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Abstract

Natural image statistics indicate that we should use non-
convex norms for most regularization tasks in image pro-
cessing and computer vision. Still, they are rarely used in
practice due to the challenge to optimize them. Recently,
iteratively reweighed `1 minimization has been proposed
as a way to tackle a class of non-convex functions by solv-
ing a sequence of convex `2-`1 problems. Here we extend
the problem class to linearly constrained optimization of a
Lipschitz continuous function, which is the sum of a con-
vex function and a function being concave and increasing
on the non-negative orthant (possibly non-convex and non-
concave on the whole space). This allows to apply the al-
gorithm to many computer vision tasks. We show the effect
of non-convex regularizers on image denoising, deconvolu-
tion, optical flow, and depth map fusion. Non-convexity is
particularly interesting in combination with total general-
ized variation and learned image priors. Efficient optimiza-
tion is made possible by some important properties that are
shown to hold.

1. Introduction
Modeling and optimization with variational methods in

computer vision are like antagonists on a balance scale.
A major modification of a variational approach always re-
quires developing suitable numerical algorithms.

About two decades ago, people started to replace
quadratic regularization terms by non-smooth `1 terms [24],
in order to improve the edge-preserving ability of the mod-
els. Although, initially, algorithms were very slow, now,
state-of-the-art convex optimization techniques show com-
parable efficiency to quadratic problems [8].

The development in the non-convex world turns out to
be much more difficult. Indeed, in a SIAM review in 1993,
R. Rockafellar pointed out that: “The great watershed in
optimization is not between linearity and non-linearity, but
convexity and non-convexity”. This statement has been en-

Figure 1. The depth map fusion result of a stack of depth maps is
shown as a 3D rendering. Total generalized variation regulariza-
tion used for the fusion has the property to favor piecewise affine
functions like the roof or the street. However, there is a trade-
off between affine pieces and discontinuities. For convex `1-norm
regularization (left) this trade-off is rather sensible. This paper en-
ables the optimization of non-convex norms (right) which empha-
size the model properties and perform better for many computer
vision tasks.

forced by deriving the worst-case complexity bounds for
general non-convex problems in [17] and makes it seem-
ingly hopeless to find efficient algorithms in the non-convex
case. However, there exist particular instances that still al-
low for efficient numerical algorithms.

In this paper, we show that a certain class of linearly
constrained convex plus concave (only on the non-negative
orthant) optimization problems are particularly suitable for
computer vision problems and can be efficiently minimized
using state-of-the-art algorithms from convex optimization.

• We show how this class of problems can be efficiently
optimized by minimizing a sequence of convex prob-
lems.

• We prove that the proposed algorithm monotonically
decreases the function value of the original problem,
which makes the algorithm an efficient tool for prac-
tical applications. Moreover, under slightly restricted
conditions, we show existence of accumulation points
and, that each accumulation point is a stationary point.



• In computer vision examples like image denoising, de-
convolution, optical flow, and depth map fusion, we
demonstrate that non-convex models consistently out-
perform their convex counterparts.

2. Related work
Since the seminal works of Geman and Geman [13],

Blake and Zissermann [5], and Mumford and Shah [16]
on image restoration, the application of non-convex poten-
tial functions in variational approaches for computer vi-
sion problems has become a standard paradigm. The non-
convexity can be motivated and justified from different
viewpoints, including robust statistics [4], nonlinear partial
differential equations [20], and natural image statistics [14].

Since then, numerous works demonstrated through ex-
periments [4, 23], that non-convex potential functions are
the right choice. However, their usage makes it very hard
to find a good minimizer. Early approaches are based
on annealing-type schemes [13] and continuation methods
such as the graduated non-convexity (GNC) algorithm [5].
However, these approaches are very slow and their results
heavily depend on the initial guess. A first breakthrough
was achieved by Geman and Reynolds [12]. They rewrote
the (smooth) non-convex potential function as the infimum
over a family of quadratic functions. This transforma-
tion suggests an algorithmic scheme that solves a sequence
of quadratic problems, leading to the so-called iteratively
reweighted least squares (IRLS) algorithm. This algorithm
quickly became a standard solver and hence, it has been ex-
tended and studied in many works, see e.g. [26, 19, 10].

The IRLS algorithm can only be applied if the non-
convex function can be well approximated from above with
quadratic functions. This does not cover the non-convex `p
pseudo-norms, p ∈ (0, 1), which are non-differentiable at
zero. Candes et al. [7] tackled this problem by the so-called
iteratively reweighted `1 (IRL1) algorithm. It solves a se-
quence of non-smooth `1 problems and hence can be seen as
non-smooth counterpart to the IRLS algorithm. Originally,
the IRL1 algorithm was proposed to improve the sparsity
properties in `1 regularized compressed sensing problems,
but it turns out that this algorithm is also useful for com-
puter vision applications.

