
Restoration of Matrix Fields bySeond Order Cone ProgrammingG. Steidl S. Setzer B. Popilka∗ B. Burgeth†February 1, 2007AbstratWherever anisotropi behaviour in physial measurements or mod-els is enountered matries provide adequate means to desribe thisanisotropy. Prominent examples are the di�usion tensor magneti res-onane imaging in medial imaging or the stress tensor in ivil engi-neering. As most measured data these matrix-valued data are alsopolluted by noise and require restoration.The restoration of salar images orrupted by noise via minimizationof an energy funtional is a well-established tehnique that o�ers manyadvantages. A onvenient way to ahieve this minimization is seondorder one programming (SOCP). The goal of this artile is to transferthis method to the matrix-valued setting. It is shown how SOCP anbe applied to minimize various energy funtionals de�ned for matrix�elds. These funtionals ouple the di�erent matrix hannels takinginto aount the relations between them. Furthermore, new funtionalsfor the regularization of matrix data are proposed and the orrespond-ing Euler-Lagrange equations are derived by means of matrix di�eren-tial alulus. Numerial experiments substantiate the usefulness of theproposed methods for the restoration of matrix �elds.1 IntrodutionMatrix-valued data, so-alled matrix �elds have gained signi�ant impor-tane in reent years:
• First, di�usion tensor magneti resonane imaging (DT-MRI) [3℄ is amodern but ommonly used medial imaging tehnique that measuresa 3 × 3 positive semide�nite matrix-�eld: A so-alled di�usion tensoris assigned to eah voxel. This di�usion tensor desribes the di�usiveproperty of water moleules. Sine water di�uses preferably along or-dered tissue suh as nerve �bers this matrix gives valuable information
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about the geometry and organization of the tissue under examination.Hene this matrix �eld plays a very important role for the diagnosisof multiple slerosis and strokes. For detailed information about theaquisition of this type of data the reader is referred to [2℄ and theliterature ited therein.
• Seond, in the �eld of tehnial sienes suh as ivil engineering andsolid mehanis or geology anisotropi behaviour is often desribedsatisfatorily by inertia, di�usion, stress, and permittivity tensors.
• Third, matries/tensors have been reognized as a useful onept inimage analysis itself [15℄: The struture tensor [13℄, for instane, (alsoalled Förstner interest operator, or satter matrix) has been employednot only for orner detetion [16℄, but also for texture analysis [23℄ andmotion estimation [5℄. Tensor voting, an interesting reent tool forsegmentation and grouping, also makes use of the tensor onept.This variety of appliations make it worthwhile to develop appropriate toolsfor the restoration and proessing of tensor, respetively matrix data, sine,just as salar images, they are orrupted by noise. However, when design-ing �lters for matrix �elds, treating the hannels independently is a simplethough not advisable strategy. Any relation between the di�erent matrixhannels is ignored whih leads to similarly serious shortomings as in thease of vetor-valued �ltering.Unlike vetors, matries an be multiplied making matrix-valued polyno-mials and also funtions of matries. These useful notions that rely deisivelyon the strong interplay between the di�erent matrix entries. Roughly speak-ing, we are taking an operator-algebrai point of view here onentrating onsymmetri matries as �nite-dimensional instanes of self-adjoint operators.Unfortunately in the ase of those symmetri matries, extra are has to betaken sine the produt of two symmetri matries is usually not symmetri:The Jordan produt is used as an symmetri multipliation. In fat thisprodut makes its natural appearane in the derivation of energy funtionalsused in this paper for matrix �eld restoration.This paper is organized as follows: Sine we want to onvert restora-tion methods whih were suessfully applied in the salar valued ase tothe matrix�valued setting, we start by onsidering the related salar�valuedtehniques in Setion 2. Setion 3 provides preliminaries on matrix-valuedfuntions and introdues to seond order one programming (SOCP). InSetion 4 we examine properties of a funtional suggested by Derihe andTshumperlé for the root funtion in the penalizing term and show howSOCP an be applied to �nd the minimizer of this funtional. Setion 5proposes two new funtionals whih better orrespond to the matrix stru-ture of our objets. The orresponding Euler-Lagrange equation inludes theJordan produt of matries. We apply SOCP and a steepest deent method2



to ompute minimizers of these funtionals. Finally, Setion 6 ompares thedi�erent methods by various numerial examples.2 Motivation: restoration of salar-valued funtionsA well-established method for restoring a salar-valued image u from a givendegraded image f onsists in alulating the minimizer of the funtional
J (u) :=

