
INPAINTING BY FLEXIBLE HAAR-WAVELET SHRINKAGE

R. H. CHAN∗, S. SETZER† , AND G. STEIDL‡

Abstract. We present novel wavelet-based inpainting algorithms. Applying ideas from aniso-
tropic regularization and diffusion, our models can better handle degraded pixels at edges. We
interpret our algorithms within the framework of forward-backward splitting methods in convex
analysis and prove that the conditions for ensuring their convergence are fulfilled. Numerical exam-
ples illustrate the good performance of our algorithms.
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1. Introduction. The problem of inpainting occurs when part of the data in an
image is missing. The task of inpainting is to recover the missing regions from the
observed (sometimes noisy) incomplete data. The mathematical model for the image
inpainting problem reads as follows: For convenience of notation we consider two-
dimensional images u defined on {1, . . . , n}×{1, . . . , n} and reshape them columnwise
into a vector u ∈ R

N with N = n2. Let the nonempty set C ⊂ {1, . . . , N} be the
given region of the observed pixels. Then the observed incomplete image f is

f(j) =

{
u(j) + ε(j) if j ∈ C,
arbitrary otherwise,

where ε(j) denotes the noise. In the following, we denote by PC the diagonal matrix
with diagonal entries 1 for indices in C and 0 otherwise.

Initiated by [3], many useful techniques have been proposed to address this prob-
lem. In this paper we are mainly interested in wavelet-based inpainting methods.
Such methods were, e.g., proposed in [6, 13]. However, often these methods let de-
graded pixels survive at sharp directed edges. A typical example is shown in Fig.
1.1. Here both the cubic spline interpolation and the wavelet-based method from [6]
produce visible artifacts, in particular at the horizontal line. This was our motivation
for considering more flexible wavelet-based methods.

We focus on the following general types of inpainting algorithms.

Algorithm I (Exact data)
Initialization: u0

For r = 0, . . . iterate until convergence
i) Solve a restoration problem for the current image ur to obtain ûr+1.
ii) Set

ur+1(j) :=

{
f(j) if j ∈ C,
ûr+1(j) otherwise.
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Fig. 1.1. Top left: original image. Top right: degraded image. Bottom left: cubic interpolation
by the MATLAB routine ”griddata” (Peak signal-to-noise ratio (PSNR) = 29.39, err2 = 8.64, err1 =
0.79). Bottom right: interpolation by the algorithm in [6] with c = 1 and two levels (PSNR=33.27,
err2 = 5.53, err1 = 0.46). The interpolated images have artifacts, in particular at the horizontal
line.

Output: u∗

Algorithm II (Noisy data)
Same as Algorithm I except that we have to apply step i) to the final iterate u∗

again.
Output: u⋄ = û∗

Indeed, depending on the restoration method used in step i), many known inpainting
algorithms are of this general type. In [6], the following wavelet-frame based denoising
method was proposed for step i) of Algorithm I: Let A ∈ R

M,N , M ≥ N , denote a
frame analysis operator of a Parseval frame, i.e., any u ∈ R

N can be written as
u = ATd and ATA = I. Further, let Λ := diag(λ) be a diagonal matrix containing the
components of the vector λ := (λj)

M
j=1 as diagonal entries. Then the authors suggest

solving

dr+1 = argmin
d∈RM

{1

2
‖Aur − d‖2

2 + ‖Λ d‖1

}
.
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Since the solution of argmind{ 1
2‖c − d‖2

2 + ‖Λ d‖1} is given by TΛ(c) with the soft
threshold operator TΛ defined componentwise by

Tλj (cj) =
1

2
((cj − λj) + |cj − λj | + (cj + λj) − |cj + λj |) , j = 1, . . . , M,

(see, e.g., [9]), the restoration step i) becomes

ûr+1 = ATTΛ(Aur). (1.1)

They proved that for noisy input data the iterates of Algorithm II with restoration
step (1.1) converge to u⋄ = ATd̂, where d̂ is the solution of

d̂ = argmin
d∈RM

{1

2
‖PCf − PCATd‖2

2 + ‖Λ d‖1 +
1

2
‖(I − AAT)d‖2

2

}
. (1.2)

Indeed this algorithm is very similar to a method proposed in [13], where the authors
solve

d̂ = argmin
d∈RM

{1

2
‖PCATd − PCf‖2

2 + ‖Λ d‖1

}
(1.3)

by

dr+1 = TΛ (dr + A(PCf − PCATdr))

and set u⋄ = ATd̂. Obviously, for an orthogonal matrix A the wavelet-based algo-
rithms (1.2) and (1.3) coincide. However, for various nonorthogonal frame analysis
matrices A, the numerical experiments in [6] indicate that the algorithm (1.2) per-
forms better.

In [11], the method (1.3) was generalized in order to recover both the texture and
the cartoon part of an image, see also [4]. To this end, the authors solve

argmin
dt,dn

{1

2
‖PC(AT

t dt + AT

ndn − f)‖2
2 + λ(‖dt‖1 + ‖dn‖1) + γTV(AT

ndn)
}
,

where An denotes the discrete curvelet transform, At denotes the discrete cosine
transform, and dt and dn are the texture and cartoon components, respectively.

Beyond regularization techniques, PDE-based approaches can be applied in the
restoration step. In [15, 29] it was demonstrated that inpainting methods based on
edge enhancing anisotropic diffusion appear to be superior to linear methods, e.g.,
spline interpolation methods, and nonlinear isotropic diffusion methods. Indeed these
ideas were, together with wavelet techniques, the second ingredient for our algorithms.
For other PDE-based methods we refer only to [7] and the references therein.

