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Abstract

The restoration of blurred images corrupted by Poisson noise is an important task in various
applications such as astronomical imaging, electronic microscopy, single particle emission com-
puted tomography (SPECT) and positron emission tomography (PET). In this paper, we focus
on solving this task by minimizing an energy functional consisting of the I-divergence as sim-
ilarity term and the TV regularization term. Our minimizing algorithm uses alternating split
Bregman techniques (alternating direction method of multipliers) which can be reinterpreted as
Douglas-Rachford splitting applied to the dual problem. In contrast to recently developed itera-
tive algorithms, our algorithm contains no inner iterations and produces nonnegative images. The
high efficiency of our algorithm in comparison to other recently developed algorithms to minimize
the same functional is demonstrated by artificial and real-world numerical examples.

Key words: Deblurring, Poisson noise, I-divergence, Kullback-Leibler divergence, TV,
alternating split Bregman algorithm, Douglas-Rachford splitting.

1. Introduction

Blurred images corrupted by Poisson noise appear in various applications such as astronomical
imaging [1], electronic microscopy [2, 3, 4], SPECT [5] and PET [6]. The MAP estimation via the
negative log likelihood function resulting from Poissonian observations f : Ω → R of a convolved
image, Ω ⊂ R

2 bounded and measurable, leads to the following variational problem

argmin
u≥0

{
∫

Ω

Ku− f log(Ku) dx+ λR(u)
}
, λ > 0, (1)

where K is a convolution kernel, which is supposed to be known. Since in most applications
f is an image captured by some imaging system which detects, e.g., photons or electrons, the
nonnegativity constraint u ≥ 0 guarantees that no negative intensities occur in the restored image.
Now consider v = Ku. The term

I(f, v) :=

∫

Ω

f log
f

v
− f + v dx =

∫

Ω

v − f log v + f log f − f dx

is known as Csiszár’s I-divergence [7] or as generalized Kullback-Leibler divergence. If it is finite, it
coincides with the Bregman distance [8] of the Boltzmann-Shannon entropy. Therefore, it shares
the useful properties of a Bregman distance, in particular I(f, v) ≥ 0. In this paper, we focus on
the TV regularization term R(u) := sup

{∫

Ω u divψ dx : ψ ∈ C1
c (Ω,R2), |ψ(x)| ≤ 1 ∀x ∈ Ω

}
, which

reads for functions with (weak) derivatives in L1 as follows:

R(u) :=

∫

Ω

|∇u| dx.
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Let BV denote the space of functions of bounded variation. It is well-known that for images
g corrupted by additive white Gaussian noise, the minimizer of the Rudin-Osher-Fatemi (ROF)
functional [9] is defined as

argmin
u∈BV

{
∫

Ω

1

2
(g − u)2 dx+ λ

∫

Ω

|∇u| dx
}
, λ > 0 (2)

can be used as a denoised version of g with preserved edges. Recently, various algorithms were
developed based on convex analysis to compute the minimizer of a discrete version of (2), e.g.,

• gradient descent reprojection algorithms [10], see also [11],

• Nesterov’s algorithm [12],

• the (monotone) FISTA algorithm [13],

• alternating split Bregman algorithms [14].

The efficiency of the first three (first-order) algorithms for the denoising problem increases in the
given order. For a comparison of first-order algorithms see also [15, 16, 17].

In the following, we will work exclusively in a discrete setting. To this end, we are stacking
pixels of digital images columnwise into vectors in R

N . If not stated otherwise the multiplication
of vectors, their square roots, logarithms etc. are meant componentwise. We are interested in the
discrete version of problem (1) given by

argmin
u∈RN ,u≥0

{〈1,Ku− f logKu〉+ λφ(Du)} , (3)

where f ≥ 0, K ∈ R
N,N is a blur matrix, D :=

(
Dx

Dy

)

∈ R
2N,N is the finite difference discretization

of the gradient operator proposed in [11] and the functional φ : R
2N → R is defined by

φ(p) := ‖
√

p2
1 + p2

2 ‖1, p :=

(
p1

p2

)

, p1, p2 ∈ R
N .

