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Abstract

We examine the best approximation of componentwise positive vectors or pos-
itive continuous functions f by linear combinations f̂ =

∑

j αjϕj of given vectors
or functions ϕj with respect to functionals Qp, 1 ≤ p ≤ ∞, involving quotients

max{f/f̂, f̂/f} rather than differences |f − f̂ |. We verify the existence of a best ap-
proximating function under mild conditions on {ϕj}n

j=1
. For discrete data, we compute

a best approximating function with respect to Qp, p = 1, 2,∞ by second order cone
programming. Special attention is paid to the Q∞ functional in both the discrete and
the continuous setting. Based on the computation of the subdifferential of our convex
functional Q∞ we give an equivalent characterization of the best approximation by
using its extremal set. Then we apply this characterization to prove the uniqueness
of the best Q∞ approximation for Chebyshev sets {ϕj}n

j=1
.

1 Introduction

In various applications, e.g., in query optimization [3, 7] or in the restoration of images
contaminated with multiplicative noise [13, 2] it is useful to involve quotients rather than
differences into the mathematical models and to ask for positive solutions. Moreover,
generalized relative error measures [8, 11, 17] make use of quotients.
In this paper, we consider the approximation of positive discrete or continuous functions
f by linear combinations f̂ =

∑n
j=1 αjϕj such that a certain functional Qp, 1 ≤ p ≤ ∞, is

minimized. The functional Qp resembles the Lp norm of the function max{f̂ /f, f/f̂} − 1

for f̂ > 0. More precisely, we are interested in a minimizer of Qp(A·), where A denotes
the linear transform Aα :=

∑n
j=1 αjϕj/f . A simple example is the approximation of a

componentwise positive vector (f(xi))
m
i=1 by data (f̂(xi))

m
i=1 lying on a line f̂(x) = α1+α2x

with respect to the Q∞ functional. Then we search for coefficients α1, α2 such that

max
i=1,...,m

max

{

f̂(xi)

f(xi)
,
f(xi)

f̂(xi)

}

becomes minimal and f̂(xi) > 0, i = 1, . . . ,m. Of course, due to ln(max{f̂/f, f/f̂}) =

| ln f − ln f̂ | one could minimize ‖ ln f − f̂‖p and use ef̂ as approximation of f . However,
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as demonstrated in our numerical Example 3.1 this is often not a good choice.

This paper is organized as follows: In Section 2, we introduce the quotient functionals
Qp, 1 ≤ p ≤ ∞, and verify their convexity and continuity. We prove that under mild
conditions on {ϕj}nj=1 the functional Q(A·) attains a minimum and that the minimizer is
unique for 1 < p < ∞ if A has nullspace {0}. In Section 3, we deal with discrete data.
We compute a minimizer of Qp(A·), p = 1, 2,∞ by second order cone programming. The
best approximation with respect to the Q∞ functional is examined in Section 4. Once
we have computed the subdifferential of Q∞, the approach follows basically the lines in
[14], but with all the necessary modifications due to the fact that Q∞ is not a norm. We
give an equivalent characterization of the minimizer of Q∞(A·) using its extremal set and
apply this characterization to prove the uniqueness of the minimizer if A is related to a
Chebyshev set. We show the relation of our results to the best approximation with respect
to a generalized relative error.

2 Quotient functionals

Our considerations are based on the ’quotient function’ q : R → [0,∞] given by

q(x) :=







x− 1 for x ∈ [1,∞),
1
x − 1 for x ∈ (0, 1),
∞ otherwise,

(1)

i.e., q(x) = max{x − 1, 1
x − 1} for x > 0. The function q is convex and continuous and

dom(q) := {x : q(x) <∞} is open, see also [12, p. 52, 83] and Fig. 1 left.

Let Ω be either a (innumerable) compact subset of R
d and µ the Lebesgue measure on Ω

or a finite subset {x1, . . . , xm} of R
d with point measure µ. By X := C(Ω) we denote the

space of continuous functions on Ω, resp. the space X := R
m and by X>0 the positive

functions in X. Set

Q(x, f) := q(f(x)) =







f(x) − 1 for f(x) ∈ [1,∞),
1

f(x) − 1 for f(x) ∈ (0, 1),

∞ otherwise.

(2)

Proposition 2.1 The function Q : Ω × X → [0,∞] in (2) is continuous in x for every

f ∈ X and convex in f for every x ∈ Ω.

Proof: The continuity of Q(·, f), f ∈ X, follows by the continuity of f and q and the
convexity of Q(x, ·), x ∈ Ω by the convexity of q. �

We want to concatenate the quotient function with the Lp norms

‖f‖p :=





∫

Ω

|f(x)|p dµ





1/p

, 1 ≤ p <∞, and ‖f‖∞ := ess sup
x∈Ω

|f(x)|.
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For 1 ≤ p ≤ ∞, we introduce Qp : X → [0,∞] by

Qp(f) :=

{
‖Q(·, f)‖p if µ{x : f(x) ≤ 0} = 0,

∞ otherwise.

