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Casilla 110-V, Valparáıso, Chile
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Abstract. The precise knowledge of the statistical properties of
synthetic aperture radar (SAR) data plays a central role in image
processing and understanding. These properties can be used for
discriminating types of land uses and to develop specialized filters
for speckle noise reduction, among other applications. In this work
we assume the distribution G0

A as the universal model for multilook
amplitude SAR images under the multiplicative model. We study some
important properties of this distribution and some classical estimators
for its parameters, such as Maximum Likelihood (ML) estimators, but
they can be highly influenced by small percentages of ‘outliers’, i.e.,
observations that do not fully obey the basic assumptions. Hence, it is
important to find Robust Estimators. One of the best known classes of
robust techniques is that of M estimators, which are an extension of the
ML estimation method. We compare those estimation procedures by
means of a Monte Carlo experiment.

Keywords: Robust Estimation, SAR Images, Speckle Noise, Monte
Carlo.

1 Introduction

Last decade was marked by the affirmation of SAR images as a tool for earth
monitoring. Several studies were made confirming their relevance, where image
processing techniques were developed especially devoted to them. Most of the
SAR image processing techniques are based on statistical properties of the SAR
data, those properties might be used for the development of tools for SAR image
processing and analysis, for instance, filters to reduce speckle noise, as well as
classification and segmentation algorithms.

There are many statistical models for synthetic aperture radar (SAR) im-
ages, among them, the multiplicative model is based on the assumption that the
observed random field Z is the result of the product of two independent and
unobserved random fields: X and Y . The random field X models the terrain
backscatter and thus depends only on the type of area each pixel belongs to.
The random field Y takes into account that SAR images are the result of a co-
herent imaging system that produces the well known phenomenon called speckle
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Fig. 1. Meaning of the α parameter of the G0
A distribution in SAR images.

noise and are generated by performing an average of L independent image looks
in order to reduce the speckle effect. This is assuming that X and Y are both
weak stationary stochastic processes. The last fact is based on the assumption
that the speckle noise corresponding to cells of different resolution is generated
by the interaction of many independent dispersion points. Speckle refers to a
noise-like characteristic produced by coherent systems, including sonar, laser,
ultrasound and synthetic aperture radars. It is evident as a random structure of
picture elements caused by the interference of electromagnetic waves scattered
from surfaces or objects.

There are various ways of modelling the random fields X and Y . Classically,
both the speckle noise Y and the backscatter X have been modelled with a
Γ 1/2 distribution [TCG82]. This parametrization makes the return Z obey the
KA distribution. The KA distribution fails to model many situations where the
return is extremely heterogeneous, besides being computationally cumbersome.

On the other hand, in [FMYS97] was proposed the Γ−1/2 distribution to
model the amplitude backscatter X. This new model, when used along with the
classical one for the speckle noise yields a new distribution for the return, called
G0

A . The advantage of the G0
A distribution over the classical KA distribution

is that it models very well extremely heterogeneous areas like cities, as well as
moderately heterogeneous areas like forests and homogeneous areas like crops.

The G0
A distribution is characterized by as many parameters as the KA distri-

bution: the number of looks (L), a scale parameter (γ) and a roughness parame-
ter (α). Besides the advantages, this G0

A distribution proposal has the same nice
interpretational properties than the KA distribution has, see [FMYS97]. The
parameter γ is a scale parameter and is related to the relative power between
reflected and incident signals. The parameter α is of particular interest in many
applications, since it is directly related to the roughness of the target. The figure
1 shows how the α parameter can be used to make inferences about the type of
land seen from a particular SAR image.

The figure 2 is representative of the typical complexity of real SAR images,
where we can distinguish several types of roughnesses or textures. This work
discusses the problem of estimating the parameters of the G0

A distribution for
the case of single looks that arises in image processing and analysis with large
and small samples. Two typical estimation situations arise in image processing
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Fig. 2. SAR Image of a Chilean copper mine.

and analysis, namely large and small samples, being the latter considered in this
work. Statistical inference with small samples is subjected to many problems,
mainly bias, large variance and sensitivity to deviations from the hypothesized
model. The last issue is also a problem when dealing with large samples.

