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Abstract

We examine relations between popular variational methods in image processing and
classical operator splitting methods in convex analysis. We focus on a gradient descent
reprojection algorithm for image denoising and the recently proposed Split Bregman and
alternating Split Bregman methods. By identifying the latter with the so-called Douglas-
Rachford splitting algorithm we can guarantee its convergence. We show that for a special
setting based on Parseval frames the gradient descent reprojection and the alternating
Split Bregman algorithm are equivalent and turn out to be a frame shrinkage method.

1 Introduction

In recent years variational models were successfully applied in image restoration. These
methods came along with various computational algorithms. Interestingly, the roots of many
restoration algorithms can be found in classical algorithms from convex analysis dating back
more than 40 years. It is useful from different points of view to discover these relations:
Classical convergence results carry over to the restoration algorithms at hand and ensure their
convergence. On the other hand, earlier mathematical results have found new applications
and should be acknowledged.

The present paper fits into this context. Our aim is twofold: First, we show that the
Alternating Split Bregman Algorithm proposed by Goldstein and Osher for image restoration
and compressed sensing can be interpreted as a Douglas-Rachford Splitting Algorithm. In
particular, this clarifies the convergence of the algorithm. Second, we consider the following
denoising problem which uses an L2 data-fitting and a Besov-norm regularization term [10]

argmin
u∈B1

1,1(Ω)

{
1

2
‖u− f‖2

L2(Ω) + λ‖u‖B1
1,1(Ω)}. (1)

We show that for discrete versions of this problem involving Parseval frames the corresponding
alternating Split Bregman Algorithm can be seen as an application of a Forward-Backward

Splitting Algorithm. The latter is also related to the Gradient Descent Reprojection Algorithm,
see Chambolle [5]. Since our methods are based on soft (coupled) frame shrinkage, we also
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establish the relation to the classical wavelet shrinkage scheme. Finally, we consider the
Rudin-Osher-Fatemi model [23]

argmin
u∈BV (Ω)

1

2
‖u− f‖2

L2(Ω) + λ

∫

Ω
|∇u(x)| dx, (2)

which is a successful edge-preserving image restoration method. We apply our findings to
create an efficient frame-based minimization algorithm for the discrete version of this problem.

2 Operator Splitting Methods

Proximation and Soft Shrinkage. We start by considering the proximity operator

proxγΦ(f) := argmin
u∈H

{
1

2γ
‖u− f‖2 + Φ(u)} (3)

on a Hilbert space H. If Φ : H → R ∪ {+∞} is proper, convex and lower semi-continuous
(lsc), then for any f ∈ H, there exists a unique minimizer û := proxγΦ(f) of (3). By Fermat’s
rule, this minimizer is determined by the inclusion

0 ∈
1

γ
(û− f) + ∂Φ(û)

⇔ f ∈ û+ γ∂Φ(û) ⇔ û = (I + γ∂Φ)−1f,

where the set-valued function ∂Φ : H → 2H is the subdifferential of Φ. If Φ is proper, convex
and lsc, then ∂Φ is a maximal monotone operator. For a set-valued function F : H → 2H ,
the operator JF := (I + F )−1 is called the resolvent of F . If F is maximal monotone, then
JF is single-valued and firmly nonexpansive.
In this paper, we are mainly interested in the following two functions Φi, i = 1, 2, on H := R

M :

i) Φ1(u) := ‖Λu‖1 with Λ := diag(λj)
M
j=1, λj ≥ 0,

ii) Φ2(u) := ‖Λ̃ |u| ‖1 with Λ̃ := diag(λ̃j)
N
j=1, λ̃j ≥ 0 and |u| :=

(

‖uj‖2

)N

j=1

for uj := (uj+kN )p−1
k=0 and M = pN .

The corresponding Fenchel conjugate functions are given by

i) Φ∗
1(u) := ιC(u) with C := {u ∈ R

M : |uj | ≤ λj , j = 1, . . . ,M},

ii) Φ∗
2(u) := ιC̃(u) with C̃ := {u ∈ R

M : ‖uj‖2 ≤ λ̃j , j = 1, . . . ,N},

where ιC the indicator function of the set C (or C̃), i.e., ιC(u) := 0 for u ∈ C and ιC(u) := +∞
otherwise. A short calculation shows that for any f ∈ R

M we have

proxΦ1
(f) = TΛ(f), proxΦ2

(f) = T̃Λ̃(f),

where TΛ denotes the soft shrinkage function given componentwise by

Tλj
(fj) :=

{
0 if |fj | ≤ λj ,
fj − λj sgn(fj) if |fj | > λj ,

(4)
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and T̃Λ̃ denotes the coupled shrinkage function, compare [5, 21, 27],

T̃λ̃j
(fj) :=

{
0 if ‖fj‖2 ≤ λ̃j ,

fj − λ̃jfj/‖fj‖2 if ‖fj‖2 > λ̃j .