1

2

∫

Ω
(f − u)2 + α Φ(|∇u|2) dxdy (1)with regularization parameter α > 0 and an inreasing funtion Φ : [0,∞] →

R in the penalizing term. The �rst summand enourages similarity be-tween the restored image and the original one, while the seond one rewardssmoothness. The appropriate hoie of the funtion Φ ensures that impor-tant image strutures suh as edges are preserved while areas with smallgradients are smoothed. A standard way for solving (1) uses the fat thatthe minimizer has to ful�ll the Euler�Lagrange equation
0 = f − u + α div(Φ′(|∇u|2)∇u).Then a steepest desent method an be applied whih is equivalent to om-puting the steady state of the reation-di�usion equation
∂tu = f − u + α div(Φ′(|∇u|2)∇u)with initial image u(·, 0) = f and homogeneous Neumann boundary ondi-tions. On the other hand, the Euler�Lagrange equation an be rewrittenas

u − f

α
= div(Φ′(|∇u|2)∇u).This ellipti PDE an be interpreted as a fully impliit time disretizationof the di�usion equation

∂tu = div(Φ′(|∇u|2)∇u) (2)with initial image u(·, 0) = f and homogeneous Neumann boundary ondi-tions. The solution of this di�usion equation is a good approximation of theminimizer of (1). For details see [25, 29℄.The steepest desent method requires that the funtion Φ is di�eren-tiable. In this paper, we are interested in the funtion
Φ(s2) := |s| (3)whih is not di�erentiable at zero. Then the onvex funtional (1) is thefrequently applied ROF�model introdued by Rudin, Osher and Fatemi [24℄.3



If we want to apply a steepest desent method we have to introdue a smalladditional parameter ε and to deal with
Φ(s2) =

√

s2 + ε2, (4)instead of the original funtion, f. [28℄. However, for the funtion (3),the penalizing funtional in (1) has very useful properties, in partiular it ispositive homogeneous. Based on these properties various numerial methodsan be applied to �nd the minimizer without introduing the additionalparameter ε, e.g.,
• seond order one programming (SOCP) [14℄,
• Chambolle's desent algorithms for the dual funtional [10℄,
• a four pixel method for the orresponding di�usion equation [26℄.In this paper, we will see how in partiular SOCP an also be applied totensor-valued images.In addition to the funtional (1), the funtional

J (u) :=
1

2

∫

Ω
(f − u)2 + α (Φ(u2

x) + Φ(u2
y)) dxdy (5)was applied for image restoration also with higher order derivatives in liter-ature [11, 17, 19℄. For the absolute value funtion Φ, this funtional an behandled more e�iently than (1). However, it is not rotationally invariantbut may be useful for images whose edges are straight lines in onnetionwith other tehniques [4℄.3 PreliminariesMatrix-valued funtions. To deal with matrix �elds we have to intro-due some notation. Let Symn(R) be the vetor spae of symmetri n × nmatries. This an be treated as a Eulidian vetor spae relative to thetrae inner produt

〈A,B〉 := tr AB.Then
〈A,A〉 = tr A2 = ‖A‖2

Fis the squared Frobenius norm of A. In Symn(R), the positive semi-de�nitematries Sym+
n (R) form a losed onvex set whose interior onsists of thepositive de�nite matries. More preisely, Sym+

n (R) is a one with base B[1, 8, 9℄, i.e.
Sym+

n (R) = R≥0 B4



and
B := {B ∈ Sym+

n (R) : tr B = 1}.Sine B is a onvex ompat set in a �nite dimensional spae it is, by theKrein-Milman theorem, the onvex hull of its extreme points whih are givenby the rank 1 matries vvT with ‖v‖2 = 1. Thus,
B = convexhull{vvT : v ∈ Sn−1}.For n = 2, this an be illustrated as follows: we embed Sym2(R) into R

3by
A 7→ a :=

1√
2
(2a12, a11 − a22, a11 + a22)

