
iPiasco: Inertial Proximal Algorithm for strongly

convex Optimization

Peter Ochs1, Thomas Brox1, and Thomas Pock2

1 University of Freiburg, 2 Graz University of Technology,
Germany Austria

{ochs,brox}@cs.uni-freiburg.de pock@icg.tugraz.at

January 2015

Accepted for publication in Journal of Mathematical Imaging and Vision (JMIV)
The final publication is available at Springer via http://dx.doi.org/10.1007/s10851-015-0565-0

Abstract

In this paper, we present a forward–backward splitting algorithm with
additional inertial term for solving a strongly convex optimization prob-
lem of a certain type. The strongly convex objective function is assumed
to be a sum of a non-smooth convex and a smooth convex function. This
additional knowledge is used for deriving a worst-case convergence rate
for the proposed algorithm. It is proved to be an optimal algorithm with
linear rate of convergence. For certain problems this linear rate of conver-
gence is better than the provably optimal worst-case rate of convergence
for smooth strongly convex functions. We demonstrate the efficiency of
the proposed algorithm in numerical experiments and examples from im-
age processing.

1 Introduction

In this paper, we study the convergence rate of an algorithm for minimizing
composite objective functions of the form:

min
x∈X

f(x) + g(x) ,

where X is a finite dimensional real vector space. The objective function is
composed of a smooth, convex function f and a non-smooth, convex function
g. Additionally, we assume that the objective function is strongly convex. On
one hand, these assumptions are very restrictive, however, on the other hand,
this class of objective functions can be optimized very efficiently. When g ≡ 0,
there are algorithms that converge with a linear rate, which is the provably
optimal worst-case rate for the considered class of problems [21]. Examples are

1

http://dx.doi.org/10.1007/s10851-015-0565-0

the conjugate gradient method or the Heavy-ball method [27]. We propose an
algorithm with characteristics of the Heavy-ball method and prove that if g is
strongly convex the convergence rate can be improved.

The Heavy-ball method is an explicit finite differences discretization of the
so-called Heavy-ball with friction dynamical system:

xn+1 = xn − α∇f(xn) + β(xn − xn−1) .

It differs from the usual gradient step xn − α∇f(xn) by an additional inertial
term β(xn − xn−1). This seemingly small difference causes a significant change
in the worst-case convergence rate for the class of smooth, strongly convex func-
tions. The precise definition of the convergence rate depends on the Lipschitz
constant L > 0 of ∇f and the convexity parameter (of the strong convexity)
l > 0. While the Lipschitz constant provides an upper bound for the “curvature”
of the function, the convexity parameter determines a lower bound. Choosing
the step size parameters as

α =
4

(
√
L+
√
l)2
, β =

(
√
L−
√
l)2

(
√
L+
√
l)2
,

the convergence rate is O(((
√
L−
√
l)/(
√
L+
√
l))n), while the convergence rate

of the gradient descent method is only O(((L− l)/(L+ l))n).
The conjugate gradient method has the same worst-case rate of convergence

as the Heavy-ball method. In fact, the conjugate gradient method for minimiz-
ing strongly convex quadratic problems can be expressed as Heavy-ball method.
Therefore, it can be seen as a special case of the Heavy-ball method for quadratic
problems. Nevertheless, there is an interesting difference. On the one hand, the
conjugate gradient method does not require knowledge about the convexity pa-
rameters, since the optimal step sizes are computed online. On the other hand,
the conjugate gradient method does not generalize well to non-quadratic func-
tions or constraints, whereas the Heavy-ball method does.

The Heavy-ball method shows the same (linear) convergence rate, if the
function is optimized over a convex set C, which requires a projection after the
update step. Denoting the projection operator by ΠC the iterations become

xn+1 = ΠC(xn − α∇f(xn) + β(xn − xn−1)) .

The projection can also be interpreted in terms of the proximal mapping for
the (convex) indicator function δC of the set C. More generally, the proximal
mapping for a convex function g is given as

proxαg(x̂) = arg min
x∈X
‖x− x̂‖2

2
+ αg(x) ,

and reduces to the projection onto a convex set C, if g = δC .
This leads to the generalization of the projected Heavy-ball method, whose

convergence rate is investigated in this paper,

xn+1 = proxαg(x
n − α∇f(xn) + β(xn − xn−1)) .

2

The main theorem of this paper proves a linear worst-case convergence rate
for this algorithm. In the general case, the rate only depends on the Lipschitz
constant L > 0 of ∇f , the strong convexity parameter l > 0 of f and the strong
convexity parameter m > 0 of g. When g = δC or m = 0, this rate coincides
with the optimal rate found for the projected Heavy-ball method. Summarizing,
the additional proximal step does not degrade the known convergence rates.

A particularly interesting situation arises, when g is also smooth and has
Lipschitz continuous gradient ∇g with constant M > 0. In this case, the func-
tion f+g may be split into f and g such that terms with high Lipschitz constant
enter g. We demonstrate that in some situations an appropriate splitting leads
to a convergence rate that is better than the optimal lower bound. This is
possible thanks to the well defined structure of our optimization problem. The
optimal lower bound is only valid for black-box algorithms.

A numerical experiment shows and compares the efficiency of the proposed
algorithm in practice with other optimal methods. Finally, we apply iPiasco
to the computer vision problems of denoising and inpainting and compare its
convergence against the projected Heavy-ball method.

2 Related Work

In [21], Nesterov derives lower worst-case efficiency bounds for first-order black-
box optimization on different classes of objective functions. If the objective func-
tion is non-smooth, it is shown that the lower bound on the convergence rate is
O(1/

√
N). This bound is actually attained by the subgradient method [29],

which is certainly the most simple algorithm for non-smooth optimization.
In [22], it was shown that if the non-smooth objective function has a certain
saddle-point structure (in contrast to black box optimization), the convergence
rate can be improved via smoothing to O(1/N) . Algorithms that achieve this
rate are for example [22, 8, 12, 24, 15, 16].