Robustness is a desirable property for estimators, since it allows their use even
in situations where the quality of the input data is below of the level accepted
by standards [HRRS86]. Most image processing and analysis procedures, like
classification, restoration, segmentation, use field data. A situation where this
occurs is when ground controls points (GCP) appear in the SAR image, which
are essential for data calibration. These points produce a return higher than the
rest of the image, for this reason they are called corner reflectors. If the data
from a corner reflector it is included in the SAR image, the estimation procedure
is non-robust, and the results may be completely unreliable.

In Section 2 a brief explanation of the G0
A distribution is presented together

with the classical maximum likelihood estimators of its parameters. Section 3
presents the robust M-estimators, which are capable to deal with non perfect
data. In section 4 estimation procedures are compared by means of a Monte
Carlo study.

2 The G0
A Distribution

The general (multilook) form of the density, which characterizes the G0
A(α, γ, L)

distribution is given in [FMYS97] as

f(z) =
2LLΓ (L− α)
γαΓ (L)Γ (−α)

z2L−1

(γ + Lz2)L−α
, z > 0, (1)
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where α < 0 is referred to as the roughness parameter, γ > 0 is a scale parameter
and L ≥ 1 is the number of looks. The number of looks is controlled in the
early generation steps of the image, and is known beforehand or it is estimated
using extended homogeneous targets. This parameter remains constant over all
the image. This law was originally devised to describe extremely heterogeneous
clutter, and lately proposed and assessed as an universal model for speckled
imagery in [MFJB01]. Improved estimation using bootstrap for the parameters
α and γ of this distribution is presented in [CFS02], while the robustness for the
L = 1 case is studied in [BLF02] using M-estimators.

The single look case is of particular interest, and it will be considered here,
since it describes the noisiest images. The distribution of interest is, then, char-
acterized by the density

f(z; (α, γ)) = −2α
γα

z

(γ + z2)1−α
= − 2αz

γ(1 + z2/γ)1−α
, z > 0, (2)

with −α, γ > 0. This distribution will be denoted G0
A(α, γ), whose cumulative

distribution function is given by

F (z; (α, γ)) = 1 − (
1 + z2/γ

)α
. (3)

Several parameter estimation techniques are available, being the most re-
markable ones those based on sample moments and maximum likelihood. The
k-th order moment of the G0

A (α, γ) distribution is given by

E(zk) =

{
γk/2 kΓ (k/2)Γ (−α−k/2)

2Γ (−α) if −α > k/2

∞ otherwise.
(4)

The maximum likelihood estimator of θ = (α, γ), based on the observations
z1, z2, . . ., zN , is defined as the value θ̂ML which maximizes

∏N
i=1 fθ(zi), or equiv-

alently as the value θ̂ML which minimizes −∑N
i=1 ln fθ(zi). Equating to zero the

derivates of this function, we get

N∑

i=1

s(zi; θ) = 0, (5)

where s(z; θ) = (s1(z; θ), s2(z; θ))T = ∂
∂θ ln fθ(z) = ( ∂

∂θ1
ln fθ(z), ∂

∂θ2
ln fθ(z))T

denotes the vector of likelihood scores. Explicitly, the score functions are:





s1(z; θ) = 1
α + ln

(
1 + z2

γ

)
,

s2(z; θ) = −α
γ − 1−α

γ−z2 .
(6)

From equations (5) and (6), following [MFJB01], we derive, for the single
look case, the ML-estimator θ̂ML = (α̂ML, γ̂ML) as:
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α̂ML = −
(

1
N

∑N
i=1 ln

(
1 + z2

i

γ̂ML

))
,

γ̂ML =

[(
1 + 1

N

∑N
i=1 ln

(
1 + z2

i

γ̂ML

))
1
N

∑N
i=1

(
γ̂ML + z2

i

)−1
]−1

.

