
Restoration of Images with Rotated ShapesS. Setzer and G. Steidl and T. Teuber ∗Dediated to Professor Manfred Tashein oasion of his 65th birthdayMay 19, 2008AbstratMethods for image restoration whih respet edges and other im-portant features are of fundamental importane in digital image pro-essing. In this paper, we present a novel tehnique for the restorationof images ontaining rotated (linearly transformed) retangular shapeswhih avoids the round-o� e�ets at verties produed by known edge-preserving denoising tehniques. Following an idea of Berkels et al.our approah is also based on two steps: the determination of the an-gles related to the rotated shapes and a subsequent restoration stepwhih inorporates the knowledge of the angles. However, in ontrastto Berkels et al., we �nd the smoothed rotation angles of the shapes byminimizing a simple quadrati funtional without onstraints whihinvolves only �rst order derivatives so that we �nally have to solveonly a linear system of equations. Moreover, we propose to performthe restoration step either by quadrati programming or by solving ananisotropi di�usion equation. We fous on a disrete approah whihapproximates derivatives by �nite di�erenes. Partiular attention ispaid to the hoie of the di�erene �lters. We prove some relations on-erning the preservation of retangular shapes for our disrete setting.Finally, we present numerial examples for the denoising of arti�ialimages with rotated retangles and parallelograms and for the denois-ing of a real-world image.1 IntrodutionIn image denoising one is typially interested in removing noise while preserv-ing important strutures suh as edges. Sine this goal annot be ahievedwith linear �lters various nonlinear strategies have been proposed in reentyears, e.g., wavelet-based methods [8℄, stohasti methods [19℄, variationalmethods like the Rudin-Osher-Fatemi model [11℄, PDE-based methods like
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the isotropi nonlinear di�usion of Perona and Malik [9℄ 1, or Weikert'sanisotropi edge enhaning di�usion [16℄. In this paper, we fous on varia-tional and PDE-based approahes. Most of these methods ause a signi�antrounding artefat at orners formed by sharp edges. A typial example isshown in Fig. 1.

Figure 1: Left: noisy image urrupted by white Gaussian noise with standarddeviation 50. Middle: denoised image using edge enhaning di�usion, see[16℄. Right: denoised image using the method proposed in this paper.One suitable approah to overome this drawbak was the anisotropi modi�-ation of the Rudin-Osher-Fatemi model pointed out by Esedoglu and Osher[6℄, see also [7, 5℄, and further developed by Berkels et al. [3℄. Note that arelated approah was given from the PDE point of view by Weikert [15℄.In [3℄, the authors deal with images f ontaining noisy rotated retangularshapes. They suggest to �nd the denoised version u of f by omputing theminimizer of the funtional
F (u, α) :=

1

2

∫

Ω

(f − u)2 dxdy + λ

∫

Ω

‖R(α)∇u‖1 dxdy

+
1

2

∫

Ω

µ1|∇α|2 + µ2|△α|2 dxdywith the rotation matries
R (α(x, y)) :=

(
cos (α(x, y)) sin (α(x, y))

− sin (α(x, y)) cos (α(x, y))

)
. (1)More preisely, they propose to �nd u by iterating the following alternatingproedure: for �xed u(x, y) ompute the minimizer of

Fu(α) :=

∫

Ω

‖R(α)∇u‖1 dxdy +
1

2

∫

Ω

µ1|∇α|2 + µ2|△α|2 dxdy, (2)1Sometimes these proesses are already denoted as anisotropi. In our nomenlature,this notion is reserved for proesses driven by matrix-valued di�usion tensors.2



and for �xed α(x, y) �nd the minimizer of
Eα(u) :=

1

2

∫

Ω

(f − u)2 dxdy + λ

∫

Ω

‖R(α)∇u‖1 dxdy. (3)The main idea here is that when rotating the gradient the smallest L1-norm is attained for the rotated gradient being parallel to one of the axes.Consequently, the solution of Fu(α) assigns to eah point a smoothed angle
α, representing the orientation of the gradients in the image. Using thisinformation in the seond term of (3), we see that minimizing Eα(u) leads togood denoising results for objets whih are aligned in the diretions α and
α + π

2 . The funtional Fu(α) depends on α and also on the trigonometrifuntions cosα and sinα of α. Moreover, we see that ‖R(α(x, y))∇u(x, y)‖1has the same value for α(x, y) + k π
2 , k ∈ Z so that Eα(u) depends only on