Of course, other consistent discretizations of the absolute value of the gradient are possible, see,
e.g., [18]. For simplicity, we assume that K∗1N = 1N , where 1N denotes the vector consisting of
N ones. This is usually fulfilled for blur matrices. The functional in (3) is proper, convex and
lower semi-continuous (l.s.c.). If K1N 6= 0, i.e., K does not annihilate constant functions as D
does, then the functional is coercive. If K is invertible, the functional is strictly convex, so that
there exists a unique minimizer of (3).

Recently, various algorithms were proposed to compute the minimizer of (3). In [19] Sawatzky
et al. proposed an EM-TV algorithm which appears to be more efficient than other known (TV
penalized Richardson-Lucy) algorithms as, e.g., those in [2, 3, 5, 20]. This algorithm combines
alternatingly an EM step and a TV step as follows:

Algorithm (EM-TV)
Initialization: u(0) = f .
For k = 1, . . . repeat until a stopping criterion is reached

u(k+ 1

2
) = u(k)K∗

( f

Ku(k)

)
(EM step), (4)

u(k+1) = argmin
v∈BV

{1

2

N∑

i=1

(u
(k+ 1

2
)

i − vi)
2

u
(k)
i

+ λφ(Dv)
}

(TV step). (5)

Indeed, the TV step requires us to minimize an ROF (-like) functional

argmin
w

{
1

2
‖w − h‖2

2 + λφ(DΛw)

}

, w :=
v√
u(k)

, h :=
u(k+ 1

2
)

√
u(k)

, Λ := diag
(√

u(k)
)N

k=1
.
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This can be done by one of the above-mentioned algorithms. An analytical examination of the
EM-TV algorithm was announced in [21].

Our approach is mainly based on the Poisson image deconvolution by augmented Lagrangian
(PIDAL) algorithm of Figueiredo and Bioucas-Dias in [22]. Both algorithms can be deduced by
alternating split Bregman techniques as described in Section 3. One major difference consists in the
different operator splittings. As a consequence, our algorithm avoids inner iteration loops and the
associated problem of choosing an appropriate stopping rule. By contrast, the PIDAL algorithm
needs an inner iteration loop for computing the minimizer of a discrete ROF functional similar
to the EM-TV algorithm. Moreover, it only ensures that Ku(k) and finally Kû is nonnegative.
However, even if K has only nonnegative entries, this does not imply that û is nonnegative. In
our algorithm the iterates u(k) fulfill indeed a nonnegativity constraint. Numerical examples show
that our new algorithm is more efficient than the EM-TV and the PIDAL algorithms. For another
algorithm for removing Poisson noise which uses operator splittings we refer to [23].

This paper is structured as follows. In Section 2, we review the alternating split Bregman
algorithm from the point of view we need for our settings. Then, we apply the results to obtain
the known PIDAL algorithm and our novel algorithm in Section 3. In Section 4, we illustrate
the good performance of our algorithm by numerical experiments. In particular, we compare our
algorithm with the EM-TV algorithm and the PIDAL algorithm.

2. Alternating split Bregman algorithm

Let R denote the extended real numbers R∪ {+∞}. The alternating split Bregman algorithm
was introduced in [14] to efficiently solve problems of the form

argmin
u∈RN

{Ψ(u) + Φ(Cu)}, (6)

where C ∈ R
M,N and Φ : R

N → R and Ψ : R
M → R are proper, convex and l.s.c. functionals. In

the following, we assume that (6) has a solution and

0 ∈ int(CdomΨ − domΦ), 0 ∈ int( domΨ∗ + C∗domΦ∗).

To derive the alternating split Bregman algorithm, we consider the following constrained version
of (6), cf. [24],

min
u∈RN ,w∈RM

{Ψ(u) + Φ(w)} s.t. Cu = w. (7)

This constrained problem can be solved via the following split Bregman method which is the same
as the augmented Lagrangian method applied to (7):

(u(k+1), w(k+1)) = argmin
u∈RN ,w∈RM

{
Ψ(u) + Φ(w) +

1

2γ
‖b(k) + Cu− w‖2

2

}
,

b(k+1) = b(k) + Cu(k+1) − w(k+1).