First convergence results for the IRL1 algorithm have
been obtained by Chen et al. in [9] for a class of non-convex
`2-`p problems used in sparse recovery. In particular, they
show that the method monotonically decreases the energy of
the non-convex problem. Unfortunately, the class of prob-
lems they considered is not suitable for typical computer
vision problems, due to the absence of a linear operator that
is needed in order to represent spatial regularization terms.

Another track of algorithms considering non-convex ob-
jectives is the difference of convex functions (DC) program-
ming [2]. The general DC algorithm (DCA) alternates be-

tween minimizing the difference of the convex dual func-
tions and the difference of the convex functions. In the prac-
tical DCA convex programs obtained by linearizing one of
the two functions are solved alternately. Applying DC pro-
gramming to the function class of the IRL1 algorithm re-
quires an “unnatural” splitting of the objective function. It
makes the optimization hard as emerging proximity opera-
tors are difficult to solve in closed form.

Therefore, we focus on generalizing the IRL1 algorithm,
present a thorough analysis of this new optimization frame-
work, and make it applicable to computer vision problems.

3. A linearly constrained non-smooth and non-
convex optimization problem

In this paper we study a wide class of optimization prob-
lems, which include `2-`p and `1-`p problems with 0 <
p < 1. These are highly interesting for many computer
vision applications as will be demonstrated in Section 4.
The model we consider is a linearly constrained minimiza-
tion problem on a finite dimensional Hilbert spaceH of the
form

min
x∈H

F (x), s.t. Ax = b, (1)

with F : H → R being a sum of two Lipschitz continuous
terms

F (x) := F1(x) + F2(|x|).

In addition we suppose that F is bounded from below,
F1 : H → R ∪ {∞} is proper convex and F2 : H+ → R
is concave and increasing. Here, H+ denotes the non-
negative orthant of the space H; increasingness and the
absolute value |x| are to be understood coordinate-wise.
The linear constraint Ax = b is given by a linear operator
A : H → H1, mapping H into another finite dimensional
Hilbert spaceH1, and a vector b ∈ H1.

As a special case, we obtain the formulation [9]

F1(x) = ‖Tx− g‖22, and F2(|x|) = λ‖x‖pε,p,

where ‖x‖pε,p =
∑

i(|xi| + ε)p is a non-convex norm for
0 < p < 1, λ ∈ R+, T is a linear operator, and g is a vec-
tor to be approximated. This kind of variational approach
comes from compressed sensing and is related but not gen-
eral enough for computer vision tasks. In [9] an iteratively
reweighted `1 minimization algorithm is proposed to tackle
this problem. In the next subsections, we propose a gener-
alized version of the algorithm, followed by a convergence
analysis, which supplies important insights for the final im-
plementation.



3.1. Iteratively reweighted `1 minimization

For solving the optimization problem (1) we propose the
following algorithm:

xk+1 = arg min
Ax=b

F k(x)

:= arg min
Ax=b

F1(x) + ‖wk · x‖1,
(2)

where wk · x is the coordinate-wise product of the vectors
wk and x, and wk is any vector satisfying

wk ∈ ∂F2(|xk|), (3)

where ∂F2 denotes the superdifferential1 of the concave
function F2. We note that since F2 is increasing, the vector
wk has non-negative components.

The algorithm proceeds by iteratively solving `1 prob-
lems which approximate the original problem. AsF1 is con-
vex, (2) is a linearly constrained non-smooth convex opti-
mization problem, which can be solved efficiently [8, 3, 18].
For more details on the algorithmic issue, see Section 4.

3.2. Convergence analysis

Our analysis proceeds in much the same way as [9]:

1. Show that the sequence (F (xk)) is monotonically de-
creasing and converging.

2. Under additional constraints show the existence of an
accumulation point of the sequence (xk).

3. Under additional constraints show that any accumula-
tion point of the sequence (xk) is a stationary point
of (1).

Proposition 1. Let (xk) be a sequence generated by Algo-
rithm (2). Then the sequence (F (xk)) monotonically de-
creases and converges.

Proof. Let xk+1 be a local minimum of F k(x). Accord-
ing to the Karush-Kuhn-Tucker (KKT) condition, there ex-
ist Lagrange multipliers qk+1 ∈ H1, such that

0 ∈ ∂xLFk(xk+1, qk+1),

where LFk(x, q) := F k(x)−〈q,Ax− b〉 is the Lagrangian
function. Equivalently,

A>qk+1 ∈ ∂F k(xk+1) = ∂F1(xk+1) + wk · ∂|xk+1|.

This means that there exist vectors dk+1 ∈
∂F1(xk+1), ck+1 ∈ ∂|xk+1| such that

dk+1 = A>qk+1 − wk · ck+1. (4)
1The superdifferential ∂ of a concave function F is an equivalent of

subdifferential of convex functions and can be defined by ∂F = −∂(−F ),
since −F is convex.

