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Abstract

Methods for image restoration which respect edges and other im-
portant features are of fundamental importance in digital image pro-
cessing. In this paper, we present a novel technique for the restoration
of images containing rotated (linearly transformed) rectangular shapes
which avoids the round-off effects at vertices produced by known edge-
preserving denoising techniques. Following an idea of Berkels et al.
our approach is also based on two steps: the determination of the an-
gles related to the rotated shapes and a subsequent restoration step
which incorporates the knowledge of the angles. However, in contrast
to Berkels et al., we find the smoothed rotation angles of the shapes by
minimizing a simple quadratic functional without constraints which
involves only first order derivatives so that we finally have to solve
only a linear system of equations. Moreover, we propose to perform
the restoration step either by quadratic programming or by solving an
anisotropic diffusion equation. We focus on a discrete approach which
approximates derivatives by finite differences. Particular attention is
paid to the choice of the difference filters. We prove some relations con-
cerning the preservation of rectangular shapes for our discrete setting.
Finally, we present numerical examples for the denoising of artificial
images with rotated rectangles and parallelograms and for the denois-
ing of a real-world image.

1 Introduction

In image denoising one is typically interested in removing noise while preserv-
ing important structures such as edges. Since this goal cannot be achieved
with linear filters various nonlinear strategies have been proposed in recent
years, e.g., wavelet-based methods [8], stochastic methods [19], variational
methods like the Rudin-Osher-Fatemi model [11], PDE-based methods like
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the isotropic nonlinear diffusion of Perona and Malik [9] !, or Weickert’s
anisotropic edge enhancing diffusion [16]. In this paper, we focus on varia-
tional and PDE-based approaches. Most of these methods cause a significant
rounding artefact at corners formed by sharp edges. A typical example is
shown in Fig. 1.

Figure 1: Left: noisy image currupted by white Gaussian noise with standard
deviation 50. Middle: denoised image using edge enhancing diffusion, see
[16]. Right: denoised image using the method proposed in this paper.

One suitable approach to overcome this drawback was the anisotropic modifi-
cation of the Rudin-Osher-Fatemi model pointed out by Esedoglu and Osher
[6], see also [7, 5], and further developed by Berkels et al. [3]. Note that a
related approach was given from the PDE point of view by Weickert [15].
In [3], the authors deal with images f containing noisy rotated rectangular
shapes. They suggest to find the denoised version u of f by computing the
minimizer of the functional

Fu,a) := %/(f—u)2 dxdy+>\/\|R(oz)Vu||1 dxdy
Q

Q

1
+5 /mIVOéI2 + pp| Aol drdy
Q
with the rotation matrices
cos (a(x, sin (a(x,
R (alz,y)) ::< (a(z,y)) (af,y)) > (1)

—sin (a(x,y)) cos(a(z,y))

More precisely, they propose to find u by iterating the following alternating
procedure: for fixed u(z,y) compute the minimizer of

1
Fu(a) = / | B(e) Vs dedy + / JIVal? 1 olAa dedy,  (2)
Q Q

!Sometimes these processes are already denoted as anisotropic. In our nomenclature,
this notion is reserved for processes driven by matrix-valued diffusion tensors.



and for fixed a(z,y) find the minimizer of

2

B (u) = 1/(f — )2 dady + A/ 1R () V|, dxdy. (3)
Q Q

The main idea here is that when rotating the gradient the smallest L;-
norm is attained for the rotated gradient being parallel to one of the axes.
Consequently, the solution of Fj(a) assigns to each point a smoothed angle
a, representing the orientation of the gradients in the image. Using this
information in the second term of (3), we see that minimizing E, (u) leads to
good denoising results for objects which are aligned in the directions o and
a + 5. The functional F,(a) depends on o and also on the trigonometric
functions cos o and sin « of a. Moreover, we see that |R(«(z,y))Vu(z,y)|1
has the same value for a(z,y) + k%, k € Z so that E,(u) depends only on
a modulo 5. Corresponding restrictions on a while computing a minimum
of F, in (2) were not addressed in [3]. To cope with the significant loss of
contrast in this process, the authors propose to apply in addition Bregman
iterations, a kind of inverse scale space method.