Minimizing alternatingly with respect to v and w yields the alternating split Bregman method,
introduced in [14]:

u(k+1) = argmin
u∈RN

{
Ψ(u) +

1

2γ
‖b(k) + Cu− w(k)‖2

2

}
, (8)

w(k+1) = argmin
w∈RM

{
Φ(w) +

1

2γ
‖b(k) + Cu(k+1) − w‖2

2

}
, (9)

b(k+1) = b(k) + Cu(k+1) − w(k+1). (10)

As Esser pointed out in [25], this algorithm can be traced back to the alternating direction method
of multipliers proposed in [26, 27, 28]. Interestingly, there exists a connection of (8)-(10) to the
Douglas-Rachford algorithm applied to the dual problem of (6)

p̂ = argmin
p∈RM

{Ψ∗(−C∗p) + Φ∗(p)}, (11)
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where Ψ∗ denotes the conjugate function of Ψ. To derive the Douglas-Rachford algorithm for this
problem, we rewrite (11) using Fermat’s rule and that 0 ∈ int( domΨ∗ + C∗domΦ∗), which gives

0 ∈ A(p̂) +B(p̂), (12)

where A := ∂(Ψ∗ ◦ (−C∗)) and B := ∂Φ∗. Since Ψ and Φ are proper, convex and l.s.c., the set-
valued operators A and B are maximal monotone and their resolvents defined by JA := (I +A)−1

are single-valued again, cf., [29]. Then, the Douglas-Rachford splitting algorithm reads as follows:

Algorithm (Douglas-Rachford)
Initialization: t(0), p(0).
For k = 1, . . . repeat until a stopping criterion is reached

t(k+1) = JηA(2p(k) − t(k)) + t(k) − p(k),

p(k+1) = JηB(t(k+1)).

It is well-known, see [30, 31, 32, 33], that in finite-dimensional spaces the sequences (t(k))k∈N and
(p(k))k∈N converge for any initialization, where the latter converges to a solution of (12). The
relation between the alternating split Bregman algorithm and the Douglas-Rachford algorithm is
given as follows, see [32, 28, 34].

Proposition 2.1 For η := 1/γ and the starting values t(0) := η(b(0) + w(0)) and p(0) := ηb(0),
the Douglas-Rachford splitting algorithm coincides with the alternating Split Bregman algorithm
(8)-(10) in the sense that

t(k) = η(b(k) + w(k)), p(k) = ηb(k), k ≥ 0.

Using this relation and the known convergence properties of the Douglas-Rachford splitting algo-
rithm we obtain with a little more effort concerning the convergence of u(k) the following conver-
gence result for the alternating split Bregman algorithm, see [32, 28, 34].

Proposition 2.2 For all starting values and any step sizes γ > 0, the sequences (b(k))k∈N and

(w(k))k∈N generated by the alternating split Bregman method (8)-(10) converge. Denote by b̂ and

ŵ the limits of these sequences. Then, 1
γ
b̂ is a solution of the dual problem (11). Furthermore,

the sequence (u(k))k∈N calculated by (8) converges to a solution of the primal problem (6) if one
of the following conditions are fulfilled:
i) The primal problem has a unique solution.

ii) The problem argmin
u∈RN

{
Ψ(u) + 1

2γ
‖b̂+ Cu − ŵ‖2

2

}
has a unique solution.

