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Many applications consecrate the use of asymmetric distributions, and practical situations often require
robust parametric inference. This paper presents the derivation of M-estimators with asymmetric
influence functions, motivated by the G0

A distribution. This law, regarded as the universal model
for speckled imagery, can be highly skewed and maximum likelihood estimation can be severely
hampered by small percentages of outliers. These outliers appear mainly because the hypothesis of
independence and equal distribution of observations are seldom satisfied in practice; for instance,
in the process of filtering, some pixels within a window frequently come from regions with different
underlying distributions. Traditional robust estimation methods, on the basis of symmetric robustifying
functions, assume that the distribution is symmetric, but when the data distribution is asymmetric, these
methods yield biased estimators. Empirical influence functions for maximum likelihood estimators are
computed, and based on this information we propose the asymmetric M-estimator (AM-estimator), an
M-estimator with asymmetric redescending functions. The performance of AM estimators is assessed,
and it is shown that they either compete with or outperform both maximum likelihood and Huber-type
M-estimators.
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1. Introduction

The precise knowledge of the statistical properties data plays a central role in image processing
and understanding. In remote sensing, for instance, these properties can be used to discriminate
types of land use and to develop specialised filters for speckle noise reduction, among other
applications. Statistical image filtering, segmentation and classification are procedures that
heavily rely on dependable inference procedures [1].
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Statistical modelling is of particular relevance when dealing with speckled data. Speckle
noise appears when coherent illumination is employed, as is the case of sonar, laser, ultrasound
and synthetic aperture radar (SAR) imagery. This kind of degradation severely impairs human
and machine ability to discriminate targets, and it is known to defy the classical assumptions
of additivity and Gaussian distribution.

There are many statistical models for speckled data [2]. Among them, the multiplicative
model is based on the assumption that the observed random field Z is the result of the product
of two independent and unobserved random fields: X and Y . The random field X models
the terrain backscatter, and thus depends only on the type of area each pixel belongs to. The
random field Y describes the speckle noise, taking into account that L (ideally) independent
images are averaged in order to reduce the noise.

There are various ways of modelling the random fields X, whereas the physics of speckle
noise allows the assumption of a �1/2 law for Y . The universal model [3, 4] proposes the
�−1/2 distribution to describe the amplitude backscatter X, yielding the G0

A distribution for
the return. One of the advantages of the G0

A distribution over the classical KA distribution
is that it models very well extremely heterogeneous areas like cities, as well as moderately
heterogeneous areas like forests and homogeneous areas like crops. This law has also been
used to describe different types of tissue in B-scan ultrasound imagery [5].

The G0
A distribution is characterised by as many parameters as the KA distribution: the

number of looks (L), the scale parameter (γ ) and the roughness parameter (α). This distribution
has the same nice interpretational properties that the KA distribution has. The parameter α

is of particular interest in many applications, as it is directly related to the roughness of the
target, and γ is a scale parameter related to the relative power between reflected and incident
signals.

This work discusses the problem of estimating the parameters of the G0
A for the single-look

case. This is the noisiest case and, therefore, images with L = 1 are the ones that depend more
on reliable inference procedures for, for instance, filtering [6, 7] and classification [8, 9].

Robustness is a desirable property for estimators, as it allows their use even in situations
where the quality of the input data is unreliable. A situation where this occurs is when
ground control points appear in the SAR image, which are essential for data calibration.
These points produce a higher return than the rest of the image, and for this reason they
are called ‘corner reflectors’. If data from corner reflectors are included in an analysis with
non-robust estimation procedures, the results may be completely unreliable, as they behave
as outliers in the sample. Another typical situation arises when applying filters [10]; data are
collected in a window, and there is no way to assure that they form a perfect uncontaminated
sample.

When the distribution is symmetric, the problems caused by outliers can be reduced using
‘classical’ robust estimation techniques [11], which tend to ignore or put less weight on
influential observations on both sides of the mean.

In many applications, one often finds data distributions with asymmetric heavy tails [12], as
the G0

A distribution. Dealing with such data is essentially difficult because samples from the tail
of the distribution will have a strong influence on parameter estimation, and downweighting
them introduces bias [13].

