
Restoration of Images with Rotated ShapesS. Setzer and G. Steidl and T. Teuber ∗Dedi
ated to Professor Manfred Tas
hein o

asion of his 65th birthdayMay 19, 2008Abstra
tMethods for image restoration whi
h respe
t edges and other im-portant features are of fundamental importan
e in digital image pro-
essing. In this paper, we present a novel te
hnique for the restorationof images 
ontaining rotated (linearly transformed) re
tangular shapeswhi
h avoids the round-o� e�e
ts at verti
es produ
ed by known edge-preserving denoising te
hniques. Following an idea of Berkels et al.our approa
h is also based on two steps: the determination of the an-gles related to the rotated shapes and a subsequent restoration stepwhi
h in
orporates the knowledge of the angles. However, in 
ontrastto Berkels et al., we �nd the smoothed rotation angles of the shapes byminimizing a simple quadrati
 fun
tional without 
onstraints whi
hinvolves only �rst order derivatives so that we �nally have to solveonly a linear system of equations. Moreover, we propose to performthe restoration step either by quadrati
 programming or by solving ananisotropi
 di�usion equation. We fo
us on a dis
rete approa
h whi
happroximates derivatives by �nite di�eren
es. Parti
ular attention ispaid to the 
hoi
e of the di�eren
e �lters. We prove some relations 
on-
erning the preservation of re
tangular shapes for our dis
rete setting.Finally, we present numeri
al examples for the denoising of arti�
ialimages with rotated re
tangles and parallelograms and for the denois-ing of a real-world image.1 Introdu
tionIn image denoising one is typi
ally interested in removing noise while preserv-ing important stru
tures su
h as edges. Sin
e this goal 
annot be a
hievedwith linear �lters various nonlinear strategies have been proposed in re
entyears, e.g., wavelet-based methods [8℄, sto
hasti
 methods [19℄, variationalmethods like the Rudin-Osher-Fatemi model [11℄, PDE-based methods like
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the isotropi
 nonlinear di�usion of Perona and Malik [9℄ 1, or Wei
kert'sanisotropi
 edge enhan
ing di�usion [16℄. In this paper, we fo
us on varia-tional and PDE-based approa
hes. Most of these methods 
ause a signi�
antrounding artefa
t at 
orners formed by sharp edges. A typi
al example isshown in Fig. 1.

Figure 1: Left: noisy image 
urrupted by white Gaussian noise with standarddeviation 50. Middle: denoised image using edge enhan
ing di�usion, see[16℄. Right: denoised image using the method proposed in this paper.One suitable approa
h to over
ome this drawba
k was the anisotropi
 modi�-
ation of the Rudin-Osher-Fatemi model pointed out by Esedoglu and Osher[6℄, see also [7, 5℄, and further developed by Berkels et al. [3℄. Note that arelated approa
h was given from the PDE point of view by Wei
kert [15℄.In [3℄, the authors deal with images f 
ontaining noisy rotated re
tangularshapes. They suggest to �nd the denoised version u of f by 
omputing theminimizer of the fun
tional
F (u, α) :=

1

2

∫

Ω

(f − u)2 dxdy + λ

∫

Ω

‖R(α)∇u‖1 dxdy

+
1

2

∫

Ω

µ1|∇α|2 + µ2|△α|2 dxdywith the rotation matri
es
R (α(x, y)) :=

(
cos (α(x, y)) sin (α(x, y))

− sin (α(x, y)) cos (α(x, y))

)
. (1)More pre
isely, they propose to �nd u by iterating the following alternatingpro
edure: for �xed u(x, y) 
ompute the minimizer of

Fu(α) :=

∫

Ω

‖R(α)∇u‖1 dxdy +
1

2

∫

Ω

µ1|∇α|2 + µ2|△α|2 dxdy, (2)1Sometimes these pro
esses are already denoted as anisotropi
. In our nomen
lature,this notion is reserved for pro
esses driven by matrix-valued di�usion tensors.2



and for �xed α(x, y) �nd the minimizer of
Eα(u) :=

1

2

∫

Ω

(f − u)2 dxdy + λ

∫

Ω

‖R(α)∇u‖1 dxdy. (3)The main idea here is that when rotating the gradient the smallest L1-norm is attained for the rotated gradient being parallel to one of the axes.Consequently, the solution of Fu(α) assigns to ea
h point a smoothed angle
α, representing the orientation of the gradients in the image. Using thisinformation in the se
ond term of (3), we see that minimizing Eα(u) leads togood denoising results for obje
ts whi
h are aligned in the dire
tions α and
α + π

2 . The fun
tional Fu(α) depends on α and also on the trigonometri
fun
tions cosα and sinα of α. Moreover, we see that ‖R(α(x, y))∇u(x, y)‖1has the same value for α(x, y) + k π
2 , k ∈ Z so that Eα(u) depends only on