α modulo π
2 . Corresponding restritions on α while omputing a minimumof Fu in (2) were not addressed in [3℄. To ope with the signi�ant loss ofontrast in this proess, the authors propose to apply in addition Bregmaniterations, a kind of inverse sale spae method.The aim of this paper is to present a simple model for the restoration ofimages ontaining rotated (linearly transformed) retangles. The approahis based on the idea of Berkels et al. in so far as we also iterate two steps:an angle adaptation step and a restoration step whih takes the former an-gle omputation into aount. In the angle adaptation step we �nd thesmoothed rotation angles of the shapes ontained in the image. To this end,we minimize a simple quadrati funtional without onstraints so that we�nally have to solve only a linear system of equations. Attention is paid tothe fat that the angles are only needed modulo π

2 . For the restoration stepwe propose two methods, namely either to minimize a disrete version of(3) by quadrati programming or to solve an anisotropi di�usion equationrelated to the Euler-Lagrange equation of (3) by �nite di�erene methods.In both steps, we fous on disrete tehniques whih approximate derivativesby forward di�erenes. Therefore, we have to pay attention to the arefulhoie of the di�erene �lters. Moreover, we onsider some results of Ese-doglu and Osher [6℄ from our disrete point of view. On the one hand, thismakes the approahes simpler and also manageable for other operators thanthe gradient. On the other hand strutures like Wul� shapes in R
m do notarry over to Z

m.This paper is organized as follows: Setion 2 desribes our mathematialmodel. In partiular, we explain the angle adaptation in Subsetion 2.1 andthe two restoration variants in the Subsetions 2.2 and 2.3. In Setion 3, weprove some useful relations onerning the preservation of disrete retangu-lar shapes. Finally, in Setion 4, we present various numerial examples forthe denoising of arti�ial images with rotated retangles and parallelogramsas well as for the denoising of a real-world image. The paper onludes with3



a summary and a sketh of ongoing and future work in Setion 5.2 Mathematial modelOur denoising algorithm is based on iterations of two steps, the angle adap-tation step and the restoration step whih we desribe in the following sub-setions. For the restoration step, we propose either to apply quadratiprogramming methods or to solve an anisotropi di�usion equation.In our disrete setting, we assume for onveniene that f : {0, . . . , n − 1} ×
{0, . . . , n − 1} → R is a quadrati image. Alternatively, we may reshape
f = (f(x, y))n−1

x,y=0 olumnwise into a vetor f : {0, . . . ,N − 1} → R, where
N = n2.2.1 Angle adaptationInstead of the funtional (2) one may try to ompute the smoothed rotationangles α by minimizing the simpler quadrati funtional

∫

Ω

(αu − α)2 dxdy + µ

∫

Ω

|∇α|2 dxdy, (4)where αu(x, y) is the angle of the gradient of u at (x, y). Note that
|∇α(x, y)|2 = |∇ cos(α(x, y))|2 + |∇ sin(α(x, y))|2. (5)Unfortunately, the funtional (4) does not take α modulo π

2 into aountso that we have to look for orresponding modi�ations in the rest of thissubsetion.To �nd the desired rotation angles α we �rst have to ompute the rotationangles αu of the given image u ∈ R
n,n and then to smooth them. We fouson the disrete setting.Computation of αu. We ompute αu(x, y) as the angle of the disretegradient of u in (x, y), (x, y) ∈ {0, . . . , n−1}×{0, . . . , n−1}. More preisely,we ompute this angle with respet to the smoothed image uσ := Kσ ∗ uobtained by onvolving u with the Gaussian Kσ of standard deviation σ. Asdisrete partial derivatives of uσ we use

uσ,x := H1 uσ H
T
0 , uσ,y := H0 uσ H

T
1 (6)with

H0 :=
1

2




1 1
1 1. . .

1 1
2



, H1 :=




−1 1
−1 1. . .

−1 1
0



.4



In other words, uσ,x is omputed by taking forward di�erenes of uσ invertial diretion, the usual smoothing in horizontal diretion, and assumingNeumann boundary onditions. If we suppose pixel distanes hx, hy notequal to 1, then H1 must be multiplied by 1/hx and HT
1 by 1/hy to obtainonsistent disretizations of the derivatives in x- and y-diretions in (6).Note that H0,H1 are also the �lter matries related to the undeimatedHaar wavelet transform, f. [8℄. Alternatively, one an also apply symmetridi�erenes whih leads to similar numerial results. In the vetor reshapedversion, (6) reads

∇uσ =

(
Dx

Dy

)
uσ =

(
H0 ⊗H1

H1 ⊗H0

)
uσ, (7)where ⊗ denotes the tensor produt of matries. For (x, y) ∈ {0, . . . , n−1}×

{0, . . . , n−1}, let |∇uσ(x, y)| := (u2
σ,x(x, y)+u2

σ,y(x, y))
1/2. If |∇uσ(x, y)| = 0we set αu(x, y) := 0, and otherwise

αu(x, y) =

{
arccos

uσ,x(x,y)
|∇uσ(x,y)| if uσ,y(x, y) ≥ 0,

2π − arccos
uσ,x(x,y)
|∇uσ(x,y)| if uσ,y(x, y) < 0.Next, we want to smooth αu in an appropriate way.Smoothing of αu. Sine we want to take only α modulo π

