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Abstract

We are interested in minimizing functionals with ℓ2 data and gradi-
ent fitting term and ℓ1 regularization term with higher order derivatives
in a discrete setting. We examine the structure of the solution in 1d by
reformulating the original problem into a contact problem which can
be solved by dual optimization techniques. The solution turns out to
be a ’smooth’ discrete polynomial spline whose knots coincide with the
contact points while its counterpart in the contact problem is a discrete
version of a spline with higher defect and contact points as knots. In
2d we modify Chambolle’s algorithm to solve the minimization prob-
lem with the ℓ1 norm of interacting second order partial derivatives as
regularization term. We show that the algorithm can be implemented
efficiently by applying the fast cosine transform. We demonstrate by
numerical denoising examples that the ℓ2 gradient fitting term can be
used to avoid both edge blurring and staircasing effects.

Short title: ℓ1 regularized data and gradient fitting
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1 Introduction

In image denoising one is interested in removing noise while preserving or
even enhancing important structures such as edges. While linear filters
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typically smooth edges, some edge enhancing methods create artificial edges
out of the continuous gray value transitions. This so-called ’staircasing
effect’ is one of the most prominent shortcomings of many well-established
image denoising algorithms, e.g., of the Rudin–Osher–Fatemi (ROF) model.
It creates an oversegmentation of the image into artificial parts. To avoid
these artifacts one can include higher order derivatives into the model which
would prefer not only piecewise constant, but also piecewise linear results
[13, 23, 28]. Unfortunately, these higher order derivative methods also tend
to introduce some blurring in the region of image edges.

In this context, we are concerned with minimizing discrete versions of
the functional

1

2
‖f − u‖2

L2
+

α

2
‖∇f −∇u‖2

L2
+ β ‖ (

∑

|γ|=m

wγ |u(γ)|2)1/2 ‖L1
, (1)

where γ ∈ N
2
0 denotes the order of the derivatives in x and y directions,

|γ| := γ1 + γ2 and wγ are nonegative weights. For |γ| = 1 and α = 0 the
penalization in (1) becomes

∫

|∇x| dxdy and we obtain the frequently applied
ROF model. The main reason for introducing the additional gradient fitting
term with α > 0 consists in avoiding the staircasing effect on the one hand
and in preserving edges and discontinuities on the other hand. Image edges
can be characterised as regions where the gradient is high. Thus the gradient
fitting term is intended to force the solution to be similar to the initial image
especially near edges.

A first approach that uses partial derivatives of first and second order
based on the idea of inf-convolution was proposed by Chambolle and Lions in
[3]. For comparisons we sketch the corresponding algorithm in the numerical
part of this paper. An asymptotical case of [3] with respect to one parameter
was studied in [21]. The (directed) Laplacian as second order term was
added to the TV functional in [5]. Other approaches are possible, e.g., by the
applying Bregman distances [19]. Further, we mention that l1 regularization
terms with decoupled partial derivatives were used, e.g., in [11, 2, 13]. These
approaches might be useful for special image processing tasks and can be
handled by different algorithms.

To get a better idea concerning the structure of the solution of our mi-
nimization problem, we first deal with the univariate setting

1

2
‖f − u‖2

L2
+

α

2
‖f ′ − u′‖2

L2
+ β‖f (m)‖L1

. (2)

Again, we focus on the discrete approach with forward differences instead
of derivatives. Note that in the continuous setting L1 regularization in
connection with splines was treated in [7, 14] with a careful handling of
the non–reflexive space L1. In this paper, we reformulate (2) as a contact
problem which can be solved via the dual formulation of (2). In case of
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an additional gradient fitting term (α > 0) the solution can be computed
efficiently by applying the fast discrete cosine transform. We prove that the
solution U of the contact problem is a discrete polynomial spline of degree
2m− 1 with the contact points being related to the spline knots. For α > 0,
it can be considered as a discrete version of a spline with defect three. The
solution u of (2) is directly determined by the solution U of the contact
problem and turns out to be a ’smooth’ discrete polynomial spline of degree
m−1 with knots related to the contact points. We do not present numerical
denoising examples in 1d since they only confirm the 2d findings. For α = 0
and various derivatives m, denoising results are given in [24].

Having examined the structure of the solution in 1d, we turn to our
original 2d denoising problem. Here the regularization term includes the ℓ1

norm of interacting partial derivatives which ensures rotationally invariant
solutions. We adapt an algorithm of Chambolle [1], which is also based on
the dual version of (1), to our setting. In case of an additional gradient
fitting term we can include the fast cosine transform into this algorithm.

This paper is organized as follows: We start with the 1d part in Section 2.
First we provide our discrete setting in Subsection 2.1 . Then we reformulate
the discrete minimization problem as a contact problem and deal with its
solution via the dual formulation of the minimization problem in Subsection
2.2. Finally, we examine the structure of the solution both of the contact
problem and the original minimization problem in Subsection 2.3.