Section 2 of this paper reviews the fundamental properties of the model considered here, with
results regarding the use of Stylised Empirical Influence Functions for estimators assessment,
and presents the main estimation techniques available for the G0

A distribution. Section 3 intro-
duces the robust estimators, classical M-estimators and the novel AM-estimators. Section 4
shows a comparative simulation study of robust estimators. In section 5, concluding remarks
and future extensions are presented.
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2. The model

The general (multilook) form of the density which characterises the G0
A (α, γ , L) distribution

is given by

f (x) =
2LL�(L − α)

γ α�(L)�(−α)

x2L−1

(γ + Lx2)L−α
, x > 0 (1)

where α < 0 is referred to as the roughness parameter, γ > 0 is the scale parameter and L ≥ 1
is the number of looks. The number of looks is controlled in the early generation steps of the
image, and is known beforehand or it is estimated using extended homogeneous targets; this
parameter remains constant over all the images.

This law was originally devised to describe extremely heterogeneous clutter [3], and
lately proposed and assessed as a universal model for speckled imagery [4]. Improved
estimation using bootstrap for the parameters α and γ of this distribution is presented
by Cribari-Neto et al. [14], whereas the robustness for the L = 1 case is studied by
Bustos et al. [15] using Huber-type M-estimators.

As commented by Bustos et al. [15], the single-look case is of particular interest, and it will
be considered here, as it describes the noisiest images. The distribution of interest is, then,
characterised by the density

f (x; (α, γ )) = −
2α

γ α

x

(γ + x2)1−α
=

2αx

γ (1 + x2/γ )1−α
, x > 0 (2)

with −α, γ > 0. This distribution will be denoted G0
A(α, γ ). Its cumulative distribution

function is given by

F(x; (α, γ )) = 1 − (1 + x2/γ )α, (3)

and its inverse, useful for the generation of random deviates and the computation of quantiles,
is given by

F−1(t) =
√

γ ((1 − t)1/α − 1). (4)

Several parameter estimation techniques are available to estimate θ = (α, γ ), being the most
remarkable ones those based on sample moments and maximum likelihood. The kth order
moment of the G0

A(α, γ ) distribution is given by

E(Xk) =





γ k/2 k�(k/2)�(−α − k/2)

2�(−α)
if − α > k/2

∞ else.
(5)

Denoting the j th sample moment mj = N−1 ∑N
i=1 x

j

i and using equation (5), it is possible to
compute the MO-estimators θ̂MO by means of the half and first-order moments:





m1/2 = γ̂
1/4
MO

�(−α̂MO − 1/4)�(1/4)

4�(−α̂MO)

m1 = γ̂
1/2
MO

√
π�(−α̂MO − 1/2)

2�(−α̂MO)
,

(6)

assuming that −α > 1/2.
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The maximum likelihood estimator, based on x1, . . . , xN , is defined as a value θ̂ML which
minimises −

∑N
i=1 ln f (xi; θ). Equating to zero the derivates of this function, we obtain

N∑

i=1

s(xi; θ) = 0, (7)

where

s(x; θ) = (s1(x; θ), s2(x; θ))T =
∂

∂θ
ln fθ (x) =

(
∂

∂θ1
ln fθ (x),

∂

∂θ2
ln fθ (x)

)T

denotes the vector of likelihood scores. In our case




s1(x; θ) =
1

α
+ ln

(
1 +

x2

γ

)

s2(x; θ) =
−α

γ
−

1 − α

γ − x2

(8)

From here, we derive the estimator θ̂ML = (α̂ML, γ̂ML) as:

α̂ML = −

(
1

N

N∑

i=1

ln

(
1 +

x2
i

γ̂ML

))

γ̂ML =

[(
1 +

1

N

N∑

i=1

ln

(
1 +

x2
i

γ̂ML

))
1

N

N∑

i=1

(
γ̂ML + x2

i

)−1

]−1

.

(9)

Maximum likelihood estimation for the KA distribution was considered in the work by
Joughin et al. [16].

3. Robust estimators

Robust estimation has become more prevalent in remote sensing with the emergence of a new
generation of sensors. While the new sensor technology provides higher spectral and spatial
resolution, enabling a greater number of spectrally separable classes to be identified, labelled
samples for designing the classifier remains difficult and expensive.

