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Abstract. We study the restoration of a sparse signal or an image with a
sparse gradient from a relatively small number of linear measurements which
are additionally corrupted by a small amount of white Gaussian noise and
outliers. We minimize ℓ1 − ℓ1 and ℓ1 − TV regularization functionals using

various algorithms and present numerical results for different measurement
matrices as well as different sparsity levels of the initial signal/image and of
the outlier vector.

1. Introduction

Recently, substantial progress was made in solving the fundamental problem of
recovering a finite signal from a limited set of measurements [17, 8, 12, 29, 30, 19, 20].
Let A ∈ Cn,N , n ≤ N be a matrix with some ’good’ properties. Typical examples of
such matrices are random matrices from the Gaussian ensemble or the symmetric
Bernoulli ensemble or matrices whose rows are n random vectors from the unit
sphere in R

N . Let x0 be a sparse vector. Usually, we measure sparsity in the
ℓ0–seminorm ‖x‖0 := |{j : xj 6= 0}|. Moreover, for 1 ≤ p < ∞, we will use the

ℓp–norms ‖x‖p := (
∑N−1

j=0 |xj |p)1/p. In this paper, we are interested in recovering
x0 from measurements

b := Ax0 + z0 + e0,

where z0 denotes a vector with small ℓ2–norm ‖z0‖2 ≤ ε, e.g., white Gaussian noise
and e0 is a sparse vector with large non-zero coefficients (outliers), e.g., due to
missing data in the measurements. Gross sparse error vectors combined with errors
with small ℓ2–norm were recently considered in a setting different from the one
considered in this paper in [6].

If we have no noise, i.e., z0 = e0 = 0, and n is sufficiently large, then, with high
probability, the linear problem

(P1) arg min
x

‖x‖1 s.t. Ax = b,

has a unique solution which is equal to x0, cf. [9]. If we have Gaussian noise but
no outliers, i.e., e0 = 0, and n is sufficiently large, then with high probability, the
solution of the quadratic problem

(Pε
2,1) arg min

x
‖x‖1 s.t. ‖b − Ax‖2 ≤ ε
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or equivalently (for appropriate ε, λ) of

(P2,1) arg min
x

1

2
‖b − Ax‖2

2 + λ‖x‖1

is unique and provides a good approximation to x0, cf. [10, 7].
As an alternative to solving (P2,1) one may use the Dantzig selector, cf. [11] or

apply (orthogonal) matching pursuit instead of solving (P1) , cf. [29, 23].

In the presence of outliers, method (P2,1) fails to work. However, in various
papers, e.g., on image restoration [18, 3] the minimization of functionals with ℓ1

data-fitting term has shown a good performance. A great amount of theoretical
work in this direction was done by M. Nikolova in [24, 25, 26]. In this paper, we
want to adopt these ideas to the incomplete measurement problem.

More precisely, in the case z0 = 0, we examine the performance of

(P̃1,1) arg min
x,e

‖e‖1 + λ‖x‖1 s.t. Ax + e = b

or equivalently of

(P1,1) arg min
x

‖b − Ax‖1 + λ‖x‖1.

If we have in addition Gaussian noise with ‖z0‖ ≤ ε it makes sense to solve

(Pε
2,1,1) arg min

x
‖e‖1 + λ‖x‖1 s.t. ‖b − Ax − e‖2 ≤ ε

or equivalently (for appropriate ε, α)

(P2,1,1) argmin
x,e

1

2α
‖b − Ax − e‖2

2 + ‖e‖1 + λ‖x‖1.

It can be proved that problems (P2,1,1) and (P1,1) become equivalent if α, respec-
tively ε tends to zero, cf. [1].

Finally, in order to recover images x0 with sparse gradients we replace the ℓ1-
norm of x by a (discrete) total variation norm ‖ · ‖TV and consider

(P1,TV) argmin
x

‖b − Ax‖1 + λ‖x‖TV

and

(P2,1,TV) argmin
x,e

1

2α
‖b − Ax − e‖2

2 + ‖e‖1 + λ‖x‖TV.

Alternatively, it is possible to replace the TV–norm by the Besov norm in B1
1,1 and

use more general wavelet frames.
Problems (P2,1,1), (P1,1) are convex with coercive functionals such that there

exists a solution which however is in general not unique.