In this paper, we focus on inpainting by combining anisotropic regularization and
diffusion methods with multilevel Haar-wavelet filters. Our new methods increase the
PSNR of various restored images significantly, e.g., by 3 dB for the image in Fig.
1.1, and avoid highly visible artifacts. Following the lines of [6], we have proved the
convergence of our method by embedding it into the framework of forward-backward
splitting algorithms.

This paper is organized as follows: In Section 2, we briefly review anisotropic
regularization and diffusion methods. Ideas from this section, in particular the appli-
cation of a diffusion tensor, carry over to our wavelet setting. In Section 3, we present
a new anisotropic Haar-wavelet method for the inpainting problem. The convergence
proof of our algorithm is given in Section 4. Finally, Section 5 contains numerical
examples which demonstrate the excellent performance of our algorithm.
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2. Anisotropic Regularization and Diffusion. In this section, we sketch the
basic ideas from anisotropic diffusion and regularization methods that carry over to
our wavelet setting. We prefer the more common continuous point of view in this sec-
tion, while the rest of the paper deals with a discrete setting obtained by discretizing
gradients with the help of wavelet filters. Anisotropic diffusion methods such as edge
enhancing or coherence enhancing diffusion have been used for the directed denoising
of images for a long time, see [27] and the references therein. Recently, anisotropic
regularization methods have become popular, e.g., for the restoration of polygonal
shapes [2, 12, 25] with sharp edges and corners.

Let us consider a single restoration step r of our inpainting method which com-
putes for a given continuous image f̃ := ur on a quadratic domain Ω the image ûr+1.
By ◦, we denote the Hadamard product (componentwise product) of matrices. From
the variational point of view, one could restore the image by solving for an appropri-
ate proper, lower semicontinuous (lsc), convex function Φ and an invertible matrix
V ∈ R

2,2 the problem

argmin
u

{1

2
‖f̃ − u‖2

L2
+ λ

∫

Ω

Φ((V T∇u) ◦ (V T∇u)) dx
}
, (2.1)

where the function space of u depends on the choice of Φ. For Φ(x2, y2) :=
√

x2 + y2

and V := I, the functional in (2.1) is the Rudin–Osher–Fatemi (ROF) functional [22],
and we consider the space BV of functions of bounded variations. For Φ(x2, y2) :=
|x| + |y| and special rotation matrices V , the functional (2.1) was used for corner
preserving denoising in [2, 25]. For V = I, minimization algorithms for this functional
were considered, e.g., in [16]. If Φ is differentiable, then the Euler–Lagrange equation
of (2.1) reads

0 = f̃ − u + λ∇ · (D∇u) (2.2)

with

D := V

(
2∂1Φ

(
(V T∇u) ◦ (V T∇u)

)
0

0 2∂2Φ
(
(V T∇u) ◦ (V T∇u)

)

)

V T. (2.3)

Here ∂ν denotes the derivative with respect to the ν-th variable. For example, we have
for Φ(x2, y2) :=

√

x2 + y2 + ε2 that ∂1Φ(x2, y2) = ∂2Φ(x2, y2) = 1/(2
√

x2 + y2 + ε2)

and for Φ(x2, y2) :=
√

x2 + ε2 +
√

y2 + ε2 that ∂1Φ(x2, y2) = 1/(2
√

x2 + ε2) and

∂2Φ(x2, y2) = 1/(2
√

y2 + ε2).
On the other hand, the so-called anisotropic edge enhancing diffusion (EED) acts

via

∂tu = ∇ · (D∇u), (2.4)

u(x, 0) = f̃(x),

with appropriate boundary conditions, mainly Neumann boundary conditions in im-
age processing, and with the diffusion tensor

D := V

(
g(|∇uσ|) 0

0 1

)

V T, V := (v v⊥), v :=
∇uσ

|∇uσ|
. (2.5)

Here uσ = u∗Kσ denotes the convolution of u with the Gaussian of standard deviation
σ and g is a decreasing nonnegative function. In applications, the function

g(|s|) =

{

1 − e
− 3.31488

(s/α)8 s > 0,
1 s = 0,
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introduced by Weickert in [27] has shown a good performance.
A relation to regularization methods can be seen as follows: If we use instead of

(2.5) the matrices (2.3), then (2.2) can be considered as a semidiscretization of (2.4)
with an implicit Euler step of time step size λ. The following wavelet methods are
related to explicit time discretizations so that we can achieve only approximations of
the corresponding regularization method. For further investigations in this direction
see [24]. Note that according to [27] we will call a method anisotropic if the diagonal
matrix in the diffusion tensor contains different nonzero diagonal entries. In this sense,
the ROF method is an isotropic one.

3. Anisotropic Haar-wavelet shrinkage. In this section, we return to our
discrete setting from the beginning of the paper. Let h0 := 1

2 [1 1] and h1 := 1
2 [1−1] be

the filters of the Haar-wavelet. For convenience of notation, we use periodic boundary
conditions and denote by H0 ∈ R

n,n and H1 ∈ R
n,n the corresponding circulant

matrices. A remark concerning Neumann boundary conditions can be found at the
end of this section. The following remark shows the link between the continuous
considerations in the previous section and our discrete setting. Basically we consider
discretizations of continuous images on a regular grid and approximate the partial
derivatives by special differences related to our Haar-wavelet filters.

