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Abstract

In this thesis we will compare the dipole model by Jensen (and the result from a Monte
Carlo simulation for the geometry used by Jensen) to simulation results for different ge-
ometries and to results from simulations in which inhomogeneous materials have been
used. This will enable us to give hints when the dipole approximation yields feasible
results and what can be done to improve them. Then we propose a simple model for
inhomogeneous materials based on the dipole approximation and fit its parameters to
simulation results.
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Chapter 1

Introduction

In the past and especially during the last few years, it has become clear that there are
virtually no scenes that cannot be rendered any more. Consequently, the question nowa-
days is not if a scene can be rendered but how long it takes to do so. Efficient hardware,
rendering structures and algorithms (like BSP-trees, programmable shaders that run on
graphic cards or efficient data structures to store photons in photon mapping) have been
invented and improved.

There are, however, still some problems. Scenes with fluorescence, or phosphoresce are
still very hard. These problems are usually not serious because these two effects are very
rare. There is, however, a common effect that is often important and hard to compute.
This phenomenon, which is called subsurface scattering, occurs in many non-metallic
materials. Although the effect is in most cases small, it is clearly visible for certain
materials like marble, skin or milk. A glass of milk, for example, will look like a block of
chalk without subsurface scattering. The effects of subsurface scattering can also clearly
be seen in alabaster, as seen in Figure 1.1.

Subsurface scattering happens when a photon that hits a solid or fluid object enters this
object and traverses inside the object non-deterministically until it leaves it again, usually
at a different position.

That is, these objects are not transparent and cannot be described by a BRDF [21] (and
not by a mixture of these two approaches). Such materials are called translucent. Areas
that are bright although they are not illuminated, rather dull highlights and similar effects
can be the result from subsurface scattering. In general, features on such objects appear
to be smoothed.

A wide spread dipole approximation for rendering subsurface scattering objects was given
by Jensen [17]. It is, however, only valid under very special conditions that are usually
not true in common scenes. This model is often used in these scenes nonetheless. One of
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(a) including subsurface scattering (b) excluding subsurface scattering

Figure 1.1: Both figure shows a photograph of the head of an alabaster horse. However,
the subsurface scattering was removed in the right figure by covering the model with fine
dust. Comparing these two figures, it is obvious that Subsurface scattering can have a
great influence on the appearance of objects.
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the goal of this thesis is therefore to check whether the model introduced by Jensen still
results in an acceptable solution if one of the preconditions if no longer valid. Moreover
we try to generate a better model for a specific case.

1.1 Overview

To achieve these goals and understand the necessary concepts, we start by explaining
the mathematical and physical background required in Chapter 2. The previous work is
briefly covered in Chapter 3. In Chapter 4, we give the setup of our Monte Carlo photon-
tracer, explain the possible outputs it can generate and give a short summary over other
useful tools we wrote. Furthermore, we verify that the results are reasonable. Chapter 5
deals with simulation results from different shift-invariant geometries. In there we will
compare the results from four types of geometries to Jensen’s dipole approximation and
give hints what can be done to improve the result from the approximation. In addition to
that, we examine a few factors that might be important such as the importance of non-
scattered photons. Shift-variant materials are dealt with in Chapter 6 in which discrete
and continuous spatially varying materials are used for simulations. In Chapter 7 we fit
a model to a generated marble block, trying to improve the result of Jensen’s model in
this special instance. The last chapter summarizes the results of the previous chapters and
gives an outlook on future work.
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Chapter 2

Basics

This chapter describes the basic definitions necessary to understand and solve the prob-
lems occurring when photons interact with participating media. Basic mathematical con-
cepts are explained first, followed by the physic necessary to understand how light inter-
acts with scattering and non-scattering media. Details are given in [1] or [14].

2.1 Introduction to Probability Calculus

In this section an introduction to probability calculus (i.e. the concept of expected value,
variance etc. of random variables) is given. Starting with a formal definition of random
variable, the concepts of probability density function, expected value . . . will be explained
for continuous and discrete random variables of one or more dimensions.

The following formal definitions are required to introduce random variables:

Let S be a non-empty set. A family of subsets F is called a sigma-algebra over S if the
following three properties hold:

• /0 ∈ F

• E ∈ F ⇒ E ∈ F

• E1,E2 . . .En ∈ F ⇒ Sn
i=1 Ei ∈ F

Examples include the full power set of S. The smallest sigma-algebra which contains all
closed subsets of a topological space 1 T is called the Borel sigma-algebra.

1A topological space is a sigma-algebra S where every union and intersection of (not necessarily finite
number of) sets from S is also in S.
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A function µ : S → R
+
0 ∪ {∞} from a sigma-algebra to the non-negative real numbers

(including infinity) is called a measure if and only if:

• µ( /0) = 0

• The function is countably additive:

E1,E2, . . .En ∈ F, Ei∩E j = /0 ∀1 ≤ i, j ≤ n ⇒ µ(
Sn

i=1 Ei) = ∑n
i=1 µ(Ei)

Let Ω be a non-empty set, F a sigma-algebra and P a measure such that P(Ω) = 1. The
triple PS = (Ω,F,P) is called a probability space, and a random variable is defined as a
measurable non-deterministic function from a probability space PS to a measurable space
S with measure µ. The measure P is called probability measure. If the real numbers with
the Borel sigma-algebra are chosen as S, the probability measure is also called probability
distribution. This will always be the case in this thesis.

Loosely spoken, however, a random variable is nothing else but the numeric result of a
non-deterministic process or experiment. The results from flipping a coin, rolling a die
(or summing the spots of several dice) or drawing a bingo number are typical examples
of random variables. Another common example is the canonical random variable. It
results in a number from the interval [0,1), where every number in this interval has equal
probability to be chosen.

In practice, the same random variable can be used to get a random number from the closed
interval [0,1], because the probability that the value 1 is chosen is zero anyway2.

For each random variable X , its cumulative distribution function F(X) := Pr[X ≤ x]
can be defined.

Each random variable X gives rise to a probability distribution, which contains most
of the important information about X . The probability distribution corresponding to X
assigns to the interval [a,b] the probability Pr[a ≤ X ≤ b], where Pr[a ≤ X ≤ b] is the
probability that the random variable X will take a value from the interval from a and b.
Similarly, Pr[X = a] is the probability that the random variable X will take the value a
and Pr[X ∈ S] stands for: The random variable X will take a value from the set S.

If the set Ω (i.e., the set of values the random variable can attain) is finite or countable
finite, the random variable is called discrete random variable. Its cumulative distribution
function consists then of a series of discrete steps.

Unfortunately, there are two conventions what a continuous random variable is. The
first convention defines that a random variable is continuous if and only if its cumula-
tive distribution function is continuous, which is equivalent to Pr[X = a] = 0 ∀a ∈ R. In

2The probability that 1 is chosen is zero because the random variable is continuous. The term continuous
is explained later in this section.
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this paper, however, the second convention is used: A random variable X is called (abso-
lutely) continuous if the probability density function (or short PDF) exists, i.e., there is
a function p : Ω → R such that

Pr[X ∈ S] =
Z

S
p(X)dX ∀ S ⊂ Ω.

In this case, this relationship is denoted with X ∼ p.

Note that these two conventions match for "normal" functions. However, some functions
like the Cantor function [10] are continuous but not absolutely continuous. Furthermore,
it is obvious that

p(S) ≥ 0 ∀ S ∈ Ω

and
Z

Ω
p(X)dX = 1.

Every function that fulfills these two conditions is a PDF for a random variable and it
should be clear that a random variable X can be uniquely described by both its cumulative
distribution function and its PDF.

2.1.1 Expected Value, Variance and Standard Derivation

If X is a random variable over a probability space (Ω,F,P), the expected value E[X ] is
defined as the Lebesgue integral of X over Ω:

E[X ] :=
Z

Ω
XdP.

The random variable X has no expected value if this integral does not exist.

For a discrete random variable X with values x1,x2, . . .xn, this formula simplifies to

E[X ] :=
n

∑
i=1

Pr[X = i] · xi.

If X is (absolutely) continuous and p is the corresponding PDF, E[X ] can be computed as

E[X ] =

Z

Ω
X · p(X)dX .

Intuitively, the expected value is the "average" result of a random variable, but the name
expected value must not lead to the wrong intuition that the result of a random variable
will most of the time be the expected value. In reality, the expected value is often a value
which is not possible as value of the random variable at all, e.g. the expected value when
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throwing a die and noting the number is 1
6 (1+2+3+4+5+6) = 3.5, a result which

will definitely never occur.

A very useful property of the expected value is its linearity: If X and Y are two random
variables, the expected value of the sum of X and Y is the sum of the expected values of
X and Y , i.e., E[X +Y ] = E[X ]+ E[Y ]. Thus, it follows easily that the expected value of
the sum of the spots of n dice is n ·3.5.

Furthermore, it should be noted that functions of random-variables are random variables
themselves. Therefore, if X and Y are random variables and f and g are functions of X
and Y , respectively, the following formula holds:

E[ f (X)+g(Y )] = E[ f (X)]+E[g(Y)]

If X is continuous with X ∼ p, the expected value of f (X) is given by

E[ f (X)] =
Z

Ω
f (X) · p(X)dx.

Other important concepts linked to random variables are the variance V [X ] and the stan-
dard derivation σ of a one-dimensional random variable X :

V [X ] := E[(X −E[X ])2] = E[X2]− (E[X ])2

σ :=
√

V [X ]

For multi-dimensional random variables, variance and expected value are not defined.
Intuitively, the greater the standard derivation, the further the result of one experiment
will be from the expected value (on the average). This is illustrated by the following
example: The random variables X and Y that uniformly take one of the numbers {3,4,5}
and {−1,1,12}, respectively, both have an expected value of 4, but the variance and the
standard derivation of the second variable are much bigger:

V [X ] = E[(X −E[X ])2] =
1
3

(
3

∑
i=1

(X −E[X ])2

)

=
1
3

(1+0+1) =
2
3

V [Y ] = E[(Y −E[Y ])2] =
1
3

(
3

∑
i=1

(Y −E[Y ])2

)

=
1
3

(25+9+64) =
98
3

= 32
2
3

If X and Y are two random variables and the property

Pr((X ∈ S)∧ (Y ∈ T )) = Pr(X ∈ S) ·Pr(Y ∈ T ) ∀S,T ∈ Ω
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holds, X and Y are called independent random variables. Then,

E[X ·Y ] = E[X ] ·E[Y ] and V [X +Y ] = V [X ]+V [Y ].

Two or more (absolutely) continuous random variables that have the same probability
distribution function are called independent identically distributed random variables.

Especially important for Monte Carlo Integration (which will be discussed in the next
section) are the weak and the strong laws of large numbers: Let X1,X2 . . . be an infinite
sequence of independent identically distributed random variables with expected value
E[X ] and Xn = ∑n

i=1 Xi the average of the first n random variables (the so called estimated
mean). The weak law of large numbers state that, for every ε > 0

lim
n→∞

Pr
(∣
∣Xn −E[X ]

∣
∣< ε

)
= 1

Even better, the strong law of large numbers claims:

Pr
(

lim
n→∞

Xn = E[X ]
)

= 1

These laws basically mean that the estimated means is an approximation for the expected
value:

E[X ]≈ 1
n

n

∑
i=1

xi for n → ∞.

That is, if a random experiment is done several times, the expected value of the experiment
is approximated by the estimated means, and this approximations yields better results if
more experiments are used in the approximation.

2.2 Monte Carlo Integration

In ray tracing it is often not possible to calculate exact results, especially in complex
scenes. Using probability calculus, however, even integrals that can not be solved analyt-
ically can be approximated by a method called Monte Carlo Integration. When using
photon mapping, for example, a certain number of photons are shot from the light sources
and traversed through the scene. Those places where the photons are diffusely reflected
are stored and used later to approximate the amount of light (and its color) of the areas
shown. To obtain an exact result, however, billions and billions of photons would have
to be shot in every possible direction, which is not practicable to do (and perhaps will
never be) in a reasonable amount of time. When dealing with subsurface scattering, the
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situation is even worse, as will be shown in the next section. More general, this problems
always occurs when complicated integrals, e.g. the rendering equation, have to be solved.

Let X be a (absolutely) continuous random variable with X ∼ p and f be a function
f : Ω → R. By applying the definition of the expected value and using the approximation
of the expected value with estimated means, it follows that:

Z

Ω
f (X)p(X)dX = E[ f (X)]≈ 1

n

n

∑
i=1

f (Xi)

Ignoring the middle term and setting g := f · p yields

Z

Ω
g(X)dX ≈ 1

n

n

∑
i=1

g(Xi)

p(Xi)
.

Thus, the integral I :=
R

Ω g(X)dX can be approximated by choosing any PDF p : Ω →
R

+ and calculating the sum on the right side through random variables Xi with Xi ∼ p.
Choosing a PDF p : Ω → R is possible if and only if p(a) 6= 0 where g(a) 6= 0.

Thus, there are a huge number of possible approximations which will all converge towards
the correct solution. The variance of these approximations, however, are very different:
Choosing the right PDF can vastly reduce the variance and therefore increase the speed of
convergence. This is illustrated in Table 2.1, which shows several sampling functions and
the variance each function has when it is used in a Monte Carlo estimation of the integral
described above. One of the calculations done for this table is illustrated in the following
example:

Suppose the Monte Carlo solution (i.e. an approximation using Monte Carlo Integration)
of the integral from 0 to 3 over the function g(x) = x2 shall be computed:

I =

Z 3

0
g(x)dx =

Z 3

0
x2dx =

1
3

x3
∣
∣
∣
∣

3

0
= 9

First, the sampling function p must be chosen. One valid choice is p(x) = 2
9x, because:

• 2
9 x only has one zero at x = 0, but g(0) = 0, i.e., p(a) 6= 0 where g(a) 6= 0.