α modulo π
2 . Corresponding restri
tions on α while 
omputing a minimumof Fu in (2) were not addressed in [3℄. To 
ope with the signi�
ant loss of
ontrast in this pro
ess, the authors propose to apply in addition Bregmaniterations, a kind of inverse s
ale spa
e method.The aim of this paper is to present a simple model for the restoration ofimages 
ontaining rotated (linearly transformed) re
tangles. The approa
his based on the idea of Berkels et al. in so far as we also iterate two steps:an angle adaptation step and a restoration step whi
h takes the former an-gle 
omputation into a

ount. In the angle adaptation step we �nd thesmoothed rotation angles of the shapes 
ontained in the image. To this end,we minimize a simple quadrati
 fun
tional without 
onstraints so that we�nally have to solve only a linear system of equations. Attention is paid tothe fa
t that the angles are only needed modulo π

2 . For the restoration stepwe propose two methods, namely either to minimize a dis
rete version of(3) by quadrati
 programming or to solve an anisotropi
 di�usion equationrelated to the Euler-Lagrange equation of (3) by �nite di�eren
e methods.In both steps, we fo
us on dis
rete te
hniques whi
h approximate derivativesby forward di�eren
es. Therefore, we have to pay attention to the 
areful
hoi
e of the di�eren
e �lters. Moreover, we 
onsider some results of Ese-doglu and Osher [6℄ from our dis
rete point of view. On the one hand, thismakes the approa
hes simpler and also manageable for other operators thanthe gradient. On the other hand stru
tures like Wul� shapes in R
m do not
arry over to Z

m.This paper is organized as follows: Se
tion 2 des
ribes our mathemati
almodel. In parti
ular, we explain the angle adaptation in Subse
tion 2.1 andthe two restoration variants in the Subse
tions 2.2 and 2.3. In Se
tion 3, weprove some useful relations 
on
erning the preservation of dis
rete re
tangu-lar shapes. Finally, in Se
tion 4, we present various numeri
al examples forthe denoising of arti�
ial images with rotated re
tangles and parallelogramsas well as for the denoising of a real-world image. The paper 
on
ludes with3



a summary and a sket
h of ongoing and future work in Se
tion 5.2 Mathemati
al modelOur denoising algorithm is based on iterations of two steps, the angle adap-tation step and the restoration step whi
h we des
ribe in the following sub-se
tions. For the restoration step, we propose either to apply quadrati
programming methods or to solve an anisotropi
 di�usion equation.In our dis
rete setting, we assume for 
onvenien
e that f : {0, . . . , n − 1} ×
{0, . . . , n − 1} → R is a quadrati
 image. Alternatively, we may reshape
f = (f(x, y))n−1

x,y=0 
olumnwise into a ve
tor f : {0, . . . ,N − 1} → R, where
N = n2.2.1 Angle adaptationInstead of the fun
tional (2) one may try to 
ompute the smoothed rotationangles α by minimizing the simpler quadrati
 fun
tional

∫

Ω

(αu − α)2 dxdy + µ

∫

Ω

|∇α|2 dxdy, (4)where αu(x, y) is the angle of the gradient of u at (x, y). Note that
|∇α(x, y)|2 = |∇ cos(α(x, y))|2 + |∇ sin(α(x, y))|2. (5)Unfortunately, the fun
tional (4) does not take α modulo π

2 into a

ountso that we have to look for 
orresponding modi�
ations in the rest of thissubse
tion.To �nd the desired rotation angles α we �rst have to 
ompute the rotationangles αu of the given image u ∈ R
n,n and then to smooth them. We fo
uson the dis
rete setting.Computation of αu. We 
ompute αu(x, y) as the angle of the dis
retegradient of u in (x, y), (x, y) ∈ {0, . . . , n−1}×{0, . . . , n−1}. More pre
isely,we 
ompute this angle with respe
t to the smoothed image uσ := Kσ ∗ uobtained by 
onvolving u with the Gaussian Kσ of standard deviation σ. Asdis
rete partial derivatives of uσ we use

uσ,x := H1 uσ H
T
0 , uσ,y := H0 uσ H

T
1 (6)with

H0 :=
1

2




1 1
1 1. . .

1 1
2



, H1 :=




−1 1
−1 1. . .