Remark 3.1. i) Discretizing a periodic smooth function u on [0, 1)2 at the grid

{(j, k)/h : j, k = 0, . . . , n − 1} and setting u := (uj,k)n−1
j,k=0 =

(
u( j

h
, k

h
)
)n−1

j,k=0
, we see

by using the two-dimensional Taylor expansion that

uj+1,k+1 − uj,k+1 + uj+1,k − uj,k

2h
= ∂xu

(

j +
h

2
, k +

h

2

)

+ O(h2),

i.e., the left-hand side is a consistent discretization of ∂xu. In matrix-vector notation
this yields the following approximation of ∇u:

2

(
H1uHT

0

H0uHT
1

)

= −h

( (
∂xu

(
j + h

2 , k + h
2

))n−1

j,k=0
(
∂yu

(
j + h

2 , k + h
2

))n−1

j,k=0

)

+ O(h2). (3.1)

Reshaping u columnwise into a vector u and using that RuST = (S ⊗ R)u, the left-

hand side of (3.1) becomes 2

(
H0 ⊗ H1

H1 ⊗ H0

)

u. For digital images one sets h := 1.

ii) In [28], an ℓ2-stable, conditionally consistent, so-called locally semianalytic scheme
(LSAS) for the numerical solution of the EED equation (2.4) was developed. It
involves a sophisticated spatial discretization and an explicit Euler scheme as temporal
discretization. With respect to our notation the iterative LSAS scheme computes at
every time step with time step size τ based on the old iterate uold the new one unew

by the following steps:

1.







c00

c01

c10

c11







:=







H0 ⊗ H0

H0 ⊗ H1

H1 ⊗ H0

H1 ⊗ H1







︸ ︷︷ ︸

A

uold,

2.

(
d01

d10

)

:= V

(
e−4τ g(|∇uold,σ |) 0

0 e−4τ

)

V T

(
c01

c10

)

,

d00 := c00,

d11 := e−4τ (g(|∇uold,σ |)+1)c11,
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3. unew := AT (dT
00, d

T
01, d

T
10, d

T
11)

T
,

where

∇uold,σ := 2

(
H0 ⊗ H1

H1 ⊗ H0

)

(uold ∗ Kσ)

and V is chosen in accordance with (2.5) as V :=

(
c −s
s c

)

with

c := diag
(
((H0 ⊗ H1)uold,σ)/w

)
, s := diag

(
((H1 ⊗ H0)uold,σ)/w

)
,

w :=

√
(
(H0 ⊗ H1)uold,σ

)2
+
(
(H1 ⊗ H0)uold,σ

)2
and componentwise quotients

((H0 ⊗ H1)uold,σ)/w and squares
(
(H0 ⊗ H1)uold,σ

)2
of vectors.

We consider the undecimated discrete Haar-wavelet transform up to level m. For

k = 1, . . . , m, let H
(k)
ν ∈ R

n,n, ν ∈ {0, 1}, be the circulant matrix corresponding to

the filter h
(k)
ν = 1

2 (1, 0, . . . , 0
︸ ︷︷ ︸

2k−1−1

, (−1)ν) with 2k−1 − 1 inserted zeros between the filter

coefficients. Further, we set






H
(k)
00

H(k)

H
(k)
11




 :=








H
(k)
00

H
(k)
10

H
(k)
01

H
(k)
11








=








H
(k)
0 ⊗ H

(k)
0

H
(k)
0 ⊗ H

(k)
1

H
(k)
1 ⊗ H

(k)
0

H
(k)
1 ⊗ H

(k)
1








k−1∏

l=1

(H
(l)
0 ⊗ H

(l)
0 ).

Then the matrix

A =
















H
(m)
00

H(1)

...
H(m)

H
(1)
11
...

H
(m)
11
















∈ R
(3m+1)N,N (3.2)

satisfies ATA = I while AAT 6= I. Let V (k) be orthogonal matrices and let

Λ(k) := diag
(

λ
(k)
j

)2N

j=1
, Λ

(k)
11 := diag

(

λ
(k)
11,j

)N

j=1
, k = 1, . . . , m,

be diagonal matrices with nonnegative entries. For p ∈ [1, 2], we consider the mini-
mization problem

argmin
u∈RN

{1

2
‖f − u‖2

2 +
1

p

m∑

k=1

‖Λ(k)
(
V (k)

)T
H(k)u‖p

p +
1

p

m∑

k=1

‖Λ(k)
11 H

(k)
11 u‖p

p

}
.

In our numerical examples, we will use only p = 1 and p = 2. Since ATA = I, this is
equivalent to

argmin
u∈RN

{1

2
‖Af − Au‖2

2 +
1

p

m∑

k=1

‖Λ(k)
(
V (k)

)T
H(k)u‖p

p +
1

p

m∑

k=1

‖Λ(k)
11 H

(k)
11 u‖p

p

}
.
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Using the notation

c := Af =
(

c
(m)
00 , c(1), . . . , c(m), c

(1)
11 , . . . , c

(m)
11

)T

, d := Au,

this can be rewritten as

argmin
d∈R(3m+1)N

{1

2
‖c−d‖2

2+
1

p

m∑

k=1

‖Λ(k)
(
V (k)

)T
d(k)‖p

p+
1

p

m∑

k=1

‖Λ(k)
11 d

(k)
11 ‖p

p

}
s.t. d ∈ R(A).