• p(x) ≥ 0 ∀ x ∈ [0,3].

•
R 3

0 p(x) = 1
9x2
∣
∣
3
0 = 1.
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sampling function variance Number
8

10(4− x)3 1231,246
n 1

e−x

1−e−3
526,018

n 2
12−2x

27
108,928

n 3
1
3

64,8
n 4

x(4−x)
9

42,506
n 5

4
81x3 10,125

n 6
2
9x 10,125

n 7
ex

e3−1
3,619

n 8
x2

9 0 9

Table 2.1: In this table, several possible estimators and their corresponding variances are
shown when trying to find the solution of the integral

R 3
0 x2dx using Monte Carlo methods.

The last column indicates which plot in the Figures 2.1 and 2.2 is the plot of the given
function. (Figure 2.1 and 2.2 are on Page 12).

The expected value of g(x)
p(x) is:

E

[
g(x)
p(x)

]

=

Z 3

0

g(x)
p(x)

· p(x)dx =

Z 3

0
g(x)dx = I,

which should be no surprise. The variance is given by:

V

[
g(x)
p(x)

]

= E

[(
g(x)
p(x)

)2
]

−
(

E

[
g(x)
p(x)

])2

=

Z 3

0

(
g(x)
p(x)

)2

p(x)dx− I2

=
Z 3

0

9
2

x3dx−81

= 10.125

The variance of the chosen estimator is therefore V
[

1
n ∑n

i=1
g(Xi)
p(Xi)

]

= ∑n
i=1V

[
1
n

g(Xi)
p(Xi)

]

=
10.125

n , since the random variables are identically independent distributed, and thus inde-
pendent.

The variance for other possible sampling functions are shown in Table 2.1. Comparing the
variance of these functions with their shapes, which are shown in the Figures 2.1 and 2.2,
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Figure 2.1: This figure shows the plots of four possible (but bad) estimators (1 . . .4) to-
gether with the optimal estimator 9, which is nothing else but the scaled down shape of
the initial function to be evaluated g(x) = x2. It is quite obvious that the shapes of these
four estimators are very different from the shape of g(x). This results in a huge variance
as shown in Table 2.1

 0

 0.2
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 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2  2.5  3

’5’
’6’
’7’
’8’
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Figure 2.2: This time four different estimators (5 . . .8) have been plotted whose shape is
closes to the shape of g(x) which is again the gray curve 9. As expected, their variance
(given in Table 2.1 is far smaller than the variances of the first four estimators in the
picture above.
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it is noticeable that the variance is lower if the shape of the sampling function is similar
to the shape of g.

Choosing a function p whose shape is similar to the initial function g results in less vari-
ance because then, more samples are taken in the "important" areas, i.e., these areas where
g(x) is large. The technique to try to find a "good" sampling function before the sampling
process is started (or even when changing the sampling function in between) is called im-
portance sampling. There are other possible sampling strategies, some one which will
be covered briefly in the following section.

The best choice for p would be to choose p(x) = g(x)/I, because the variance will then
be zero:

V

[
g(x)
p(x)

]

= E

[(
g(x)
p(x)

)2
]

−
(

E

[
g(x)
p(x)

])2

=
Z b

a

(
g(x)
p(x)

)2

p(x)dx− I2

=

Z b

a

(g(x))2

p(x)
dx− I2

=

Z b

a

(g(x))2

g(x)
I

dx− I2

=
Z b

a
I ·g(x)dx− I2 = 0

To set p as p(x) = g(x)/I, however, I would have to be known. Then, the initial problem
(approximating I) would already have been solved.

2.2.1 Quasi Monte Carlo Integration

Instead of using random samples it is possible to use more uniformly distributed samples.
Equidistant and stratified sampling are some easy examples. While the term equidistant
should be self-explanatory, stratified sampling might require an explanation:

When using stratified sampling, the interval (area, volume, . . .) that should be sampled is
divided into intervals (areas, volumes, . . .) of equal size. The boundary (or boundaries)
of these new objects are usually axis-aligned. Then, a random point is chosen in each
interval. A simple example for stratified sampling can be seen in Figure 2.3.

More advanced methods like Poisson disc sampling and using Halton sequences are also
feasible. When using one of these sampling methods, one speaks about quasi Monte Carlo

13



Figure 2.3: This figure illustrates stratified sampling of a square: First, the square is
divided into a ten by ten square grid. Then a random sample is chosen in each cell.

integration. Details for both using and validating this approaches, however, would lead
too far here and can, for example, be found in [19]. In short, one can say that using quasi
Monte Carlo integration usually leads to better results, especially under certain conditions.
But these conditions are not always true in graphics. It has been shown that, when using
stratified sampling, the variance is not higher than with random samples, if all strata have
equal measure. On the other side, however, using quasi Monte Carlo Integration methods
can produce aliasing.

2.3 Uniform Sampling of Multidimensional Objects

In order to evaluate multi-dimensional integrals using Monte Carlo methods it is necessary
to find random samples on multi-dimensional surfaces. Moreover, several samples should
be equally distributed on the surface, i.e., in every subarea of the original surface, there
should be (in the limit) a number of samples proportional to the area of the subarea.
Samples chosen this way are called uniform samples.

Other examples in which finding uniform samples is important include sampling the light
direction of area and volume light sources when using photon mapping or estimating the
radiance at a given point in ray-tracing.

Choosing uniform samples for rectangles is easy: Let ξ1 and ξ2 be two independent
canonical random variables. Then, a random variable that uniformly covers a rectan-
gle with size (a,b) is given by (a · ξ1,b · ξ2). In general, however, the situation is more
complex. A random point on the unit disc can, for example, be calculated by choosing
a random "angle" α from the interval [0,1) and a "distance" d from the interval [0,1]. A
random point on the disc is then given by (d · cos(2π ·α),d · sin(2π ·α)). However, not
every point on the disc has equal probability to be chosen by this algorithm. Thus, the
samples are not uniformly distributed, as can be seen in the Figures 2.4 up to 2.7.

Thus, the goal of this section is find a mapping from the unit square [0,1]× [0,1] to a two

14
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on a disc have been created using the sim-
ple formula (ξ1 ·cos(2πξ2),ξ1 · sin(2πξ2)),
where ξ1 and ξ2 are two (uniformly dis-
tributed) random numbers. Obviously,
more samples have been mapped to the in-
terior of the disc, resulting in non-uniform
samples.
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Figure 2.5: Like in Figure 2.4, 10000 sam-
ples have been created on a disc. This time,
function inversion has been used. Thus, the
samples are uniformly distributed. Simi-
lar results occur when using rejection sam-
pling.
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Figure 2.6: This figure shows samples gen-
erated with the same formula as the sam-
ples from Figure 2.4. This time, however,
stratified random points have been used in-
stead of uniformly distributed ones.
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Figure 2.7: This is the result of samples be-
ing generated using function inversion and
stratified points on the unit disc. Again,
rejection sampling will achieve similar re-
sults.
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dimensional area that preserves uniform sampling. It should be noted that such mappings
will also preserve stratification.

The two dimensional area might be embedded in a coordinate system with more dimen-
sions. The classical example is the (two-dimensional) surface of a (three-dimensional)
sphere. In general, such an two-dimensional object is called a 2-manifold. If the area has
dimension k, it is called a k-manifold.

Generating equally distributed points on a 2-manifold can be done in several ways, two
of which will be explained in the following sections.

2.3.1 Rejection Sampling

A rather simple method to generate uniform samples is rejection sampling, i.e., generate
uniform (or stratified . . . ) samples for a simpler object and discard all those that are not
valid for a more complicated object.

Again, suppose the positions of a unit disc should be sampled. When using rejection
sampling, uniform samples are generated for the unit square. Then, every sample that is
not inside the unit disc is thrown away. Thus, pseudo code for creating uniform samples
for the unit disc is given by:

· Generate a sample (ξ1,ξ2) on the square [−1,1]2.
· Check if (ξ2

1 +ξ2
2) ≤ 1, i.e., check if the sample is inside the unit circle.

· If the sample is not in the disc, discard it and restart the algorithm.
· Otherwise, (ξ1,ξ2) is a new sample for the unit disc.

Unfortunately, there is a major drawbacks in this algorithm: there are no runtime guaran-
tees. Although it is very unlikely, the code given above might run forever without finding
a single sample. This observation will be true for all algorithms given in this section.

Moreover, the algorithm is that simple only for relative simple areas. While discs and
spheres can be sampled very easily, sampling the surface of a sphere is already more
tricky. Doing so can be done by first sampling the sphere itself and mapping the found
samples to the surface afterwards:

· Generate a sample (ξ1,ξ2,ξ3) on the cube [−1,1]3.
· Calculate the distance of the sample from the midpoint of the sphere/cube:

len =
√

ξ2
1 +ξ2

2 +ξ2
3.

· Discard the sample and restart if len > 1, i.e., restart if the sample is outside the unit
sphere.
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· Discard the sample and restart if len = 0, i.e., restart if (ξ1,ξ2,ξ3) = (0,0,0).
· Map the sample to the surface of the sphere by dividing each sample through len.

The point
(

ξ1
len , ξ2

len , ξ3
len

)

is now a sample on the surface of the sphere.

Using rejection sampling, It is also possible to create random numbers with a given un-
derlying PDF p : [a,b]→ [0,c]. Note that here, the PDF is required to be bounded3. Then,
the random variable can be sampled in the following way:

· Generate a random point (ξ1,ξ2) in the rectangle [a,b]× [0,c].
· If p(ξ1) > ξ2, discard the sample and restart.
· Otherwise, the sample ξ1 is valid.

2.3.2 Function Inversion

A more advanced approach to generate uniform samples is to use function inversion.
This technique requires more mathematical background but leads to a deterministic algo-
rithm that is usually quicker than using rejection sampling.

The drawback of this algorithm is that it requires a parametrization of the k-manifold
M to work, where a parametrization is a diffeomorphism (i.e., smooth bijection) from
the unit hypercube [0,1]k to the k-manifold for which samples should be generated. The
parametrization of the manifold M is denoted as ΦM .

To use function inversion, ΦM does not need to be bijective everywhere, but only nearly
everywhere, i.e., the integral of 1 over the set T that does not satisfy the condition (here:
ΦM is bijective) is zero4. Especially, this condition holds if T is a part of the boundary
of [0,1]k. Thus, finding a diffeomorphism from [0,1)k (or (0,1]× [0,1)k−1 or similar
constructs) to M is sufficient.

Function Inversion Algorithm for 2-Manifolds

If M ⊂ R
n is a 2-manifold with arbitrary parametrization ΦM = Φ, then the following

algorithm can be used to create an area-preserving parametrization of the 2-manifold M:

• Set

σ : [0,1]2 → R

(s, t) 7→
√

(Φs ·Φs)(Φt ·Φt)− (Φs ·Φt)2

3The requirement p(x) ≥ 0 is no limitation, since this is common to all PDFs as discussed earlier.
4Other equivalent formulations are: "T is a null set" and "the measure of T is zero".
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where Φs =
(

δΦ1
δs , · · · , δΦn

δs

)

and Φt =
(

δΦ1
δt , · · · , δΦn

δt

)

are the vectors of partial

derivatives of Φ.

For n = 2, the formula simplifies to σ(s, t) = det(D(s,t)Φ). Here D(s,t) is the 2× 2
Jacobian matrix of Φ = (Φ1,Φ2) at the point (s, t):

D(s,t)Φ =

(
δΦ1
δs

δΦ1
δt

δΦ2
δs

δΦ2
δt

)

For n = 3, the formula can be written as the length of the dot-product of the two
vectors of partial derivatives:

σ(s, t) = |Φs(s, t)×Φt(s, t)|

This function satisfies the condition that, for every subset A of [0,1]2, the integral
of σ over A is equal to the area of the part of the 2-manifold M that Φ maps A to:

Z

A
σ = area(Φ(A))

• Furthermore, define the functions F and G, which are both defined as function from
[0,1] to R:

F(s) :=

R 1
0

R s
0 σ(u,v) du dv

R 1
0

R 1
0 σ(u,v) du dv

Gs(t) :=

R t
0 σ(s,v) dv

R 1
0 σ(s,v) dv

Note that F and G are cumulative distribution functions of σ along different paths.

• Calculate the inverse functions f and g of F and G:

f (z) := F−1(z)

g(z1,z2) := G−1
f (z1)

(z2)

• An area-preserving parametrization ϕ of the 2-manifold is then given by:

ϕ(z1,z2) := Φ( f (z1),g(z1,z2))
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This parametrization can therefore be used to map uniform (or stratified . . . ) samples
from the unit square to the 2-manifold M.

The only difficult step in the algorithm given above is the function inversion step. Depend-
ing on the parametrization or the 2-manifold, it might not be possible to find a explicit,
closed-form solution. In this case, the inverse can be approximated numerically.

Using a weighting function to generate non-uniform samples is easy, too: Simply replace
the function σ by σ·w(s, t), where w(s, t) is the weighting function desired. As an example
of this technique, a area-preserving parametrization for a phong lobe will be generated on
Page 22.