For example, we obtain for f(x) :=
√
x on Ω := [0, 1] that Q1(f) = 1 while Qp(f) = ∞

for p > 1. For p = ∞ we have that

Q∞(f) := sup
x∈Ω

Q(x, f).

In particular, we see in the case X = R
m that Qp(f) =

( ∑m
i=1Q(xi, f)p

)1/p
, 1 ≤ p < ∞

and Q∞(f) = maxi=1,...,mQ(xi, f).

The level sets {f ∈ R
2 : Qp(f) ≤ 1} for p = 1, 2, 3,∞ are illustrated in Fig. 1 right.
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Figure 1: Left: The function q. Right: The ’unit sphere’ of Qp for p = 1, 2, 3,∞ in R
2.

In the following, we always equip X with the L∞ norm so that it becomes a Banach space.

Proposition 2.2 The functional Qp, 1 ≤ p ≤ ∞ has the following properties:

i) Qp is convex on X.

ii) Qpp is strictly convex on domQp for 1 < p <∞.

iii) Qp is continuous on X.

Proof: i) For f, g ∈ X and λ ∈ [0, 1] we have to show that

Qp(λf + (1 − λ)g) ≤ λQp(f) + (1 − λ)Qp(g).

If one of the values µ{x : f(x) ≤ 0} or µ{x : g(x) ≤ 0} is positive, then the assertion is
clear. Assume that both values are zero. Then µ{x : λf(x) + (1 − λ)g(x) ≤ 0} = 0 and it
remains to show that

‖Q (·, λf + (1 − λ)g) ‖p ≤ λ‖Q(·, f)‖p + (1 − λ)‖Q(·, g)‖p.
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By Proposition 2.1, we obtain

0 ≤ Q (x, λf + (1 − λ)g) ≤ λQ (x, f) + (1 − λ)Q (x, g) ∀x ∈ Ω,

and hence

‖Q (·, λf + (1 − λ)g) ‖p ≤ ‖λQ(·, f)+(1−λ)Q(·, g)‖p ≤ λ‖Q(·, f)‖p+(1−λ)‖Q(·, g)‖p. (3)

ii) Let f, g ∈ domQp with f 6= g and λ ∈ (0, 1). Then λf + (1 − λ)g ∈ domQp and since
‖ · ‖pp, 1 < p <∞, is strictly convex, we obtain together with (3) that

‖Q (·, λf + (1 − λ)g) ‖pp ≤ ‖λQ(·, f) + (1 − λ)Q(·, g)‖pp < λ‖Q(·, f)‖pp + (1 − λ)‖Q(·, g)‖pp.

iii) Since Qp is proper, convex and there exists a non-empty open set of domQp where
Qp is bounded above by a finite constant, it is continuous over the interior of domQp, see
[6, p. 12]. It remains to show for any function f not in the interior of domQp and any
sequence {fn}n∈N with lim

n→∞
‖f − fn‖∞ = 0 that

lim inf
n→∞

Qp(fn) ≥ Qp(f) and lim sup
n→∞

Qp(fn) ≤ Qp(f). (4)

For p = ∞ a function f not in the interior of domQ∞ has to fulfill f(x0) ≤ 0 for some
x0 ∈ Ω. Then the right inequality in (4) follows immediately and the left one by

lim inf
n→∞

Q∞(fn) = lim inf
n→∞

max {‖fn‖∞ − 1, ‖1/fn‖∞ − 1}
≥ lim inf

n→∞
max {fn(x0) − 1, 1/fn(x0) − 1} = ∞ = Q∞(f).

Let 1 ≤ p < ∞. Assume that µ(Ω0) > 0, where Ω0 := {x : f(x) ≤ 0}. Then it
remains to verify the left inequality in (4). If there exists x0 ∈ Ω0 such that f(x0) < 0,
then f(x) ≤ −ε < 0 in a neighborhood N(x0) of x0 and there exists n(ε) such that
fn(x) < −ε/2 for x ∈ N(x0) and n ≥ n(ε). But then lim inf

n→∞
Qp(fn) = ∞ by definition of

Qp. Hence, we can restrict our attention to f ≥ 0. Since fn converges uniformly to f , for
any ε > 0 there exists n(ε) such that |fn| ≤ ε on Ω0. But then Qp(fn) ≥ µ(Ω0)(1/ε − 1)
for n ≥ n(ε) which goes to infinity as ε→ 0.
Therefore, it remains to consider the case µ(Ω0) = 0 and µ{x : fn(x) ≤ 0} = 0. Then we
get by Fatou’s lemma [16, p. 17] and since limn→∞Q(·, fn) = Q(·, f) a.e. that

Qpp(f) =

∫

Ω
Q(·, f)p dµ =

∫

Ω
lim inf
n→∞

Q(·, fn)p dµ ≤ lim inf
n→∞

∫

Ω
Q(·, fn)p dµ = lim inf

n→∞
Qpp(fn),

Qpp(f) =

∫

Ω
Q(·, f)p dµ =

∫

Ω
lim sup
n→∞

Q(·, fn)p dµ ≥ lim sup
n→∞

∫

Ω
Q(·, fn)p dµ = lim sup

n→∞
Qpp(fn).