−1 1
0



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In other words, uσ,x is 
omputed by taking forward di�eren
es of uσ inverti
al dire
tion, the usual smoothing in horizontal dire
tion, and assumingNeumann boundary 
onditions. If we suppose pixel distan
es hx, hy notequal to 1, then H1 must be multiplied by 1/hx and HT
1 by 1/hy to obtain
onsistent dis
retizations of the derivatives in x- and y-dire
tions in (6).Note that H0,H1 are also the �lter matri
es related to the unde
imatedHaar wavelet transform, 
f. [8℄. Alternatively, one 
an also apply symmetri
di�eren
es whi
h leads to similar numeri
al results. In the ve
tor reshapedversion, (6) reads

∇uσ =

(
Dx

Dy

)
uσ =

(
H0 ⊗H1

H1 ⊗H0

)
uσ, (7)where ⊗ denotes the tensor produ
t of matri
es. For (x, y) ∈ {0, . . . , n−1}×

{0, . . . , n−1}, let |∇uσ(x, y)| := (u2
σ,x(x, y)+u2

σ,y(x, y))
1/2. If |∇uσ(x, y)| = 0we set αu(x, y) := 0, and otherwise

αu(x, y) =

{
arccos

uσ,x(x,y)
|∇uσ(x,y)| if uσ,y(x, y) ≥ 0,

2π − arccos
uσ,x(x,y)
|∇uσ(x,y)| if uσ,y(x, y) < 0.Next, we want to smooth αu in an appropriate way.Smoothing of αu. Sin
e we want to take only α modulo π

2 into a

ount,it makes sense to use the π
2 -periodi
 fun
tions

cu(x, y) := cos(4αu(x, y)), su(x, y) = sin(4αu(x, y))in the smoothing pro
ess. Now we are looking for ve
tors (cv, sv)
T su
h that

|∇u|
(
cu
su

)
≈ |∇u|

(
cv
sv

)
.We do not require that c2v + s2v = 1. Having (5) in mind, we solve

arg min
cv,sv

∑

(x,y)∈Z2
n

|∇u|2
∣∣
(
cu
su

)
−

(
cv
sv

) ∣∣2 + µ(|∇cv|2 + |∇sv|2).Let IN denote theN×N identity matrix. Reshaping the matri
es 
olumnwiseand using G := diag(|∇u|) with the dis
rete partial derivative operators
(
Dx

Dy

)
:=

(
IN ⊗H1

H1 ⊗ IN

)
, (8)this is equivalent to �nding the minimizers of

‖G(cu − cv)‖2
2 + µ‖

(
Dx

Dy

)
cv‖2

2 and ‖G(su − sv)‖2
2 + µ‖

(
Dx

Dy

)
sv‖2

2.5



These minimizers are given by the solutions of
(
GTG+ µ(DT

xDx +DT
yDy)

)
cv = GTGcu, (9)(

GTG+ µ(DT
xDx +DT

yDy)
)
sv = GTGsu.The matrix DT

xDx + DT
yDy is the dis
retization of the negative Lapla
ian

−∆ with 
entered di�eren
es and Neumann boundary 
onditions. It is adiagonal dominant matrix in R
N,N of the rank N − 1. The matrix GTG 6= 0is a diagonal matrix with the nonnegative diagonal entries |∇u(x, y)|2. Then

GTG+µ(DT
xDx +DT

yDy) is irredu
ible diagonal dominant and 
onsequentlyinvertible. Moreover, it is easy to 
he
k that the maximum prin
iple
|cv(x, y)| ≤ max

(x,y)∈Z2
n

|cu(x, y)| ≤ 1is ful�lled (similarly for sv) by 
onsidering for example the Ja
obi iterationpro
ess to solve (9). Note that we have in general c2v(x, y) + s2v(x, y) 6= 1.On
e we have found cv and sv, we 
ompute the smoothed version α of αu as
α(x, y) := 0 if | (cv(x, y), sv(x, y)) | = 0 and

α(x, y) =
1

4

{
arccos cv(x,y)

|(cv(x,y),sv(x,y))| if sv(x, y) ≥ 0,

2π − arccos cv(x,y)
|(cv(x,y),sv(x,y))| if sv(x, y) < 0.Now we turn to the restoration step.2.2 Restoration by quadrati
 programmingWe 
onsider a dis
rete version of (3) whi
h reads for 
olumnwise reshapedimages as follows:

arg min
u

{
1

2
‖f − u‖2

2 + λ‖R(α)

(
Dx

Dy

)
u‖1

}
, (10)where

R(α) :=

(
diag(cosα) diag(sinα)

−diag(sinα) diag(cosα)

)and Dx and Dy are 
hosen as in (7). It is well-known, 
f. [4, 14℄ and Se
tion3, that the minimizer û of (10) is given by û = f−λ (DT
x D

T
y )R(α)T V̂ , where

V̂ is the solution of the dual problem
‖f − λ (DT

x D
T
y )R(α)T V ‖2

2 → min subje
t to ‖V ‖∞ ≤ 1. (11)This is a quadrati
 problem with linear 
onstraints whi
h 
an be solved by
orresponding optimization methods.6



For heavy noise, our 
hoi
e of Dx and Dy due to their kernels may lead to
he
kerboard e�e
ts. These e�e
ts 
an be avoided by solving, for a small
onstant ν, the slightly modi�ed problem
arg min

u

{
1

2
‖f − u‖2

2 + λ‖R(α)