Outliers are not uncommon in the practice of image analysis, where scenes usually con-
tain pixels of unknown origin. The statistical distribution of these pixels may be significantly
different from the training classes and can constitute statistical outliers. Unfortunately, these
outlying pixels are usually scattered throughout the scene and are small in number and, there-
fore, identifying these pixels could be a tedious task. A common approach to eliminate the
effect of those pixels is to use robust techniques [1, 8].

3.1 Traditional M-estimators

Let us first consider the problem of estimating from a finite sample the unconditional mean of
a heavy-tailed distribution. The empirical average may be a poor estimator here because a few
points will be sampled from the tails and may have very different values, thereby introducing
a great deal of variability in the empirical average. In the case of a symmetric distribution, we
can downweight or ignore the effect of these outliers in order to reduce variability.
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One of the best known classes of robust estimators are M-estimators, a class of bounded-
influence estimators, which are a generalisation of the ML-estimators. Consider a set of data
x1, . . . , xN , independent samples from the same symmetric distribution (symmetric i.i.d) with
parameter θ . The M-estimate θ̂M is defined as the minimum of a global energy function

θ̂M = arg min
θ

E(θ), (10)

where the energy function E(θ) is defined in terms of a loss function ρ as

E(θ) =
N∑

i=1

ρ(xi; θ). (11)

Equivalently, one solves the estimation equation

N∑

i=1

ψ(xi; θ) = 0, (12)

where ψ(xi; θ) = ∂ρ(xi; θ)/∂θ .
Typically, the function ρ is chosen symmetric; particular cases are ρ(y) = y2/2, yielding

the least square (LS) estimator, and ρ(y) = |y| yielding the median estimator. Equation (12)
is a generalisation of equation (7), as ML-estimators are obtained considering ρ(x; θ) =
− ln fθ (x) and ψ(x; θ) = s(x; θ).

The robustifying functions ψ are a composition of score functions and bounded symmetric
functions, usually defined by parts, for instance:

ψb(y) =∈ {b, max{y, −b}} (13)

ψa,b,c(y) =





y 0 ≤ |y| ≤ a

a · sign(y) a ≤ |y| ≤ b

a
c − |y|
c − b

sign(y) b ≤ |y| ≤ c

0 c ≤ |y|
(14)

ψk(y) =





y

(
1 −

(y

k

)2
)2

|y| ≤ k

0 |y| > k

(15)

The tuning parameters a, b, c, k are obtained requiring that the asymptotic relative efficiency
of the M-estimator, with respect to the ML-estimator in the model without outliers, ranges
from, for instance, 90–95%.
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In order to obtain unbiased and optimal estimators, we redefine the M-estimator θ̂M as a
solution of the equation

N∑

i=1

ψ[s(xi; θ) − c] = 0 (16)

where the Fisher consistency is accomplished by means of the c function, which is defined
implicitly as ∫ ∞

−∞
ψ[s(xi; θ) − c] dFθ(x) = 0 (17)

Many theoretical results concerning the asymptotic and the robustness properties of M-
estimators are available in the literature [11, 17].

In the following, we will see the need to use asymmetric robustifying functions to deal with
speckled data.

3.2 Asymmetric M-estimators

A qualitative way to describe the robustness of the estimators is by the empirical influence
function (EIF) [11]. The EIF shows what happens with the estimator TN when an observation x

ranges over the support of the distribution. It is defined as EIF(x) = TN(x1, x2, . . . , xN−1, x).
In order to make the value of EIF(x) independent of the particular sample, we will use the
stylised empirical influence function (SEIF) proposed by Andrews et al. [18], which consists
of using the ith quantile of the underlying distribution

xi = F−1

(
i − 1/3

N + 1/3

)
. (18)

When we work with symmetric distributions, their SEIF are symmetric too; because of this
reason, typically symmetric robustifying functions are selected [19]. In our case, the G0

A is a
non-symmetric distribution, so is the SEIF of its ML-estimator, as shown in figure 1.

In figure 1, we note that the loss of robustness depends on the size of the outlier x and
on the type of area (true α). In homogeneous areas (α = −10, lower right), it tends to be
critical for large values of the outlier, whereas in extremely heterogeneous areas (α = −1,
upper left), this occurs for small ones. Regarding heterogeneous areas (upper right and lower
left), the loss of robustness oscillates between both extremes. Besides that, and independently
of the roughness, if the sample size decreases, the asymmetry of the SEIF becomes more
pronounced.