Similarly, we obtain

proxΦ∗

1
(f) = f − TΛ(f), proxΦ∗

2
(f) = f − T̃Λ̃(f). (5)

Operator Splittings. Now we consider more general minimization problems of the form

(P ) min
u∈H1

{
g(u) + Φ(Du)
︸ ︷︷ ︸

:=FP (u)

}
,

where D : H1 → H2 is a bounded linear operator and both functions g : H1 → R ∪ {+∞}
and Φ : H2 → R ∪ {+∞} are proper, convex and lsc. Furthermore, we assume that 0 ∈
int(D dom(g) − dom(Φ)). For g(u) := 1

2γ
‖u − f‖2 and D = I this is again our proximation

problem. The corresponding dual problem has the form

(D) − min
b∈H2

{
g∗(−D∗b) + Φ∗(b)
︸ ︷︷ ︸

:=FD(b)

}
.

We assume that solutions û and b̂ of the primal and dual problems, respectively, exist and
that the duality gap is zero. In other words, we suppose that there is a pair (û, d̂) which
satisfies the Karush-Kuhn-Tucker conditions 0 ∈ ∂g(û) +D∗b̂, 0 ∈ −Dû+ ∂Φ∗(b̂). Then û is
a solution of (P ) if and only if

0 ∈ ∂FP (û) = ∂g(û) + ∂(Φ ◦D)(û).

Similarly, a solution b̂ of the dual problem is characterized by

0 ∈ ∂FD(b̂) = ∂(g∗ ◦ (−D∗))(b̂) + ∂Φ∗(b̂).

In both primal and dual problem, one finally has to solve an inclusion of the form

0 ∈ A(p̂) +B(p̂). (6)

Various splitting techniques make use of this additive structure. In this paper, we restrict our
attention to the forward-backward splitting (FBS) and the Douglas-Rachford splitting (DRS).
The inclusion (6) can be rewritten as fixed point equation

p̂− ηB(p̂) ∈ p̂+ ηA(p̂) ⇔ p̂ ∈ JηA(I − ηB)p̂, η > 0 (7)

and the FBS algorithm is just the corresponding iteration. For the following convergence
result and generalizations of the algorithm we refer to [20, 25, 7, 8].

Theorem 2.1 (FBS) Let A : H → 2H be a maximal monotone and βB : H → H be firmly

nonexpansive for some β > 0. Furthermore, assume that a solution of (6) exists. Then, for

any p(0) and any η ∈ (0, 2β) the following FBS algorithm converges weakly to such a solution

of (6)
p(k+1) = JηA(I − ηB)p(k). (8)
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To introduce the DRS, we rewrite the right-hand side of (7) as

p̂+ ηBp̂ ∈ JηA(I − ηB)p̂+ ηBp̂ ⇔ p̂ ∈ JηB

(
JηA(I − ηB)p̂+ ηBp̂
︸ ︷︷ ︸

:=t̂

)

The DRS algorithm [12] is the corresponding iteration, where we use t(k) := p(k) + ηBp(k).
For the following convergence result, which in contrast to the FBS algorithm holds also for
set-valued operators B, see [20, 7].

Theorem 2.2 (DRS) Let A,B : H → 2H be maximal monotone operators and assume that

a solution of (6) exists. Then, for any initial elements t(0) and p(0) and any η > 0, the

following DRS algorithm converges weakly to an element t̂:

t(k+1) = JηA(2p(k) − t(k)) + t(k) − p(k),

p(k+1) = JηB(t(k+1)).

Furthermore, it holds that p̂ := JηB(t̂) satisfies 0 ∈ A(p̂) + B(p̂). If H is finite-dimensional,

then the sequence
(
p(k)
)

k∈N
converges to p̂.