This completes the proof. �

For given f ∈ X>0 and ϕj ∈ X, j = 1, . . . , n, we want to find a function f̂ ∈ span{ϕj :

j = 1, . . . , n} such that Qp(f̂ /f) becomes minimal. In other words, we are interested in

inf
α∈Rn

Qp(Aα), (5)
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where A : R
n → X denotes the linear mapping

Aα :=
n∑

j=1

αj
ϕj
f

︸︷︷︸

ψj

onto its range R(A) = span{ψj : j = 1, . . . , n}.

Remark 2.3 It seems also natural to consider

α̂ := argmin
α∈Rn

‖ ln(f) − f̂‖p. (6)

For p = ∞, this problem is equivalent to

α̂ := argmin
α∈Rn

Q∞(ef̂/f)

The approximation with respect to the Lp norm as considered in (6) is well examined, see

[14] and the references therein. For a numerical comparison of (6) for p = ∞ with our

approach see Example 3.1.

Since R(A) is a finite dimensional linear subspace of X it is closed. By N (A) we denote
the nullspace of A. By the following proposition, Qp(A·) attains its minimum under mild
assumptions on A.

Proposition 2.4 Let R(A)∩domQp 6= ∅. Then Qp(A·), 1 ≤ p ≤ ∞ attains its minimum.

If N (A) = {0}, then, for 1 < p <∞, the functional Qp(A·) has a unique minimizer.

Proof: The restriction Qp|R(A) of Qp onto the reflexive Banach space (R(A), ‖ · ‖∞)
is a proper, convex, lower semi-continuous functional which is in addition coercive since
‖f − 1‖p ≤ Qp(f). Thus, Qp attains its minimum on R(A). By definition of R(A) a
corresponding minimizer has the form Aα̂ for some α̂ ∈ R

n and this is also a minimizer of
Qp(A·).
For 1 < p < ∞, the minimizers of Qp and Qpp coincide. Since Qpp is strictly convex on
domQp, it has a unique minimizer v̂ ∈ R(A) and since N (A) = {0} this implies that there
exists a unique α̂ ∈ R

n such that v̂ = Aα̂. This completes the proof. �

3 Minimization by second order cone programming

In this section, we deal with the discrete setting, i.e., we consider Ω := {x1, . . . , xm} and
X := R

m. Then for f := (f(xi))
m
i=1 ∈ R

m
>0 the linear mapping A can be represented by

the matrix A := (ϕj(xi)/f(xi))
m,n
i,j=1. We suppose that n ≤ m and that A has full range n

so that N (A) = {0}. Then, for p = 1, 2 and ∞, the problems

α̂ = argmin
α∈Rn

Qpp(Aα), resp., α̂ = argmin
α∈Rn

Q∞(Aα) (7)
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can be simply solved by second order cone programming (SOCP). In general, SOCP can
be applied for solving problems of the form

min
x∈Rs

〈c, x〉 subject to Mx+ b ∈ K (8)

where c ∈ R
s, b ∈ R

t, M ∈ R
t,s and K is the product of convex cones of the form R

τ
≥0,

{0} or
Lτ := {(x̄T, xτ )

T = (x1, . . . , xτ )
T : ‖x̄‖2 ≤ xτ}

Lτr :=
{(
x̄T, xτ−1, xτ

)
T

= (x1, . . . , xτ )
T : ‖x̄‖2

2 ≤ 2xτ−1xτ , xτ−1 ≥ 0
}

.

Software packages like MOSEK [1] provide efficient large scale solvers for problems of this
kind. For details on SOCP we refer to [9]. It remains to rewrite (7) into the form (8).
For p = ∞, problem (7) is equivalent to the constraint problem

min
u∈Rm,α∈Rn

Q∞(u) subject to Aα = u

which can be rewritten as

min
a∈R,u∈Rm,α∈Rn

a− 1 subject to Aα = u, 1 ≤ a,
1

a
≤ u ≤ a, (9)

where the inequalities are meant componentwise. The first two constraints and u ≤ a are
cone constraints with K = {0} or R

t
≥0. The remaining constraints 1 ≤ aui are equivalent

to
√

22 + (a− ui)2 ≤ ui + a, i = 1, . . . ,m and can therefore be reformulated as





0 0
−1 1

1 1





(
ui
a

)

+





2
0
0



 ∈ L3.