To overcome this issue, we propose the use of a family of non-symmetric redescending
robustifying functions 	r1,r2 , where 0 < r1, r2 < ∞ are the tuning parameters: all the asym-
metric functions that are zero outside the interval [r1, r2] and that satisfy the general conditions
presented by Hampel et al. [11, p. 126].

Redescending asymmetric piecewise linear functions belong to this family for either r1 ≤ r2

or r1 ≥ r2. These functions are given by

ψr1,r2(y) =





−y − r1 −r1 ≤ y < −r1/2
y −r1/2 ≤ y < r2/2
−y + r2 r2/2 ≤ y ≤ r2

0 else,

(19)

see figure 2.
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Figure 1. Stylised empirical influence functions for the ML-estimator under the G0
A(α, 1) distribution with

−α ∈ {1, 3, 5, 10} for N = 9 (solid line), N = 25 (dashed line), N = 49 (long-dashed line) and N = 81 (dashed
long-dashed line).

Figure 2. Asymmetric robustifying redescending piecewise linear function.

Then, an AM-estimator θ̂AM is defined as in equation (16), but with an asymmetric function
of type ψr1,r2 ∈ 	r1,r2 . The choice of r1 and r2, as well as c, will be discussed in the next
section.

4. Simulation study

In order to assess the behaviour of estimators robustified with 	r1,r2 functions (AM-estimators),
we consider a model without contamination and several models with outliers. The pattern of
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contamination is defined as a sequence of i.i.d. random variables x1, . . . , xN , with common
distribution function

F(x; (α, γ ); ε; zv) = (1 − ε)F (x; (α, γ )) + εδzv
(x) (20)

where δzv
(x) = 1[zv;+∞)(x) with zv a very large value when compared with most of the sample

data: a factor of the sample mean zv = vE[X], and ε ∈ [0, 1] the probability that an observation
is an outlier. Therefore, in a sample of N data, we will have on average (1 − ε)N data with
distribution G0

A and εN outliers. The samples were generated using relation (4), choosing the
scale parameter γ in terms of α, so that E[X] = 1. Using equation (6) we have

γ = γα =
4

π

[
�(−α)

�(−α − 1/2)

]
.

In this work, we compare the AM-estimators of the distribution G0
A, using the robustifying

function described in equation (19), with respect to the ML and M-estimators, the latter based
on the Huber function, equation (13), presented by Bustos et al. [15].

For simplicity, the tuning parameters r1 and r2 are made to depend on one another
and are related with the tuning parameter b of the Huber function in the following ways:
case (i) r1 = 2b and r2 = ηr1; case (ii) r2 = 2b and r1 = ηr2, varying b = {1/2, 1, 2, 3, 4}
and η = {1/2, 1, 3/2, 2}, where η is used to control the amplitude of the asymmetry of
the robustifying function. The estimators were implemented as suggested by Marazzi and
Ruffieux [20].

The estimators were compared by means of a Monte Carlo experience. The mean,
mean square error and absolute relative bias were estimated using R = 1000 replications
and observing, respectively, Ê[θ̂ ] = R−1 ∑R

i=1 θ̂i , M̂SE = Ê[θ̂ − θ ]2 = V̂ (θ̂ ) + (Ê[θ̂ ] −
θ)2, and B̂[θ̂ ] = θ−1|Ê[θ̂ ] − θ |, where θ is the true value of the parameter and θ̂ is the
estimator.

Figures 3 and 4 show a graphical comparison of estimators for α = {−1, −10}, chang-
ing both the probability ε = {0.01, 0.05, 0.10} and the magnitude v = {5, 10, 20, 40} of the
contamination.

The first fact that stands out in the results is that AM-estimators of type (ii), namely those
with r2 = 2b and r1 = ηr2, exhibit similar behaviour in all the cases, indicating that for ψr1,r2

in R−, it is possible to work with a single parametrisation, say η = 1, for all α. This happens
because of the aforementioned behaviour of the SEIF of the ML-estimator: its negative bias is
small and the loss of robustness tends to be critical for large values of the outliers (figure 1).
Therefore, it is sufficient to study the behaviour of AM-estimators of type (i), i.e. with r1 = 2b

and r2 = ηr1.
It is also clear that as data lose homogeneity, the Huber M-estimator gains precision, that

is to say, in homogeneous areas it is less precise than in heterogeneous areas, becoming less
precise as the proportion and magnitude of the contamination increase, because of the constant
weight that the function assigns to extreme values. In contrast, AM-estimators achieve good
precision independently of the homogeneity, especially as the proportion and magnitude of
the contamination increase because of the decreasing weight that the function ψr1,r2 assigns
to extreme values.