T. (6)This mapping is an isometry from Sym2(R) with the Frobenius norm onto
R

3 with the Eulidian norm. For A ∈ Sym+
2 (R) with eigenvalues λ1, λ2 ≥ 0,we have that

λ1 + λ2 = trA = a11 + a22 =
√

2 a3 ≥ 0,

λ1λ2 = detA =
1

4

(

(a11 + a22)
2 − (a11 − a22)

2 − 4a2
12

)

≥ 0.Hene, A ∈ Sym+
2 (R) if and only if a3 ≥ 0 and ‖(a1, a2)

T‖2 ≤ a3, i.e., thesymmetri positive semi-de�nite matries form the one C3 := {a ∈ R
3 :

‖(a1, a2)
T‖2 ≤ a3} depited in Fig. 1. Its base B is just the losed dis atthe height 1/

√
2 and the extreme points form the boundary of this dis. Forour numerial examples we will further use that the positive de�nite matries

A ∈ Sym+
2 (R) an be visualized as ellipses

{x ∈ R
2 : xTA−2x = 1}whose axes have just the length of the eigenvalues of A.By A◦B we denote the Hadamard produt (omponentwise produt) andby A⊗B the Kroneker produt (tensor produt) of A and B, f. [18℄. Furtherwe onsider the so-alled Jordan�produt of matries A,B ∈ Symn(R) de�nedby

A • B :=
1

2
(AB + BA) ∈ Symn(R).In ontrast to the ordinary matrix multipliation the Jordan�produt pre-serves the symmetry of the matries. This does not hold for positive semi-de�niteness. Finally, we set

vecA :=







a1...
an





for an n × n matrix A with j-th olumn aj.5
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Figure 1: Cone of symmetri, positive semi-de�nite matries via (6).Seond order one programming. SOCP [20℄ amounts to minimize alinear objetive funtion subjet to the onstraints that several a�ne fun-tions of the variables have to lie in a seond order one Cn+1 ⊂ R
n+1 de�nedby the onvex set

Cn+1 =

{(

x
x̄n+1

)

= (x1, . . . , xn, x̄n+1)
T : ‖x‖2 ≤ x̄n+1

}

. (7)With this notation, the general form of a SOCP is given by
inf

x∈Rn
fTx , s.t. (

Aix + bi

cTi x + di

)

∈ Cn+1 , i = 1, . . . , r. (8)Alternatively, one an also use the rotated version of the standard one:
Kn+2 :=

{

(

x, x̄n+1, x̄n+2

)T ∈ R
n+2 : ‖x‖2

2 ≤ 2 x̄n+1x̄n+2

}

.This allows to inorporate quadrati onstraints. Problem (8) is a onvexprogram for whih e�ient, large sale solvers are available [22℄.4 SOCP for the Derihe-Tshumperlé funtionalLet F : R
2 → Sym+

n (R) be a matrix �eld orrupted by white Gaussian noise.In analogy to (1), Derihe and Tshumperlé [27℄ proposed to �nd the restoredfuntion U by minimizing the funtional
J (U) :=

∫

Ω
‖F − U‖2

F dxdy + αJ(U), (9)6



where
J(U) :=

∫

Ω
Φ

(

tr(U2
x + U2

y )
)

dxdy =

∫

Ω
Φ

(

n
∑

j,k=1

∇uTjk∇ujk

)

dxdy. (10)The penalizing term J(U) ontains a oupling between the matrix oe�-ients.For di�erentiable Φ, the orresponding Euler�Lagrange equation reads
0 = F − U + α

(

∂x(Φ′(tr(U2
x + U2

y ))Ux + ∂y(Φ
′(tr(U2

x + U2
y ))Uy

)

.In [7℄ this system was onsidered similarly as in the salar-valued ase (2) asexpliit time disretization of an isotropi matrix�valued di�usion proess.Based on the extremum priniple ful�lled by the solution of this PDE theauthors showed that the solution of the matrix�valued equation preservesfor appropriate Φ the positive de�niteness of the initial matrix �eld.In this paper, we restrit our attention to the absolute value funtion Φin (3) and SOCP. For omputations, we onsider the disrete ounterpart of(9), where we replae the derivative operators by simple forward di�ereneoperators
Jd(U) :=