2 into aount,it makes sense to use the π
2 -periodi funtions

cu(x, y) := cos(4αu(x, y)), su(x, y) = sin(4αu(x, y))in the smoothing proess. Now we are looking for vetors (cv, sv)
T suh that

|∇u|
(
cu
su

)
≈ |∇u|

(
cv
sv

)
.We do not require that c2v + s2v = 1. Having (5) in mind, we solve

arg min
cv,sv

∑

(x,y)∈Z2
n

|∇u|2
∣∣
(
cu
su

)
−

(
cv
sv

) ∣∣2 + µ(|∇cv|2 + |∇sv|2).Let IN denote theN×N identity matrix. Reshaping the matries olumnwiseand using G := diag(|∇u|) with the disrete partial derivative operators
(
Dx

Dy

)
:=

(
IN ⊗H1

H1 ⊗ IN

)
, (8)this is equivalent to �nding the minimizers of

‖G(cu − cv)‖2
2 + µ‖

(
Dx

Dy

)
cv‖2

2 and ‖G(su − sv)‖2
2 + µ‖

(
Dx

Dy

)
sv‖2

2.5



These minimizers are given by the solutions of
(
GTG+ µ(DT

xDx +DT
yDy)

)
cv = GTGcu, (9)(

GTG+ µ(DT
xDx +DT

yDy)
)
sv = GTGsu.The matrix DT

xDx + DT
yDy is the disretization of the negative Laplaian

−∆ with entered di�erenes and Neumann boundary onditions. It is adiagonal dominant matrix in R
N,N of the rank N − 1. The matrix GTG 6= 0is a diagonal matrix with the nonnegative diagonal entries |∇u(x, y)|2. Then

GTG+µ(DT
xDx +DT

yDy) is irreduible diagonal dominant and onsequentlyinvertible. Moreover, it is easy to hek that the maximum priniple
|cv(x, y)| ≤ max

(x,y)∈Z2
n

|cu(x, y)| ≤ 1is ful�lled (similarly for sv) by onsidering for example the Jaobi iterationproess to solve (9). Note that we have in general c2v(x, y) + s2v(x, y) 6= 1.One we have found cv and sv, we ompute the smoothed version α of αu as
α(x, y) := 0 if | (cv(x, y), sv(x, y)) | = 0 and

α(x, y) =
1

4

{
arccos cv(x,y)

|(cv(x,y),sv(x,y))| if sv(x, y) ≥ 0,

2π − arccos cv(x,y)
|(cv(x,y),sv(x,y))| if sv(x, y) < 0.Now we turn to the restoration step.2.2 Restoration by quadrati programmingWe onsider a disrete version of (3) whih reads for olumnwise reshapedimages as follows:

arg min
u

{
1

2
‖f − u‖2

2 + λ‖R(α)

(
Dx

Dy

)
u‖1

}
, (10)where

R(α) :=

(
diag(cosα) diag(sinα)

−diag(sinα) diag(cosα)

)and Dx and Dy are hosen as in (7). It is well-known, f. [4, 14℄ and Setion3, that the minimizer û of (10) is given by û = f−λ (DT
x D

T
y )R(α)T V̂ , where

V̂ is the solution of the dual problem
‖f − λ (DT

x D
T
y )R(α)T V ‖2

2 → min subjet to ‖V ‖∞ ≤ 1. (11)This is a quadrati problem with linear onstraints whih an be solved byorresponding optimization methods.6



For heavy noise, our hoie of Dx and Dy due to their kernels may lead tohekerboard e�ets. These e�ets an be avoided by solving, for a smallonstant ν, the slightly modi�ed problem
arg min

u

{
1

2
‖f − u‖2

2 + λ‖R(α)

(
Dx

Dy

)
u‖1 + ν‖(H1 ⊗H1)u‖1

}
.By [6, 3℄ and the following Setion 3, the restoration via minimization of (10)is useful for images ontaining rotated retangles. Of ourse, the approahan be simply modi�ed for retangles whih are linearly transformed by aonstant transform matrix A ∈ R

2,2:
arg min

u

{
1

2
‖f − u‖2 + λ‖R(α) (A ⊗ IN )

(
Dx

Dy

)
u‖1

}
. (12)In partiular, we will onsider images with rotated parallelograms whih anbe obtained by applying a shear matrix A(s) =

(
1 s
0 1

).2.3 Restoration by anisotropi di�usionAnother way to perform the restoration step is based on the Euler�Lagrangeequation of (3). For this, we replae ϕ(x, y) := ‖(x, y)‖1 = |x| + |y| in (3)by the di�erentiable funtion ϕε(x, y) :=
√
x2 + ε2 +