As for the asymmetry of the function ψr1,r2 , we observe that it yields better results for
homogeneous areas when η = {1/2, 1}, whereas for extremely heterogeneous areas, this
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Figure 3. AM-estimators versus M-estimator for α = −1.

occurs when η = {3/2, 2}, and in heterogeneous areas all the parametrisations present a similar
behaviour. At this point, it is interesting to relate the properties of the G0

A distribution with the
asymmetry of the robustifying function, in order to obtain the most adequate parametrisation
for each level of contamination; we could appeal to kth order moment and other robust centre
and dispersion measures.
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Figure 4. AM-estimators versus M-estimator for α = −10.

The rule to choose the tuning parameter b and, consequently, r1 and r2, consists of requiring
that the asymptotic relative efficiency (ARE) of the AM-estimator with respect to the ML-
estimator, in the model without outliers, satisfies 90% ≤ ARE ≤ 95%.

Tables 1–6 show the quantitative comparison among ML, M andAM-estimators. The tuning
parameters of the M-estimator were also chosen to satisfy the efficiency criterion.



M-estimators with asymmetric influence functions 951

Table 1. Numerical comparison of the mean among ML, M and AM estimators, for varying α, sample size and
contamination level ε, with v = 5 (winning cases in boldface).

α = −1 α = −6 α = −10

ε N Ê[α̂ML] Ê[α̂M] Ê[α̂AM] Ê[α̂ML] Ê[α̂M] Ê[α̂AM] Ê[α̂ML] Ê[α̂M] Ê[α̂AM]

0.00 9 −1.162 −1.140 −1.154 −6.520 −6.519 −6.517 −9.916 −9.916 −9.905
25 −1.048 −1.041 −1.045 −6.283 −6.282 −6.282 −10.309 −10.309 −10.304
49 −1.013 −1.004 −1.002 −6.117 −6.117 −6.118 −10.174 −10.174 −10.173
81 −1.014 −1.012 −1.013 −6.065 −6.065 −6.065 −10.114 −10.114 −10.112

0.01 9 −0.826 −0.920 −0.982 −3.143 −3.130 −3.116 −4.655 −4.653 −6.173
25 −0.911 −0.943 −0.958 −4.501 −4.499 −4.496 −6.976 −6.976 −8.371
49 −0.940 −0.957 −0.964 −4.993 −4.992 −4.991 −8.080 −8.080 −9.065
81 −0.956 −0.967 −0.971 −5.266 −5.265 −5.264 −8.605 −8.605 −9.360

0.05 9 −0.815 −0.909 −0.965 −2.956 −2.939 −2.920 −4.385 −4.380 −5.696
25 −0.858 −0.900 −0.918 −3.993 −3.987 −3.980 −6.127 −6.126 −7.546
49 −0.872 −0.905 −0.914 −4.299 −4.295 −4.291 −6.682 −6.682 −7.989
81 −0.875 −0.908 −0.915 −4.342 −4.338 −4.335 −6.715 −6.715 −8.010

0.10 9 −0.792 −0.889 −0.950 −2.732 −2.708 −2.682 −4.011 −4.003 −5.048
25 −0.800 −0.848 −0.863 −3.366 −3.354 −3.341 −5.097 −5.094 −6.366
49 −0.785 −0.827 −0.832 −3.446 −3.436 −3.426 −5.156 −5.155 −6.472
81 −0.774 −0.815 −0.817 −3.362 −3.352 −3.342 −5.101 −5.099 −6.446

Table 2. Numerical comparison of the mean among ML, M and AM estimators, for varying α, sample size and
contamination level ε, with v = 15 (winning cases in boldface).