If the objective function is smooth (i.e. it has a Lipschitz continuous gradi-
ent) the lower worst-case efficiency bound is O(1/N2). The first algorithm that
achieved this rate was presented by Nesterov in [20] and generalized to compos-
ite objective functions or saddle-point problems in [8, 6, 20, 24, 15]. Finally, for
the class of smooth and strongly convex functions, the lower efficiency bound is
given by O(ωN), where ω ∈ (0, 1) depends on the square root of the condition
number of the objective function. Algorithms that converge with the same rate
are for example [8, 27, 7, 17].

In his seminal work [27], Polyak investigates multi-step schemes to accelerate
the gradient method. He assigned special interest to a certain two-step method,
the Heavy-ball method. It differs from the usual gradient method by adding an
inertial term. Polyak showed that this method can speed up convergence in com-
parison to the standard gradient method, while the cost of each iteration stays
basically unchanged. The Heavy-ball idea is a simple but efficient way to im-
prove the convergence of an algorithm. Therefore, this method was investigated,
generalized and modified in several ways. In [3, 2], the Heavy-ball method was

3

extended to maximal monotone operators. In a subsequent work [19], it has been
applied to a forward–backward splitting algorithm, again in the general frame-
work of maximal monotone operators. In [4] a time second-order dynamical
system related to the Heavy-ball with friction system is studied. It is shown to
be equivalent to a coupled first-order system that becomes an inertial forward–
backward splitting method when it is discretized. The Heavy-ball method seems
also appealing in the non-convex setting. In [30], it was generalized to smooth
non-convex functions and in [25] to a class of structured non-smooth non-convex
optimization problems.

Modifications of the Heavy-ball method appear in the convex setting for
instance in the popular accelerated gradient method of Nesterov [21, 24], or
in the proximal forward–backward splitting method in [10], where the differ-
ence is the computation of the gradient. While the Heavy-ball method uses
the point from the preceding iteration, Nesterov’s method computes the gradi-
ent at points that are extrapolated by the inertial force. On strongly convex
functions, both methods are equally fast (up to constants), but the conver-
gence of Nesterov’s accelerated gradient method can be shown to be faster on
smooth convex functions [13]. Another two-step algorithm is iterative shrink-
age/thresholding (TwIST) [7], which is an acceleration of IST algorithm [12].
They assume f(x) = 1

2‖y −Kx‖22 for a given data vector y and a linear operator
K. Linear convergence is proved under the condition that K is positive definite
and thus invertible. This results in f being strongly convex, and therefore is
met as a special case in our formulation.

3 Preliminaries

In this paper, we consider a structured (non-smooth) strongly convex optimiza-
tion problem on a finite dimensional real vector space X with inner product 〈·, ·〉
and norm ‖·‖ :=

√
〈·, ·〉. The objective function h : X → R ∪ {+∞} is assumed

to be proper lower semi-continuous (lsc) and extended valued and bounded
from below by some value h > −∞. Its domain is defined as domh := {x ∈ X :
h(x) < +∞}. Moreover, let the objective be composed of a proper lsc convex
(possibly non-smooth) function g : X → R ∪ {+∞} and a proper convex func-
tion f : X → R ∪ {+∞} that is twice continuously differentiable on dom g and
has Lipschitz continuous gradient on dom g; and let f or g be strongly convex.

min
x∈X

h(x) , h(x) := f(x) + g(x) , (1)

In order to simplify notation, we define two classes of functions.

• The class C k,p
L (C), k, p ∈ N, L > 0, C ⊂ X contains functions that are k-

times continuously differentiable on C and the p-th derivative is Lipschitz
continuous on C with Lipschitz constant L (also denoted as L-Lipschitz
continuous gradient).

Example 1. A function f ∈ C 1,1
L (C), C ⊂ X is continuously differentiable

on C with Lipschitz continuous gradient, i.e. there exists a constant L > 0

4

such that
‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ , ∀x, y ∈ C . (2)

• The class of convex functions X → R ∪ {+∞} with convexity parameter or
modulus m ≥ 0 is denoted by Sm := Sm(X). For m > 0 the functions of
Sm are strongly convex. This class is defined by the following subgradient
inequality : It holds that dom g = dom ∂g := {x ∈ X : ∂g(x) 6= ∅}, and for
any y ∈ dom ∂g

g(x) ≥ g(y) + 〈ξy, x− y〉+
m

2
‖x− y‖2, ∀x ∈ X,∀ξy ∈ ∂g(y) . (3)

• As a subclass, we define S 1,1
m,M (C) := Sm ∩ C 1,1

M (C), M ≥ m, C ⊂ X,
which contains (strongly) convex functions with M -Lipschitz continuous
first derivative on C.

In the proposed algorithm and the convergence analysis, we make use of the
proximal map.

Definition 1 (Proximal map). Let g ∈ S0 be a proper lower semi-continuous
convex function, x̂ ∈ X, and α > 0. Then, proxαg(x̂) is the unique point in X
satisfying

proxαg(x̂) = arg min
x∈X
‖x− x̂‖2

2
+ αg(x) ,

The operator proxαg : X → X is denoted as proximal mapping—or proximity
operator—of g.

Note that for a proper lower semi-continuous convex function g it holds that
(see [5, Proposition 16.34])

proxαg = (I + α∂g)−1 ,

where I denotes the identity operator or identity matrix.
We collect some important (basic) properties of function in C 1,1

L (C) or Sm

with L > 0, m ≥ 0, and C ⊂ X.