3 Bregman Methods

For a function ϕ : H → R ∪ {+∞}, the Bregman distance D
(p)
ϕ is defined as

D(p)
ϕ (u, v) = ϕ(u) − ϕ(v) − 〈p, u− v〉,

with p ∈ ∂ϕ(v), cp. [2]. Given an arbitrary initial value u(0) and a parameter γ > 0, the
Bregman proximal point algorithm (BPP) applied to (P ) has the form [13, 19, 15]

u(k+1) = argmin
u∈H1

{
1

γ
D(p(k))

ϕ (u, u(k)) + FP (u)}, p(k+1) ∈ ∂ϕ(u(k+1)). (9)

For conditions on ϕ such that (u(k))k∈N converges to a minimizer of (P ), see [19] and the
references therein. For ϕ := 1

2‖ · ‖
2
2, we recover the classical proximal point algorithm (PP)

for (P ) which can be written as follows, compare [22],

u(k+1) = proxγFP
(u(k)) = argmin

u∈H1

{ 1

2γ
‖u− u(k)‖2

2 + FP (u)
}

= Jγ∂FP
(u(k)).

Under our assumptions on g,Φ andD, the weak convergence of the PP algorithm is guaranteed
for any initial point u(0), see [3]. In the same way, we can define the PP algorithm for (D)

b(k+1) = proxγ∂FD
(b(k)) = argmin

b∈H2

{ 1

2γ
‖b− b(k)‖2

2 + FD(b)
}

= Jγ∂FD
(b(k))

and the same convergence result holds true. It is well-known that the PP algorithm applied to
(D) is equivalent to the augmented Lagrangian method (AL) for the primal problem, see, e.g.,
[22, 15]. To define this algorithm we first transform (P ) into the constrained minimization
problem

min
u∈H1,d∈H2

E(u, d) s.t. Du = d, (10)
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where E(u, d) := g(u) + Φ(d). This formulation goes back to [26]. The corresponding AL
algorithm for (P ) is then defined as

(u(k+1), d(k+1)) = argmin
u∈H1,d∈H2

{
E(u, d) + 〈b(k),Du− d〉 +

1

2γ
‖Du− d‖2

2

}

b(k+1) = b(k) +
1

γ
(Du(k+1) − d(k+1)). (11)

Indeed, it has been shown that for the same initial value b(0) the sequence (b(k))k∈N coincides
with the one produced by the PP algorithm applied to (D), see [22]. Moreover, if (b(k))k∈N

converges strongly then every strong cluster point of (u(k))k∈N is a solution of (P ), cf. [18].
To solve the constrained optimization problem (10), Goldstein and Osher [17] proposed to
use the Bregman distance

D
(p(k))
E (u, d, u(k), d(k)) = E(u, d) − E(u(k), d(k)) − 〈p(k)

u , u− u(k)〉 − 〈p
(k)
d , d− d(k)〉

and the term 1
2γ
‖Du− d‖2

2 instead of FP in (9). This results in the algorithm

(u(k+1), d(k+1)) = argmin
u∈H1,d∈H2

{
D

(p(k))
E (u, d, u(k), d(k)) +

1

2γ
‖Du− d‖2

2

}
, (12)

p(k+1)
u = p(k)

u −
1

γ
D∗(Du(k+1) − d(k+1)), p

(k+1)
d = p

(k)
d +

1

γ
(Du(k+1) − d(k+1)),

where we have used that (12) implies

0 ∈ ∂E(u(k+1), d(k+1)) −
(
p(k)

u , p
(k)
d

)

+
(1

γ
D∗(Du(k+1) − d(k+1)),−

1

γ
(Du(k+1) − d(k+1))

)
,

= ∂E(u(k+1), d(k+1)) −
(
p(k+1)

u , p
(k+1)
d

)
,

so that
(
p
(k)
u , p

(k)
d

)
∈ ∂E(u(k), d(k)). Setting p

(k)
u = − 1

γ
D∗b(k) and p

(k)
d = 1

γ
b(k) for all k ≥ 0

and regarding that for a bounded linear operator D,

D
(p(k))
E (u, d, u(k), d(k)) +

1

2γ
‖Du− d‖2

2 = E(u, d) − E(u(k), d(k))

−
1

γ
〈b(k),Du−Du(k)〉 −

1

γ
〈b(k), d− d(k)〉 +

1

2γ
‖Du− d‖2

2,

Goldstein and Osher obtained the Split Bregman method [17]

(u(k+1), d(k+1)) = argmin
u∈H1,d∈H2

{
E(u, d) +

1

2γ
‖b(k) +Du− d‖2

2

}
,

b(k+1) = b(k) +Du(k+1) − d(k+1). (13)

As already discovered in [28], the Split Bregman algorithm (13) is just the AL algorithm
(11) with the only difference that in (13) the iterates b(k) are scaled by γ. Hence, we can
conclude that the sequence ( 1

γ
b(k))k∈N generated by the Split Bregman method (13) converges
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to solutions of the dual problem. The same holds true for the sequence (p
(k)
d )k∈N we get from

(12). To summarize:

PP for (D) = AL for (P ) = Split Bregman Alg.