The aim of this paper is to present a simple model for the restoration of
images containing rotated (linearly transformed) rectangles. The approach
is based on the idea of Berkels et al. in so far as we also iterate two steps:
an angle adaptation step and a restoration step which takes the former an-
gle computation into account. In the angle adaptation step we find the
smoothed rotation angles of the shapes contained in the image. To this end,
we minimize a simple quadratic functional without constraints so that we
finally have to solve only a linear system of equations. Attention is paid to
the fact that the angles are only needed modulo 7. For the restoration step
we propose two methods, namely either to minimize a discrete version of
(3) by quadratic programming or to solve an anisotropic diffusion equation
related to the Euler-Lagrange equation of (3) by finite difference methods.
In both steps, we focus on discrete techniques which approximate derivatives
by forward differences. Therefore, we have to pay attention to the careful
choice of the difference filters. Moreover, we consider some results of Ese-
doglu and Osher [6] from our discrete point of view. On the one hand, this
makes the approaches simpler and also manageable for other operators than
the gradient. On the other hand structures like Wulff shapes in R™ do not
carry over to Z™.

This paper is organized as follows: Section 2 describes our mathematical
model. In particular, we explain the angle adaptation in Subsection 2.1 and
the two restoration variants in the Subsections 2.2 and 2.3. In Section 3, we
prove some useful relations concerning the preservation of discrete rectangu-
lar shapes. Finally, in Section 4, we present various numerical examples for
the denoising of artificial images with rotated rectangles and parallelograms
as well as for the denoising of a real-world image. The paper concludes with



a summary and a sketch of ongoing and future work in Section 5.

2 Mathematical model

Our denoising algorithm is based on iterations of two steps, the angle adap-
tation step and the restoration step which we describe in the following sub-
sections. For the restoration step, we propose either to apply quadratic
programming methods or to solve an anisotropic diffusion equation.

In our discrete setting, we assume for convenience that f : {0,...,n — 1} x
{0,...,n — 1} — R is a quadratic image. Alternatively, we may reshape
f = (f(l‘,y))ﬁ,;l:o columnwise into a vector f : {0,...,N — 1} — R, where
N =n2.

2.1 Angle adaptation

Instead of the functional (2) one may try to compute the smoothed rotation
angles o by minimizing the simpler quadratic functional

/(au — a)? dedy + ,u/ \Val|? dzdy, (4)
Q Q
where ay,(z,y) is the angle of the gradient of u at (z,y). Note that

Va(z,y)* = |V cos(a(z, y))* + |V sin(a(z,y))|*. (5)

Unfortunately, the functional (4) does not take o modulo § into account
so that we have to look for corresponding modifications in the rest of this
subsection.

To find the desired rotation angles o« we first have to compute the rotation
angles a,, of the given image v € R™"™ and then to smooth them. We focus

on the discrete setting.

Computation of a,. We compute oy (z,y) as the angle of the discrete
gradient of uin (z,y), (z,y) € {0,...,n—1}x{0,...,n—1}. More precisely,
we compute this angle with respect to the smoothed image u, := K, xu
obtained by convolving u with the Gaussian K, of standard deviation o. As
discrete partial derivatives of u, we use

Uy, = Hiu, Hy, U,y :=Hyu, Hf (6)
with
1 1 -1 1
1 1 -1 1
Hy —% , Hyp:=
1 1 -1 1
2 0



In other words, u,, is computed by taking forward differences of u, in
vertical direction, the usual smoothing in horizontal direction, and assuming
Neumann boundary conditions. If we suppose pixel distances h,, hy, not
equal to 1, then H; must be multiplied by 1/h, and HT by 1/h, to obtain
consistent discretizations of the derivatives in x- and y-directions in (6).
Note that Hy, Hy are also the filter matrices related to the undecimated
Haar wavelet transform, cf. [8]. Alternatively, one can also apply symmetric
differences which leads to similar numerical results. In the vector reshaped
version, (6) reads

_( Da _( Ho® Hy
VUJ—<Dy>uU_<H1®HO>uO'7 (7)

where ® denotes the tensor product of matrices. For (x,y) € {0,...,n—1}x
{0, n=1}, let [Vug (z,)| = (ug o (,y) +ud , (2,9)) /2. I [Vuo (2, )| = 0
we set oy, (z,y) := 0, and otherwise

o (x y) — arccos % if u07y(x7y) > 07
ulTs 2T — arccos ‘%%((?Z))' if ugy(z,y) <O.

