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Abstract

A local convergence result for abstract descent methods is proved. The sequence
of iterates is attracted by a local (or global) minimum, stays in its neighborhood and
converges. This result allows algorithms to exploit local properties of the objective
function: The gradient of the Moreau envelope of a prox-regular functions is locally
Lipschitz continuous and expressible in terms of the proximal mapping. We apply these
results to establish relations between an inertial forward–backward splitting method
(iPiano) and inertial averaged/alternating proximal minimization.
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1 Introduction

We study the local convergence of an inertial proximal algorithm for non-convex optimization
(iPiano) [29, 27]. It is an inertial forward–backward splitting method that generalizes the
Heavy-ball method [32, 36]. Related inertial algorithms are analysed in [23, 7, 6]. Based on a
convergence result for abstract descent methods, Ochs et al. [29] established iPiano’s global
convergence to a stationary point. In this paper, the following local convergence result for
abstract descent methods is proved: A sequence that starts sufficiently close to a local (or
global) minimizer, remains in a neighborhood of this minimizer and converges to the local
optimum. The local convergence of iPiano follows as a direct consequence, under conditions
that must be satisfied only on this neighborhood.
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Introduction

In particular, this allows us to minimize objective functions that involve the Moreau
envelope of prox-regular functions, e.g. the distance function of a prox-regular set. In this
particular setting iPiano reveals connections to inertial averaged proximal minimization or
alternating proximal minimization, e.g., the inertial averaged/alternating projection method
[35] for non-convex feasibility problems [21, 20, 2, 12]. For the problem of finding a point
in the intersection of a non-convex and a convex set, global convergence can be established
for the inertial methods. These connections rely on the fact that the gradient of the Moreau
envelope eλf of prox-regular functions f with parameter λ > 0 is locally well defined, Lip-
schitz continuous, and expressible using the proximal mapping Pλf—a result which is well
known for convex functions.

If we apply the Heavy-ball method to the minimization of the Moreau envelope of a
function, for which the relation ∇eλf(x) = 1

λ
(x − Pλf(x)) holds along the iterations, an

inertial proximal minimization method

xk+1 = (1− θ)xk + θPλf(xk) + β(xk − xk−1) ( β ∈ [0, 1) )

with step size θ ∈ (0, 1] can be recovered. Applied to the minimization of the sum of Moreau
envelopes, it yields an inertial averaged proximal minimization

xk+1 = (1− θ)xk +
θ

M

M∑
i=1

Pλfi(x
k) + β(xk − xk−1) .

Applying the inertial forward–backward splitting (iPiano) to the sum of a non-convex func-
tion g and the Moreau envelope of a prox-regular function f yields an inertial alternating
proximal minimization method

xk+1 = Pλg
(
(1− θ)xk + θPλf(xk) + β(xk − xk−1)

)
.

In case of a non-convex function g and convex function f , global convergence is established.
Of course, for β = 0 the inertial term vanishes, and the Heavy–ball method reduces to the gra-
dient descent method and iPiano to forward–backward splitting [24, 14, 8, 11, 2, 10, 13, 22].
These relations, and thus convergence, rely only on the fact that the above-mentioned formula
for the gradient of the Moreau envelope can be used and ∇eλf is Lipschitz continuous. This
may happen to be true globally, if f is convex, or locally, for instance, when f is prox-regular.

Prox-regular functions are a certain class of functions, which was introduced in [31] and
comprises primal-lower-nice (introduced by Poliquin [30]), lower-C2, strongly amenable (see
for instance [33]), and proper lower semi-continuous convex functions. It is known that
prox-regular functions (locally) share some favorable properties of convex functions. Indeed
a function is prox-regular if and only if there exists an (f -attentive) localization of the sub-
gradient mapping that is monotone up to a multiple of the identity mapping [31]. A result
of primary interest for us is the local Lipschitz continuity of the gradient of the Moreau
envelope of a prox-regular function and the formula ∇eλf(x) = 1

λ
(x− Pλf(x)). See [17], for
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Preliminaries

a recent analysis of the differential properties of the Moreau envelope in the infinite dimen-
sional setting. Although, the proof of Lipschitz continuity can be found at several places
in the literature [31, 33, 17], we did not find a computation of the local Lipschitz constant.
We extend the proof in [33] of the Lipschitz continuity, and determine λ−1 to be the local
Lipschitz modulus for small λ.

The proof of convergence of many methods can be conducted in a general abstract setting.
Attouch et al. [2] proved a convergence result for sequences that obey a certain sufficient
decrease condition, a relative error condition, and a continuity condition. Under the addi-
tional (mild) assumption that the objective function has the so-called Kurdyka– Lojasiewicz
(KL) property1 [19, 25, 26, 4], the length of the sequence is proved to be finite, and the se-
quence converges to a stationary point of the objective. While this abstract concept can be
used to prove global convergence in the non-convex setting of the gradient descent method,
forward–backward splitting, and many other algorithms, it seems to be limited to single-
step methods. Therefore [29] proved a slightly different result for abstract descent methods,
which is applicable to multi-step methods, such as the Heavy-ball method which consider
a part of the history of the sequence of iterates. In [28], an abstract convergence result is
proved that unifies [2, 13, 29, 27]. The local convergence results of [2] for the setting in [29] is
proved in this paper. Under some mild conditions, a sequence that starts in a neighborhood
of a local minimum stays within this neighborhood and converges to the minimum. The re-
sult can be applied directly to the convergence analysis of the Heavy-ball method and iPiano.

Outline. Section 2 introduces the notation, definitions, and basic results that are used in
this paper. In Section 3 the conditions for global convergence of abstract descent methods
[29, 27] are recapitulated, and the local convergence result for local and global minima is
stated. All proofs of the paper are postponed to the appendix. In the subsequent Section 4,
important results about the gradient of the Moreau envelope for a prox-regular function are
presented. Then, the abstract local convergence results are translated to a statement of iPi-
ano’s local convergence in Section 5. Relations to inertial averaged/alternating minimization
are discussed in Section 5.2. Applications of these relations are analysed in Section 5.3.

2 Preliminaries

Throughout this paper, we will always work in a finite dimensional Euclidean vector space RN

of dimension N ∈ N, where N := {1, 2, . . .}. The vector space is equipped with the standard
Euclidean norm | · | that is induced by the standard Euclidean inner product | · | =

√
〈·, ·〉.