Since the minimization problem in (13) is hard to solve, Goldstein and Osher [17] proposed
the following alternating Split Bregman algorithm without a convergence proof:

u(k+1) = argmin
u∈H1

{
g(u) +

1

2γ
‖b(k) +Du− d(k)‖2

2

}
, (14)

d(k+1) = argmin
d∈H2

{
Φ(d) +

1

2γ
‖b(k) +Du(k+1) − d‖2

2

}
, (15)

b(k+1) = b(k) +Du(k+1) − d(k+1). (16)

The next theorem identifies this alternating Split Bregman method as a special case of a DRS.

DRS for (D) = Alternating Split Bregman Alg.

If H1 and H2 are finite-dimensional it therefore provides us with a convergence result for the
sequence (b(k))k∈N of this algorithm.

Theorem 3.1 The alternating Split Bregman algorithm coincides with the DRS algorithm

applied to (D) with A := ∂(g∗ ◦ (−D∗)) and B := ∂Φ∗, where η = 1/γ and

t(k) = η(b(k) + d(k)), p(k) = ηb(k), k ≥ 0. (17)

Proof: 1. First, we show that for a proper, convex, lsc function h : H1 → R ∪ {+∞} and a
bounded linear operator K : H1 → H2 the following relation holds true:

p̂ = argmin
p∈H1

{η

2
‖Kp− q‖2 + h(p)

}

⇒ η(Kp̂ − q) = Jη ∂(h∗◦(−K∗))(−ηq). (18)

The first equality is equivalent to

0 ∈ ηK∗(Kp̂− q) + ∂h(p̂) ⇔ p̂ ∈ ∂h∗
(
− ηK∗(Kp̂− q)

)
.

Applying −ηK on both sides and adding −ηq implies

−ηKp̂ ∈ −ηK∂h∗
(
− ηK∗(Kp̂− q)

)
= η ∂

(
h∗ ◦ (−K∗)

)(
η(Kp̂− q)

)

−ηq ∈
(
I + η ∂(h∗ ◦ (−K∗))

)(
η(Kp̂− q)

)

which is by the definition of the resolvent equivalent to the right equality in (18).
2. Applying (18) to (14) with h := g, K := D and q := d(k) − b(k) we get

η(b(k) +Du(k+1) − d(k)) = JηA(η(b(k) − d(k))).

Assume that the alternating Split Bregman iterates and the DRS iterates coincide with the
identification (17) up to some k ∈ N. Using this induction hypothesis it follows that

η(b(k) +Du(k+1)) = JηA(η(b(k) − d(k))
︸ ︷︷ ︸

2p(k)−t(k)

) + ηd(k)

︸ ︷︷ ︸

t(k)−p(k)

= t(k+1). (19)
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By definition of b(k+1) in (16) we see that η(b(k+1) + d(k+1)) = t(k+1). Next we apply (18) to
(15) with h := Φ, K := I and q := b(k) +Du(k+1) which gives together with (19),

η(b(k) +Du(k+1) − d(k+1)) = JηB(η(b(k) +Du(k+1))
︸ ︷︷ ︸

t(k+1)

) = p(k+1).

Again by the formula (16) for b(k+1) we obtain ηb(k+1) = p(k+1) which completes the proof.

A similar result was shown in [14, 16].

4 Application to Image Denoising

In the following, we restrict our attention to a discrete setting. We consider digital images
defined on {1, . . . , n} × {1, . . . , n} and reshape them columnwise into vectors f ∈ R

N with
N = n2. If not stated otherwise the multiplication of vectors, their square root etc. are meant
componentwise.

We will now apply the algorithms defined in Sections 2 and 3 to the discrete denoising
problem of the form

argmin
u∈RN

{1

2
‖u− f‖2

2 + Φ(Du)
}
, D ∈ R

M,N , M ≥ N, (20)

where Φ is defined as in Section 2. Consider the alternating Split Bregman algorithm (14)-
(16) with g(u) := 1

2‖u− f‖2
2. Theorem 3.1 implies the convergence of

(
b(k)
)

k∈N
and it is not

hard to show that for this special choice of g, the sequence
(
u(k)

)

k∈N
converges to a solution

of the primal problem. The quadratic functional in (14) with the above choice of g can simply
be minimized by setting its gradient to zero which results in

u(k+1) = (γI +DTD)−1
(
γf +DT(d(k) − b(k))

)
.