Section 3 deals with 2d images, where we focus on the practically rele-
vant regularization with at most second order derivatives in the regulariza-
tion term. After introducing the discrete setting in Subsection 3.1 we turn
to the dual formulation and Chambolle’s algorithm in connection with the
discrete cosine transform in Subsection 3.2. Finally, Subsection 3.3 presents
numerical denoising results demonstrating the influence of the additional
gradient fitting term.

2 Higher order ℓ1 regularization in 1d

2.1 Discrete setting

In this section, we deal with a discrete version of (2). To this end, let

D1,N :=















−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0

. . .
. . .

. . .

0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1















∈ R
N−1,N (3)

be the first order forward difference matrix and

Dm,N := D1,N−(m−1) · . . . · D1,N−1D1,N ∈ R
N−m,N
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the m–th order forward difference matrix. If the size N of the difference
matrix Dm,N is given in the context we skip the second index and write
only Dm. Then it is well known that

R(DT
m) = {f ∈ R

N :
N
∑

j=1

jrf(j) = 0, r = 0, . . . ,m − 1},

N (Dm) = span {(jr)Nj=1 : r = 0, . . . ,m − 1} ,

i.e., the range R(DT
m) of DT

m consists of the vectors with m vanishing mo-
ments while the kernel N (Dm) of Dm is just given by the discrete polyno-
mials of degree ≤ m − 1.

We are interested in minimizing the discrete counterpart of (2)

F (u) =
1

2
‖f − u‖2

2 +
α

2
‖D1f − D1u‖2

2 + β‖Dmu‖1 (4)

which can be rewritten as

F (u) =
1

2
(f − u)T(IN + αDT

1 D1)(f − u) + β‖Dmu‖1 . (5)

Clearly, for α ≥ 0, the matrix

A = A(α) := IN + αDT
1 D1

is positive definite. Setting BTB := A and L := Dm the functional (5)
becomes

F (u) =
1

2
‖B(f − u)‖2

2 + β‖Lu‖1 . (6)

The minimizer of (6) can be computed in various ways. In the next subsec-
tion, we propose to minimize (6) using its dual formulation. This is closely
related to the reformulation of (6) as a contact problem and serves as our
basis to gain some insight into the structure of the solution u.

2.2 Contact problem and dual formulation

In this subsection, we focus on minimizing strictly convex functionals of the
form

F (u) =
1

2
‖B(f − u)‖2

2 + β‖Lu‖1 , (7)

where B ∈ R
N,N and L ∈ R

N−m,N are arbitrary matrices of full rank.
In particular, we are interested in our special setting from the previous
subsection.
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Decomposition related to N (L). Since the regularization term becomes
zero if u is in N (L) we want to restrict ourselves to those parts of u which
are in a certain sense orthogonal to N (L). To this end, we define an inner
product on R

N by
〈u, v〉A = 〈Au, v〉 = vTAu .

Corresponding to the A orthogonal decomposition

R
N = N (L) ⊕A R(A−1LT)

every vector u ∈ R
N has a unique decomposition as

u = u0 + u1 , u0 ∈ N (L) , u1 ∈ R(A−1LT) . (8)

Using this decomposition for f and u, we obtain in (7),

F (u) =
1

2
‖B(f0 − u0)‖2

2 + 〈B(f0 − u0), B(f1 − u1)〉 +
1

2
‖B(f1 − u1)‖2

2

+ β‖Lu1‖1

=
1

2
‖B(f0 − u0)‖2

2 +
1

2
‖B(f1 − u1)‖2

2 + β‖Lu1‖1 .

It is easy to check that f1 = A−1LTKLf , where

K :=
(

LA−1LT
)−1

.

Note that K exists since L has full rank. Consequently, to solve (7), we can
set u0 := f0 = f − f1 and search for u1 ∈ R(A−1LT) minimizing

1

2
‖B(f1 − u1)‖2

2 + β‖Lu1‖1 .

In the following, we assume that f ∈ R(A−1LT) such that f1 = f and
u1 = u.

Reformulation as a contact problem. For the solution u of (7) it is
necessary and sufficient that 0N is an element of the subdifferential ∂F (u):

0N ∈ A(u − f) + βLT Lu

|Lu| , (9)

where the quotient is meant componentwise and

x

|x| :=







1 if x > 0,
−1 if x < 0,

[−1, 1] if x = 0.
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This can be rewritten as

u ∈ f − βA−1LT Lu

|Lu| ,

Lu ∈ Lf − βLA−1LT Lu

|Lu| . (10)

Since f , u ∈ R(A−1LT) there exist F,U ∈ R
N−m such that

f = A−1LTF , u = A−1LTU . (11)

Conversely, we have that

F = KLf , U = KLu . (12)

Multiplying (10) by K and using (12) we obtain the inclusion

U ∈ F − β
K−1U

|K−1U | .

