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Zusammenfassung

Variationsansätze zählen zur Zeit zu den genauesten Verfahren zur Berechnung
des optischen Flusses aus Bildfolgen. In den letzten Jahen wurden dabei sowohl
im Bezug auf die Genauigkeit als auch die Echtzeitfähigkeit grosse Fort-schritte
gemacht. Insbesonder die Modellierung neuer Daten- und Glattheitsterme innerhalb
der Energiefunktionale führte zur einer erheblichen Verbesserung der Schätzergebnisse.
Es wurden jedoch bis jetzt kaum Anstrengungen unternommen, dichte variationelle
optische Flussverfahren mit nicht-dichten merkmalsbasierten Methoden wie SIFT
zu kombinieren. Das Ziel dieser Arbeit ist zu untersuchen, wie und in welchem
Maße variationelle optische Flussverfahren von den Ergebnissen eines Merkmalsex-
traktors profitieren können. Dazu stellen wir eine neues Verfahren zur Bestim-
mung des optischen Flusses vor, das im wesentlichen auf der Interpolation vek-
torwertiger Daten beruht. Im Gegensatz zu üblichen Variationsansätzen beizieht
dieses Verfahren ein durch das Matching einiger signifikatner Merkmale erhaltenes
nicht-dichte Verschiebungsvektorfeld in die Berechnung des optischen Flusses mit
ein. Dabei ermöglichen Ähnlichkeiten in der Formulierung des Variationsansatzes
und des merkmalsbasierten Verfahrens die Verschmelzung der beiden Methoden
zu einem hybriden Ansatz. Die Genauig-keit der beiden einzelen Verfahren sowie
des kombinierten Ansatzes wird schließ-lich ein einer Reihe von Experimenten ver-
glichen.

Abstract

Variational methods currently belong to the most accurate techniques for the re-
covery of the optic flow of an image sequence. Major contributions have been made
in the last years to both their accuracy and their real-time performance. Most of
the efforts to improve the accuracy of these methods have focused on the design
of new data terms and smoothness terms that enter the energy functional. So far
no research has been done on combining variational optic flow with feature-based
methods such as SIFT. The goal of this thesis is to investigate how and to what
extend optic flow methods can benefit from the results of a feature extractor. We
will introduce a new method for optic flow estimation that is based on a unified
model for tensor field interpolation. This method uses the sparse displacement
field, that can be established by matching features from two images, to estimate
the dense optic flow. Because of their similar formulation, the variational method
and the feature-based method can easily be merged into one combined method. The
accuracy of the three methods is finally compared in a series of experiments.
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Chapter 1

Introduction

The 2D displacement field that describes the motion of a scene between two con-
secutive frames of an image sequence is called optic flow. Determining the optic
flow is an important correspondence problem in computer vision with many fields of
application. Robot navigation and tracking rely on the ability to extract accurate
motion information of objects within view of the camera. Stereo reconstruction and
image registration are directly related to optic flow calculation in that they too try
to establish a mapping between two or more images.

Variational Optic Flow Methods

Variational methods belong today to the most accurate and best understood method-
ologies for computing the optic flow. Such methods determine the unknown dis-
placement field as the minimizer of an energy functional that penalizes deviations
from model assumptions. Ever since the seminal work of Horn and Schunck (see
[25]), this energy functional is typically made up of two terms: a data term that im-
poses constancy on specific image features, and a smoothness term that in general
imposes additional constraints on the roughness of the solution. The smoothness
term fills in information in regions where the data term does not have a unique
solution (c.f. the aperture problem [4]) and provides a dense flow estimation. Be-
cause of this quality, variational methods are termed global methods in contrary
to local differential methods that minimize local expressions as for instance the
Lucas-Kanade method (see [29]).

There has been a major drive from within the community over the last years
in the improvement of both preciseness and computational efficiency of variational
optic flow estimation. New variational models with refined data constraints and new
smoothness terms have led to the development of a toolkit for the design of highly
accurate methods (see [35, 6, 31, 32, 14, 7, 36, 8]). The usage of fast numerical
algorithms like multigrid allow for real-time employment (see [11, 10, 12]).

Hybrid Optic Flow Methods

On the other side of the correspondence spectrum we find feature-based approaches.
These techniques extract a number of salient image locations in two images and try
to match them. Thereby they establish a sparse set of correspondences. In particu-
lar in the field of stereo reconstruction such feature-based methods have been very
popular (see [18]). Well known image features are edges and corners and many algo-
rithms have been proposed in literature to obtain unique and unambiguous matches.
Recently the Scale Invariant Feature Transform (SIFT) has been introduced (see
[28]) and due to its superior performance it has become a predominant tool for fea-
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2 CHAPTER 1. INTRODUCTION

ture extraction. The reason for this is that SIFT points are very stable and can be
matched distinctively because of the association with a high dimensional descriptor.
SIFT has been successfully utilized for object recognition and the construction of
panoramas from multiple views.

So far not much attention has been devoted to the combination of local feature-
based approaches and global variational methods for optic flow estimation. With
the optic flow method of Brox et al. (see [7]), the pinnacle of accuracy of variational
methods seemed to be reached. The question remained open if a hybrid method,
that incorporates the sparse displacement field obtained by a feature-based tech-
nique, could improve upon the established results.

In this work we will present a global feature-based optic flow method that is
founded on the model for vector field approximation from [44]. Although the method
does not rely on the specific choice of feature extractor, we restrict ourselves in our
evaluation to SIFT. The feature-based approximation method will be combined with
a variational optic flow method to give rise to a hybrid model that takes advantage
of the best of both worlds. This is close in spirit to the approaches in [13, 14] where
local differential models have been embedded in variational optic flow techniques.

Outline

This thesis is organized as follows:

We begin in Chapter 2 by briefly summarizing the basics of variational optic
flow estimation. The general structure of the energy functional and the necessary
condition for a minimizer, i.e. the Euler-Lagrange equations, are discussed. We will
present choices for data and smoothness terms and shortly make the connection
between vector-valued diffusion processes and the induced filling-in effect.

In Chapter 3 we introduce our feature-based optic flow model. After an overview
of types of interest point and the SIFT algorithm, we move on to the data approx-
imation paradigm. Analogous to variational optic flow, different choices for the
smoothness constraint are presented, each one with specific interpolation qualities.
We conclude the chapter with ideas for dealing with outlying data in the sparse
displacement set.

In Chapter 4 a combined optic flow method is presented. The system of partial
differential equations (PDEs) that describes the feature-based model and the Euler-
Lagrange equations of the variational model will be brought together to form a novel
hybrid approach.

Chapter 5 approaches the task of discretizing the systems of PDEs that describe
the three optic flow methods. We discuss the resulting large system of equations
and propose techniques for efficiently solving it.

In Chapter 6 we deliver an experimental comparison of all three models pre-
sented in this work. Preliminary tests are conducted in which we use ground truth
data instead of actual feature displacements to obtain an upper limit for potential
improvement. Further on, SIFT is used for the generation of a sparse displacement
field to illustrate that our feature-based approach works as a stand-alone method;
comparisons with the combined method are carried out. In some final test runs we
assess various outlier removal strategies.

We close with conclusions and future work in Chapter 7.
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Naming and Notation

Under a standard optic flow estimation we will understand the solution of a system
of PDEs with terms that arise from a constancy assumption and terms that arise
from a smoothness constraint. Depending on the type of smoothness constraint a
corresponding energy functional can or cannot be defined. Some of the standard op-
tic flow methods that are included in our experiments do not minimize an associated
energy functional and can therefore not be called variational methods.

Scalars will be written in italic as x. Vectors are column matrices and will be
written in bold face as x. Matrices and sets will be denoted by capital letters as A.
The notations fx and ∂xf will be used interchangeably for the partial derivative of
f with respect to x.
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Chapter 2

Variational Optic Flow
Methods

Variational optic flow methods recover the displacement field of an image sequence
as the minimizer of a suitable energy functional. Analogous to variational image
regularization this functional consists of two terms: a data term and a smooth-
ness term. The data term is responsible for the generation of information while
the smoothness term allows for propagation of information. Variational optic flow
methods are global methods that yield dense flow fields. This means that the
smoothness term dominates the data term in the absence of sufficient local gradient
information and that information is filled in from surrounding regions. In contrast
to local methods, such as the Lucas-Kanade approach (see [29]), there is no need
for a postprocessing step where sparse data have to be interpolated.

In this chapter we offer a short overview of the basic elements of variational op-
tic flow methods. We will start by introducing the general structure of the energy
functional and the necessary conditions that must be fulfilled by any minimizer.
The next two sections will address design options for both the data term and the
smoothness term. We introduce the structure tensor and we will point out how var-
ious smoothness terms can be classified based on the type of diffusion they induce.
The list of smoothing operators presented here is not complete since we restrict our-
selves to diffusion processes that arise from energy functionals. In the next chapter
we will review the smoothness constraint in the setting of data approximation and
we will add new operators based on their interpolation qualities. For a detailed sur-
vey on the various data terms and the taxonomy of smoothness terms for variational
optic flow, the reader is directed to [42] and [43].

2.1 General Structure

In a continuous framework we denote by f(x, y, t) a scalar-valued image sequence,
where (x, y) is the location and t is the time. In most cases f will be obtained by
convolving an initial image sequence f0 with a Gaussian kernel

Kσ(x) =
1

2πσ2
exp

(
−|x|

2

2σ2

)
with standard deviation σ:

f = Kσ ∗ f0.

5



6 CHAPTER 2. VARIATIONAL OPTIC FLOW METHODS

In this context σ can be regarded as a noise scale because the low-pass effect of Gaus-
sian convolution attenuates high frequency noise, making the signal more suitable
for operations like differentiation. The optic flow w(x, y, t) = (u(x, y, t), v(x, y, t), 1)>

gives the displacement rate between subsequent frames with a temporal frame dis-
tance chosen to be 1. In a variational setting we are looking for the optic flow w
that minimizes a continuous energy functional of the form

E(w) =
∫
Ω

(
M(Dkf,w) + α · S(∇f,∇w)

)
dx. (2.1)

The functional E(w) penalizes deviations from model assumptions. It typically
consists of a data term M(Dkf,w), where Dkf describes the set of all partial
derivatives of f , and a regularizer or smoothness term S(∇f,∇w). The data term
is mostly expressed as a constancy assumption while the smoothness term penalizes
deviations from (piecewise) smoothness. The parameter α > 0 is a regularization
parameter and serves as a weight between the data term and the smoothness term.
The larger we choose the regularization parameter, the more simplified the resulting
flow field will be. The optimal choice for α depends on the image sequence and on
the combination of data and smoothness term because both terms commonly work
on different scales of magnitude. The integration domain Ω can be either a spatial
or a spatiotemporal domain. In the former case we set x = (x, y)> and ∇ := ∇2 :=
(∂x, ∂y)>, while in the latter case x = (x, y, t)> and ∇ := ∇3 := (∂x, ∂y, ∂t)

>.
Imposing extra temporal smoothness will on the main give better results but we
will restrict ourselves here to spatial models.

If the functional E(w) is strictly convex, there is a unique minimizer (u, v)>. It
can be shown (see [21]) that this minimizer is the solution of a system of partial
differential equations (PDEs). These PDEs are called the Euler-Lagrange equations
and are a necessary condition for each minimizer of E(w). For our energy functional
(2.1) the Euler-Lagrange equations take on the form

∂uM − α ·
(

∂xSux
+ ∂ySuy

)
= 0, (2.2)

∂vM︸ ︷︷ ︸
data

− α ·
(

∂xSvx
+ ∂ySvy

)︸ ︷︷ ︸
smoothness

= 0, (2.3)

with homogeneous Neumann (reflecting) boundary conditions

∂nu = n>u = 0

∂nv = n>v = 0
on ∂Ω

where n is the outer normal vector on ∂Ω.

2.2 Data Terms

Many differential methods for optic flow estimation are based on the assumption
that the brightness f does not change along the path of motion (x(t), y(t))> i.e. that
the grey value of objects does not vary over time. Considering the instantaneous
rate of change in brightness we can write this formally as

df (x(t), y(t), t)
dt

= 0.
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After applying the chain rule this yields the following optic flow constraint (see
[29, 25]):

fxu + fyv + ft = 0, (2.4)

where (u, v, 1)> = (∂t x, ∂t y, 1)> is the desired rate of displacement. This expression
can also be regarded as a first order Taylor approximation in the point (x, y, t) of
the brightness constancy constraint between two subsequent frames:

f(x + u, y + v, t + 1)− f(x, y, t) = 0.

The Taylor linearization is only a reasonable approximation if the displacements
are small and if the flow field is sufficiently smooth. Equation (2.4) is often used in
the functional (2.1) with a quadratic penalization:

M(D1f,w) = (w>∇3f)2. (2.5)

This squared constraint can conveniently be written down as follows:

M = (w>∇3f)2

= w>(∇3f ∇3f
>)w

= w>J0(∇3f)w, (2.6)

where J0(∇3f) = ∇3f ∇3f
> is a 3×3 symmetric positive semidefinite matrix. The

brightness constancy assumption enters the earliest representative of the class of
variational optic flow methods, the method of Horn and Schunck (see [25]). This
energy functional reads:

EHS(w) =
∫
Ω

(
w>J0(∇3f )w + α · |∇w|2

)
dx. (2.7)

As a smoothness term the homogeneous regularizer |∇w|2 = |∇u|2 + |∇v|2 is used
which can be directly related to homogeneous diffusion filtering (see [43]). The
Euler-Lagrange equations corresponding to EHS(w) are given by the system of
PDEs:

f2
xu + fxfyv + fxft − α ·∆u = 0, (2.8)

fxfyu + f2
y v + fyft − α ·∆v = 0, (2.9)

with reflecting boundary conditions. When we denote by Jmn the entry of J0(∇3f )
on the mth row and the nth column, we can write equations (2.8)-(2.9) as:

J11u + J12v + J13 − α ·∆u = 0, (2.10)
J12u + J22v + J23 − α ·∆v = 0, (2.11)

where J12 = J21 because J0 is symmetric.

The Horn and Schunck method can be extended in a natural way by replacing
the tensor J0 by the spatiotemporal structure tensor (see [19])

Jρ(∇3f) = Kρ ∗ J0(∇3f), (2.12)

where ρ > 0 is an integration scale which provides an averaging of the gradient
directions in J0. This extension is coined the combined local-global (CLG) method
(see [14]) since it combines the noise robustness of local methods with the dense
estimation of global approaches. The CLG method minimizes the functional

ECLG(w) =
∫
Ω

(
w>Jρ(∇3f )w + α · |∇w|2

)
dx. (2.13)
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Besides Jρ(∇3f), also the spatial structure tensor Jρ(∇2f) = Kρ ∗ (∇2f ∇2f
>)

(see [19]) plays an important role in image processing and is often utilized to analyze
local image structure. Jρ(∇2f) is a symmetric positive semidefinite matrix of which
the eigenvectors indicate the preferred local structure directions and the eigenvalues
the contrast along these directions. We will see in Chapter 3 that the spatial
structure tensor can be employed to determine whether a certain image location
falls in a smooth area or if it is part of an edge or a corner.

Throughout this thesis we will mainly make use of the brightness constancy as-
sumption because it is the most simple one. However other data terms are available.
In practice the choice of which data term to use in optic flow estimation depends on
prior knowledge about the scene and on assumptions about which image features
are invariant under the considered motion. Data term (2.5) gives good results as
long as there are no illumination changes present in the image sequence. If this
assumption is violated we have to look for other image features on which we can
impose constancy. One such feature is the spatial brightness gradient (fx, fy)>.
Assuming that the gradient does not change along the path of motion we end up
with the data term (see [7])

M(D2f,w) = (w>∇3fx)2 + (w>∇3fy)2. (2.14)

We can further impose constancy on higher-order derivatives like the entries of the
spatial Hessian H2f (see [36]). This results in an expression involving all second
order spatial derivatives. We can also devise terms that do not contain any di-
rectional information and are therefore fit for any type of motion, including fast
rotation. Such data terms would impose constancy on features like the gradient
magnitude |∇2f |, the Laplacian ∆2f or the determinant of H2f (see [42]). Ad-
ditionally results can be improved by linearly combining constancy constraints on
several image features p1, ..., pn. As an extension of (2.6), the data term can then
be written as a quadratic form

M = w>J(∇3p1, ...,∇3pn)w,

where

J(∇3p1, ...,∇3pn) =
n∑

i=1

γi∇3pi∇3p
>
i .

The matrix J(∇3p1, ...,∇3pn) is called the motion tensor that is derived from the
weighted sum of n squared linearized constraints with positive weights γi (see [9]).
As with the structure tensor we can perform a weighted least squares fitting by
convolving J with a Gaussian Kρ. This makes the data term more robust under
noise and outliers, such as occlusion areas.