Next, we want to smooth ¢, in an appropriate way.

Smoothing of «,. Since we want to take only o modulo § into account,

it makes sense to use the §-periodic functions

cu(z,y) = cos(day(x,y)),  su(z,y) = sin(day(z,y))

in the smoothing process. Now we are looking for vectors (¢,, s,,)" such that

\Vu]<6“>%|Vu\<c“ )
Su Sv

We do not require that ¢2 + s2 = 1. Having (5) in mind, we solve

arg min Z [Vul? | (Z“) — (?’) ‘2 + u(|Veo|? + [ Vsol?).

Cv,Sv 5
(xvy)ezn

Let Iy denote the N x N identity matrix. Reshaping the matrices columnwise
and using G := diag(|Vu|) with the discrete partial derivative operators

D, .: In ® Hy (8)
Dy,) " Hi®Iy)’
this is equivalent to finding the minimizers of

D, D,
6w — el +al () ol and GG, — )1+l () sulf
Yy Yy

5



These minimizers are given by the solutions of

(G'"G+ (DD, + D, Dy))c, = G'Gey, (9)
(G"G+w(Dy Dy + DyDy)) sy = G'Gsy.

The matrix D; D, + D, D, is the discretization of the negative Laplacian
—A with centered differences and Neumann boundary conditions. It is a
diagonal dominant matrix in R™V? of the rank N — 1. The matrix G*G # 0
is a diagonal matrix with the nonnegative diagonal entries |Vu(x,y)|?. Then
G"G+p(Dy Dy + Dy Dy) is irreducible diagonal dominant and consequently
invertible. Moreover, it is easy to check that the maximum principle

is fulfilled (similarly for s,) by considering for example the Jacobi iteration
process to solve (9). Note that we have in general ¢ (x,y) + s2(z,y) # 1.

Once we have found ¢, and s, we compute the smoothed version « of a,, as
a(z,y) = 0if | (cp(x,y), sv(z,y)) | = 0 and

Cv(x7y) 1
alz,y) = & IS @ @ if su(@,y) 20,
’ 4 | 27 — arccos m if sy(x,y) <O0.

Now we turn to the restoration step.

2.2 Restoration by quadratic programming

We consider a discrete version of (3) which reads for columnwise reshaped
images as follows:

angan { 51—l + AlRG@) (7 ) ulh}. (10

where

R(a) = <
and D, and D, are chosen as in (7). It is well-known, cf. |4, 14| and Section
3, that the minimizer 4 of (10) is given by @ = f—A (D, Dy) R(a)" V, where
V is the solution of the dual problem

diag(cos ) diag(sin o)
—diag(sina) diag(cos )

|f =X (D3 Dy) R(a)” V|3 — min subject to [|[V]jeo < 1. (11)

This is a quadratic problem with linear constraints which can be solved by
corresponding optimization methods.



For heavy noise, our choice of D, and D, due to their kernels may lead to
checkerboard effects. These effects can be avoided by solving, for a small
constant v, the slightly modified problem

.1 D,
angann { 511£ — ul} + AlR(0) (7 )ul-+ vl @ Haalh |-
u Y

By [6, 3] and the following Section 3, the restoration via minimization of (10)
is useful for images containing rotated rectangles. Of course, the approach
can be simply modified for rectangles which are linearly transformed by a
constant transform matrix A € R%2:

argann { 51£ — ulf + AlR(@) (4w 1) (  Julaf. (2

In particular, we will consider images with rotated parallelograms which can

be obtained by applying a shear matrix A(s) = ( (1) i >

2.3 Restoration by anisotropic diffusion

Another way to perform the restoration step is based on the Euler Lagrange
equation of (3). For this, we replace ¢(z,y) := ||(z,y)|l1 = |z| + |y| in (3)
by the differentiable function ¢.(z,y) := Va2 + 2 + \/y2 + 2 with |¢| < 1
and obtain