Note that d ∈ R(A) is equivalent to (I −AAT)d = 0, i.e., the orthogonal projection of

d onto the kernel of AT has to be 0. In other words, if d̂ is a solution of this problem,
then AATd̂ is just the orthogonal projection of d̂ onto R(A). We will not solve this
minimization problem in step i) of our inpainting algorithm, but rather the following
problem which is obtained by neglecting the constraint:

argmin
d∈R(3m+1)N

{1

2
‖c − d‖2

2 + JΛ,p(d)
}
,

where

JΛ,p(d) :=
1

p

m∑

k=1

‖Λ(k)
(
V (k)

)T
d(k)‖p

p +
1

p

m∑

k=1

‖Λ(k)
11 d

(k)
11 ‖p

p. (3.3)

This functional can be decoupled as

1

2
‖c(m)

00 − d
(m)
00 ‖2

2 +

m∑

k=1

(
1

2
‖c(k) − d(k)‖2

2 +
1

p
‖Λ(k)

(
V (k)

)T
d(k)‖p

p

)

+

m∑

k=1

(
1

2
‖c(k)

11 − d
(k)
11 ‖2

2 +
1

p
‖Λ(k)

11 d
(k)
11 ‖p

p

)

. (3.4)

Now the three parts of the functional can be minimized separately, which leads to the
following solution.

Lemma 3.2. The minimizer d̂ of the functional (3.4) is given by

d̂
(m)
00 = c

(m)
00 ,

d̂(k) = V (k) TΛ(k),p

(
(V (k))Tc(k)

)
, k = 1, . . . , m, (3.5)

d̂
(k)
11 = T

Λ
(k)
11 ,p

(c
(k)
11 ), k = 1, . . . , m,

with the following shrinkage procedures T·,· :
i) the soft shrinkage TΛ,1 for p = 1,
ii) TΛ,p(y) = F−1

Λ,p(y), where FΛ,p is the injective mapping

FΛ,p(x) = x + Λp(sgn(x) ◦ |x|p−1)

for p ∈ (1, 2),
iii) TΛ,2(y) := (I + Λ2)−1y for p = 2.

Moreover, we have for p ∈ (1, 2] that

|TΛ,p(y)|p ≥ (I + Λp)−p|y|p − 1. (3.6)
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Proof. Since the matrices V (k) are orthogonal, we immediately obtain assertion
i).

In the following, we restrict our attention to the central functional, i.e., to d̂(k). For
p ∈ (1, 2], the functional is differentiable, and the minimizer has to fulfill

0 = d̂(k) − c(k) + V (k)Λ(k)
(
sgn(Λ(k)(V (k))Td̂(k)) ◦

∣
∣
∣Λ(k)(V (k))Td̂(k)

∣
∣
∣

p−1 )

(V (k))Tc(k), = (V (k))Td̂(k) +
(

Λ(k)
)p

sgn((V (k))Td̂(k)) ◦ |(V (k))Td̂(k)|p−1.

Then x = (V (k))Td̂(k) is the solution of (V (k))Tc(k) = FΛ(k),p(x) and d̂(k) = V (k)x. In

particular, we have for p = 2 that x = (I + Λ2)−1(V (k))Tc(k).

We prove the last assertion (3.6) componentwise. For x, y ∈ R and λ ∈ R≥0 the
equation y = x + λpsgn(x)|x|p−1 implies that

|y| = |x| + λp|x|p−1.

Then, we see for |x| ≥ 1 and p ∈ (1, 2] that |y| ≤ |x| + λp|x| and, consequently,
|x| ≥ (1 + λp)−1|y|. For |x| < 1, we have that |y| ≤ |x|p−1 + λp|x|p−1 so that
1 > |x|p−1 ≥ (1+λp)−1|y|. Thus, 1 > (1+λp)−p|y|p and |x|p ≥ 0 > (1+λp)−p|y|p−1.

Let us denote the whole shrinkage procedure by d̂ = TΛ,p c. Finally, we can

compute the denoised image u of f by u = ATd̂. With this denoising procedure our
inpainting algorithm reads as follows.

Algorithm I.1 (Exact data)
Initialization: u0

For r = 0, . . . iterate until convergence
i) Compute ûr+1 = ATTΛ,p(Aur) with TΛ,p defined by Lemma 3.2.
ii) Set

ur+1(j) :=

{
f(j) if j ∈ C,
ûr+1(j) otherwise.

Output: u∗

Algorithm II.1 (Noisy data)
Same as Algorithm I except that we have to apply step i) to the final iterate u∗

again.
Output: u⋄ = û∗

The set

C := {g ∈ R
N : g(j) = f(j), ∀j ∈ C}.

is nonempty, closed, and convex so that its indicator function ιC is a proper lsc convex
function. Thus, step ii) of the inpainting procedure also reads

ur+1 = argmin
u∈RN

{1

2
‖ûr+1 − u‖2

2 + ιC(u)
}
.