√
y2 + ε2 with |ε| ≪ 1and obtaiñ

Eα(u) =
1

2

∫

Ω

(f − u)2 dxdy + λ

∫

Ω

ϕε (R(α)∇u) dxdy. (13)The minimizer of Ẽα(u) has to ful�ll the Euler�Lagrange equation given by
0 = u− f − λdiv (Dα(∇u)∇u) (14)with the di�usion tensor

Dα(∇u) := R(α)T (
ψ(〈eα,∇u〉) 0

0 ψ(〈e⊥α ,∇u〉)

)
R(α), (15)where ψ(x) := 1/

√
x2 + ε2 and eα := (cosα, sinα)T. Then the minimizer of(14) an be obtained by omputing the steady state u(x, t) for t → ∞ of thereation di�usion equation
∂tu = f − u+ λdiv(Dα(∇u)∇u)with initial ondition u(·, 0) = f and homogeneous Neumann boundary on-ditions. On the other hand, the Euler�Lagrange equation an be rewrittenas

u− f

λ
= div(Dα(∇u)∇u).7



This an be interpreted as a fully impliit time disretization of the di�usionequation
∂tu = div(Dα(∇u)∇u) (16)with initial image u(·, 0) = f and homogeneous Neumann boundary ondi-tions. In our numerial examples, we will restrit our attention to a timeexpliit sheme to solve (16). Of ourse, suh a sheme, in ontrast to animpliit disretization of (16) with time step size λ, will not lead to a min-imizer of (13). For details see [13℄. However, we propose this sheme as analternative denoising tehnique whih leads to very good results whih wewere not able to improve by adding e.g. the reation term.More preisely, in our experiments we will solve (16) by �nite di�erenemethods with an expliit Euler disretization of the time derivative. Herewe have to be very areful with the disretization of the spatial derivativesto obtain omparable results with those from quadrati programming. Weapply the �rst order di�erene �lters proposed in [12, 17℄:

H̃0 :=
1

16




13 3
3 10 3. . .

3 10 3
3 13




, H̃1 :=
1

2




−1 1
−1 0 1. . .

−1 0 1
−1 1




.These �lters whih result in 5×5 spatial masks in (16) are optimized (amongall 5× 5 masks) with respet to rotation invariane and lead to sharp edges.Again, if we suppose pixel distanes hx, hy 6= 1, we have to multiply H̃1by 1/hx to obtain a onsistent disretization of the derivative in x-diretion.Moreover, to avoid possible hekerboard e�ets we use the following methodsuggested in [12, Setion 9.5℄: the fully disrete sheme of (16) reads
un+1 = (IN + τM)unwith disretizationMu of div(Dα(∇u)∇u) and time step size τ . This shemewas modi�ed in [12℄ to

un+1 =
(
IN + τM + ν(Ĩ − IN )

)
unwith a small weight parameter ν and the usual Neumann boundary modi�-ations. The low pass �lter Ĩ is represented by the 5-band Toeplitz matrixwith band 1

16 (−1, 4, 10, 4,−1) and is a disretization of the identity �lter
IN of onsisteny order 4. The idea behind the additional term Ĩ − IN isto add a �lter, whih on the one hand does no harm to the onsisteny ofthe sheme, but on the other hand eliminates the hekerboard e�ets. Forfurther explanation and numerial examples demonstrating the in�uene ofthe additional term, see [12, Setion 9.5℄.8



As in the previous subsetion, we an also handle linearly transformed re-tangles by solving (16) with the di�usion tensor
Dα(∇u) := ATR(α)T (

ψ(〈eα, A∇u〉) 0
0 ψ(〈e⊥α , A∇u〉)

)
R(α)A.3 Shape preservationThe funtional (3) with onstant rotation α = 0 an be onsidered as aspeial ase of the more general funtional

1

2

∫

Ω

(f − u)2 dx + λ

∫

Ω

ϕ(∇u) dx (17)with Ω ⊂ R
m and with a �nite gauge funtion ϕ : R

m → R, i.e., a positivelyhomogeneous, onvex funtion whih satis�es ϕ(0) = 0 and ϕ(x) > 0 for
x 6= 0. Sine ϕ is positively homogeneous and onvex, it follows that ϕ issublinear whih means that it ful�lls in addition ϕ(x + y) ≤ ϕ(x) + ϕ(y).Moreover, sine ϕ is �nite and positively homogeneous, its onjugate funtion
ϕ∗ is the indiator funtion of a losed bounded onvex set Cϕ ontainingthe origin, alled Wul� shape of ϕ, whih is given as follows:

Cϕ := {x ∈ R
m : 〈x, y〉 ≤ ϕ(y) ∀y ∈ R

m}.Sine ϕ is lower semiontinuous (ls), we have that ϕ∗∗ = ϕ so that ϕ is thesupport funtion of Cϕ, i.e.,
ϕ(x) = sup

y∈Cϕ

〈x, y〉. (18)The polar funtion ϕo of a gauge funtion ϕ is de�ned by
ϕo(x) := sup

y 6=0

〈x, y〉
ϕ(y)

(19)and is a gauge funtion, too. Then Cϕ an be also rewritten as
Cϕ := {x ∈ R

m : ϕo(x) ≤ 1}.For example, we have for ϕ(x) := ‖x‖1 that Cϕ = {x ∈ R
m : ‖x‖∞ ≤ 1}.For m = 2, the set Cϕ represents the square entered at the origin with sidesof length 2 parallel to the x- and y-axis.In [6℄, it was proven for the ontinuous setting that if f is the harateristifuntion of the Wul� shape of ϕ, i.e., f = 1Cϕ and λ is small enough, thenthe minimizer û of (17) preserves this form whih means that û = c 1Cϕ withan appropriate onstant c > 0. Moreover, it was shown that the minimizer9



of (17) with ϕ(x) = ‖x‖1 also preserves retangles with sides parallel to theaxes.For a vetor U :=
(
Ui+kN

)N−1,m−1

i=0,k=0
∈ R

mN , we set Ui :=
(
Ui+kN

)m−1

k=0
∈ R

m.We are interested in the disrete ounterpart to (17) given by
1

2
‖f − u‖2 + λ‖

(
ϕ ((Lu)i)

)N−1

i=0
‖1 (20)with a �nite ls gauge funtion ϕ : R

m → R and a matrix L ∈ R
mN,N . Thetypial example for L ∈ R

2N,N in the previous setion was L = (DT
x DT

y )T.The penalizing term
J(u) := ‖

(
ϕ ((Lu)i)

)N−1

i=0
‖1is also a �nite ls gauge funtion and is therefore the support funtion of

CJ := {v ∈ R
N : 〈v,w〉 ≤ J(w) ∀w ∈ R

N}. (21)It is well-known, f. [10, 4℄, that the unique minimizer of (20) is given by
û = f − λv̂, (22)where λv̂ is the orthogonal projetion of f onto CλJ . Using that λv̂ ∈ CλJif and only if v̂ ∈ CJ we have that v̂ := arg minv∈CJ

‖f − λv‖2. Conerningorthogonal projetion the following lemma will be useful, see [6℄ for theontinuous setting with L = ∇.Lemma 3.1. Let J be the support funtion of the losed onvex set CJde�ned by (21). Then we have that λv̂ is the orthogonal projetion of f onto
CλJ if and only if v̂ ∈ CJ and

〈f − λv̂, v̂〉 = J(f − λv̂). (23)We add the brief proof for our disrete approah.Proof: Let λv̂ be the orthogonal projetion of f onto CλJ . Then we obtainby the projetion theorem that
〈f − λv̂, y − λv̂〉 ≤ 0 ∀y ∈ CλJ .Together with (18) this implies that

λJ(f − λv̂) = sup
y∈CλJ

〈y, f − λv̂〉 = 〈f − λv̂, λv̂〉and hene (23). 10



Assume onversely that v̂ ∈ CJ ful�lls (23). Then λv̂ ∈ CλJ and we obtainby the de�nition of CλJ that for all y ∈ CλJ

〈f − λv̂, y〉 ≤ λJ(f − λv̂)

0 ≤ −〈f − λv̂, y〉 + λJ(f − λv̂) = 〈f − λv̂, λv̂ − y〉whih yields by the projetion theorem that λv̂ is the orthogonal projetionof f onto CλJ . �To determine v̂ we need a more manageable form of CJ whih is given in thefollowing lemma.Lemma 3.2. The set CJ de�ned by (21) oinides with
C̃J := {v = LTV : ‖

(
ϕo(Vi)

)N−1

i=0
‖∞ ≤ 1}. (24)Note that the ondition on V is equivalent to Vi ∈ Cϕ for all i = 0, . . . ,N−1.Proof: 1. First we see that v ∈ CJ must ful�ll v ∈ R(LT) sine otherwisewe an use the orthogonal deomposition v = v0+v1 with v0 ∈ N (L), v0 6= 0and v1 ∈ R(LT) to obtain the ontradition

〈v, v0〉 = 〈v0 + v1, v0〉 = ‖v0‖2
2 ≤ J(v0) = 0.Thus,

CJ = {v = LTV : 〈V,Lw〉 ≤ ‖
(
ϕ ((Lw)i)