2
Q Q

E,(u) == /(f — u)? dady + )\/goe (R(a)Vu) dxdy. (13)

The minimizer of Ea(u) has to fulfill the Euler-Lagrange equation given by

0=u—f—Adiv(Dy(Vu)Vu) (14)
with the diffusion tensor
Da(Vu) i= R(a)" < eV e vy ) R),  (15)

where ¥(x) := 1/vVa? 4+ €2 and e, := (cos a,sina)”. Then the minimizer of
(14) can be obtained by computing the steady state u(z,t) for ¢ — oo of the
reaction diffusion equation

Ou = f —u+ Adiv(Dy(Vu)Vu)

with initial condition u(-,0) = f and homogeneous Neumann boundary con-
ditions. On the other hand, the Euler-Lagrange equation can be rewritten
as
u—f
A

= div(Dy(Vu)Vu).



This can be interpreted as a fully implicit time discretization of the diffusion
equation

Oy = div(Dy (Vu)Vu) (16)

with initial image u(-,0) = f and homogeneous Neumann boundary condi-
tions. In our numerical examples, we will restrict our attention to a time
explicit scheme to solve (16). Of course, such a scheme, in contrast to an
implicit discretization of (16) with time step size A, will not lead to a min-
imizer of (13). For details see [13]. However, we propose this scheme as an
alternative denoising technique which leads to very good results which we

were not able to improve by adding e.g. the reaction term.
More precisely, in our experiments we will solve (16) by finite difference
methods with an explicit Euler discretization of the time derivative. Here
we have to be very careful with the discretization of the spatial derivatives
to obtain comparable results with those from quadratic programming. We
apply the first order difference filters proposed in [12, 17]:

These filters which result in 5 x 5 spatial masks in (16) are optimized (among
all 5 x 5 masks) with respect to rotation invariance and lead to sharp edges.
Again, if we suppose pixel distances hg,h, # 1, we have to multiply H,
by 1/h; to obtain a consistent discretization of the derivative in z-direction.
Moreover, to avoid possible checkerboard effects we use the following method
suggested in |12, Section 9.5|: the fully discrete scheme of (16) reads

" = (Iy + TM)u"

with discretization Mu of div(Dy(Vu)Vu) and time step size 7. This scheme
was modified in [12] to

"t = (IN—{—TM—FI/(f—IN)) u”

with a small weight parameter v and the usual Neumann boundary modifi-
cations. The low pass filter Iis represented by the 5-band Toeplitz matrix
with band 1—16(—1,4, 10,4, —1) and is a discretization of the identity filter
Iy of consistency order 4. The idea behind the additional term I— Iy is
to add a filter, which on the one hand does no harm to the consistency of
the scheme, but on the other hand eliminates the checkerboard effects. For
further explanation and numerical examples demonstrating the influence of
the additional term, see [12, Section 9.5].



As in the previous subsection, we can also handle linearly transformed rec-
tangles by solving (16) with the diffusion tensor

Da(Vu) AT R(a)T < ¢(<ea,64vu>) ¢(<ei-7(i4Vu>) >R(a) A.

3 Shape preservation

The functional (3) with constant rotation @ = 0 can be considered as a
special case of the more general functional

1
5/(f—u)2dx+)\/<,0(Vu)dx (17)
Q Q

with Q C R™ and with a finite gauge function ¢ : R™ — R, i.e., a positively
homogeneous, convex function which satisfies ¢(0) = 0 and ¢(x) > 0 for
x # 0. Since @ is positively homogeneous and convex, it follows that ¢ is
sublinear which means that it fulfills in addition p(x + y) < ¢(x) + ©(y).
Moreover, since ¢ is finite and positively homogeneous, its conjugate function
©* is the indicator function of a closed bounded convex set C, containing
the origin, called Wulff shape of o, which is given as follows:

Cop:={z € R": (z,y) <p(y) VyeR"}L

Since ¢ is lower semicontinuous (lsc), we have that ™ = ¢ so that ¢ is the
support function of Cy, i.e.,

¢(x) = sup (z,y). (18)
yeCy

The polar function ¢° of a gauge function ¢ is defined by

O() e sup VY
Pile) = w0 oY) 19)

and is a gauge function, too. Then C, can be also rewritten as
Co:={x e R™:¢p%x) <1}

For example, we have for ¢(z) = [|z|; that C, = {z € R™ : ||z][c < 1}
For m = 2, the set C,, represents the square centered at the origin with sides
of length 2 parallel to the z- and y-axis.