2.3.3 Examples of Uniform Sampling Algorithms using Function In-
version

To clarify the algorithm explained in the last section and to show how easy it is to use this
algorithm, the formulas for uniform sampling of the unit disc, the unit hemisphere, the
unit sphere and a phong lobe will be derived.

Sampling the Unit Disc

Once again, a area-preserving parametrization of the unit disc is to be computed. Using
the non-uniform parametrization Φ(d,α) = (d · cos(2π ·α),d · sin(2π ·α)) ⊂ R

2, which
has already been explained in Section 2.3, the function σ is given by:

det(D(d,α)Φ) = det

(
cos(2π ·α) −2πd · sin(2π ·α)
sin(2π ·α) 2πd · cos(2π ·α)

)

= 2πd · cos2(2π ·α)+2πd · sin2(2π ·α)

= 2πd
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The functions F and Gd are:

F(d) =

R 1
0

R d
0 2πu du dv

R 1
0

R 1
0 2πu du dv

=

R 1
0 πd2 dv
R 1

0 π dv

= d2

Gd(α) =

R α
0 2πudv

R 1
0 2πudv

= α

The inverses of F and Gd are obviously f (z) =
√

z and g(z1,z2) = z2. Thus, an area-
preserving parametrization of the unit disc is given by:

ϕ(z1,z2) = Φ(
√

z1,z2) = (
√

z1 · cos(2π · z2),
√

z1 · sin(2π · z2))

In fact, this function has been used to generate the Figures 2.7 and 2.5 mentioned earlier.

Sampling the Unit (Hemi-)Sphere

A little more complex but still very simple is the derivation of an area-preserving parametriza-
tion of the unit hemisphere, i.e. the part of a unit sphere5 whose third component is greater
than zero. A common parametrization of this object can be obtained by using polar coor-
dinates:

Φ(s, t) =





sin(πs
2 )cos(2πt)

sin(πs
2 )sin(2πt)
cos(πs

2 )





The codomain of Φ is R
3. Thus, σ is defined as:

5The sphere centered at the origin with radius 1.

20



σ(s, t) = |Φs(s, t)×Φt(s, t)|

=

∣
∣
∣
∣
∣
∣





π
2 · cos(πs

2 )cos(2πt)
π
2 · cos(πs

2 )sin(2πt)
−π

2 · sin(πs
2 )



×





−2π · sin(πs
2 )sin(2πt)

2π · sin(πs
2 )cos(2πt)
0





∣
∣
∣
∣
∣
∣

= π2

∣
∣
∣
∣
∣
∣





sin2(πs
2 )cos(2πt)

sin2(πs
2 )sin(2πt)

cos(πs
2 )sin(πs

2 )(sin2(2πt)+ cos2(2πt))





∣
∣
∣
∣
∣
∣

= π2
√

sin4
(πs

2

)

(cos2(2πt)+ sin2(2πt))
︸ ︷︷ ︸

=1

+cos2
(πs

2

)

sin2
(πs

2

)

·1

= π2

√

sin2
(πs

2

)(

sin2
(πs

2

)

+ cos2
(πs

2

))

= π2 sin
(πs

2

)

Again, the functions F and G, given by

F(s) =

R 1
0

R s
0 π2 sin

(πu
2

)
du dv

R 1
0

R 1
0 π2 sin

(πu
2

)
du dv

= 1− cos
(πs

2

)

Gs(t) =

R t
0 π2 sin

(πu
2

)
dv

R 1
0 π2 sin

(πu
2

)
dv

= t

have to be inverted, which is trivial: f (z) = 2cos−1(1−z)
π and g(z1,z2) = z2. Using the fact

that sin(x) =
√

1− cos(x), the final parametrization can be written as:

ϕ(z1,z2) =





√

z1(2− z1)cos(2πz2)√

z1(2− z1)sin(2πz2)
1− z1





The costs of this formula can be sightly decreased by substituting z′ for 1− z1.

Doing the same computations for the unit sphere with the parametrization given by spheri-
cal coordinates ((sin(πs)cos(2πt),sin(πs)sin(2πt),cos(πs))t) results in σ(s, t) = 2π2 sin(πs)

and the area-preserving parametrization
(√

4z1(1− z1)cos(2πz2),
√

4z1(1− z1)sin(2πz2),1−2z1

)t
.
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It should be noted that the choice of the initial parametrization is rather important. Choos-
ing the parametrization

Φ(x,y) =





1−2x
1−2y

√

1− (1−2x)2 − (1−2y)2





for the upper hemisphere, for example, the steps of the algorithm get far more compli-
cated.

Sampling a phong lobe

Function inversion can easily be adapted to handle non-uniform PDF. The typical example
is the sampling of a phong lobe, i.e. the sampling of the (upper) hemisphere with a density
distribution that is proportional to the cosine of the polar angle. As mentioned above, all
that have to be done is to replace the function σ by the product of σ and the desired
weighting function. In the case of a phong lobe with phong exponent k, that is:

σ′ := σ · cosk
(πs

2

)

Similar calculations then lead to F(s) = cosk+1
(πs

2

)
and Gs(t) = t and finally

ϕ(z1,z2) =








√

1− z
2

k+1
1 cos(2πz2)√

1− z
2

k+1
1 sin(2πz2)

z
1

k+1
1








.

More information about this algorithm can be found in [16], as well as formulas for uni-
form sampling of other primitives.

2.4 Reflection and Refraction

As already mentioned, the goal of this thesis is to analyze subsurface scattering, i.e. to see
how photons interact with participating media. However, before a photon can interact with
a material, it must first enter it. Whenever light (or another electromagnetic wave) hits the
border between different materials, there are basically two things that can happen: The
wave might get (partially) reflected instead of entering the next material and/or it might
be refracted.
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It is a well know fact that all electromagnetic waves traverse though vacuum with a con-
stant velocity of c := 299.792.458 m

s . However, in other media, the light is slowed down.
The number n defined by the ratio between the observed speed v and the speed of light

n :=
v
c

is called the refraction index of the material. It depends on the material and the frequency
of the wave.

Another aspect of photons that is sometimes important is their polarization: A photon
can be seen as both a wave and a particle (Wave-particle duality [13]) at the same time,
and the polarization corresponds to the direction in which the wave oscillates. Note that
this oscillation direction is usually perpendicular to the propagation direction. Moreover
it should be noted that this explanation of polarization has been strongly simplified. See
[12] for a more detailed description.

For some media, the refraction index differs depending on the polarization and the di-
rection of the wave. This is called birefringence or double refraction. Instead of the
refraction index, the dielectric constant ε is then used to describe the effects mentioned
above which is, in this general case, a rank 2 tensor, i.e. a 3 by 3 matrix. For non-metallic
materials, however, the dielectric constant is simply the square root of the refraction in-
dex. In this thesis, however, birefringence will be ignored since it only appears in metallic
materials, which have no subsurface scattering.

The directions of reflection and refraction and their magnitude depends on several factors:
The angle between the incoming wave and the material normal, the frequency of the
wave, the polarization of the wave and the refraction index of both materials. Details are
given in the following sections that explain what percentage of light is reflected (Fresnel
Equations) and how the direction of the refracted wave can be computed (Snell’s Law).

2.4.1 Snell’s Law

Snell’s law, which describes how an electromagnetic wave is refracted when it crosses the
border of two materials with different refraction indices, is named after Willebrord van
Roijen Snell (1580-1626), a Dutch astronomer and mathematician. But it seems that he
was not the first derive it. It appears to have been recovered by Ibn Sahl (tenth century)
and Thomas Hariot (late sixteenth century) before Willebrord Snell and René Descartes
discovered it again. It is, however, not clear which of the two was the first to do so. Thus,
in French, Snell’s law is still called “la loi de Descartes”.

The statement of Snell’s law is the following: Whenever an electromagnetic wave crosses
the border between two materials with refraction indices n1 and n2, the following property
holds:
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Figure 2.8: This figure illustrates the identifiers used in Snell’s law: θi is the angle be-
tween the incoming wave and the normal (same for the transmitted wave and θt). In this
picture, the transmitted ray is bent towards the normal with means that the refraction index
n1 is smaller than n2.
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n1 sin(θi) = n2 sin(θt)

Here, θi is the angle between the incoming wave v and the surface normal, and θt is
the angle between the transmitted wave v′ and the surface normal, as seen in Figure 2.8.
Therefore, θt can be computed as θt = arcsin(n1

n2
sin(θi)). It is easy to see that this equation

does not always have a real solution if n1 > n2. In this case, there is no refracted ray and
the whole wave will be reflected. Thus, this is called total internal reflection. The angle
arcsin(n1

n2
) is called the critical angle because all waves arriving with a lower angle will

split into a reflected and a transmitted wave, while the waves arriving with a higher angle
will only be reflected.

Snell’s law can be derived from Fermat’s Principle: The actual path between two points
taken by a beam of light is the one which is traversed in the least time. 6

A classic and beautiful analogy is given by Richard P. Feynman (1918-1988), an Ameri-
can physicists[11]: Suppose a person on a beach want to rescue a drowning person in the
sea. Since the rescuer is quicker on the beach, it can be shown that the fastest way to the
drowning person is given by a path that follows Snell’s law.

The value of the angle θt is sufficient to calculate the direction of the transmitted ray. In
ray tracing, however, the value of θt is usually never computed because there are much
quicker ways to compute the bend ray than to use θt directly. The first method was used
by Whitted [29]. Here, however, the formula that appeared in [8] will be shown. The
formula derived by Whitted (and an additional formula) are also summarized in [7].

Heckbert’s idea was to write the refracted ray v′ as sum of the normal vector and a second
unit vector in the refraction plane that is perpendicular to the normal (compare Figure
2.8):

v′ = cos(θt)n+ sin(θt)
v⊥

‖v⊥‖

Assuming n and v have unit length, this formula can be simplified in the following way:

6There also exists a modern version of this principle. It states that, for each material (whose optical
density, i.e. the index of refraction, at the point x is given by n(x)) and each path γ, the optical path length
R

γ n(x)dx must be extremal, i.e. either minimal or maximal.
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v′ = −cos(θt)n+ sin(θt)
v⊥
‖v⊥‖

= −cos(θt)n+ sin(θt)
v− v‖

‖sin(θi)v‖

= −cos(θt)n+ sin(θt)
v− (v ·n)n

sin(θi)

= −cos(θt)n+
n1

n2
(v− (v ·n)n)

=
n1

n2
v−
(

cos(θt)+
n1

n2
(v ·n)

)

n

= ηv− (cos(θt)+η(v ·n))n

where η = n1
n2

. The term cos(θt) can be computed in the following way:

cos(θt) =
√

1− (sin(θt))2 =
√

1−η2(sin(θi))2

=
√

1−η2(1− cos2(θi)) =
√

1−η2(1− (n · v)2)

Thus, the direction of the reflected wave is given by:

v′ = ηv−
(√

1−η2(1− (n · v)2)+η(n · v)
)

n

Note that v′ is normalized.

2.4.2 Fresnel Equations

The Fresnel equations are named after Augustin-Jean Fresnel (May 10, 1788 - July 14,
1827). Whenever an electromagnetic wave hits the border of two materials with different
refractive indices, they can be used to calculate the percentages of energy that are reflected
and transmitted. These percentages do not only depend on the angle between the incoming
wave and the material border θi and the transmitted wave and the material border θt

(and therefore on the refractive indices of the materials) but also on the polarizations of
the photons in the wave. For a wave with a polarization that is parallel to the plane of
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Figure 2.9: Here, the same situation as in Figure 2.8 is given: An electromagnetic wave
hits the border between two materials with different refraction indices. This figure, how-
ever, has been done in 3D to illustrate the terms "plane of incidence" and to show the
wave is polarized if the initial wave was s or p-polarized .

27



incidence of the wave7, Fresnel’s equations state that the following percentage of the
wave is reflected:

R‖ :=

(
tan(θi−θt)

tan(θi +θt)

)2

A wave that with this polarization is called s-polarized.

In case of a polarization perpendicular to the plane of incidence (p-polarized) the per-
centage of energy reflected is given by:

R⊥ :=

(
sin(θi −θt)

sin(θi +θt)

)2

The Figure 2.9 illustrates what the plane of incidence is and how the polarization of the
wave changes after reflection and refraction happened. Note that in Figure 2.8, only the
plane of incidence can be seen.

For waves whose photons are unpolarized the amount of energy reflected is the average
of those two cases:

R :=
R‖ +R⊥

2

One should note, however, that the calculations done in this formula can become numer-
ically unstable if θi ≈ θt ≈ 0 since the difference of two nearly identical numbers has to
be computed. Luckily it is possible to transform the formulas to deal with this problem:

R⊥ :=

(
sin(θi −θt)

sin(θi +θt)

)2

=

(
sin(θi)cos(θt)− sin(θt)cos(θi)

sin(θi)cos(θt)+ sin(θt)cos(θi)

)2

=





sin(θi)
sin(θt)

cos(θt)− cos(θi)

sin(θi)
sin(θt)

cos(θt)+ cos(θi)





2

=

( n2
n1

cos(θt)− cos(θi)
n2
n1

cos(θt)+ cos(θi)

)2

=

(
n2 cos(θt)−n1 cos(θi)

n2 cos(θt)+n1 cos(θi)

)2

A similar calculation leads to
7i.e. the photons are oscillating in a plane given by the wave direction and the material normal
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R‖ :=

(
tan(θi −θt)

tan(θi +θt)

)2

=

(
n1 cos(θt)−n2 cos(θi)

n1 cos(θt)+n2 cos(θi)

)2

Now it is obvious that, for θi ≈ θt ≈ 0, R‖ and R⊥ are both approximately
(

n1−n2
n1+n2

)2
.