As usual, we consider extended read-valued functions f : RN → R, where R := R∪{±∞},
that are defined on the whole space with domain given by dom f := {x ∈ RN | f(x) < +∞}.
A function is called proper if it is nowhere −∞ and not everywhere +∞. We define the

1For the KL property, we refer to [4, 5, 1, 2].
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epigraph of the function f as epi f := {(x, µ) ∈ RN+1|µ ≥ f(x)}. The range of a set-valued
mapping, which we write as T : RN ⇒ RM , is defined as rgeT :=

⋃
x∈RN T (x).

A key concept in optimization and variational analysis is that of Lipschitz continuity.
Sometimes, also the term strict continuity is used, which we define as in [33]:

Definition 1 (strict continuity). A single-valued mapping F : D → RM defined on D ⊂ RN

is strictly continuous at x̄ if x̄ ∈ D and the value

lipF (x̄) := lim sup
x,x′→x̄
x 6=x′

|F (x′)− F (x)|
|x′ − x|

is finite and lipF (x̄) is the Lipschitz modulus of F at x̄. This is the same as saying F is
locally Lipschitz continuous at x̄ on D.

For convenience, we denote the class of smooth functions whose gradient is strictly con-
tinuous by C1+.

The Fréchet subdifferential of f at x̄ ∈ dom f is the set ∂̂f(x̄) of those elements v ∈ RN

such that

lim inf
x→x̄
x 6=x̄

f(x)− f(x̄)− 〈v, x− x̄〉
|x− x̄|

≥ 0 .

For x̄ 6∈ dom f , we set ∂̂f(x̄) = ∅. For convenience, we introduce f -attentive convergence: A
sequence (xn)n∈N is said to f -converge to x̄ if

xn → x̄ and f(xn)→ f(x̄) as n→∞ ,

and we write xn
f→ x̄. The so-called (limiting) subdifferential of f at x̄ ∈ dom f is defined

by

∂f(x̄) := {v ∈ RN | ∃xn f→ x̄, vn ∈ ∂̂f(xn), vn → v} ,
and ∂f(x̄) = ∅ for x̄ 6∈ dom f . A point x̄ ∈ dom f for which 0 ∈ ∂f(x̄) is a called a critical
point. As a direct consequence of the definition of the limiting subdifferential, we have the
following closedness property:

xn
f→ x̄, vn → v̄, and for all n ∈ N : vn ∈ ∂f(xn) =⇒ v̄ ∈ ∂f(x̄) .

For a function f : RN → R and λ > 0, we define the Moreau envelope

eλf(x) := inf
w∈RN

f(w) +
1

2λ
|w − x|2 .

and the proximal mapping

Pλf(x) := arg min
w∈RN

f(w) +
1

2λ
|w − x|2 .

For a general function f it might happen that eλf(x) takes the values ±∞ and the proximal
mapping is empty, i.e. Pλf(x) = ∅. Therefore, the analysis of the Moreau envelope is usually
coupled with the following property.
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Definition 2. A function f : RN → R is prox-bounded, if there exists λ > 0 such that
eλf(x) > −∞ for some x ∈ RN . The supremum of the set of all such λ is the threshold λf
of prox-boundedness for f .

A particular interesting (broad) class of functions contains all prox-regular functions.
These functions have many favorable properties locally, which otherwise only convex func-
tions reveal.

Definition 3 (prox-regularity, [33, Def. 13.27]). A function f : RN → R is prox-regular at
x̄ for v̄ if f is finite and locally lsc at x̄ with v̄ ∈ ∂f(x̄), and there exists ε > 0 and ρ ≥ 0
such that

f(x′) ≥ f(x) + 〈v, x′ − x〉 − ρ

2
|x′ − x|2 ∀x′ ∈ Bε(x̄)

when v ∈ ∂f(x), |v − v̄| < ε, |x− x̄| < ε, f(x) < f(x̄) + ε .

When this holds for all v̄ ∈ ∂f(x̄), f is said to be prox-regular at x̄.

Note that prox-regular functions are not subdifferntially continuous at x̄ for v̄, i.e. con-
vergence of (xν , vν) ∈ Graph ∂f to (x̄, v̄) implies convergence of f(xν)→ f(x̄) is not satisfied.

For the proof of the Lipschitz property of the Moreau envelope, it will be helpful to
consider a so-called localization. A localization of ∂f around (x̄, v̄) is a mapping T : RN ⇒ RN

whose graph is obtained by intersecting Graph ∂f with some neighborhood of (x̄, v̄). We talk
about an f -attentive localization when the above mentioned neighborhood comes from the
topology of f -attentive convergence in the x component and the ordinary topology on RN

in the v component.
Finally, the convergence result we build on is only valid for functions that have the KL

property at a certain point of interest. This property is shared for example of semi-algebraic
functions, globally analytic functions, or, more general, functions definable in an o-minimal
structure. For a details, we refer to [4, 5].

Definition 4 (Kurdyka– Lojasiewicz property / KL property). Let f : RN → R be an ex-
tended real valued function and let x̄ ∈ dom ∂f . If there exists η ∈ (0,∞], a neighborhood U
of x̄ and a continuous concave function ϕ : [0, η)→ R+ such that

ϕ(0) = 0, ϕ ∈ C1((0, η)), and ϕ′(s) > 0 for all s ∈ (0, η),

and for all x ∈ U ∩ [f(x̄) < f(x) < f(x̄) + η] holds the Kurdyka– Lojasiewicz inequality

ϕ′(f(x)− f(x̄))‖∂f(x)‖− ≥ 1 , (1)

then the function has the Kurdyka– Lojasiewicz property at x̄, where ‖∂f(x)‖− := infv∈∂f(x) |v|
is the lazy slope (note: inf ∅ := +∞).

If, additionally, the function is lower semi-continuous and the property holds for each
point in dom ∂f , then f is called a Kurdyka– Lojasiewicz function.
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3 Abstract Convergence Result for KL Functions

In this section, we establish an abstract local convergence result for descent methods. It is
based on a global convergence result proved in [29] for KL functions, which itself is motivated
by a slightly different result in [2]. In analogy to [2], we prove a local convergence result of
the setting in [29]. All proofs of this section are in the appendix.