Hence (7) can be reformulated as the following contact problem:

Find U ∈ R
N−m so that

• ‖F − U‖∞ ≤ β.
U lies in a tube around F of width 2β.

• if (K−1U)j > 0 we have a lower contact point Uj = Fj − β,
if (K−1U)j < 0 we have an upper contact point Uj = Fj + β.

To get an idea concerning the structure of U and u in the next subsection
let us write

U = K c , (13)

so that by (11)
u = K̃ c , (14)

with K̃ := A−1LTK. Then the contact problem reads as follows:

Find c ∈ R
N−m so that

• ‖F − Kc‖∞ ≤ β.

• if cj > 0 we have a lower contact point Uj = Fj − β,
if cj < 0 we have an upper contact point Uj = Fj + β.

Let
Ξ := {j ∈ {0, . . . ,N − m − 1} : cj 6= 0} (15)

be the (sub)set of contact point indices. If #Ξ is small, then c becomes sparse
and (13) (resp. (14)) are sparse representations of U (resp. u) determined
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by the corresponding columns of K (resp. K̃). In the next subsection we
will have a closer look at these columns.

In general solving the contact problem is not straightforward. Only
for the special case that B = IN and L = D1 there exists the so-called
’taut–string’ algorithm [6] which is based on a convex hull algorithm and
requires only O(N) arithmetic operations. Concerning tube algorithms see
also [14, 9].

We will solve the problem via the dual approach to (7).

Dual formulation. To give the dual formulation of (7) we apply that
J(u) := ‖Lu‖1 is one–homogeneous so that its conjugate J∗ is the indicator
function of the convex set

SL := {v ∈ R(LT) : 〈v,w〉 ≤ J(w) ∀w ∈ R
N} . (16)

It is easy to check that

SL = {v = LTV : ‖V ‖∞ ≤ 1} . (17)

Then the inclusion (9) can be rewritten as

1

β
A(f − u) ∈ ∂J(u)

which is equivalent to

u ∈ ∂J∗

(

1

β
A(f − u)

)

and with v := A(f − u), i.e., u = f − A−1v to

f − A−1v ∈ ∂J∗

(

v

β

)

.

Obviously, v fulfills this inclusion if and only if it minimizes the functional

1

2
‖Bf − (B−1)Tv‖2

2 + J∗

(

v

β

)

. (18)

By (17) this is the case if and only if v = LTV and V solves the minimization
problem

‖Bf − (B−1)TLTV ‖2
2 → min, s.t. ‖V ‖∞ ≤ β . (19)

This is actually a quadratic optimization problem with linear constraints
which can be solved by standard optimization techniques. Finally, we obtain

u = f − A−1LTV .
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Up to now we have not used the decomposition (8) for the solution.
To see the relation to the contact problem, we assume again that f ∈
R(A−1LT). Then, using (11), we can reformulate (19) as

‖(B−1)TLTU‖2
2 = ‖U‖K−1 → min, s.t. ‖F − U‖∞ ≤ β (20)

and with (13) as

cTKc → min, s.t. ‖F − Kc‖∞ ≤ β .

Thus, the vector U in our contact problem solves the minimization problem
(20).

Structure of A. In the numerical solution of (19) as well as in the solution
of the 2d problem we utilize the special structure of

A = A(α) = IN + αDT
1 D1

that allows us to determine A−1 analytically. Moreover, we make use of this
structure when examining the form of the solutions U and u. To this end,
let

T (a) :=







a0 a1 . . . aN−2 aN−1

a1 a0 . . . aN−3 aN−2

.

.

.

.

.

.

.
.
.

.

.

.

aN−2 aN−3 . . . a0 a1

aN−1 aN−2 . . . a1 a0






,

H(a) :=







a0 a1 . . . aN−2 aN−1

a1 a2 . . . aN−1 aN−2

.

.

.

.

.

.

.
.
.

.

.

.

aN−2 aN−1 . . . a2 a1

aN−1 aN−2 . . . a1 a0







be the symmetric Toeplitz matrix and the persymmetric Hankel matrix gen-
erated by the vector a ∈ R

N , respectively. By

SN−1 :=

(

2

N

)1/2 (

sin
jkπ

N

)N−1

j,k=1

∈ R
N−1,N−1

we denote the transform matrix of the sine–I transform of length N − 1 and
by

CN :=

(

2

N

)1/2 (

εj cos
j(2k + 1)π

2N

)N−1

j,k=0

∈ R
N,N

with ε0 := 1/
√

2 and εj := 1 for j 6= 0 the matrix of the cosine–II transform
of length N , cf. [20]. Both matrices are orthogonal, i.e., SN−1 SN−1 = IN−1

and CT
N CN = IN . Moreover, the vector multiplication with SN−1 and CN

can be realized in an FFT–like manner with only O(N log N) arithmetic
operations.