The outline of this paper is as follows: In order to get an idea of the number
of outliers that can be handled, Section 2 starts by proving an ℓ0 minimization
result. In Section 3 we present the numerical algorithms for solving (P1,1), (P2,1,1)
and their TV counterparts (P1,TV) and (P2,1,TV). Numerical examples examining
the reconstruction capability of our algorithms w.r.t. the sparsity of x0 and e0 are
presented in Section 4. In partucular, we numerically evaluate the probability that
the solution of (P1,1) coincides with the original x0 in dependence on the sparsity
‖x0‖0 and ‖e0‖0.
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2. ℓ0 Minimization

The starting point for examining the recovering of signals from incomplete data
was the question if it is possible to reconstruct a sparse vector x0 from its incomplete
measurements b := Ax0 by solving

(P0) ‖x‖0 → min s.t. Ax = b.

One result can be formulated in terms of the smallest number of linearly dependent
columns of A, denoted by spark(A), cf. [16].

Proposition 2.1. If spark(A) > 2m, then, for every x0 ∈ CN with ‖x0‖0 ≤ m and
given b := Ax0, the solution of (P0) is unique and coincides with x0. Conversely, if
spark(A) ≤ 2m, then there exist distinct vectors x0 and x1 with ‖x0‖0, ‖x1‖0 ≤ m
such that Ax0 = Ax1.

In particular, if every set of n columns of A is linearly independent, i.e., spark(A) =
n + 1, then perfect reconstruction is guaranteed for every x0 ∈ CN with ‖x0‖0 ≤ m
if and only if n ≥ 2m.

To get a clue about the influence of the outliers, let us first assume that the posi-
tions Ω ⊂ {1, . . . , n} of the K outliers are known. By Ω̄ we denote the complement
of Ω in {1, . . . , n}. Since the outliers carry no information about x0 the best we can
do is to solve

arg min
x

‖x‖0 s.t. A|Ω̄x = b|Ω̄,

where b|Ω̄ denotes the restriction of b to those components with indices in Ω̄ and
A|Ω̄ ∈ C

n−K,N contains the rows of A with indices in Ω̄. By Proposition 2.1 this
problem has the unique solution x0 if 2m < spark(A|Ω̄). Thus, if every set of
n−K columns of A|Ω̄ is linearly independent, perfect reconstruction is guaranteed
if n − K ≥ 2m, i.e., n ≥ 2m + K.

In general, we have no oracle that gives us the position of the outliers. Thus,
given b := Ax0 + e0, we are looking for conditions such that

(P̃0,0) arg min
x,e

‖e‖0 + λ‖x‖0 s.t. Ax + e = b

has the unique solution x0. At least for matrices having only invertible quadratic
submatrices a sufficient condition will be proved in the next proposition. Examples
of such matrices are the N–th Fourier matrix FN := (e2πijk/N )N−1

j,k=0 of prime size

N = p, cf. [28] and the Toeplitz matrix with entries from the Gaussian radial basis

function (e−σ(j−k)2 )N−1
j,k=0, cf. [22].

Proposition 2.2. Let x0 ∈ C
N with ‖x0‖0 = m and e0 ∈ C

n with ‖e0‖0 = K
be given. Suppose that A ∈ Cn,N , n ≤ N has only invertible submatrices. Let
b := Ax0 +e0. If n ≥ 2K +(λ+1)m, then, for λ ≥ 1, problem (P̃0,0) has the unique
solution x̂ = x0.

Proof. By assumption we have that ‖e0‖0 + λ‖x0‖0 = K + λm. Assume that

there exists a solution (x̂, ê) 6= (x0, e0) of (P̃0,0). Then this solution must fulfill
Ax̂ + ê = Ax0 + e0 = b and ‖ê‖0 + λ‖x̂‖0 ≤ K + λm. Let ‖x̂‖0 = s so that
‖ê‖0 ≤ K +λm−λs. Then we have for T = supp(x̂−x0) and Ω = supp(ê−e0) that
|T | ≤ m+ s and |Ω| ≤ 2K +λm−λs. Moreover, since A(x̂−x0) = e0− ê we obtain
that A|Ω̄,T (x̂−x0) = 0, where A|Ω̄,T denotes the restriction of A to the rows having

indices in Ω̄ and to the columns with indices in T . Since n ≥ 2K+(λ+1)m and λ ≥ 1
we have that n ≥ 2K +(λ+1)m+(1−λ)s and consequently n− (2K +λm−λs) ≥
Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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m + s. Thus, |Ω̄| ≥ n − (2K + λm − λs) ≥ m + s ≥ |T | so that A|Ω̄,T is injective.
Hence x̂ − x0 = 0 and the assertion is proved. �

3. Numerical Algorithms

Since the practical solution of (P0) is too expansive (exponentially increasing
in the problem size N) the ℓ0–minimization was only discussed theoretically, while
for practical computations the ℓ0–seminorm was replaced by the ℓ1–norm. Be-
fore providing the numerical algorithms for solving the corresponding minimization
problems we prove the following simple, but interesting proposition which can be
summarized as follows: The fact that x0 is a solution of (P1,1) does not depend on
the magnitude of the outliers e0, see also [26].