(
Dx

Dy

)
u‖1 + ν‖(H1 ⊗H1)u‖1

}
.By [6, 3℄ and the following Se
tion 3, the restoration via minimization of (10)is useful for images 
ontaining rotated re
tangles. Of 
ourse, the approa
h
an be simply modi�ed for re
tangles whi
h are linearly transformed by a
onstant transform matrix A ∈ R

2,2:
arg min

u

{
1

2
‖f − u‖2 + λ‖R(α) (A ⊗ IN )

(
Dx

Dy

)
u‖1

}
. (12)In parti
ular, we will 
onsider images with rotated parallelograms whi
h 
anbe obtained by applying a shear matrix A(s) =

(
1 s
0 1

).2.3 Restoration by anisotropi
 di�usionAnother way to perform the restoration step is based on the Euler�Lagrangeequation of (3). For this, we repla
e ϕ(x, y) := ‖(x, y)‖1 = |x| + |y| in (3)by the di�erentiable fun
tion ϕε(x, y) :=
√
x2 + ε2 +

√
y2 + ε2 with |ε| ≪ 1and obtaiñ

Eα(u) =
1

2

∫

Ω

(f − u)2 dxdy + λ

∫

Ω

ϕε (R(α)∇u) dxdy. (13)The minimizer of Ẽα(u) has to ful�ll the Euler�Lagrange equation given by
0 = u− f − λdiv (Dα(∇u)∇u) (14)with the di�usion tensor

Dα(∇u) := R(α)T (
ψ(〈eα,∇u〉) 0

0 ψ(〈e⊥α ,∇u〉)

)
R(α), (15)where ψ(x) := 1/

√
x2 + ε2 and eα := (cosα, sinα)T. Then the minimizer of(14) 
an be obtained by 
omputing the steady state u(x, t) for t → ∞ of therea
tion di�usion equation
∂tu = f − u+ λdiv(Dα(∇u)∇u)with initial 
ondition u(·, 0) = f and homogeneous Neumann boundary 
on-ditions. On the other hand, the Euler�Lagrange equation 
an be rewrittenas

u− f

λ
= div(Dα(∇u)∇u).7



This 
an be interpreted as a fully impli
it time dis
retization of the di�usionequation
∂tu = div(Dα(∇u)∇u) (16)with initial image u(·, 0) = f and homogeneous Neumann boundary 
ondi-tions. In our numeri
al examples, we will restri
t our attention to a timeexpli
it s
heme to solve (16). Of 
ourse, su
h a s
heme, in 
ontrast to animpli
it dis
retization of (16) with time step size λ, will not lead to a min-imizer of (13). For details see [13℄. However, we propose this s
heme as analternative denoising te
hnique whi
h leads to very good results whi
h wewere not able to improve by adding e.g. the rea
tion term.More pre
isely, in our experiments we will solve (16) by �nite di�eren
emethods with an expli
it Euler dis
retization of the time derivative. Herewe have to be very 
areful with the dis
retization of the spatial derivativesto obtain 
omparable results with those from quadrati
 programming. Weapply the �rst order di�eren
e �lters proposed in [12, 17℄:

H̃0 :=
1

16




13 3
3 10 3. . .

3 10 3
3 13




, H̃1 :=
1

2




−1 1
−1 0 1. . .

−1 0 1
−1 1




.These �lters whi
h result in 5×5 spatial masks in (16) are optimized (amongall 5× 5 masks) with respe
t to rotation invarian
e and lead to sharp edges.Again, if we suppose pixel distan
es hx, hy 6= 1, we have to multiply H̃1by 1/hx to obtain a 
onsistent dis
retization of the derivative in x-dire
tion.Moreover, to avoid possible 
he
kerboard e�e
ts we use the following methodsuggested in [12, Se
tion 9.5℄: the fully dis
rete s
heme of (16) reads
un+1 = (IN + τM)unwith dis
retizationMu of div(Dα(∇u)∇u) and time step size τ . This s
hemewas modi�ed in [12℄ to

un+1 =
(
IN + τM + ν(Ĩ − IN )

)
unwith a small weight parameter ν and the usual Neumann boundary modi�-
ations. The low pass �lter Ĩ is represented by the 5-band Toeplitz matrixwith band 1

16 (−1, 4, 10, 4,−1) and is a dis
retization of the identity �lter
IN of 
onsisten
y order 4. The idea behind the additional term Ĩ − IN isto add a �lter, whi
h on the one hand does no harm to the 
onsisten
y ofthe s
heme, but on the other hand eliminates the 
he
kerboard e�e
ts. Forfurther explanation and numeri
al examples demonstrating the in�uen
e ofthe additional term, see [12, Se
tion 9.5℄.8



As in the previous subse
tion, we 
an also handle linearly transformed re
-tangles by solving (16) with the di�usion tensor
Dα(∇u) := ATR(α)T (

ψ(〈eα, A∇u〉) 0
0 ψ(〈e⊥α , A∇u〉)