)N−1

i=0
‖1 ∀w ∈ R

N}. (25)2. Let v ∈ C̃J . By de�nition of ϕo in (19), we see that
〈Vi,Wi〉 ≤ ϕo(Vi)ϕ(Wi) ∀Wi ∈ R

mso that we get for Wi = (Lw)i by assumption
〈V,Lw〉 =

N−1∑

i=0

〈Vi, (Lw)i〉 ≤
N−1∑

i=0

ϕo(Vi)ϕ((Lw)i) ≤
N−1∑

i=0

ϕ((Lw)i).By (25) this yields v ∈ CJ .3. Conversely, let v = LTV ∈ CJ . We have to show that there exists a Ṽsuh that v = LTṼ and ‖
(
ϕo(Ṽi)

)N−1

i=0
‖∞ ≤ 1.The funtional lV (Lw) := 〈V,Lw〉 is linear on R(L) ⊂ R

mN and satis�es
lV (Lw) ≤ p(Lw) ∀w ∈ R

N ,where p : R
mN → R is the sublinear funtion p(W ) := ‖

(
ϕ (Wi)

)N−1

i=0
‖1.By the Hahn-Banah theorem lV an be extended to a linear funtional

LṼ (W ) := 〈Ṽ ,W 〉 on R
mN whih ful�lls
〈Ṽ ,W 〉 ≤ p(W ) ∀W ∈ R

mN . (26)11



Now LṼ (Lw) = lV (Lw) for all w ∈ R
N , i.e., 〈LTV,w〉 = 〈LTṼ , w〉 for all

w ∈ R
N whih implies that v = LTV = LTṼ .Let i0 ∈ {0, . . . , N − 1} so that ϕo(Ṽi0) = max{ϕo(Ṽi) : i = 0, . . . ,N − 1}.Then we have by (26) for all W̃ with W̃i := 0 for i 6= i0 that

〈Ṽ , W̃ 〉 = 〈Ṽi0 , W̃i0〉 ≤ ϕ(W̃i0), ∀W̃i0 ∈ R
m,

ϕo(Ṽi0) = sup
W̃i0

6=0

〈Ṽi0 , W̃i0〉
ϕ(W̃i0)

≤ 1and we are done by assumption on Ṽi0 . �It is not lear to us how to de�ne some kind of Wul� shapes on a disrete gridfor general ϕ. However, we may onsider retangles on Z
2 and ask if theyare preserved by the minimizer of (20) for ϕ(x) = ‖x‖1 and L = (DT

x D
T
y )T.Of ourse this depends on the onrete hoie of the di�erene matries Dxand Dy. In the following, we provide an example. Similarly as in [6℄, we usethat (22) and the Lemmas 3.1 and 3.2 imply that û is the minimizer of (20)if and only if the following relations are ful�lled:i) û = f − λv̂,ii) v̂ = LTV̂ , where V̂i ∈ Cϕ for all i = 0, . . . ,N − 1,iii) J(û) = 〈û, v̂〉.Example 3.3. Let ϕ(x, y) = |x|+ |y| so that ii) is equivalent to ‖V̂ ‖∞ ≤ 1.Let R := {x0 + 1, · · · , x0 + a} × {y0 + 1, · · · , y0 + b} with x0, y0 ≥ 0 and

x0 + a, y0 + b ≤ n − 2 and let f = 1R be the image f : {0, . . . , n − 1} ×
{0, . . . , n− 1} → R with f(x, y) = 1 if (x, y) ∈ R and f(x, y) = 0 otherwise.Furthermore, we use L :=

(
H0 ⊗H1

H1 ⊗H0

), where we slightly modify the matriesin (6) by h0(0, 0) = h1(0, 0) = 0 and h0(n− 1, n− 1) = 1, h1(n− 1, n− 1) =
−1, i.e., H1 is the forward di�erene matrix with zero boundary assumptionsand H0 is the orresponding smoothing matrix. Consider V̂ =