Another interesting fact is that R⊥ will drop to zero if n1 < n2 at a certain angle known as
Brewster’s angle. For visible light hitting glass (n ≈ 1,5) from air, this angle is approxi-
mately 56◦.

Once again there is a more efficient implementation possible in which there is no need to
calculate the angle θt . Defining A := sin2(θi−θt), B := sin2(θi +θt), R can be computed
as:

2R =R‖ +R⊥ =

(
sin(θi −θt)

sin(θi +θt)

)2

+

(
tan(θi −θt)

tan(θi +θt)

)2

=
A2

B2 +

( A
cos2(θi−θt)

B
cos2(θi+θt)

)2

=
A2

B2 +
A2

B2

(
cos2(θi +θt)

cos2(θi−θt)

)2

=
A2

B2

(

1+

(
1− sin2(θi +θt)

1− sin2(θi −θt)

)2
)

=
A2

B2

(

1+
1−B2

1−A2

)

Thus, knowing A2 and B2 is sufficient to use the Fresnel equations. Setting C := sin(θi)cos(θt)
and D := cos(θi)sin(θt) yields A = (C − D)2 = C2 + D2 − 2CD and B = (C + D)2 =
C2 +D2 +2CD. The terms C2 and D2 can easily be compute using the facts that

sin2(θi) = 1− (v ·n)2, sin2(θt) = sin2(θi)

(
n1

n2

)2

and 2CD is then given through 2CD = 2
√

C2D2. Thus, R can be computed quite efficiently
from v·n and the ratio η = n1

n2
without computing the angle θo, just like in the computations

done for Snell’s law8.
8It is possible to further optimize this calculations. However, the additional benefit from these further

optimizations are rather small: One multiplication is removed for another addition. Details can be found in
[22] and are thus omitted here.
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2.5 Participating Media

This section will deal with materials that influence the light (i.e. the photons) that tra-
verses through them. Two different photons-material interactions can be noted in such
a material, which is then called translucent or participating media. The two possible
interactions (light absorptions and light scattering) will be discussed first, followed by the
derivation of an algorithm that can be used to sample the new direction of a photon after
a scattering event. This section will, however, not give most of the physical background
that explains why the formulas given here are valid because that would lead too far here.
The justification of these formulas can be found in [14], however.

2.5.1 Absorption

The first kind of photon-material interaction is that it is possible for photons to be ab-
sorbed by the atoms or molecules the material consists of. While this might be a de-
terministic process in reality, this is usually seen as a random process. Thus, speaking
of the percentage of photons (or light) that are transmitted (and not absorbed) while the
light traverses from one point x to another point x′ makes sense. This percentage is called
the beam transmittance and is usually abbreviated by Tr(x,x′), were r := ‖x− x′‖ is the
length of the path from x to x′. Furthermore, ω := x′−x

‖x′−x‖ is the unit vector in the direc-

tion from x to x′. Note that this function does not take into account if photons have been
scattered into the wave. This effect is considered separately in the next section.

The beam transmittance is used to define the volume attenuation function

ar(x,ω) :=
1−Tr(x,x′)

r

which is required for the definition of the absorption coefficient:

σa(x,ω) := lim
r→0+

ar(x,ω)

It is quite easy to see that the derivation of Tr with respect to r is dTr
dr = −σaTr, and this

differential equation has the solution

Tr = e−
R r

0 σa(x)dx

Most of the time, the absorption coefficient is independent from the direction of the wave
and only depends on the position x. In most uniform materials like plastic or milk, it is
even constant. The equation above then simplifies to Beer’s law:

Tr = e−σar
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For more complex materials like marble, however, the position dependency is important.
Still, in the following section, the absorption coefficient is always written as σa, i.e. with-
out its parameters, since its actual form is not important for the remaining discussion.

Obviously, the greater the value of σa, the more photons are absorbed on their way. Not
so obvious is the fact that the average length a photon traverses before it is absorbed is
given by 1

σ a.

2.5.2 Scattering

Photon scattering events are more complex to simulate than absorptions. Not only has
to be found out how often a photon is scattered, moreover the direction the photon takes
after scattering must be computed. Luckily the first question can be solved just like in the
last section resulting in the definition of the scattering coefficient σs

9. The attenuation
coefficient σt is the sum of the absorption coefficient and the scattering coefficient:

σt := σa +σs

This is an important quantity since the distance d a photon can travel through a mate-
rial with attenuation coefficient σt can be modeled by setting d := − log(ξ)

σt
, where ξ is a

canonical random variable. The expected value of d is then given by:
R 1

0
− log(x)

σt
dx = 1

σt
.

Thus, the average distance a photon can travel through a material with attenuation coeffi-
cient σt is given by 1

σ t .

Note that physically, a scattering is nothing else but a collision of the photon with an atom
or molecule of the media. By a scattering event, however, the photon is not absorbed but
reflected (or it is absorbed but re-emitted). Thus, since both absorption and scattering take
place when the photon hits a particle of the media, it makes sense to model absorption and
scattering together. Then, the fraction of energy Λ that is re-emitted (or, more precise, the
probability that a photon is re-emitted)

Λ :=
σs

σt

is called albedo.

It is now clear how to find out when a photon will be scattered, but the question in which
direction the photon is scattered is still open. It can be answered by a phase function k.

The phase function is a probability density function taking the direction of the incoming
light ω and outgoing ray ω′ and whose value corresponds to the probability that light

9The parameters are omitted once more.
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arriving from ω is scattered into the direction ω′. Often, however, the form of k is
much simpler. For nearly all naturally-occurring media, the value only depend on the
angle θ between ω and ω′. Then, the media is called an isotropic media. Sometimes
([28]), the phase function is even defined as: "The reflected intensity as a function of
angle normalized by the intensity at normal incidence", i.e. in the definition of the phase
function, it is assumed that the material is isotropic since this is usually the case in current
research (and will be the case in this thesis). In an anisotropic media, however, more
dimensions are needed. A typical example where all four dimension may be needed is
inside a crystalline structure.

Care must be taken when using the terms isotropic and anisotropic since these terms are
not only used for materials but also for the phase function itself: An isotropic phase
function does not depend on its parameters. In other words, it is a constant function,
usually with the value 1. On the other side, an anisotropic phase function is the general
function described above.

A large range of different analytical phase functions have been developed. Some are de-
rived from simplified assumptions, some are empirical and have a few additional param-
eters that can be used to fit the function to observed data. When dealing with anisotropic
phase functions and an isotropic media, the situation can be simplified by introducing
the asymmetry parameter g which is defined as the average of the product of the phase
function and the cosine between the two directions θ over the sphere S2. That is, for any
ω

g :=
Z

S2
k(ω,ω′)cos(θ)dω′ =

Z

S2
k(ω,ω′)(ω ·ω′)dω′

Note that g is always a value from the interval [−1,1]. The larger the value of g, the
less the direction of most photons is usually changed by each scattering. A value of 1
means total forward scattering (i.e. no scattering at all) while a value of −1 is achieved in
total back-scattering (i.e. every photon is reflected and travels back where it came from).
Obviously, an isotropic phase function has an asymmetry parameter of g = 0.

Although the value of g is not enough to describe the phase function completely it is not
unusual to use only g to describe the scattering behavior of a media. This is done because
the loss of accuracy is considered rather small in comparison to the gain of being able
to describe the phase function by a single parameter. One of several possible ways to
estimate the phase function from the asymmetry parameter is to set

k(ω,ω′) :=
1−g2

2(1+g2 −2g(ω ·ω′))
3
2

=
1−g2

2(1+g2−2g(cos(θ)))
3
2

This formula was introduced by Henyey and Greenstein in [9] and is thus called Henyey-
Greenstein phase function. It will be used here because it is widespread, cheap to eval-
uate and close to a lot of observed phase functions. For more complex phase functions,
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Scattered
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θ

Figure 2.10: This figure shows the situa-
tion when an electromagnetic wave arriv-
ing from ω hits an atom and is thus scat-
tered into a new direction ω′. The larger
the angle θ, the more the wave is diffracted
in the scattering event. As described in the
text, this angle is often the only interesting
value when regarding scattering events.
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Figure 2.11: The Henyey-Greenstein phase
function with different values for g is
shown in this figure, where θ ∈ [−π,π]

a typical approach is to use the weighted sum of several simple phase functions like the
one described above. The function is shown in Figure 2.11 for different g’s.

Some authors have an additional multiplicative factor in the definition of g and thus have
an other factor than 1

2 in the Henyey-Greenstein phase function. Here, the factor used is
of no importance since it will cancel out in the next section.

2.5.3 Sampling Scattering Directions using the Henyey-Greenstein
Approximation

In this section, the techniques explained in Section 2.3.2 are used to derive a uniform
sampling algorithm of the sphere with the importance function given by the Henyey-
Greenstein formula. In other words, a function that takes the incoming direction of a
photon and two canonical random numbers and returns the new direction of the photon
after a scattering event will be acquired.

Using the same parametrization as before yields

σ′(s, t) = 2π2 sin(πs)
1−g2

2(1+g2 +2gcos(πs))
3
2
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Since σ′ is independent of t, it follows easily that Gu(v) (and therefore also its inverse
function) is the identity (compare the Pages 20 and 21, where this has already been shown
for the disc and the hemisphere).

The function F(u) is given by:

F(u) =

R 1
0

R u
0

2π2 sin(πs)(1−g2)

2(1+g2+2gcos(πs))
3
2

ds dt

R 1
0

R 1
0

2π2 sin(πs)(1−g2)

2(1+g2+2gcos(πs))
3
2

ds dt

=

R u
0

πsin(πs)(1−g2)

(1+g2+2gcos(πs))
3
2

ds

R 1
0

πsin(πs)(1−g2)

(1+g2+2gcos(πs))
3
2

ds

=

∣
∣
∣
∣

(1−g2)

g
√

(1+g2+2gcos(πs))

∣
∣
∣
∣

u

0
∣
∣
∣
∣

(1−g2)

g
√

(1+g2+2gcos(πs))

∣
∣
∣
∣

1

0

=

1−g2

g
√

(1+g2+2gcos(πu))
− 1−g2

g(1+g)

1−g2

g(1−g) −
1−g2

g(1+g)

=

1−g2

g
√

(1+g2+2gcos(πu))
− 1−g

g

2

Now, the inverse is calculated:

1−g2

2g
√

(1+g2 +2gcos(πu))
− 1−g

2g
= y

⇔ 1−g2
√

(1+g2 +2gcos(πu))
−1+g = 2gy

⇔2gy+1−g
1−g2 =

1
√

(1+g2 +2gcos(πu))

⇔
(

1−g2

2gy+1−g

)2

= 1+g2 +2gcos(πu)

⇔− cos(πu) =
1+g2 −

(
1−g2

2gy+1−g

)2

2g

This formula can now be used to sample the photon direction after a scattering event.
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Chapter 3

Previous Work

The topic of how waves interact with scattering media is important in several different ar-
eas. In optical tomography, for example, the scatterings done are used to determine how
the interior of an object looks like. This requires a difficult inversion step. Optical tomog-
raphy is used in medicine and nondestructive material testing. In this thesis, however,
rendering translucent objects is the main goal.

When creating images with translucent objects there are basically two questions: How can
such an object be described and how can it be rendered? In the past, different approaches
have been made to answer these questions. We only describe some of them here. For a
more detailed overview see Goesele et al. [5].

3.1 Physical Background and Modeling

One of the early important articles was published by Henyey and Greenstein in 1941 [9],
in which the Henyey-Greenstein phase function was introduced and used to solve prob-
lems about diffuse radiation in the galaxy. Later, in 1978, Ishimaru published a summary
about the physical process of scattering in two volumes[14]. Using this work, a translu-
cent object can be described by the absorption coefficient σa, the scattering coefficient σs

and possibly an asymmetry parameter g for every point inside its volume.

However, instead of giving σa,σs (and g) for each point, an object can also be described
by the 8-dimensional BSSRDF (Bidirectional Scattering Surface Reflection Distribution
Function) introduced by Nicodemus et al. [21], which relates incoming irradiance at a cer-
tain point from a certain direction to the outgoing radiance at a (possibly different) point
in a certain direction. By ignoring the dependence on the directions, the function col-
lapses to the 4D diffuse subsurface reflection function Rd , making it far easier to handle.
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In this thesis, we will use Rd , mainly because the incoming and outgoing directions are
very important for single scattering, but rather unimportant if multiple scattering occurs.

3.2 Acquisition

In order to represent an object with subsurface scattering properties, one needs either
the BSSRDF, the scattering parameters of the object or some other representation of the
object.

Feng et al. analyzed the photon paths in scattering media. In [4], they especially examined
two cases: In the first case, the material is infinite and occupies the whole space while in
the second, the material is semi-infinite and consists of a half space. They noted that, in
the second case, most of the photons are inside a region that looks like a banana. The
term photon banana comes from this paper.

In 2001, Jensen et al. solved the problem of subsurface scattering analytically for a shift-
invariant material that has the form of an infinite half space [17]. Their model consists of
two light sources (one of which emits “negative” energy) to model energies from multiple
scattering and a rather complex single scattering term. Due to these two lights, this model
is called the dipole approximation. This approach requires little data but the results are
only exact for this special case.