3.1 Global Convergence Results

The convergence result in [29] is based on three abstract conditions for a sequence (zk)k∈N :=
(xk, xk−1)k∈N in R2N , xk ∈ RN , x−1 ∈ RN . Fix two positive constants a > 0 and b > 0 and
consider a proper lower semi-continuous function F : R2N → R. Then, the conditions for
(zk)k∈N are as follows:

(H1) For each k ∈ N, it holds that

F(zk+1) + a|xk − xk−1|2 ≤ F(zk) .

(H2) For each k ∈ N, there exists wk+1 ∈ ∂F(zk+1) such that

|wk+1| ≤ b

2
(|xk − xk−1| + |xk+1 − xk|) .

(H3) There exists a subsequence (zkj)j∈N such that

zkj → z̃ and F(zkj)→ F(z̃) , as j →∞ .

For convenience of the reader, we state the convergence result of [29] here:

Theorem 5. Let (zk)k∈N = (xk, xk−1)k∈N be a sequence that satisfies (H1), (H2), and (H3)
for a proper lower semi-continuous function F : R2N → R which has the KL property at the
cluster point z̃ specified in (H3).
Then, the sequence (xk)k∈N has finite length, i.e.

∞∑
k=1

|xk − xk−1| < +∞ ,

and converges to z̄ = z̃ where z̄ = (x̄, x̄) is a critical point of F .

Remark 1. In view of the proof of this statement, it is clear that the same result can be
established when (H1) is replaced by F(zk+1) + a|xk+1 − xk|2 ≤ F(zk) .
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3.2 Local Convergence Results

The local convergence result shows that, once entered a region of attraction (around a lo-
cal minimum), all iterates of a sequence (zk)k∈N satisfying (H1), (H2) and a certain growth
condition (H4) stay in a neighborhood of this minimum and converge to the minimum. As
a rather obvious consequence, this result also applies to a global minimum. However, we
establish local convergence to a global minimum without the need of the growth condition
(H4). This result can be used to prove local convergence of an abstract descent method for
feasibility problems.

In the following, for z ∈ R2N we denote by z1, z2 ∈ RN the first and second block of
coordinates z = (z1, z2). The same holds for other vectors in R2N . The growth condition
just mentioned is:

(H4) For any δ > 0 there exist 0 < ρ < δ and ν > 0 such that

z ∈ Bρ(z
∗) , F(z) < F(z∗) + ν , y2 6∈ Bδ(z

∗
2) ⇒ F(z) < F(y) +

a

4
|z2 − y2|2 .

Under this condition, the following theorem establishes the local convergence result. Its
formulation is adjusted to the corresponding one in [2].

Theorem 6. Let F : R2N → R be a proper lower semi-continuous function which has the
KL property at some local minimizer z∗ = (x∗, x∗) of F . Assume (H4) holds at z∗.
Then, for any r > 0, there exist u ∈ (0, r) and µ > 0 such that the conditions

z0 ∈ Bu(z
∗) , F(z∗) < F(z0) < F(z∗) + µ , (2)

imply that any sequence (zk)k∈N that starts at z0 and satisfies (H1) and (H2) has the finite
length property and remains in Br(z

∗) and converges to some z̄ ∈ Br(z
∗), a critical point of

F with F(z̄) = F(z∗).

Again in analogy to [2], we verify a simple condition that implies (H4).

Lemma 7. Let F : R2N → R be a proper lower semi-continuous function and z∗ = (x∗, x∗) ∈
domF a local minimum. Suppose, for any δ > 0, F satisfies the growth condition

F(y) ≥ F(z∗)− a

16
|y2 − z∗2 |2 ∀y ∈ R2N , y2 6∈ Bδ(z

∗
2) .

Then, F satisfies (H4).

The following theorem and corollary are immediate consequences of Theorem 6 and
Lemma 7 and their proof is obvious.

Theorem 8. Let F : R2N → R be a proper lower semi-continuous function which has the
KL property at a global minimizer z∗ = (x∗, x∗) of F .
Then, for any r > 0, there exist u ∈ (0, r) and µ > 0 such that the conditions

z0 ∈ Bu(z
∗) , F(z∗) < F(z0) < F(z∗) + µ , (3)
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imply that any sequence (zk)k∈N that starts at z0 and satisfies (H1) and (H2) has the finite
length property and remains in Br(z

∗) and converges to a global minimizer z̄ ∈ Br(z
∗), i.e.

F(z̄) = minF .

Remark 2. The assumption in (H4) and Lemma 7 only restrict the behavior of the function
along the second block of coordinates of z = (z1, z2) ∈ RN×2. This makes sense, because, for
sequences that we consider, the first and second block are dependent from each other.

Corollary 9. Let S1, . . . , SM ⊂ RN be semi-algebraic sets such that
⋂M
i=1 Si 6= ∅ and let

F : RN → R be given by F (x) = 1
2

∑M
i=1 dist(x, Si)

2. For a constant c ≥ 0, we consider the
objective function

F(z) = F(z1, z2) = F (z1) + c|z1 − z2|2 .

Suppose z∗ = (x∗, x∗) is a global minimizer of F , i.e., x∗ ∈
⋂M
i=1 Si. Then, for z0 = (x0, x−1)

sufficiently close to z∗, any algorithm that satisfies (H1) and (H2) and starts at z0 generates
a sequence that

• remains in a neighborhood of z∗,

• has the finite length property,

• and converges to a point z̄ = (x̄, x̄) with x̄ ∈
⋂M
i=1 Si.

4 The Gradient of the Moreau Envelope

It is well known that for a proper lower semi-continuous convex function f the Moreau
envelope is defined everywhere. Moreover, it is known to be differentiable with a closed form
expression of the gradient

∇eλf(x) =
1

λ
(x− Pλf(x)) , (4)

which can be shown to be Lipschitz continuous with constant λ−1.
In the following, we discuss an extension of this statement to the non-convex setting, for

prox-regular functions. It turns out that a similar statement is valid locally. The third item
of the following proposition extends [33, Prop. 13.37] by an estimation of the local Lipschitz
constant of the gradient of the Moreau envelope. In order to prove Item (iii), we develop the
basic objects that are required in the same way as [33, Prop. 13.37]. Thus, the first part of
the proof (see appendix) coincides with [33, Prop. 13.37].