N−1
∑

i,j=0

‖F (i, j) − U(i, j)‖2
F + α Jd(U), (11)

Jd(U) :=
N−1
∑

i,j=0

(

‖U(i, j) − U(i − 1, j)‖2
F + ‖U(i, j) − U(i − 1, j)‖2

F

)1/2with U(−1, j) = U(i,−1) = 0. Other disretizations of the �rst order deriva-tives are possible, too. The funtional (11) is stritly onvex so that it hasa unique minimizer.For su�iently large α, we see that Û minimizes Jd i� Jd(Û) = 0, i.e.
Û(i, j) = Û(0, 0) for all i, j = 0, . . . ,N − 1. Then the data �tting termbeomes minimal i�

Û(0, 0) =
1

N2

N−1
∑

j,k=0

F (i, j). (12)We say that the disrete matrix �eld F : Z
2
N → Sym+

n (R) has all eigen-values in an interval I if every matrix F (i, j) of the �eld has all eigenvaluesin I. By the following proposition the minimizer of (11) preserves positivede�niteness.Proposition 4.1. Let all eigenvalues of F : Z
2
N → Sym+

n (R) be ontained inthe interval [λmin, λmax]. Then the minimizer Û of (11) has all eigenvaluesin [λmin, λmax]. 7



Proof. Using that the minimal and maximal eigenvalues λmin(A), λmax(A)of a symmetri matrix A ful�ll
λmin(A) = min

‖v‖=1
vTAv, λmax(A) = max

‖v‖=1
vTAv,it is easy to hek that the set C of matries having all eigenvalues in

[λmin, λmax] is onvex and losed.Assume that some matries Û(i, j) are not ontained in C. Let PÛ(i, j)denote the orthogonal projetion (w.r.t. the Frobenius norm) of Û(i, j) onto
C. Then we obtain by the projetion theorem [12, p. 269℄ that

‖F (i, j) − PÛ(i, j)‖F ≤ ‖F (i, j) − Û(i, j)‖F ,

‖PÛ(i, j) − PÛ(k, l)‖F ≤ ‖Û (i, j) − Û(k, l)‖F .Consequently, Jd(PÛ) ≤ Jd(Û) whih ontradits our assumption sine theminimizer is unique. This ompletes the proof. �Remark 4.2. To get an intuition, let us just ompute the minimizer of (11)for two given matries F (i), i = 0, 1 in one dimension. Via the embedding(6) we obtain F (i) 7→ f := (f1(i), f2(i), f3(i))
T. Then, (11) reads

Jd(u) =

1
∑

i=0

(

‖f(i) − u(i)‖2
2 + α ‖u(1) − u(0)‖2

)and, in ase d := ‖û(1)−û(0)‖2 6= 0, the (sub)gradient of Jd at the minimizer
û has to be zero. After some reordering this leads to

û(0) = f(0) +
α

2d
(û(1) − û(0)),

û(1) = f(1) − α

2d
(û(1) − û(0)).By subtrating these equations and taking the norm of the resulting equationwe obtain

d =
d

d + α
‖f(1) − f(0)‖2and thus d = ‖f(1)− f(0)‖2 − α if the right-hand side is nonnegative. Con-sequently, the minimizer of Jd is given by

û(0) = f(0) +
α

2

f(1) − f(0)

‖f(1) − f(0)‖2
, (13)

û(1) = f(1) − α

2

f(1) − f(0)

‖f̃(1) − f(0)‖2for α ≤ ‖f(1)−f(0)‖2 and aording to (12) by û(0) = û(1) = (f(0)+f(1))/2for larger α. 8



We want to ompute the minimizer of (11) by SOCP. In this paper, weare only interested in Sym2(R). The generalization to Symn(R), n ≥ 3 isstraightforward. We reorder a matrix �eld U : Z
2
N → Sym2(R) into a vetor

u ∈ R
3N2 by applying the ve-operation

u =





vec U11

vec U12

vec U22



 , Ukl :=
(

ukl(i, j)
)N−1

i,j=0
, k, l ∈ {1, 2}. (14)The (partial) forward di�erene matrix is de�ned by D =

(

Dx

Dy

) with
Dx = IN ⊗ D, Dy = D ⊗ IN and

D :=



















−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0. . . . . . . . .
0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1
0 0 0 . . . 0 0 0



















. (15)Let 1N denote the vetor onsisting of N omponents 1. Then it is straight-forward that minimizing (11) is equivalent to the following SOCP:
t + α1TN2v → min

s.t.