In [6], it was proven for the continuous setting that if f is the characteristic
function of the Wulff shape of ¢, i.e., f = 1¢, and A is small enough, then
the minimizer 4 of (17) preserves this form which means that 4 = c1¢, with
an appropriate constant ¢ > 0. Moreover, it was shown that the minimizer



of (17) with ¢(z) = ||z||1 also preserves rectangles with sides parallel to the

axes.
For a vector U := (Ui+kN)£i_olk’zo_l € R™Y  we set U; := (Ui+kN)Z:01 € R™.
We are interested in the discrete counterpart to (17) given by

1 N-1

Sl = ul® + M (e (L)) )iy [k (20)

with a finite lsc gauge function ¢ : R™ — R and a matrix L € R™V:V_ The
typical example for L € R?MY in the previous section was L = (D] Dy)T.
The penalizing term

J(w) = [l ((Lw):) ) 55
is also a finite Isc gauge function and is therefore the support function of
Cy:={veR": (ww) <Jw) YweR } (21)
It is well-known, cf. [10, 4], that the unique minimizer of (20) is given by
u=f— A0, (22)

where A0 is the orthogonal projection of f onto Cy;. Using that Ao € C)y;
if and only if © € C; we have that ¢ := arg min,ec, || f — Av||2. Concerning
orthogonal projection the following lemma will be useful, see [6] for the
continuous setting with L = V.

Lemma 3.1. Let J be the support function of the closed convex set Cj
defined by (21). Then we have that A0 is the orthogonal projection of f onto
Chy if and only if v € Cj and

(f = A0,0) = J(f — D). (23)

We add the brief proof for our discrete approach.

Proof: Let A0 be the orthogonal projection of f onto Cy;. Then we obtain
by the projection theorem that

(f =Ab,y = A0) <0 VyeCyy.
Together with (18) this implies that

M (f —Av) = sup (y, f — o) = (f — A0, A\D)
yeCis

and hence (23).

10



Assume conversely that © € C; fulfills (23). Then Ao € C)y; and we obtain
by the definition of C); that for all y € Cyy

(f —xo y> AJ(f = X0)

<

which yields by the projection theorem that Av is the orthogonal projection
of f onto C) ;. O

To determine ¥ we need a more manageable form of C; which is given in the
following lemma.

Lemma 3.2. The set C; defined by (21) coincides with

Cri={v="L"V: (¢ (Vi) g lloo < 1}. (24)
Note that the condition on V' is equivalent to V; € Cy, for alli =0,..., N —1.

Proof: 1. First we see that v € C; must fulfill v € R(L") since otherwise
we can use the orthogonal decomposition v = vg+wvy with vg € N(L), vg # 0
and v; € R(L") to obtain the contradiction

(v, 00) = (vo +v1,00) = ||wol3 < J(vo) = 0.
Thus,
N-1
Cy={v=L"V:(V,Lw) < |[(¢(Lw)) ), 1 YweRY}. (25)
2. Let v € Cy. By definition of ¢ in (19), we see that
(Vi, Wi) < ¢*(Vi)p(Wi)  ¥W; € R™

so that we get for W; = (Lw); by assumption

N-1 N-1
(V,Lw) = > (Vi, (Lw); Z " (Vi)e((Lw)i) < > o((Lw);
i=0 =0

By (25) this yields v € Cj. )
3. Conversely, let v = L™V € CJ We have to show that there exists a V'
such that v = L™V and | (¢°(V; ))fvolﬂoo <1

The functional Iy (Lw) := (V, Lw) is linear on R(L) C R™V and satisfies
Iy (Lw) < p(Lw) Yw € RY,

where p : R™Y — R is the sublinear function p(W) := [|(¢ (W, )) -0 Hl
By the Hahn-Banach theorem [y, can be extended to a linear functlonal

Ly(W) == (V,W) on R™ which fulfills

(V, W) <p(W) YW eR™, (26)

11



Now Ly (Lw) = ly(Lw) for all w € RY, ie., (L"V,w) = (L™V,w) for all
w € RY which implies that v = L"V = L"V.