Proposition 10. Suppose that f : RN → R is prox-regular at x̄ for v̄ = 0, and that f is
prox-bounded. Then for all λ > 0 sufficiently small there is a neighborhood of x̄ on which

(i) Pλf is monotone, single-valued and Lipschitz continuous and Pλf(x̄) = x̄.
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(ii) eλf is differentiable with ∇(eλf)(x̄) = 0, in fact of class C1+ with

∇eλf = λ−1(id− Pλf) = (λI + T−1)−1

for an f -attentive localization T of ∂f at (x̄, 0). Indeed, this localization can be chosen
so that the set Uλ := rge (I+λT ) serves for all λ > 0 sufficiently small as a neighborhood
of x̄ on which these properties hold.

(iii) There is a neighborhood of x̄ on which for small λ enough the local Lipschitz constant
of ∇eλf is λ−1. If we denote by λ0 the modulus in the subgradient inequality of the
prox-regularity, λ must satisfy

0 < λ ≤ λ0

2
.

The third part of the proof is motivated by a similar derivation for distance function and
projection operators in [21].

5 Inertial Averaged/Alternating Proximal Minimiza-

tion

The application of gradient descent, forward-backward splitting and inertial variants to a
special setting in the objective function recovers relations to the averaged proximal mini-
mization (resp. projection) and the alternating proximal minimization (resp. projection)
method. Therefore, convergence results translate directly. In this section, we review the
convergence results of the inertial forward–backward method called iPiano [29, 27] (see also
[7]) and state a local convergence result, which follows from Theorem 6. The local conver-
gence allows us to invoke the result of Section 4 for prox-regular and prox-bounded functions
along the iterations of iPiano, which is key for the mentioned connections.

5.1 Heavy-ball Method and iPiano

iPiano applies to structured nonsmooth and nonconvex optimization problems with a proper
lower semi-continuous extended valued function h : RN → R, N ≥ 1:

min
x∈RN

h(x) , h(x) = f(x) + g(x) . (5)

The function f : RN → R is assumed to be C1-smooth (possibly nonconvex) with L-
Lipschitz continuous gradient on dom g, L > 0. Further, let the function g : RN → R be
simple (possibly nonsmooth and nonconvex) and prox-bounded. Simple refers to the fact that
the associated proximal map can be solved efficiently for the global optimum. Furthermore,
we require h to be coercive and bounded from below by some value h > −∞. The coercivity
property could be replaced by the assumption that the sequence that is generated by the
algorithm is bounded.
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Algorithm 1. iPiano

• Initialization: Choose a starting point x0 ∈ domh and set x−1 = x0.

• Iterations (k ≥ 0): Update:

yk = xk + β(xk − xk−1)

xk+1 ∈ arg min
x∈RN

g(x) +
〈
∇f(xk), x− xk

〉
+

1

2α
|x− yk|2 .

(6)

• Parameter setting: See Table 1.

The algorithm iPiano is outlined in Algorithm 1. The Heavy-ball method is recognized
as a special case of iPiano where the non-smooth function g = 0. It is sometimes called
inertial gradient descent method or gradient descent with momentum.

Remark 3. For simplicity, we consider only the constant step size version of iPiano. For a
variable step size version including a backtracking procedure, we refer to [29, 27], and to [28]
for a variable metric and block coordinate descent version of iPiano.

Considering local convergence, the properties of (5) are required to hold only on a neigh-
borhood of a local minimum. Thanks to the local convergence result in Theorem 6, starting
close enough to a local or global minimum, all iterates stay within this neighborhood.

In [27], functions g that are semi-convex received special attention. The resulting step
size restrictions for semi-convex functions g are similar to those of convex functions. A
function is said to be semi-convex with modulus m ∈ R, if m is the largest value such that
g(x)− m

2
|x|2 is convex. For convex functions, m = 0 holds, and for strongly convex functions

m > 0. We assume m < L. According to [33, Theorem 10.33], saying a function g is (locally)
semi-convex on an open set V ⊂ dom g is the same as saying g is lower-C2 on V .

The following theorem is the convergence theorem in [27] and states the global conver-
gence to a stationary point. The subsequent theorem states the local convergence, which in
general also requires (H4)to be satisfied.

Theorem 11. Let (xk)k∈N be generated by Algorithm 1. Then, the sequence (zk)k∈N with
zk = (xk, xk−1) satisfies (H1), (H2), (H3) for the function

Hδ : R2N → R ∪ {∞} , (x, y) 7→ h(x) + δ|x− y|2 .

Moreover, if Hδ(x, y) has the Kurdyka– Lojasiewicz property at a cluster point z∗ =
(x∗, x∗), then the sequence (xk)k∈N has the finite length property, xk → x∗ as k → ∞,
and z∗ is a critical point of Hδ, hence x∗ is a critical point of h.

Theorem 12. Let (xn)n∈N be generated by Algorithm 1. If x∗ is a local (or global) minimizer
of h, then z∗ = (x∗, x∗) is a local (or global) minimizer of Hδ (defined in Theorem 11).
Suppose (H4) holds at z∗ and Hδ has the KL property at z∗.
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Method f g α β

Gradient Descent f ∈ C1+ g ≡ 0 α ∈ (0, 2
L

) β = 0

Heavy-ball method f ∈ C1+ g ≡ 0 α ∈ (0, 2(1−β)
L

) β ∈ [0, 1)

PPA f ≡ 0 g convex α > 0 β = 0

FBS f ∈ C1+ g convex α ∈ (0, 2
L

) β = 0

FBS (non-convex) f ∈ C1+ g non-convex α ∈ (0, 1
L

) β = 0

iPiano f ∈ C1+ g convex α ∈ (0, 2(1−β)
L

) β ∈ [0, 1)

iPiano f ∈ C1+ g non-convex α ∈ (0, (1−2β)
L

) β ∈ [0, 1
2
)

iPiano f ∈ C1+ g m-semi-convex α ∈ (0, 2(1−β)
L−m ) β ∈ [0, 1)

Table 1: Convergence of iPiano as stated in Theorems 11 and 12 is guaranteed for the parameter
settings listed in this table. Note that for local convergence, also the required properties of f
and g are required to hold only locally. iPiano has several well-known special cases, such as
the gradient descent method, Heavy-ball method, proximal point algorithm (PPA), and forward–
backward splitting (FBS).

If z0 is sufficiently close to z∗, such that z0 ∈ Bu(z
∗) and F(z∗) < F(z0) < F(z∗) + µ

holds for some u, µ > 0, then the sequence (xn)n∈N has finite length, the sequence zn remains

in Br(z
∗), and xn

h→ x∗ as n→∞.