For our applications we consider instead of (6) the more general primal problem

argmin
u∈RN

m∑

i=1

fi(Ciu), (13)

where Ci ∈ R
Mi,N and fi : R

Mi → R. Now, we can apply the splitting idea even further and write
problem (13) as

argmin
u∈RN ,wi∈RMi

〈0, u〉 +

m∑

i=1

fi(wi) s.t. wi = Ciu. (14)
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Setting Ψ := 〈0, ·〉 and Φ(w) :=
∑m

i=1 fi(wi) in (8)-(10) we obtain the following alternating split
Bregman algorithm

u(k+1) = argmin
u∈RN

{
〈0, u〉 +

1

2γ
‖







b
(k)
1
...

b
(k)
m







+






C1

...
Cm




u−







w
(k)
1
...

w
(k)
m







‖2
}
, (15)







w
(k+1)
1
...

w
(k+1)
m







= argmin
wi∈RMi

{
m∑

i=1

fi(wi) +
1

2γ
‖







b
(k)
1
...

b
(k)
m







+






C1

...
Cm




u(k+1) −






w1

...
wm




 ‖2

}
, (16)

b(k+1) = b(k) +






C1

...
Cm




u(k+1) −







w
(k+1)
1
...

w
(k+1)
m






. (17)

The variables wi in (16) are not coupled so that we can minimize separately with respect to the
wi, i = 1, . . . ,m. As already described in [25], this is very useful if more than one functional in the
primal problem is a concatenation of a proper, convex and l.s.c. function with a linear operator.
Let us have a brief look at the corresponding Douglas-Rachford splitting algorithm. Since

Ψ∗(x) = 〈0, ·〉∗(x) =

{
0 if x = 0,

+∞ if x 6= 0,
and Φ∗(x) =

m∑

i=1

f∗
i (xi)

the operators A and B in (12) for the corresponding Douglas-Rachford splitting algorithm are
A(p) := ∂(〈0, ·〉∗ ◦ (−(C∗

1 · · · C∗
m))(p) and B(p) := (∂f∗

1 (p1), . . . , ∂f
∗
m(pm)). More specifically,

since

∂(〈0, ·〉∗)(x) =

{
R

N if x = 0,
∅ if x 6= 0,

we get for A that

A(p) = −






C1

...
Cm




 ∂(〈0, ·〉∗)(−(C∗

1 · · · C∗
m)(p))

=







{






C1

...
Cm




 q, q ∈ R

N
}

if
∑m

i=1 C
∗
i pi = 0,

∅ if
∑m

i=1 C
∗
i pi 6= 0.

By the definition of A, the resolvent JηA in the Douglas-Rachford splitting algorithm is the or-
thogonal projection onto the null space of (C∗

1 · · ·C∗
m), i.e., for any p ∈ R

M1+···+Mm we have

JηA(p) = PN (C∗

1
···C∗

m
)(p) = p−






C1

...
Cm




 argmin

y∈RN

1

2
‖






C1

...
Cm




 y − p‖2

2. (18)

Observe that formula (18) has already the structure of (15).
By Proposition 2.2, the sequences (b(k))k∈N and (w(k))k∈N generated by the alternating split

Bregman method (16)-(17) converge, in particular, 1
γ
b(k) converges to a solution of the dual

problem. The sequence (u(k))k∈N converges to the solution of the primal problem (13) if either
this primal problem has a unique solution or

∑m
i=1 C

∗
i Ci is invertible.
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3. Deblurring methods for Poissonian images

In [22], problem (3) was considered without the constraint u ≥ 0. With the notation from the
previous section the authors apply the alternating split Bregman algorithm (15)-(17) for m = 2
and

argmin
u∈RN

{
〈1,Ku− f log(Ku)〉
︸ ︷︷ ︸

=:f1(Ku)

+λφ(Du)
︸ ︷︷ ︸

=:f2(u)

}
,

i.e., (C1, C2) := (K, I). In particular, we have the constraint w2 = u. Separating the minimization
with respect to the variables w1 and u = w2 in step (16) this leads to the following PIDAL
algorithm:

Algorithm (PIDAL)

Initialization: b
(0)
1 = b

(0)
2 = 0, w

(0)
1 = Kf , w

(0)
2 = f .