Another way of increasing the robustness of the data term is to penalize devi-
ations from constancy assumptions in a non-quadratic way, thereby giving outliers
less weight (see [5]). Such a data term would take on the form

M = Φ(w>Jρ w), (2.15)

where Φ(s2) is a convex function in s. The penalizer Φ(s2) is chosen to be convex
such that the resulting energy functional has a unique minimum and allows for
the construction of globally convergent algorithms. An example is the regularized
L1-penalization which will be introduced in section 3.5.
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2.3 Smoothness Terms

The smoothness term is responsible for the propagation of information to locations
where no unique solution for the data term exists. Different models for the regular-
izer are available depending on the desired type of filling-in. To make their effects
comprehensive, it has been shown in [43] that it is helpful to relate them to diffusion
processes of vector-valued images. Following this idea we regard the Euler-Lagrange
equations (2.2)-(2.3) as the steady-state conditions of a diffusion-reaction system
in which the diffusion term results from S(∇f,∇w) and the reaction term from
M(Dkf,w). The strong connection between regularization and diffusion filtering
becomes clear when we restrict ourselves to the diffusion part of this diffusion-
reaction system:

∂tu = ∂xSux + ∂ySuy , (2.16)
∂tv = ∂xSvx + ∂ySvy . (2.17)

We can interpret these equations as a diffusion filter of some vector-valued image
with channels u and v. In the classification process we identify the optic flow
regularizers S(∇f,∇w) that produce the different types of multichannel diffusion. It
has to be noted that this taxonomy, introduced in [9], is based on diffusion processes
that can be written in divergence form and can be regarded as the minimizer of a
suitable energy functional.

- Homogeneous Regularization. Homogeneous diffusion of vector-valued images
corresponds to homogeneous regularization in optic flow. As we have seen with the
Horn and Schunck method, the according regularizer can be written as S(∇w) =
|∇w|2 = |∇u|2 + |∇v|2 and the Euler-Lagrange equations as (2.10)-(2.11). Motion
boundaries will in general get blurred and dislocated when we use the homogeneous
smoothness term.

- Flow-driven Isotropic Regularization. Homogeneous regularization does not
preserve edges in the flow field and as a consequence sudden motion transitions are
estimated inaccurately. To overcome this unwanted effect, discontinuity preserving
regularizers have been developed that inhibit smoothing at edge locations. In the
case of flow-driven isotropic regularization the resulting diffusion process is called
nonlinear isotropic diffusion and it uses a scalar-valued diffusivity g(s2) that is de-
creasing in s. The corresponding optic flow regularizer is S(∇w) = Ψ(|∇u|2+|∇v|2)
where Ψ′ = g. For a certain data term M this leads to the Euler-Lagrange equations:

∂uM − α · div
(
g(|∇u|2 + |∇v|2|)∇u

)
= 0, (2.18)

∂vM − α · div
(
g(|∇u|2 + |∇v|2|)∇v

)
= 0. (2.19)

This type of regularization is called flow-driven because there is a feedback of the
evolving flow field w into the process through the diffusivity g. If the gradient ∇w
is large, the diffusivity g will be close to 0, thus not allowing any smoothing.

- Flow-driven Anisotropic Regularization. Using a diffusion tensor D instead
of a scalar-valued diffusivity amounts to direction dependent behavior. D can be
designed such as to allow diffusion along flow edges and inhibit diffusion across them.
This can improve the results of flow estimation at motion boundaries, especially in
the presence of noise. Flow-driven anisotropic regularization results in nonlinear
anisotropic diffusion that makes use of a diffusion tensor that is a function of w.
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A straightforward choice for D would be to specify its eigenvectors v1 and v2 as
those of the joint structure tensor ∇u∇u> + ∇v∇v> and its eigenvalues as g(µ1)
and g(µ2). Here µ1 and µ2 are the eigenvectors of the joint structure tensor and
g a scalar-valued diffusivity. For this type of diffusion a formal expression for the
regularizer only exists when the flow components u and v are not presmoothed.
The Euler-Lagrange equations are:

∂uM − α · div
(
D(∇u∇u> +∇v∇v>)∇u

)
= 0, (2.20)

∂vM − α · div
(
D(∇u∇u> +∇v∇v>)∇v

)
= 0. (2.21)

- Image-driven Isotropic Regularization. If motion boundaries are a sub-
set of the image boundaries, we can prevent smoothing at motion boundaries by
introducing a weight function that becomes small at image edges. Just as with
flow-driven isotropic regularization we use a scalar-valued diffusivity g(s2), but
this time g is in function of the image gradient |∇f |. This yields the regular-
izer S(∇f,∇w) = g(|∇f |2)(|∇u|2 + |∇v|2) with Euler-Lagrange equations:

∂uM − α · div
(
g(|∇f |2)∇u

)
= 0, (2.22)

∂vM − α · div
(
g(|∇f |2)∇v

)
= 0. (2.23)

- Image-driven Anisotropic Regularization. If we make the diffusion tensor D
for optic flow regularization dependent on the image gradient |∇f |, we end up with
image-driven anisotropic regularization. It leads to the Euler-Lagrange equations:

∂uM − α · div (D(∇f)∇u) = 0, (2.24)
∂vM − α · div (D(∇f)∇v) = 0. (2.25)

By basing the design of the type of smoothing solely on the diffusion equations
(2.16)-(2.17) we can choose from other models than the ones presented here, de-
pending on the resulting kind of filling-in effect. One has to take into account that
not for all models a corresponding energy functional can be defined such that the
derived Euler-Lagrange equations give a system of steady-state diffusion-reaction
equations.



Chapter 3

Feature-based Optic Flow
Methods

Determining a correspondence between two or more images can be done by ex-
tracting a number of salient local image features and subsequently matching them
to each other. The discrete correspondences found in this way are used in many
computer vision tasks, ranging from object recognition to image registration and
3D reconstruction. Under feature or interest point extraction one most often un-
derstands the selection of distinctive locations in the image where there is a strong
change in the grey value. Classical examples of locations of interest are edges and
corners. More recently new scale invariant features with high repeatability were
introduced to the field. Among these the so called SIFT features have been shown
to outperform other local descriptors and are currently widely used.

In this chapter we demonstrate how a set of feature matches can be employed
to estimate the dense motion field from an image sequence. The first two sections
give a short description of feature extraction and the SIFT algorithm. Section 3.3
defines the problem of dense motion estimation from discrete point matches and
the subsequent sections treat possible solutions. In the next chapter we will show
ways of incorporating the information from point matches into standard variational
optic flow methods.

3.1 Feature Extraction and Matching

Edges and corners are common feature types and extracting them from image data
is a key task in computer vision. Edges are detected with derivative operators.
Since taking derivatives is an ill-posed problem, the original grey value image f is
convolved with a Gaussian kernel Kσ to obtain a smoother image u = Kσ ∗f . In its
simplest form the gradient magnitude |∇u| is approximated with Sobel operators
and edges are located where |∇u| exceeds a certain threshold. A more sophisticated
version of this approach that thins down the edges to a width of 1 pixel was presented
by Canny in [15]. Edges can also be defined as zero crossings of the Laplacian of
Gaussians (LoG) ∆u (see [30]). This detector yields closed contours, but can give
incorrect edge locations in case of strong Gaussian smoothing.

Corners can be robustly found by using the information about the local image
structure encompassed in the structure tensor Jρ(∇2u) (see Chapter 2). The eigen-
vectors of Jρ specify the preferred local structure directions, while the eigenvalues
λ1 and λ2 describe the average contrast along these directions. Very generally, cor-
ners can be described as locations where λ1 ≥ λ2 � 0. A popular variant is the

11
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Harris corner detector (see [22]) which evaluates the expression

det Jρ − k tr2Jρ
!= max (3.1)

for a certain value of k, where max is the maximum in a local neighborhood. A sim-
ilar detector by Rohr only looks for local maxima of det Jρ. Other approaches make
use of second order derivatives or embed the corner detection into a morphological
scale space to avoid the dislocating effects of Gaussian smoothing.

Once features have been extracted in both images, correspondences have to be
established between them. Formally we have to find a set of n feature matches
{xi ←→ x′i | i = 1, . . . , n} given a set of features {xi | i = 1, . . . , p} and {x′i | i =
1, . . . , q} in the first and in the second image, respectively. In [2] the authors include
an optic flow technique which is based on tracking an edge map throughout an
image sequence. In practice though, it is more common to look for correspondences
between point features like corners. In this case an initial set of point matches can
be found by correlating the image patches surrounding a point xi and a point x′i.
A threshold is then applied to the correlation score to obtain a number of possible
correspondences. These correspondences can be ambiguous since one point might
be paired to several other points. In [47] a relaxation scheme relying on a measure
for the strength of a match is proposed in order to overcome these ambiguities.
Matching image patches by simple correlation is very sensitive to viewpoint changes
or deformations. Therefore, recent matching techniques make use of a so called
descriptor, an adequate vector representation of the neighborhood of a point of
interest. Matching feature points is based on a comparison of a distance measure
between two descriptor vectors, e.g. the Euclidian or the Mahalanobis distance.
Among these last approaches the Scale Invariant Feature Transform has proven to
be the most successful.

3.2 Scale Invariant Feature Transform

Repeatability is an important property of a feature detector. This means that
under different viewing conditions preferably the same interest points are to be
extracted. The set of features found for instance by the Harris corner detector
depends strongly on the noise scale σ and the integration scale ρ that are used in
the calculation of Jρ. A simple Harris corner detector is therefore not invariant to
image scale. In [28] Lowe introduced a detector-descriptor-method that is not only
scale invariant but also invariant with respect to image rotation and to a certain
extent with respect to affine distortions and illumination changes. The method,
the Scale Invariant Feature Transform (SIFT), generates features that are highly
distinctive in the sense that they can be correctly matched to one other with high
probability. Recent comparative studies by Mikolajczyk et al. (see [33, 34]) put
forward SIFT as the most accurate matching algorithm.

A variant of SIFT, PCA-SIFT (see [26]), speeds up matching by reducing the
dimension of the descriptor space. We experienced , however, that the performance
of PCA-SIFT was not better than the performance of SIFT and this is also confirmed
in one of the above mentioned studies. Of another recently proposed detector-
descriptor-method, SURF (see [3]), no performance evaluations are known yet, so
we did not include it in our experiments.
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3.2.1 The SIFT algorithm

The SIFT algorithm proceeds in two main stages:

1. Detection: Interest points are identified over all image scales and locations.
Every point is assigned one or more orientations based on the prevalent local
gradient directions.

2. Description: The distribution of image gradients within a neighborhood of
each feature is collected into a representation. This operation is performed
on image data that has been transformed relative to the assigned orienta-
tion, scale and location for each feature, thus providing invariance to these
transformations.

Both stages will be explained in more detail below.

In a first step extrema are detected in Gaussian scale-space. The scale-space
concept (see [45, 27]) can be defined as the embedding of an image f : R2 −→ R
into an ordered family

{Tσf |t ≥ 0}

of gradually smoothed, simplified versions, which satisfies certain requirements. For
a Gaussian scale-space

Tσf = Kσ ∗ f

with Kσ a Gaussian with standard deviation σ. As stable features, maxima and
minima of the normalized Laplacian of Gaussians (LoG) are chosen. Computational
speed-up is acquired by approximating the LoG by the difference of Gaussians
(DoG)

d(x, y, σ) = (Kkσ ∗ f)− (Kσ ∗ f)

where k is a factor separating two nearby scales. The DoG can be calculated by
simply subtracting subsequent images that are sampled in scale-space. For this
purpose a Gaussian pyramid of repeatedly convolved images is built where every
image is downsampled in space after each octave. Selection of DoG extrema is
done by comparing each sample point to all of its neighbors in space and scale and
retaining those that are larger or smaller than all of them.

Subsequently the DoG is approximated in the retained sample points by its
quadratic Taylor expansion. Fitting this function to the local neighborhood im-
proves matching and stability and results in sub-pixel accuracy for the spatial
feature coordinates. The minimizer of this Taylor approximation is taken as the
location for the feature point. Points with low contrast and points that are poorly
localized along edges are discarded.

Within a neighborhood of the found feature points the gradient orientations
are sampled and added to a histogram. Each histogram entry is weighted by a
Gaussian window and its gradient magnitude. Peaks in the histogram correspond
to dominant directions of the local gradient and the according orientation is assigned
to the feature. It is important to note that multiple peaks in the histogram lead to
the creation of multiple feature points that can be matched against in the matching
phase.

The last stage consists of building a descriptor vector for the local image region
around each feature point. The descriptor is based on the distribution of gradi-
ent orientations since this should result in better matching under changes in 3D
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viewpoint. The local image region is described with respect to the coordinate sys-
tem imposed by the assigned location, scale and orientation, resulting in invariance
to these parameters. From this region gradient magnitudes and orientations are
sampled and weighted after which they are distributed over an array of orientation
histograms. Finally, the descriptor vector is derived from the entries of the his-
togram bins and normalized to make it invariant to illumination changes. In the
experiments conducted by Lowe the descriptor vectors had a length of 128, corre-
sponding to a 4x4 array of histograms with each 8 bins. This high dimensionality is
supported by the claim that the use of a lower dimensional descriptor space results
in loss of accuracy.

3.2.2 Matching SIFT features

A SIFT point xi is matched by identifying its nearest neighbor in descriptor space
i.e. the SIFT point x′i with the minimum Euclidean distance for the descriptor
vector. Not every xi in the first image has a corresponding match x′i in the second
image and vice versa. In the case of motion estimation this can be due to occlusions
or because a feature in one image is simply not detected in the other image. In order
to discard features that do not have any match the distance to the closest neighbor
is compared to the one of the second closest neighbor. The rationale behind this
is the following. To obtain reliable matching, a correct match will have to have
its closest neighbor significantly closer than the closest incorrect match. A feature
with no correct match will on the contrary have several neighbors that are similarly
close in the high dimensional descriptor space. Lowe supports this conjecture with
results from matching experiments involving a large database of features and a
number of images that underwent a variety of transformations. He uses a distance
ratio between the closest and the second closest point of not more than 0.8. An
alternative is to use a threshold for the absolute distance to the closest point. In
[26] such thresholds are determined from a database of various images. We have
observed that this last approach does not result in a better quality of matches then
the former approach.

The amount of feature matches obtained with the SIFT algorithm is relatively
high and depends on the image and on the chosen threshold for the distance ratio.
Highly textured regions give more features and thus more correspondences than
regions with less gradient information. In most applications it is advantageous to
have a large number of matches and this is also true for dense motion estimation.
We obtained up to 600 point correspondences for a 316×252 image and more than
4100 for a 512×512 image.

3.3 Problem Statement

Let f(x, y, t) be a scalar-valued image sequence where (x, y) is the location within
the image domain Ω ∈ R2 and t is the time. Let f1(x, y) = f(x, y, t) be a frame
at time t and f2(x, y) = f(x, y, t + 1) be the next frame in the sequence. xi and
x′i denote the location of a point of interest in f1 and f2. Having found a set of
n feature matches {xi ←→ x′i | i = 1, . . . , n} between f1 and f2 we end up with a
sparse displacement field

F = {di = x′i − xi | i = 1, . . . , n},

consisting of n displacement vectors which are located in the points xi. We can
regard F as a set of observed values of a more generic variable d(x, y).
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The task consists of finding a dense flow field w(x, y) between f1 and f2 using the
scattered data di in xi for i = 1, ..., n. By applying our feature matching algorithm
on every two consecutive frames of the image sequence f(x, y, t) we want to be able
to estimate the optic flow

w(x, y, t) =

 u(x, y, t)
v(x, y, t)

1

 .

3.4 Interpolation and Approximation

In this section we assume that the errors in F are mainly due to a bad localization
of the SIFT features and that they are Gaussian distributed and small (≤ 3 pixels).
Displacement data resulting from false matches, so called outliers, do not follow
this error distribution and how to deal with them is the topic of section 3.5.

In computer vision applications errors in the measurement of position are mostly
dealt with by finding least squares solutions or minimizing cost functions that at
the same time estimate model parameters and correct the measurements. These
methods often relate to a maximum likelihood estimate. In our case we are dealing
with general motion estimation from scattered data. We do not make any strong
model assumptions like pure translational or rotational motion, motion between
two stereo views of the same scene or the assumption that all objects in the scene
move in the same way. Therefore we do not have model parameters that are the
arguments of least squares expressions or of cost functions to be minimized. The
only assumption we want to make about the displacement field w is that it is
smooth or at least piecewise smooth. Thus the problem of finding w from F comes
down to scattered data interpolation with the only constraint that w is piecewise
smooth. Most likely we do not want to fit our data exactly since then we will mainly
capture the idiosyncracies of the sampled displacement set F . In order to end up
with a reasonable flow estimation in all points of the domain we will have to find a
general trend in the data. This means finding a suitable regression curve or function
approximation.

Although many methods exist for function approximation, both parametric and
non parametric, we choose to keep the solution in a variational setting. Like this we
will be able to assess the smoothing properties of different regularizers and compare
the results with those of other variational approaches.