• For any y ∈ C, f ∈ C 1,1
L (C), it holds that (see, for example, [21, Lemma

1.2.3])

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2, ∀x ∈ C . (4)

• For g ∈ Sm, m ≥ 0, and for any x, y ∈ dom ∂g we have (direct consequence
from the subgradient inequality)

〈x− y, ξx − ξy〉 ≥ m‖x− y‖2, ∀ξx ∈ ∂g(x),∀ξy ∈ ∂g(y) .

5

• Let g ∈ Sm, m > 0, α > 0. Then αg ∈ Sαm and proxαg is (1 + αm)-
cocoercive, meaning that for all x, y ∈ X: ([5, Proposition 23.11])〈

proxαg(x)− proxαg(y), x− y
〉
≥ (1 + αm)‖proxαg(x)− proxαg(y)‖2 ,

and proxαg is (1 + αm)−1-Lipschitz continuous, i.e. for all x, y ∈ X:

‖proxαg(x)− proxαg(y)‖ ≤ (αm+ 1)−1‖x− y‖ . (5)

In the following convergence analysis the spectral radius of a matrix T , which
is defined as the maximal magnitude of its eigenvalues

ρ(T) := max{|λ| : λ is eigenvalue of T}

is of importance. When the iteration matrix of an algorithm has only eigenvalues
smaller than 1, i.e., the spectral radius is less than 1, the sequence induced by
this iteration matrix converges. Moreover, the matrix norm reveals an asymp-
totic relationship to the spectral radius of the matrix. This is an important
result from linear algebra (see, for example, [26, Sec. 2.1]), which was originally
proved by Gelfand [14].

Lemma 1 (Gelfand’s formula). It holds that ρ(A) = limn→∞ ‖An‖1/n, i.e., the
spectral radius of A gives the asymptotic growth rate of ‖An‖: For every ε > 0
there is c = c(ε) such that ‖An‖ ≤ c(ρ(A) + ε)n for all n ∈ N.

4 The proposed algorithm

We propose Algorithm 1 including the definition of the step size parameters,
which emerge from the subsequent convergence analysis.

4.1 Convergence analysis

Let us now analyze Algorithm 1.

Lemma 2. Let a, b ∈ R. If

(1−
√

1− a)2 ≤ b ≤ (1 +
√

1− a)2 , (7)

then the matrix

T :=

(
a+ b −b

1 0

)
has two complex eigenvalues with squared magnitude b.

Proof. In order to obtain the eigenvalues of T , we compute the roots of the
characteristic polynomial v2 − (a + b)v + b in the variable v. The eigenvalues
v1, v2 are

v1,2 =
a+ b

2
±
√

(a+ b)2

4
− b .

6

Algorithm 1.

inertial proximal algorithm for strongly convex optimization (iPiasco)

• Optimization problem: minx∈X h(x) = minx∈X f(x) + g(x) with

f ∈ S 2,1
l,L (dom g), L ≥ l ≥ 0 , g ∈ Sm, m ≥ 0, m+ l > 0 .

• Step-size parameter : Define α > 0 and β ∈ [0, 1) by

α =
4

(
√
l +m+

√
L+m)2 − 4m

, β =
(
√
m+ L−

√
m+ l)2

(
√
m+ L+

√
m+ l)2 − 4m

• Initialization: Choose a starting point x0 ∈ domh and set x−1 = x0.

• Iterations (n ≥ 0): Update

xn+1 = proxαg(x
n − α∇f(xn) + β(xn − xn−1)) . (6)

Now, we try to find the condition for obtaining complex roots. The discriminant
of the quadratic characteristic polynomial needs to be negative. A few elemen-
tary transformation steps yield the condition (b + (a − 2))2 ≤ 4 − 4a, which is
equivalent to (7). Under the assumption that this inequality holds T has two
complex roots with squared magnitude

|v1,2|2 = v1,2v̄1,2 =

(
a+b
2 ±

√
(a+b)2

4 − b
)(

a+b
2 ∓

√
(a+b)2

4 − b
)

= b ,

which concludes the proof, where v̄1,2 denotes the complex conjugate.

Now, we are equipped to start with the analysis of the worst-case convergence
rate of iPiasco as proposed in Algorithm 1. The theoretical convergence rates
that are discussed in this paper always refer to the worst-case performance. For
notational convenience, we define zn := (xn − x∗, xn−1 − x∗)>.

Theorem 1. Let the functions f and g with parameter l, L, and m; and the
step size parameter α and β be as in Algorithm 1. Moreover, let (xn)n∈N be
generated by Algorithm 1 and x∗ := limn→∞ xn be the unique global optimum.
Then, for every ε > 0 there is c = c(ε) such that

‖zn+1‖ ≤ c(q + ε)n‖zn‖ for all n ∈ N , where q =

√
m+ L−

√
m+ l√

m+ L+
√
m+ l

.

Proof. First, we note that x∗ ∈ domh exists and it is unique due to the proper-
ties of h. As x∗ is a stationary point of h, hence 0 ∈ ∂h(x∗), x∗ is a fixed point
of proxαg ◦(I − α∇f) ([5, Proposition 25.1(iv)]), i.e.,

x∗ = proxαg(x
∗ − α∇f(x∗) + β(x∗ − x∗)) .