(

(1,
√

2, 1) ⊗ IN2

)

(f − u)
t

1/2



 ∈ K3N2+2,

(

u11x, u11y, u12x, u12y , u22x, u22y

)T
=

(

13 ⊗D
)

u,
((

u11x(i, j)
u11y(i, j)

)T
,
√

2

(

u12x(i, j)
u12y(i, j)

)T
,

(

u22x(i, j)
u22y(i, j)

)T
, v(i, j)

)T
∈ C7,

i, j = 0, . . . ,N − 1,where uTklx = vec
(

uklx(i, j)
)N−1

i,j=0
.Remark 4.3. For the sake of ompleteness, we mention that there also existsan anisotropi approah [30℄ given by

J (U) :=

∫

Ω
‖F − U‖2

F + α tr Φ
(

n
∑

j,k=1

∇ujk∇uTjk) dxdy. (16)In ontrast to (10), the funtion Φ is now applied to a matrix now, i.e. to itseigenvalues, and the trae is taken afterwards. This provides the motivationfor a novel funtional to be introdued in the next setion.9



5 New funtionals for matrix-�eldsInstead of (9) we propose to use the funtional
J (U) :=

∫

Ω
‖F − U‖2

F + α tr
(

Φ(U2
x + U2

y )
)

dxdy (17)In ontrast to (9), the trae is taken after applying the funtion Φ to thematrix U2
x + U2

y . Inspired by (5), we also onsider
J (U) :=

∫

Ω
‖F − U‖2

F + α tr
(

Φ(U2
x) + Φ(U2

y )
)

dxdy. (18)Again we are only interested in the absolute value funtion Φ(s2) = |s|.The next proposition shows that the funtional (17) has an interestingGâteaux derivative.Theorem 5.1. Let Φ be a di�erentiable funtion. Then the Euler-Lagrangeequations for minimizing the funtional (17) are given by
U − F

α
= ∂x

(

Φ′(U2
x + U2

y ) • Ux

)

+ ∂y

(

Φ′(U2
x + U2

y ) • Uy

)

. (19)Proof. Let ϕ(Ux, Uy) := tr
(

Φ(U2
x + U2

y )
). The Euler-Lagrange equationsof (17) are given, for i, j = 1, ..., n; i ≥ j, by

0 =
∂

∂uij
‖F − U‖2

F − α

(

∂

∂x

(

∂ϕ

∂uijx

)

+
∂

∂y

(

∂ϕ

∂uijy

))

.For a salar-valued funtion f and an n × n matrix X, we set ∂f(X)
∂X :=

(

∂f(X)
∂xij

)n

i,j=1
. Then, by symmetry of F and U , the Euler-Lagrange equationsan be rewritten in matrix-vetor form as

Wn ◦ U − F

α
=

1

2

(

∂

∂x

(

∂ϕ

∂Ux

)

+
∂

∂y

(

∂ϕ

∂Uy

))

, (20)where Wn denotes the n × n matrix with diagonal entries 1 and other oef-�ients 2.We onsider f(X) := tr Φ(X2). Then we obtain by [21, p. 178℄ and
tr (ATB) = (vecA)TvecB that

vec
∂f(X)

∂X
= vec

(

tr (Φ′(X2)
∂(X2)

∂xij
)

)n

i,j=1

= vec

(

(vecΨ)Tvec∂(X2)

∂xij

)n

i,j=110



where Ψ := Φ′(X2). By [21, p. 182℄ and sine Ψ is symmetri this an berewritten as
vec

∂f(X)

∂X
= vecWn ◦ ((In ⊗ X) + (X ⊗ In)) vecΨand using that vec(ABC) = (CT ⊗ A)vecB we infer that

vec
∂f(X)

∂X
= vecWn ◦ vec(XΨ + ΨX).This implies that

∂f(X)