)
R(α)A.3 Shape preservationThe fun
tional (3) with 
onstant rotation α = 0 
an be 
onsidered as aspe
ial 
ase of the more general fun
tional

1

2

∫

Ω

(f − u)2 dx + λ

∫

Ω

ϕ(∇u) dx (17)with Ω ⊂ R
m and with a �nite gauge fun
tion ϕ : R

m → R, i.e., a positivelyhomogeneous, 
onvex fun
tion whi
h satis�es ϕ(0) = 0 and ϕ(x) > 0 for
x 6= 0. Sin
e ϕ is positively homogeneous and 
onvex, it follows that ϕ issublinear whi
h means that it ful�lls in addition ϕ(x + y) ≤ ϕ(x) + ϕ(y).Moreover, sin
e ϕ is �nite and positively homogeneous, its 
onjugate fun
tion
ϕ∗ is the indi
ator fun
tion of a 
losed bounded 
onvex set Cϕ 
ontainingthe origin, 
alled Wul� shape of ϕ, whi
h is given as follows:

Cϕ := {x ∈ R
m : 〈x, y〉 ≤ ϕ(y) ∀y ∈ R

m}.Sin
e ϕ is lower semi
ontinuous (ls
), we have that ϕ∗∗ = ϕ so that ϕ is thesupport fun
tion of Cϕ, i.e.,
ϕ(x) = sup

y∈Cϕ

〈x, y〉. (18)The polar fun
tion ϕo of a gauge fun
tion ϕ is de�ned by
ϕo(x) := sup

y 6=0

〈x, y〉
ϕ(y)

(19)and is a gauge fun
tion, too. Then Cϕ 
an be also rewritten as
Cϕ := {x ∈ R

m : ϕo(x) ≤ 1}.For example, we have for ϕ(x) := ‖x‖1 that Cϕ = {x ∈ R
m : ‖x‖∞ ≤ 1}.For m = 2, the set Cϕ represents the square 
entered at the origin with sidesof length 2 parallel to the x- and y-axis.In [6℄, it was proven for the 
ontinuous setting that if f is the 
hara
teristi
fun
tion of the Wul� shape of ϕ, i.e., f = 1Cϕ and λ is small enough, thenthe minimizer û of (17) preserves this form whi
h means that û = c 1Cϕ withan appropriate 
onstant c > 0. Moreover, it was shown that the minimizer9



of (17) with ϕ(x) = ‖x‖1 also preserves re
tangles with sides parallel to theaxes.For a ve
tor U :=
(
Ui+kN

)N−1,m−1

i=0,k=0
∈ R

mN , we set Ui :=
(
Ui+kN

)m−1

k=0
∈ R

m.We are interested in the dis
rete 
ounterpart to (17) given by
1

2
‖f − u‖2 + λ‖

(
ϕ ((Lu)i)

)N−1

i=0
‖1 (20)with a �nite ls
 gauge fun
tion ϕ : R

m → R and a matrix L ∈ R
mN,N . Thetypi
al example for L ∈ R

2N,N in the previous se
tion was L = (DT
x DT

y )T.The penalizing term
J(u) := ‖

(
ϕ ((Lu)i)

)N−1

i=0
‖1is also a �nite ls
 gauge fun
tion and is therefore the support fun
tion of

CJ := {v ∈ R
N : 〈v,w〉 ≤ J(w) ∀w ∈ R

N}. (21)It is well-known, 
f. [10, 4℄, that the unique minimizer of (20) is given by
û = f − λv̂, (22)where λv̂ is the orthogonal proje
tion of f onto CλJ . Using that λv̂ ∈ CλJif and only if v̂ ∈ CJ we have that v̂ := arg minv∈CJ

‖f − λv‖2. Con
erningorthogonal proje
tion the following lemma will be useful, see [6℄ for the
ontinuous setting with L = ∇.Lemma 3.1. Let J be the support fun
tion of the 
losed 
onvex set CJde�ned by (21). Then we have that λv̂ is the orthogonal proje
tion of f onto
CλJ if and only if v̂ ∈ CJ and

〈f − λv̂, v̂〉 = J(f − λv̂). (23)We add the brief proof for our dis
rete approa
h.Proof: Let λv̂ be the orthogonal proje
tion of f onto CλJ . Then we obtainby the proje
tion theorem that
〈f − λv̂, y − λv̂〉 ≤ 0 ∀y ∈ CλJ .Together with (18) this implies that

λJ(f − λv̂) = sup
y∈CλJ

〈y, f − λv̂〉 = 〈f − λv̂, λv̂〉and hen
e (23). 10



Assume 
onversely that v̂ ∈ CJ ful�lls (23). Then λv̂ ∈ CλJ and we obtainby the de�nition of CλJ that for all y ∈ CλJ

〈f − λv̂, y〉 ≤ λJ(f − λv̂)