For k = 1, . . . repeat until a stopping criterion is reached

u(k+1) = argmin
u∈RN

{
‖b(k)

1 +Ku− w
(k)
1 ‖2

2 + ‖b(k)
2 + u− w

(k)
2 ‖2

2

}
,

w
(k+1)
1 = argmin

w1∈RN

{
〈1, w1 − f logw1〉 +

1

2γ
‖b(k)

1 +Ku(k+1) − w1‖2
2

}
,

w
(k+1)
2 = argmin

w2∈RN

{
λφ(Dw2) +

1

2γ
‖b(k)

2 + u(k+1) − w2‖2
2

}
, (19)

b
(k+1)
1 = b

(k)
1 +Ku(k+1) − w

(k+1)
1 ,

b
(k+1)
2 = b

(k)
2 + u(k+1) − w

(k+1)
2 .

Output: ûapprox := w
(k+1)
2 .

To be consistent with [22], we set our final result to be w
(k+1)
2 instead of u(k+1) which is justified

by the constraint u = w2. The first two steps of the PIDAL algorithm can be solved explicitely:

u(k+1) = (I +KTK)−1
(

KT(w
(k)
1 − b

(k)
1 ) + (w

(k)
2 − b

(k)
2 )
)

,

w
(k+1)
1 =

1

2

(

b
(k)
1 +Ku(k+1) − γ +

√
(

b
(k)
1 +Ku(k+1) − γ

)2

+ 4γf

)

.

Note that I + K∗K is positive definite and therefore invertible. Moreover, supposing Neumann
boundary conditions for our images, the corresponding linear system of equations can be solved
efficiently by the discrete cosine transform (DCT-II) requiring only O(N logN) arithmetic oper-
ations. In the third step (19), we have to solve an ROF denoising problem via one of the itera-
tive algorithms mentioned in the introduction. The PIDAL algorithm ensures that the sequence

(w
(k)
1 )k∈N is nonnegative so that it converges to a nonnegative image ŵ1 = Kû. Unfortunately,

this does not imply that û itself is nonnegative even if K has only nonnegative entries summing
up columnwise to 1.

The idea of our new method is to use the special structure of the regularization functional
φ ◦D in (3) and to exploit the splitting idea even further. Moreover, we impose a nonnegativity
constraint on u. Let ιu≥0 denote the indicator function of R

N
≥0. We apply the alternating split

Bregman algorithm (15)-(17) to

argmin
u∈RN

{
〈1,Ku− f log(Ku)〉
︸ ︷︷ ︸

=:f1(Ku)

+λφ(Du)
︸ ︷︷ ︸

=:f2(Du)

+ ιu≥0
︸︷︷︸

=:f3(u)

}
,

i.e., m = 3 and (C1, C2, C3) := (K,D, I). In particular, we have the constraint w3 = u. The
corresponding alternating split Bregman algorithm, which we call PIDSplit+ is given below. For
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speed comparisons we also apply the algorithm without the positivity constraint, i.e., with m = 2
and (C1, C2) = (K,D) and call this variant the PIDSplit algorithm.

Algorithm (PIDSplit+)

Initialization: b
(0)
1 = b

(0)
2 = b

(0)
3 = 0, w

(0)
1 = Kf , w

(0)
2 = Df , w

(0)
3 = f .

For k = 1, . . . repeat until a stopping criterion is reached

u(k+1) = argmin
u∈RN

{
‖b(k)

1 +Ku− w
(k)
1 ‖2

2 + ‖b(k)
2 +Du− w

(k)
2 ‖2

2 + ‖b(k)
3 + u− w

(k)
3 ‖2

2

}
,

w
(k+1)
1 = argmin

w1∈RN

{
〈1, w1 − f log(w1)〉 +

1

2γ
‖b(k)

1 +Ku(k+1) − w1‖2
2

}
,

w
(k+1)
2 = argmin

w2∈R2N

{
λφ(w2) +

1

2γ
‖b(k)

2 +Du(k+1) − w2‖2
2

}
,

w
(k+1)
3 = argmin

w3∈RN

{
ιw3≥0(w3) +

1

2γ
‖b(k)

3 + u(k+1) − w3‖2
2

}
,

b
(k+1)
1 = b

(k)
1 +Ku(k+1) − w

(k+1)
1 ,

b
(k+1)
2 = b

(k)
2 +Du(k+1) − w

(k+1)
2 ,

b
(k+1)
3 = b

(k)
3 + u(k+1) − w

(k+1)
3 .