The dipole approximation states that the energy traveling from x to y in an infinitely half
space with a homogeneous material is given by:

Rd(x,y) =
α′

4π

(

zr(1+σtrdr)
e−σtrdr

d3
r

+ zv(1+σtrdv)
e−σtrdv

d3
v

)

In this equation, α′ =
σ′

s
σ′

t
,σtr =

√

3σaσ′
t with σ′

s = σs(1− g) and σ′
t = σ′

s + σa. The
variables zr and zv are the distances of the two light sources (one of which is inside the
material) from x. These distances must be computed from the material parameters. dr and
dv are the distances from the light sources to y.

Moreover, the dipole model allows to compute the absorption coefficient σa and the re-
duced scattering coefficient σ′

s from measurements. The parameters of some materials in
which subsurface scattering is considered important (such as marble, skin and milk) are
given in [17].

Another approach has been done by Goesele et al. in [6]. They explicitly acquired the
amount of light that traverses between each pair of points on a given object. This enabled
them to interactively render acquired objects with subsurface scattering under arbitrary
lighting conditions without inversion [18].
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3.3 Rendering

How translucent objects are rendered depends on the representation. If a BSSRDF is
given, the rendering step is expensive using a naive implementation. If only the scattering
parameters are given, methods like photon mapping [2], diffusion [27] or Monte Carlo
simulations [25] can be used to feign the effects occurring in translucent objects.

In 2001, Hendrik Wann Jensen and his co-authors published severals works regarding
subsurface scattering [15], [16], [17]. In [15], photon mapping is used to handle (among
other things) scattering media. A similar approach has also been done by Dutré et al. in
[3]. In [16], Jensen gives a summary about ray-tracing scenes with subsurface-scattering,
including sampling 2-manifolds, Monte Carlo integration and other possible approaches
like metropolis sampling.

37



38



Chapter 4

Monte Carlo Simulation and
Verification

As described in the last chapter, the dipole model by Jensen et al. is easy to compute and
yields very good results but only under certain assumptions. It is not a priori clear if it
is still feasible to use the dipole approximation if one or several of these assumptions are
not true.

Thus, one goal of this thesis is to compare the estimation from the dipole approximation
with a Monte Carlo simulation. The results are used to decide under which conditions the
dipole model can be used without loosing too much precision, or if it can (and should) be
adapted to be able to handle the new situations more accurately.

We start by briefly explaining how the Monte Carlo simulation is done (as we will see,
several decision have to be done in the simulation) and explain the different kinds of
results that can be generated, depending on the geometry of the object in which the sub-
surface scattering will take place. This is the topic of the first section. The second section
deals with verifying that the simulation yield correct results.

4.1 The Monte Carlo Simulator

The main idea of evaluating subsurface scattering using Monte Carlo ray tracing is not
very complicated. The amount of radiance L0(p,ω0) that leaves a material with surface A
at a specific point p with normal n into the direction ω0 is given by

L0(p,ω0) =
Z

A

Z

2π
S(qi,ωi, p,ω0)Li(qi,ωi)(nωi)dωidA(xi)
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where S(qi,ωi, p,ω0) is the amount of the energy that enters the material at the point qi

with direction ωi and leaves the material at p in the direction ωo. The function S is called
Bidirectional Scattering Surface Reflection Distribution Function, or short BSSRDF
and is a generalization of the well known BRDF [21],[17]. Integrating L0(p,ω0) over all
possible directions for ω0 yields the total amount of energy leaving the material at p.

If the BSSRDF is known this integral can be calculated rather easily. Unfortunately this is
usually not the case. As already mentioned, an analytical solution of S has been computed
for only one very simple geometry (infinite half space), a shift-invariant material and
under several other assumptions. In the general case, computing the BSSRDF would
require to integrate the incoming energy over all incoming directions at qi. But, to get
the energy arriving from a certain direction, the integral of the energy scattered into the
direction of q (and not scattered again (or absorbed)) over all possible distances from q
has to be computed. Even then, only photons that have been scattered at most once would
be considered. To get the influence of photons that have been scattered more often, more
and more integrations are required. Since it is not uncommon that photons are scattered
a few hundred times (or even several thousand times), it is no longer feasible to compute
this integral1.

Thus, we use Monte Carlo integration to estimate this function. A short overview how
the photons are traced in our simulator is given in Figure 4.1. All steps shown there (and
some more) are explained next in this chapter.

We start with a photon with a ’random’ starting direction (uniformly distributed from the
hemisphere to the point q, using the formulas from Section 2.3.3, Page 21).

This photon enters the material at the point q, changing it’s direction according to Snell’s
Law (compare Section 2.4.1).

Furthermore Fresnel’s equations must be taken into account. However, there are two
possible approaches how to do this. One approach would be to decide if the photon enters
the object at all or if it is reflected. This approach is called Russian Roulette, just like
any other approach where two or more possibilities exist and exactly one is taken.

Another possibility is to let all photons pass, but give each photon a ’virtual energy’ in
the range [0,1]. The initial energy is then the probability that the given photon enters the
object which is given by the Fresnel equations.

Note that this ’virtual energy’ has nothing in common with the real, physical energy of
the photon (which depends on factors like the wavelength (i.e. the color) of the photon).
It merely gives the probability that a photon is not reflected (or, as we will see later,
absorbed) if it takes this way.

1Note that every time, there are an uncountable infinite possible direction/distances over which to inte-
grate.
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and Fresnel’s Equations
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if the photon is reflected or

Apply Snell’s Law
material border

If it is reflected

tracing
continue

to the transfer function

passes theIf the photon

from the upper Hemisphere
Choose a direction uniformly

Surface Border

Surface Border

Use Fresnel’s

... or the photon hits the

material, add its energy

8

7

52

6

1

4

3

refracted and scale its energyTrace the photon
until a scattering

minimal energy allowed

event occurs...

if it is less than the
energy and check
scale the photon’s
Choose a new direction,

Figure 4.1: A possible photon path and the steps done in our Monte Carlo simulation.
Details are given in the text.

Once the photon is inside the object we have to look if the photon first hits the border of
the object, interacts with the material (i.e. is scattered) or is rejected.

If the photon hits the boundary of the object the Fresnel terms are computed and used to
(randomly) decide if the photon leaves the object or if it is reflected. Here, simply scaling
the energy as we have done when the photon entered the material would either result in
no photon being reflected or in no photon being able to leave the object. Both effects are
not desired since there either are possible photon paths not regarded or no photon (i.e.
energy) will ever leave the object.

If the photon leaves the object, the ’virtual’ energy remaining will be added to the BSS-
RDF2.

A wrong way to handle the Fresnel term would be to split the photon into two parts (one
of which is reflected while the other is refracted) because then, the photons whose paths
we are following would no longer be independent. Thus, we no longer have Monte Carlo
integration but Quasi Monte Carlo integration, possibly introducing a undesired bias.

To check if the photon interacts with the material we can model the distance the photon
traverses by d := − log(ξ)

σt
if the material is uniform (where ξ is a canonical random variable

and σt is the attenuation coefficient of the material, see Section 2.5.2). For non-uniform
materials we have to choose d such that

R d
0 σt(x)dx = − log(ξ). The right value for d can

2Of course, the BSSRDF is stored discrete. The discretisation used in the simulation depends on the
geometry. This topic will be covered in the next section in detail.
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be easily approximated if the integral can be computed (it might be necessary to use Monte
Carlo integration to do so). In our simulations, σt was either constant or a step function
(since the material was stored as a voxel grid). In this case, all we had to do is to compute
the integral per voxel, i.e.

R d
0 σt(x)dx = ∑i=1

R ai+1
ai

σt(x)dx where 0 = a1 < a2 < a3 . . . are
the distances the photon must travel to enter the ith voxel. Since the material parameters
are constant inside each voxel, each integral can be computed trivially. As soon as the
sum is greater than − log(ξ), we know the d we are looking for is inside this voxel. The
exact value can then be obtained by linear interpolation between the value of the sum
before and after this cell.

In case of a photon material interaction, the energy is scaled with the albedo Λ(x) of
the material at the current position. Furthermore the direction of the photon changes
according to the Henyey-Greenstein approximation (see Section 2.5.3) and the asymmetry
parameter g(x) of the material at the current position. Using Russian roulette would also
be possible, but as soon as a photon is absorbed the work done to trace its way would be
wasted. Thus, Russian roulette would require more time to yield comparable results.

We might also decide that the remaining energy of the photon is so small that it can as
well be thrown away. This step is necessary because it is possible (although unlikely) that
a photon will never leave the object again. This can especially happen in infinite objects
such as the infinite half space used in the dipole model. In such a case, the Monte Carlo
simulation would run forever (or a very long time) for a single photon whose influence is
very small. Of course, throwing away a photon does alter the result of the computation.
But, as will be shown later, the influence of these photons is rather small if the threshold
under which the photon’s energy must fall to be thrown away is chosen correctly.

4.1.1 Simulation Results and Post-Processing Tools

In this section, the possible outputs our Monte Carlo simulation can create are explained.

Photon Paths and Associated Modes

The first output mode we implemented is to save the traversal paths of all photons arriving
close to a given point along with the energies the photons have between scatterings. This
is useful to watch how photons traverse from one point to another. In order to be able to
use this data the other way round (e.g. from the end point to the start point) it is useful
to start the photons in a area identical to the area in which the photons must arrive3. This
will usually be a small circle.

3Still, there is a difference because more photons will arrive in some regions (e.g. the regions that are
nearer to the starting point) but this effect cannot easily be adapted for the starting area of the photons.
However, this effect is reduced by shrinking the area in which the photons must arrive.
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Afterwards, different average photon paths can be computed. The most primitive average
photon path is obtained by averaging the photon paths seen as functions from [0,1] to
R

3, where each path is parameterized uniformly with respect to its length. This is done
approximatively by choosing equidistant values in [0,1]. For each value, the average
function value of all paths yields a point on the average photon path4. The averaging step
can also compute a weighted average of the function values by choosing the energy at the
end of the path (i.e. the probability that the photon taking this way is not absorbed) as
weights.

The photon paths can be used to generate a volume data grid that stores the energy passing
through each cell. This volume data can be used to approximate an iso-surface of the
photon density inside the object using standard tools like AMIRA.

Another possibility is to reuse the photon paths for a new geometry: We wrote a program
that loads the photon paths and checks which paths do not intersect with a new geome-
try. This way, a completely absorbing blocker can be added to an old geometry without
redoing the Monte Carlo simulation.

The saved photon paths can also be displayed together with the geometry by a special
viewer we wrote with GLUI [26]. A screenshot of this viewer is shown in Figure 4.2.
This figure also illustrates why the region where most photons are is called the photon
banana[4]. However, the photon paths are most of the time not useful because simple
questions like the amount of energy that has arrived near the endpoint cannot be answered
without further processing. Moreover, this question is often asked for every point on the
object. To answer this question with post-processing of the photon paths would require to
save about 2183 MB for a million photons (and we did simulations with up to one billion
photons). Thus we also implemented other output modes that only summarizes how much
energy has arrived where, without saving the photon paths. These are described in the next
sections.

Two-dimensional Output Modes

The easiest output modes are two dimensional arrays containing the ratio of energy leav-
ing the object in a certain area per square millimeter. Thus, values above 1 (i.e. a hundred
percent) are possible if the area is smaller than one square millimeter. Using the right
program, we can examine every point in such two dimensional arrays, which we will call
image from now on. This is unfortunately not possible once the images are printed. That
is, only relative changes can be seen in these images but the exact amount of energy leav-
ing the object cannot be read from the images shown here. The images shown in this
thesis are usually gamma-corrected and amplified. This way, small changes are easier to
spot.

4Computing the average is in this case the same as computing a least square fitting.
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(a) The display area (b) The control elements

Figure 4.2: This figure shows a screenshot of the photon path viewer we wrote. The
display area on the left shows the photon paths which are in this case the photon paths for
an infinite half space. Thus, the photon banana can be seen there, as well as the average
photon path the program guessed (green line). The right side of the figure shows the
control elements of the program where various parameters can be changed.

Theoretically, a lot of 2-manifolds can be mapped to such an image. The images shown in
this thesis are either part of a plane or of a infinitely long, slit-up cylinder and thus in both
cases planar. The cylinder is slit up along a straight line opposite to the photon starting
point. That is, the photon start point is in the center of the image. Therefore these images
are axis-symmetric on both the x and the y-axis if no noise occurs.

In other cases, however, there were much bigger areas that could be stacked to single
points. Then, the result of the simulation has only one dimension, as described in the next
chapter, i.e. only the decay of the energy with distance is of interest.

One-dimensional Output Modes

Another output mode that is only a bit more complex results in a one dimensional “graph”
like the one in Figure 4.3(b). Here, the percentage of energy leaving at a certain distance
(once again measured in percent per square millimeter) is plotted as y-coordinate with
the corresponding distance as x-coordinate. To do so, all energy arriving within a certain
region is gathered and divided through the area of the region.

The main advantage of these modes is that it is very easy to compare different graphs
(since they can be plotted into the same figure). To do so, a small program that calls
gnuplot to plot several graphs in one figure has been written. Moreover, it is rather easy
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Figure 4.3: The left part of the figure shows a set of possible sample areas on a plane
while a corresponding graph is given on the right side.

to read off approximate values from the graph even in this thesis which is not true for
the two dimensional data, as explained above. Furthermore, since the data from several
points are accumulated, the noise is reduced quickly.

On the other side, gathering data in one dimensional modes only makes sense if the energy
arriving at two different points with the same distance from the start point is equal. Thus
the material and the object have to be symmetric5.