For p = 1, problem (7) can be rewritten as

min
u∈Rm,α∈Rn

m∑

i=1

∣
∣
∣
∣
max{u(xi),

1

u(xi)
} − 1

∣
∣
∣
∣

subject to Aα = u, 0 < u

and in SOCP–form as

min
a,u∈Rm,α∈Rn

m∑

i=1

ai −m subject to Aα = u, 1 ≤ a,
1

a
≤ u ≤ a.

For p = 2, problem (7) is equivalent to

min
u∈Rm,α∈Rn

m∑

i=1

(

max{u(xi),
1

u(xi)
} − 1

)2

subject to Aα = u, 0 < u

and further to

min
a,b,c,u∈Rm, α∈Rn

m∑

i=1

ci subject to Aα = u, 1 ≤ a,
1

a
≤ u ≤ a, b = a− 1, b2 ≤ c.
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As in the previous problem these are second order cone constraints, where the fifth con-
dition is related to a rotated second order cone with (bi, ci, 1/2)

T ∈ L3
r, i = 1, . . . ,m.

We finish this section by an example. Since our original motivation to deal with this topic
comes from query optimization in relational database management systems we give an
example with data from this area.

Example 3.1 The dots in Fig. 2 show the number of authors for a given number of

citations between 256 and 512 times as extracted from the citeseer top 10.000 cited com-

puter science authors. The solid lines are the approximations of the data by polynomials

of degree 1,2 and 4 with respect to Qp for p = 1, 2,∞. The dashed lines in the bottom

figures show the approximations by ef̂ from problem (6) in Remark 2.3, with p = ∞,

where f̂ is again a polynomial of degree 1,2 and 4. The corresponding minimal values of

Qp(f̂ /f) are given in the following table. The last column of the table shows the value

max
i

max{f(xi)/e
f̂(xi) − 1, ef̂ (xi)/f(xi) − 1} for the approximation (6) with p = ∞.

degree Q1 Q2 Q∞ Q∞, exp

1 64.3062 30.2001 1.1606 1.1077

2 60.6107 25.5951 0.9740 1.0448

3 60.5563 25.5942 0.9700 0.9957

4 60.4704 25.5163 0.9321 0.9493

4 The Q∞ functional

In this section, we have a closer look at the Q∞ functional. In particular, we are interested
in conditions on A : R

n → X such that the minimizer of Q∞(A·) is unique. Let X ′ denote
the dual space of X. Of course (Rm)′ = Rm, while the dual space of (C(Ω), ‖ · ‖∞) is the
Banach space M(Ω) of regular (signed) Borel measures equipped with the total variation.
Note that we know by the Krein–Milman theorem and the theorem of Alaoglu [15, Sec.
VIII] that

{p ∈M(Ω) : ‖p‖ ≤ 1} = conv {ξxδ(x) : |ξx| = 1, x ∈ Ω} ,
where 〈δ(x), f〉 = v(x) for all f ∈ C(Ω) and conv denotes the closure of the convex hull in
the weak* topology of X ′.

In the following, we assume that R(A) ∩ domQ∞ 6= ∅ such that a minimizer of Q∞(A·)
exists. Note that domQ∞ = X>0. Further, we see that there exists u ∈ R(A) with

Q∞(u) = 0 ⇔ u ≡ 1 ⇔ 1 ∈ R(A),

so that we restrict our attention to the nontrivial case Q∞(u) > 0.

The subdifferential ∂Q∞(u) of the proper convex functional Q∞ at u ∈ X>0 is defined as

∂Q∞(u) := {p ∈ X ′ : Q∞(u) ≤ Q∞(v) + 〈p, u− v〉 ∀v ∈ X}. (10)
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Figure 2: Approximation by polynomials of degree 1, 2 and 4 (left to right). Top: with

respect to Q1. Middle: with respect to Q2. Bottom: with respect to Q∞ and ef̂ for f̂
approximated by (6) with p = ∞ (dashed line).

By Fermat’s rule we know that α̂ is a minimizer of Q̃ := Q∞(A·) if and only if

0 ∈ ∂Q̃(α̂) = A∗∂Q∞(Aα̂). (11)

Therefore we are interested in ∂Q∞. We will show that ∂Q∞(u) is the weak* closure of
certain linear combinations of Dirac measures. To this end, we need the following theorem.
The proof can be found, e.g., in [10, pp. 201].