α = −1 α = −6 α = −10

ε N Ê[α̂ML] Ê[α̂M] Ê[α̂AM] Ê[α̂ML] Ê[α̂M] Ê[α̂AM] Ê[α̂ML] Ê[α̂M] Ê[α̂AM]

0.00 9 −1.162 −1.140 −1.154 −6.508 −6.507 −6.506 −9.997 −9.997 −9.986
25 −1.048 −1.041 −1.045 −6.265 −6.264 −6.264 −10.295 −10.295 −10.290
49 −1.013 −1.004 −1.002 −6.114 −6.114 −6.114 −10.175 −10.175 −10.174
81 −1.014 −1.012 −1.013 −6.060 −6.060 −6.060 −10.123 −10.123 −10.122

0.01 9 −0.682 −0.920 −1.258 −1.818 −2.801 −6.657 −2.298 −3.343 −9.839
25 −0.837 −0.943 −1.044 −3.245 −4.355 −6.293 −4.432 −5.957 −10.211
49 −0.894 −0.957 −1.013 −4.042 −4.937 −6.125 −5.961 −7.379 −10.242
81 −0.922 −0.967 −1.006 −4.464 −5.190 −6.049 −6.808 −8.036 −10.194

0.05 9 −0.668 −0.909 −1.285 −1.691 −2.592 −6.607 −2.130 −3.080 −9.938
25 −0.767 −0.900 −1.052 −2.701 −3.787 −6.371 −3.695 −5.080 −10.208
49 −0.796 −0.905 −1.022 −3.112 −4.146 −6.163 −4.286 −5.700 −10.228
81 −0.802 −0.908 −1.016 −3.156 −4.183 −6.110 −4.346 −5.771 −10.148

0.10 9 −0.638 −0.886 −1.354 −1.553 −2.365 −6.655 −1.957 −2.798 −9.949
25 −0.701 −0.861 −1.085 −2.147 −3.111 −6.329 −2.835 −3.975 −10.070
49 −0.681 −0.830 −1.034 −2.136 −3.110 −6.128 −2.877 −4.066 −10.199
81 −0.666 −0.814 −1.019 −2.068 −3.052 −6.072 −2.752 −3.941 −10.149

The results in the tables show that all ML, M and AM-estimators exhibit almost the same
behaviour when the sample is free of contamination. Besides, when the sample size grows,
all methods show better estimates. Nevertheless, when the percentage of outliers increases,
the ML and M-estimators lose accuracy faster than the AM-estimators. Summarising, the
AM-estimators show either the same or better performance than ML and M-estimators in
all cases.
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Table 3. Numerical comparison of the mean among ML, M and AM estimators, for varying α, sample size and
contamination level ε, with v = 15 (winning cases in boldface).

α = −1 α = −6 α = −10

ε N m̂se[α̂ML] m̂se[α̂M] m̂se[α̂AM] m̂se[α̂ML] m̂se[α̂M] m̂se[α̂AM] m̂se[α̂ML] m̂se[α̂M] m̂se[α̂AM]

0.00 9 0.218 0.218 0.234 5.265 5.267 5.274 5.824 5.825 5.886
25 0.046 0.052 0.058 1.801 1.802 1.804 3.516 3.516 3.529
49 0.021 0.024 0.028 0.799 0.799 0.799 2.207 2.207 2.207
81 0.014 0.016 0.018 0.477 0.476 0.476 1.377 1.377 1.377

0.01 9 0.056 0.078 0.129 8.471 8.555 8.645 29.109 29.140 17.442
25 0.033 0.042 0.052 2.775 2.786 2.798 10.350 10.352 5.106
49 0.020 0.024 0.029 1.461 1.465 1.469 4.934 4.934 2.596
81 0.012 0.014 0.016 0.915 0.917 0.919 2.988 2.989 1.573

0.05 9 0.058 0.072 0.115 9.673 9.794 9.928 32.389 32.450 22.094
25 0.043 0.045 0.053 4.778 4.812 4.846 16.932 16.941 9.114
49 0.032 0.031 0.036 3.550 3.568 3.586 12.859 12.862 6.129
81 0.026 0.022 0.024 3.224 3.237 3.251 12.259 12.262 5.378

0.10 9 0.069 0.078 0.125 11.223 11.403 11.609 37.020 37.130 28.813
25 0.060 0.053 0.058 7.754 7.836 7.925 26.177 26.213 17.022
49 0.058 0.048 0.051 7.091 7.152 7.217 24.965 24.988 14.636
81 0.058 0.045 0.048 7.308 7.367 7.429 24.873 24.891 13.960

Table 4. Numerical comparison of the mean among ML, M and AM estimators, for varying α, sample size and
contamination level ε, with v = 15 (winning cases in boldface).