0 ≤ −〈f − λv̂, y〉 + λJ(f − λv̂) = 〈f − λv̂, λv̂ − y〉whi
h yields by the proje
tion theorem that λv̂ is the orthogonal proje
tionof f onto CλJ . �To determine v̂ we need a more manageable form of CJ whi
h is given in thefollowing lemma.Lemma 3.2. The set CJ de�ned by (21) 
oin
ides with
C̃J := {v = LTV : ‖

(
ϕo(Vi)

)N−1

i=0
‖∞ ≤ 1}. (24)Note that the 
ondition on V is equivalent to Vi ∈ Cϕ for all i = 0, . . . ,N−1.Proof: 1. First we see that v ∈ CJ must ful�ll v ∈ R(LT) sin
e otherwisewe 
an use the orthogonal de
omposition v = v0+v1 with v0 ∈ N (L), v0 6= 0and v1 ∈ R(LT) to obtain the 
ontradi
tion

〈v, v0〉 = 〈v0 + v1, v0〉 = ‖v0‖2
2 ≤ J(v0) = 0.Thus,

CJ = {v = LTV : 〈V,Lw〉 ≤ ‖
(
ϕ ((Lw)i)

)N−1

i=0
‖1 ∀w ∈ R

N}. (25)2. Let v ∈ C̃J . By de�nition of ϕo in (19), we see that
〈Vi,Wi〉 ≤ ϕo(Vi)ϕ(Wi) ∀Wi ∈ R

mso that we get for Wi = (Lw)i by assumption
〈V,Lw〉 =

N−1∑

i=0

〈Vi, (Lw)i〉 ≤
N−1∑

i=0

ϕo(Vi)ϕ((Lw)i) ≤
N−1∑

i=0

ϕ((Lw)i).By (25) this yields v ∈ CJ .3. Conversely, let v = LTV ∈ CJ . We have to show that there exists a Ṽsu
h that v = LTṼ and ‖
(
ϕo(Ṽi)

)N−1

i=0
‖∞ ≤ 1.The fun
tional lV (Lw) := 〈V,Lw〉 is linear on R(L) ⊂ R

mN and satis�es
lV (Lw) ≤ p(Lw) ∀w ∈ R

N ,where p : R
mN → R is the sublinear fun
tion p(W ) := ‖

(
ϕ (Wi)

)N−1

i=0
‖1.By the Hahn-Bana
h theorem lV 
an be extended to a linear fun
tional

LṼ (W ) := 〈Ṽ ,W 〉 on R
mN whi
h ful�lls
〈Ṽ ,W 〉 ≤ p(W ) ∀W ∈ R

mN . (26)11



Now LṼ (Lw) = lV (Lw) for all w ∈ R
N , i.e., 〈LTV,w〉 = 〈LTṼ , w〉 for all

w ∈ R
N whi
h implies that v = LTV = LTṼ .Let i0 ∈ {0, . . . , N − 1} so that ϕo(Ṽi0) = max{ϕo(Ṽi) : i = 0, . . . ,N − 1}.Then we have by (26) for all W̃ with W̃i := 0 for i 6= i0 that

〈Ṽ , W̃ 〉 = 〈Ṽi0 , W̃i0〉 ≤ ϕ(W̃i0), ∀W̃i0 ∈ R
m,

ϕo(Ṽi0) = sup
W̃i0

6=0

〈Ṽi0 , W̃i0〉
ϕ(W̃i0)

≤ 1and we are done by assumption on Ṽi0 . �It is not 
lear to us how to de�ne some kind of Wul� shapes on a dis
rete gridfor general ϕ. However, we may 
onsider re
tangles on Z
2 and ask if theyare preserved by the minimizer of (20) for ϕ(x) = ‖x‖1 and L = (DT

x D
T
y )T.Of 
ourse this depends on the 
on
rete 
hoi
e of the di�eren
e matri
es Dxand Dy. In the following, we provide an example. Similarly as in [6℄, we usethat (22) and the Lemmas 3.1 and 3.2 imply that û is the minimizer of (20)if and only if the following relations are ful�lled:i) û = f − λv̂,ii) v̂ = LTV̂ , where V̂i ∈ Cϕ for all i = 0, . . . ,N − 1,iii) J(û) = 〈û, v̂〉.Example 3.3. Let ϕ(x, y) = |x|+ |y| so that ii) is equivalent to ‖V̂ ‖∞ ≤ 1.Let R := {x0 + 1, · · · , x0 + a} × {y0 + 1, · · · , y0 + b} with x0, y0 ≥ 0 and

x0 + a, y0 + b ≤ n − 2 and let f = 1R be the image f : {0, . . . , n − 1} ×
{0, . . . , n− 1} → R with f(x, y) = 1 if (x, y) ∈ R and f(x, y) = 0 otherwise.Furthermore, we use L :=