(7)

3 Robust Estimators

As previously seen, the parameter α of the G0
A distribution is defined for negative

values. For near zero values of α, the sampled area presents very heterogeneous
gray values, as is the case of urban areas. As we move to less heterogeneous areas
like forests, the value α diminishes, reaching its lowest values for homogeneous
areas like crops. This is the reason why this parameter is regarded as a roughness
or texture parameter (recall figure 1).

Corner reflectors can be considered as additive outliers in SAR imagery, as
physical equipment in the sensed area that return most of the power they receive.
The image in these areas is dominated by the biggest possible values admitted
by the storage characteristics, and their effect is typically limited to a few pixels.
Corner reflectors are either placed on purpose, for image calibration, or due to
man-made objects, such as highly reflective urban areas, or the result of double-
bounce reflection [OQ98].

In the reality, it is necessary to use procedures that behave fairly well under
deviations from the assumed model, these procedures are called robust. One
of the best known classes of robust estimators are M-estimators, which are a
generalization of the ML-estimators [AGV01]. In this work, we use them to
estimate the parameters of the G0

A distribution. These estimators, based on a
sample z1, z2, . . ., zN , are defined as the solution θ̂M of the estimation equation

N∑

i=1

ψ(zi; θ) = 0. (8)

Equation (8) is a generalization of the maximum likelihood equation (5). ψ
is a composition of functions of the score function (6) and the Huber’s function
given by ψb(y) = min{b,max{y,−b}}, where b is called tuning parameter. The
importance of the ψ functions is that they truncate the score of the influential
observations in the likelihood equation. Many theoretical results concerning the
asymptotic and the robustness properties of M-estimators are available in the
literature [AGV01], [BLF02], [RV02]. On the other hand, it is possible consider
M-estimators with asymmetrical influence functions [AFGP03], which depend
on underlying distributions.

With the purpose of obtain unbiased and optimal estimators, we redefine the
M-estimator θ̂M as a solution of the equation

N∑

i=1

ψ[s(zi; θ) − c] = 0, (9)
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where the Fisher consistency is accomplished by means of the c function, which
is defined implicitly as

∫ ∞

−∞
ψ[s(zi; θ) − c] dFθ(z) = 0. (10)

The rule for determining the tuning parameter b, is to require the asymptotic
relative efficiency of the M-estimator, with respect to the ML-estimator in the
model without outliers, ranges from 90% to 95% [MR96].

4 Simulation Study

A Monte-Carlo study is performed in order to assess the behavior of the robust
M-estimator with respect to ML-estimator. It is considered that each sample
is contaminated by a fraction ε of outliers of magnitude v. Hence, a sample
z1, z2, . . ., zN obey the following data contamination model:

F (z; (α, γ); ε; v) = (1 − ε)F (z; (α, γ)) + εδv(z), (11)

where δv(z) = 1[v;+∞)(z) with v a very large value as compared to most of the
sample data, which is chosen as a factor of the sample mean.

A numerical comparison is made over R = 1000 different samples generated
by means of (11). Using (4), the parameter γ depends on a given value for α
through E(Z) = 1. The methodology used to compute the estimates was that
described in [MR96].

Tables 1 and 2 show, for both the ML-estimator and the M-estimator, for sev-
eral values of the roughness parameter α = {−1,−6,−10}, the sample mean and
the mean square error, defined as E[α̂] = R−1 ∑R

i=1 α̂i and mse[α̂] = E[α̂− α]2

respectively, where α is the true value of the parameter and α̂ is its estimator. The
simulation study considers the estimates in several situations, varying the sam-
ple size N = {9, 25, 49, 81} and the contamination level ε = {0%, 1%, 5%, 10%}.
Also, the outliers were considered as a factor of the sample mean of v = 15.