α = −1 α = −6 α = −10

ε N m̂se[α̂ML] m̂se[α̂M] m̂se[α̂AM] m̂se[α̂ML] m̂se[α̂M] m̂se[α̂AM] m̂se[α̂ML] m̂se[α̂M] m̂se[α̂AM]

0.00 9 0.218 0.218 0.234 5.316 5.320 5.325 6.036 6.036 6.101
25 0.046 0.052 0.058 1.647 1.647 1.648 3.636 3.636 3.650
49 0.021 0.024 0.028 0.782 0.782 0.782 2.189 2.189 2.189
81 0.014 0.016 0.018 0.444 0.444 0.444 1.415 1.415 1.417

0.01 9 0.114 0.078 0.310 17.546 10.494 6.079 59.377 44.509 6.389
25 0.045 0.042 0.061 7.815 3.225 1.946 31.439 17.195 3.458
49 0.026 0.024 0.030 4.219 1.637 0.861 17.194 8.014 2.208
81 0.016 0.014 0.016 2.777 1.051 0.488 11.325 4.962 1.461

0.05 9 0.124 0.072 0.314 18.690 12.054 5.538 62.132 48.426 5.854
25 0.074 0.045 0.061 11.444 5.793 2.143 40.882 26.000 3.386
49 0.058 0.031 0.032 9.027 4.165 0.862 34.517 20.700 2.298
81 0.050 0.022 0.018 8.690 3.835 0.490 33.603 19.612 1.402

0.10 9 0.148 0.078 0.480 19.958 13.810 5.859 64.993 52.696 6.463
25 0.110 0.052 0.068 15.480 9.404 2.177 52.624 38.525 3.826
49 0.114 0.047 0.032 15.378 8.976 0.943 51.837 36.880 2.221
81 0.120 0.046 0.019 15.725 9.086 0.544 53.149 37.672 1.486

Furthermore, it is important to study the behaviour of AM-estimators for different
sample size (N ) and contamination (ε). Figures 5, 6 and 7 show the AM-estimators for
α = {−1, −6, −10}, considering N = {9, 25, 49, 81} and ε = {0.00, 0.01, 0.05, 0.10}, for an
outlier of magnitude 40. In these figures, we do not observe significant differences between
estimates based on small and large samples, allowing us to conclude that AM-estimators are
very efficient in a wide range of situations.
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Table 5. Numerical comparison of the mean among ML, M and AM estimators, for varying α, sample size and
contamination level ε, with v = 5 (winning cases in boldface).

α = −1 α = −6 α = −10

ε N B̂[α̂ML] B̂[α̂M] B̂[α̂AM] B̂[α̂ML] B̂[α̂M] B̂[α̂AM] B̂[α̂ML] B̂[α̂M] B̂[α̂AM]

0.00 9 0.162 0.140 0.154 0.087 0.086 0.086 0.008 0.008 0.010
25 0.048 0.041 0.045 0.047 0.047 0.047 0.031 0.031 0.030
49 0.013 0.004 0.002 0.020 0.020 0.017 0.017 0.017 0.017
81 0.014 0.012 0.013 0.011 0.011 0.012 0.011 0.011 0.011

0.01 9 0.174 0.080 0.018 0.476 0.478 0.481 0.535 0.538 0.383
25 0.089 0.057 0.042 0.250 0.250 0.251 0.302 0.302 0.163
49 0.060 0.043 0.036 0.168 0.168 0.168 0.192 0.192 0.094
81 0.044 0.033 0.029 0.122 0.123 0.123 0.140 0.140 0.064

0.05 9 0.185 0.091 0.035 0.507 0.510 0.513 0.562 0.562 0.430
25 0.143 0.100 0.082 0.335 0.336 0.337 0.387 0.387 0.245
49 0.128 0.095 0.086 0.284 0.284 0.285 0.332 0.332 0.201
81 0.125 0.092 0.085 0.276 0.277 0.278 0.329 0.329 0.199

0.10 9 0.208 0.111 0.050 0.545 0.549 0.553 0.599 0.600 0.495
25 0.200 0.152 0.137 0.439 0.441 0.443 0.490 0.491 0.363
49 0.216 0.173 0.168 0.426 0.427 0.429 0.484 0.485 0.353
81 0.226 0.185 0.183 0.440 0.441 0.443 0.490 0.490 0.355

Table 6. Numerical comparison of the absolute relative bias among ML, M and AM estimators, for varying α,
sample size and contamination level ε, with v = 15 (winning cases in boldface).