∂X
= 2Wn ◦ (Ψ • X). (21)Applying (21) with f(Ux) := ϕ(Ux, Uy) and f(Uy) := ϕ(Ux, Uy), respe-tively, in (20) we obtain the assertion. �Univariate matrix�valued funtions. We start by onsidering matrix-valued funtions F and U in one spatial variable. In this ase, the funtionals(17) and (18) oinide and an be written as

J (U) :=

∫

Ω
‖F − U‖2

F + α tr |Ux| dx (22)with some interval Ω.Proposition 5.2. i) The funtional (22) is stritly onvex.ii) For matries in Sym2(R) and Ux := (ujkx)
2
j,k=1, the funtional (22) anbe rewritten as

J (U) =

∫

Ω
‖F −U‖2

F +α max{
(

4u2
12x +(u11x −u22x)2

)1/2
, |u11x +u22x|} dx.(23)Proof. i) Let λ : Symn(R) → R

n denote the mapping of a matrix to thevetor of its eigenvalues in noninreasing order and let f(x) := |x1|+. . .+|xn|.Obviously, f is a symmetri funtion, i.e., permuting omponents does nothange the funtion value. Moreover, f is lower semiontinuous and onvex.Then, by [6, p. 105℄, the funtion f ◦ λ is also onvex. Sine the �rstsummand in (22) is stritly onvex and the penalizing term oinides with
f ◦ λ(Ux) the whole funtional is stritly onvex.ii) Let λ1 and λ2 be the eigenvalues of Ux. Then straightforward omputationyields

tr |Ux| = |λ1| + |λ2| =
(

tr U2
x + 2 |det Ux|

)1/2
. (24)If det Ux = u11xu22x − u2

12x ≥ 0, then we obtain by (24) that
|λ1| + |λ2| = |u11x + u22x| ≥

(

(u11x − u22x)2 + 4u2
12x

)1/2
.11



For detUx < 0, we get
|λ1| + |λ2| =

(

(u11x − u22x)2 + 4u2
12x

)1/2 ≥ |u11x + u22x|.This implies (23). �For omputations, we onsider the disrete ounterpart of (23), wherewe replae the derivative operator by a simple forward di�erene operator
Jd(U) =

N−1
∑

i=0

(

‖F (i) − U(i)‖2
F + α tr |U(i) − U(i − 1)|

) (25)with U(−1) := 0. Unfortunately, the minimizer of (25) does in general notpreserve positive de�niteness. This is illustrated by the following remark.Remark 5.3. We onsider the following intuitive example with only two ma-tries F (0), F (1) ∈ Sym+
2 (R). Via the embedding (6) we obtain F (i) 7→ f :=

(f1(i), f2(i), f3(i))
T. Further, we set f̃(i) := (f1(i), f2(i))

T and similarly for
U . Then, (25) reads

Jd(U) =

1
∑

i=0

(

‖f̃(i) − ũ(i)‖2
2 + (f3(i) − u3(i))

2

+ α max{‖ũ(1) − ũ(0)‖2, |u3(1) − u3(0)|
)

.Let (

u∗
1(i), u

∗
2(i)

)T, i = 0, 1, be the minimizer of
Jd,1(ũ) =

1
∑

i=0

(

‖f̃(i) − ũ(i)‖2
2 + + α ‖ũ(1) − ũ(0)‖2

)

.Set u∗
3(i) := f3(i), i = 0, 1. Then it is easy to hek that in ase of

‖ũ∗(1) − ũ∗(0)‖2 ≥ |u∗
3(1) − u∗

3(0)| (26)the vetor �eld (u∗
1(i), u

∗
2(i), u

∗
3(i))

T, i = 0, 1, minimizes Jd. Now the mini-mizer of Jd,1(ũ) an be omputed for α ≤ ‖f̃(1)− f̃ (0)‖2 as shown in Remark4.2. Let f(0) := (3, 4, 5)T, f(1) := (7, 1, 8)T ∈ C3 so that f(1) − f(0) =
(4,−3, 1)T 6∈ C3 and α := 1. Then, by (13) and (26) the minimizer of Jd isgiven by

u(0) = f(0) +
1

10
(4,−3, 0)T, u(1) = f(1) − 1

10
(4,−3, 0)Tand u(0) 6∈ C3. 12



By Proposition 5.2 ii), problem (25) an be reformulated as a SOCP. Sinethis is ompletely analogeous to (28) in the bivariate ase, we formulate theSOCP for the bivariate setting. Positive de�niteness of the solution an beensured by adding the orresponding one ondition in the SOCP. For theexample in Remark 5.3 this results in the solution
u(0) = f(0)+