INPAINTING BY FLEXIBLE HAAR-WAVELET SHRINKAGE 9

Thus, the whole algorithm can be rewritten in the form

dr+1 = argmin
d∈R(3m+1)N

{1

2
‖Aur − d‖2

2 + JΛ,p(d)
}
, (3.7)

ur+1 = argmin
u∈RN

{1

2
‖ATdr+1 − u‖2

2 + ιC(u)
}
, (3.8)

where JΛ,p(d) is defined in (3.3).
Remark 3.3. (Neumann boundary conditions)

If we assume mirrored boundaries, we have to replace the circulant matrices Hν ,
ν = 0, 1, by the Toeplitz matrices Hν ∈ R

n+1,n+2 corresponding to the filters hν . Let
H̃ν ∈ R

n,n+1 denote the matrices obtained from HT
ν by canceling their first and last

rows. Then we have that

HT

0 H0 + HT

1 H1 =





1
2

I
1
2



 and H̃0H0 + H̃1H1 =






0 1 0
...

. . .
...

0 1 0




 .

Consider one decomposition level m = 1. For higher levels we have to incorporate the
corresponding zeros into the filters and mirror the boundaries according to the filter
length. Let f̃ denote the image obtained from f by mirroring the boundaries and let
A, Ã be defined as in (3.2) but with the new Toeplitz matrices Hν , H̃ν , ν = 0, 1. Then
instead of (3.7) we solve the minimization problem

dr+1 = argmin
d∈R4Ñ

{
1

2
‖Aũr − d‖2

2 +
1

p
‖Λ V T d‖p

p +
1

p
‖Λ11 d11‖p

p

}

,

where Ñ = (n + 1)2 and ûr+1 := Ãdr+1.

4. Convergence Considerations. Following [6], we show the convergence of
our inpainting algorithm by identifying it as a forward-backward splitting algorithm to
minimize the sum of two operators. There exists a vast literature on forward-backward
splitting algorithms and related fixed point iterations, see Remark 4.2 below. In this
paper, we need only the following setting in the Hilbert space R

N with the Euclidean
norm.

For any proper, convex, lsc function ϕ the proximal operator is defined by

proxϕ(x) = argmin
y∈RN

{1

2
‖x − y‖2

2 + ϕ(y)
}

and its envelope by

1ϕ(x) = min
y∈RN

{1

2
‖x − y‖2

2 + ϕ(y)
}
.

By [1, Theorem 5.2], the function 1ϕ is convex and differentiable, and its gradient is

∇
(
1ϕ
)
(x) = x − proxϕ(x). (4.1)

Lemma 4.1. [6] Let F1 : R
N → R ∪ {+∞} be a proper, convex, lsc function, and

let F2 : R
N → R∪ {+∞} be a proper, convex, differentiable function with a Lipschitz

continuous gradient with Lipschitz constant < 2. Assume that

argmin
u∈RN

{F1(u) + F2(u)}
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has a solution. Then, for any initial guess u0, the so-called proximal forward-backward
splitting

ur+1 = proxF1
(ur − ∇F2(ur)) (4.2)

converges to a minimizer of the functional F1 + F2.

The iteration (4.2) is a special case of a more general class of algorithms which we
briefly outline in the following remark.

Remark 4.2. For subdifferentiable functions F1, F2 : H → R∪{+∞} on a Hilbert
space H we have that

û = argmin
u∈H

{F1(u) + F2(u)} ⇔ 0 ∈ ∂(F1 + F2)(û).

Under certain conditions on F1 and F2 this is equivalent to 0 ∈ ∂F1(û) + ∂F2(û). If
∂F1, ∂F2 are maximal monotone operators, Lions and Mercier [18] and, independently,
Passty [21] suggested solving the inclusion on the right-hand side by the forward-
backward splitting

û = (I + c ∂F1)
−1(I − c ∂F2)û. (4.3)

Under certain conditions on ∂F2 and the step size c, it was proved that the Picard
iteration of (4.3) converges weakly to a minimizer û, see, e.g., [14, 26]. Meanwhile
there exist various generalizations of this algorithm such as those in [8].

Since in our special problem F1 is proper, convex, and lsc and F2 is differentiable,
we have that (I + ∂F1)

−1
= proxF1

and ∂F2 = ∇F2, so that (4.3) with c = 1 coincides
with (4.2).

We now return to Algorithm I.1. For our problem, we set F1 := ιC and F2 :=
(
1JΛ,p

)
(A·). Then we obtain

F2(u) = min
d∈R(3m+1)N

{1

2
‖Au − d‖2

2 + JΛ,p(d)
}

so that

F1(u) + F2(u) = ιC(u) + min
d∈R(3m+1)N

{1

2
‖Au − d‖2

2 + JΛ,p(d)
}

(4.4)

= ιC(u) +
1

2
‖Au − TΛ,p(Au)‖2

2 + JΛ,p(TΛ,p(Au)).

Further, we obtain by (4.1) that F2 is differentiable with

∇F2(u) = ∇
(
1JΛ,p ◦ A

)
(u) = AT

(

Au − proxJΛ,p
(Au)

)

. (4.5)

Now the forward-backward splitting (4.2) becomes

ur+1 = proxF1
(ur −∇F2(ur))

= argmin
u∈RN

{
1

2
‖ur −∇F2(ur) − u‖2

2 + ιC(u)

}

= argmin
u∈RN

{
1

2
‖ur − AT

(

Aur − proxJΛ,p
(Aur)

)

− u‖2
2 + ιC(u)

}

= argmin
u∈RN

{
1

2
‖ATproxJΛ,p

(Aur) − u‖2
2 + ιC(u)

}

. (4.6)
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By (3.7) and (3.8) this coincides with the sequence produced by our Algorithm I.1.
Next, we show that F1 + F2 in (4.4) is coercive.