(
V̂ 1

V̂ 2

) de�ned

12



by
V̂ 1(x, y) =





(−1)y0−y x ∈ I1, y ∈ J1,

1 x ∈ I1, y ∈ J2,

(−1)y0+b−y x ∈ I1, y ∈ J3,

(−1)y0−y(1 − 2(x−x0)
a ) x ∈ I2, y ∈ J1,

1 − 2(x−x0)
a x ∈ I2, y ∈ J2,

(−1)y0+b−y(1 − 2(x−x0)
a ) x ∈ I2, y ∈ J3,

(−1)y0−y+1 x ∈ I3, y ∈ J1,

−1 x ∈ I3, y ∈ J2,

(−1)y0+b−y+1 x ∈ I3, y ∈ J3,and
V̂ 2(x, y) =





(−1)x0−x x ∈ I1, y ∈ J1,

1 x ∈ I2, y ∈ J1,

(−1)x0+a−x x ∈ I3, y ∈ J1,

(−1)x0−x(1 − 2(y−y0)
b ) x ∈ I1, y ∈ J2,

1 − 2(y−y0)
b x ∈ I2, y ∈ J2,

(−1)x0+a−x(1 − 2(y−y0)
b ) x ∈ I3, y ∈ J2,

(−1)x0−x+1 x ∈ I1, y ∈ J3,

−1 x ∈ I2, y ∈ J3,

(−1)x0+a−x+1 x ∈ I3, y ∈ J3,where I1 := {0, · · · , x0}, I2 := {x0+1, · · · , x0+a}, I3 := {x0+a+1, · · · , n−
1},and J1 := {0, · · · , y0}, J2 := {y0+1, · · · , y0+b}, J3 := {y0+b+1, · · · , n−1}.Of ourse V̂ ful�lls ii). Further we see that v̂ = LTV̂ =

(
2
a + 2

b

)
1R. Thenwe obtain for

û = f − λv̂ = (1 − 2(a+ b)

ab
λ) 1R = c 1R (27)that

J(û) = 2(a− 1)c + 4
c

2
+ 2(b− 1)c + 4

c

2
= 2(a+ b) c = 〈û, v̂〉.Thus, for λ ≤ ab

2(a+b) , the funtion û in (27) is the minimizer of (20).4 Numerial examplesFinally, we present numerial examples. All programs were written in MAT-LAB. Further, we have used the a primal-dual preditor-orretor interior13



point method implemented in the software pakage MOSEK [2℄ to solve thequadrati problem with linear onstraints (11). To visualize the images wehave used the MATLAB images routine whih inorporates an a�ne grayvalue saling to use the full gray value map. The parameters are hosen withrespet to the best visuable results.The �rst two examples in Figs. 2 and 3 demonstrate the denoising of rotatedretangles and parallelograms obtained by applying a shear matrix with s =
0.92. In both examples it su�es to perform only one angle adaptationand restoration step. We show the results for the restoration by quadratiprogramming and anisotropi di�usion. We observe a slight smoothing of theedges in Fig. 3 in the seond approah. This an be redued by hosing asmaller parameter ν with the disadvantage that hekerboard e�ets beomevisible. Sine the images are depited with the a�ne gray value saling of theMATLAB images routine we remark that the omputed minimal/maximalgray values are given as follows:Fig. 2 bottom left: −3.1 · 10−7, 220.3,Fig. 2 bottom right: 7, 223.2,Fig. 3 bottom left: −0.5, 249.5,Fig. 3 bottom right: −7.8, 252.4.The original gray values ranged from 0 to 255.The third example in Fig. 4 depits the artoon extration from a real-worldimage whih was also presented in [3℄. For omparison we found it useful totake the same image as in [3℄. We have iterated our two steps three times.Finally, we added an image from [1℄ whih is often used as a halleng-ing example for the omparison of denoising algorithms, see, e.g., [16, 18℄.We present the results after 4 iterations with quadrati programming andanisotropi di�usion. Moreover we show versions without and with resal-ing to get an impression of the loss of ontrast. Here the minimal/maximalgray values are 106.4, 163.6 for quadrati programming and 95.1, 173.3 foranisotropi di�usion.5 Summary and ConlusionsWe have proposed a method for the restoration of retangular shapes on-taminated with heavy noise whih avoids the round-o� e�ets at vertiesprodued by known edge-preserving denoising tehniques. As in a paper ofBerkels et al. our proedure approximates the rotation angle of the shapesin a �rst step and uses this information in a seond step to denoise the im-age without destroying verties. Our angle adaptation uses only �rst orderderivatives of the linearly smoothed image and requires to solve of a linearsystem of equations. For the seond step, we have proposed two di�erentmethods, namely quadrati programming and an anisotropi di�usion pro-ess with the di�usion tensor adapted to the rotation angle.14
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Figure 2: Top left: noisy image with standard deviation 150. Top right:smoothed rotation angles used to denoise the image with parameters µ =
400000 and σ = 2.5. Bottom left: denoised image by quadrati programmingwith λ = 800 and ν = 0.1. Bottom right: denoised image by anisotropidi�usion with ε2 = 0.001, time step size τ = 0.1, number of iterations
itmax = 8000 and ν = 0.001.So far, the algorithm works for retangles and linearly transformed ret-angles, where the linear transform has to be known in advane. We havedemonstrated this also numerially for sheared retangles (parallelograms)with �xed shear parameter. Our ongoing work aims at adapting the shearparameter, too. Moreover, we want to generalize the approah to the restora-tion of arbitrary (polygonal) shapes. This will inorporate the appliationof more sophistiated orner detetors and their inlusion into the di�usiontensor of a di�usion equation or an appropriate funtional.Referenes[1℄ MegaWave. http://www.mla.ens-ahan.fr/Cmla/Megawave.15
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Figure 3: Top left: noisy image ontaining sheared retangles with �xedshear parameter s = 0.92 and white Gaussian noise of standard deviation50. Top right: smoothed rotation angles used to denoise the image withparameters µ = 300000 and σ = 1.5. Bottom left: denoised image byquadrati programming with λ = 150 and ν = 0.04. Bottom right: denoisedimage by anisotropi di�usion with ε2 = 0.001, time step size τ = 0.1,number of iterations itmax = 1800 and ν = 0.01.[2℄ The MOSEK Optimization Toolbox. http://www.mosek.om.[3℄ B. Berkels, M. Burger, M. Droske, O. Nemitz, and M. Rumpf. Cartoonextration based on anisotropi image lassi�ation, vision, modelingand visualization proeedings. In Vision, Modeling and Visualization.Springer, aepted.[4℄ A. Chambolle. An algorithm for total variation minimization and ap-pliations. Journal of Mathematial Imaging and Vision, (20):89�97,2004.[5℄ A. Chambolle. Total variation minimization and a lass of binary MRFmodels. In A. Rangarajan, B. C. Vemuri, and A. L. Yuille, editors,Energy Minimization Methods in Computer Vision and Pattern Reog-16