Output: ûapprox := w
(k+1)
3 .

Note that w
(k)
3 is nonnegative for all k, which is one reason to prefer w

(k+1)
3 over u(k+1). Thus, in

contrast to the PIDAL algorithm we guarantee that ûapprox ≥ 0 and we no longer need to solve an

ROF denoising problem as inner iteration loop. Instead, w
(k+1)
1 , w

(k+1)
2 , w

(k+1)
3 can be computed

by direct formulas and to get u(k+1) we solve a linear system of equations:

u(k+1) = (I +KTK +DTD)−1
(

KT(w
(k)
1 − b

(k)
1 ) +DT(w

(k)
2 − b

(k)
2 ) + (w

(k)
3 − b

(k)
3 )
)

,

w
(k+1)
1 =

1

2

(

b
(k)
1 +Ku(k+1) − γ +

√
(

b
(k)
1 +Ku(k+1) − γ

)2

+ 4γf

)

,

w
(k+1)
2 = shrinkγλ(b

(k)
2 +Du(k+1)),

w
(k+1)
3 =

{

b
(k)
3 + u(k+1) if b

(k)
3 + u(k+1) ≥ 0,

0 otherwise.

The shrinkλ : R
2N → R

2N operator denotes the coupled soft shrinkage which is given component-

wise for p :=

(
p1

p2

)

, pi := (pij)
N
j=1, i = 1, 2, as

shrinkλ(pij) :=

{

pij − λpij/
√

p2
1j + p2

2j if
√

p2
1j + p2

2j ≥ λ,

0 otherwise,

see, e.g., [34]. Supposing Neumann boundary conditions for our images, the matrix I+KTK+DTD
can be diagonalized by the DCT-II. Thus, also in this case the solution of the corresponding linear
system of equations requires only O(N logN) arithmetic operations.

4. Numerical Results

Finally, we present numerical examples and compare our new PIDSplit+ algorithm with the
EM-TV and PIDAL algorithms in terms of computational speed. To this end, we implemented
all algorithms in MATLAB and performed the computations on a dual core desktop with two 2.4
GHz processors and 2.85 GB physical memory. For adding Poisson noise to an image U given
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in double precision, we first scaled the image by UmaxImax/1012, where Umax is the maximal
value of U and Imax is a specified maximal intensity. Then, we applied the MATLAB routine
imnoise(I,’poisson’) and afterwards scaled back again. The values of the images lie all in the
interval [0, 255]. To plot the results, we used the MATLAB routine imagesc, which incorporates
an affine gray value scaling.

For solving the ROF-like subproblems (5) and (19) of the EM-TV and PIDAL algorithms in an
efficient way, we tried different methods. To gain an additional speed up we applied the following
initialization for the inner loops which was suggested by C. Brune [35]:

Inner loop initialization: Use the final values of an inner iteration loop as initial values for the
next loop.

For solving (5), we decided to use the gradient descent reprojection algorithm [10], since it outper-
formed the FISTA algorithm [13] due to the fact that using the inner loop initialization described
above the number of iterations needed per loop decreased faster for the gradient descent reprojec-
tion algorithm than for FISTA. Similarly, for solving the TV subproblem (19) we compared the
gradient descent reprojection algorithm [10] to the alternating split Bregman algorithm in [14].
The second algorithm required to solve in each step a linear system of equations, which we solved
again by using the discrete cosine transform (DCT-II). For the same reason as above, the gradient
descent reprojection algorithm performed better and we use it for the experiments below. The
corresponding step size was set to 0.249. Moreover, as suggested in [22] we used γ = 50/λ for the
PIDAL and also for the PIDSplit/PIDSplit+ algorithms.