3.4.1 The Approximation Problem

At first we only consider the scalar case. We are given n points x1 < x2 < ... < xn

with known function values f(x1), ..., f(xn) and we want to find a smooth function
u(x) that approximates the unknown f(x) on the given domain. A very general
class of solution methods are the so called regularization methods in which u(x) is
the solution of

min
u

[
n∑

i=1

L (f(xi), u(xi)) + α · J (u)

]
(3.2)

where L(f(xi), u(xi)) is a loss function, J (u) a penalty functional and α a smooth-
ness parameter. The loss function is a measure for the closeness of the fit to the
data, while the second term tries to stabilize the solution by penalizing for in-
stance the roughness of the fit. Important approximation methods that fall into
this framework are for example smoothing splines and thin-plate splines for higher
dimensions. Under certain restrictions the solution u(x) can also be written as an
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expansion in radial basis functions K(x, xi). The latter method combines the local
fitting properties of kernel methods with the flexibility of basis expansion methods.
Commonly used are Gaussian radial basis functions Kσ(x, xi) = e−|x−xi|2/2σ2

with
window size σ centered in the points xi. A detailed coverage of the above mentioned
methods in a statistical learning framework is given in [24].

A widely used loss function is the residual sum of squares. With a penalization
of the curvature for smoothness we obtain:

min
u

[
n∑

i=1

(u(xi)− f(xi))
2 + α

∫
(∂xxu(x))2dx

]
. (3.3)

If the smoothness parameter α = 0, the solution u(x) can be any function that
interpolates the data. If α = ∞, a least squares fit is obtained since in this case
no non-zero second order derivative is tolerated. It can be shown (see [24]) that
the solution to the particular problem (3.3) is a natural cubic spline with knots in
xi, i = 1, ..., n. We can then write the solution as

u(x) =
n∑

i=1

θiBi(x)

where Bi(x) are cubic B-spline basis functions. The problem is reduced to solving
(3.3) for the coefficients θi.

3.4.2 A PDE-based Model for Function Approximation

We would like to use a much more general approach than the one discussed before.
We do not want to make use of an explicit expression for the function approximation
and we do not want to restrict ourselves to a specific penalizer or to the squared
error loss. We built our approximation schemes on the unified model presented
by Weickert et al. in [44]. It is based on elliptic PDEs and it covers some of the
methods presented before. In our exposition of the model we set out from spline
interpolation as the minimization of a suitable energy functional.

We assume that x0 = 0 and xn = 1. We start by considering the spline in-
terpolation problem as looking for a smooth function u(x) : [0, 1] → R that is the
minimizer of

E(u) =

1∫
0

(∂m
x u)2dx (3.4)

with the constraints
u(xi) = f(xi) i = 1, ..., n. (3.5)

Note that with this model only spline interpolants of odd order can be obtained.

The Euler-Lagrange equation for (3.4),

(−1)m+1∂m
xxu = 0

can be combined with the constraints (3.5) to a single linear PDE of order 2m:

c(x) · (u(x)− f(x))− (1− c(x)) · (−1)m+1∂m
xxu = 0

with

c(x) :=
{

1 if x ∈ {x0, ..., xn}
0 else.
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For m > 2 the maximum-minimum principle will not be satisfied in general. This
means that the interpolating spline may not remain in the convex hull of the data
resulting in over- and undershoots. For m = 1 we get linear interpolation with C0

smoothness at the interpolation points. For m = 2 we have cubic spline interpola-
tion with C2-smoothness in the interpolation points.

Additionally we can take a look at the variational restoration of a noisy signal
f : [0, 1] → R. We want to find a signal u(x) that is the minimizer of a convex
energy functional that rewards smoothness and similarity to f(x):

E(u) =

1∫
0

(
c · (u− f)2 + (1− c) ·Ψ(u2

x)
)
dx (3.6)

with a constant weight 0 < c < 1 and an increasing penalizing function Ψ : [0,∞)→
R. Examples of penalizer functions are the Tikhonov, the Charbonier or the total
variation (TV) penalizer (see [16, 39]).

The minimizer u(x) of (3.6) has to satisfy the Euler-Lagrange equation

c · (u− f)− (1− c) · ∂x

(
Ψ′(u2

x)ux

)
= 0, (3.7)

with homogeneous Neumann boundary conditions.

From the previous considerations on spline interpolation and variational restora-
tion, we can derive a unified model for interpolation and function approximation.
Assume we are given some incomplete or noisy scalar data f . We then obtain an
interpolation or processed signal u(x) by solving

c(x) · (u− f)︸ ︷︷ ︸
similarity

−(1− c(x)) · Lu︸︷︷︸
smoothness

= 0, (3.8)

with homogeneous Neumann boundary conditions

∂nu = n>∇u = 0 on ∂Ω,

where c(x) : [0, 1] → [0, 1] is a confidence function, L some elliptic differential
operator and n the outer normal vector on ∂Ω.

At locations where c(x) = 0 missing data is allowed to be filled in by the smooth-
ness assumption. Where 0 < c(x) < 1 we obtain an approximation of the original
signal and at locations where c(x) = 1, u(x) = f(x). In order to have a method for
approximation of scattered data with simultaneous filling-in we choose

c(x) =
{
∈ (0, 1) if x ∈ {x0, ..., xn}
0 else. (3.9)

In analogy with (3.7) the parameter c in the interpolation points can be interpreted
as a measure for how much we want to smooth or denoise our data. Hence this model
agrees with our need for removing possible high frequency noise in the displacement
data due to localization errors of the feature detector.

The attractive aspect of this model is that it allows us to choose many possible
operators L. If we choose Lu = ∂xxu we get the linear interpolant discussed before.
In order to get smoother results higher order operators can be used. A violation of
the maximum-minimum principle is however possible in this case, but as we will see
further, we can avoid this problem by choosing second-order nonlinear anisotropic
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operators instead. Additionally we acquire a rotationally invariant approximation
technique.

We can rewrite equation (3.8) with the constraints (3.9) as follows:

(u− f)− 1− c(x)
c(x)

· Lu = 0,

and by setting

α(x) =
1− c(x)

c(x)

we get
(u− f)− α(x) · Lu = 0. (3.10)

To avoid difficulties in defining α(x) on the domain we write equation (3.10) as:

1{x0,...,xn} · (u− f)− α · Lu = 0 (3.11)

with

1{x0,...,xn}(x) =
{

1 if x ∈ {x0, ..., xn}
0 if x /∈ {x0, ..., xn}

the indicator function of the set of interpolation points {x0, ..., xn} and α ∈ (0,∞).
This notation makes it easier to interpret the problem in terms of one location
independent smoothness weight α. Equation (3.11) also clearly resembles the Euler-
Lagrange equations arising from the variational optic flow problem (see Chapter 2),
but with the optic flow constraint replaced by the similarity constraint.

Finally, we wish to emphasize that equation (3.8) has not been derived directly
as the Euler-Lagrange equation of a corresponding functional, since the factor c(x)
would cause difficulties in trying to find such a functional. We nevertheless point
out the similarity between the derived formula (3.11) and the minimization problem
(3.3). Although it has not been proven, we anticipate that a minimizer u(x) of (3.3)
is also a solution of (3.11) in the illustrative case of Lu = ∂2

xxu.

3.4.3 Choices for the Differential Operator

From now on we consider the 2D case of finding a vector data approximation to
the unknown optic flow field w(u(x, y, t), v(x, y, t)) from our data set F of feature
displacements. The set of feature displacement locations {x0, ...,xn} will be denoted
as X. For selecting an appropriate differential operator L we can look at the types
of regularizer used in variational optic flow methods as well as at vector valued
diffusion filtering (see [43, 42]). In what follows we sum up the smoothing operators
that were used in our experiments.

- Homogeneous Operator. In analogy with homogeneous diffusion filtering and
homogeneous regularization in optic flow estimation we can write formula (3.11) as:

1X · (u− du)− α ·∆u = 0, (3.12)
1X · (v − dv)− α ·∆v = 0, (3.13)

where we denote by du and dv the u- and v-component of d. This is a generalization
of piecewise linear fitting to the fitting of scattered 2D vector data and the equivalent
of the method of Horn and Schunk. The result has to be expressed in terms of radial
basis functions centered in the interpolation points. If we choose α close to 0 we
almost obtain interpolation. If we choose α very large the solution will evolve
towards a constant, the mean of F .
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- Biharmonic Operator. Homogeneous diffusion as an interpolant tends to give
singularities in the interpolation points. The use of higher order operators might
avoid this problem. As a higher order operator we choose the biharmonic smoother:

1X · (u− du) + α ·∆2u = 0, (3.14)
1X · (v − dv) + α ·∆2v = 0. (3.15)

This is a generalization of the 1D cubic spline fitting and is known as a thin plate
spline with radial basis functions of the form K(x,xi) = |x−xi|2 log(|x−xi|). For
increasing α the result will evolve towards a linear fit.

- Flow-driven Isotropic Operator. Both the above mentioned operators have
the undesirable property that they smooth across motion discontinuities. There-
fore motion boundaries can become blurry and less distinctive. Nonlinear isotropic
diffusion avoids the blurring of motion edges by incorporating a diffusivity g under
the divergence expression:

1X · (u− du) + α · div
(
g(|∇uσ|2 + |∇vσ|2)∇u

)
= 0, (3.16)

1X · (v − dv) + α · div
(
g(|∇uσ|2 + |∇vσ|2)∇v

)
= 0, (3.17)

with∇uσ = ∇(Kσ∗u) and∇vσ = ∇(Kσ∗v) the gradients of the Gaussian smoothed
flow components. For the function g one can for example choose the Charbonnier
diffusivity (see [16])

g(s2) =
1√

1 + s2/λ

or the Perona-Malik diffusivity (see [37])

g(s2) =
1

1 + s2/λ
(3.18)

with λ > 0 a contrast parameter. Here we introduced a coupling between u and v
via the joint diffusivity in order to prevent that discontinuities evolve at different
location for the two flow components.

- Edge-enhancing Anisotropic Operator. We now make the step towards
anisotropic operators that not only inhibit smoothing across motion boundaries,
but further allow smoothing along them. Based on the superior results for im-
age interpolation presented in [20] we consider edge-enhancing anisotropic diffusion
(EED) for our vector approximation problem:

1X · (u− du) + α · div (D(∇uσ,∇vσ)∇u) = 0, (3.19)
1X · (v − dv) + α · div (D(∇uσ,∇vσ)∇v) = 0, (3.20)

where D(∇uσ,∇vσ) is a diffusion tensor. D should reflect the local flow structure
and is chosen in such a way that it has the same set of eigenvectors v1 and v2 as
the coupled tensor product

J0 = ∇uσ∇u>σ +∇vσ∇v>σ .

The eigenvalues λ1 and λ2 of D are chosen as follows:

• diffusion across motion edge: λ1 := g(µ1)
• diffusion along motion edge: λ2 := 1

where µ1 is the eigenvalue of J0 in the direction of the highest variation of the
motion field and g is a diffusivity function as before. We can thus reduce the
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diffusivity λ1 perpendicular to motion edges with increasing variation µ1, while we
alow smoothing along the edges. The diffusion tensor D finally has the following
form:

D := (v1v2) · diag(λ1, λ2) ·
(

v>1
v>2

)
The eigenvectors v1 and v2 are in general not parallel to ∇u (to ∇v) or to ∇u> (to
∇v>) and D(∇uσ,∇vσ) therefore allows for anisotropic behavior.

- Flow-driven Anisotropic Operator. To obtain a more general type of anisotropic
smoothing we extend the scalar valued function g from the isotropic case to a matrix
valued function as follows: g(A) := S · diag(g(λi)) · S> where A := S · diag(λi) · S>

is the eigenvalue decomposition of the symmetric matrix A. By applying g to both
eigenvalues of J0 as follows:

λ1 := g(µ1),
λ2 := g(µ2),

we can write the following flow-driven anisotropic approximation scheme:

1X · (u− du) + α · div
(
g(∇uσ∇u>σ +∇vσ∇v>σ )∇u

)
= 0, (3.21)

1X · (v − dv) + α · div
(
g(∇uσ∇u>σ +∇vσ∇v>σ )∇v

)
= 0, (3.22)

with the diffusion tensor D = g(∇uσ∇u>σ +∇vσ∇v>σ ). Without any presmoothing
of the flow components (σ = 0) one can even show for this type of operator that
there exists a corresponding regularizer

tr Ψ(∇u∇u> +∇v∇v>)

for the optic flow energy functional (see [43]). Here Ψ is a differentiable and in-
creasing function for which Ψ′ = g.

- Image-driven Anisotropic Operator. A valuable effect of anisotropic smooth-
ing is the creation of sharp motion boundaries. Smoothing mainly happens within
separate regions depending on the contrast parameter λ that is used in the diffu-
sivity g. By tuning λ moving objects can be sharply distinguished within the data
set. For flow-driven anisotropic operators though the motion boundaries can turn
out to be irregular due to the limited spatial density of the data points. In general
these boundaries will not accord to the real flow edges. If the motion boundaries of
the flow field however coincide with object boundaries in the image we can try to
overcome this problem by relying on image-driven anisotropic smoothing schemes.
In our approach we base the diffusion tensor on the first image of the image pair:

1X · (u− du) + α · div (g(Jρ(∇f1σ))∇u) = 0, (3.23)
1X · (v − dv) + α · div (g(Jρ(∇f1σ))∇v) = 0, (3.24)

where Jρ(∇f1σ) is the structure tensor of f1. This approximation method will
in some sense cluster the data according to structures in the underlying image.
Smoothing of the flow field will be within image segments and as a consequence
motion boundaries will be estimated with high accuracy if they coincide with the
boundaries of the segments.
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3.4.4 Post-smoothing of the Optic Flow Field

We have experienced that the approximation methods presented in 3.4.3 do not
always give satisfactory results. In a region where the displacement data set F
is very sparse, approximations with increasing smoothness weight α > 0 can lead
to bad fits. One can observe that the information from these isolated points does
not disperse enough throughout the local neighborhood to give a good optic flow
estimate there. We might call this an underfitting of the data in these sparse regions
since increasing α corresponds to simplifying the fit.

To avoid this problem we keep to the following ad hoc approach. In the first
step we fit our data using formula (3.11) with a smoothness weight α = 0. The
resulting data approximation is identical to pure interpolation. In the next step
this initial flow estimation will be smoothed according to formula (3.7).

To formalize the second step we call fu and fv the u- and v-components of the
optic flow estimate after the first step. We smooth this flow estimate according to:

c · (u− fu)− (1− c) · div
(
Ψ′(|∇u|2 + |∇v|2)∇u

)
= 0, (3.25)

c · (v − fv)− (1− c) · div
(
Ψ′(|∇u|2 + |∇v|2)∇v

)
= 0, (3.26)

where 0 < c < 1 is a constant weight. As a smoothing operator we can use any
of the afore mentioned operators. It would be advisable to use the same operator
as in the interpolation step since the favorable effects of different operators can be
easily undone by combining them.

The idea of post-smoothing can be advocated if we regard the inaccuracies in our
initial flow estimate as high frequency noise introduced by interpolating our data
set F . High frequency noise means that the fluctuations in the initial estimate are
local and small compared to the meaningful flow structures in the exact displace-
ment field. We can write equation (3.25) for the u-component with homogeneous
smoothing where (1− c)/c is replaced by α as follows:

u− fu

α
= ∆u.

We can regard this as a fully implicit time discretization of the diffusion filter

∂tu = ∆u,
u(x, y, 0) = fu(x, y)

with a single time step of size α. For homogeneous diffusion the diffusion time
relates directly to the width σ of the Gaussian convolution kernel. By appropriately
choosing the time step size α (the weight c) we can smooth out the small scale noise
without blending the large scale flow structures. This is basically true for all other
operators discussed so far.

3.5 Handling Outliers

So far we have assumed that the data set F is mainly corrupted by small-scale noise
due to the limitations of our feature detector. It is very likely however that grossly
erroneous displacements, so called outliers, are present and they can cause our
function approximation schemes to fail. We would like to reserve the term outlier
solely for displacement data di that result from spurious matches. Falsely matched
features will usually give displacements that deviate from the true displacement in
that location in both magnitude and direction.
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An important feature of the SIFT algorithm with respect to outlying data is
that the amount of outliers in the final data set can be partially controlled by the
threshold of the distance ratio used in the matching step (see under 3.2.2). This is
because of the high dimensionality of the descriptor space in which clear matches
are inclined to cluster together. We have experienced that below a certain ratio
threshold, just a small portion of the whole data set can be regarded as outliers.
Raising the threshold results in supplementary feature correspondences of which
many tend to be erroneous. The extra number of correct matches one can obtain
by increasing the threshold might therefore not be worth the effort of sifting out
the bad ones. This is especially true when no reliable methods for outlier removal
are available.

The methods presented here serve essentially as examples to show that it is to
a certain extent possible to deal with outliers. These methods are by no means
optimal and better techniques surely exist. Because the emphasis of our work was
not on conditioning our data set for subsequent use, we did not go through the
trouble of optimizing the performance of the proposed methods.