Lemma 4.3. The functional F1 + F2 in (4.4) is coercive.
Proof. By (4.4) we obtain

F1(u) + F2(u) = ιC(u) +
1

2
‖Au − TΛ,p(Au)‖2

2 + JΛ,p(TΛ,p(Au)) ≥ JΛ,p(TΛ,p(Au)).

Let Au :=
(

(Au)
(m)
00 , (Au)(1), . . . , (Au)(m), (Au)

(1)
11 , . . . , (Au)

(m)
11

)T

. Then we see by

(3.4) and (3.5) that

JΛ,p(TΛ,p(Au)) =
1

p

m∑

k=1

‖Λ(k)TΛ(k),p

(
(V (k))T(Au)(k)

)
‖p

p

+
1

p

m∑

k=1

‖Λ(k)
11 T

Λ
(k)
11 ,p

((Au)
(k)
11 )‖p

p. (4.7)

Now we have by (3.6) and by definition of the soft shrinkage function that

1

p

(

λ
(k)
j

)p ∣
∣T

λ
(k)
j ,p

(y)
∣
∣
p ≥







λ
(k)
j |y| −

(

λ
(k)
j

)2

for p = 1,

1
p

(
λ
(k)
j

1+
“

λ
(k)
j

”p

)p

|y|p − 1
p

(

λ
(k)
j

)p

for p ∈ (1, 2].

Thus, setting

κ1 :=
1

p
min

j=1,...,2N
i=1,...,N
k=1,...,m

{( λ
(k)
j

1 +
(

λ
(k)
j

)p

)p

,
( λ

(k)
11,i

1 +
(

λ
(k)
11,i

)p

)p}

and

κ2 :=







∑m
k=1

(
∑2N

j=1

(
λ

(k)
j

)2
+
∑N

i=1

(
λ

(k)
11,j

)2
)

for p = 1,

1
p

∑m
k=1

(
∑2N

j=1

(
λ

(k)
j

)p
+
∑N

i=1

(
λ

(k)
11,j

)p
)

for p ∈ (1, 2]

and applying that ‖x‖p ≥ ‖x‖2 for p ∈ [1, 2], we get

JΛ,p(TΛ,p(Au)) ≥ κ1

( m∑

k=1

‖(V (k))T(Au)(k)‖p
p +

m∑

k=1

‖(Au)
(k)
11 ‖p

p

)

− κ2

≥ κ1

( m∑

k=1

‖(Au)(k)‖p
2 +

m∑

k=1

‖(Au)
(k)
11 ‖p

2

)

− κ2.

Using the notation A0 := H
(m)
00 and

A1 :=
(

(H(1))T, . . . , (H(m))T, (H(1))T

11, . . . , (H
(m))T

11

)T

,

this can be rewritten as

JΛ,p(TΛ,p(Au)) ≥ κ1‖A1u‖p
2 − κ2. (4.8)
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By Lemma 4.4 below, the matrix AT
0A0 has the simple eigenvalue 1 with a corre-

sponding normed eigenvector ũ = 1√
N

1N . Since ATA = I, it follows that AT
1A1 has

the simple eigenvalue 0 and that the kernel of AT
1A1 is spanned by ũ. Now we obtain

for the orthogonal decomposition u = v + aũ that |a| ≥ ‖u‖2 − ‖v‖2 and

‖A1u‖2
2 = ‖A1v‖2

2 ≥ η2‖v‖2
2, (4.9)

where η2 > 0 is the second smallest eigenvalue of AT
1A1. Now we fix a constant

c ∈ ( 1√
N+1

, 1) and consider two cases:

1. For ‖v‖2 ≥ c ‖u‖2, we conclude by (4.8) and (4.9) that

F1(u) + F2(u) ≥ κ1‖A1u‖p
2 − κ2 ≥ κ1

√
η2

p ‖v‖p
2 − κ2 ≥ κ1

√
η2

p
cp ‖u‖p

2 − κ2.

2. For ‖v‖2 < c‖u‖2 it holds that |a| > (1 − c)‖u‖2. Hence, we have for any i0 ∈ C
that

|ui0 | = |vi0 + aũi0 | ≥ |a||ũi0 | − |vi0 | > (1 − c)‖u‖2|ũi0 | − c‖u‖2 = ‖u‖2
1 − c(1 +

√
N)√

N
.

Thus, we see for ‖u‖2 large enough that |ui0 | > |fi0 | and, consequently, F1(u)+F2(u) ≥
ιC(u) = +∞.

Lemma 4.4. The matrix AT

0A0 has 1 as a simple eigenvalue with corresponding
eigenvector ũ = 1√

N
1N .

Proof. Using multiplication rules for tensor products, we obtain that

AT

0A0 = BTB ⊗ BTB, B :=
m∏

l=1

H
(l)
0 =

1

2m
circ ([1 . . . 1

︸ ︷︷ ︸

2m

0 . . . 0]).

By [10], the circulant matrix B has eigenvectors 1√
n
(e−

2πijk
n )n

j=0 and eigenvalues β0 =

1 and

|βk| = | 1

2m

2m−1∑

j=0

e−
2πijk

n | =
1

2m

|1 − e−
2πij2m

n |
|1 − e−

2πij
n |

=
1

2m

m∏

p=1

|1 + e−
2πij2m−p

n | < 1,

k = 1, . . . , n − 1. The last inequality holds true because |1 + e−
2πij2m−p

n | ≤ 2 for
p = 1, . . . , m with strict inequality for p = m.