Theorem 4.1 Let Ω be a compact topological space and let X be a separable locally convex

topological space. Let F (x, u) be a function on Ω ×X which is upper semi–continuous in

x for every u ∈ X and convex in u for every x ∈ Ω. Set G(u) := supx∈Ω F (x, u). If F (x, ·)
is continuous at u for any x ∈ Ω, then

∂G(u) = conv {∂uF (x, u) : x ∈ Ω, F (x, u) = G(u)} .

8



This theorem can be used to prove the following theorem.

Theorem 4.2 Let u ∈ X>0 with Q∞(u) > 0 and let

E = E(u) := {x ∈ Ω : Q(x, u) = Q∞(u)} (12)

be the extremal set of u. Then the subdifferential of Q∞ at u is given by

∂Q∞(u) = conv
{

(Q∞(u) + 1)1−θx θx δ(x) : x ∈ E
}

,

where θx := sgn(u(x) − 1).

Proof: Let a := Q∞(u) + 1 > 1. By Proposition 2.1 and Theorem 4.1 with F (x, u) :=
Q(x, u) and G := Q∞ it remains to show that

∂uQ(x, u) = a1−θxθxδ(x) =

{
δ(x) if u(x) = a,

−a2δ(x) if u(x) = 1/a,
x ∈ E.

Let x ∈ E and p ∈ ∂Qu(x, u). Then p has to fulfill

Q(x, u) ≤ Q(x, v) + 〈p, u− v〉 ∀v ∈ X. (13)

Set v := u ± h, h ∈ X, where h(x) = 0 so that Q(x, u) = Q(x, v) = a − 1. Then (13)
implies for any h ∈ X with h(x) = 0 that

0 ≤ ±〈p, h〉 ⇔ 〈p, h〉 = 0.

Consequently, p is supported on x, i.e., p = cδ(x).
If a = u(x), then (13) implies

a− 1 ≤ Q(x, v) + c(a− v(x)) ∀v ∈ X

and choosing v ∈ X such that v(x) ≥ 1 we obtain

a− 1 ≤ v(x) − 1 + c(a− v(x)),

0 ≤ (1 − c) (v(x) − a) .

Choosing v ∈ X such that v(x) > a and then such that v(x) < a, this implies that c = 1.
If 1/u(x) = a, then (13) can be rewritten as

a− 1 ≤ Q(x, v) + c

(
1

a
− v(x)

)

∀v ∈ X

and for v ∈ X with v(x) < 1 we get

a− 1 ≤ 1

v(x)
− 1 + c

(
1

a
− v(x)

)

,

0 ≤ (a+ cv(x)) (1 − av(x)) .

In the case v(x) < 1/a, this implies that a+ cv ≥ 0, i.e., c ≥ −a2. Choosing v ∈ X such
that v(x) > 1/a we conclude that c ≤ −a2 so that finally c = −a2. This completes the
proof. �

The following theorem characterizes the minimizers α̂ = argminQ∞(A·).
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Theorem 4.3 Let A : R
n → X be given by Aα :=

∑n
j=1 αjψj, ψj ∈ X, where R(A) ∩

X>0 6= ∅ and 1 6∈ R(A). Assume that R(A) contains only functions u for which the set

E(u) defined by (12) is finite. Then

α̂ = argmin
α∈Rn

Q∞(Aα) and û = Aα̂, â = Q∞(Aα̂) + 1 (14)

if and only if there exist λ̂ ∈ R
t, t ≤ n + 1 with λ̂i 6= 0, i = 1, . . . , t and x̂i ∈ E(û),

i = 1, . . . , t such that

i)
t∑

i=1
λ̂i ψj(x̂i) = 0, j = 1, . . . , n,

ii)
t∑

i=1
λ̂i θx̂i

âθx̂i
−1 = 1, θx̂i

:= sgn(û(x̂i) − 1),

iii) if λ̂i > 0 then û(x̂i) = â and if λ̂i < 0 then û(x̂i) = 1
â .

Proof: By (11), we have that α̂ is a minimizer of Q∞(A·) if and only if there exists
p̂ ∈ ∂Q∞(Aα̂) such that 0 = A∗p̂ = (〈p̂, ψj〉)nj=1. By Theorem 4.2 we know that p̂ has the
form

p̂ =
∑

xi∈E(û)

µi â
1−θxiθxi

δ(xi)

with µi ≥ 0,
∑

i µi = 1. Thus, α̂ is a minimizer of Q∞(A·) if and only if

0 =
∑

xi∈E(û)

µi â
1−θxiθxi

ψj(xi), j = 1, . . . , n.

In other words, 0 is a convex combination of the n-dimensional vectors
(
â1−θxiθxi

ψj(xi)
)n

j=1
.

By Carathéodory’s theorem we know that for any subset D ⊂ R
n, any point of conv(D)

can be expressed as a convex linear combination of t ≤ n + 1 points of D. Consequently,
there exist t ≤ n+ 1 points x̂i from E(û) and µ̂i > 0,

∑t
i=1 µ̂i = 1 such that

0 =

t∑

i=1

µ̂i â
1−θx̂iθx̂i

︸ ︷︷ ︸

λ̂i

ψj(x̂i), j = 1, . . . , n.