There are generally two approaches to deal with the problem of outliers. One
could try to remove the outliers from the data set prior to using the data, or one
could use a robust estimation technique that makes use of the full data set but is
not easily affected by outliers (see [38, 40]). Sometimes robustness is additionally
interpreted as the ability of a method to deal with data sets drawn from different
populations, as is the case with separately moving objects. We do not adopt this
notion here. We have mentioned previously that data approximation based on
anisotropic diffusion can sometimes provide us with segmentation like results that
correspond to a clustering of different data populations.

We will first introduce a robust variant of our vector approximation scheme
presented in 3.4.3. This robust method tries to remain insensitive to extreme dis-
placement data by penalizing the residual error differently. After that we present a
way of removing outliers from the data set before using it in the flow estimation.

A standard course to take in order to make a method like (3.2) more robust to
outliers is to replace the squared error loss function by a subquadratic loss function.
Many estimation techniques, such as M-estimators and L1-regression, make use of
this idea. Our formula for signal regularization (3.6) with nonquadratic penalization
of the similarity term can be written as:

E(u) =

1∫
0

(
c · Φ

(
(u− f)2

)
+ (1− c) ·Ψ(u2

x)
)
dx

where Φ(s2) is an increasing function that is convex in s. The corresponding Euler-
Lagrange equation is:

c · Φ′(u− f)− (1− c) · ∂x

(
Ψ′(u2

x) ux

)
= 0 .

From robust statistics we know that in the case of subquadratic penalization outliers
will be penalized less severely than in the quadratic approach, but this will lead
unavoidably to nonlinear methods. Suitable nonquadratic penalizers can be derived
from nonlinear diffusion filter design such as total variation (TV) denoising. We
opted for the TV-related L1-penalizer which corresponds to the absolute error loss:

ΦL1(s
2) = 2

√
s2 + ε2

and
Φ′

L1
(s2) =

1√
s2 + ε2
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where ε > 0 denotes some fixed regularization parameter due to the non-differentiability
of the L1-norm. A robust approximation scheme for our displacement data with L1-
penalization of the similarity and e.g. homogeneous regularization can be derived
from (3.12) and (3.13) as:

1X · Φ′
L1

(
(u− du)2 + (v − dv)2

)
(u− du)− α ·∆u = 0, (3.27)

1X · Φ′
L1

(
(u− du)2 + (v − dv)2

)
(v − dv)− α ·∆v = 0. (3.28)

We have introduced a coupling between u and v in the robust term to obtain rotation
invariance. This will in general give slightly better results.

Many methods have been established that determine a set of inliers from an
original data set prior to performing a minimization. Many of them have proven
their efficiency such as RANSAC and Least Median of Squares (LMS) (see [23]), but
they are parametric in nature. If we want to exclude outliers from our displacement
data we can only fall back on our initial assumption of smoothness. We are thus
looking for methods that are able to filter out displacement data such that the
resulting set F is predominantly smooth.

An interesting method for filtering discrete vector data is the so called vector
median filter (VMF) presented by Astola et al. in [1]. Median filtering is a way of
denoising a sampled signal by moving a window over the data points and replacing
the value in the point by the median of the data within the window. Median filters
are robust and suited for smoothing if the noise characteristic is not known. They
are especially appropriate for removing salt and pepper noise (impulses) and they
additionally preserve steps in the signal. For VMFs the definition of the median
xmed of n scalar values xi with i = 1, ..., n, given by

n∑
i=1

|xmed − xi| ≤
n∑

i=1

|y − xi| for all y

is extended to the vector median:

n∑
i=1

|xmed − xi|p ≤
n∑

i=1

|xj − xi|p for all j ∈ {1, ..., n}.

The chosen norm | |p can be either the L1- or the L2-norm. The vector median, as
defined in this way, is always an element of the subset within the filter window but
may not be unique. In case of non uniqueness a choice is usually made based on the
spatial or temporal ordering of the data inside the window. In [1] the applicability
of VMFs is properly demonstrated by smoothing a sampled velocity field.

The VMF has to be applied with caution to a scattered data set since the
concept of the filter window might have to be revised. In our experiments we
have implemented a method that is a modification of VMF and is sometimes used
in tracking (see e.g. [17]). This method does not replace a data sample by a
filtered output but discards a vector if it is not in accordance with the bulk of the
neighboring vectors. We represent by F ′ ⊆ F the set of displacements in the points
{xk | k ∈ {1, . . . , n}} that are within a radius R of a point xi. We call dc the element
of F ′ that has the minimum median distance to all other elements dk ∈ F ′ and it
is chosen as the best representation of the subset F ′:

med
k 6=c
|dc − dk |

2
≤ med

k 6=l
|dl − dk |

2
for all dl ∈ F ′.



24 CHAPTER 3. FEATURE-BASED OPTIC FLOW METHODS

The displacement di in xi is regarded as an outlier if it lies too far from dc. For
this we apply a simple threshold of the distance: if

|di − dc |
2

< c ·med
k 6=c
|dc − dk |

2

with a parameter c, then di is an inlier, otherwise it is discarded. This rather
heuristical method has two parameters: the radius of the neighborhood R and c.
We can take R constant or make it dependent on the local point density to make
sure that we always have the same amount of elements in F ′. If R is too big we
might not detect all outliers due to a too large variation in F ′. If R is too small no
variation is captured at al. We can give c a constant value, or a value depending
on the distance distributions within the subset F ′.

This approach for removing outliers from the data set F can be improved upon.
The filter window of VMFs is replaced by a neighborhood of radius R but this
might not solve all problems that arise from the fact that the data does not lie on a
regular grid. Especially on the boundaries of regions with a different point density
we expect that points in the sparser region near the boundary will be discarded. To
overcome this we can think of duplicating data within the radius R wherever the
data is sparse in order to obtain a balanced spatial distribution. This duplication
should also be taken into account near the boundaries of the domain Ω. In our actual
realization of the modified VMF we have not gone to the extend of implementing
these ideas.

A final idea for removing outlying data is to make direct use of the optic flow
constraint. We consider successful constancy assumptions from standard variational
optic flow models such as a constancy of the grey value or the image gradient.
Brightness constancy in a point xi with displacement di means that

d>i · ∇3f(xi) = fx(xi) dui
+ fy(xi) dvi

+ ft ≤ c (3.29)

with c being a small threshold. The value of c is difficult to predict and is most likely
dependent on the image pair used. Imposing constancy of the spatial brightness
gradient ∇2f means

d>i · ∇3fx(xi) + d>i · ∇3fy(xi) ≤ c. (3.30)

To gain more accuracy we can think of using the non linearized constancy assump-
tions, like e.g. for brightness:

f(xi + di)− f(xi) ≤ c. (3.31)

We can also combine different assumptions by imposing a threshold on their sum.

We can come up with other techniques, such as repetitively fitting a random
subset of our data and discarding points that give too much variance for the fit
in their location. This bootstrapping is computationally expensive and its perfor-
mance will depend on the type of interpolant. One of the simplest techniques that
has proven its usefulness however is applying a threshold on the magnitude of the
displacement. This can only be done if we have knowledge about the maximum flow
in the image sequence, but it will surely rule out grossly false matches.



Chapter 4

Combined Optic Flow
Methods

Here we will return to the starting point of our work: to investigate to what extent
a standard variational optic flow method can benefit from additional motion infor-
mation in a discrete subset of the domain. Because of the symmetrical nature of
the problem it is also interesting to consider in what way the vector approximation
scheme from Chapter 3 can benefit from including an optic flow constraint. This
chapter will present a combined optic flow method that can be either interpreted
as an extension of the standard method or as an extension of the feature-based
method.

We start from the idea of a convex combination of approximation and standard
variational optic flow in the feature points X. Outside these points our objective
is to have a standard optic flow estimation. For simplicity, both the smoothness
operator for the approximation and the operator resulting from the regularizer in
standard optic flow are taken to be the same. Furthermore let du and dv denote
the u- and v-component of the displacement field d, let L denote some elliptic
operator and let Du and Dv denote the terms resulting from the data term in the
standard optic flow method. If we use the brightness constancy assumption, then
Du = f2

xu + fxfyv + fxft and Dv = fxfyu + f2
y v + fyft. Our general model can be

written as:

c(x) · ((u− du)− α · Lu) + (1− c(x)) · (Du − β · Lu) = 0, (4.1)
c(x) · ((v − dv)− α · Lv) + (1− c(x)) · (Dv − β · Lv) = 0, (4.2)

where α and β are smoothness weights and

c(x) =
{
∈ [0, 1] if x ∈ {x0, ...,xn}
0 else (4.3)

a confidence function.

To improve our understanding of this model we write equations (4.1) and (4.2)
separately on Ω and Ω \X. We get the following:

25
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c · (u− du) + (1− c) ·Du−
c · α · Lu− (1− c) · β · Lu = 0

c · (v − dv) + (1− c) ·Dv−
c · α · Lv − (1− c) · β · Lv = 0

 if x ∈ {x0, ...,xn}

Du − β · Lu = 0

Dv − β · Lv = 0

}
else

(4.4)

where c ∈ [0, 1]. These equations can be interpreted in three ways:

� We can regard our standard optic flow method as being augmented by includ-
ing information of feature displacements in a finite number of points X. The
parameter c controls how much significance we want to give to this informa-
tion. If c = 0 the equations result in a conventional optic flow estimation as
introduced in Chapter 2. If on the other hand c = 1, the full displacement val-
ues di are assigned to the positions xi , i = 0, . . . , n , potentially regularized
by a smoothness imposed by α.

� On the other hand we can state that our approximation scheme from Chapter
3 has been extended by adding the terms Du and Dv from the optic flow
constraint. We can regulate the influence of these terms through c. We
point out that we approach the original approximation scheme for c→ 1 and
β →∞.

� In conclusion we can look upon these equations at a high level as a convex
combination of a standard variational model and a feature-based model for
optic flow calculation:

c̃ · [ 1X · (u− du)− α̃ · Lu ] + (1− c̃) ·
[
Du − β̃ · Lu

]
= 0, (4.5)

c̃ · [ 1X · (v − dv)− α̃ · Lv ] + (1− c̃) ·
[
Dv − β̃ · Lv

]
= 0, (4.6)

where α̃ and β̃ are smoothness weights and 0 < c̃ < 1 is a constant over the
whole domain Ω. Although the operator L in the notation given above is
split between the two models, its influence is global. It should be noted that
the smoothness weight α̃ of the feature-based model can take on any value
outside X and is thus not clearly defined on Ω \ X. The equations of this
generic model should not serve as the basis for an implementation.

Our model (4.4) is complicated because of the three independent parameters α,
β and c. We can reduce the degrees of freedom by considering the special case for
α = 0. Our model will be:

c(x) · Φ′ ((u− du)2 + (v − dv)2
)
· (u− du) +

(1− c(x)) · (Du − β · Lu) = 0, (4.7)

c(x) · Φ′ ((u− du)2 + (v − dv)2
)
· (v − dv) +

(1− c(x)) · (Dv − β · Lv) = 0, (4.8)
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with c(x) defined as in expression (4.3) and with a nonquadratic penalizer Φ(s2)
such as the L1-penalizer ΦL1(s

2) introduced earlier in section 3.5. The penalization
grants some degree of robustness against feature displacements that have large devi-
ations from the standard optic flow estimation. If c(x) is binary, this set of equations
can be thought of as “pinning down” the conventional optic flow estimation in the
points xi to di , i = 0, . . . , n. Equivalently, we can claim to be using a conventional
optic flow model as interpolant of a set of scattered motion vectors. c(x) ∈ [0, 1] in
the data locations xi allows for the possibility to scale down the importance of the
feature displacements due to extra smoothness and data constraints.

Another idea is to evaluate the similarity measure against the optic flow con-
straint:

c(x) · Φ′ ((u− du)2 + (v − dv)2
)
· (u− du) +

(1− c(x)) ·Du − α · Lu = 0, (4.9)

c(x) · Φ′ ((u− du)2 + (v − dv)2
)
· (v − dv) +

(1− c(x)) ·Dv − α · Lv = 0. (4.10)

This special case arises from model (4.4) for α = β. In this case the smoothness
makes “jumps” relative to the terms Du and Dv. This model might be considered
unrealistic due to the constant smoothness weight α. Du and Dv have a different
order of magnitude than the similarity terms. They will probably require other
values for α than the ones that are optimal in conjunction with the similarity terms.

Because the various terms in the equations presented here work at different
scales, it is difficult to predict a value for any of the parameters in order to obtain
an expected result. When implementing one of the previous schemes for experimen-
tation one has to allow enough numerical precision for the parameters.
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Chapter 5

Discretization and
Algorithmic Realization

Up till now we have studied several models for optic flow calculation in a continuous
setting. In all cases the unknown flow field is the solution of a system of two
coupled PDEs. To solve for the unknown flow components we have to discretize
these PDEs by approximating the derivatives by finite differences. The result of this
discretization is in general a nonlinear system of equations that has to be solved by
numerical algorithms. Its solution is an approximation of the true optic flow field
for a finite number of points within the integration domain. Since we are working
with digital images, the discretization is imposed in a natural way by the pixel grid
which makes up the image.

The discretization of the PDEs is the topic of the first section of this chapter. We
cover various schemes based on the smoothing operator that appears in the PDE.
The discretizations of the data constraint and the similarity constraint are presented
together with the discretization of the homogeneous operator. For the remaining
smoothing operators that have been discussed previously we propose different stencil
notations. In the last section we study the resulting nonlinear system of equations
and its solution.

5.1 Discretization of the PDEs

In the following we assume that the integration domain Ω is discretized by a grid
of N = nx × ny pixels such that a pixel (i, j) with 1 ≤ i ≤ nx and 1 ≤ j ≤ ny

represents the location (xi, yi) where

xi = (i− 1
2 )hx,

yj = (j − 1
2 )hy,

We further assume that the grid is equidistant with a grid size hx = hy = h. We
then denote by ui,j and vi,j the approximations of u and v in the location (xi, yj).

29
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5.1.1 The Homogeneous Operator

A finite difference approximation of the Euler-Lagrange equations (2.10)-(2.11) of
the Horn and Schunck method is given by

J11i,jui,j + J12i,jvi,j + J13i,j − α ·
∑
N (i,j)

uk,l − ui,j

h2
= 0, (5.1)

J12i,jui,j + J22i,jvi,j + J23i,j − α ·
∑
N (i,j)

vk,l − vi,j

h2
= 0, (5.2)

for i = 1, ..., nx and j = 1, ..., ny. Here we denote by Jmn i,j the component (m,n) of
J0(∇3f ) in some pixel (i, j) and by N (i, j) a set of neighbors of pixel (i, j). In the
case of the discretized Laplacian the summation is performed over the four neighbors
(k, l) ∈ N (i, j) in x- and y-direction. The same finite difference approximation of
the equations (3.27) and (3.28) is given by

1X · Φ′
i,j ui,j − 1X · Φ′

i,j du i,j − α ·
∑
N (i,j)

uk,l − ui,j

h2
= 0, (5.3)

1X · Φ′
i,j vi,j − 1X · Φ′

i,j dv i,j − α ·
∑
N (i,j)

vk,l − vi,j

h2
= 0, (5.4)

where du i,j and dv i,j are the u- and v-components of d in pixel (i, j). Note that
these components are only known for pixel locations where a feature correspondence
xq ←→ x′q has been established. Φ′

i,j is the derivative of some penalizing function
Φ
(
(u− du)2 + (v − dv)2

)
in pixel (i, j).

Gaussian convolution is realized by discrete convolution with a renormalized
Gaussian that is truncated at three times the standard deviation. Spatial derivatives
of the image in the motion tensor entries are approximated using the fourth-order
stencil (−1, 8, 0,−8, 1)/(12h). Temporal derivatives are approximated with a simple
two-point stencil.

If we take h to be 1, the above discretization of the Laplacian corresponds to
the simple second order stencil

1
1 −4 1

1
. (5.5)

The homogeneous Neumann boundary conditions can be implemented by mirroring
the boundary pixel values and thereby creating a halo region with a width of one
pixel. Another way of handling the Neumann boundary conditions is to use an
adaptive stencil that depends on whether the pixel lies inside the domain or on the
boundary. Stencil (5.5) would for instance take the forms

1 −3 1
1

and
−2 1
1

in an upper boundary pixel and an upper corner, respectively. An adaptive stencil
can be precalculated for every pixel location. This avoids mirroring updated values
in every step of the iterative solution. If we use a boundary layer in which the pixel
values are set to 0, we only need to precalculate the central stencil weight which
can be either -2, -3 or -4. When using the adaptive stencil approach we consider
the number of neighboring pixels in N (i, j) to be location dependent.
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5.1.2 The Biharmonic Operator

A stencil for the biharmonic operator ∆2 can be obtained by convolving the stencil
of the Laplacian (5.5) with itself. For an inner pixel this (5× 5) stencil is given by:

1
2 −8 2

1 −8 20 −8 1
2 −8 2

1

. (5.6)

For Neumann boundary conditions the stencil looks different for boundary pixels
and corner pixels. Therefore we developed a stencil notation that is a function of
the pixel location and makes use of the indicator function. The indicator function
of the set {i | i > 1} for instance will be denoted in short as

1(i>1) =
{

1 if i > 1
0 if i ≤ 1

and can simply be implemented as a test. Additionally we denote by Si,j the central
weight of the Laplacian stencil in the pixel location (i, j). We can then write the
biharmonic stencil in a general form as:

1(j<ny−1)

2 · (1(i>1)·
1(j<ny))

1(j<ny) · (Si,j+
Si,j+1)

2 · (1(i<nx)·
1(j<ny))

1(i>2)

1(i>1) · (Si,j+
Si−1,j)

S2
i,j + 1(i>1)

+ 1(i<nx)

+ 1(j>1)

+ 1(j<ny)

1(i<nx) · (Si,j+
Si+1,j)

1(i<nx−1)

2 · (1(i>1)·
1(j>1))

1(j>1) · (Si,j+
Si,j−1)

2 · (1(i<nx)·
1(j>1))

1(j>2)

.