Goldstein and Osher proposed to calculate the inverse (γI+DTD)−1 by Gauß-Seidel iterations.
Applying (4) we see that for Φ = Φ1 the solution of the proximation problem in (15) is given
by

d(k+1) = TγΛ(b(k) +Du(k+1)).

The following algorithm shows the case Φ = Φ1. Observe that in order to better compare
this method to the other algorithms in this section, we have changed the order in which we
compute u(k+1). This is allowed because there are no restrictions on the choice of the starting
values.

Algorithm (Alternating Split Bregman Shrinkage)
Initialization: u(0) := f , b(0) := 0.
For k = 0, 1, . . . repeat until a stopping criterion is reached

d(k+1) := TγΛ(b(k) +Du(k)),

b(k+1) := b(k) +Du(k) − d(k+1),

u(k+1) := (γI +DTD)−1
(
γf +DT(d(k+1) − b(k+1))

)
.
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For Φ = Φ2 we have to replace the soft shrinkage TγΛ by the coupled shrinkage T̃γΛ̃. Note
that this algorithm can also be used for the deblurring problem which differs from (20) in
having a more general data-fitting term g(u) := 1

2‖Ku− f‖2
2 with some linear operator K.

In this case one has to invert the matrix γKTK +DTD which can be diagonalized in many
applications by FFT or DCT techniques, e.g., if it is circulant.
The problem (20) can also be solved via its dual problem by û = f −DTb̂, where

b̂ = argmin
b∈RM

{
1

2
‖f −DTb‖2

2 + Φ∗
i (b)}, i = 1, 2 (21)

see, e.g., [4]. Applying the FBS algorithm (8) to the dual problem (21) gives

b(k+1) = proxγΦ∗

i

(

b(k) + γD(f −DTb(k))
)

, i = 1, 2,

where 0 < γ < 2/‖DTD‖2. Using the relation (5) we obtain for Φ = Φ1

b(k+1) = b(k) + γD(f −DTb(k)) − TΛ

(
b(k) + γD(f −DTb(k))

)
.

This yields the following algorithm to compute the minimizer of (20) for Φ = Φ1:

Algorithm (FBS Shrinkage)
Initialization: u(0) := f , b(0) := 0
For k = 0, 1, . . . repeat until a stopping criterion is reached

d(k+1) := TΛ

(
b(k) + γDu(k)

)
,

b(k+1) := b(k) + γDu(k) − d(k+1),

u(k+1) := f −DTb(k+1).

For the functional Φ2 we have to replace the shrinkage functional by T̃Λ̃. This algorithm can
also be deduced as a simple gradient descent reprojection algorithm as it was done, e.g., by
Chambolle [5]. Note that this is not the often cited Chambolle algorithm in [4]. A relation of
this method to the Bermúdez-Moreno algorithm which also turns out to be an FBS algorithm
was shown in [1]. A connection to min-max duality was established in [29].

4.1 Besov-norm regularization

For a sufficiently smooth orthogonal wavelet basis {ψi}i∈I of L2(Ω) with wavelets of more
than one vanishing moment, problem (1) can be rewritten as

1

2
‖d− c‖2

ℓ2
+ λ‖d‖ℓ1 ,

where c := (〈f, ψi〉)i and d := (〈u, ψi〉)i. In the discrete setting, consider the orthogonal

matrix W ∈ R
N,N having as rows the filters of orthogonal wavelets (and scaling functions)

up to a certain level. Then the minimization problem corresponding to (1) is given by

û = argmin
u∈RN

{1

2
‖u− f‖2

2 + ‖ΛWu‖1

}

= argmin
u∈RN

{1

2
‖Wu−Wf‖2

2 + ‖ΛWu‖1

}
. (22)
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The orthogonality of W yields further û = W Td̂, where

d̂ = argmin
d∈RN

{1

2
‖d− c‖2

2 + ‖Λd‖1

}
, c := Wf, Λ := λIN (23)

and by (4) we obtain the known wavelet shrinkage procedure û = W TTΛ(Wf) consisting of a
wavelet transform W followed by soft shrinkage TΛ of the wavelet coefficients and the inverse
wavelet transform W T.