(
H0 ⊗H1

H1 ⊗H0

), where we slightly modify the matri
esin (6) by h0(0, 0) = h1(0, 0) = 0 and h0(n− 1, n− 1) = 1, h1(n− 1, n− 1) =
−1, i.e., H1 is the forward di�eren
e matrix with zero boundary assumptionsand H0 is the 
orresponding smoothing matrix. Consider V̂ =

(
V̂ 1

V̂ 2

) de�ned

12



by
V̂ 1(x, y) =





(−1)y0−y x ∈ I1, y ∈ J1,

1 x ∈ I1, y ∈ J2,

(−1)y0+b−y x ∈ I1, y ∈ J3,

(−1)y0−y(1 − 2(x−x0)
a ) x ∈ I2, y ∈ J1,

1 − 2(x−x0)
a x ∈ I2, y ∈ J2,

(−1)y0+b−y(1 − 2(x−x0)
a ) x ∈ I2, y ∈ J3,

(−1)y0−y+1 x ∈ I3, y ∈ J1,

−1 x ∈ I3, y ∈ J2,

(−1)y0+b−y+1 x ∈ I3, y ∈ J3,and
V̂ 2(x, y) =





(−1)x0−x x ∈ I1, y ∈ J1,

1 x ∈ I2, y ∈ J1,

(−1)x0+a−x x ∈ I3, y ∈ J1,

(−1)x0−x(1 − 2(y−y0)
b ) x ∈ I1, y ∈ J2,

1 − 2(y−y0)
b x ∈ I2, y ∈ J2,

(−1)x0+a−x(1 − 2(y−y0)
b ) x ∈ I3, y ∈ J2,

(−1)x0−x+1 x ∈ I1, y ∈ J3,

−1 x ∈ I2, y ∈ J3,

(−1)x0+a−x+1 x ∈ I3, y ∈ J3,where I1 := {0, · · · , x0}, I2 := {x0+1, · · · , x0+a}, I3 := {x0+a+1, · · · , n−
1},and J1 := {0, · · · , y0}, J2 := {y0+1, · · · , y0+b}, J3 := {y0+b+1, · · · , n−1}.Of 
ourse V̂ ful�lls ii). Further we see that v̂ = LTV̂ =

(
2
a + 2

b

)
1R. Thenwe obtain for

û = f − λv̂ = (1 − 2(a+ b)

ab
λ) 1R = c 1R (27)that

J(û) = 2(a− 1)c + 4
c

2
+ 2(b− 1)c + 4

c

2
= 2(a+ b) c = 〈û, v̂〉.Thus, for λ ≤ ab

2(a+b) , the fun
tion û in (27) is the minimizer of (20).4 Numeri
al examplesFinally, we present numeri
al examples. All programs were written in MAT-LAB. Further, we have used the a primal-dual predi
tor-
orre
tor interior13