Using this expression the stencil can be precalculated for every pixel. By in-
troducing a boundary layer with a width of two pixels in which the values are set
to 0, we do not need to perform all the tests. We only need to precalculate the
central stencil weight and the four weights on the diagonals. Because we combined
the homogeneous and the biharmonic smoothing operators in our experiments, the
weights Si,j were available for every pixel. Alternatively we can mirror the two
layers of pixel values closest to the boundaries in every iteration step to create a
boundary layer. This allows us to use the full stencil (5.6).

5.1.3 Nonlinear Operators

We will use the general notation div(D∇u) and div(D∇v) for any nonlinear oper-
ator that has been discussed so far. The diffusion tensor D will be a function of u
and v opposed to the linear case where D only depends on x and y. Note that this
notation also covers the isotropic operator where D = g(|∇uσ|2 + |∇vσ|2) I, where I
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is the 2 by 2 identity matrix. In what follows we will illustrate the discretization of
the nonlinear operator for the flow component u. The discretization of div(D∇v)
proceeds in the same way.

If we write D =
(

a b
b c

)
then

div(D∇u) = div
(

a ∂xu + b ∂yu
b ∂xu + c ∂yu

)
= ∂x(a ∂xu) + ∂x(b ∂yu) + ∂y(b ∂xu) + ∂y(c ∂yu).

The terms ∂x(a ∂xu) and ∂y(c ∂yu) are being discretized by using backward and
forward finite differences (see [41]):

∂x(a ∂xu) =
1
h

(
ai+1,j + ai,j

2
ui+1,j + ui,j

h
− ai,j + ai−1,j

2
ui,j + ui−1,j

h

)
,

∂y(c ∂yu) =
1
h

(
ci,j+1 + ci,j

2
ui,j+1 + ui,j

h
− ci,j + ci,j−1

2
ui,j + ui,j−1

h

)
,

where we approximate the entries of D in a pixel (i, j) by ai,j , bi,j and ci,j .

For isotropic diffusion we have b = 0 and a = c = g(∇uσ,∇vσ). In this case the
above discretization is sufficient. It results in a (3 × 3) stencil which is similar to
the Laplacian stencil (5.5) but with non-constant entries. In the case of anisotropic
diffusion we have to take the mixed terms ∂x(b ∂yu) and ∂y(b ∂xu) into account. If
we apply a standard approximation by central differences to the mixed terms, we
extend our (3 × 3) stencil with 4 weights on the stencil diagonals. These weights
can have an arbitrary sign since b can be positive or negative. As a consequence,
the requirement that the off-diagonal entries of the resulting system matrix have
to be nonnegative may be violated. This non-negativity requirement assures so
called stability in the maximum norm which means that the discretization satisfies
a maximum-minimum principle. To ensure a stable discretization we use the (3×3)
stencil proposed in [41] and depicted in Figure 5.1. This second order discretization
only guarantees nonnegativity if the condition number of D is smaller than a certain
value. It is however expected that over- and undershoots remain bounded if this
criterion is not met. The same stencil is also used for the linear image-driven
anisotropic operator.

5.2 Solution of the System of Equations

By adopting a certain ordering (e.g. row major ordering) we can arrange the 2N
unknowns of the discretized PDEs in a single vector ( u

v ) . The column vector u
consists of the values ui,j and the column vector v of the values vi,j for i = 1, ..., nx

and j = 1, ..., ny . All the discretizations discussed in the previous section will lead
to a system of equations with a sparse 2N×2N system matrix. This system matrix
consists of two parts: a part that results from the data or similarity constraint and
a part that results from the smoothness constraint. The system of equations can
be written in a general form as (see [9])

((
A11 A12

A12 A22

)
− α ·

(
B 0
0 B

))(
u
v

)
=
(
c1

c2

)
.
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Figure 5.1: A nonnegative second order discretization for div(D∇u).

The submatrices Amn, for m,n ∈ {1, 2} result from the data and similarity
constraints. For the brightness constancy assumption they consist of the values
J11i,j , J22i,j and J12i,j which introduce coupling between the two flow components.
For a similarity constraint there is only coupling between the flow components if
we use the robust formulation. Due to the dependency of Φ′

i,j on ui,j and vi,j there
will also be an additional nonlinearity.

The weights in the stencils presented earlier appear in the row of the submatrix
B that corresponds to the actual pixel. The center weight stands on the main
diagonal while the remaining weights induce a block diagonal structure. Nonlinear
operators introduce coupling between the two flow components via this part of the
system matrix.

The right-hand side of the system gathers the values J13i,j and J23i,j or the
known displacement components dui,j and dvi,j . Also here nonlinearities arise if we
make use of any robust formulation. For a more detailed analysis of the resulting
system of equations the reader is referred to [9].

To deal with the nonlinearities an outer fixed point iteration is applied. Within
every outer iteration step Φ′ and D are updated using the vector ( u

v ) from the
previous iteration and they are kept fixed. In this way we are allowed to solve a linear
system of equations within every outer iteration step. This sparse linear system has
a symmetric positive semidefinite system matrix which is diagonal dominant. It is
effectively solved by successive overrelaxation (SOR) (see [46]) which is a variant of
the Gauss-Seidel relaxation method. If the upper index denotes the iteration step
and h is taken to be 1, the SOR method for the discretization (5.1)-(5.2) can be
written as
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where

N−(i, j) = {(k, l) ∈ N (i, j) | k < i, l < j},
N+(i, j) = {(k, l) ∈ N (i, j) | k > i, l > j},

and Si,j denotes the center weight of the Laplacian stencil. Analogously the SOR
method for (5.3)-(5.4) can be written as

ut+1
i,j = (1− ω)ut

i,j + ω

1X · Φ′
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)
1X · Φ′

i,j − α · Si,j
.

We can easily adapt this notation to any other stencil by replacing Si,j by the
respective center weight and by multiplying the terms under the two summations
by the stencil weights of the according position in N (i, j). The relaxation parameter
ω influences the convergence speed and is usually chosen between 1.9 and 1.99 for
optimal performance. Since the SOR method is globally convergent we initialize
the flow components by 0. After a fixed number of SOR steps the updated flow
components are used to recalculate Φ′ and D in the next outer iteration.



Chapter 6

Experimental Results

We will present an experimental comparison of the performance of the three meth-
ods for optic flow estimation that have been previously discussed. These are the
standard optic flow method with a data and a smoothness constraint (see Chapter
2), the feature-based approximation method that uses prescribed displacements in a
number of domain points (see Chapter 3), and the combined optic flow method that
results from adding a similarity term to the differential equations of the standard
optic flow method (see Chapter 4). The comparison of these three methods will
include an assessment of different smoothing operators. While the classical optic
flow estimation benefits from optimizing the data term as well as the regularizer,
our approximation scheme is only sensitive to alternative choices of the smoothing
operator. As data term we will only consider the brightness constancy assumption
as introduced in the method of Horn and Schunck.

The first part of this chapter shortly discusses implementation issues, error mea-
sures and test sequences used in our experiments. After that we describe a prelimi-
nary test run that serves as a motivation for the attempt of incorporating a feature
detector into optic flow estimation. By including ground truth information in a
simple variational optic flow method we get an indication of the potential improve-
ment that we can obtain. In the remaining tests we use the SIFT algorithm as the
actual feature detector. It will provide us with a set of local displacements that
will be evaluated against a simple variational optic flow method. Early results will
lead us to the concept of robust approximation. After introducing this important
paradigm we assess the performance of the three optic flow methods referred to
above. In a final series of experiments we try to select a high quality subset from
our SIFT displacements using the strategies from 3.5.

6.1 Some Words on the Implementation

The test program was written in ANSI C and built around a routine performing
SOR to solve the linear system of equations that results from the discretization of
the PDEs (see Chapter 5). The program includes modules for memory allocation,
input and output of various formats (.pgm, .ppm, binary and text data) and the
visualization of results in OpenGL.

10 SOR iterations make up the inner loop of a fixed point iteration scheme. In
the outer loop a potential periodic update of any robust terms or coefficients due
to nonlinear operators can be carried out. To keep track of the position of the
feature points used in the estimation a mask is generated with the same dimensions
as the image data. In this mask the pixel location of each feature is highlighted
and it serves as an input of the SOR routine. Wherever a mask entry has been set,

35
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the according displacement can be utilized as a preset flow vector. The maximum
number of mask entries that can be set is the number of pixels for which ground
truth is available.

The code for generating SIFT features from an image is provided as an exe-
cutable by David Lowe on his web site http://www.cs.ubc.ca/~lowe/. This code
writes all SIFT features found in an image, referred to as key points, in a formatted
text file. This file gives for every key the row and the column location, the scale,
the orientation and the descriptor vector. We have integrated in our program the
supplied code for reading in the key files of two images and matching the features.
Matching a feature is done by an exhaustive search for the closest neighbor in the
other key file. We can afford such an expensive operation because we are not in-
terested in time efficiency. The resulting matches are stored as a list of structures.
Each structure contains two SIFT features that form a pair.

The location of a SIFT feature is determined to sub-pixel precision. The value
of the corresponding feature displacement should therefore be distributed over the
neighboring pixels. To avoid too much complication due to extrapolation we assign
the displacement to the nearest rounded pixel location. We do not believe that this
has large effects on our results. In some cases, as for instance in the implementation
of formula (3.29), or for the calculation of ground truth in a feature location, we
made use of bilinear interpolation.

6.2 Assessment and Error Measures

As a principal measure for the quality of the optic flow estimation we use the widely
accepted average angular error (AAE) (see [2]) defined as:

AAE (we,wc) =
1
|Ω|

∫
Ω

arccos
(

w>
e wc

|we||wc|

)
dx, (6.1)

with |Ω| =
∫
Ω

dx and

arccos
(
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|we||wc|

)
= arccos

(
ueuc + vevc + 1√

(u2
e + v2

e + 1)(u2
c + v2

c + 1)

)
,

the angular error between the estimated flow field we = (ue, ve, 1) and the cor-
rect flow field wc = (uc, vc, 1). The AAE is calculated in the spatiotemporal
domain and takes into account the arbitrary value of the time component. Al-
ternatively we can assess our approximation schemes with an error measure of the
form 1

Ω

∫
Ω
L(we,wc)dx motivated by the loss function L, as is usual in regression

analysis (see [24]). We only mention the average squared error:

ASE (we,wc) =
1
|Ω|

∫
Ω

|(ue, ve)> − (uc, vc)>|2
2

dx

=
1
|Ω|

∫
Ω

(
(ue − uc)2 + (ve − vc)2

)
dx. (6.2)

In this error measure only the spatial magnitude of the flow field is taken into
account and it might be considered to capture the quality of the flow estimation
better than the AAE. It can theoretically lead to unbounded errors and will not be
used much in literature.

For the visualization and the qualitative evaluation of the computed flow field we
use the color representation shown in Figure 6.1. The color indicates the direction
of the displacements and the brightness expresses their magnitude.
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Figure 6.1: The color code: the color indicates the direction of the displacement
field and the brightness the magnitude.

6.3 The Test Sequences

The image sequences that have been used in the experiments are well known test
sequences for which the ground truth flow is known. The four sequences feature
various types of motion, both smooth and discontinuous. They are the following:

- Yosemite sequence without clouds (Figure 6.2). This is a synthetic sequence
of a flight over Yosemite Valley. Divergent motion dominates the mountain part
with a maximum of 5 pixels per frame in the lower left corner. The total sequence
consists of 15 frames and between frame 8 and 9 a ground truth displacement is
available. The region above the horizon where no information on the ground truth is
available is not included in the calculation of the AAE. The dimension is 316×252.

Figure 6.2: The Yosemite sequence without clouds. Left: Frame 8 of the sequence.
Right: The ground truth for the optic flow field between frames 8 and 9. The sky
region is colored purple because the flow components have been set to -100 which
indicates the absence of ground truth.

- Yosemite sequence with clouds (Figure 6.3). This sequence is identical to the
previous one but it has dark moving clouds as a backdrop. The clouds translate
to the right with a speed of about 2 pixels per frame while slowly changing shape.
They introduce varying illumination and do not provide texture. This makes it
difficult for most methods to estimate the optic flow field. Additionally a motion
discontinuity is created at the horizon. The sequence can be downloaded from
ftp://ftp.csd.uwo.ca/pub/vision.
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Figure 6.3: The Yosemite sequence with clouds. Left: Frame 8 of the sequence.
Right: The ground truth for the optic flow field between frames 8 and 9.

- Old Marble sequence (Figure 6.4). This is a real world sequence showing four
dark marbled blocks that move along with the marble floor to the lower right. The
white marble block in the center stands still. There are clear discontinuities in the
flow field but they do not involve radical switches in direction. The sequence consists
of 32 frames with a ground truth for frames 16 and 17. The displacements are up
to 3 pixels and the ground truth is not given for the upper part of the background
and the edges of the marble blocks. The dimension is 512×512. The sequence can
be downloaded from http://i21www.ira.uka.de/image sequences.

Figure 6.4: The old Marble sequence. Left: Frame 16 of the sequence. Right:
The ground truth for the optic flow field between frames 16 and 17. The background
is colored purple because the flow components have been set to -100 which indicates
the absence of ground truth.

- New Marble sequence (Figure 6.5). This synthetic sequence shows two trans-
lating marble blocks and a static one on a heavily textured static surface. There are
sharp motion discontinuities that coincide with the object boundaries. The sequence
is 200 frames long and for frames 150 and 151 a ground truth is available. The di-
mension is 512×384. This sequence is available from http://i21www.ira.uk.de/
image sequences.
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Figure 6.5: The new Marble sequence. Left: Frame 150 of the sequence. Right:
The ground truth for the optic flow field between frames 150 and 151.

6.4 Experiments with Ground Truth

In a preliminary series of experiments we try to get an idea to what extent the
use of discrete point information can ameliorate a variational optic flow estimation.
Additionally, we wish to derive basic conditions which the discrete subset of points
has to fulfill in order to give satisfactory improvements. To this end we extract a
number of pixel locations and we assign to them the ground truth of that location.
We survey the improvement in flow calculation obtained for a certain number of
preset displacements. Our points of interest are selected in the following ways:

i. uniformly at random over the image domain

ii. by a simple edge detector

iii. by the Harris corner detector.

For comparison we select an equal amount of each type of point of interest corre-
sponding to a certain density of the mask, i.e. corresponding to a definite percentage
of the pixels where ground truth is available. As edge features we select the loca-
tions in f1 having the largest gradient magnitude |∇f1|, where f1 has been Gaussian
smoothed. We thus select those locations where the gradient is larger than the gra-
dient of the quantile determined by the chosen density. In the same way we select
the strongest corners in f1 according to formula (3.1). It has to be noted that the
maximal number of corners is lower than the total number of pixels since a corner
is defined as a local maximum. As a local neighborhood for determining the maxi-
mum we chose a 3×3 image patch centered around each pixel. For both edges and
corners the image f1 is smoothed with a standard deviation of 1. The integration
scale ρ for corner detection is taken to be 1 and the parameter k is set to 0.04.
These three parameters influence both the performance of the Harris detector and
the number of corners found. In literature one can find values for ρ ranging from 0.7
to 3. The higher the value, the less corners are typically found. For our purposes
these settings are less stringent and they have not been tuned to obtain the most
stable corners. In Figure 6.6 we can see the locations of the 3 types of interest
points for the Yosemite sequence with clouds. It shows the 8th frame overlaid with
a mask corresponding to two different feature densities.