7

Combining and (6) with the (1 + αm)−1-Lipschitz continuity of the (strongly)
convex function αg from (5), we observe

‖xn+1 − x∗‖ ≤ m̃α‖(1 + β)(xn − x∗)− α(∇f(xn)−∇f(x∗))− β(xn−1 − x∗)‖ ,

where m̃α := (1 + αm)−1. As f is twice continuously differentiable and dom f
is convex, there exists a matrix B such that the following mean value theorem
holds

∇f(xn)−∇f(x∗) =

(∫ 1

0

Bt dt

)
(xn − x∗), Bt := ∇2f(xn + t(x∗ − xn)) ,

where ∇2f denotes the second derivative of f . Plugging both results together,
we conclude

‖zn+1‖ ≤ sup
t∈[0,1]

‖Atzn‖, where At :=

(
m̃α((1 + β)I − αBt) −βIm̃α

I 0

)
.

Now, we analyze the spectral radius of the matrix At. As the decisive fact is
that the eigenvalues of Bt are in [l, L], which is independent of t, from now on
we drop the subscript t. Denoting the eigenvalues of B by λi, i = 1, . . . , N ,
where N ∈ N is the dimension of X, it is not too difficult to show (using the
right permutation matrix) that A is similar to a block diagonal matrix with
blocks of size 2× 2 of the form

Tλ :=

(
m̃α(1 + β − αλ) −m̃αβ

1 0

)
,

where from now on λ stands for one of the eigenvalues λi. Consequently, the
spectral radius of A is given by the maximal spectral radius of Tλ for all λ.

Under the assumption that the spectral radius of A is less than 1, we can
show the statement of convergence using Lemma 1.

It remains to show that the setting of α and β yields ρ(A) < 1. If we set
a = m̃α(1 − αλ) and b = m̃αβ in Lemma 2, then the right inequality in (7) is
trivially satisfied as b < 1. The left inequality in (7) requires ρ(Tλ) =

√
m̃αβ ≥

|1−
√

1 + αλm̃α − m̃α|. Now, the next step is to determine α and β such that
(7) is met and the spectral radius becomes minimal.

Since λ ∈ [l, L], we have

(1−
√

1 + αλm̃α − m̃α)2 ≤ max{(1−
√

1 + αm̃αl − m̃α)2, (1−
√

1 + αm̃αL− m̃α)2} .

Hence, we determine α such that the right hand side is minimal1. Then, setting
β such that m̃αβ equals the right hand side (using the determined α) yields the
best estimate for the convergence rate q =

√
m̃αβ.

For notational convenience, we define

%l,m(α) := 1−
√

1− 1− αl
1 + αm

.

1In general, this is analytically very challenging because m̃α also depends on α.

8

Then, we have to determine α > 0 such that (%l,m(α))2 = (%L,m(α))2. It can
be easily seen that %l,m(α) = %L,m(α) is solved by α = 0, which is not feasible.
The expression %l,m(α) = −%L,m(α) is equivalent to (note that α > 0 and
1 + αm > 0)

2
√

1 + αm =
√
α(
√
l +m+

√
L+m) .

As both sides are positive, squaring and solving for α proves the expression for
α. Then plugging-in the computed α verifies the term for β.

Theorem 1 covers several special cases, which are interesting in their own
right. In the following, we state some of these special cases. The proofs directly
follow from Theorem 1 by plugging-in the parameters and some simple and brief
calculation.

First we discuss the trivial case L = l. This yields q = 0 and the problem
can be solved with a single iteration. The step size parameters are α = 1/L and
β = 0. The function f is a simple quadratic function with circular level sets;
The Lipschitz upper bound is exact. Therefore, the minimization problem

xn+1 = arg min
x
g(x) +

L

2
‖x− (xn − 1

L∇f(xn))‖2 ,

which is an equivalent representation of a single iteration step of iPiasco (6),
coincides with the original problem. This formulation shows that after the
quadratic function f is minimized (by the step xn − 1

L∇f(xn)) evaluating the
proximal term solves the whole problem.

If, additionally, m = 0, then a single gradient descent step with step size
1/L solves the problem.

In the following, we consider the special case m = 0 and l ≤ L. From
[21], the Heavy-ball method is known as an optimal method for the class of
strongly convex and two times continuously differentiable functions with Lip-
schitz continuous gradient. Its worst-case convergence rate coincides with the
estimated optimal lower bound from Nesterov. The next corollary reveals that
adding a non-smooth convex function g to the function f iPiasco still shows
the same worst-case convergence rate as the Heavy-ball method. Hence, in this
sense, iPiasco is optimal for the class of strongly convex (possibly non-smooth)
functions.

Corollary 1. Let the same assumptions hold as in Theorem 1, but with l > 0
(f strongly convex) and m = 0 (g only convex). The quantities α, β, q in
Algorithm 1 simplify to

α =
4

(
√
L+
√
l)2
, β =

(√
L−
√
l√

L+
√
l

)2

, and q =
√
β .

Then, for every ε > 0 there is c = c(ε) such that ‖zn+1‖ ≤ c(q + ε)n‖zn‖ for
all n ∈ N.

9

Remark 1. Denoting Qf := L/l as the ratio between the Lipschitz constant for
∇f and the strong convexity parameter for f , we can rewrite the spectral radius
of the iteration matrix, denoted T here, for Corollary 1 as

ρ(T) =

√
Qf − 1√
Qf + 1

,

which establishes a relation between the conditioning of the objective function
and the convergence rate.

Remark 2. The worst-case convergence rate of the Heavy-ball method is equiv-
alent to the worst-case rate of the conjugate gradient (CG) method. An advan-
tage of CG is that it automatically determines the parameter α and β in each
iteration. On the other hand, unlike iPiasco, CG cannot handle an additional
non-smooth convex term in the objective function.

There is also an interesting new variant of Algorithm 1, where only the
function g is required to be strongly convex. The convergence rate can benefit
from an additional strongly convex term g.