There are three different kinds of such graphs in this thesis:

The easiest graph is just a line of a two-dimensional image, i.e. the measures energy
along a straight line (usually either a horizontal or a vertical line) is plotted as a graph.
Such a graph can easily be generated by one of our programs. A graph contains much
less information than the image it was made from, but is useful to see small changes more
easily. Moreover, it is quite simple to plot two different slices from one or two images into
the same figure, allowing to see differences not visible in the image(s). If two different
images touch or overlap at a certain point, it is also possible to draw a graph where the
x-coordinate starts at 0 in one image and runs continuously over both images, as shown
in Section 5.1. In this case, the distance is measured along this line. A tool that has been
written for this purpose can perform this step automatically if desired.

If the area to be evaluated is planar, all photons arriving inside one annulus (or a single
disc in the center) are summarized to one point in the graph, where the center of all annuli
is the start point of the photons. The annuli and a possible resulting graph are shown

5The exact kind of symmetry required depends on the sampling method
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(a) Sampling areas for a graph on the
sphere

(b) Sampling areas for an image on the
sphere

Figure 4.4: The first figure shows how a sphere can be divided into areas such that the
energy leaving the sphere is approximately constant for all points in a given area. Again,
a uniform material is required for this approximation to be valid. If this is not the case, a
two-dimensional image can be generated by further dividing the sphere as shown in the
right image.

in Figure 4.3. For each annulus (and for the inner circle), one point is plotted with the
“average” distance of the annulus from the photon start point as x-coordinate and the
average energy leaving the object (per unit area) inside the annulus as y-coordinate. The
difference of the outer and inner radius of all annuli is always constant in this thesis.
Obviously, reducing this distances results in more accurate graphs but higher noise.

It is also possible to gather energies for graphs on spheres, as demonstrated in Figure
4.4(a). Then, the energy arriving between two circles of latitude (or near the poles, re-
spectively) is combined into one point of the graph. Once again, the granularity can be
chosen arbitrarily. In this thesis, the graphs that came from spheres usually have circles
of latitude with uniform distances from one pole.

4.2 Verification

This section will briefly cover the topic of correctness. That is, we try to verify that the
simulation results are close to real observations and try to find possible errors.
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First of all, it is easy to see that photon-object intersections6 are handled correctly since a
huge amount of photon paths have been saved and observed.

We described earlier (see Section 4.1, Page 42), that there is a minimal energy a photon
can have before it is thrown away. In Figure 4.5, one can see several graphs. The only dif-
ference between them is the amount of energy the photons had when they left the material.
Using this figure (and several others not shown here because they basically show a similar
behavior) one can see how big the error by introducing the minimal energy is in which
distance. For example, choosing a minimal energy of 1% of the initial energy results in a
error of approximately five percent at ten millimeters from the photon start point. Reduc-
ing the minimal energy to 0.1% (that is the value we used in most of our computations)
results in only 0.35% error at distance ten millimeters and about 14% error at a distance
of twenty millimeters. Since we rarely gather data at more than ten millimeters from the
initial start point, this is sufficient for our calculations.

As a final step, we compared a simulation to the analytic result of Jensen given in [16], i.e.
the dipole model. In the simulation, single scatterings have been excluded since single
scattering is not included in the dipole model, neither. One can see in Figure 4.6 that the
shapes of the graphs are similar, but not identical. This is due to the fact that Fresnel’s
equations are not included in the dipole model. Figure 4.7 shows how the graphs look
like if no refraction occurs. Moreover, the starting directions of the photons are sampled
uniformly on a hemisphere before entering the material, but nothing comparable is known
for the dipole approximation, making these two approaches hard to compare7.

6The border of the objects was stored as triangles. We used a BSP tree and the algorithm described in
[20], with slight modifications to check for photon-triangle intersections.

7I assume Jensen did sample the photon directions uniform after they are already in the material while
we sampled them uniformly before the entered the material. However, this is only a guess.
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Less than 0,1% of the intial energy

Less than 1% of the intial energy
Less than 10% of the intial energy

Figure 4.5: This figure shows the amount of energy that is lost due to the minimal energy
requirement introduced for the infinite half space geometry and a shift-invariant mate-
rial. The uppermost, red graph shows the energy arriving for a very low minimal energy
(10−7% of the initial energy.). The other graphs illustrate the amount of energy that is lost
due to the minimal energy for a minimal energy of 10−i, i ∈ {1 . . .8}. For example, by
choosing a minimal energy of 10−5 = 10−3%, we throw away photons that would arrive
at a distance of 5mm with a total energy of about 10−10 = 10−8% of the initial energy, per
square millimeter. Compared to the energy arriving of about 0.0002 = 2%, this effect can
be ignored without a noticeable loss of precision.
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Figure 4.6: In this figure, the results from
the dipole model (without the single scat-
tering term) and from our simulation are
compared. Here we chose a refractive ma-
terial (n = 1.5) with material coefficients
σa = 0.0041,σs = 2.62. These are the val-
ues given in [17] for the green wavelength
in marble. We chose this values to compare
these two approaches because they are the
same as Jensen used to compare his model
to his simulation. Here, the two graph do
not really match because the Fresnel fac-
tors are not included in the dipole model.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  2  4  6  8  10  12  14  16  18  20

’hist-files_with-fresnel/infinite_marble_nonrefractive_dipole_g0.hist’
’hist-files_with-fresnel/infinite_marble_nonrefractive_dipole_g0.hist.dipole.tmp’

Figure 4.7: This figure shows the same sit-
uation as the figure on the left. This time,
however, the refraction index has been set
to 1 and thus, the Fresnel factors are all
equal to one. As predicted, the graphs
match a bit better this time but are still
not equal due to the minimal possible en-
ergy introduced in the simulator. Thus, our
results are always a bit smaller than the
dipole approximation.
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Chapter 5

Using the Dipole Model for Different
Geometries

As discussed above, it is not clear whether the dipole approximation still yields acceptable
results if one of the assumptions made is broken. Thus, we will compare the dipole model
to simulations with different geometries in this chapter. The next chapter will deal with the
problem of spatially varying materials. Here, as well as in the next chapter, all distances
are given in millimeter, unless noted otherwise. Furthermore the asymmetry parameter g
is set to 0, i.e. we assume that the scattering is isotropic.

The following geometries will be discussed: edges, cylinders, spheres and slabs. The
details on how these geometries look like are discussed before the corresponding results
in the following sections. Comparisons to the dipole model will be shown in Section 5.5.

For all simulations in this section we used the green wavelength of the material skin2
(σa = 0.07,σs = 1.59,n = 1.3) from Jensen’s paper [17] except in those for which an
other material is given.

5.1 Edges

In the edge geometry, two half-planes share a common edge and between the two planes
is a right angle. These two half-planes are the border of the material. In other words, the
material is a infinite half space an infinite large part of which has been cut away. The cut
is in the same direction than the (average) starting direction of the photons.

In our simulations, the results for this geometry is given as two images (see Section 4.1.1
on Page 43), one for each half-plane. The point where the photons enter the material is not
on the edge but on one of the half-planes (compare Figure 5.1). Since the half-planes are
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semi-infinite, the distance of this point from the edge is sufficient to uniquely characterize
the point. Therefore, we may speak about an “edge with distance d”, meaning an edge
where the distance of the start point of the photons from the edge is equal to d. The
half-plane on which the photons start will be called the top plane, while the other plane
is called the side plane.

If the distance d increases, the result of the simulation will approach the result of the
dipole model (with the limitations discussed above) since the geometry approaches the
infinite half space.

To describe the whole simulation, the values of this distance d must be given, together
with the refraction index of the material n, and the scattering and absorption coefficient
σa,σs (or any other two of the four parameters σa,σs,σt and Λ).

However, it is difficult so see anything specific on the images. Thus, only parts of the
images will be further considered and shown as graphs (see Section 4.1.1, Page 44). They
start at the photon start point and take a path on the cross section through the photon start
point perpendicular to both planes.

The graph generated this way from an edge with distance 0.5mm is shown in Figure
5.2. This graph clearly points out that there are two points where the energy leaving the
material abruptly rises. There are two different reasons for these increases.

The first increase can be noted at exactly the distance of the photon start point to the edge,
which means that this boost happens because the path shown in Figure 5.1 changes the
plane. The same jump can be clearly seen in Figure 5.3. This increase occurs because of
the Fresnel equations. A photon hitting the side plane is more likely to be able to pass
through the material border than a photon hitting the top plane (because a photon arriving
near the edge must move towards the edge and is thus more likely to hit the side plane
with the right angle to pass (i.e. nearly perpendicular) than the top plane).

The second jump, which can barely be seen for an edge with distance 2mm and not at all
for an edge with distance 4mm, will also occur in all other geometries in this chapter. It
is due to photons that have not been scattered at all. In Figure 5.4, a part of the side plane
corresponding to Figure 5.2 is shown. A bright spot at the place where the jump in the
graph in Figure 5.2 is can clearly be seen. Figure 5.5 is an image for the same area. The
only difference between the two images is that for Figure 5.5 only non-scattered photons
have been considered. These figures clearly point out that the unscattered photons are
responsible for this jump and therefore should be carefully considered in renderings.

5.2 Cylinders

The geometry used in this section is a infinitely long cylinder with a certain radius r. Once
again, as r increases, this geometry approaches the infinite half space. The start point of

52



Photon
start point

Top
Plane

Side
Plane

Figure 5.1: In this figure, the path along
which the graphs (made from the two 2D-
images obtained for a edge geometry) run
is shown.
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Figure 5.2: Here, a graph for an edge ge-
ometry with distance 0.5mm is shown. The
two sudden increases in the amount of en-
ergy, which might be surprising at first, are
explained in the text.
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Figure 5.3: Here, more graphs for edge geometries with different distances (1, 2 and 4
millimeters) are given. They illustrate that both increases in the amount of energy noted
in Figure 5.2 are reduced with increasing distance from the edge.

Figure 5.4: Here, a part of the image
done with an edge geometry with distance
0.5mm is shown. The edge itself is along
the upper border of the image. A bright
spot is clearly visible near the center of the
image.

Figure 5.5: This Figure shows the same sit-
uation as Figure 5.4. However, only pho-
tons that have not been scattered have been
considered this time. Obviously the bright
spot in Figure 5.4 does come from photons
that have not been scattered.
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(a) Image for a cylinder with radius
0.5mm
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0.15mm left of the center
0.05mm left of the center

0.05mm right of the center
0.15mm right of the center
0.25mm right of the center

(b) A few graphs for a cylinder with radius
0.5mm

Figure 5.6: The left part of this figure shows an image for a slid-up cylinder with radius
0.5mm, while the right part shows several graphs created from the left image. The graphs
are parameterized by angle and show some central vertical lines through the image. To
illustrate the noise from the simulation, two pairs of graphs (blue-green and red-magenta)
that should be identical are shown. In both sub-figures, the non-scattered photons can
clearly be seen.

the photons is of no importance since all points of a cylinder are indistinguishable. Thus,
the value of r is sufficient to uniquely describe the geometry. Together with the scattering
and the absorption coefficient(s) σa,σs and the refraction index n, this is sufficient to de-
scribe the complete simulation. The graphs showing vertical lines from images resulting
from this geometry are parameterized by degrees.

The two-dimensional images from simulations with cylinder geometries are shown in
such a way that the highest and lowest horizontal line of the image must be glued together
to get the cylinder (compare Figure 5.6). As can be seen in that figure, the non-scattered
photons can clearly be seen for small radii, but their influence is quickly reduced (see
Figure 5.7) until these photons can not be noted at all (compare Figure 5.8). In these
figures, only graphs along vertical lines are shown. In Figure 5.9 horizontal lines through
the photon start point for several different radii are shown. As already mentioned, both
the vertical and the horizontal lines will approach the graph for the infinite half space and
thus the dipole model.
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(a) Image for a cylinder with radius
1mm
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(b) A few graphs for a cylinder with radius 1mm

Figure 5.7: This figure shows the same situation as Figure 5.6 with the exception that the
radius of the cylinder is 1mm.

(a) Image for a cylinder with radius
2mm
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(b) A few graphs for a cylinder with radius 2mm

Figure 5.8: In this figure the situation described in Figure 5.6 is shown once again, this
time with a cylinder of radius 2mm. The non-scattered photons are not noticeable any
more.
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Figure 5.9: Instead of vertical lines, which have been shown in the Figures 5.6 to 5.8,
horizontal lines through the photon start point for cylinders with different radii are shown
here. The distance from the photon start point is given on the x-axis.

5.3 Spheres

Here, the geometry of the material through which the photons pass is a sphere with radius
r. The start point of the photons is still not important (since all points of a sphere are
indistinguishable anyways) and the geometry again approaches the infinite half space for
r → ∞. That’s why, once again, knowing r,σa,σs and the refraction index n is sufficient
to completely describe a simulation.

Again, the non-scattered photons have a great influence in the objects appearance, as seen
in Figure 5.10. Moreover, this figure also shows the importance of the single scattering
term. In Figure 5.11, graphs for spheres with different radii are plotted together with a
graph for an infinite half space with the same material properties. As expected, the graphs
of the sphere geometries approach the graph of the infinite half space. However, this
happens very slowly. Note again that for the spheres, the distance (i.e. the x-values of
points on the graphs) is measured in absolute distance here and is not the distance along
the surface of the sphere. Using the distance on the surface of the sphere would results in
better results as shown later.
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Figure 5.10: In this figure, the energies of
the photons arriving for a sphere geometry
with radius 0.5mm have been split up de-
pending on the number of scatterings done.
Once again it is clearly visible that photons
that have not been scattered are responsi-
ble for the sudden increase in the energy at
about 0.63mm in this figure.
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Figure 5.11: Here, the graphs from sphere
geometries with different radii are shown.
As expected, the graphs converge against
the graph of the infinite half space. This
leads to the assumption that, for the up-
per half spheres, the dipole model should
be an acceptable approximation, especially
for spheres with large radii.