α = −1 α = −6 α = −10

ε N B̂[α̂ML] B̂[α̂M] B̂[α̂AM] B̂[α̂ML] B̂[α̂M] B̂[α̂AM] B̂[α̂ML] B̂[α̂M] B̂[α̂AM]

0.00 9 0.162 0.140 0.154 0.085 0.085 0.084 0.000 0.000 0.001
25 0.048 0.041 0.045 0.044 0.044 0.044 0.030 0.030 0.029
49 0.013 0.004 0.002 0.019 0.019 0.019 0.018 0.018 0.017
81 0.014 0.012 0.013 0.010 0.010 0.010 0.012 0.012 0.012

0.01 9 0.318 0.080 0.258 0.697 0.533 0.110 0.770 0.666 0.016
25 0.167 0.057 0.044 0.459 0.274 0.049 0.557 0.404 0.021
49 0.106 0.043 0.013 0.326 0.177 0.021 0.404 0.262 0.024
81 0.078 0.033 0.006 0.256 0.135 0.008 0.319 0.197 0.019

0.05 9 0.333 0.091 0.285 0.718 0.568 0.101 0.787 0.692 0.006
25 0.233 0.100 0.052 0.550 0.369 0.062 0.631 0.492 0.021
49 0.204 0.095 0.022 0.481 0.309 0.027 0.571 0.430 0.023
81 0.198 0.092 0.016 0.474 0.303 0.018 0.565 0.423 0.015

0.10 9 0.362 0.114 0.354 0.741 0.606 0.109 0.804 0.720 0.005
25 0.299 0.139 0.085 0.642 0.482 0.055 0.717 0.603 0.007
49 0.319 0.170 0.034 0.644 0.482 0.021 0.712 0.593 0.020
81 0.334 0.186 0.019 0.655 0.491 0.012 0.725 0.606 0.015

5. Conclusions and future work

In this work, we have introduced the AM-estimator, a novel robust method based on asymmet-
ric robustifying functions. A Monte Carlo study was performed to investigate its robustness
properties and to compare its performance with respect to maximum likelihood estimator and
classical M-estimators. We estimate the roughness parameter α of the G0

A distribution, and
the results show that α̂AM estimator is very favourable with respect to α̂ML and α̂M estimators
under the mean square error criterion. Besides, we can see that α̂AM has a smaller bias in the
presence of contamination.
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Figure 5. AM-estimators for α = −1 versus sample size, varying contamination: ε = 0.00 (solid line), ε = 0.01
(dashed line), ε = 0.05 (long-dashed line) and ε = 0.10 (dashed long-dashed line).

Figure 6. AM-estimators for α = −6 versus sample size, varying contamination: ε = 0.00 (solid line), ε = 0.01
(dashed line), ε = 0.05 (long-dashed line) and ε = 0.10 (dashed long-dashed line).

The computational effort required to compute α̂AM is comparable with the α̂M estimator.
Furthermore, it is noteworthy that the choice of the initial value is not critical for AM and
M-estimators. The computation of the AM-estimators presents some numerical problems for
small samples.

For the tuning parameters, there are several pairs of values of r = (r1, r2) with the same
relative asymptotic efficiency, and the rule does not determine r uniquely. As a remedy, we
minimise the approximation of the maximum asymptotic variance as a function of r .
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Figure 7. AM-estimators for α = −10 versus sample size, varying contamination: ε = 0.00 (solid line), ε = 0.01
(dashed line), ε = 0.05 (long-dashed line) and ε = 0.10 (dashed long-dashed line).

This work will continue computing the AM-estimator for the multilook case, i.e. for the
L > 1 situation, and for polarimetric multivariate data. Also, the simultaneous estimation of
the α and the γ parameters will be considered. Another future work is to study estimators for
confidence intervals, for instance, using bootstrap or other resampling methods.
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