1

10
(3.919,−3.086, 0.131), u(1) = f(1)− 1

10
(4.008,−2.990, 0).Bivariate matrix�valued funtions. The funtional (18) an be rewrit-ten as

J (U) =

∫

Ω
‖F − U‖2

F + α tr (|Ux| + |Uy|) dxdy. (27)This funtional an be handled similarly as in the univariate ase. By Propo-sition 5.2 and using (14), the orresponding minimization problem an bereformulated as SOCP as follows:
t + α1TN2(vx + vy) → min

s.t.





(

(1,
√

2, 1) ⊗ IN2

)

(f − u)
t

1/2



 ∈ K3N2+2,

(

u11x, u11y, u12x, u12y , u22x, u22y

)T
=

(

13 ⊗D
)

u, (28)
(2u12x(i, j), u11x(i, j) − u22x(i, j), vx(i, j))T ∈ C3,

(2u12y(i, j), u11y(i, j) − u22y(i, j), vy(i, j))T ∈ C3,

(u11x(i, j) + u22x(i, j), vx(i, j))T ∈ C2,

(u11y(i, j) + u22y(i, j), vy(i, j))T ∈ C2, i, j = 0, . . . ,N − 1.To ensure positive semi-de�niteness of the solution we an simply add theone ondition (2u12(i, j), u11(i, j) − u22(i, j), u11(i, j) + u22(i, j))
T ∈ C3 to(28).The funtional (17) an be rewritten as

J (U) =

∫

Ω
‖F − U‖2

F + α tr
√

U2
x + U2

y dxdy (29)and in partiular in ase Sym2(R) as
J (U) =

∫

Ω
‖F − U‖2

F + α
√

η dxdy,where η = η(u11x, u12x, u22x, u11y, u12y , u22y) is given by13



η = u2
11x + 2u2

12x + u2
22x + u2

11y + 2u2
12y + u2

22y

+ 2
(

(u11xu22x − u2
12x)2 + (u11yu22y − u2

12y)
2 + (u11xu22y − u12xu12y)

2

+(u11yu22x−u12xu12y)
2+ (u11xu12y−u12xu11y)

2+(u12yu22x−u12xu22y)
2
)1/2.To ompute a minimizer of (29) we apply Theorem 5.2 and solve theorresponding reation�di�usion equation for t → ∞

Ut = F − U + α
(

∂x

(

Φ′(U2
x + U2

y ) • Ux

)

+ ∂y

(

Φ′(U2
x + U2

y ) • Uy

))with Φ as in (4), homogeneous Neumann boundary onditions and initialvalue F by a di�erene method. More preisely, we use the iterative sheme
U (k+1) = (1 − τ)U (k) + τF + τα

(

∂x

(

G(k) • U (k)
x

)

+ ∂y

(

G(k) • U (k)
y

))with su�iently small time step size τ and G(k) := Φ′((U
(k)
x )2 + (U

(k)
y )2).The inner derivatives inluding those in G were approximated by forwarddi�erenes and the outer derivatives by bakward di�erenes so that thepenalizing term beomes

1

h1

(

G(i, j) • U(i + 1, j) − U(i, j)

h1
− G(i − 1, j) • U(i, j) − U(i − 1, j)

h1

)

+
1

h2

(

G(i, j) • U(i, j + 1) − U(i, j)

h2
− G(i, j − 1) • U(i, j) − U(i, j − 1)

h2

)

,where hi, i = 1, 2 denote the pixel distanes in x and y�diretion. Alterna-tively, we have also worked with symmetri di�erenes for the derivatives.Then we have to replae e.g. G(i, j) in the �rst summand by G̃(i + 1, j) +
G̃(i, j))/2 and G̃ is now omputed with symmetri di�erenes.6 Numerial ResultsFinally, we present some numerial results demonstrating the performaneof the various methods. All algorithms were implemented in MATLAB.Moreover, we have used the software pakage MOSEK for SOCP. We restritour attention to Sym2(R).We start with the 1D matrix�valued funtion in Fig. 2. To all ompo-nents of the original data in [0, 1] we added white Gaussian noise with stan-dard deviation 0.1. We omputed the minimizer of the Derihe-Tshumperléfuntional (9) (left) and of our new funtional (23) (right) by SOCP. Thebottom of the �gure shows the ℓ2�norm (of three matrix omponents) andthe Frobenius norm of the di�erene betweenof the original and the denoisedsignal (