5.2 A Special Non-convex Setting of iPiano

Throughout the whole section, we assume that the gradient of the Moreau envelope can
be expressed as in (4) along the sequence of iterates. In Section 4, we already discussed
situation when this is happening. This can be true globally or on a neighborhood of a local
(or global) minimum. If this property can only be guaranteed locally, under (H4), we know
that all iterates stay withing this neighborhood. Note that proximal mappings that are
derived via (4) are necessarily single-valued whereas the proximal mapping appearing in (6)
may be multi-valued.

Heavy-ball method on the Moreau envelope. The Heavy-ball method can be applied
to

min
x∈RN

F (x) , F (x) = eλf(x) = min
w∈RN

f(w) +
1

2λ
|w − x|2 .

The Lipschitz constant of ∇eλf(x) is λ−1. The step size restriction inferred from Table 1
is 0 < α < 2(1 − β)λ and β ∈ [0, 1). The algorithm’s update reads, using θ := αλ−1 and
yk = xk + β(xk − xk−1) as follows:

xk+1 = yk − α∇eλf(xk)

= xk − αλ−1(xk − Pλf(xk)) + β(xk − xk−1)

= (1− θ)xk + θPλf(xk) + β(xk − xk−1) .

(7)
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A Special Non-convex Setting of iPiano

The iteration step is the inertial proximal point algorithm for θ = 1, which is feasible for
β ∈ [0, 1

2
) and α = λ. For a prox-regular function, the algorithm converges locally, whereas

for a convex function f , globally convergence is guaranteed.

Heavy-ball method on the sum of two Moreau envelopes. Of course, the Heavy-ball
method can be applied to the sum of Moreau envelope functions

F (x) =
1

2
(eλg(x) + eλf(x))

= min
w,z∈RN

1

2

(
g(z) + f(w) +

1

2λ
|z − x|2 +

1

2λ
|w − x|2

)
.

The Lipschitz constant of ∇F is λ−1. In analogy to the preceding consideration, we obtain

xk+1 = yk − α

2

(
∇eλg(xk) +∇eλf(xk)

)
=

1

2

(
yk − α∇eλg(xk)

)
+

1

2

(
yk − α∇eλf(xk)

)
=

1

2

(
(1− θ)xk + θPλg(xk)

)
+

1

2

(
(1− θ)xk + θPλf(xk)

)
+ β(xk − xk−1)

= (1− θ)xk +
θ

2

(
Pλg(xk) + Pλf(xk)

)
+ β(xk − xk−1)

If θ = 1 is feasible, we obtain the averaged proximal minimization method (respectively,
averaged projection method if f and g are indicator functions). This scheme has an obvious
extension to the weighted average of a finite sum of Moreau envelopes. For a prox-regular
functions f and g, the algorithm converges locally, whereas for a convex functions f and g,
globally convergence is guaranteed..

iPiano on an objective involving a Moreau envelope. Let us now consider the min-
imization problem

min
x∈RN

g(x) + F (x) , F (x) = eλf(x) = min
w∈RN

f(w) +
1

2λ
|w − x|2 .

The Lipschitz constant of ∇F is λ−1 and iPiano is feasible either for m-semi-convex g with
α < 2(1 − β)/(λ−1 −m) and β ∈ [0, 1) or for general g with α < (1 − 2β)λ and β ∈ [0, 1

2
).

iPiano can be written as follows:

xk+1 = Pαg(yk − α∇eλf(xk))

= Pαg((1− θ)xk − θPλf(xk) + β(xk − xk−1))

The resulting update scheme simplifies for θ = 1 to the alternating proximal minimization
method (respectively, alternating projection method if f and g are indicator functions). For
a prox-regular function f , the algorithm converges locally, whereas for a convex function
f , globally convergence is guaranteed. Note that the global convergence result allows for
non-convex functions g.
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iPiano for finite sums of non-convex simple functions. Consider the minimization
probelm

min
x∈RN

M∑
i=1

gi(x)

with possibly non-convex functions gi, or its equivalent form

min
x1,...,xM∈RN

M∑
i=1

gi(xi) , s.t. x1 = . . . = xM .

In order to solve this problem, we relax the constraint and consider the minimization problem

min
x1,...,xM∈RN

M∑
i=1

gi(xi) + eλδC(x1, . . . , xM) ,

where C = {x1, . . . , xM ∈ RN |x1 = . . . = xM} denotes the convex constraint set. The
Moreau envelope of the indicator function measures the distance of (x1, . . . , xM) to the con-
vex feasible set C. It is continuously differentiable with 1-Lipschitz continuous gradient. Ap-
plying iPiano to this optimization problem allows for general non-convex funcitons g1, . . . , gM
with simple proximal mappings. Note that the proximal mappings can be computed for each
function gi independently. iPiano reads as follows:

xk+1
i = Pθgi(x̄

k+1
i ) , x̄k+1

i = xki − θ(xki − projC(xk1, . . . , x
k
M)) + β(xki − xk−1

i )

= xki −
θ

M

M∑
j=1

xkj + β(xki − xk−1
i ) .

In the most general setting, where g1, . . . , gM are non-convex simple functions, the feasible
step size is θ ∈ (0, 1) with β ∈ [0, 1

2
), and global convergence is guaranteed. Unfortunately,

we solve the relaxed problem, which minimizes the distance to the feasible set. The solution
of this iterative procedure cannot be guaranteed to be a feasible solution of the original
problem. Projecting the solution of the relaxed problem to the feasible set might give a
good approximation of the original problem.

5.3 Applications

5.3.1 A Feasibility Problem

We consider the example in [20] that demonstrates (local) linear convergence of the alternat-
ing projection method. In this experiment, we experimentally verify the linear convergence
of the inertial alternating projection and the inertial averaged projection method. Inertial
methods clearly outperform the corresponding standard methods.