5.4 Slabs

The last kind of geometry that we will present is a slab, i.e. the border of the material
consists of two parallel infinite planes. If we speak about a slab with distance d, we mean
that these planes have the distance d. As with all other geometries in this section, the limit
geometry for d → ∞ is the infinite half space.

The plane of which the photons start will be called the near plane, while the plane parallel
to the near plane is called the far plane. The graphs for both planes with slab geometries
and the skin1 material (σa = 0.17,σs = 0.88) with distances 0.5mm and 1mm can be
seen in Figure 5.12. In the first figure (i.e. 5.12(a)) the non scattered photons can once
again be seen (red line from approximately 0mm to 0.75mm in the first figure). The
other visible jumps in the graphs (green graph in the area 0.95mm− 1.35mm, red graph
in 1.65mm− 1.95mm etc.) are also due to unscattered photons. This time, however, the
photons have been reflected once (0.95mm−1.35mm), twice(1.65mm−1.95mm) or more
often.

These bumps are, however, especially important in slabs with a small distance. Figure
5.14 shows graphs for slabs with bigger distances. While the features can also (partly)
be seen in these graphs, they are significantly smoothed there. The same is true for slab
geometries with the skin2 material. This material has a higher scattering coefficient σs

which results in far less photons that have not been scattered (see Figure 5.13). This figure
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(a) Slab with distance 0.5mm
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Figure 5.12: Both the graphs for the near and the far plane of a slab geometry (and the
skin1 material) are shown in this figures. In the left figure the distance is 0.5mm while it is
1mm in the right one. Apart from the reflected non-scattered photons that are visible, the
interesting thing noticeable in this figures is that the graphs can be considered as identical
after about 2mm. Without the non-scattered photon, this would even happen earlier.

shows graphs for a similar situation (skin2 material), split up according to the number of
reflections done. As one should expect, the influence of photons that are never reflected
is the smaller the further away from the photon start point one is.

Figure 5.15 shows several near planes. It is not surprising that graphs for a geometry with
a higher distance are closer to the graph of the infinite half space. However you should
note how quickly this happens.

The next figure (5.16) shows the far planes. These will obviously converge against the
zero function. This happens very quickly at distance 0mm (especially because less non-
scattered photons arrive with increasing distance) but takes longer at greater distances.

5.5 Comparing different Geometries to the Dipole Model

In this section we will compare the geometries discussed in the first four sections of
this chapter to the dipole model by Jensen and to the simulation results from the infinite
half space. As discussed in Section 4.2, the dipole model and the simulation results
from the infinite half space are similar but not identical. This is basically due to the fact
that the directions of the incident and outgoing light play an important role in Jensen’s
model (especially in the single scattering term). However, in our simulations the initial
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(b) Far plane

Figure 5.13: In this figure graphs for the near (left figure) and far (right figure) plane of a
slab geometry with distance 0.5mm (with the skin2 material) are shown. The total energy
(red graphs) is split up according to the number of reflections.
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(b) Slab with distance 3mm

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

far plane
near plane

(c) Slab with distance 4mm

Figure 5.14: In this figure, the graphs for slab geometries (with the skin1 material) with
distances 2mm, 3mm and 4mm are shown. As expected the influence of non-scattered
photons is reduced, and the graphs are (nearly) identical much later.
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Figure 5.15: Only the graphs from the near
planes (with the skin1 material) of differ-
ent slab geometries are shown here. The
graphs converge against the graph from the
infinite half space quite quickly.
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Figure 5.16: In contrast to the figure on the
left, only the graphs on the far planes are
shown here. The material is the same as
in the figure on the left. These graphs are
much more different than the graphs on the
left as explained in the text.

direction was sampled uniformly and the direction of the light leaving the material was
not considered at all (after applying Fresnel’s Equations).

The Figures 5.17 and 5.18 show several graphs that have one thing in common: All graphs
have been generated using the skin2 material. In Figure 5.19, the graphs for two different
materials (skin2 and skin1) are compared.

Apart from the result of the infinite half space (red graphs) and the dipole model (green
graphs) the graphs generated for geometries discussed earlier in this chapter are shown.
That is, graphs for an edge geometry (blue), two graphs each from a cylinder geometry
(magenta - vertically (i.e. along a circle), cyan - horizontally (i.e. along a straight line)),
yellow graphs for spheres and graphs from the near plane of slab geometries (black) are
plotted in these figures. In contrast to some graphs in the last sections, the x-coordinate
is always the distance along the surface of the object1. An alternative would have been to
use the Euclidean distance in R

3. For all graphs where this is different to the distance on
the surface, however, the results would be even further away from the dipole model.

The graphs for the spheres and the vertical lines from the cylinder stop at r ·π (where r
is the radius of the sphere or cylinder respectively). This happens because this point is
already the point most distant from the photon start point.

Although the horizontal line through the cylinders come from the simulation with the
most photons, these lines are still very noisy due to the low amount of photons that arrive

1This was not always the case for the cylinder and sphere geometries discussed earlier.
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Figure 5.17: The left figure show several graphs (for the infinite half space, edge, cylinder
(twice) and sphere geometries) for geometries with radius 1mm (or, for the edge, with
distance 1mm), together with the dipole approximation. In the right figure, the radius (or
distance, respectively) is 2mm. For all graphs, the skin2 material has been used.

near this line. The situation when using the slab geometry is much better because we
could gather photons in large areas.

5.5.1 Discussion

There are some things worth noticing while comparing these graphs:

• Non-scattered photons can have a great influence on the appearance of objects in
which this phenomenon occurs, especially for short distances and if the attenuation
coefficient is small.

• In the first hundred µm, the differences between the different geometries are small
and can be neglected since single scattering is the most important effect.

• The slab geometry is close to the dipole model and the graph from the infinite half
space, especially with larger distances.

• Cutting away parts of the material usually results in less energy arriving.

• The larger the angle β between the normal at the photon start point and the normal
at the endpoint, the more energy arrives at this point2.

2Of course both normals must either point towards or away from the object.
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Figure 5.18: Here, the graphs for the same geometries and materials as in Figure 5.17 are
shown, this time with a distance/radius of 3mm and 4mm.

While the first two points are rather obvious, the other might require more information.

It might be surprising that the arriving energy in the slab geometry is close to the energy
arriving in the infinite half space. This is due to the fact that photons arriving at the surface
far away from the photon start point usually penetrate the object rather deeply (as seen in
Figure 4.2). Since the slab geometry is not very deep, the photons must be reflected to be
able to traverse that far (reflections are common in this geometry, as seen in Figure 5.13).

If a part of the material is cut away, the part of the photons that did pass through this part
will arrive at a different point, often on the part cut away. Thus, less energy arrives at the
“old” border of the material. This effect can be seen for the slabs and the “horizontal”
lines of the cylinders the graphs of which are all lower than the one from the infinite half
space.

The last point is especially interesting because it can be used to find out which graphs are
higher than the dipole (or the infinite half space). The border of the material in the dipole
model is a plane. Thus, the angle β is 0◦ which is the minimal possible value. For the
sphere and (“vertical”) cylinder geometries, β slowly changes from β = 0◦ to β = 180◦

during which the energy arriving constantly increases. The effect is even better visible
for the edge geometries in which β abruptly changes at the edge. This sudden change of
β also results in a significant increase in the amount of energy arriving. The reason why
this angle is important for the amount of arriving energy is that it is more likely that the
photons fly in the direction they started with than changing this direction. They therefore
arrive more often (with the right angle such that they are not reflected) at areas with a
large β.
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Figure 5.19: The left part of this figure is exactly the same as Figure 5.17(a) while the
right part shows the graphs for the same geometries with the skin1 material.

Summarizing the results so far, we can give the following hints:

• Include light that has been scattered once, especially for points near the points
where light hits the object.

• Include light that has not been scattered, especially for points opposite and close to
the places where light arrives.

• Use the distance along the surface of the object and not the distance in R
3.

• All geometries except the slab geometry result in graphs that are quite different to
the dipole model.

• Including the angle β might be a good idea. Further research is necessary to decide
how this should be done, though.
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Chapter 6

Spatially Varying Materials

In this chapter, another pre-requirement of the dipole model is broken: The material
through which the photons are traveling is no longer uniform. That means that the scatter-
ing and absorption coefficient depend on the position of the photon. A typical case when
this happens is when two different materials share a common border or in materials like
marble whose appearances changes with position.

We start by showing some simulations where two different materials hit each other along
a common border, and continue our study with a complex, generated marble material with
veins going into different directions.

6.1 Discrete materials

The first spatially varying material we will examine consists of two “blocks” both of
which have a uniform material. The first block has the shape of a slab (compare Sec-
tion 5.4, Page 57) while the second is an infinite half space as used in the dipole model.
We did simulations with several different thicknesses d of the first block. The resulting
graphs1 (Figures 6.1 and 6.2) are plotted together with the results from the simulations
where d = 0 and d = ∞, i.e. with the two limit cases where the pre-requirements for
the dipole model are given. As scattering and absorption coefficients, we used the green
wavelength of the materials skin1 (σa = 0.17,σs = 0.88) and skin2 (σa = 0.07,σs = 1.59)
from Jensen’s paper [17]. Both materials had a refraction index of n = 1.3. Graphs for
the same materials, this time with a refraction index of 1, are show in the Figures 6.3 and
6.4.

1Using a two-dimensional output mode was not necessary.
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Figure 6.1: This graphs are the result of
simulations where the first block has the
“skin1” material and the second block the
material “skin2”. The graphs show the be-
havior one might first expect because the
graphs for the spatially varying material is
always between the two limit cases.
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Figure 6.2: Basically the same situation
as in the last figure is shown here. How-
ever, the first material is “skin2” while the
second block has the “skin1” material this
time. It is not clear if the graphs with
the shift-variant materials stay between the
graphs of the limit cases or if they pass the
cyan (skin1) graph.
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Figure 6.3: The geometry and the material
parameter are the same as in Figure 6.1 ex-
cept that the refraction index is 1 this time.
Here it is clearly visible that the graphs
of the inhomogeneous media do cross the
graph for the infinite half space with the
skin2 material.
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Figure 6.4: Again, the Fresnel Equations
are ignored by setting the refraction index
to 1. And once again, the graphs obtained
from the spatially varying materials do not
stay between the graphs of the limit cases.

66



The first thing one should note in these figures is that the graph of the mixed material
does not always lie between the graphs of the limit case. On second though, this is not as
surprising as one might think:

It has been shown that, the further away a photon arrives from the photon start point,
the further it was usually inside the material ([4], compare also Figure 4.2(a) where the
photon banana is shown.). However, the attenuation coefficient of skin1 is smaller than the
attenuation coefficient of skin2. This basically means that it is easier for a photon to pass
a few millimeters through the skin1 material than to do the same in the skin2 material.
Thus more photons do get deeper inside the material (and thus arrive further form the
photon start point) if they are first in a skin1 material. Similar, it is easier to return to the
border if the last step goes through a material with a low attenuation coefficient.

Therefore the graphs of the “mixed” materials in Figure 6.3 have some higher values than
the graph obtained from a skin2 material.

On the other hand these graphs are also higher than the graphs from a pure skin1 material.
One reason for this is that more photons are scattered back towards the border in the skin2
material while more photons get lost in the depths of the skin1 material. Another is the
higher absorption coefficient of the skin1 material. Similar reasons lead to the results in
Figure 6.4. The Fresnel Equations, however, seem to wash out these effects.

6.2 Continuous materials

Another case we researched was the case of continuous materials in the infinite half space
which basically means that the material constantly changes its properties. More accu-
rately, the materials we analyzed consisted of very small blocks inside which the material
is constant. Thus the material was not really continuous. A simulation with a material that
is really continuous would strongly lengthen the simulations as it would require to solve
an integral (using Monte Carlo Integration) every time the photon changes its direction to
decide how long the photon traverses before the next scattering event occurs. Therefore,
we considered the benefit from using a really continuous material as too small.

Instead of storing the whole infinite half space, we stored only a finite cuboid in the simu-
lations in this section. However, the size of the block was big enough that it virtually never
happened that a photon hit one of the other borders of the block2. Thus the simulation re-
sults will be the same as when using an infinite half space of the same non-homogeneous
material. 3.

2With one of the “other borders”, we mean all borders except the one that is also part of the surface of
the infinite half space.

3The minimal energy and the noise from the calculations will be much bigger since such a photon is
very unlike to return to the surface and usually already has a low energy.
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(a) A slice at the upper surface (b) A slice trough the center of the marble

Figure 6.5: These two figures show two different slices of the generated marble block we
used for the simulations described in this and the following section.

Figure 6.5 shows two slices through the cuboid we used at different heights. It is an au-
tomated generated marble function used by Lensch et al. in [18], although the dark veins
were thinner there. We increased the thickness of the veins to increase their influence4. In
this marble data, the absorption and scattering coefficients are interpolated between two
extreme values. A sine, together with a Perlin noise [23], [24] is used to get the interpo-
lation parameter. The two extreme values are σa = 0.0041,σs = 2.62 (which is the green
wavelength of the marble from Jensen’s paper [17] again) and σa = 0.364,σs = 2.09 as
dark part. The refraction index was constant at n = 1.5.