Figure 1: Left: Original image showing a part of the ’cameraman’ of size 84 × 84, Middle: Image blurred by a
Gaussian kernel (standard deviation σ = 1) and contaminated by Poisson noise (Imax = 3000). Right: Deblurred
image by model (3) with λ = 0.008.

Algorithm stopping value ε for number of outer computational time
inner iteration iterations

PIDAL 0.0005 2132 830 sec

EM-TV 0.005 3696 63 sec

PIDSplit+ – 2150 12 sec

(PIDSplit) – (2149) (11 sec)

Table 1: Computational time needed by the different algorithms to compute the result in Fig. 1 up to a maximal
pixel difference of 0.1 to a converged reference image.

For our first example in Fig. 1, we took a part of the ’cameraman’ image, blurred it by
a Gaussian kernel and additionally contaminated it by Poisson noise. The deblurred image is
depicted in Fig. 1 (right). Since for this example the restoration result of (3) without the additional
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constraint u ≥ 0 is already positive, all algorithms provide the same result. The computational
times of the different algorithms are listed in Table 1. For direct comparison with the PIDAL
algorithm, we also included the computation time of the PIDSplit algorithm. As stopping criterion
for the inner iteration loops of the PIDAL and EM-TV algorithms, we checked if the maximal
change per pixel in the image from one iteration to the next is less than an error bound ε. The
results in Table 1 show that the PIDSplit/PIDSplit+ algorithms outperform the PIDAL and EM-
TV algorithms significantly. Moreover, all algorithms need a similar number of outer iterations in
this example. Only the EM-TV algorithm needed around two times as many.

Figure 2: Left: Original ’cameraman’ image of size 256×256. Middle: Image blurred by a Gaussian kernel (standard
deviation σ = 1.3) and contaminated by Poisson noise (Imax = 1000). Right: Deblurred image by model (3) with
λ = 0.01.

Algorithm stopping value ε for number of outer computational time
inner iteration iterations

EM-TV 0.01 3535 683 sec

PIDSplit+ – 1705 158 sec

Table 2: Computational time needed by the different algorithms to compute the result in Fig. 2 up to a maximal
pixel difference of 0.3 to a converged reference image.

A restoration result and a comparison of the speed of the PIDSplit+ and EM-TV algorithms
for the whole ’cameraman’ image is given in Fig. 2 and Table 2. Note that for these results only
a maximal pixel difference of 0.3 to a converged reference image was required.

To apply our PIDSplit+ algorithm also to real confocal data, our last example in Fig. 3 shows
at the top left an image of a blurred human cell nucleus of size 401 × 311 provided by Prof. T.
Cremer, LMU Munich. We thank S. Remmele for estimating the blur kernel to be a symmetric
Gaussian of standard deviation 3.8. For this example, much more iterations are necessary to obtain
equally small errors as for the ’cameraman’ image. However, we get already after a few iterations
a visually pleasant result as illustrated in Fig. 3. Here, it is also interesting to mention that if we
solved model (3) for, e.g., λ = 0.002 without the additional nonnegativity constraint, the result
would contain negative value down to −249 although the blurred image was nonnegative.

5. Summary and Conclusions

We have proposed a simple and very efficient algorithm for the restoration of blurred images
corrupted with Poissonian noise by minimizing the TV penalized I-divergence. We use alternating
split Bregman techniques (alternating direction method of multipliers) to decouple this problem
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Figure 3: Top left: Blurry cell image of a human nucleus. Top right: Deblurred image by our new algorithm with
λ = 0.01 and γ = 1000 after 10.000 iterations. Middle to bottom left: Results by our new algorithm with λ = 0.002
and γ = 1000 after 30 (middle left), 3000 (middle right) and 50.000 iterations (bottom left). One can hardly see
any differences between the result after 3000 and 50.000 iterations, although there are still some differences in single
pixels as the difference image at the bottom right shows.

in such a way that inner loops do not occur. Thus, in contrast to other algorithms, we avoid the
choice of additional step length parameters and appropriate stopping rules. Further, our algorithm
produces nonnegative restored images and the convergence is guaranteed by known convergence
results of the alternating split Bregman algorithm.
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