In summary, we obtain the following convergence result.
Theorem 4.5. The sequence {ur}∞r=0 produced by Algorithm I.1 converges for

any start image u0 and p ∈ [1, 2] to a minimizer of the functional F1 + F2 in (4.4).
Proof. By (4.6), the sequence produced by our Algorithm I.1 coincides with the

sequence generated by the forward-backward splitting algorithm (4.2). Now the asser-
tion follows since the functional F1 + F2 in (4.4) fulfills the convergence assumptions
of Lemma 4.1: The functions F1 and F2 are proper, convex, and lsc. By Lemma 4.3
the functional F1 + F2 is coercive so that there exists at least one minimizer of the
functional. Finally, since ‖A‖2 = 1 and I − proxJΛ,p

is nonexpansive, it is easy to
check as in [6] that F2 has a gradient with Lipschitz constant 1.

With respect to Remark 4.2, we note that for our setting (I + ∂F1)
−1(I − ∂F2)

is an averaged operator, i.e., the strictly convex combination of the identity operator
and a nonexpansive mapping. As an alternative to Lemma 4.1 one could also use
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convergence results for Picard iterations of averaged operators, see [5, 17, 19, 20, 23].

Remark 4.6. Numerical experiments indicate that Algorithm I.1 converges
linearly. However, we have not proved this so far. In [26, Proposition 1(d)], Tseng
gives a sufficient condition for linear convergence. Unfortunately, it cannot be applied
here since neither ∂F1 nor ∇F2 is strongly monotone.

5. Numerical Examples. Finally, we present some numerical examples, in par-
ticular, we compare our algorithm with the algorithm in [6] without thresholding of
the smoothest coefficients. Since the results for noisy data with a small amount of
noise are similar as those for exact data, we restrict our attention to exact input data.

All programs were written in MATLAB. We have always assumed Neumann
boundary conditions and we have used the following stopping criterion for the it-
erations: ‖ur+1 − ur‖2/‖ur+1‖2 ≤ 5 · 10−5. We compare the weighted ℓ1-error
err1 := ‖u − f‖1/N , the weighted ℓ2-error err2 := ‖u − f‖2/

√
N , and the PSNR :=

20 · log10(255/err2). The parameters were chosen with respect to the “best” PSNR.
We compare the following algorithms:
(A) The wavelet-based algorithm in [6] with the filters h0 := 1

4 [1 2 1], h1 :=√
2

4 [1 0 − 1], and h2 := 1
4 [−1 2 − 1] and soft shrinkage of the high-pass

coefficients at level k with the thresholds c/
√

2k.
(B) Algorithm I.1 with our Haar-wavelet filters, p = 1, V (k) = I, and soft shrink-

age with threshold λ
(k)
j := λ/

√
2k and λ

(k)
11,j := λ11/

√
2k at level k.

(C) The same algorithm as in (B) except that we use matrices V (k) inspired by
the LSAS explained in Remark 3.1ii): We convolve an appropriate guess f̃
of the original function with the Gaussian of standard derivation σ to obtain
f̃σ. Then, at level k, we set

V (k) :=

(
c(k) −s(k)

s(k) c(k)

)

with c(k) := diag
(
H

(k)
01 f̃σ/w

)
, s(k) := diag

(
H

(k)
10 f̃σ/w

)
, and

w(k) :=

√

(H
(k)
01 f̃σ)2 + (H

(k)
10 f̃σ)2, i.e., we use the same matrices V (k) in each

iteration step r.
(D) Algorithm I.1 with p = 2 and the following setting inspired by the LSAS for

EED in Remark 3.1 ii): we define V (k) as in (C). In the shrinkage step we use

(
I + (Λ(k))2

)−1
:=

(

diag
(
e−4τ g(w(k))

)
0

0 diag
(
e−4τ 1N

)

)

,

(
I + (Λ

(k)
11 )2

)−1
:= diag

(
e−4τ (g(w(k))+1)

)

with the vector 1N of N ones. We still use the same matrices V (k), Λ(k), and

Λ
(k)
11 in each iteration step r.

(E) The same algorithm as in (D) except that we do not freeze V (k) and the
shrinkage matrices at the beginning of the algorithm with respect to f̃σ but
compute them in each iteration step r with respect to the actual iterate ur.
Note that we have not proved the convergence for this algorithm. If we
would work only with one level of Haar-wavelet decomposition m = 1, then
the restoration step can be considered as one time step of an iterative EED
scheme discretized by LSAS.
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In our first example we start with the image at the top right of Fig. 1.1 which
we also use as initial guess u0. Alternatively, one could use the bottom left image
in Fig. 1.1 generated by the MATLAB cubic interpolation procedure ”griddata” as
initial guess. This leads to qualitatively similar results but with a smaller number of
iterations. However, we have used this cubic interpolation in algorithms (C) and (D)
for f̃ . Detailed results are given in the tables below. Here ”iter” denotes the number
of iterations. The corresponding images for the decomposition level 2 are depicted in
Fig. 5.1 and at the bottom right of Fig. 1.1. The algorithms described in (B)–(E)
perform much better than the algorithm (A). The PSNR improves by approximately
3 dB if we use algorithms (B)–(D) and by approximately 5 dB for algorithm (E),
compare Tables 5.1–5.5. The Algorithms (B)–(E) considerably reduce the artifacts
at the horizontal line. However, the algorithms (B) and (C) introduce some errors at
the boundary of the circle. These artifacts do not appear if we apply the algorithms
(D) and (E). In general, the PSNR cannot be substantially improved by choosing a
higher decomposition level than m = 2.