We have that λ̂i θx̂i
> 0 and

∑t
i=1 µ̂i =

∑t
i=1 λ̂i â

θx̂i
−1θx̂i

= 1. If λ̂i > 0 then θx̂i
= 1 and

û(x̂i) = â by definition of E(û). Conversely, if λ̂i < 0 then θx̂i
= −1 and û(x̂i) = 1/â.

This finishes the proof. �

Corollary 4.4 Let the assumptions of Theorem 4.3 be fulfilled. Let

α̂ = argmin
α∈Rn

Q∞(Aα), û = Aα̂, â = Q∞(Aα̂) + 1

and let x̂i ∈ E(û), i = 1, . . . , t denote the points in i) - iii) of Theorem 4.3. Then, any

other minimizer α̃ of Q∞(A·) and ũ = Aα̃ fulfill

ũ(x̂i) = û(x̂i) = âθx̂i .
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Proof: By Theorem 4.3 there exist λ̂ ∈ R
t such that

t∑

i=1

λ̂i ψj(x̂i) = 0, j = 1, . . . , n

and λ̂iθx̂i
> 0. Taking this into account we obtain

t∑

i=1

|λ̂i| |âθx̂i − 1| =

t∑

i=1

λ̂i (û(x̂i) − 1)

=

t∑

i=1

λ̂i

n∑

j=1

α̂jψj(x̂i) −
t∑

i=1

λ̂i

=

n∑

j=1

α̂j

t∑

i=1

λ̂iψj(x̂i) −
t∑

i=1

λ̂i = −
t∑

i=1

λ̂i

=
t∑

i=1

λ̂i (ũ(x̂i) − 1) =
t∑

i=1

|λ̂i| θx̂i
(ũ(x̂i) − 1).

For those x̂i, i = 1, . . . , t with θx̂i
= sgn(ũ(x̂i) − 1) we have that |ũ(x̂i) − 1| ≤ |âθx̂i − 1|.

Then we get for the remaining indices in I := {i = 1, . . . , t : θx̂i
6= sgn(ũ(x̂i) − 1)} that

∑

i∈I

|λ̂i| |âθx̂i − 1| ≤
∑

i∈I

|λ̂i| θx̂i
(ũ(x̂i) − 1) ≤ 0.

Since the left-hand side is positive, this implies that I is empty and that û(x̂i) = âθx̂i . �

Now we can address the question of the uniqueness of the minimizer.
First, we consider the discrete setting X = R

m with

A := (ϕj(xi)/f(xi))
m,n
i,j=1 = (ψj(xi))

m,n
i,j=1 . (15)

By spark(A) we denote the smallest number of rows of A which are linearly dependent. In
other words, any spark(A)−1 rows of A are linearly independent. For the ’spark’ notation
we also refer to [5].

Theorem 4.5 Let A ∈ R
m,n, m ≥ n such that spark(A) = n + 1. Then Q∞(A·) has a

unique minimizer which is determined by n + 1 rows of A, i.e., there exists a set Ê ⊂
{x1, . . . , xm} of cardinality |Ê| = n + 1 such that Q∞(A·) and Q∞(A|Ê ·) have the same

minimum and the same minimizer. Here A|Ê denotes the restriction of A to the rows

belonging to Ê.

Proof: Let Ê := {x̂i : i = 1, . . . , t}, t ≤ n+ 1 denote the points in Theorem 4.3. Then we
have by i) of Theorem 4.3 that (A|Ê)∗λ̂ = 0. If t ≤ n, this implies by spark(A) = n + 1

the contradiction λ̂ = 0. Thus, t = n + 1. In particular, if m = n + 1, then xi and x̂i,
i = 1, . . . , n + 1 coincide.
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Assume now that there exist two different minimizers α̂ and α̃ of Q∞(A·). Then we
conclude by Corollary 4.4 that A|Ê(α̂ − α̃) = 0. Since A|Ê ∈ R

n+1,n has full rank this is
only possible if α̂ = α̃.

Similarly, if β̂ is a minimizer of Q∞(A|Ê ·), then Corollary 4.4 implies that A|Ê(α̂− β̂) = 0,

i.e., α̂ = β̂ and we are done. �

Remark 4.6 In general the condition spark(A) = n + 1 is not necessary for Q∞(A·) to

have a unique minimizer. However, if A ∈ R
n+1,n and R(A)∩R

n+1
>0 6= ∅, then spark(A) =

n+ 1 is also necessary for Q∞(A·) to have a unique minimizer.