Corollary 2. Let the same assumptions hold as in Theorem 1, but let only g be
strongly convex and f be convex, i.e., m > 0, l = 0, and L > 0. The quantities
α, β, q in Algorithm 1 simplify to

α =
4

(
√
m+

√
L+m)2 − 4m

, β =
(
√
m+ L−√m)2

(
√
m+ L+

√
m)2 − 4m

,

and q =

√
m+ L−√m√
m+ L+

√
m
.

Then, for every ε > 0 there is c = c(ε) such that ‖zn+1‖ ≤ c(q + ε)n‖zn‖ for
all n ∈ N.

Summarizing, we obtain optimal linear convergence for iPiasco in the case,
where f is convex and two times continuously differentiable, g is convex, and
any of the two functions f or g is strongly convex, additionally.

Let us discuss the results that we obtained so far more in detail. For a
moment, suppose the function g ∈ S 1,1

m,M with convexity parameter m > 0 and
Lipschitz constant M > 0. Then, the function h is strongly convex, continuously
differentiable and has a Lipschitz continuous gradient. The lower complexity
bound from [21] reads

q(l, L,m,M) =

√
L+M −

√
l +m√

L+M +
√
l +m

,

which is increasing whenever M is increasing (limM→∞ q(l, L,m,M) = 1). As
the convergence rate for iPiasco, a value in (0, 1), is independent of the Lipschitz

10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(m+ l)/(L+M)

co
n
ve
rg
en
ce

ra
te

q

iPiasco (var. m, M = 4)
iPiasco (var. M , m = 0.2)
Heavy-ball (var. m, M = 4)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m/M

co
n
ve
rg
en
ce

ra
te

q

iPiasco (var. m, M = 4)
iPiasco (var. M , m = 0.2)
Heavy-ball (var. m, M = 4)
Heavy-ball (var. M , m = 0.2)

Figure 1: Convergence rates q for strongly convex and differentiable objectives
with Lipschitz continuous gradient. Lower values of q are better. Let f ∈ S 2,1

0,2 ,

i.e., l = 0 and L = 2. iPiasco makes use of the splitting h = f + g, g ∈ S 1,1
m,M ,

where the parameters M and m are adapted according to the x-axis, i.e., the
(inverse) condition number of h (left plot) and the (inverse) condition number
of g (right plot), respectively. Harder problems are closer to the left. In the
case, where M is fixed and m tends to 0, the convergence rates tend to 1,
because h tends to be not strongly convex. On the other hand, when m is
fixed and M is high iPiasco is applicable, whereas the Heavy-ball method’s rate
tends to 1 (cyan line in the right plot), because the Lipschitz constant becomes
unbounded. Observe, that the convergence rate for iPiasco is independent of
M . Finally, for any condition numbers of g not equal to 0 or 1 the convergence
rate of iPiasco outperforms the Heavy-ball method. This is impressive, as the
Heavy-ball method coincides with the theoretical lower bound for this class of
functions proved by Nesterov [21] for black-box algorithms.

constant of ∇g a good decomposition moves the term causing a high Lipschitz
constant into the function g. It is clear that there is a certain value M for which
the convergence rate of iPiasco outperforms the rate of the Heavy-ball method,
see Figure 1. In other words: iPiasco can beat the theoretical lower complexity
bound from Nesterov [21] for strongly convex and twice differentiable functions
with Lipschitz continuous gradient.

At first glance, this result seems to be an error, as it is impossible to out-
perform the theoretical lower complexity bound. However, this bound holds
true only for black-box algorithms. Here, we seemingly very efficiently explore
the composition of two functions contributing good properties to the objec-
tive. Subsection 4.2.2 shows a practical example where this fact improves the
performance.

11

0 10 20 30 40
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

n

‖x
n
-
x
∗ ‖

2

lower bound
CG
HB
iPiasco
Nesterov

(a) lh/Lh = 0.5

0 10 20 30 40 50 60 70
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

n

‖x
n
-
x
∗ ‖

2

lower bound
CG
HB
iPiasco
Nesterov

(b) lh/Lh = 0.1

Figure 2: Comparison of the linear convergence rates on Nesterov’s worst-case
function (8) for smooth, strongly convex problems using a problem size of “∞ ≈
100000”. As predicted by theory, the conjugate gradient (CG) and the heavy
ball (HB) method coincide with the theoretical lower bound. For larger values
of lh/Lh, iPiasco is a bit worse compared to CG and HB, but for smaller values
of lh/Lh (harder problems), iPiasco basically coincides with CG and HB. See
also Figure 1. Note that Nesterov’s optimal method is significantly slower.

4.2 Numerical analysis

Now, we consider the behavior of iPiasco when it is applied to Nesterov’s worst-
case function for smooth and strongly convex problems [21]. Let Qh := Lh/lh >
1 be the condition number for the function h with Lh > 0, the Lipschitz constant
of ∇h, and lh > 0, the convexity parameter. Then, the worst-case function from
Nesterov reads

hwc(x) :=
lh(Qh − 1)

8

(
(x1)2 +

∞∑
i=1

(xi − xi+1)2 − 2x1

)
+
lh
2
‖x‖22 , (8)

where we consider here ‖·‖2 = ‖·‖`2 , the norm in the space of infinite sequences.
Figure 2 presents a comparison of iPiasco to the Heavy-ball method and the
conjugate gradient method based on this function. The splitting of iPiasco is
by setting g = lh

2 ‖x‖22 and f = h − g. The resulting parameters for estimating
the convergence rate are L = Lh, m = lh, and l = 0. The parameters for the
Heavy-ball method (as a special instance of iPiasco) are m = 0, L = Lh, and
l = lh.

Since our algorithm can basically deal with the same class of composite
objective functions as for example studied in [24], iPiasco can be seen as an
improvement of Nesterov’s optimal gradient method for minimizing strongly
convex composite objective functions.