The goal is to find an N×M matrix X of rank R that satisfies a linear system of equations
A(X) = b, i.e.,

find X in {X ∈ RN×M | A(X) = b}︸ ︷︷ ︸
=:A

∩{X ∈ RN×M | rank(X) = R}︸ ︷︷ ︸
=:R

,
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Figure 1: Convergence plots for the feasibility problem in Section 5.3.1. Inertial methods consis-
tently outperform the basic models.

where A : RN×M → RD is a linear mapping and b ∈ RD. Such feasibility problems are well
suited for split projection methods, as the projection onto each set is easy to conduct. The
projection onto constraint A is given by

projA (X) = X −A∗(AA∗)−1(A(X)− b) and projR(X) =
R∑
i=1

σiuiv
>
i ,

where USV > is the singular value decomposition of X with U = (u1, u2, . . . , uN), V =
(v1, v2, . . . , vM) and singular values σ1 ≥ σ2 ≥ . . . ≥ σN sorted in decreasing order along the
diagonal of S. As in [20], we randomly generate operatorsA by constructing random matrices
A(X) = (〈A1, X〉 , . . . , 〈AD, X〉), selecting b such that A(X) = b has a rank R solution, and
the dimensions are chosen as M ≤ N , R = 10, and MR < D ≤ R(N + M − R). In all
experiments, we observed linear convergence for all methods. In the following, we pick one
random problem with M = 110, N = 100, R = 4, D = 450, and detail on the convergence
of |A(X)−B|. We consider the alternating projection method

Xk+1 = projA (projR(Xk)) ,

the averaged projection method

Xk+1 =
1

2

(
projA (Xk) + projR(Xk)

)
,

and their inertial variants proposed in Section 5.2, which arise from iPiano. As the inertial
variants can be seen as generalizations—they include the additional inertial parameter β—
they can be tuned to perform at least as well as the basic methods for β = 0. However, it
turns out that the inertial term effects the convergence in a positive way. Already using the
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Figure 2: Convergence plots for the feasibility problem in Section 5.3.1. Even after tuning the
heuristic step size strategy of the Douglas–Rachford method [22], the proposed inertial alternating
projection method performs significantly better.

standard parameter β = 0.75, inertial methods outperform the basic methods substantially.
We call it “standard parameter” as practical experience has shown that it works often well
for iPiano in general. Figure 1 shows the convergence plots. The best convergence for the
inertial alternating projection method was obtained by setting β = 0.86 and for the inertial
averaged projection method for β = 0.93. These optimal values are tuned manually.

We also compare our method against the recently proposed globally convergent Douglas–
Rachford splitting for non-convex feasibility problems [22]. We incorporated several results
for this method in Figure 2. The algorithm depends on a parameter γ, which in theory is
required to be rather small: γ0 :=

√
3/2− 1. The basic model “Douglas–Rachford” uses the

maximal feasible value for this γ-parameter. The other results are based on the heuristic
proposed in [22], which at least guarantees boundedness of the iterates. We set γ = 150γ0

and update γ by max(γ/2, 0.9999γ0) if ‖yk − yk−1‖ > t/k. We refer to [22] for the meaning
of yk. Since the proposed value t = 1000 did not work well in our experiment, we optimized
t manually. The values in the legend of Figure 2 refer to the values t that we used. Even
after tuning this parameter the inertial alternating projection method converged significantly
faster.

5.3.2 Examples of Objective Functions Involving Moreau Envelopes

This section is motivated from image processing applications. A standard problem is that
of denoising a two-dimensional noisy image represented by a vector f ∈ RN . This task can
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be solved by minimizing an objective function of type

min
u∈RN

λ

2
|u− f |2 +R(u) , (8)

where the first term favors the solution u to stay close to the noisy image f and the regularizer
R penalizes violations of prior assumptions for u. The parameter λ > 0 steers the importance
of both terms. A prominent choice of the regularizer is the convex total variation [34].
However, non-convex regularizers are known to reflect better the natural statistics of images
[16]. See [15, 3] for early applications of this paradigm.

The models that we consider here are motivated by ideas from [9] in the convex setting
and from [18], where some non-convex problems are considered. Consider the minimization
problem (8) with a non-convex regularizer that can be split as R = Rh +Rv, into a “hor-
izontal” and a “vertical” component. This includes truncated (anisotropic) total variation
or truncated quadratic regularization terms.

There are at least three Lagrangian dual objectives, which are based on different split-
tings:

D1(µ) = min
u,v

λ

4
|u− f |2 +Rh(u) +

λ

4
|v − f |2 +Rv(v) + 〈µ, u− v〉

D2(µ) = min
u,v

λ

2
|u− f |2 +Rh(u) +Rv(v) + 〈µ, u− v〉

D3(µ1, µ2) = min
u,v,w

λ

2
|w − f |2 +Rh(u) + 〈µ1, w − u〉+Rv(v) + 〈µ2, w − v〉

For convex regularizers the last splitting was used in [9]. Given a solution of the dual prob-
lem, the primal variables can be recovered for the first and second problem by v = u =
arg minu Rh(u) + 〈µ, u〉 + λ

4
|u − f |2 and for the last problem by v = u = w = f − µ1+µ2

λ
.

Unless the objective function is convex, we cannot expect to solve the primal problem (8)
exactly. A thorough study of the guarantees in the non-convex setting and the type of regu-
larizers that yield strong duality results is part of future work. Here, we assume that solving
the dual problems recovers good primal solutions.

The function D1 can be recognized as, essentially, the sum of two Moreau envelopes

D1(µ) =

(
min
u
Rh(u) +

λ

4
|f − 2µ

λ
− u|2

)
+

(
min
v
Rv(v) +

λ

4
|f +

2µ

λ
− v|2

)
− 2

λ
|µ|2

= e2/λRh(f − 2µ/λ) + e2/λRv(f + 2µ/λ)− 2

λ
|µ|2

with 2-Lipschitz continuous gradient

∇D1(µ) = P2/λRh(f − 2µ/λ)− P2/λRv(f + 2µ/λ) .
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Therefore, gradient descent or the heavy ball method from Section 5.2 can be used for
maximizing the dual problem.

The second Lagrangian dual can be solved using forward–backward splitting type meth-
ods and their respective inertial variants. The objective can be written as

D2(µ) = e1/λRh(f − µ/λ)− 1

2λ
|µ|2︸ ︷︷ ︸

Dfwd
2 (µ)

+
(

min
v
Rv(v)− 〈µ, v − f〉︸ ︷︷ ︸

Dbwd
2 (µ)

)
,

where Dfwd
2 (µ) is the part for which we use the forward step (gradient step) and the backward

step (proximal step) is applied to Dbwd
2 (µ). If we assumed convexity, we could replace Dbwd

2

by the convex conjugate and solve the associate proximal mapping using Moreau’s identity.
The 1-Lipschitz continuous gradient, which is required for the forward step, is

∇Dfwd
2 (µ) = P1/λRh(f − µ/λ)− (f − µ/λ)− µ

λ
= P1/λRh(f − µ/λ)− f .