Let ig € {0,...,N — 1} so that ¢°(V;,) = max{@°(V;) : i =0,...,N — 1}.

Then we have by (26) for all W with W; := 0 for ¢ # iy that

¥ f/l 7Wi
(po("/io) — Sllp < 0 _ 0> <
Wig20 P (Wip)

<‘~/7W> = <‘~/i07Wio> < @(Wio)’ VI/T/vio 6Rm?

and we are done by assumption on f/io. O

It is not clear to us how to define some kind of Wulff shapes on a discrete grid
for general . However, we may consider rectangles on Z? and ask if they
are preserved by the minimizer of (20) for p(z) = ||lz[|y and L = (D7 Dy)*.
Of course this depends on the concrete choice of the difference matrices D,
and D,,. In the following, we provide an example. Similarly as in [6], we use
that (22) and the Lemmas 3.1 and 3.2 imply that @ is the minimizer of (20)
if and only if the following relations are fulfilled:

i) 4= f— M\,
ii) o=L"V, Where‘A/iGCgoforallizo,...,N—l,

i) J(@) = (@,0).

Example 3.3. Let o(x,y) = |z| + |y| so that i) is equivalent to |V || < 1.
Let R :={xo+ 1, ;20 +a} x {yo+ 1,--- ,yo + b} with x9,y0 > 0 and
o+ a,yo+b < n—2andlet f = 1p be the image £ : {0,...,n — 1} %
{0,...,n—1} = R with f(x,y) =1 if (x,y) € R and f(z,y) = 0 otherwise.
Hy® Hy
Hy ® Hy
in (6) by ho(0,0) = h1(0,0) =0 and ho(n—1,n—1)=1, hi(n—1,n—1) =

—1, i.e., Hy is the forward difference matriz with zero boundary assumptions
1

and Hq is the corresponding smoothing matriz. Consider V= (“;2> defined

Furthermore, we use L := ), where we slightly modify the matrices

12



by

(_1)yo_y MRS Ilv Yy € le

1 x €11, y € Jo,

(—1)votb-y rel, yeJs,

(—1 Yo~y 1—@) x €l yeJi,

Vl($7y) - 1- Q(I;wo) T € 127 Yy e J27
(—ppotboy(q = 220y ey e s,

(—1)vo-vHt rel3 yeJ,

-1 x€l3, y€ Jo,

[ (—1)votbmutl x € I3, y € Js,

and

(_1):(:()—:(: HAS Ilv ) € J17

1 x €l yeJy,

(—1)rota=e rel3 ye i,

(—1)*0—=(1 — 2(y;y0)) zely, ye Jo,

Vz(xay) = 1-—- 2(y;y0) HAS 127 ) € J27
(—1)zota—z(q — 2w0)y pc oy e g,

(—1)mo—Hl rel, yeJs,

-1 x €l yeJs,

(—1)rotoretl z€ls, ye s,

where Il = {07 o 7$0}; I2 = {$0+17 o ,330+CL}, I3 = {$0+a+17 e, N
1},

and Jy 1= {pv T 7y0}; Jo 1= {y0+17 T 7y0+b}; J3 ::A {y0+b+17 T 7n_1}
Of course V' fulfills ii). Further we see that v = LTV = (% + %) 1gr. Then
we obtain for

2(a +0b)

a=f-xo=(1-20

AN 1g=clp (27)
that
J() = 2(a — 1)0—1—4% +2(b — 1)c+4§ = 2(a+b)c=(a,).

Thus, for A < 2(;’—_?_17), the function  in (27) is the minimizer of (20).

4 Numerical examples

Finally, we present numerical examples. All programs were written in MAT-
LAB. Further, we have used the a primal-dual predictor-corrector interior

13



point method implemented in the software package MOSEK [2] to solve the
quadratic problem with linear constraints (11). To visualize the images we
have used the MATLAB imagesc routine which incorporates an affine gray
value scaling to use the full gray value map. The parameters are chosen with
respect to the best visuable results.