12

4.2.1 The dual Huber–ROF model

In this subsection, we consider the dual problem of the Huber norm regularized
variant of the Rudin–Osher–Fatemi model [28] for image denoising. We define
the decomposition

f(p) =
1

2
‖∇>p− λu0‖22, g(p) =

ε

2
‖p‖22 + δ{‖p‖∞≤1}(p) , (9)

where p ∈ R2N is the dual vector for the ROF problem, u0 ∈ RN is the
noisy input image, λ, ε > 0, δ{‖p‖∞≤1} denotes the indicator function of the

set {‖p‖∞ ≤ 1}, and ∇> denotes the transposed of the gradient operator. Ob-
viously, this model is strongly convex with modulus ε. In our decomposition, g
is strongly convex and f is two times continuously differentiable. The decompo-
sition defined above is suitable for iPiasco, which yields an optimal worst-case
convergence rate for this class of problems. If we shift the quadratic penalty
term ε

2‖p‖22 from function g to the function f , we obtain another variant of iPi-
asco, which for the sake of discrimination is denoted iPiasco (projected). There
is no best choice for decomposing the dual Huber–ROF model. This is explained
by the term ε

2‖p‖22: the Lipschitz constant and the convexity parameter are the
same (cf. Figure 1).

We compare our method against the optimal methods: TwIST [7] and
Primal–Dual [9] (in this work a slightly better convergence rate for the primal–
dual algorithm in [8] for strongly convex and smooth problems is proved). More-
over, we compare against the linearly converging Algorithm 2.2.11 from [21],
and the (regarding the convergence rate for this problem) suboptimal methods
FISTA 2 [6], a very recent algorithm with unknown convergence rate IFB [4]
(parameters: aIFB = bIFB = L/4 and λIFB = 4/L; L is the Lipschitz con-
stant of ∇f), the primal–dual Algorithm 3.5 from [11] (denoted Primal–Dual-
CDV10, with parameters: γCDV10 = 2/L and λCDV10 = 0.75), and the proximal
forward–backward splitting method in [10] (denoted ProxFB with parameter
γProxFB = 1.99/L and λProxFB = 0.99).

Note that the differences in the computational cost between all methods
for one iteration are negligible. Also regarding storage, the methods are com-
parable: iPiasco, iPiasco (projected), TwIST, Nesterov’s method, and FISTA
require 3 optimization variables of dimension 2N ; IFB and ProxFB require 2
variables in R2N ; Primal–Dual-CDV10 requires 2 variables in R2N and 1 in RN ;
Primal–Dual [9] requires 1 variable in R2N and 2 in RN ; the cost for the deriva-
tive operator, input variables and parameters are the same for all algorithms.
For 2D and 3D image processing tasks, storage is usually not a problem, but
for huge scale machine learning problems, where even the evaluation of a single
gradient is a problem (see for example [23]), the additional storage of inertial
methods might become an issue.

2Although FISTA is an accelerated method, a comparison is not completely fair since it
does not exploit the strong convexity of the problem.

13

Figure 3: A denoising example with the dual Huber–ROF model (9). The
objective function is strongly convex and the result on the right is obtained
using optimal methods for this class of problems. Among these methods are
two versions of iPiasco arising from different decompositions of the objective
and a scheme from Nesterov.

10−2 10−4 10−6 10−8 10−10 10−12 10−14

iPiasco 25 48 71 92 114 135 157
iPiasco (proj.) 25 48 71 92 114 135 157

TwIST 28 52 74 96 117 139 160
Primal-Dual 36 78 120 162 dnc dnc dnc

Nesterov 36 79 121 162 dnc dnc dnc
Primal-Dual-CDV10 58 148 dnc dnc dnc dnc dnc

FISTA 52 dnc dnc dnc dnc dnc dnc
ProxFB 106 dnc dnc dnc dnc dnc dnc

IFB 108 dnc dnc dnc dnc dnc dnc

Table 1: Table corresponding to Figure 4. The first row shows error thresholds
(for the normalized error). The entries in the table show the number of required
iterations to fall below the respective error threshold. “dnc” means that the
threshold was not reached within 200 iterations. The optimal methods iPiasco,
TwIST, and iPiasco (proj.) clearly perform best.

In the following experiment we set λ = 0.05 and ε = 0.1, which yields a good
denoising quality. See Figure 3 for the result of this problem. The parameters
of all algorithms were chosen to perform best for these λ, ε.

The theoretical estimates for the linear convergence rates are 0.8 for iP-
iasco, iPiasco (proj.), and TwIST, 0.943 for Nesterov’s algorithm, and 0.894
for Primal–Dual [9]. Figure 4 and Table 1 show that the convergence of iPiasco
(proj.), iPiasco, and TwIST are practically the same. This result also highlights
the importance of (optimal) convergence rates. The linearly converging algo-
rithm from Nesterov and Primal–Dual [9] perform equally well, but significantly
worse than iPiasco. The methods FISTA, IFB, and Primal–Dual–CDV10 from
[11] are clearly outperformed; They have suboptimal rates of convergence.

In order to base our conclusions on a larger experimental evidence, we per-
formed additional experiments with different parameters λ and ε. The results
gave us essentially the same conclusion about the performance of the different

14

50 100 150 200

10
−15

10
−10

10
−5

10
0

n

(||
p
n
-
p
∗ ||

2
)/
(||
p
0
-
p
∗ ||

2
)

iPiasco
TwIST
iPiasco (proj.)
Nesterov
FISTA
ProxFB
IFB
Primal−Dual
Primal−Dual−CDV10

Figure 4: The three optimal methods iPiasco, iPiasco (proj.), and TwIST per-
form best on the dual Huber–ROF model (9).

algorithms.