nition, EMMCVPR, volume 3757 of Leture Notes in Computer Siene.Springer, 2005.[6℄ S. Esedoglu and S. Osher. Deomposition of images by anisotropiRudin-Osher-Fatemi model. Communiations in Pure and AppliedMathematis, 57(12):1609�1626, 2004.[7℄ W. Hintermüller and W. Kunish. Total bounded variation regulariza-tion as a bilaterally onstrained optimization problem. SIAM J. Appl.Math., 4(64):1311�1333, 2004.[8℄ S. Mallat. A Wavelet Tour of Signal Proessing. Aademi Press, SanDiego, seond edition, 1999.[9℄ P. Perona and J. Malik. Sale spae and edge detetion using anisotropidi�usion. IEEE Transations on Pattern Analysis and Mahine Intelli-gene, 12:629�639, 1990.[10℄ R. T. Rokafellar and R. J.-B. Wets. Variational Analysis. Springer,Berlin, 1998.[11℄ L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation basednoise removal algorithms. Physia A, 60:259�268, 1992.[12℄ H. Sharr. Optimal Operators in Digital Image Proessing. PhD the-sis, Interdisiplinary Center for Sienti� Computing, Rupreht-Karls-Universität Heidelberg, 2000.[13℄ O. Sherzer and J. Weikert. Relations between regularization and dif-fusion �ltering. Journal of Mathematial Imaging and Vision, 12:43�63,2000.[14℄ G. Steidl. A note on the dual treatment of higher order regularizationfuntionals. Computing, 76:135 � 148, 2006.[15℄ J. Weikert. Anisotropi di�usion �lters for image proessing basedquality ontrol. In A. Fasano and M. Primierio, editors, Pro. Sev-enth European Conferene on Mathematis in Industry, pages 355�362.Teubner, Stuttgart, 1994.[16℄ J. Weikert. Anisotropi Di�usion in Image Proessing. Teubner,Stuttgart, 1998.[17℄ J. Weikert and H. Sharr. A sheme for oherene-enhaning di�usion�ltering with optimized rotation invariane. Journal of Visual Commu-niation and Image Representation, 13(1/2):103�118, 2002.17



[18℄ M. Welk, G. Steidl, and Weikert. Loally analyti shemes: a linkbetween di�usion �ltering and wavelet shrinkage. Applied and Compu-tational Harmoni Analysis, to appear.[19℄ G. Winkler. Image Analysis, Random Fields and Dynami Monte CarloMethods, volume 27 of Appliations of Mathematis. Springer, Berlin,1995.
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Figure 4: Top left: original image of a ity area as presented in [3℄. Top right:smoothed rotation angles used to obtain the �nal image at bottom left withparameters µ = 20000 and σ = 0.8. The smoothed rotation angles belongingto the anisotropi di�usion at the bottom right look very similar. Bottomleft: artoon generated by quadrati programming with λ = 50 and ν = 0.Bottom right: artoon generated by anisotropi di�usion with ε2 = 0.1, timestep size τ = 0.05, number of iterations itmax = 700 and ν = 1
200 .
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Figure 5: Top left: noisy image. Top right: smoothed rotation angles used togenerate the �nal image on the left with parameters µ = 10000 and σ = 1.5.The smoothed rotation angles belonging to the anisotropi di�usion lookvery similar. Middle left: denoised image by quadrati programming with
λ = 150 and ν = 0.1 without resaling. Middle right: denoised imageby anisotropi di�usion with ε2 = 0.5, time step size τ = 0.1, number ofiterations itmax = 1700 and ν = 1

300 without resaling. Bottom: same as inthe middle with idential resaling. 20


