SfS problem iteratively on
the GPU. The order in which the blocks are computed and accepted
is motivated by the fast marching idea. By this method, we achieve
real-time performance on standard test images and in particular very
fast reconstruction of very large images compared to purely sequential
implementations.

Application on Real-World images

We identified the difficulties for SfS on real-world images, which mainly
lie in different reflectance properties for different objects in the scene and
different reflectance properties in textured parts of objects. We introduced a
framework to preprocess the image in order to achieve a visually convincing
results. The framework consisted of
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• Segmentation of the object of interest from the background of the
image. This segmentation was done using the Chan-Vese method for
obtaining a rough segmentation which was then refined by geodesic
active contours.

• Identifying textured regions by using local adaptive thresholding.

• Interpolating these regions inpainting by using edge-enhancing aniso-
tropic diffusion. This step can also be understood as an estimation of
the correct albedo in these textured region in relation to the general
albedo of the object to be reconstructed. The result of this interpo-
lation was a realistic object with a uniform albedo.

• Reconstruction of the interpolated, uniform albedo object using the
SfS model introduced in this thesis. Comparisons to a purely Lam-
bertian setting showed that incorporating a specular term clearly im-
proves the accuracy of the reconstruction.

7.2 Outlook

There is still room for some improvement on SfS models. Early SfS tech-
niques contained models of more complex lighting conditions, while modern
SfS techniques usually use very simplified lighting models with usually just
one single light source located in the optical centre or very close to it. While
this assumption clearly simplifies the modelling process, it might be worth
to include more than just one light source into the model, and allow to place
these light sources at other positions than the projection centre. This might
be quite challenging, since as soon as viewing direction and light direction
do not coincide any more, shadows may arise. These shadows would need
to be incorporated in the model and be estimated to obtain a decent result.

Another aspect on the model side would be the use of other reflectance
models. In this thesis, we have seen that using a still rather simple re-
flectance model, it is possible to significantly improve the reconstruction
quality compared to simple Lambertian reflectance. Depending on the sur-
face which should be reconstructed, even better results may be achieved
by incorporating other, more complex and realistic surface models. At this
point, there is a trade-off between realism and simplicity of the model. The
effect on the reconstruction of using a very complex and realistic reflectance
model might be rather small to the required effort. Nevertheless, it might
be worth to explore this issue in more detail.
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A very important point for future SfS research is to explore new fields
of application for SfS. So far, the range of actual applications for SfS is
somewhat limited. There were approaches to use orthographic SfS on doc-
ument images acquired by flatbed scanners to obtain an estimate for the
distortion of the scanned page, which can in turn be used for correcting
this distortion to improve recognition rates of optical character recognition.
There was another attempt to use SfS for the reconstruction of small sur-
face patches in endoscopic images. With the efficient numerics we found in
this thesis, there might be room for improvement in this field.

We have shown that using efficient numerical methods, it is possible to
achieve real-time performance for SfS. This leads to the question whether it
is possible to include SfS in an interactive framework. One possible appli-
cation for such a framework would lie in medical imaging. As one example,
endoscopic images fit quite well to existing models, as the light source is at-
tached to the camera and there are no significant other light sources. With
some additional effort, mainly in choosing the right reflectance models and
parameter estimation, a real-time, interactive framework might be a good
and helpful application for SfS.

However, as soon as we embed SfS in such an interactive framework, we
have more than one input image. To improve the reconstruction quality,
correspondences between subsequent images could be taken into account. In
fact, there are several techniques that use correspondences between images
to obtain structure information, such as shape from stereo or structure from
motion. These methods usually require images to have a lot of texture in
order to determine correspondences between the images. On images with
sparse texture information, these methods can get into trouble. For SfS,
the situation is different, since it works quite well on untextured images,
while texture is usually an undesirable feature. An interesting direction
for further research would be to find ways for other shape reconstruction
techniques to support SfS or vice versa.

Optic flow methods are a class of methods which aim at finding corre-
spondences between subsequent images in an image sequence. While optic
flow methods can be used for determining correspondences between subse-
quent images in a scene, similar correspondences should also arise between
the reconstructed surfaces. This information could be used to improve the
reconstruction quality. In the other direction, when we are interested in
a correct flow field between subsequent images, SfS might be helpful for
assisting optic flow methods in untextured areas. In such areas, structure
information might be obtained by using SfS. This structure information
might be used as an optic flow constraint and thus improve the flow field.
In this case, parameter estimation for SfS might not be much of an is-
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sue, since the reconstructed surface would not necessarily need to be very
accurate to extract the information content of the shading.

Another interesting question is how to determine the shading parame-
ters in a scene. Most SfS methods simply assume that there are uniform
reflectance properties in the whole scene and that the camera and light-
ing conditions are known. Since in a real scene, there frequently is more
than one object, this assumption is not applicable in reality. We have seen
some approaches to deal with this issue, such as segmentation of objects or
interpolation of textured regions. There might be other ways to estimate
reflectance properties of objects in a scene. For instance, such techniques
might make use of defocus information to get a rough depth estimate which
could in turn be used to get an estimate on the surface albedo.
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