4.2.2 An inpainting problem

Recently, [18] has shown that inpainting by a linear diffusion model is able to
compete with jpeg for lossy image compression, particularly for cartoon like
images. We consider an approximation of their reconstruction step defined by
the decomposition

f(u) =
1

2
‖∇u‖22, g(u) =

1

2
λ‖c · (u− u0)‖22 +

1

2
ε‖u‖22 , (10)

where “·” denotes the coordinate-wise product, u, c, u0 ∈ RN , and ci = 1 if pixel
i of the original image u0i was stored and ci = 0 otherwise, i.e. the original pixel
value u0i is known only if ci = 1. The linear operator implements a discrete
gradient operator. The positive parameter λ allows for denoising the original
pixel values, and ε > 0 is a small numerical number to make the problem
strongly convex. This is a very difficult problem, which is related to Nesterov’s
worst-case function.

Using the proposed decomposition (10) the Lipschitz constant of the gradient
of f is L = 8, the strong convexity parameter is l = 0, for g the Lipschitz
constant is M = λ + ε and the strong convexity parameter is m = ε. As the
(inverse) condition number of g is smaller than 1, the convergence rate of iPiasco
is expected to be better than the optimal rate of the Heavy-ball method (cf.
Figure 1). In fact, by setting ε = 10−4, λ = 10 the convergence rate for the
Heavy-ball method is 0.995297, whereas the rate for our iPiasco is 0.992954.

15

0 1000 2000 3000 4000 5000

10
−15

10
−10

10
−5

10
0

iteration

(||
u
n
-u

∗ ||
2
)/
(||
u
0
-u

∗ ||
2
)

ipiasco lin.rate
heavy−ball lin.rate
Primal−dual lin.rate
ipiasco
heavy−ball
FISTA
Primal−dual
Primal−dual−CDV10
IFB

Figure 5: Convergence of the Heavy-ball method and iPiasco for the inpainting
problem (10). The theoretical and practical convergence of iPiasco is much bet-
ter then the convergence of the Heavy-ball method. Note that the worst-case
convergence rate of the Heavy-ball method coincides with the optimal conver-
gence rate determined by Nesterov [21] for the general class of smooth strongly
convex objectives. Since we exploit the structure of the inpainting problem
very well, we can achieve a better convergence rate. Several other methods are
clearly outperformed.

The parameters ε and λ are chosen for a good reconstruction quality. The
convergence of both methods is shown in Figure 5 and Table 2, together with
the several other methods mentioned in the following. The inpainting result is
shown in Figure 6.

We compare also against other methods with no known or worse convergence
rate. We evaluate the linearly converging primal–dual algorithm (Primal–Dual)
from [9], FISTA [6], IFB [4], the primal–dual algorithm (Primal–Dual–CDV10)
from [11], and the proximal forward–backward splitting method (ProxFB) from
[10] with the same parameters as in the preceding subsection. Figure 5 does
not show ProxFB as it performed almost identical to IFB. As discussed for the
dual Huber–ROF denoising problem, the differences in computational cost and
storage consumption of these methods are negligible.

Not only the theoretical rate of convergence for iPiasco is better than the
one for the Heavy-ball method and the other methods, but also the practical
convergence is significantly better. Note that increasing the parameter λ the
convergence rate for the Heavy-ball becomes worse, whereas the convergence
rate of iPiasco is independent of λ. For λ→∞ the Heavy-ball method can only
be applied by explicitly handling the constraints ui = u0i for ci = 1 as boundary

16

10−2 10−4 10−6 10−8 10−10 10−12 10−14

iPiasco 553 1202 1850 2496 3148 3801 4459
Heavy-ball 924 1909 2880 3851 4838 dnc dnc
Primal-dual 951 2122 3390 4595 dnc dnc dnc

FISTA 578 dnc dnc dnc dnc dnc dnc
Primal-dual-CDV10 dnc dnc dnc dnc dnc dnc dnc

IFB dnc dnc dnc dnc dnc dnc dnc
ProxFB dnc dnc dnc dnc dnc dnc dnc

Table 2: Table corresponding to Figure 5. The first row shows error thresholds
(for the normalized error). The entries in the table show the number of required
iterations to fall below the respective error threshold. “dnc” means that the
threshold was not reached within 5000 iterations. Our method iPiasco clearly
outperforms all other methods.

Figure 6: An inpainting example [1] like in the reconstruction step of the image
compression method [18]. The pixel values of the original image on the left were
stored only at the black pixels of the inpainting mask in the middle image. The
image on the right is generated by solving the inpainting problem (10).

conditions in the gradient operator, whereas iPiasco can be applied directly.

5 Conclusions

In this paper, we have considered an algorithm, which we termed iPiasco, for
solving a strongly convex optimization problem. The algorithm was shown to
benefit from the additional structure that we assume from the optimization
problem, namely its being a sum of two convex functions, a smooth one and
a non-smooth one. iPiasco combines characteristics of the Heavy-ball method
and forward–backward splitting.

In the convergence analysis, we proved the worst-case rate of convergence
linear. The worst-case rate of convergence is given by a simple expression and is
achieved by the proposed step size parameters. For special cases of iPiasco (the

17

Heavy-ball or projected Heavy-ball method) the rate of convergence coincides
with the known rates of convergence, which are provably optimal. Moreover,
there are problems, where a well chosen splitting of the objective function, leads
to even better worst-case convergence rates than the optimal ones proved for
smooth strongly convex functions.

Numerical experiments have confirmed the theoretical results that have been
proved, and highlight the advantage of our algorithm over existing methods.
The practical relevance of iPiasco has been demonstrated on image processing
problems, where it achieves the best efficiency in the comparison.