The results in the tables show that both ML and M estimators exhibit almost
the same behavior when the sample is exempt of contamination. Besides, when
the sample size grows both methods show better estimates. Nevertheless, when
the percentage of outliers increases, the ML-estimators lose accuracy faster than
M-estimators. Summarizing, M-estimators show either equal or better perfor-
mance than ML-estimators in all cases.

5 Conclusions

In this paper different estimators were used to estimate the roughness parameter
α of the G0

A distribution for the single look case. In a Monte-Carlo study, classical
ML-estimators were compared with robust M-estimators, where the latter were
better performance than the former in all considered situations, as varying the
sample size and varying the contamination level.
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Table 1. Numerical comparison of the mean between ML and M estimators, for varying
α, sample size and contamination level ε, with v = 15.

α = −1 α = −6 α = −10
ε N E[α̂ML] E[α̂M ] E[α̂ML] E[α̂M ] E[α̂ML] E[α̂M ]

9 -1.162 -1.140 -6.508 -6.507 -9.997 -9.997
0% 25 -1.048 -1.041 -6.265 -6.264 -10.295 -10.295

49 -1.013 -1.004 -6.114 -6.114 -10.175 -10.175
81 -1.014 -1.012 -6.060 -6.060 -10.123 -10.123
9 -0.682 -0.920 -1.818 -2.801 -2.298 -3.343

1% 25 -0.837 -0.943 -3.245 -4.355 -4.432 -5.957
49 -0.894 -0.957 -4.042 -4.937 -5.961 -7.379
81 -0.922 -0.967 -4.464 -5.190 -6.808 -8.036
9 -0.668 -0.909 -1.691 -2.592 -2.130 -3.080

5% 25 -0.767 -0.900 -2.701 -3.787 -3.695 -5.080
49 -0.796 -0.905 -3.112 -4.146 -4.286 -5.700
81 -0.802 -0.908 -3.156 -4.183 -4.346 -5.771
9 -0.638 -0.886 -1.553 -2.365 -1.957 -2.798

10% 25 -0.701 -0.861 -2.147 -3.111 -2.835 -3.975
49 -0.681 -0.830 -2.136 -3.110 -2.877 -4.066
81 -0.666 -0.814 -2.068 -3.052 -2.752 -3.941

Table 2. Numerical comparison of the mean square error between ML and M estima-
tors, for varying α, sample size and contamination level ε, with v = 15.

α = −1 α = −6 α = −10
ε N mse[α̂ML] mse[α̂M ] mse[α̂ML] mse[α̂M ] mse[α̂ML] mse[α̂M ]

9 0.218 0.218 5.316 5.320 6.036 6.036
0% 25 0.046 0.052 1.647 1.647 3.636 3.636

49 0.021 0.024 0.782 0.782 2.189 2.189
81 0.014 0.016 0.444 0.444 1.415 1.415
9 0.114 0.078 17.546 10.494 59.377 44.509

1% 25 0.045 0.042 7.815 3.225 31.439 17.195
49 0.026 0.024 4.219 1.637 17.194 8.014
81 0.016 0.014 2.777 1.051 11.325 4.962
9 0.124 0.072 18.690 12.054 62.132 48.426

5% 25 0.074 0.045 11.444 5.793 40.882 26.000
49 0.058 0.031 9.027 4.165 34.517 20.700
81 0.050 0.022 8.690 3.835 33.603 19.612
9 0.148 0.078 19.958 13.810 64.993 52.696

10% 25 0.110 0.052 15.480 9.404 52.624 38.525
49 0.114 0.047 15.378 8.976 51.837 36.880
81 0.120 0.046 15.725 9.086 53.149 37.672

As concluding remarks, one could say that the G0
A distribution is a quite good

model for SAR data, whose parameters have relevant and immediate physical
interpretation. Estimators of these parameters can be used in various ways, for
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instance, as classification and segmentations tools of SAR images or development
of digital filters, among others.

In future works, a simultaneous estimation of the α and γ parameters will
be considered. Also, M-estimators will be studied for the multilook case.
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