The backward step requires to find a solution v̂ and µ̂ of

min
µ
−Dbwd

2 (µ) +
1

2α
|µ− µ̄|2 ,

where µ̄ is the point after the forward step, for some step size α. We compute it as follows.
Issues of swapping min and max are postponed to future work.

min
µ
−Dbwd

2 (µ) +
1

2α
|µ− µ̄|2

= min
µ

max
v
−Rv(v) + 〈µ, v − f〉+

1

2α
|µ− µ̄|2

= max
v
−Rv(v)− α

2
|v|2 + 〈v, µ̄+ αf〉+ min

µ

1

2α
|µ− µ̄− α(f − v)|2

= max
v
−Rv(v)− α

2
|v − (f + µ̄/α)|2 + min

µ

1

2α
|µ− µ̄− α(f − v)|2

= −min
v
Rv(v) +

α

2
|v − (f + µ̄/α)|2 −min

µ

1

2α
|µ− µ̄− α(f − v)|2

From the last line, we can directly infer that

µ̂ = µ̄+ α(f − v̂) = α((f + µ̄/α)− v̂) with v̂ = P1/αRv(f + µ̄/α) .
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The third Lagrangian dual function can be rewritten as follows:

D3(µ1, µ2) = min
w

λ

2
|w − f |2 + 〈µ1 + µ2, w〉

−max
u
〈µ1, u〉 − Rh(u)−max

v
〈µ2, v〉 − Rv(v)

= 〈µ1 + µ2, f〉 −
1

2λ
|µ1 + µ2|2︸ ︷︷ ︸

Dfwd
3 (µ1,µ2)

−max
u
〈µ1, u〉 − Rh(u)−max

v
〈µ2, v〉 − Rv(v)︸ ︷︷ ︸

Dbwd
3 (µ1,µ2)

The dual formulation in the last line is amenable to optimization strategies from Section 5.2.
We can perform a forward step with respect to Dfwd

3 (µ1, µ2) and a backward step with respect
to Dbwd

3 (µ1, µ2). The computation of the gradient for the forward step is simple. Evaluating
the proximal mapping for Dbwd

3 (µ1, µ2) is also easy, since the function is separable, i.e., the
proximal mappings for µ1 and µ2 can be computed independently. The computation is
analogue to that of Dbwd

2 (µ).

6 Conclusion

In this paper, we proved a local convergence result for abstract descent methods, which is
similar to that of Attouch et al. [2]. This local convergence result is applicable to an in-
ertial forward–backward splitting method, called iPiano [29]. For functions that satisfy the
Kurdyka– Lojasiewicz inequality at a local optimum, under a certain growth condition, we
verified that the sequence of iterates stays in a neighborhood of a local (or global) minimum
and converges to the minimum. As a consequence, the properties that imply convergence of
iPiano must hold locally only. Combined with a well-known expression for the gradient of
Moreau envelopes in terms of the proximal mapping, relations of iPiano to an inertial aver-
aged proximal minimization method and an inertial alternating proximal minimization are
uncovered. These considerations are conducted for functions that are prox-regular instead of
the stronger assumption of convexity. For a non-convex feasibility problem, experimentally,
iPiano significantly outperforms the alternating projection method and a recently proposed
non-convex variant of Douglas–Rachford splitting.

Appendix

Lemma 13. Let F : R2N → R ∪ {∞} be a proper lower semi-continuous function which
satisfies the Kurdyka– Lojasiewicz property at some point z∗ = (z∗1 , z

∗
2) ∈ R2N . Denote by U ,

η and ϕ : [0, η) → R+ the objects appearing in Definition 4 of the KL property at z∗. Let
σ, ρ > 0 be such that B(z∗, σ) ⊂ U with ρ ∈ (0, σ), where B(z∗, σ) := {z ∈ R2N : |z−z∗| < σ}.
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z2
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z∗ = (x∗, x∗)

δ
√

2δ
ρ

zk = (xk, xk−1)

zk+1 = (xk+1, xk)zk+2 = (xk+2, xk+1)

Figure 3: An essential step of the proof of Theorem 6 is to show: zk ∈ Bρ(z∗) = Bδ(x
∗, x∗) implies

xk+2, xk+1 ∈ Bδ(z∗2) = Bδ(x
∗) which restricts zk+1 and zk+2 to the rectangle in the plot and thus

to B√2δ(z
∗).

Furthermore, let (zk)k∈N = (xk, xk−1)k∈N be a sequence satisfying (H1), (H2), and

∀k ∈ N : zk ∈ B(z∗, ρ)⇒ zk+1 ∈ B(z∗, σ) with F(zk+1),F(zk+2) ≥ F(z∗) . (9)

Moreover, the initial point z0 = (x0, x−1) is such that F(z∗) ≤ F(z0) < F(z∗) + η and

|x∗ − x0| +
√
F(z0)−F(z∗)

a
+
b

a
ϕ(F(z0)−F(z∗)) <

ρ

2
. (10)

Then, the sequence (zk)k∈N satisfies

∀k ∈ N : zk ∈ B(z∗, ρ),
∞∑
k=0

|xk − xk−1| <∞, F(zk)→ F(z∗), as k →∞ , (11)

(zk)k∈N converges to a point z̄ = (x̄, x̄) ∈ B(z∗, σ) such that F(z̄) ≤ F(z∗). If, additionally,
(H3) is satisfied, then 0 ∈ ∂F(z̄) and F(z̄) = F(z∗).

Proof of Theorem 6 Let r > 0. Since F satisfied the KL property at z∗ there exist
η0 ∈ (0,+∞], δ ∈ (0, r) and a continuous concave function ϕ : [0, η0)→ R such that ϕ(0) = 0,
ϕ is continuously differentiable and strictly increasing on (0, η0), and for all

z ∈ B√2δ(z
∗) ∩ [F(z∗) < F(z) < F(z∗) + η0]

the KL inequality holds. Due to z∗ being a local optimum δ can be chosen such that

F(z) ≥ F(z∗) for all z ∈ B√2δ(z
∗) . (12)

— 19 —



Conclusion

We want to verify the implication in (9). Let η := min(η0, ν) and k ∈ N. Assume
z0, . . . , zk ∈ Bρ(z

∗), with zk =: (zk1 , z
k
2 ) = (xk, xk−1) ∈ RN×2 and w.l.o.g. F(z∗) <

F(z0), . . . ,F(zk) < F(z∗) + η (note that if F(zk) = F(z∗) the sequence is stationary and
the result trivial).