An interesting and challenging problem is to obtain a performance estimate
which allows for errors in the evaluation of the gradient or the proximal map.
Furthermore it will be interesting to study algorithms which automatically adapt
the step size parameters α and β to the problem. These problems will be
addressed in future work.

6 Acknowledgements

Thomas Pock acknowledges support from the Austrian science fund (FWF)
under the START project BIVISION, No. Y729. Peter Ochs and Thomas
Brox acknowledge funding by the German Research Foundation (DFG grant
BR 3815/5-1).

References

[1] Vegeta from Dragon Ball Z. http://1.bp.blogspot.com/-g3wpzDWE0QI/

UbycqlJWjDI/AAAAAAAAAbU/ty0EZl0kqXw/s1600/VEGETA%2B1.jpg.

[2] F. Alvarez. Weak convergence of a relaxed and inertial hybrid projection-proximal
point algorithm for maximal monotone operators in Hilbert space. SIAM Journal
on Optimization, 14(3):773–782, 2003.

[3] F. Alvarez and H. Attouch. An inertial proximal method for maximal monotone
operators via discretization of a nonlinear oscillator with damping. Set-Valued
Analysis, 9(1-2):3–11, 2001.

[4] H. Attouch, J. Peypouquet, and P. Redont. A dynamical approach to an in-
ertial forward-backward algorithm for convex minimization. SIAM Journal on
Optimization, 24(1):232–256, 2014.

[5] H.H. Bauschke and P.L. Combettes. Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, 2011.

[6] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Applied Mathematics, 2(1):183–202,
March 2009.

[7] J.M. Bioucas-Dias and M. Figueiredo. A new twist: Two-step iterative shrink-
age/thresholding algorithms for image restoration. IEEE Transactions on Image
Processing, 16(12):2992–3004, 2007.

18

http://1.bp.blogspot.com/-g3wpzDWE0QI/UbycqlJWjDI/AAAAAAAAAbU/ty0EZl0kqXw/s1600/VEGETA%2B1.jpg
http://1.bp.blogspot.com/-g3wpzDWE0QI/UbycqlJWjDI/AAAAAAAAAbU/ty0EZl0kqXw/s1600/VEGETA%2B1.jpg

[8] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex prob-
lems with applications to imaging. Journal of Mathematical Imaging and Vision,
40(1):120–145, 2011.

[9] A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order
primal-dual algorithm. 2014. to appear.

[10] P. L. Combettes and V. R. Wajs. Signal Recovery by Proximal Forward-Backward
Splitting. Multiscale Modeling & Simulation, 4(4):1168–1200, 2005.

[11] P.L. Combettes, D. Dũng, and B.C. Vũ. Dualization of signal recovery problems.
Set-Valued and Variational Analysis, 18(3-4):373–404, 2010.

[12] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math.,
57(11):1413–1457, 2004.

[13] Y. Drori and M. Teboulle. Performance of first-order methods for smooth convex
minimization: a novel approach. Mathematical Programming, 145(1-2):451–482,
2014.

[14] I. Gelfand. Normierte Ringe. Rec. Math. [Mat. Sbornik] N.S., 9(51):3–24, 1941.

[15] D. Goldfarb and S. Ma. Fast multiple-splitting algorithms for convex optimiza-
tion. SIAM Journal on Optimization, 22(2):533–556, 2012.

[16] B. He and X. Yuan. On the O(1/n) convergence rate of the Douglas-Rachford
alternating direction method. SIAM Journal on Numerical Analysis, 50(2):700–
709, 2012.

[17] M. Hong and Z.-Q. Luo. On the linear convergence of the alternating direction
method of multipliers. ArXiv e-prints, August 2012.

[18] M. Mainberger and J. Weickert. Edge-based image compression with homoge-
neous diffusion. In Xiaoyi Jiang and Nicolai Petkov, editors, Computer Analysis
of Images and Patterns, volume 5702 of Lecture Notes in Computer Science, pages
476–483. Springer Berlin Heidelberg, 2009.

[19] A. Moudafi and M. Oliny. Convergence of a splitting inertial proximal method
for monotone operators. Journal of Computational and Applied Mathematics,
155:447–454, 2003.

[20] Y. Nesterov. A method of solving a convex programming problem with conver-
gence rate O(1/k2). Soviet Mathematics Doklady, 27:372–376, 1983.

[21] Y. Nesterov. Introductory lectures on convex optimization: A basic course, vol-
ume 87 of Applied Optimization. Kluwer Academic Publishers, Boston, MA, 2004.

[22] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program.,
103(1):127–152, May 2005.

[23] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization
problems. SIAM Journal on Optimization, 22(2):341–362, 2012.

[24] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical
Programming, 140(1):125–161, 2013.

[25] P. Ochs, Y. Chen, T. Brox, and T. Pock. ipiano: Inertial proximal algorithm for
non-convex optimization. SIAM Journal on Imaging Sciences, 7(2):1388–1419,
2014.

[26] B. T. Poljak. Introduction to optimization. Optimization Software, 1987.

19

[27] B. T. Polyak. Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[28] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D, 60:259–268, 1992.

[29] N. Z. Shor. Minimization Methods for Non-differentiable Functions. Springer-
Verlag New York, Inc., New York, NY, USA, 1985.

[30] S.K. Zavriev and F.V. Kostyuk. Heavy-ball method in nonconvex optimization
problems. Computational Mathematics and Modeling, 4(4):336–341, 1993.

20

	Introduction
	Related Work
	Preliminaries
	The proposed algorithm
	Convergence analysis
	Numerical analysis
	The dual Huber–ROF model
	An inpainting problem

	Conclusions
	Acknowledgements