Proposition 3.1. Let x0 be a solution of (P1,1), where b := Ax0 + e0. Then
we have for any x̃0 with sgn(x̃0) = sgn(x0) and any ẽ0 with sgn(ẽ0) = sgn(e0)
(componentwise) that x̃0 is a solution of (P1,1), where b := Ax̃0 + ẽ0.

Proof. Let x̂ = x0 + f̂ be the solution of (P1,1) with b = Ax0 + e0. Setting

x = x0 + f , we see that this is the case if and only if f̂ is a solution of

(1) arg min
f

‖e0 − Af‖1 + λ‖x0 + f‖1.

Since the functional is convex we know that f̂ is a solution of (1) if and only if the

zero vector is in the subdifferential of the functional at f̂ , i.e.,

0 ∈ AT
Af̂ − e0

|Af̂ − e0|
+ λ

x0 + f̂

|x0 + f̂ |
,

where the quotient is meant componentwise and as usual x/|x| := [−1, 1] if x = 0.

In particular, we have that x0 is a solution of (P1,1) if and only if f̂ = 0 is a solution
of (1) if and only if

0 ∈ AT
e0

|e0|
+ λ

x0

|x0|
.

However, the right–hand side does only depend on sgn(x0) and sgn(e0) but not on
their sizes. Hence we are done. �

Problem (P1,1). If the matrix A is real–valued, we can compute a minimizer of (P1,1)
by applying the algorithm proposed in [18]. To this end, we use the decomposition
xj+ := max{xj , 0}, xj− := −min{xj , 0}. Then, xj = xj+ − xj− and |xj | = xj+ +
xj−. Similarly, we decompose 1

λ(Ax− b) = y+−y− and set X := (xT

+, xT

−, yT

+, yT

−)T.
Hence, we can solve the following linear program using MATLAB resp. CPLEX
LINPROG

(2) arg min
x

1T

2N+2n X s.t.

{ [

1
λA, − 1

λA, −In, In

]

X = 1
λ b,

X ≥ 0,

where 1N denotes the vector consisting of N components 1.

In case of a complex–valued matrix A, we can compute the minimizer by second-
order cone programming (SOCP), cf. [21], [31]. It is easily seen that a solution to
(P1,1) can be found by solving

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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(3) argmin 1T

Nu + λ 1T

Nv s.t.















Ã

(

xreal

ximag

)

− b̃ =

(

sreal

simag

)

(uj, s
real
j , simag

j ) ∈ K3, ∀j = 1, . . . , N

(vj , x
real
j , ximag

j ) ∈ K3, ∀j = 1, . . . , N

where

Ã =

(

real(A) −imag(A)
imag(A) real(A)

)

, b̃ =

(

real(b)
imag(b)

)

.

The cone Kp is defined by

Kp = {(t0, . . . , tp−1) ∈ R
p : ‖(t1, . . . , tp−1)‖2 ≤ t0}.

We used MOSEK to solve this SOCP.
Problem (P2,1,1). We solve (P2,1,1) with the following alternating minimization al-
gorithm suggested in [2] in the context of image decomposition. As initial value we
use e(0) := 0 but any other initialization is possible.

Algorithm 3.2. Initialization: e(0) ∈ Rn

For k = 0, . . . repeat until a stopping criterion is reached

1. For given e(k) and y := b − e(k) compute the solution x(k) of

(4) arg min
x

1

2α
‖y − Ax‖2

2 + λ‖x‖1.

2. For given x(k) and ỹ := b − Ax(k) compute the solution e(k+1) of

(5) arg min
e

1

2α
‖ỹ − e‖2

2 + ‖e‖1.