Next, we consider the continuous setting with

Aα :=

n∑

j=1

αjϕj(x)/f(x), f > 0. (16)

A set of continuous functions ϕj : Ω → R, j = 1, . . . , n is called a Chebyshev set or a
Haar set, if every non-trivial linear combination of these functions has at most n − 1
zeros in Ω. In other words, for any collection of n pairwise distinct points xi ∈ Ω, the
matrix (ϕj(xi))

n
i,j=1 and the matrix diag(1/f(xi))

n
i=1 (ϕj(xi))

n
i,j=1 = (ϕj(xi)/f(xi))

n
i,j=1

is invertible. In particular, in this case the matrix (15) fulfills spark(A) = n + 1. Of
course, depending on the points xi, the condition spark(A) = n + 1 can be also fulfilled
if {ϕj : j = 1, . . . , n} is not a Chebyshev set. For an interval Ω = I ⊂ R, the set of
polynomials ϕi(x) = xi−1, i = 1, . . . , n forms a Chebyshev set. Unfortunately, for Ω ⊂ R

d,
d ≥ 2 there does not exist a Chebyshev set of n ≥ 1 continuous functions.

Theorem 4.7 Let the functions ϕj : I → R, j = 1, . . . , n form a Chebyshev set and let

A be defined by (16). Then the minimizer of Q∞(A·) is unique and is determined by the

solution of the corresponding discrete problem at n+ 1 points of I.

Proof: Let Ê := {x̂i : i = 1, . . . , t} denote the points in Theorem 4.3. Then we have by
i) of Theorem 4.3 that (A|Ê)∗λ̂ = 0. Since {ϕj}nj=1 is a Chebyshev set, this implies for

t ≤ n the contradiction λ̂ = 0. Thus, t = n+ 1 and the rest of the proof follows as in the
proof of Theorem 4.5. �

Similarly as the best approximating function from the span of a Chebyshev set with respect
to ‖ · ‖∞, the minimizing function û = Aα̂ of Q∞(A·) shows an alternating behavior in
the n+ 1 points x̂i.

Theorem 4.8 Let ϕj : I → R, j = 1, . . . , n form a Chebyshev set and let x̂1 < . . . < x̂n+1

denote a set of points fulfilling i) - iii) of Theorem 4.3. Let A be defined by (15) or (16).
Then the components of the corresponding vector λ̂ ∈ R

n+1 have alternating signs. In other

words, the values û(x̂i) = f̂(x̂i)/f(x̂i) coincide alternatingly with â := minαQ∞(Aα) + 1
and 1/â.
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Conversely, if there exists c > 0 and α̃ ∈ R
n such that

n∑

j=1

α̃jϕj(x̂i)/f(x̂i) = c(−1)i

, i = 1, . . . , n+ 1, (17)

then max{c, 1/c} = â and α̃ = argminαQ∞(Aα).

Using Theorem 4.3 the proof follows similarly as for the ‖ · ‖∞ approximation, see [14].
We add the proof for convenience.

Proof: Let Φ ∈ R
n+1,n and A ∈ R

n+1,n be defined by

Φ := (ϕj(x̂i))
n+1,n
i,j=1 =






φT

1
...

φT

n+1




 and A := diag (1/f(x̂i))

n+1
i=1

︸ ︷︷ ︸

D

Φ =






aT

1
...

aT

n+1




 .

By Φi, Ai ∈ R
n,n we denote the matrices obtained from Φ, A by cancelling their i-th row.

By Theorem 4.3 i) we know that

0 = ATλ̂ = ΦT Dλ̂
︸︷︷︸

µ̂

⇔ ΦT

n+1(µ̂1, . . . , µ̂n)
T = −µ̂n+1φn+1. (18)

Since f > 0 the components of µ̂ have the same signs as those of λ̂. Then it follows by
Cramer’s rule that

µ̂i =
1

detΦn+1
det(φ1, . . . , φi−1,−µ̂n+1φn+1, φi+1, . . . , φn) = −µ̂n+1

(−1)n−idetΦi

detΦn+1
.

Because {ϕi}ni=1 is a Chebyshev set, sgn (det Φi) coincides for all i = 1, . . . , n+ 1, see [14,
p. 55] and we obtain the first assertion.

Conversely, assume that (17) is fulfilled. Then we have that

c(−1)n+1

= aT

n+1α̃ = aT

n+1A
−1
n+1

(

c(−1)i
)n

i=1
. On the other hand, we obtain by (18) that

AT

n+1(λ̂1, . . . , λ̂n)
T = −λ̂n+1an+1,

(λ̂1, . . . , λ̂n) = −λ̂n+1a
T

n+1A
−1
n+1,

−(λ̂1, . . . , λ̂n)/λ̂n+1 = aT

n+1A
−1
n+1

so that

c(−1)n+1

= − 1

λ̂n+1

(λ̂1, . . . , λ̂n)
(

c(−1)i
)n

i=1
= −1

c

1

λ̂n+1

⌈n/2⌉
∑

l=1

λ̂2l−1 − c
1

λ̂n+1

⌊n/2⌋
∑

l=1

λ̂2l.