For the optic flow estimation we use the Horn and Schunck method as in equation
(2.7). We include the ground truth information by setting w to the ground truth in
each of the selected points. On the rest of the domain we solve the Euler-Lagrange
equations resulting from the energy functional. The total number of SOR-iterations
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Figure 6.6: The 3 types of feature points extracted from the 8th frame of the
Yosemite sequence with clouds. The left images correspond to a feature density
of 1.8% and the right images to a density of 0.7% . Top left: 1426 random points.
Top right: 558 random points. Middle Left: 1423 edge points. Middle Right:
554 edge points. Bottom left: 1424 Harris corners. Bottom right: 554 Harris
corners.
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is fixed at 500 and the relaxation parameter ω is set to 1.97 . The smoothing
parameter α and the standard deviation σ from the Horn and Schunck method are
optimized with respect to the AAE.

Table 6.1: Results of a comparative test with 3 types of locations of interest for the
Yosemite sequence without clouds. The parameters σ and α are optimized w.r.t. the
AAE. 1513 Harris corners were detected corresponding to a density of 2.6%.

dens. random edge corner
(%) σ α AAE [◦] σ α AAE [◦] σ α AAE [◦]
0 1.77 805 2.65 1.77 805 2.65 1.77 805 2.65

0.1 1.77 1286 2.38 1.77 835 2.62 1.77 835 2.59
0.2 1.77 2053 2.13 1.77 835 2.61 1.77 898 2.50
0.5 1.77 > 104 1.43 1.77 898 2.53 1.77 1197 2.24
1 2.36 > 104 0.98 1.77 964 2.42 1.61 > 104 1.44
2 3.14 > 104 0.66 1.77 1240 2.08 1.61 > 104 0.63
10 3.14 > 104 0.26 1.77 > 104 0.78

In Table 6.1 we collected the results from our tests performed on the Yosemite
sequence without clouds. For increasing density of the feature points we list the
evolution of the AAE. The density is expressed as a percentage of the pixels where
ground truth is available, in this case the 58911 pixels that make up the mountain
region. We see clearly that the random addition of ground truth information results
in a substantial improvement of the AAE. For a feature density of 1%, roughly
corresponding to about 600 features, the AAE has dropped by more than a half.
The results are less good for the edge detector. The reason is that we applied a
simple threshold on the gradient value resulting in locations with bad spreading.
A more reasonable edge detector would produce edges of width one with a better
spatial distribution. Although edge features differ from the other two in nature,
the test results nevertheless show the importance of a good spatial spread of the
locations of interest. This effect can also be observed for the corners. The AAE of
the optic flow with Harris corners drops slower than the AAE for random features
because the strongest corners will be concentrated in highly textured regions. For
higher densities we see that the results are similar to those obtained with randomly
distributed features since weaker corners in smoother regions are being found. We
also notice the increasing parameter α which indicates the reduced significance of
the data term for larger numbers of preset flow vectors. The rate of increase in α
depends on the spreading of the features with the fastest growth for random points
and the slowest for edge points.

We use the same test setup for the Yosemite sequence with clouds. This sequence
brings forth the difficulty of a moving entity without texture and thus poses a
challenge for detectors to find stable features. Due to varying illumination and
weak gradient values, the clouds also pose difficulties for our data term. Our results
are listed in Table 6.2. As expected for edges and corners, the AAE does not drop
significantly until locations in the cloud region are being selected. For corners this
happens from a density of about 1.7% on. Our simple edge detector only detects
high gradient locations in the cloud region for low quantile thresholds and point
densities of more than 50% . In Figure 6.7 the resulting flow estimations are shown
in color code for a feature density of 1.8% . We can clearly see the singularities in
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locations where we include point information. The estimation of the motion of the
clouds has a large influence on the overall AAE. If features are detected in the sky
region, the optimal smoothness weight is in general very large to compensate for
the bad performance of the data term.

Table 6.2: Results of a comparative test with 3 types of locations of interest for the
Yosemite sequence with clouds. The parameters σ and α are optimized w.r.t. the
AAE. 1917 Harris corners were detected corresponding to a density of 2.4%.

dens. random edge corner
(%) σ α AAE [◦] σ α AAE [◦] σ α AAE [◦]
0 1.33 453 7.17 1.33 453 7.17 1.33 453 7.17

0.1 1.21 1240 6.64 1.21 470 7.19 1.33 486 7.11
0.2 0.91 4870 5.70 1.21 437 7.18 1.33 437 7.08
0.5 1.10 > 104 4.09 1.21 470 7.16 1.33 562 6.90
1 1.33 > 104 2.81 1.21 562 7.02 1.33 777 6.47
2 1.61 > 104 1.92 1.21 750 6.56 1.33 > 104 2.14
10 1.61 > 104 < 1.0 1.21 6978 3.88

Table 6.3: Results of a comparative test with 3 types of locations of interest for the
new Marble sequence. The parameters σ and α are optimized w.r.t. the AAE. 5666
Harris corners were detected corresponding to a density of 2.9%.

dens. random edge corner
(%) σ α AAE [◦] σ α AAE [◦] σ α AAE [◦]
0 0.564 835 2.49 0.564 835 2.49 0.564 835 2.49

0.1 0.564 1074 2.43 0.564 964 2.40 0.564 964 2.43
0.2 0.564 1240 2.39 0.564 1074 2.32 0.564 1036 2.38
0.5 0.564 4067 2.054 0.564 1433 2.18 0.564 1486 2.26
1 > 5 > 104 1.60 0.564 2458 2.00 0.683 3651 2.00
2 > 5 > 104 1.04 0.683 4532 1.74 > 5 > 104 0.990
10 > 5 > 104 < 0.4 0.826 > 104 0.768

In the last experiment we use the new Marble sequence. The motion field is ev-
erywhere 0 except in two distinct regions with sharp boundaries. The homogeneous
regularizer does not perform very well at these sharp boundaries and makes them
look a bit blurry. The motion edges coincide with the contours of the moving mar-
ble blocks and this may favor the extraction of edge information. From Table 6.3
we can indeed derive that the improvement in AAE is more significant for edge fea-
tures for low densities. Another reason is that most of the strongest edge points lie
on the object boundaries and not within the background region. The background
is static and the Horn and Schunck method gives a reasonable estimation there.
Therefore the addition of ground truth information outside the two moving blocks,
as in the case of random points and corners, is less likely to improve the estimation.
For higher feature densities we observe that the random points and the corners
result in a lower AAE due to the fact that the added information is better spread.
For densities below 1% the corner features are badly spread within the regions of
non-vanishing flow because no strong corners are being detected in the shadowed
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Figure 6.7: The estimated optic flow field for the Yosemite sequence with clouds.
The standard Horn and Schunck method is compared to the Horn and Schunck
method with ground truth information added in various types of feature locations
with a density of 1.8% . Top left: The standard Horn and Schunk method. Top
right: With random features. Bottom left: With edge features. Bottom right:
With Harris corners.

sides of the marble blocks. This bad spreading is reflected in a poor improvement
of the AAE. The influence of ground truth information in edges and the bad spread
of Harris corners for low densities can be seen in Figure 6.8. The density of the
depicted features is 0.7% . The flow field is a detail of 320×240 pixels enclosing the
two moving blocks. The motion boundaries for the corners are determined less well
compared to the estimation with ground truth added in the edges.

From the quantitative results of these experiments we conclude that a varia-
tional optic flow estimation can benefit from sparse flow information. Our results
present an upper limit of how much the Horn and Schunck method can improve
from predetermined flow information. In practice the preset displacements are pro-
duced by an actual feature detector and therefore deviations from ground truth are
to be expected. Qualitatively we can derive obvious conditions for the locations in
which we wish to know the displacement beforehand. These locations have to be
dense enough and well distributed over the area of motion. The cloud region in the
Yosemite sequence proves that lack of texture can pose a problem for simple gra-
dient based features. But even if the feature density was lower there, we observed
a significant improvement in the AAE if the smoothness weight was chosen high
enough. This leads us to the conclusion that the density of features does not have
to be very high within a certain region as long as the motion is uniform.
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Figure 6.8: The edge and corner locations detected in frame 150 of the new Marble
sequence and the corresponding optic flow field estimated by the Horn and Schunck
method with ground truth information added in the same feature locations. Top
left: 1373 edge points. Top right: 1373 Harris corners. Bottom left: The
estimated optic flow with ground truth added in the edge locations. Bottom right:
The estimated optic flow with ground truth added in the corner locations.

6.5 Experiments with SIFT features

SIFT features have a spatial distribution that is similar to that of Harris corners.
In this section we will use them to establish a sparse motion field from which we
can estimate a dense optic flow.

6.5.1 An evaluation of SIFT for Motion Estimation

First we summarize some basic statistics of the SIFT algorithm when applied to
motion estimation for the four test sequences. After that we will asses the dense
flow estimation obtained by directly inserting the sparse motion field established by
SIFT into the Horn and Schunck method.

Basic Assessment of SIFT

In Table 6.4 we list the total number of features that are detected by the SIFT
algorithm for the four frame pairs that we consider. Additionally, we list the number
of correspondences that are found between the frames of each pair by comparing
the Euclidean distance of the feature descriptors. The thresholds that we used as
distance ratio between the closest and the second closest point in the descriptor
space are 0.6 and 0.8.
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Table 6.4: The upper part of the table shows the number of features per frame that
are found by the SIFT algorithm. The lower part of the table lists the total number
of SIFT features that have been matched for a matching threshold of 0.6 and 0.8.
The densities of the effective matches are listed w.r.t. the total number of pixels
where ground truth is available.

image Yosemite Yosemite old new
sequence without clouds with clouds Marble Marble

frame number 8 9 8 9 16 17 150 151

# SIFT features 802 786 821 804 5492 5432 4032 4084
threshold 0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8
# matches 556 588 581 612 4191 4441 3518 3596
# eff. matches 488 515 513 539 3376 3560 2830 2893
mask density (%) 0.83 0.87 0.64 0.68 1.5 1.6 1.4 1.5

As mentioned in Chapter 3 multiple SIFT features can be found in the same
spatial location. As a consequence a feature location can be matched to multiple
other locations and multiple matches between the same feature locations can occur.
We have experienced that the latter case occurs much more frequently and these
multiple matches result in the same displacement vector in a certain location. If
features with the same position happen to be matched to features with a different
position we use the correspondence that has been established last and has not been
identified as an outlier. By following this approach we assume that the variance
in a SIFT displacement di caused by choosing from multiple matches is inherent
to the feature detector and similar in nature to the variance caused by localization
errors.

Eventually we end up with one displacement per matched feature location.
Therefore the number of effective matches is less than than the total number of
correspondences found by comparing the feature descriptors. The number of effec-
tive matches together with the according mask density is listed in Table 6.4. The
effective matches are used to determine the prescribed sparse displacement field.
We see that a large fraction of the established feature correspondences are assigned
to identical spatial locations. For the larger image sizes the number of effective
matches can be up to 20% less than the total number of found matches.

In Figure 6.9 the sparse displacement field that results from the set of effective
matches is superimposed on the first frame of each image pair. This is done for a
distance ratio threshold of 0.8. We can observe spurious displacements for all the
image pairs. For a threshold of 0.6 no severe outliers can be visually detected for
the Yosemite sequences while for the other sequences one or two large mismatches
are still clearly present. Severe outliers can easily be removed by disregarding
displacements with an excessive magnitude.

SIFT versus Horn and Schunck

Table 6.5 lists the quantitative differences between the sets of SIFT displacements
that result from applying different distance thresholds. The AAE and the ASE of
the set of SIFT displacements have been calculated and compared to the AAE and
the ASE of a sparse optic flow estimation. This means that they are compared
to the AAE and the ASE of a set of displacements in the same locations, but
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Figure 6.9: The SIFT feature locations and displacements for a distance ratio
threshold of 0.8. The displacement vectors are depicted at 4 times their original
size. Top left: The locations for frame 8 of the Yosemite sequence with clouds.
Top right: The displacements for the Yosemite sequence with clouds. Middle
Left: The locations for frame 16 of the old Marble sequence. Middle Right: The
displacements for the old Marble sequence. Bottom left: The locations for frame
150 of the new Marble sequence. Bottom right: The displacements for the new
Marble sequence.
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Table 6.5: Evaluation of the average angular error AAESIFT and the average squared
error ASESIFT of the SIFT displacements for a distance ratio threshold of 0.6 and
0.8. They are compared with the AAE and the ASE of a standard Horn and Schunck
estimation in the locations of the SIFT features.

image Yosemite Yosemite old new
sequence without clouds with clouds Marble Marble

threshold 0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8
AAESIFT [◦] 7.35 8.23 7.63 8.46 6.49 6.867 4.46 4.84
AAEHS [◦] 2.25 2.28 4.40 4.54 5.14 5.215 1.63 1.81
ASESIFT 0.091 0.37 0.10 0.33 34 40 0.037 0.059
ASEHS 0.012 0.013 0.055 0.057 33 40 0.010 0.014

resulting from a standard optic flow estimation. The optic flow is obtained with
the method of Horn and Schunck with optimized parameters. Large outliers were
removed from each set of SIFT displacements by applying a threshold of 10 pixels
to the magnitude. The old Marble sequence lost 1 and 15 effective matches for
the respective thresholds of 0.6 and 0.8, while the other sequences only lost a few
effective matches for a threshold of 0.8.

The AAE of the SIFT displacements is in all cases larger than the AAE of
the estimated optic flow in the corresponding locations. Also the ASE follows this
trend. We might get discouraged by these results to use SIFT in a combination with
a standard optic flow method because it does not have the appearance of improving
the estimation. We further notice that the ASE differs strongly between the two
ratio thresholds for the Yosemite sequences. This indicates that we still have some
outlying data for the 0.8 threshold that deviates more from ground truth in the
L2-norm than the bulk of the data.

We can get an additional impression of the localization noise that comes with
the SIFT features by taking a look at the background of the new Marble sequence.
We know that this background is static but a large percentage of the SIFT features
are not being detected in exactly the same location in both frames. Hence many
SIFT displacements in the background region deviate slightly from zero, giving rise
to measurement noise.

Combining SIFT with Horn and Schunck

In Table 6.6 we give the results of an experiment conducted with ground truth as
in the previous section. We set w to the ground truth in each of the SIFT feature
locations and on the rest of the domain we solve the Euler-Lagrange equations of
the Horn and Schunck method. The total number of SOR-iterations is fixed at 500
and the relaxation parameter ω is set to 1.97 . The smoothing parameter α and the
standard deviation σ are optimized with respect to the AAE. We compare the results
with those of the same experiment but with w set to the actual displacement of the
SIFT feature in the corresponding location. SIFT locations with a displacement
larger than 10 pixels were not taken into account in both experiments.

The improvements due to the use of ground truth can be substantial but the
results for the two distance ratios do not differ much. For the Yosemite sequence
with clouds the results are even identical because an increase in threshold to 0.8
does not produce more features in the cloud region. Combining the Horn and
Schunck method directly with SIFT produces AAEs that are worse than those
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of the standard method. The regression in quality is for most image sequences
limited but the results are far from the maximal improvement that is dictated by
the ground truth experiment. Opposed to the use of ground truth, the use of SIFT
displacements demands a smaller optimal smoothness weight. This indicates that
the propagation of information from the sample values is limited.

Table 6.6: The results for the Horn and Schunck (HS) method combined with
ground truth data and SIFT. The AAEs are compared to those of the standard
method. The parameters σ and α are optimized w.r.t the AAE.

image sequence method threshold σ α AAE [◦]
standard HS - 1.77 805 2.65
with ground truth 1.77 7773 1.80Yosemite without
with SIFT

0.6
1.61 626 3.17clouds

with ground truth 1.77 8659 1.74
with SIFT

0.8
1.61 453 3.66

standard HS - 1.33 453 7.17
with ground truth 1.46 2458 6.13Yosemite with
with SIFT

0.6
1.33 486 7.35clouds

with ground truth 1.46 2287 6.13
with SIFT

0.8
1.33 339 7.78

standard HS - 2.59 1000 5.30
with ground truth > 5 4216 1.78

old Marble with SIFT
0.6

2.59 865 5.50
with ground truth > 5 > 104 1.73
with SIFT

0.8
2.36 865 5.56

standard HS - 0.564 835 2.49
with ground truth > 5 > 104 1.33

new Marble with SIFT
0.6

0.564 562 2.88
with ground truth > 5 > 104 1.27
with SIFT

0.8
0.564 486 2.97

Despite the threshold on the magnitude, there are still some outliers present in
the data set for a distance threshold of 0.8. This can be inferred from the higher
AAE but it can also be inspected visually. Figure 6.10 displays the optic flow field
resulting from our experiments for the Yosemite sequence with clouds. We clearly
see the data points emerging as singularities in the flow field. Below each flow
field the angular error is displayed with the mask of SIFT features superimposed.
We observe that several SIFT displacement vectors introduce local errors in the
flow angle. For a distance threshold of 0.6 most deviations from the true flow are
fine grained and very local. The flow field for the higher threshold is disturbed by
some bigger outliers that require a removal strategy that is more involved than just
selecting on magnitude.