If the veins are parallel to the surface (i.e. parallel to the infinite plane that is the border
of the infinite half space) the effect is very small. This could be expected after the last
section because the effect was even rather small for two discrete blocks, a situation where
changes should be easier visible.

The situation is different when the veins are perpendicular to the material border: The
position of some veins can be seen in the output of our Monte Carlo simulation, as seen in
Figure 6.6. If such relatively small errors are not important, the dipole approximation can
be used. Then the marble block has the appearance of a homogeneous material, of course.
However, one should note that the error is small because the material was illuminated only

4The influence of the veins is still rather small.
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(a) An image created
with a shift-variant
marble
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Figure 6.6: On the left one can see an image created from an “infinite half space” geom-
etry (see text) with a generated marble material. The dark veins run vertically. This can
be seen in the figure (which is gamma-corrected and amplified) if it is observed carefully.
However it can be seen much clearer in the graphs in the middle. There, horizontal lines
through the image on the left are shown. Comparing these to the vertical lines shown
on the right, it becomes clear that the small bumps in the graphs in the middle are not
noise or other simulation artifacts but are due to the veins which have a higher absorption
coefficient.

at one point because this leads to a large range of brightness. This is not the case if the
block is illuminated evenly. Better results might be achieved by other approaches like the
one discussed in the next chapter.
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Chapter 7

Fitting a Simple Model to Simulation
Data

Finally, we will try to fit an easy model to match the appearance of a marble block, using
16641 simulations with at least four million photon each, i.e. with more than 66,4 billion
photons total. The simulation time was about four months on a 3GHz Intel Xeon CPU
with sufficient memory to store all data without swapping. The results of this simulations
occupied about 780 MB of disk space after packing. In this chapter we will first describe
the simulations done and explain which model will be fitted to the simulation results.

7.1 The Simulations and the Model

We made the following simulations: The object for which the model was fitted is a square
on the border of the infinite half space. The material was the same marble as shown
in Figure 6.5 and used in Section 6.2, which we will once more assume to occupy an
infinite half space1. The veins where perpendicular to the surface of the infinite half
space. Simulations has been done for the following 129×129 light source positions:

L :=

{((
i
4
−16

)

mm,

(
j
4
−16

)

mm

)

|i, j ∈ {0,1,2 . . .128}
}

That is, the photon start points were spread on a grid in the rectangle with corner points
(−16mm,−16mm) and (16mm,16mm). The measures of the marble block were 64mm×
64mm× 32mm where 32mm is the depth of the marble block as seen from the surface of
the infinite half space.

1See Section 6.2 for the limitations on this approach.
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The model we wanted to fit was:

L×L → R,

(m,n,m′,n′) 7→ α′(m′,n′)
(

c1(m,n)ed1(m,n)x + c2(m,n)ed2(m,n)x
)

with x =
√

(m−m′)2 +(n−n′)2

That is, for every pair of start (m,n) and end point (m′,n′) we try to model the energy
traveling from (m,n) to (m′,n′) using the sum of two scaled exponential functions (pa-
rameterized by the distance between start and end point), which depend only on the start
point, and a multiplicative factor that depends only on the end point. Thus we fit 83.205
parameters to 276.922.881 results. The idea behind this model is that it is close to the
dipole model but has an additional parameter α′(p) to include the local properties near
the point p. That is, the parameters c1,c2,d1,d2 model global features while α′ is respon-
sible for local effects.

This model might lead to feasible results since the dipole model itself basically consists of
the sum of two exponential functions. However, exact results can not be expected because
these functions are only parameterized by the distance, which is not sufficient for exact
results: More energy traverses in the same direction as the veins.

The fitting is done with the following algorithm:

1. Choose two intervals n := [min1,max1] and f := [min2,max2] with min1 < min2,
max1 < max2.

2. Initialize all α′.

3. Estimate all first pairs of parameters (c1,d1) using only data from points with a
distance inside the interval n.

4. Estimate all second pairs of parameters (c2,d2) using only data from points with a
distance inside the interval f .

5. Estimate a trade-off factor and multiply c1 and c2 with it.

6. Estimate all α′.

7. Continue at step 3 until the fit is considered sufficient.

The estimations in the steps 3−6 are all done using least square approximations.

In step 1, the intervals n (for near) and f (for far) are chosen. This is done by the user of
the fitting program. Usually min1 = 0 is chosen and min2 is smaller than max1. These
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intervals have a rather big influence on the results of the fitting. More details about this
parameters are given in the next section.

Step 2 is merely an initialization necessary because the α′ are needed in step 3 and 4. We
estimated the α′ by checking the amount of energy that returned to the photon start point.
The α′ of the smallest energy was set to 0.5, the α′ of the largest to 1.5. For all other α′

linear interpolation was used. However, setting all α′ to a constant value also works.

In step 3 and 4 we do the following for each photon start point p = (m,n): Store all
points whose distance to the photon start point is inside the given interval in a set A. The
parameters c1,d1 (or c2,d2 respectively) are then chosen in such a way that the sum of the
squared errors along the y-axis is minimal in logarithmic space2. That is, the function

∑
i∈A

((

log
(

α′(i) · c(p)ed(p)|p−i|
))

− log(s(p, i))
)2

= ∑
i∈A

((
log(α′(i))+ log(c(p))+d(p)|p− i|

)
− log(s(p, i))

)2

is minimized where s(p, i) is the energy that traverses from p to i according to the simu-
lations, |p− i| is the Euclidean distance between p and i and α′(i) is the α′ that belongs
to the point i. This least square fitting requires solving a 2× 2 linear system. We used
determinants to do so and checked if the solution is correct afterwards. Up to now, this
was always the case. Implementing a numerically stable way to solve the system was
therefore not necessary.

Step 5 is necessary because we are fitting the pairs (c1,d1) and (c2,d2) independently and
therefore, the sum of these two exponential functions will be greater than the simulated
data in the means (because the sum of these two positive functions is always greater than
one of these functions, and only one of the functions is used in the fit). We collect all
photon start points whose distance is less than or equal to max2 in the set A and minimize
the t(p) in the function:

∑
i∈A

((

log(t(p))+ log(α′(i))+ log
(

c1(p)ed1(p)|p−i|+ c2(p)ed2(p)|p−i|
))

− log(s(p, i))
)2

This factor is not included in the model because it can be included into c1 and c2, i.e.
after computing t, we multiply c1 and c2 with t and can ignore t afterwards (because it is
always one outside this step).

2These steps are done in logarithmic space because it is hard to fit the parameters otherwise. In loga-
rithmic space, however, the part of the model we try to fit is linear for which computing the least square fit
is rather easy.
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Figure 7.1: These two figures show the result of the fit of the central point of the marble
block for different near and far intervals. The red points are the results from fitting while
the blue points come from a (still too noisy) simulation. Furthermore, both exponential
functions and their sum are shown in both images.

In step 6 we do basically the same as in step 5, but with a few modifications. This time
the following is done for each endpoint i: Collect all photon start points whose distance
is less than or equal to max2 in a set A and minimize the α′(p) in:

∑
i∈A

((

log(α′(p))+ log
(

c1(p)ed1(p)|p−i|+ c2(p)ed2(p)|p−i|
))

− log(s(i, p))
)2

Note that this time, p is the point at which the photons arrived, not the point at which the
light started as in the steps above. This step is done in the logarithmic space, too, because
the points with a large energy would have a very large influence otherwise.

7.2 Results

This section will present some results of the fitting steps described in the last section. Fig-
ure 7.1 shows the fits for two points of such a fit with n = [0mm,1mm], f = [0.5mm,10mm]
and n = [0mm,1.5mm], f = [1mm,10mm], respectively. The model which we fitted against
the simulation results basically consists of the scaled sum of two lines in logarithmic
space. These two lines are also shown in Figure 7.1 (a green line from the near interval
and a blue line from the far interval), together with their sum (red graph). The near inter-
val should be chosen in such a way that the slope of the green line approximately matches
the “slope of the simulated data” in the near interval.
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Figure 7.2: The left figure shows a false-color plot of all the α′ from the same fit as in
Figure 7.1(a). The right figure shows the color gradient used. In this figure, the minimal
value (i.e. the dark blue points) corresponds to an α′ of 0.840189 while the maximal value
(dark red points) is at α′ = 1.60504.

The results of the fitting are not bad, except of the very first point that is barely visible
in the figure. The energy arriving at this point (according to the simulation) is always
underestimated in the fit. This should be a deficiency in the model and not in the fitting
step. With increasing distance, however, the simulated data gets very noisy making a
good fit practically impossible. Another deficit of the model is that the light traveling in
the bright part of the material parallel to the veins is less reduced than the light passing
several veins, which cannot currently be modeled by our model.

Furthermore, it can be seen that the points from the simulation are never smaller than a
certain value. This is due to the fact that the minimal energy possibly arriving at a certain
point (in the simulation) is given by the minimal energy possible in the simulation divided
by the number of photons traced, multiplied by the area of the sampling region. This limit
of the Monte Carlo Simulation has been reached in the images. This is one of the reasons
why the far interval should have an upper bound.

All α′ fitted for n = [0mm,1mm], f = [0.5mm,10mm] are shown in Figure 7.2. Even in
this image, the veins are clearly visible. The same is true for the figures in which the
parameters from the near interval c1,d1 (Figure 7.3) and the parameter c2 from the far
interval (Figure 7.4) are shown. However, this is not the case for the d2 parameters which
rather seems to model a more global behavior of the material.

Moreover, the parameter d2 is nearly constant; the ratio between the maximal and the
minimal value is approximately 1.09, but the same ratio for the parameter d1 is 1.29. The
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Figure 7.3: In this figures, the coefficients c1 (ranging from 0.200354 to 0.367901, left
image) and d1 (ranging from −3.42545 to −2.64922, right image) are shown. As men-
tioned these parameters come (mainly) from the near interval.

Figure 7.4: This figure shows the coefficients c2 (left) and d2 (right) from the same fit as
in the last figures. The ranges of the images are from 0.0150702 to 0.0317442 (c2) and
from −1.09233 to −0.999242 (d2), respectively.
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other parameters have a ratio near 2.
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Chapter 8

Discussion, Conclusion and Future
work

We summarize the results we obtained, point out deficiencies of our model and the simu-
lation and give an outlook on future work.

8.1 Evaluation of the Dipole Approximation

We discussed the differences between the dipole approximation and the simulation results
from four different types of geometries, pointing out for which geometry the greatest dif-
ferences to the dipole approximation occur. However, it is not clear yet if this differences
are big enough to be noted by a human observer. Still, we proposed a few hints how to
improve the dipole approximation in certain situations.

Furthermore we have clearly shown that the single scattering term that is neglected in
many current rendering systems is of great importance. Even more important is that
unscattered photons can create visible bright spots in certain geometries. These bright
spots should be far more important for thin objects than the missing single scattering term
because the single scattering term only amplifies the brightest region while the unscattered
photons create a new feature. Still, the dipole model is not capable to create these new
highlights in its current form. Adding a "no scattering term" to the dipole approximation
is easy (for homogeneous materials) using Beer’s law and should improve the appearance
of translucent objects. For non-homogeneous materials the no scattering term will require
to solve an integral. Once again, however, we will have to include our simulation results
into a rendering system to verify the assumption that these spots are important.

As already mentioned, it might also be reasonable to include a factor in the dipole ap-
proximation that is based on the angle β (which is the angle between the normal at the
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photon start point and the normal at the endpoint). The simulations we did clearly show
that abrupt changes in β results in sudden changes in the amount of energy leaving the
material. The nature of this factor, especially its dependency to the refraction index n,
might be the topic of future work.

Another goal of future work might be to estimate the graphs of more complex geometries
based on the results obtained so far and compare them to real results.

We illustrated that the energies arriving in discrete shift-variant materials are not always
in between the energies for the corresponding shift-invariant materials. However, the
graphs of discrete shift-variant materials seems to be smooth. Thus, these differences
should be of minor importance. However, only very few simulations have been done, yet.
More such simulations might enable us to derive a model that can predict the behavior of
discrete inhomogeneous materials.

The quality of the dipole approximation if the material is neither shift-invariant nor has
the form of an infinite half space is another point we did not consider yet. It might also
be interesting to consider objects in which the refraction ratio changes inside the object.

8.2 Fitting of the Simple Model

Moreover, we proposed a simple model for a continuous inhomogeneous material and
fitted the model to a generated marble block. Although the results from the simulation
were quite noisy, the results of the fit are promising. More different materials must be
considered to verify this approach, though, as well as rendering the marble with this
model as validation.

It might be possible to further improve the model by exchanging the parameter α′, which
currently depends on the endpoint by a parameter that is dependent on the endpoint and
the direction from the photon start point to the endpoint. For materials which have veins
(such as the marble block we used) this should make the difference from the model to the
simulation results smaller. However, other materials might not benefit from this change
at all.

The last chapter also suggests that setting the parameter d2 to a constant value might not
noticeably reduce the quality of the model. However, it would reduce the number of
parameters by 20%.

8.3 Conclusion

The dipole model is a frequently used approximation to the real behavior of translucent
objects. We investigated its accuracy compared to Monte Carlo simulations for a variety

80



of setups and showed its strengths and weaknesses. Considering the visual importance of
subsurface scattering, we believe that future work in this area is promising and will help
to achieve improved results with respect to both rendering costs and visual realism.
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