point method implemented in the software pa
kage MOSEK [2℄ to solve thequadrati
 problem with linear 
onstraints (11). To visualize the images wehave used the MATLAB images
 routine whi
h in
orporates an a�ne grayvalue s
aling to use the full gray value map. The parameters are 
hosen withrespe
t to the best visuable results.The �rst two examples in Figs. 2 and 3 demonstrate the denoising of rotatedre
tangles and parallelograms obtained by applying a shear matrix with s =
0.92. In both examples it su�
es to perform only one angle adaptationand restoration step. We show the results for the restoration by quadrati
programming and anisotropi
 di�usion. We observe a slight smoothing of theedges in Fig. 3 in the se
ond approa
h. This 
an be redu
ed by 
hosing asmaller parameter ν with the disadvantage that 
he
kerboard e�e
ts be
omevisible. Sin
e the images are depi
ted with the a�ne gray value s
aling of theMATLAB images
 routine we remark that the 
omputed minimal/maximalgray values are given as follows:Fig. 2 bottom left: −3.1 · 10−7, 220.3,Fig. 2 bottom right: 7, 223.2,Fig. 3 bottom left: −0.5, 249.5,Fig. 3 bottom right: −7.8, 252.4.The original gray values ranged from 0 to 255.The third example in Fig. 4 depi
ts the 
artoon extra
tion from a real-worldimage whi
h was also presented in [3℄. For 
omparison we found it useful totake the same image as in [3℄. We have iterated our two steps three times.Finally, we added an image from [1℄ whi
h is often used as a 
halleng-ing example for the 
omparison of denoising algorithms, see, e.g., [16, 18℄.We present the results after 4 iterations with quadrati
 programming andanisotropi
 di�usion. Moreover we show versions without and with res
al-ing to get an impression of the loss of 
ontrast. Here the minimal/maximalgray values are 106.4, 163.6 for quadrati
 programming and 95.1, 173.3 foranisotropi
 di�usion.5 Summary and Con
lusionsWe have proposed a method for the restoration of re
tangular shapes 
on-taminated with heavy noise whi
h avoids the round-o� e�e
ts at verti
esprodu
ed by known edge-preserving denoising te
hniques. As in a paper ofBerkels et al. our pro
edure approximates the rotation angle of the shapesin a �rst step and uses this information in a se
ond step to denoise the im-age without destroying verti
es. Our angle adaptation uses only �rst orderderivatives of the linearly smoothed image and requires to solve of a linearsystem of equations. For the se
ond step, we have proposed two di�erentmethods, namely quadrati
 programming and an anisotropi
 di�usion pro-
ess with the di�usion tensor adapted to the rotation angle.14
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Figure 2: Top left: noisy image with standard deviation 150. Top right:smoothed rotation angles used to denoise the image with parameters µ =
400000 and σ = 2.5. Bottom left: denoised image by quadrati
 programmingwith λ = 800 and ν = 0.1. Bottom right: denoised image by anisotropi
di�usion with ε2 = 0.001, time step size τ = 0.1, number of iterations
itmax = 8000 and ν = 0.001.So far, the algorithm works for re
tangles and linearly transformed re
t-angles, where the linear transform has to be known in advan
e. We havedemonstrated this also numeri
ally for sheared re
tangles (parallelograms)with �xed shear parameter. Our ongoing work aims at adapting the shearparameter, too. Moreover, we want to generalize the approa
h to the restora-tion of arbitrary (polygonal) shapes. This will in
orporate the appli
ationof more sophisti
ated 
orner dete
tors and their in
lusion into the di�usiontensor of a di�usion equation or an appropriate fun
tional.Referen
es[1℄ MegaWave. http://www.
mla.ens-
a
han.fr/Cmla/Megawave.15
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Figure 3: Top left: noisy image 
ontaining sheared re
tangles with �xedshear parameter s = 0.92 and white Gaussian noise of standard deviation50. Top right: smoothed rotation angles used to denoise the image withparameters µ = 300000 and σ = 1.5. Bottom left: denoised image byquadrati
 programming with λ = 150 and ν = 0.04. Bottom right: denoisedimage by anisotropi
 di�usion with ε2 = 0.001, time step size τ = 0.1,number of iterations itmax = 1800 and ν = 0.01.[2℄ The MOSEK Optimization Toolbox. http://www.mosek.
om.[3℄ B. Berkels, M. Burger, M. Droske, O. Nemitz, and M. Rumpf. Cartoonextra
tion based on anisotropi
 image 
lassi�
ation, vision, modelingand visualization pro
eedings. In Vision, Modeling and Visualization.Springer, a

epted.[4℄ A. Chambolle. An algorithm for total variation minimization and ap-pli
ations. Journal of Mathemati
al Imaging and Vision, (20):89�97,2004.[5℄ A. Chambolle. Total variation minimization and a 
lass of binary MRFmodels. In A. Rangarajan, B. C. Vemuri, and A. L. Yuille, editors,Energy Minimization Methods in Computer Vision and Pattern Re
og-16



nition, EMMCVPR, volume 3757 of Le
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e.Springer, 2005.[6℄ S. Esedoglu and S. Osher. De
omposition of images by anisotropi
Rudin-Osher-Fatemi model. Communi
ations in Pure and AppliedMathemati
s, 57(12):1609�1626, 2004.[7℄ W. Hintermüller and W. Kunis
h. Total bounded variation regulariza-tion as a bilaterally 
onstrained optimization problem. SIAM J. Appl.Math., 4(64):1311�1333, 2004.[8℄ S. Mallat. A Wavelet Tour of Signal Pro
essing. A
ademi
 Press, SanDiego, se
ond edition, 1999.[9℄ P. Perona and J. Malik. S
ale spa
e and edge dete
tion using anisotropi
di�usion. IEEE Transa
tions on Pattern Analysis and Ma
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Figure 4: Top left: original image of a 
ity area as presented in [3℄. Top right:smoothed rotation angles used to obtain the �nal image at bottom left withparameters µ = 20000 and σ = 0.8. The smoothed rotation angles belongingto the anisotropi
 di�usion at the bottom right look very similar. Bottomleft: 
artoon generated by quadrati
 programming with λ = 50 and ν = 0.Bottom right: 
artoon generated by anisotropi
 di�usion with ε2 = 0.1, timestep size τ = 0.05, number of iterations itmax = 700 and ν = 1
200 .
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Figure 5: Top left: noisy image. Top right: smoothed rotation angles used togenerate the �nal image on the left with parameters µ = 10000 and σ = 1.5.The smoothed rotation angles belonging to the anisotropi
 di�usion lookvery similar. Middle left: denoised image by quadrati
 programming with
λ = 150 and ν = 0.1 without res
aling. Middle right: denoised imageby anisotropi
 di�usion with ε2 = 0.5, time step size τ = 0.1, number ofiterations itmax = 1700 and ν = 1

300 without res
aling. Bottom: same as inthe middle with identi
al res
aling. 20