In a final series of experiments we try to get an idea of the number of SIFT
correspondences that give a displacement which is close to ground truth. At the
same time we try to extract a subset of SIFT displacements that is able to improve
the AAE of the standard Horn and Schunck method. To this end we compare
all SIFT displacement vectors with the ground truth vector in the same location.
The vectors that are close to ground truth according to some measure are retained
and used in a similar test setup as the previous ones. The selection of the subset
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Figure 6.10: Combining the Horn and Schunck method with a data set of SIFT
displacement vectors. The bottom images display the angular error where a brighter
color indicates a larger error. Top left: Flow field for a distance threshold of 0.6.
Top right: Flow field for a distance threshold of 0.8. Bottom left: Angular
error for a distance threshold of 0.6. Bottom right: Angular error for a distance
threshold of 0.8.

will be based on the improvement of the AAE. If the set is selected too small, the
improvement in AAE will be negligible. If the set is chosen too large, the AAE
might get worse due to displacements that deviate too much from ground truth.

To determine if a displacement vector is close to ground truth we test if it lies
within a certain radius of the ground truth vector. We chose this radius to be 20%
of the length of the respective ground truth vector since this resulted in the best
improvements in AAE for most test sequences. For the new Marble sequence we
selected a subset on the basis of the individual angular errors (< 3◦) because the
major part of the true flow field is 0 and so would be the cut-off radius. Table 6.7 lists
the resulting number of effective matches that give a displacement which is close to
ground truth for a ratio threshold of 0.6. This subset of displacements is further used
in an optic flow estimation by means of the Horn and Schunck method. We set w
in each of the retained SIFT points to the corresponding SIFT displacement and on
the rest of the domain we solve the Euler-Lagrange equations. The table shows the
AAE of the estimations and these can be compared with the results from Table 6.6.
We notice an improvement in AAE for all image sequences but the improvements
are not as good as the ones obtained with ground truth (note that there were more
effective matches in the ground truth experiment, thus the comparison does not fully
hold). The set of SIFT displacements that are responsible for these improvements
are between 50 and 60% of the total number of displacements.
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Table 6.7: The results for the Horn and Schunck method combined with a subset
of the SIFT displacements. The set of SIFT displacements has been obtained by
means of ground truth. The parameters σ and α are optimized w.r.t the AAE of the
combined method.

image Yosemite Yosemite old new
sequence without clouds with clouds Marble Marble

# eff. matches 252 266 2291 1647
σ 1.77 1.33 3.14 0.622
α 1197 835 1596 1113
AAE[◦] 2.30 6.73 4.75 2.43

In Table 6.8 we additionally list the AAE and the ASE of the subset of SIFT
displacements selected using ground truth. These are compared to the AAE and the
ASE of a set of displacements in the same locations, but resulting from the standard
Horn and Schunck estimation. The ASE of the SIFT displacements is not worse than
the ASE of the Horn and Schunck method. This is not surprising since the selection
of the subset was based on the Euclidean distance. An interesting observation
from this table is that an improvement in AAE is possible by combining SIFT
and standard variational optic flow, despite the AAE of the SIFT displacements
being worse than the AAE of the variational method in the same locations. For
the Yosemite sequence without clouds AAESIFT > AAEHS, but the overall AAE of
the combined method drops from 2.64 to 2.30. The AAE of our sample of SIFT
displacements is obviously not a direct indication of the quality of the optic flow
field that results from the data fitting process.

Table 6.8: The AAE and the ASE of the subset of SIFT displacements that has
been selected by means of ground truth. They are compared to the AAE and the
ASE of the standard Horn and Schunck estimation in same locations.

image Yosemite Yosemite old new
sequence without clouds with clouds Marble Marble

AAESIFT [◦] 2.95 3.00 4.35 1.32
AAEHS [◦] 2.21 4.77 4.71 0.82
ASESIFT 0.018 0.021 32 0.0012
ASEHS 0.018 0.076 32 0.0018

6.5.2 Approximation versus Interpolation

Up till now we have been using the exact values of the SIFT displacements. We
have used SIFT together with the Horn and Schunck method by setting the optic
flow w to the values of the SIFT displacements in the feature locations and by
solving the Euler-Lagrange equations on the rest of the domain. So far, the result
was a minor deterioration of the optic flow estimation if we used the complete set of
SIFT displacements. There are however two possibilities of improving the quality
of our estimation:
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� Evidently, the AAE of the SIFT displacements is increased due to a small
amount of bad samples that however have less influence on the overall AAE
when we combine SIFT with the Horn and Schunck method. If we provide
robustness against these bad samples their influence can be lowered further.

� We can avoid exact fitting of the data by imposing additional smoothness in
the interpolations points, thereby performing an approximation instead of an
interpolation. Like this we try to capture a general trend in the sample set
without giving every single SIFT displacement a full weight.

Our two new models for optic flow estimation, the feature-based approximation
method and the combined optic flow method, avoid exact fitting of the data by
introducing smoothness in the data points. Additionally, they provide a robust
similarity term that downgrades the importance of values that vary too much from
the local estimate. We point out that the robust similarity term will not have any
effect if we perform a pure interpolation of the data instead of an approximation,
because in the case of interpolation the values in the data points are not allowed to
vary from the measurements.

Robust Approximation versus Interpolation

In the following we will asses the performance of the two paradigms presented above.
Therefore we compare our feature-based approximation method from Chapter 3
with the outcome of pure interpolation of the SIFT displacements. Interpolation
is equal to approximation with a smoothness weight of 0 in the data points and is
thus a special case of our feature-based approximation scheme. We also compare our
combined method of Chapter 4 with the results that were obtained in Table 6.6 by
setting w to the exact SIFT displacements and solving the Euler-Lagrange equations
on the rest of the domain. The latter approach can be considered as a special case of
our combined optic flow method since the exact SIFT displacements are interpolated
with a standard optic flow method. To adopt a consistent nomenclature we will call
the general combined optic flow method, which has a robust similarity term and
smoothness in the data points, the robust combined method.

In our experiments we use a set of SIFT displacements that is obtained by
applying a distance ratio threshold of 0.6. This threshold provides for most image
sequences a maximal number of point correspondences without contamination by
cumbersome mismatches. SIFT displacements with a magnitude larger than 10
pixels have been removed. We use a robust similarity term with the L1-penalization
as in (3.27)-(3.28) and the homogeneous operator.

In Tables 6.9 - 6.12 we summarize the results of our comparative tests for the
Yosemite sequences and the Marble sequences. The tables list the results of an
optic flow estimation with the standard method, with interpolation of SIFT dis-
placements, with interpolation and post-smoothing, with the feature-based approx-
imation scheme (3.12)-(3.13), with interpolation of the SIFT displacements by stan-
dard optic flow and with the robust combined optic flow method (4.7)-(4.8). For the
homogeneous operator the standard optic flow estimation amounts to the classical
Horn and Schunck method. The total number of SOR-iterations was fixed at 500
and the relaxation parameter ω was set to 1.97 .
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Table 6.9: Results for the Yosemite sequence without clouds. The estimation meth-
ods are the standard optic flow method, the interpolation and robust approximation
of SIFT displacements, the interpolation of SIFT displacements with standard op-
tic flow and the robust combined optic flow method. The parameters c, σ and the
smoothness weight are optimized w.r.t. the AAE.

smooth.method c σ
weight

AAE [◦]

optic flow - 1.77 805 2.65
interpolation - - - 3.82
interpolation + post-smoothing 0.025 - - 3.49
robust approximation - - 1.43 3.75
SIFT + optic flow - 1.61 626 3.17
robust combined optic flow 0.98 1.77 800 2.60

Table 6.10: Results for the Yosemite sequence with clouds. The estimation methods
are the standard optic flow method, the interpolation and robust approximation of
SIFT displacements, the interpolation of SIFT displacements with standard optic
flow and the robust combined optic flow method. The parameters c, σ and the
smoothness weight are optimized w.r.t. the AAE.

smooth.method c σ
weight

AAE [◦]

optic flow - 1.33 453 7.17
interpolation - - - 14.4
interpolation + post-smoothing 0.025 - - 14.4
robust approximation - - 0 14.4
SIFT + optic flow - 1.33 486 7.35
robust combined optic flow 0.99 1.33 550 7.14

Table 6.11: Results for the old Marble sequence. The estimation methods are
the standard optic flow method, the interpolation and robust approximation of SIFT
displacements, the interpolation of SIFT displacements with standard optic flow and
the robust combined optic flow method. The parameters c, σ and the smoothness
weight are optimized w.r.t. the AAE.

smooth.method c σ
weight

AAE [◦]

optic flow - 2.59 1000 5.30
interpolation - - - 5.76
interpolation + post-smoothing 0.010 - - 5.48
robust approximation - - 0 5.76
SIFT + optic flow - 2.59 865 5.50
robust combined optic flow 0.999 2.59 1040 5.19
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Table 6.12: Results for the new Marble sequence. The estimation methods are
the standard optic flow method, the interpolation and robust approximation of SIFT
displacements, the interpolation of SIFT displacements with standard optic flow and
the robust combined optic flow method. The parameters c, σ and the smoothness
weight are optimized w.r.t. the AAE.

smooth.method c σ
weight

AAE [◦]

optic flow - 0.564 835 2.49
interpolation - - - 3.57
interpolation + post-smoothing 0.035 - - 3.43
robust approximation - - 3.40 3.29
SIFT + optic flow - 0.564 562 2.88
robust combined optic flow 0 0.564 835 2.49

We observe from the tables that pure interpolation of the data values performs
worse than the Horn and Schunck method. Subsequent smoothing of the flow field
reduces the AAE in general by a small amount. The weight c in the tables refers
to the same c as in the equations for post-smoothing (3.25)-(3.26).The final re-
sult of smoothing the interpolant comes close to the result of the standard optic
flow estimation for the old Marble sequence. This outcome can be considered as
surprisingly good. For this sequence and for the Yosemite sequence with clouds,
the approximation scheme performs worse than pure interpolation because of some
isolated points. These isolated points can be crucial for an accurate optic flow es-
timation, but their contribution decreases a lot with increasing smoothness weight.
Robust approximation gave the best results of all feature-based methods for the
new Marble sequence with a final AAE of 3.29◦. In Figure 6.11 we can see how
interpolation with homogeneous diffusion results in singularities while the approx-
imation scheme tends to give smoother results. Interpolation and approximation
of SIFT displacement data has an advantage at frame boundaries where standard
optic flow methods typically suffer from outliers due to occlusions.

The robust combined optic flow model yields a small improvement of the Horn
and Schunck method for all image sequences, except for the new Marble sequence.
The drop in AAE is very small but it confirms our earlier conclusion that the error
in the data set does not reflect the error of the resulting flow estimation. For
the combined method the weight c in the tables refers to the value of c(x) in the
SIFT feature locations. Visually there is no distinction between the flow field that
is estimated by the combined method and the flow field that is estimated by the
standard method. The smoothness weight is relatively large in the feature locations
and this prevents the SIFT displacements from appearing as singularities. The
proportion of data term and smoothness term is more or less equal to the one for
the standard optic flow method. With our robust combined optic flow method we
were able to improve the results of Table 6.6 considerably for most image sequences.



54 CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.11: Interpolation of SIFT displacements with the homogeneous operator
for the new Marble sequence. Left: Pure interpolation, AAE = 3.57◦. Right:
Approximation, AAE = 3.29◦.

Figure 6.12: The u-component of the flow estimation with the homogeneous op-
erator for the Yosemite sequence with clouds. The u-components of the SIFT dis-
placements are displayed as blue diamonds. The high point density region in the
foreground/left is the mountain part of the sequence, while the isolated high values
in the back indicate the sky region. Top left: Pure interpolation. Top right:
Smoothed interpolant. Bottom left: Approximation with a smoothness weight of
0.8. Bottom right: Approximation with a smoothness weight of 2.
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Robust Approximation versus Interpolation with Post-smoothing

Interpolation with post-smoothing and robust approximation of the SIFT displace-
ments provide similar results if the data set is not too sparse. However, the per-
formance of both approaches differs drastically in regions with a low data density
like the cloud region of the Yosemite sequence with clouds. Figure 6.12 displays
the u-component of the estimated optic flow field for this sequence. We see how
interpolation by homogeneous diffusion creates large singularities in the cloud re-
gion. Robust approximation with increasing smoothness weight does not give better
results because it smooths out the singularities in the sky region, which eventually
results in the absence of motion. The optic flow looks different if we post-smooth
the interpolant as explained in 3.4.4. Despite a gross underestimation of the cloud
motion, post-smoothing preforms far better than approximation.

The feature-based approximation scheme of 3.4.3 can also suffer from a nu-
merical drawback. Data propagation between subsequent SOR steps is slow if the
smoothness weight is chosen to be large. This is because data generation only takes
place in very few pixels, namely there where the similarity term exists. A very
smooth end result will usually require a large number of iterations unless the flow
is initialized closely to the solution.

We have justified post-smoothing of the interpolant as a means of reducing
noise that is present in the sample set of SIFT-displacements. The comparison
with other methods is not completely fair since we can smooth their estimates too.
The outcome of a Horn and Schunck method will in general also profit from a
post-smoothing step. We will, however, reserve this post-processing step solely for
scattered data interpolation because its rationale grew from the idea to develop an
approximation method that does not fit the data exactly.

6.5.3 An Evaluation of Different Operators

We have presented results for our robust approximation scheme and our robust
combined method for the homogeneous operator. In the following we will show how
other choices of the elliptic operator can affect the outcome. We used the same test
setup as in the previous experiments.

Biharmonic and Mixed Operator

The motivation to use biharmonic smoothing comes from the fact that it does not
create singularities in the interpolation points. On the other hand, results seldom
improve unless the biharmonic operator is combined with another operator like
the homogeneous one. We can see from Table 6.14 that a standard optic flow
estimation with a biharmonic smoothness term gave a worse AAE than the Horn
and Schunck method. The same is true for biharmonic interpolation of the SIFT
displacements. The main reason for the deterioration in AAE is that over- and
undershoots occur which is typical for higher order spline interpolation. Figure
6.13 shows the biharmonic interpolation of the SIFT displacements for the Yosemite
sequence with clouds. The over- and undershoots are clearly visible in the resulting
flow field and in the plot of the u-component.

Tables 6.13 - 6.15 list the results for the mixed operator that results from com-
bining homogeneous and biharmonic smoothing:

α ·∆ + β ·∆2 .
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Table 6.13: Results for the Yosemite sequence without clouds. The estimation
methods are the standard optic flow method, the interpolation of SIFT features with
post-smoothing, the robust approximation method and the robust combined optic flow
method. The smoothing operator is the homogeneous or the combined homogeneous-
biharmonic operator. The parameters c, σ and the smoothness weights are optimized
w.r.t. the AAE.

smooth. hom. biharm.method
operator

c σ
weight weight

AAE [◦]

hom. - 1.77 805 - 2.65optic flow
mixed - 1.77 805 - 2.65

interpolation hom. 0.025 - - - 3.49
+ post-smoothing mixed. 0.025 - 1 0 3.49
robust hom. - - 1.43 - 3.75
approximation mixed - - 1.33 0.138 3.72
robust combined hom. 0.98 1.77 800 - 2.60
optic flow mixed 0.98 1.77 800 2500 2.54

Table 6.14: Results for the Yosemite sequence with clouds. The estimation methods
are the standard optic flow method, the interpolation of SIFT features with post-
smoothing, the robust approximation method and the robust combined optic flow
method. The smoothing operator is the homogeneous, the biharmonic or the com-
bined homogeneous-biharmonic operator. The parameters c, σ and the smoothness
weights are optimized w.r.t. the AAE.

smooth. hom. biharm.method
operator

c σ
weight weight

AAE [◦]

hom. - 1.33 453 - 7.17
optic flow biharm. - 1.33 - 560 9.15

mixed. - 1.33 453 900 7.12
interpolation hom. 0.025 - - - 14.4
+ post-smoothing mixed. 0.025 - 1 0.75 12.3
robust hom. - - 0 - 14.4
approximation mixed - - 0 0 12.3
robust combined hom. 0.990 1.33 550 - 7.14
optic flow mixed 0.996 1.33 535 1057 7.10

This operator has two smoothness weights and the values of both weights are listed
in the tables. For pure interpolation only their ratio outside the data points matters.
The solution of the biharmonic operator converges very slowly and in order to obtain
a stable solution we had to set the number of iterations to 2000.