It is well known that these transforms are strongly related to Toeplitz
plus Hankel matrices in the following sense, see, e.g., [20]:
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Lemma 2.1 The following relations hold true

SN−1 diag (dj)
N−1
j=1 SN−1 = T (a0, . . . , aN−2) − H(a2, . . . , aN−2, 0, 0) ,

CT
N diag (dj)

N−1
j=0 CN = T (a0, . . . , aN−1) + H(a1, . . . , aN−1, 0) ,

where

(dj)
N−1
j=0 = 2

(

ε2
k cos

jkπ

N

)N−1

j,k=0

(a0, . . . , aN−2, 0)
T .

In particular, it follows by Lemma 2.1 that

DT
1 D1 = T (2,−1, 0N−2) + H(−1, 0N−1) = CT

NΛ2CN ,

where

Λ2 := diag (λ2
j)

N−1
j=0 , λ2

j := 2 − 2 cos
jπ

N
=

(

2 sin
jπ

2N

)2

.

and consequently

A(α) = IN + αDT
1 D1 = CT

N (IN + αΛ2)CN . (21)

2.3 Spline character of the solution

In the following, we are interested in the structure of u and U for our original
setting with A defined by (21) and L := Dm. Based on the representations
(13) and (14) of U and u it seems to be useful to have a closer look at the
matrices K and K̃ which for our special setting are defined by

K = Km(α) =
(

DmA(α)−1DT
m

)−1
, (22)

K̃ = K̃m(α) = A(α)−1DT
mKm(α). (23)

We will see that u and U are splines of different character.

Spline structure of u. A real-valued function s defined on [a, b] is a
polynomial spline of order m with knots a < x1 < . . . < xr < b if

s(m) =

r
∑

k=1

ckδ(· − xk) ,

where δ denotes the delta-distribution. In other words, s is a polynomial of
degree ≤ m − 1 on each interval [xk, xk+1], k = 0, . . . , r; x0 := a, xr+1 := b
and s ∈ Cm−2[a, b]. These smoothest polynomial splines are also called
splines with defect 1 or with knot multiplicity 1.

9



Let n := ⌊m/2⌋. Then we can analogously define the discrete polynomial

splines on {0, . . . , N−1} of order m with knots j1+n, . . . , jr+n ∈ {n, . . . ,N−
⌈m

2 ⌉} as the vectors s ∈ R
N satisfying

Dm s =
r
∑

k=1

cjk
ejk

,

where ej ∈ R
N−m denotes the j–th unit vector. Material on discrete splines

can be found, e.g., in [22] and in connection with optimization problems
different from the one considered here in [15, 16].

Now we see by definition (23) of K̃m(α) that

DmK̃m(α) = IN−m , Dmu = c .

Consequently, the k-th column of K̃m(α) is a discrete polynomial spline
of order m with only one knot k + n. The solution u of (7) is a discrete
polynomial spline of order m with knots Ξ + n, where Ξ is given by the
indices of the contact points (15).

Fig. 1 illustrates the fundamental splines given by the columns of K̃m(α)
for various values of m and α.
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Figure 1: Fourth column of K̃m(α) with knot 4, 5, 5, resp. for m = 1, 2, 3
(left to right) and α = 0 (top), α = 10 (bottom), where N = 30.

Spline structure of U . For α = 0, we have shown in [24] that

Kext
m (0) :=





0m,N−1

Km(0)
0m,N−1




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is also a discrete polynomial spline of order 2m with knots Ξ+m. Here 0m,N

denotes the m × N matrix with zero entries. However, for α > 0, things
become slightly more complicated. We need the following two auxiliary
lemmas.

Lemma 2.2 Let bk := (−1)k
( 2m
m−k

)

, k = 0, . . . ,m be the coefficients of the

2m–th binomial filter multiplied by (−1)k. Let Λ := diag (λj)
N−1
j=0 , Λ̃ :=

diag (λj)
N−1
j=1 , where λj := 2 sin jπ

2N . By

Rn := (0N−m,n, IN−m, 0N−m,n) ∈ R
N−m,N−m+2n .

we denote the cutoff matrix that cancels the first and last n vector compo-

nents. Then the following relations hold true:

i) SN−1Λ̃
2m

SN−1 = T (b0, . . . , bm, 0N−m−2) − H(b2, . . . , bm, 0N−m) ,

CT
NΛ2mCN = T (b0, . . . , bm, 0N−m−1) + H(b1, . . . , bm, 0N−m) .

ii) RnSN−1Λ̃
2m

SN−1R
T
n = T (b0, . . . , bm, 0N−2m−1) , for m = 2n + 1 ,

RnCT
NΛ2mCNRT

n = T (b0, . . . , bm, 0N−2m−1) , for m = 2n .