∑ ‖F (i)− Û (i)‖2
F )1/2 in dependene on the regularization parameter

α. Note that the shape of the urve and its minimal point does not hange14



if we use ∑ ‖F (i) − Û(i)‖F instead. The atual minima w.r.t. the Frobe-nius norm are given by α = 0.8 and min = 0.2665 for (9) and α = 0.8 and
min = 0.2276 for (23). The denoised signals orresponding to the smallesterror in the Frobenius�norm are depited in the middle of the �gure. It ap-pears that the new method performs slightly better w.r.t. these error norms.The visual results on�rm this impression. The larger ellipses obtained bythe �rst method (9) slightly overlap while there are gaps between the smallerones. We do not have this e�et for the minimizer of (23) at the left�handside.Now we turn to 2D matrix�valued funtions. We ompare the minimizerof the Derihe-Tshumperlé funtional (9) with those of our new funtionals(27) and (29) For the �rst two funtionals we applied SOCP while the thirdone was omputed via the reation�di�usion equation with time step size τ =
0.00025. The iterations were stopped when the relative error in the ℓ2-normbetween two onseutive iterations beame smaller than 10−8 (approximately20000 iterations) although the result remains visually stati muh earlier.In Fig. 3 we added white Gaussian noise with standard deviation 0.1 toall omponents of the original data. The bottom of the �gure ontains againthe error plots. The atual minima w.r.t. the Frobenius norm are given by
α = 0.28 and min = 0.7128 for (9), α = 0.18 and min = 0.6489 for (27)and α = 0.18 and min = 0.7426 for (29). Regarding these errors, method(27) performs best, however visually it is hard to distinguish between themethods.Our third example in Fig. 4 is similar to the seond one exept that wehave to apply another visualization tehnique based on OpenGL for the largermatrix-�eld. To all omponents of the original data in [0,2℄ we added whiteGaussian noise with standard deviation 0.6. We use the same parametersas in Fig. 3. The bottom of the �gure ontains the error plots for thethree methods. The atual minima w.r.t. the Frobenius norm are given by
α = 1.75 and min = 12.19 for (9), α = 1.15 and min = 11.6 for (27) and
α = 1.2 and min = 10.79 for (29). With respet to the omputed errorsthe new methods outperform the one based on the Derihe-Tshumperléfuntional, where the third method performs best.Finally, we remark that we have restrited our attention to small arti�ialexamples to see some di�erenes between the various methods. In general itis no problem to use SOCP for matrix�valued images of size e.g. 128 × 128.Referenes[1℄ A. Barvinok. A Course in Convexity, Graduate Studies in Mathematis.AMS, Providene, RI, 2002.
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Figure 2: Denoising of a matrix�valued signal. Top: Original signal (left),noisy signal (right). Middle: Denoised image for α orresponding to thesmallest error in the Frobenius norm for (9) and (23) (left to right). Bottom:
l2�error and error of the Frobenius norm in dependene on the regularizationparameter α for the minimizers of (9) and (23) (left to right).16
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Figure 3: Denoising of a matrix�valued image. Top: Original signal (left),noisy signal (right). Middle: Denoised image for α orresponding to thesmallest error in the Frobenius norm for (9), (27) and (29) (left to right).Bottom: l2�error and error of the Frobenius norm in dependene on theregularization parameter α for the minimizers of (9), (27) and (29) (left toright).
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Figure 4: Denoising of a matrix�valued image. Top: Original signal (left),noisy signal (right). Middle: Denoised image for α orresponding to thesmallest error in the Frobenius norm for (9), (27) and (29) (left to right).Bottom: l2�error and error of the Frobenius norm in dependene on theregularization parameter α for the minimizer of (9), (27) and (29) (left toright).
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