For the Yosemite sequence without clouds the approximation scheme seems to
benefit slightly from the mixed operator while the interpolation results improve
for the Yosemite sequence with clouds. In Figure 6.13 we see that the sky region
gets a bit more filled by the mixed interpolant but the overall filling-in is still
insubstantial. For both Marble sequences the feature-based methods profit from
the mixed operator .
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Table 6.15: Results for the old Marble sequence. The estimation methods are the
standard optic flow method, the interpolation of SIFT features with post-smoothing,
the robust approximation method and the robust combined optic flow method. The
smoothing operator is the homogeneous or the combined homogeneous-biharmonic
operator. The parameters c, σ and the smoothness weights are optimized w.r.t. the
AAE.

smooth. hom. biharm.method
operator

c σ
weight weight

AAE [◦]

hom. - 2.59 1000 - 5.30optic flow
mixed - 2.59 1074 805 5.17

interpolation hom. 0.01 - - - 5.48
+ post-smoothing mixed. 0.01 - 1 0 5.48
robust hom. - - 0 - 5.76
approximation mixed - - 0 0 5.76
robust combined hom. 0.999 2.59 1040 - 5.19
optic flow mixed 0.990 2.59 1040 2916 5.05

Figure 6.13: Biharmonic and mixed interpolation of the SIFT displacements for the
Yosemite sequence with clouds Top left: Biharmonic interpolation, AAE > 23◦.
Top right: Biharmonic interpolation, u-component. Bottom left: Homogeneous
interpolation, AAE = 14.4◦. Bottom right: Mixed homogeneous-biharmonic in-
terpolation, AAE = 12.6◦.
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The standard optic flow estimation with the mixed regularizer tends to be
slightly better than the Horn and Schunck method for most image sequences. The
robust combined optic flow method provides a modest improvement of AAE over
the standard method.

Flow-driven Operator

Adding the biharmonic operator did not give significant improvements over the re-
sults from the homgeneous operator. Therefore we take a look at EED which has
proven effectiveness in image interpolation and inpainting. As robust approximation
scheme we use (3.19)-(3.20) with the Charbonnier diffusivity (3.18). The equations
of the corresponding standard optic flow method do not minimize an energy func-
tional. Despite being PDE-based it cannot be termed a variational method.

Table 6.16: Results for the new Marble sequence. The estimation methods are the
standard optic flow method, the interpolation of SIFT features with post-smoothing,
the robust approximation method and the robust combined optic flow method. The
smoothing operator is the homogeneous operator or EED. The parameters c, σ, λ
and the smoothness weight are optimized w.r.t. the AAE.

smooth. smooth.method
operator

c σ λ
weight

AAE [◦]

hom. - 0.564 - 835 2.49optic flow
EED - 0.564 0.004 > 104 1.26

interpolation - - - - 3.57
interpol.+post-smooth.

hom.
0.035 - - - 3.43

interpolation - - 0.009 - 2.79
interpol.+post-smooth.

EED
0.003 - 0.009 - 1.76

robust hom. - - - 3.40 3.29
approximation EED - - 0.009 18.4 1.59
robust combined hom. 0 0.564 - 835 2.49
optic flow EED 0.996 0.564 0.004 > 104 1.25

Dense motion estimation from SIFT displacements profits the most from EED
for the new Marble sequence. In Table 6.16 we see that the robust approxima-
tion scheme with EED estimates an optic flow field with an AAE of only 1.59◦.
This is about 40% better than the classical Horn and Schunck estimation. The
standard optic flow method with EED is almost 50% better than the Horn and
Schunck method, thus outperforming our approximation scheme. This indicates
that a similarity constraint with SIFT cannot substitute the simple brightness con-
stancy assumption. The robust combined method was hardly able to improve upon
the standard optic flow for this sequence.

Figure 6.14 shows the estimated flow fields for the new Marble sequence. The op-
tic flow that is estimated by robust approximation is visually less attractive than the
standard estimation. Boundaries in the flow field seem to correspond to the convex
hull of the non-zero SIFT displacements instead of the actual motion boundaries. In
the figure we added the optic flow obtained by interpolating the ground truth values
in the SIFT features with EED. This gave an AAE of 0.46◦. EED interpolation
of the ground truth establishes a lower limit on the accuracy of the feature-based
method for the new Marble sequence. It additionally illustrates the interpolating
capability of EED.
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Figure 6.14: Motion estimation using EED for the new Marble sequence. Top
left: Standard optic flow, AAE = 1.26◦. Top right: Interpolation of the ground
truth in the SIFT feature locations, AAE = 0.46◦. Bottom left: Interpolation of
the SIFT displacements, AAE = 2.79◦. Bottom right: Approximation with SIFT
displacements, AAE = 1.59◦.

Table 6.17: Results for the old Marble sequence. The estimation methods are the
standard optic flow method, the interpolation of SIFT features with post-smoothing,
the robust approximation method and the robust combined optic flow method. The
smoothing operator is the homogeneous operator or EED. The parameters c, σ, λ
and the smoothness weight are optimized w.r.t. the AAE.

smooth. smooth.method
operator

c σ λ
weight

AAE [◦]

hom. - 2.59 - 1000 5.30optic flow
EED - 2.59 0.02 1654 5.02

interpolation - - - - 5.76
interpol. + post-smooth.

hom.
0.010 - - - 5.48

interpolation - - >1 - 5.76
interpol. + post-smooth.

EED
0.010 - >1 - 5.48

robust hom. - - - 0 5.76
approximation EED - - 0.02 5.4 5.67
robust combined hom. 0.999 2.59 - 1040 5.19
optic flow EED 0.990 2.59 0.02 2175 5.00
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Table 6.17 lists the results of experiments with EED for the old Marble sequence.
For this sequence the robust combined optic flow method with EED gave the lowest
AAE of all methods discussed here. With 5.00◦ the AAE was 0.02◦ lower than the
AAE of the corresponding standard method, and 0.30◦ lower then the AAE of the
Horn and Schunck method. The optic flow estimated with the combined method
is shown in Figure 6.15 together with the combined optic flow estimation using the
mixed homogeneous-biharmonic operator.

EED did not improve any results for the Yosemite sequences. Lowering the
contrast parameter λ gave rise to oversegmentation of the motion field which yielded
a worse AAE. Using a flow-driven anisotropic operator as in (3.21)-(3.22), where
both eigenvalues of the diffusion tensor adapt to the local image structure, only
improved the standard optic flow estimation for the new Marble sequence. Robust
approximation however did become better.

Figure 6.15: The robust combined optic flow method for the old Marble sequence.
Left: Mixed homogeneous-biharmonic operator, AAE = 5.05◦. Right: EED, AAE
= 5.00◦.

Image-driven Operator

EED seems to be the optimal choice to approximate a data set that has sharp
discontinuities in the sample values and a more or less uniform spatial density. If
a discontinuitiy in the sample values coincides with a discontinuity in the spatial
density, most feature-based approximation methods seem to fail. Robust approxi-
mation performs bad in sparse data regions because there is not enough filling-in.
This can be witnessed in the case of the Yosemite sequence with clouds, where
even EED creates strong singularities in the cloud region. For this sequence the
image-driven operator, as in (3.23)-(3.24), provides good results. Smoothing across
image edges such as the horizon will be inhibited. Since the horizon coincides with
a motion boundary, the SIFT displacements will be clustered in two populations
with different types of motion. Even a very small SIFT feature density in the sky
produced a reasonable estimate of the cloud motion.
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Table 6.18: Results for the Yosemite sequence with clouds. The estimation methods
are the standard optic flow method, the interpolation of SIFT features with post-
smoothing, the robust combined optic flow method. The smoothing operator is the
homogeneous operator or the image-driven (ID) operator. The parameters σ, λ and
the smoothness weight are optimized w.r.t. the AAE.

smooth. smooth.method
operator

c σ λ
weight

AAE [◦]

hom. - 1.33 - 453 7.17optic flow
ID - 1.33 0.8 > 104 6.06

interpolation - - - - 14.4
interpol. + post-smooth.

hom.
0.025 - - - 14.4

interpolation - - 0.1 - 6.82
interpol. + post-smooth.

ID
0.025 - 0.02 - 6.50

robust combined hom. 0.990 1.33 - 550 7.14
optic flow ID 0.999 1.33 0.8 > 104 5.94

Table 6.18 and Figure 6.16 show the results for image-driven interpolation for
the Yosemite sequence with clouds. Pure interpolation of the SIFT displacements
resulted in a flow estimation with an AAE of 6.82◦. We chose a contrast parameter
λ of 0.1, a noise scale σ of 1 and an integration scale ρ of 3. Subsequent smoothing
of the interpolant reduced the AAE to 6.50◦. Post-smoothing was done by applying
the flow-driven operator

div
(
g(∇uσ∇u>σ +∇vσ∇v>σ )

)
with a different contrast parameter. This preserved the sharp edges from the initial
interpolant. We can see from the plot of the u-component of the flow field that
image-driven interpolation allows for a filling-in in the sky region. Both the motion
of the clouds and the motion discontinuity at the horizon are estimated well. As
a comparison, the standard image-driven optic flow estimation produced an AAE
of 6.06◦, but the ASE was higher than the ASE of the interpolant. The robust
combined optic flow method gave an AAE of 5.94◦. This is a small increase in
quality over the standard method. Increasing the integration scale ρ gave slightly
better AAEs for all methods, but the qualitative results remained the same.

The image-driven method did not perform well for the Marble sequences. It
tends to give an oversegmentation of the flow field due to the strong texture in the
images.

6.5.4 Selecting a Subset of SIFT displacements

In 6.5.1 we selected a subset of SIFT displacements with the help of ground truth
information. We showed that this subset could improve the results of the Horn and
Schunck method when we used their exact values in the optic flow estimation. This
data set can most probably not be reproduced by any other means than by using
ground truth. We can however try to approximate this subset by culling our data
in another way.
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Figure 6.16: Image-driven interpolation of the SIFT displacements with flow-driven
post-smoothing for the Yosemite sequence with clouds. Left: The optic flow field,
AAE = 6.50. Right: The u-component of the flow field.

In 3.5 we presented two approaches for extracting a high quality subset from our
SIFT displacements: a modified vector median filter (VMF) and the usage of an
optic flow constraint (OFC). The VMF rejects displacements that do not respect a
smoothness assumption, while the OFC rejects displacements that do not comply
with a constancy assumption of certain image features. We will evaluate both
approaches for two sets of SIFT displacements. One set has been obtained as in the
previous experiments, namely with a distance ratio threshold between the closest
and the second closest feature descriptor of 0.6. The other set has been obtained
with a distance threshold of 0.8 and it typically contains more false matches. We did
not remove large displacements prior to applying the modified VMF or the OFC.
In this way we can asses their ability of handling severely outlying data.

In Table 6.19 we list the results of the experiments carried out with the modified
VMF for the new Marble sequence. We tested interpolation with post-smoothing,
the robust approximation scheme and the robust combined optic flow method with
the EED operator. For the VMF we found an optimal radius R of 27 and a value
for the parameter c of 0.98. In this way 2062 of 3518 SIFT-matches (not effective
matches) were retained for a threshold of 0.6 and 2114 of 3596 for a threshold of
0.8.

We see from the table and from Figure 6.17 that the interpolation results improve
substantially after applying the modified VMF to the raw data set. If we post-
smooth the interpolant for the 0.6 threshold we end up with an optic flow estimation
that has an AAE of 1.29◦. This result is almost as good as the standard optic flow
estimation with EED. Robust approximation improved only slightly after applying
the VMF. We state that the overall effect of thinning out the raw data set by vector
median filtering and interpolating the remaining subset of SIFT displacements is
similar to performing robust approximation to the raw data set.

Robust combined optic flow after vector median filtering reduced the AAE from
1.25◦ to 1.23◦. There was no difference in quality for the two distance thresholds.

Applying VMF was unfortunately not successful in selecting a higher quality
subset for the remaining image sequences. SIFT produces isolated data points
for the Yosemite sequence with clouds and the old Marble sequence. These isolated
displacements are crucial for the accurate estimation of the flow field with a feature-
based method but they were mostly discarded by our modified VMF. If the radius
R was chosen large, isolated data points were discarded. If the radius was chosen
small, no filtering took place. For isolated points it is difficult to tell if they are
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Table 6.19: Results for the new Marble sequence with and without VMF. The
smoothness weight is optimized w.r.t. the AAE.

smooth.thresh. method VMF c σ λ
weight

AAE [◦]

- optic flow - - 0.564 0.004 > 104 1.26
no - - 0.009 - 2.79interpolation
yes - - 0.009 - 1.65

interpolation no 0.003 - 0.009 - 1.76
+ post-smoothing yes 0.003 - 0.009 - 1.290.6

no - - 0.009 18.4 1.59approximation
yes - - 0.009 17.2 1.49

robust combined no 0.996 0.564 0.004 > 104 1.25
optic flow yes 0.998 0.564 0.004 > 104 1.23

no - - 0.009 - 4.63interpolation
yes - - 0.009 - 1.75

interpolation no 0.003 - 0.009 - 3.67
+ post-smoothing yes 0.003 - 0.009 - 1.360.8

no - - 0.009 17.7 1.63approximation
yes - - 0.009 19.1 1.50

robust combined no 0.996 0.564 0.004 > 104 1.25
optic flow yes 0.999 0.564 0.004 > 104 1.23

outlying or not, due to a lack of local information. This renders the concept of
outlier vague in a framework of scattered data approximation. A solution might be
performing data clustering prior to performing subset selection.

The idea of making use of the optic flow constraint to select inlying data did
not work out for any sequence. The set of SIFT displacements that was retained in
this way was of poor quality and did not improve our estimation.

Figure 6.17: The optic flow for the new Marble sequence estimated with EED inter-
polation from a set of SIFT displacements. The SIFT displacements were obtained
with a distance ratio threshold of 0.8. Left: Without VMF, AAE = 4.63. Right:
With bad displacements removed by VMF, AAE = 1.75.
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Chapter 7

Summary and Conclusions

Variational methods are among the most successful methods for computing the optic
flow in an image sequence. They are highly accurate and do not encompass any
hidden model assumptions. Variational methods establish a dense correspondence
mapping between pixels in different images. On the other side there are local
techniques that find a scattered set of correspondences between important locations
of interest. Such feature-based methods typically produce a non-dense displacement
field. Both methods are usually applied strictly separated and the use of the one in
preference to the other depends on the purpose of the task.

The contribution of this work has been to bring together variational and feature-
based approaches for optic flow estimation. We have accomplished the following:

� Dense feature-based optic flow estimation. We have developed a novel
technique for calculating the optic flow field from a sparse displacement field.
Our vector approximation scheme is comprised of a smoothness constraint
and a similarity term that only exists in a discrete subset of the domain. The
smoothness enters the model in the form of an elliptic operator. A variety
of choices for the operator allows to achieve a specific kind of filling-in. A
smoothness weight regulates the complexity of the data fitting model.
� Combined optic flow estimation. The close resemblance in formulation

permits a straightforward incorporation of the feature-based method into the
standard optic flow model. The continuous data constraint is supplemented
with the discrete similarity term while smoothness is imposed by a common
operator.
� Experimental comparison. We provided an experimental comparison of

the three approaches by calculating the optic flow of different benchmark
sequences. Simultaneously we evaluated the SIFT algorithm for motion esti-
mation with small displacements. Strategies for removing outliers, as well as
robust variants of our methods have been tested for their effectiveness.

Conclusions and Outlook

The outcome for feature-based methods with data from an actual feature extractor
like SIFT was for some operators surprisingly good. Robust approximation with
EED performed well if there were discontinuities in the SIFT displacement val-
ues and the locations of the displacements were uniformly distributed. If motion
boundaries coincide with image edges and if there is not much texture present,
image-driven operators can give fairly good results. In some cases the robust ap-
proximation gave a lower ASE than the corresponding standard optic flow method,
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but the AAE was always higher. A natural remark is that the quality of the feature-
based methods depends on the presence of point correspondences in a certain area.
As the cloud region in the Yosemite sequence demonstrates, the estimation can be
very good with a minimal number of data points. If this data lacks however, the
result turns out to be unsatisfactory which is an inherent drawback of feature-based
methods.

We can further conclude that a simple data constraint like the brightness con-
stancy assumption outperforms a similarity constraint with SIFT displacements.
The combination of both constraints, however, resulted in a marginal improvement
of the AAE for all image sequences that were included in the tests. By using
ground truth information we have shown that feature-based and combined optic
flow methods can give far better results if the feature matching algorithm would be
more accurate. The noise in the sparse displacement field that is inherent to SIFT
prevents any major improvements of the standard optic flow methods for small
displacements

Future work would include experiments with larger displacements. Variational
optic flow methods typically perform less well for image sequences with displace-
ments that are larger than several pixels. This is because the constancy assumptions
are linearized, either in the model or in the discretization. We expect that a feature-
based or combined method with SIFT will perform better for large displacement
rates than for small displacements because the effects of the localization errors in
SIFT will be less significant. We can also think about using other types of feature
matching techniques, such as tracking algorithms. These algorithms are especially
designed for keeping track of the same set of interest points throughout an image
sequence, but they often make additional assumptions on the type of motion. Other
optimizations would include more refined outlier detection, the use of spatiotempo-
ral smoothing, and the consideration of other smoothing operators. In the latter
case we could think about the Frobenius norm of the Hessian, which is closely re-
lated to the biharmonic operator. A smoothness constraint based on this norm with
a suitable penalization might be able to prevent the over- and undershoots which
are characteristic for biharmonic smoothing.
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optical flow computation in real-time. IEEE Transactions on Image Processing,
14(5):608–615, May 2005.

[12] A. Bruhn, J. Weickert, T. Kohlberger, and C. Schnörr. A multigrid platform for
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