Proof. i) By Lemma 2.1 we have that

T (b0, . . . , bm, 0N−m−2) − H(b2, . . . , bm, 0N−m) = SN−1 diag (dj)
N−1
j=1 SN−1

where dj := b0 + 2
∑m

k=1 bk cos jkπ
N . It remains to show that

b0 + 2
m
∑

k=1

bk cos
jkπ

N
=

(

2 − 2 cos
jkπ

N

)m

, j = 1, . . . ,N − 1

i.e., that

b0 +

m
∑

k=1

bk(e
ix + e−ix) =

(

2 − eix − e−ix
)m

, x :=
jπ

N
.

This can easily be verified by induction on m. The second assertion of i)
follows in a similar way.
ii) By i) the Hankel matrix summand influences only the first and last n

rows and columns of SN−1Λ̃
2m

SN−1 and CT
NΛ2mCN , respectively. Thus we

obtain ii). �

Lemma 2.3 Let Λ and Λ̃ be defined as in Lemma 2.2. Then the kernel

K−1
m (α) can be written as

K−1
m (α) =











RnSN−1
Λ̃

2m

IN−1+αΛ̃
2 SN−1R

T
n for m = 2n + 1,

RnCT
N

Λ2m

IN+αΛ2 CNRT
n for m = 2n ,

where the quotient is defined componentwise.
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Proof. By Lemma 2.2i) it is easy to check that

D2n,N−1 = (−1)n RnSN−1Λ̃
2n

SN−1, (24)

D2n,N = (−1)n RnCT
NΛ2nCN . (25)

First, let m = 2n. Then we obtain by (21) and (25) that

K−1
m (α) = Dm CT

N (IN + αΛ2)−1 CN DT
m

= Rn CT
N

Λ2m

IN + αΛ2 CN RT
n .

Assume now that m = 2n + 1. By (21) we have that

K−1
1 (α) = D1 CT

N (IN + αΛ2)−1 CN DT
1 .

Straightforward computation gives

D1 CT
N =

(

2

N

)1/2 (

εj

(

cos
j(2k + 3)π

2N
− cos

j(2k + 1)π

2N

))N−2,N−1

k,j=0

=

(

2

N

)1/2 (

−2εj sin
j(k + 1)π

N
sin

jπ

2N

)N−2,N−1

k,j=0

= − (0N−1,1, SN−1) Λ

and consequently

K−1
1 (α) = (0N−1,1, SN−1) Λ (IN + αΛ2)−1 Λ (0N−1,1, SN−1)

T

= SN−1
Λ̃

2

IN−1 + αΛ̃
2 SN−1 .

Using this relation and (24) we obtain

K−1
m (α) = Dm−1,N−1 D1 (IN + αΛ2)−1 DT

1 DT
m−1,N−1

= RnSN−1
Λ̃

2m

IN−1 + αΛ̃
2 SN−1R

T
n .

This completes the proof. �

Now we are ready to describe the structure of Km(α).

Theorem 2.4 Let zT denote the n–th row of CT
N

Λ2m

IN+αΛ2 CN RT
n Km(α)

if m = 2n and the n–th row of −SN−1
Λ̃

2m

IN−1+αΛ̃
2 SN−1R

T
n Km(α) if m =

12



2n + 1. By zrev we denote the vector obtained by reversing the order of the

components of z. Then our kernels

Kext
m (α) :=













αzT

0m−1,N−m

Km(α)
0m−1,N−m

αzT
rev













fulfill

D2m,N+m Kext
m (α) = (−1)m T (1 + 2α,−α, 0N−m−2). (26)

Proof. We restrict our attention to even m = 2n. The proof for odd
m = 2n + 1 follows the same lines. By Lemma 2.2ii) we have that

T (b0, . . . , bm, 0N−2m−1) = RnCT
NΛ2mCNRT

n

= Rn CT
N (IN + αΛ2) CN CT

N

Λ2m

IN + αΛ2 CN RT
n .

Using Lemma 2.3 and considering the tridiagonal structure of CT
N (IN +

αΛ2) CN this can be rewritten as

T (b0, . . . , bm, 0N−2m−1)

= T (1 + 2α,−α, 0N−m−2) K−1
m (α) − α





aT

0N−m−2,N−m

aT
rev



 ,

where aT denotes the n–th row of CT
N

Λ2m

IN+αΛ2 CN RT
n . Multiplication with

Km(α) results in

T (b0, . . . , bm, 0N−2m−1)Km(α) + α





zT

0N−m−2,N−m

zT
rev





= T (1 + 2α,−α, 0N−m−2) .

Now we can enlarge (−1)mT (b0, . . . , bm, 0N−2m−1) by 2m rows and columns
to (−1)mD2m,N+m to obtain

(−1)m D2m,N+m





0m,N−m

Km(α)
0m,N−m



 + α





zT

0N−m−2,N−m

zT
rev





= T (1 + 2α,−α, 0N−m−2).

Since the first coefficient in the Toeplitz matrix (−1)m D2m,N+m is equal to
1, this can be rewritten in the form (26). �
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To see the relation of (26) to splines, let us repeat that a real-valued
function s defined on [a, b] is a polynomial spline of order m with knots

a < x1 < . . . < xr < b and defect (knot multiplicity) 3 if

s(m) =
r
∑

k=1

ckδ(· − xk) + c′kδ
′(· − xk) + c′′kδ

′′(· − xk) .