However, c > 0 is uniquely determined by this equation which is also fulfilled by â or 1/â.
The rest of the assertion follows by the uniqueness of the minimizer. �
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Let x1, . . . , xn+1 ∈ I be pairwise distinct points. To find the unique polynomial f̂ ∈
Πn−1 = span{xi−1 : i = 1, . . . , n} with the property that

f̂(xi)

f(xi)
= c (−1)i

, i = 1, . . . , n+ 1

for some c > 0, Dahmen [4] proposed the following method, compare [14, p. 79] for
the ordinary ‖ · ‖∞ approximation: compute the interpolating polynomials p, q ∈ Πn

corresponding to the knots (xi, f(xi)), i = 1, . . . , n + 1 and (xi, g(xi)), i = 1, . . . , n + 1,
resp., where g(xi) := (−1)i−1 f(xi). The leading coefficients an of p and bn of q are the
divided differences an = f [x1, . . . , xn+1] and bn = g[x1, . . . , xn+1]. We know that bn 6= 0,
since there doesn’t exist a polynomial in Πn−1 with n zeros. It is not hard to show that
|an| 6= |bn|. If an = 0 we are done and f̂ = p. If |an| < |bn|, we set

f̂ := (p− ε q)/
√

1 − ε2, where ε := an/bn ∈ (−1, 1).

By construction we have that f̂ ∈ Πn−1 and f̂(xi) = f(xi)(1 + (−1)iε)/
√

1 − ε2, i.e.

f̂(xi)

f(xi)
=

√

1 + (−1)iε

1 − (−1)iε
= c(−1)i

, c :=

√

1 + ε

1 − ε
.

If |an| > |bn|, we change to roles of p and q.
This method can be generalized for other Chebyshev sets but is less efficient if we have no
analog to fast polynomial interpolation methods.

Based on the computation of the best Q∞ approximation with respect to n+ 1 points (by
the above method or SOCP) we can modify known methods from ordinary best ‖ · ‖∞
approximation to find the overall best Q∞ approximation. We have only to be careful with
negative function evaluations which may appear in the algorithm. They can be handled
by ideas from the following remark. In the discrete case, an ascending (or descending)
algorithm can be applied and in the continuous case Remes-type algorithms, see [14] or
also the algorithm in [8].

Remark 4.9 In [8], the univariate best approximation with respect to the generalized
relative error

‖(f − f̂)/max{|f |, |f̂ |}‖∞ (19)

for linear combinations f̂ of a Chebyshev set was considered and a linear Remes-type

algorithm was proposed. The algorithm is based on an alternation theorem which was

announced to be in a submitted paper. To the best of our knowledge, this paper has never

been published. In contrast to our functional which reads

‖max{f/f̂ , f̂/f} − 1‖∞ = ‖(f − f̂)/min{f, f̂}‖∞, f, f̂ > 0 (20)

the functional in (19) is not convex in f̂ . Using quotients with y = f̂(x)/f(x) the point

evaluations in (19) read

q̃(y) =

{
1 − y for |y| ≤ 1,
1 − 1

y for |y| > 1
(21)
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instead of (1). Note that q̃(y) ≥ 1 for y ≤ 0. For f > 0 both functionals (19) and

(20) have the same minimizer which can be seen as follows: the function f̂ minimizes our

functional

‖max{f/f̂ , f̂/f}‖∞ = ‖1/min{f̂/f, f/f̂}‖∞, f̂ > 0

if and and only if it minimizes

‖(f − f̂)/max{f, f̂}‖∞ = ‖1 − min{f̂/f, f/f̂}‖∞

as long as the minimizer of (19) is indeed positive. This is always the case by the following

argument: Let f̂ > 0 be the minimizer of our functional (20) and â := Q∞(f̂) + 1.
Then 1 − min{f̂(x)/f(x), f(x)/f̂ (x)} ≤ 1 − 1/â for all x ∈ I. Assume that there exists

a minimizer f̃ of (19) with f̃(x̃) ≤ 0 for some x̃ ∈ I. But then, by (21), we have

|f(x̃) − f̂(x̃)|/max{|f(x̃)|, |f̂(x̃)|} ≥ 1 such that f̃ cannot be a minimizer. Thus, for

f > 0, any minimizer of (19) is automatically positive.

Since for f > 0 both functionals (19) and (20) have the same minimizer, our convex
approach proves also the alternation theorem for the best approximation with respect to

the generalized relative error. Conversely, for computations one can alternatively use the

error measure (19).
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