Let us have a look at the two subproblems. In the second step, the functional is
strictly convex and has a unique solution ê which can be obtained by soft shrinkage
of ỹ with threshold α cf. [3], i.e., ê = Sα(ỹ), where

Sα(x) :=







x − α for x > α,
x + α for x < −α,

0 for x ∈ [−α, α].

In the first step, there exists a minimizer due to convexity and coercivity of the
functional but uniqueness is not guaranteed. Since the computation of the minimizer
requires similar consideration as the approach to (P2,1,TV) in the next paragraph,
we consider more generally

(6) arg min
x

1

2
‖y − Ax‖2

2 + β‖ |Lx| ‖1,

where L ∈ RpN,N and |X | :=
(

(
∑p−1

k=0 X2
j+kp)1/2

)N−1

j=0
. The functional J (x) :=

‖ |Lx| ‖1 is convex and one-homogeneous such that its dual J ∗ is the indicator
function of the set

C := {x ∈ R(LT) : 〈x, y〉 ≤ J (y) ∀y}
= {x ∈ R(LT) : min

x=LTX
‖ |X | ‖∞ ≤ 1},(7)

see [13],[27]. Then the following proposition holds true, cf. [4].

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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Proposition 3.3. Let µ > 0 be chosen such that µ‖A∗A‖2 < 1. Then any solution
of the fixed point equation

(8) x = (I − ΠµβC)(x + µA∗(y − Ax))

is a solution of (6). Assuming the existence of a solution of (6), the sequence

(9) x(k+1) = (I − ΠµβC)(x(k) + µA∗(y − Ax(k)))

converges for any initial vector x(0) to a fixed point of (8).

For our problem (P2,1,1) we have that β = αλ, L = I and p = 1. Consequently,
C = {x ∈ RN : ‖x‖∞ ≤ 1} and

ΠµβC(y) = arg min
u

‖y − u‖2
2 s.t. ‖u‖∞ ≤ βµ.

This can be solved componentwise, i.e., for j = 0, . . . , N − 1 we have to compute

(10) argmin
uj

|yj − uj|2 s.t. |uj| ≤ βµ.

Obviously, the solution of (10) is given by βµ if yj ≥ βµ, by −βµ if yj ≤ −βµ and
by yj otherwise. Hence, I −ΠµβC is the soft shrinkage operator with threshold βµ.
In summary, we realize step 1 of Algorithm 3.2 by

(11) x(k+1) = Sβµ

(

x(k) + µA∗(y − Ax(k))
)

.

For other approaches to obtain (11), e.g., via surrogate techniques, see [15, 5].
Concerning the convergence of the alternating minimization algorithm we have the
following proposition.

Proposition 3.4. Let F (x, e) := 1
2α‖b − Ax − e‖2

2 + ‖e‖1 + λ‖x‖1. Then, for

every sequence (x(k), e(k))k obtained by the alternating minimization Algorithm 3.2
it holds that

(12) lim
k→∞

F (x(k), e(k)) = γ,

where γ := min
x,e

F (x, e).

The proof applies the ideas of [1, 2] to our setting in a straightforward way and
is left to the reader.
Problems (P1,TV) and (P2,1,TV). Finally, we deal with images X ∈ RÑ,Ñ having a
sparse gradient rather than being sparse themself. A typical example of such an
image is the Shepp–Logan phantom in Fig. 2. We reshape these images columnwise
into a vector x of length N = Ñ2. For defining a discrete version of the TV–norm
we introduce the directional forward difference matrix

D :=

„

IÑ ⊗ D

D ⊗ IÑ

«

∈ R
2N,N

with D :=

0

B

B

B

B

B

B

B

@

−1 1 0 . . . 0 0 0

0 −1 1 . . . 0 0 0

. . .
. . .

. . .

0 0 0 . . . −1 1 0

0 0 0 . . . 0 −1 1

0 0 0 . . . 0 0 0

1

C

C

C

C

C

C

C

A

and set
‖x‖TV := ‖ |Dx| ‖1.

Problem (P2,1,TV) can be solved by an alternating minimization algorithm similar
to Algorithm 3.2. We only have to replace ‖x‖1 in (4) by ‖x‖TV. Then L = D and
p = 2 in (6). Of course this results in another indicator set C and consequently in

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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another projection operator ΠµβC . The resulting projections can be computed, e.g.,
by using Chambolle’s algorithm [13], see also [27].