Table 5.1

Results of the inpainting algorithm (A) for the first example.

Level c PSNR err2 err1 iter
4 1.0 32.93 5.49 0.54 307
3 1.0 33.29 5.51 0.48 307
2 1.0 33.27 5.53 0.46 358
1 1.6 32.50 6.04 0.50 461

Table 5.2

Results of algorithm (B) for the first example.

Level λ λ11 PSNR err2 err1 iter
4 1 8 34.84 4.61 0.36 272
3 1 10 35.52 4.27 0.29 235
2 1 100 36.42 3.84 0.27 278
1 1 100 35.89 4.09 0.28 814

Table 5.3

Results of algorithm (C) for the first example.

Level σ λ λ11 PSNR err2 err1 iter
4 4 1 8 35.43 4.31 0.36 244
3 4 1 10 35.97 4.05 0.30 223
2 4 1 100 36.60 3.76 0.26 269
1 4 1 100 36.03 4.02 0.26 811

In our second example we interpolate the image on the right-hand side of Fig.
5.2. Again, we use this image as initial guess and its cubic interpolation as f̃ in the
algorithms (C) and (D). This cubic interpolation is depicted at the top left of Fig.
5.3 and contains hard artifacts at the windows on the left-hand side. The results for
our algorithms with two decomposition levels are as follows:

• Algorithm (A) with c = 1.0: PSNR = 31.61, err2 = 6.69, err1 = 1.36,
• Algorithm (B) with λ = 0.5 and λ11 = 8: PSNR = 34.08, err2 = 5.03,

err1 = 0.93,
• Algorithm (C) with σ = 0.5, λ = 0.5 and λ11 = 8: PSNR = 33.98, err2 = 5.09,

err1 = 0.97,
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Table 5.4

Results of the inpainting algorithm (D) for the first example.

Level σ τ α PSNR err2 err1 iter
4 4 1 2 35.19 4.43 0.47 73
3 4 1 2 36.08 4.00 0.36 79
2 4 1 2 36.79 3.68 0.29 106
1 4 1 2 36.83 3.83 0.28 208

Table 5.5

Results of algorithm (E) for the first example.

Level σ τ α PSNR err2 err1 iter
4 4 1 2 35.91 4.07 0.44 78
3 4 1 2 37.47 3.40 0.29 88
2 4 1 2 38.58 2.99 0.23 123
1 4 1 2 37.99 3.21 0.24 215

• Algorithm (D) with σ = 1, τ = 1 and α = 2: PSNR = 31.56, err2 = 6.73,
err1 = 1.27,

• Algorithm (E) with σ = 1, τ = 1 and α = 2: PSNR = 31.36, err2 = 6.89,
err1 = 1.26.

Algorithms (B) and (C) perform best. The PSNR is approximately 2 dB higher
than in the other three algorithms. While the algorithms (A), (D) and (E) produce
similar artifacts especially at the windows, these errors do not appear if we apply the
algorithms (B) and (C). This is illustrated in Fig. 5.3 and in the zoomed images in
Fig. 5.4.

In our third example, we consider the image at the top left of Fig. 5.5. For
this image cubic interpolation yields very good results (PSNR = 33.62), see top right
of Fig. 5.5. Starting with this image as an initial guess and using small parameters
(c = λ = λ11 = 0.05), we can achieve a PSNRs of around 33.8 by applying algorithms
(A)–(C). Visual differences to the image obtained by cubic interpolation are hard
to find. For algorithms (D) and (E) with the original image as initial guess, two
decomposition levels and parameters σ = 1, τ = 1, and α = 10, we obtain the
PSNR = 34.25, err2 = 4.93, err1 = 0.98 after 86 iterations and the PSNR = 34.21,
err2 = 4.96, err1 = 1.00 after 249 iterations, respectively. As shown at the bottom of
Fig. 5.5 there are visual differences at long edges.
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Fig. 5.3. Interpolation of the image in Fig. 5.2. Top left: cubic interpolation by the MAT-
LAB procedure ”griddata” (PSNR=30.18, err2 = 7.89, err1 = 1.51). Top right: Algorithm (A),
(PSNR=31.61, err2 = 6.69, err1 = 1.36). Bottom left: Algorithm (B), (PSNR=34.08, err2 = 5.03,
err1 = 0.93). Bottom right: Algorithm (C), (PSNR=33.98, err2 = 5.09, err1 = 0.97). The images
at the top contain artifacts, in particular at the left window side. The algorithms at the bottom show
a better performance and do not introduce these artifacts.
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Fig. 5.4. Details of the interpolated images of Fig. 5.3. Top left: original image. Top
right: Algorithm (A), ( PSNR=31.61, err2 = 6.69, err1 = 1.36). Bottom left: Algorithm (B),
(PSNR=34.08, err2 = 5.03, err1 = 0.93). Bottom right: Algorithm (C), (PSNR=33.98, err2 = 5.09,
err1 = 0.97). In contrast to the top right image, the images at the bottom do not have high errors
at the horizontal and vertical window lines.
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Fig. 5.5. Interpolation results for the “peppers” image. Top left: degraded image. Top right:
cubic interpolation. Bottom left: Algorithm (D). Bottom right: Algorithm (E). Algorithms (D) and
(E) improve the quality at long edges.