However, for image processing tasks like denoising or segmentation, ordinary orthogonal
wavelets are not suited due to their lack of translational invariance which leads to visible
artefacts. Nevertheless, without the usual subsampling, the method becomes translationally
invariant and the results can be improved. But then W ∈ R

M,N , M = pN , where p is
three times the decomposition level plus one for the rows belonging to the scaling function
filters on the coarsest scale. We still have W TW = IN , but of course WW T 6= IM , i.e., the
rows of W form a discrete Parseval frame on R

N but not a basis. For the design of such
frames see, e.g., [9, 11]. Equality (22) is still true for Parseval frames, but the problem is no
longer equivalent to (23). Instead we can apply FBS shrinkage or alternating Split Bregman
shrinkage with D = W and Φ = Φ1. Note that in order to use the FBS algorithm, γ has to
fulfill 0 < γ < 2/‖W TW‖2. Now W TW = IN , thus we have to choose γ in (0, 2) and γ = 1
is an admissible choice. It was shown in [24] that both algorithms coincide for D = W with
W TW = IN and γ = 1:

Alternating Split
Bregman Shrinkage

=
FBS

Shrinkage

Moreover, the third step of both algorithms can be simplified to the frame synthesis step

u(k+1) = W Td(k+1). (24)

4.2 ROF regularization

In this section, we apply the algorithms presented so far to the discrete ROF denoising method.
We use an appropriate discretization of the absolute value of the gradient. Let h0 := 1

2 [1 1] and
h1 := 1

2 [1 − 1] be the filters of the Haar wavelet. For convenience of notation, we use periodic
boundary conditions and the corresponding circulant matrices are denoted by H0 ∈ R

n,n and
H1 ∈ R

n,n. Then the following matrix fulfills W TW = IN but W TW 6= I4N

W :=






H0 ⊗H0

H0 ⊗H1

H1 ⊗H0

H1 ⊗H1




 =






H0

H1




 .

In [21, 27] it was shown that
((

(H0 ⊗H1)u
)2

+
(
(H1 ⊗H0)u

)2
+
(
(H1 ⊗H1)u

)2
) 1

2
is a con-

sistent finite difference discretization of |∇u|. Using this gradient discretization, the discrete
version of the ROF functional in (2) reads

argmin
u∈RN

{1

2
‖u− f‖2

2 + ‖Λ̃ |H1u| ‖1

}
, Λ̃ := λIN . (25)

9



Observe that if we use the alternating Split Bregman algorithm with D = H1 for this problem
we have to solve a linear system of equations in the third step of each iteration. This problem
can be avoided by using that H1 is part of a Parseval frame, cp. [24]. To this end we define
the proper, convex and lsc functional Φ̃2 which differs from Φ2 in that the first part of the
input vector is neglected, i.e.,

Φ̃2(c) = ‖Λ̃ |c1| ‖1, for c = (c0, c1) ∈ R
N × R

3N .

Now we can rewrite (25) as follows

argmin
u∈RN

{1

2
‖u− f‖2

2 + Φ̃2(Wu)
}
.

Applying the alternating Split Bregman algorithm, or equivalently the FBS method, with
γ = 1 and (24) we obtain the following algorithm.

Initialization: u(0) := f , b(0) := 0.
For k = 0, 1, . . . repeat until a stopping criterion is reached

d
(k+1)
0 := (Wu(k))0,

d
(k+1)
1 := T̃Λ̃

(
b(k) + (Wu(k))1

)
,

b(k+1) := b(k) + (Wu(k))1 − d
(k+1)
1 ,

u(k+1) := W T

(

d
(k+1)
0

d
(k+1)
1

)

, (26)

where (Wu)0 := H0u and (Wu)1 := H1u. Note that starting with b
(0)
0 := 0 all iterates b

(k)
0

remain zero vectors. We also obtain algorithm (26) if we apply FBS shrinkage directly to (25)
with D = H1 and γ = 1.

We now give a numerical example for these two algorithms. The computations were
performed in MATLAB. In Fig. 1 we see the result of applying the two algorithms to a
noisy image. Note that we only show the resulting image for algorithm (26) here, since the
difference to the alternating Split Bregman method with D = H1 is marginal. We also found
that the two algorithms need nearly the same number of iterations. However, algorithm (26)
is extremely fast and does not require solving a linear system of equations as the alternating
Split Bregman shrinkage does. Moreover, γ = 1 seems to be a very good parameter choice. For
the above numerical experiment we used periodic boundary conditions, concerning Neumann
boundary conditions, see, e.g., [6].
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