For solving problem (P1,TV) one can try to follow the lines of [14] or [26]. Both
algorithms introduce an additional parameter ε in the data-fitting and/or the reg-
ularization term to cope with the singularity of the absolute value function at zero
and converge rather slowly in general. Another possibility to solve (P1,TV) is SOCP.
This was recently proposed for several image processing problems, e.g. in [31] and
[21]. To this end, we rewrite (P1,TV) as follows:

(13)

arg min 1T

Nu + λ 1T

Nv
s.t. Ax − b = s

(

dx

dy

)

= Dx

(uj , sj) ∈ K2

(tj , (dx)j , (dy)j) ∈ K3

We restrict our attention to real matrices A. However, the corresponding problem
for complex matrices can also be solved by SOCP since we can separate the real
and complex parts of A and b. This results in cones of ’dimension’ 3 and 5.

4. Numerical Examples

In our numerical examples we consider two types of matrices: First, real ma-
trices A ∈ Rn,N which are constructed by randomly selecting n columns from the
orthogonal discrete cosine transform matrix of typ II:

CN :=

(

2

N

)1/2 (

εj cos
j(2k + 1)π

2N

)N−1

j,k=0

,

where ε0 = 1/
√

2 and εj = 1 for j 6= 0. We mention that we have obtained similar
results for the solution of (P1,1) and (P2,1,1) with matrices having Gaussian random
numbers with mean zero and variance 1/n as entries. In our tests we choose N = 64.
The second class of matrices we considered consists of randomly chosen columns of
the discrete Fourier transform matrix of length N

FN :=
1√
N

(

e−
2πijk

N

)N−1

j,k=0
.

We are interested in the probability that the solution x̂ of (P1,1) coincides with x0

for various values of m = ‖x0‖0 and K = ‖e0‖0. We say that we have recovered
x0 exactly if ‖x̂ − x0‖∞ < 10−4. Note that we obtained similar results for the
thresholds 10−6 and 10−8. The values for the m non-zero components of x0 were
drawn from a uniform distribution on [−1,−0.1] ∪ [0.1, 1]. The K outliers were
randomly chosen from the set {emin = min(Ax0), emax = max(Ax0)} in case of the
cosine matrix. For complex matrices A we use the two values

emin = min(real(Ax0)) + i min(imag(Ax0)),

emax = max(real(Ax0)) + i max(imag(Ax0)).

The parameter λ was set to 1. The experiment was repeated 5000 times for every
m, K.

In our first example we considered the matrices A = CN and A = FN for N =
n = 64 as well as matrices which were constructed by randomly choosing n = 40

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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rows of the above two matrices. Fig. 1 shows the probability that the solution x̂ of
(P1,1) coincides with x0 in dependence of m and K for these four matrices.
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Figure 1. Probability that the solution x̂ of (P1,1) coincides with
x0 in dependence on m and K for different matrices A. Top left:
A = CN , i.e. the full DCT-II matrix (n = N = 64). Top right: A
was constructed by randomly selecting n = 40 rows of CN . Bottom
left: A = FN for n = N = 64. Bottom right: n = 40 rows randomly
chosen rows of FN .
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Finally, we are interested in images having a sparse gradient. We use the Shepp-
Logan phantom image (N = 64). The measurement operator A is constructed as
follows. First, we construct two matrices A1, A2 ∈ Rn,N by randomly selecting
n = 40 rows of the matrix CN , then we set A = A1 ⊗ A2.

As before, we corrupt the measured data by K = 16 min-max outliers. Further-
more, we add a small amount of Gaussian noise. Solving (P2,1,TV) and (P1,TV)
yields the results shown in Fig. 3 and Fig. 4. The solution to problem (P2,1,TV)
was computed by applying Algorithm 3.2 to the two-dimensional case (parameters:
µ = 0.9, λ = 0.003, α = 0.04 for Gaussian noise with standard deviation 0.001
and α = 0.03 for Gaussian noise with standard deviation 0.01, respectively). The
algorithm was stopped when the relative distance between two consecutive images
produced by the algorithm, measured in the Frobenius norm, was smaller than 10−8.
A solution to problem (P1,TV) was found by solving the SOCP (13) with MOSEK
(parameters: λ = 5 for Gaussian noise with standard deviation 0.001 and λ = 6 for
Gaussian noise with standard deviation 0.01, respectively). Fig. 3 and Fig. 4 show
that the proposed methods perform remarkably well.

 

 

10 20 30 40 50 60

10

20

30

40

50

60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2. The Shepp-Logan phantom test image.
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