See Figure 3 for the idea of the following steps. First, note that xk ∈ Bδ(z
∗
2) as zk ∈

Bδ(z
∗). Suppose zk+2

2 = xk+1 6∈ Bδ(z
∗
2). Then by (H4) and (H1) we observe (use (u+ v)2 ≤

2(u2 + v2))

F(zk) < F(zk+2) +
a

4
|zk2 − zk+2

2 |2

≤ F(zk)− a
(
|zk+2

2 − zk+1
2 |2 + |zk+1

2 − zk2 |2
)

+
a

4
|zk2 − zk+2

2 |2 ≤ F(zk) ,

which is a contradiction and therefore zk+2
2 ∈ Bδ(z

∗
2). Hence, due to the equivalence of

norms in finite dimensions, zk+1 = (xk+1, xk) ∈ B√2δ(z
∗). Thanks to (12), we have F(zk+1) ≥

F(z∗). In order to verify (9), we also need F(zk+2) ≥ F(z∗), which can be shown analogously,
however we need to consider three iteration steps (that’s the reason for the factor a

4
instead

of a
2

on the right hand side of (H4)). Assuming zk+3
2 = xk+2 6∈ Bδ(z

∗
2) yields the following

contradiction:

F(zk) < F(zk+3) +
a

4
|zk2 − zk+3

2 |2

≤ F(zk)− a
(
|zk+3

2 − zk+2
2 |2 + |zk+2

2 − zk+1
2 |2 + |zk+1

2 − zk2 |2
)

+
a

4
|zk2 − zk+3

2 |2

≤ F(zk)− a
(
|zk+3

2 − zk+2
2 |2 + |zk+2

2 − zk+1
2 |2 + |zk+1

2 − zk2 |2
)

+
a

4

(
2|zk+3

2 − zk+2
2 |2 + 4|zk+2

2 − zk+1
2 |2 + 4|zk+1

2 − zk2 |2
)
≤ F(zk) .

Therefore, F(zk+1),F(zk+2) ≥ F(z∗) holds, which is exactly property (9) with σ =
√

2δ.
Now, choose u, µ > 0 such that

µ < η , u <
ρ

6
,

√
µ

a
+
b

a
ϕ(µ) <

ρ

3
.

If z0 satisfies (3), we have

|z∗1 − z0
1 | +

√
F(z0)−F(z∗)

a
+
b

a
ϕ(F(z0)−F(z∗)) <

ρ

2
,

which is exactly property (10). Using Lemma 13 we conclude that the sequence has the
finite length property, remains in Bρ(z

∗), converges to z̄ ∈ Bδ(z
∗), F(zk) → F(z∗) and

F(z̄) ≤ F(z∗), which is only allowed for F(z̄) = F(z∗). If the sequence also has property
(H3) z̄ is a critical point of F .

Proof of Lemma 7 Let δ > ρ and ν be postive numbers. For y = (y1, y2) ∈ R2N with
y2 6∈ Bδ(z

∗
2) and z = (z1, z2) ∈ Bρ(z

∗) such that F(z) < F(z∗) + ν, the growth condition in
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Lemma 7 shows that

F(y) ≥ F(z∗)− a

16
|y2 − z∗2 |2

≥ F(z)− ν − a

8
|y2 − z∗2 |2 +

a

16
|y2 − z∗2 |2

≥ F(z)− ν − a

4
|y2 − z2| −

a

4
|z2 − z∗2 |2 +

a

16
|y2 − z∗2 |2

≥ F(z)− a

4
|y2 − z2| + (−ν − a

4
ρ2 +

a

16
δ2) ,

where for sufficiently small ν and ρ the term in the parenthesis becomes positive, which
implies (H4).

Proof of Proposition 10 Without loss of generality, we can take x̄ = 0. As f is prox-
bounded the condition for prox-regularity may be taken to be global, i.e., there exists ε > 0
and λ0 > 0 such that

f(x′) > f(x) + 〈v, x′ − x〉 − 1

2λ0

|x′ − x|2 ∀x′ 6= x (13)

when v ∈ ∂f(x), |v| < ε, |x| < ε, f(x) < f(0) + ε . (14)

Let T be the f -attentive localization of ∂f specified in (14). For λ ∈ (0, λ0) and u = x+ λv
the subgradient inequality (13) implies

f(x′) +
1

2λ
|x′ − u|2 > f(x) +

1

2λ
|x− u|2 .

Therefore, Pλf(x + λv) = {x} when v ∈ T (x). In general, for any u sufficiently close to 0,
thanks to Fermat’s rule on the minimization problem of Pλf(u), we have for any x ∈ Pλf(u)
that v = (u− x)/λ ∈ T (x) holds. Thus, Uλ = rge (I + λT ) is a neighborhood of 0 on which
Pλf is single-valued and coincides with (I + λT )−1.

Now, let u = x + λv and u′ = x′ + λv′ be any two elements in Uλ such that x = Pλf(u)
and x′ = Pλf(u′). Then (x, v) and (x′, v′) belong to GraphT . Therefore, we can add (13)
and (13) with roles of x and x′ interchanged to obtain

0 ≥ 〈v − v′, x′ − x〉 − 1

λ0

|x′ − x|2 . (15)

In this inequality, we substitute v with (u− x)/λ and v′ with (u′ − x′)/λ which yields

0 ≤ 1

λ0

|x′ − x|2 +
1

λ
〈(u′ − x′)− (u− x), x′ − x〉 =

1

λ
〈u′ − u, x′ − x〉+

(
1

λ0

− 1

λ

)
|x′ − x|2

or, equivalent, using δ := 1
λ
− 1

λ0
> 0

〈u′ − u, x′ − x〉 ≥ λδ|x′ − x|2 .
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This expression helps to estimate the local Lipschitz constant of the gradient of the Moreau
envelope. Using the closed form description of ∇eλf on Uλ, we verify the λ−1-Lipschitz
continuity of ∇eλf as follows:

λ2|∇eλf(u)−∇eλf(u′)|2 − |u− u′|2 = |(u− u′)− (Pλf(u)− Pλf(u′))|2 − |u− u′|2

= |x− x′|2 − 2 〈u− u′, x− x′〉
≤ (1− 2λδ)|x− x′|2

≤ 0

when λδ ≥ 1
2
, i.e., λ ≤ 1

2
λ0.
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[25] S.  Lojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. In Les
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