In other words, s is of lower smoothness, namely s ∈ Cm−4[a, b]. Here we
may restrict our interest to the splines with defect 3 satisfying

s(m) =

r
∑

k=1

ck(δ(· − xk) + αδ′′(· − xk)) . (27)

Using

e′′0 := (2,−1, 0N−m−2)
T, e′′N−m−1 := (0N−m−2,−1, 2)T,

e′′j := (0j−1,−1, 2,−1, 0N−m−2−j)
T, j = 1, . . . ,N − m − 2

as discrete counterparts of δ′′(·−k), we see by (26)that the k–th column Kk

of Kext
m (α) is a discrete version of (27) with only one knot k + m:

D2m Kk = (−1)m(ek + αe′′k) .

Consequently, by (13),

D2m U ext = (−1)m
r
∑

k∈Ξ

ck(ek + αe′′k) ,

so that U ext := (αzTc, 0m−1, U
T, 0m−1, αzT

revc
T)T can be considered as dis-

crete version of a polynomial spline of order 2m with defect 3 and knots
Ξ + m.

The columns of the kernel Km(α) are illustrated in Fig. 2.

3 Second order ℓ1 regularization in 2d

3.1 Discrete setting

For simplicity, we restrict our attention to quadratic (n, n) images and re-
shape them column by column into a vector f of length N := n2. As a
discrete counterpart of (1) we are interested in minimizing strictly convex
functionals of the form

F (u) =
1

2
‖f − u‖2

2 +
α

2
‖D1f −D1u‖2

2 + β‖ |Dmu| ‖1 . (28)
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Figure 2: Fourth column of Kext
m (α) with knot 5, 6, 6 for m = 1, 2, 3, resp.

(left to right) and α = 0 (top), α = 10 (bottom), where N = 30.

Here Dm : R
N → R

pN , p = p(m) ≥ 2 is a (weighted) discrete partial
derivative operator of order m and

|V | :=
(

‖(Vj+rN )p−1
r=0‖2

)N−1

j=0
, V ∈ R

pN .

Note that

‖ |V | ‖1 :=
N−1
∑

j=0

|V |j and ‖ |V | ‖∞ := max
j=0,...,N−1

|V |j (29)

are dual norms on R
pN .

In this paper, we focus on first and second order partial derivatives with
the following operators D1 and D2, respectively. Using the difference matrix
D1 = D1,n defined by (3), we set

D1 :=

(

In ⊗ D̃1

D̃1 ⊗ In

)

∈ R
2N,N , D̃1 :=

(

D1

01,n

)

.

The multiplication with D1 mimics a discrete gradient operator, where the
upper N rows correspond to the derivation in x direction and the lower N
rows to the derivation in y direction. Moreover, |D1u| is a discrete version
of the absolute value of the gradient |∇u| = (u2

x + u2
y)

1/2. For a more
sophisticated discretization of |∇u| see, e.g., [26]. Further, let

D2 :=











In ⊗ DT
1 D1

DT
1 D1 ⊗ In

D̃
T
1 ⊗ D̃1

D̃1 ⊗ D̃
T
1










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be our discrete version of the second order partial derivative operators ∂xx,

∂yy, ∂yx, ∂xy (top rows to bottom rows). Note that DT
1 D1 = D̃

T
1 D̃1. Then

we see that |D2u| is the discrete version of the Frobenius norm of the Hessian

∇2u :=

(

uxx uxy

uyx uyy

)

.

For a variational method including the Hessian see also [10]. Of course other
discretizations of second order derivatives are possible and sometimes also
necessary, for example if integral identities have to be preserved, see, e.g.,
[29]. Moreover, other coupled versions of the second order derivatives, e.g.
(u2

xx + u2
yy)

1/2 are possible.
Now the functional (28) can be rewritten for m = 1, 2 as

F (u) =
1

2
‖B(f − u)‖2

2 + β‖ |Lu| ‖1 (30)

with L ∈ {D1,D2} and A = BTB,

A = A(α) := IN + αDT
1 D1.

The matrix DT
1 D1 is just the central difference discretization of the Laplacian

with Neumann boundary conditions which can be diagonalized by Kronecker
products of the cosine transform matrices Cn. More precisely, we obtain that

A(α) = (Cn ⊗ Cn)T(IN + αΛ2
2)(Cn ⊗ Cn) (31)

with Λ2
2 = Λ2 ⊗ In + In ⊗ Λ2, Λ := diag

(

2 sin jπ
2n

)n−1

j=0
.