The first two examples in Figs. 2 and 3 demonstrate the denoising of rotated
rectangles and parallelograms obtained by applying a shear matrix with s =
0.92. In both examples it suffices to perform only one angle adaptation
and restoration step. We show the results for the restoration by quadratic
programming and anisotropic diffusion. We observe a slight smoothing of the
edges in Fig. 3 in the second approach. This can be reduced by chosing a
smaller parameter v with the disadvantage that checkerboard effects become
visible. Since the images are depicted with the affine gray value scaling of the
MATLAB imagesc routine we remark that the computed minimal /maximal
gray values are given as follows:

Fig. 2 bottom left: —3.1-1077, 220.3,

Fig. 2 bottom right: 7, 223.2,

Fig. 3 bottom left: —0.5, 249.5,

Fig. 3 bottom right: —7.8, 252.4.

The original gray values ranged from 0 to 255.

The third example in Fig. 4 depicts the cartoon extraction from a real-world
image which was also presented in [3|. For comparison we found it useful to
take the same image as in [3]. We have iterated our two steps three times.
Finally, we added an image from [1]| which is often used as a challeng-
ing example for the comparison of denoising algorithms, see, e.g., [16, 18].
We present the results after 4 iterations with quadratic programming and
anisotropic diffusion. Moreover we show versions without and with rescal-
ing to get an impression of the loss of contrast. Here the minimal/maximal
gray values are 106.4, 163.6 for quadratic programming and 95.1, 173.3 for
anisotropic diffusion.

5 Summary and Conclusions

We have proposed a method for the restoration of rectangular shapes con-
taminated with heavy noise which avoids the round-off effects at vertices
produced by known edge-preserving denoising techniques. As in a paper of
Berkels et al. our procedure approximates the rotation angle of the shapes
in a first step and uses this information in a second step to denoise the im-
age without destroying vertices. Our angle adaptation uses only first order
derivatives of the linearly smoothed image and requires to solve of a linear
system of equations. For the second step, we have proposed two different
methods, namely quadratic programming and an anisotropic diffusion pro-
cess with the diffusion tensor adapted to the rotation angle.
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Figure 2: Top left: noisy image with standard deviation 150. Top right:
smoothed rotation angles used to denoise the image with parameters pu =
400000 and o = 2.5. Bottom left: denoised image by quadratic programming
with A = 800 and v = 0.1. Bottom right: denoised image by anisotropic
diffusion with €2 = 0.001, time step size 7 = 0.1, number of iterations

itmax = 8000 and v = 0.001.

So far, the algorithm works for rectangles and linearly transformed rect-
angles, where the linear transform has to be known in advance. We have
demonstrated this also numerically for sheared rectangles (parallelograms)
with fixed shear parameter. Our ongoing work aims at adapting the shear
parameter, too. Moreover, we want to generalize the approach to the restora-
tion of arbitrary (polygonal) shapes. This will incorporate the application
of more sophisticated corner detectors and their inclusion into the diffusion
tensor of a diffusion equation or an appropriate functional.
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Figure 4: Top left: original image of a city area as presented in [3]. Top right:
smoothed rotation angles used to obtain the final image at bottom left with
parameters g = 20000 and ¢ = 0.8. The smoothed rotation angles belonging
to the anisotropic diffusion at the bottom right look very similar. Bottom
left: cartoon generated by quadratic programming with A = 50 and v = 0.
Bottom right: cartoon generated by anisotropic diffusion with e2 = 0.1, time

step size T = 0.05, number of iterations itmax = 700 and v = ﬁ.
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Figure 5: Top left: noisy image. Top right: smoothed rotation angles used to
generate the final image on the left with parameters ¢ = 10000 and o = 1.5.
The smoothed rotation angles belonging to the anisotropic diffusion look
very similar. Middle left: denoised image by quadratic programming with
A = 150 and v = 0.1 without rescaling. Middle right: denoised image
by anisotropic diffusion with €2 = 0.5, time step size 7 = 0.1, number of
iterations itmax = 1700 and v = ﬁ without rescaling. Bottom: same as in

the middle with identical rescaling.
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