3.2 Dual formulation

Since J(u) := ‖ |Lu| ‖1 is one–homogeneous the functional (30) can be min-
imized as in 1d by switching to the dual minimization problem

1

2
‖Bf − (B−1)Tv‖2

2 + J∗

(

v

β

)

→ min , (32)

where J∗ is again the indicator function of the set

SL := {v ∈ R(LT) : 〈v,w〉 ≤ J(w) ∀w ∈ R
N} , (33)

cf. (16) and u is related to v by u = f − A−1v. By Lemma A.1 this set is
also given by

SL = {v ∈ R(LT) : min
v=LTV

‖ |V | ‖∞ ≤ 1} . (34)

For L := D1, the norm ‖v‖G := min
v=LTV

‖ |V | ‖∞ is just a discrete version

of Meyer’s G–norm which is known as dual norm of the BV norm on the
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closed subspace BV of functions of bounded variation with gradient in L1.
Concerning higher order derivatives and G–norms see also [18].

With v := LTV problem (32) is equivalent to

‖Bf − (B−1)TLTV ‖2
2 → min, s.t. ‖ |V | ‖∞ ≤ β .

This is a quadratic minimization problem with quadratic constraints (if
squared). In our numerical examples we have solved this problem by adap-
ting an algorithm by Chambolle [1]. This algorithm allows us to incorporate
fast cosine transforms arising from the special structure of A in (31) in a
simple way. Other solution methods by including auxiliary variables, see
e.g. [25] or in connection with multiplicative half-quadratic minimization
[8, 17, 4] or by using second order cone programming [27] are possible but
not superior in the application at hand.

Applying (31), the adapted Chambolle algorithm reads as follows:

Algorithm 3.1 Input: u(0) := f ∈ R
n,n and V

(0)
r := 0n,n, r = 1, . . . , 4.

Repeat for k = 0 until a stopping criterion is reached

W
(k)
1 := DT

1 D1u
(k)

W
(k)
2 := u(k)DT

1 D1

W
(k)
3 := D̃1u

(k)D̃1

W
(k)
4 := D̃

T
1 u(k)D̃

T
1

|W (k)| :=

(

4
∑

r=1

(W (k)
r )2

)1/2

componentwise

V (k+1)
r :=

V
(k)
r + τW

(k)
r

1n,n + τ
β |W (k)|

, r = 1, . . . , 4

x(k+1) := DT
1 D1V

(k+1)
1 + V

(k+1)
2 DT

1 D1 + D̃
T
1 V

(k+1)
3 D̃

T
1 + D̃1V

(k+1)
4 D̃1

u(k+1) := f − CT
n

(

Cnx(k+1)CT
n

M

)

Cn

where M is the matrix reshaped version of IN + αΛ2
2 and the quotients are

taken componentwise.

Output: u := u(k+1).

Since the difference matrices are sparse and the vector multiplication
with Cn can be performed in O(n log n) arithmetic operations, one step of
the algorithm requires only O(n2 log n) arithmetic operations.

Chambolle proved that u(k) converges to the solution u if

τ ≤ 1/‖(B−1)TLT‖2
2 = 1/‖LA−1LT‖2.
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Obviously we have that ‖A−1‖2 ≤ 1 and ‖D1‖2
2 = 8. Further, we see by

applying Gerschgorin’s theorem that ‖D2‖2
2 ≤ 64. Hence we have to choose

τ ≤
{

1/8 for L = D1,
1/64 for L = D2.

3.3 Numerical examples

In this section, we present numerical examples for the denoising of grey value
images in 2d. Since for a human observer as well as for some computer vision
systems edges are a very important source of information in an image, one
of the major goals of denoising algorithms is to preserve or even enhance
edges. The main reason for introducing our model with the additional ℓ2

gradient fitting term was to avoid both the staircasing effect and the blurring
of edges.

In our experiments we assume an additive noise model: Let f ∈ R
n×n be

a noisy version of the initial image g ∈ R
n×n, degraded with additive white

Gaussian noise η, i.e., fij = gij + ηij. As quality measures for the denoised
image u we use the ℓ1 norm of g − u and the Signal-to-Noise Ratio (SNR)
defined as

SNR(g, u) := 10 log10

(

∑n
i,j=1(gij − µ)2

∑n
i,j=1(uij − gij)2

)

,

where µ := 1
n2

∑n
i,j=1 gij denotes the mean value of g. The SNR is a widely

used measure in image processing and essentially gives the same information
as an ℓ2 distance. Roughly speaking, the larger the SNR the better is the
expected image quality.

Our adapted Chambolle algorithm 3.1 was implemented in MATLAB.
In addition to our approach we performed various experiments with the inf-
convolution model proposed in [3]. Using our notation, the authors in [3]
find the denoised image u = u1 + u2 by solving

arg min
u1,u2

1

2
‖f − u1 − u2‖2

2 + α‖ |D1u1| ‖1 + β‖ |D2u2| ‖1. (35)

Originally the parameters are slightly coupled, i.e., β = αλ for some λ ≥ 0.
To solve (35) numerically we use an alternating minimization procedure that
finds successively

arg min
u2

1

2
‖f − u1 − u2‖2 + β‖ |D2u2| ‖1

and

arg min
u1

1

2
‖f − u1 − u2‖2 + α‖ |D1u1| ‖1.

The convergence of this procedure to the minimizer of (35) follows as in [12].
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m α β SNR ‖u − g‖1 · 10−5

Noisy image - - - 11.16 10.00
ROF 1 0 50 22.74 2.08

Alg. 3.1 2 0 50 20.00 1.88
Alg. 3.1 2 1.2 50 23.13 1.64
Alg. (35) 2 20 50 22.54 1.65

Table 1: Denoising experiment in 2d: Parameters and error measures.

The top of Fig. 3 contains our test image and its noisy version. Table
1 shows the parameters and the error measures of the resulting denoised
images. The error measures show that adding a gradient fitting term to
variational denoising with second-order derivatives enables us to improve the
results. While the ROF model leads to staircasing artifacts, the pure second
order method suffers from blurred edges. The additional ℓ2 gradient fitting
can help to avoid both types of problems. One alternating minimization
iteration of the inf-convolution approach (35) leads to similar results but
with higher numerical effort. With a high expense of over 100 alternating
minimization iterations one can further slightly improve the result. However,
note that we have not optimized the parameters α and β with respect to our
error measures but have chosen them to give a visually good impression. The
results were confirmed by the images in Fig. 3 and their sections in Fig. 4.
The staircasing effect that appears if we use only first order coupled partial
derivatives is clearly visible. On the other hand, one can see the blurring of
edges when using purely second order partial derivatives. The image quality
can be improved by additional ℓ2 gradient fitting.

A Appendix

By the following lemma, we see that the sets in (33) and (34) are equivalent.

Lemma A.1 Let L ∈ R
pN,N . Then

sup
|Lw|6=0

|〈V ′, Lw〉|
‖ |Lw| ‖1

= min
LTU=LTV ′

‖ |U | ‖∞ .

Proof. Let ν := sup
|Lw|6=0

|〈V ′
,Lw〉|

‖ |Lw| ‖1

. By applying the Schwarz inequality to

(U r
j )pr=1 and ((Lw)rj)

p
r=1 for j = 0, . . . ,N − 1, we obtain

|〈U,Lw〉| ≤ 〈|U |, |Lw|〉 ≤ ‖ |U | ‖∞ ‖ |Lw| ‖1.

Since |〈V ′, Lw〉| = |〈LTV ′, w〉| = |〈U,Lw〉| for all U ∈ R
pN with LTV ′ =

LTU and all w ∈ R
N we obtain that

ν ≤ min
LTU=LTV ′

‖ |U | ‖∞ . (36)
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To show the reverse direction we consider the subspace B := R(L) of R
pN

equipped with the norm ‖ | · | ‖1. The mapping lV ′(Lw) := 〈V ′, Lw〉 is
a linear functional on B which has exactly the norm ν. By the Hahn–
Banach Theorem this functional can be extended to a linear functional l on
(RpN , ‖ | · | ‖1) with ‖l‖ = ‖lV ′‖. Consequently, there exists Ṽ ∈ R

pN such
that l(V ) = 〈Ṽ , V 〉 for all V ∈ R

pN and

〈Ṽ , Lw〉 = 〈V ′, Lw〉 ∀w ∈ R
N .

This can be rewritten as

〈LTṼ , w〉 = 〈LTV ′, w〉 ∀w ∈ R
N

so that the vector Ṽ must fulfil LTṼ = LTV ′. Since the norms ‖ | · | ‖1 and
‖ | · | ‖∞ are dual norms on R

pN we see that

‖lV ′‖ = ‖l‖ = ‖ |Ṽ | ‖∞.

Together with (36) this yields the assertion. �
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Figure 3: Denoising experiment in 2d. Top left: Original image (size
256 × 256). Top right: Image with additive noise, SNR 11.16. Middle
left: Denoised image with ROF model m = 1, α = 0, β = 50. The starcais-
ing effect is visible. Middle right: Denoised image with second order model
m = 2, α = 0, β = 50. Edges are blurred. Bottom left: Denoised image with
second order model (28) m = 2, α = 1.2, β = 50. Edges become sharper
again by adding the ℓ2 gradient fitting term. Bottom right: Denoised image
with inf-convolution model (35) and α = 20, β = 50. Edges become sharper.
Sections of the images can be seen in Fig. 4.
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Figure 4: Denoising experiment in 2d. 100 × 120 sections of the denoised
images in Fig. 3. Top left: Part of the denoised image with ROF model
m = 1, α = 0, β = 50. Top right: Part of the denoised image with second
order model m = 2, α = 0, β = 50. Bottom left: Part of the denoised image
with second order model (28) m = 2, α = 1.2, β = 50. Bottom right: Part
of the denoised image with inf-convolution model (35) α = 20, β = 50.
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