We use this to rewrite the function difference as follows:

F (xk)− F (xk+1)

= F1(xk)− F1(xk+1) + F2(|xk|)− F2(|xk+1|)
≥ (dk+1)>(xk − xk+1) + (wk)>(|xk| − |xk+1|)
= (A>qk+1)>(xk − xk+1)

+(wk)>(|xk| − |xk+1| − ck+1 · (xk − xk+1))

= (qk+1)>(Axk −Axk+1) + (wk)>(|xk| − ck+1 · xk)

= (qk+1)>(b− b) +
∑
i

wk
i (|xki | − ck+1

i xki ) ≥ 0,

(5)
which means that the sequence decreases. Here in the first
inequality we use the definitions of sub- and superdifferen-
tial, in the following transition we use (4). In the next-to-
last transition we use that xk and xk+1 are both solutions of
the constrained problem (2) and ck+1 · xk+1 = |xk+1| by
definition of ck+1. The last inequality follows from the fact
that wk

i ≥ 0 and |xki | ≥ c
k+1
i xki , as |ck+1

i | ≤ 1.
The sequence (F (xk)) decreases and, by property of F ,

is bounded from below. Hence, it converges.

Proposition 2. Let (xk) be a sequence generated by Algo-
rithm (2) and suppose

F (x)→∞, whenever ‖x‖ → ∞ and Ax = b, (6)

then the sequence (xk) is bounded and has at least one ac-
cumulation point.

Proof. By Proposition 1, the sequence (F (xk)) is monoton-
ically decreasing, therefore the sequence (xk) is contained
in the level set

L(x0) := {x : F (x) ≤ F (x0)}.

From Property (6) of F we conclude boundedness of the
set L(x0) ∩ {x : Ax = b}. This allows to apply the
Theorem of Bolzano-Weierstraß, which gives the existence
of a converging subsequence and, hence, an accumulation
point.

For further analysis we need F2 to fulfill the following
conditions:

(C1) F2 is twice continuously differentiable in H+ and
there exists a subspace Hc ⊂ H such that for all
x ∈ H+ holds: h>∂2F2(x)h < 0 if h ∈ Hc and
h>∂2F2(x)h = 0 if h ∈ H⊥c .

(C2) F2(|x|) is a C1-perturbation of a convex function, i.e.
can be represented as a sum of a convex function and
a C1-smooth function.

Lemma 1. Let (xk) be a sequence generated by the Algo-
rithm (2) and suppose (xk) is bounded and Condition (C1)
holds for F2. Then

lim
k→∞

(∂F2(|xk|)− ∂F2(|xk+1|)) = 0. (7)



Proof. See supplementary material.

Proposition 3. Let (xk) be a sequence generated by Algo-
rithm (2) and Condition (6) be satisfied.

Suppose x∗ is an accumulation point of (xk). If the func-
tion F2 fulfills Conditions (C1) and (C2), then x∗ is a sta-
tionary point2 of (1).

Proof. Proposition 2 states the existence of an accumula-
tion point x∗ of (xk), i.e., the limit of a subsequence (xkj ).
From (4) we have:

0 = dkj + ∂F2(|xkj−1|) · ckj −A>qkj .

Combining this with (7) of Lemma 1 we conclude

lim
j→∞

ξj = 0, ξj := dkj + ∂F2(|xkj |) · ckj −A>qkj .

It’s easy to see that ξj ∈ ∂LF (xkj ). By Condition (C2)
and a property of subdifferential of a C1-perturbation of
a convex function [11, Remark 2.2] we conclude that
0 ∈ ∂xLF (x∗). From Axkj = b it immediately follows
that Ax∗ = b, i.e., 0 ∈ ∂qLF (x∗), which concludes the
proof.

4. Computer vision applications
For computer vision tasks we formulate a specific sub-

class of the generic problem (1) as:

min
Ax=b

F (x) = min
Ax=b

F1(x) + F2(|x|)

:= min
Ax=b

‖Tx− g‖qq + Λ>F2(|x|),
(8)

where F2 : H+ → H+ is a coordinate-wise acting increas-
ing and concave function, A : H → H1, T : H → H2 are
linear operators acting between finite dimensional Hilbert
spaces H and H1 or H2. The weight Λ ∈ H+ has non-
negative entries. The data-term is the convex `q-norm with
q ≥ 1. Prototypes for F2(|x|) are

|xi| 7→ (|xi|+ ε)p or |xi| 7→ log(1 + β|xi|), ∀i, (9)

i.e., the regularized `p-norm, 0 < p < 1, ε ∈ R+, or a non-
convex log-function (c.f. Figure 2). In the sequel, the inner
product F2 = Λ>F2 uses either of these two coordinate-
wise strictly increasing regularization-terms. The `p-norm
becomes Lipschitz by the ε-regularization and the log-
function naturally is Lipschitz.

Algorithm (2) simplifies to

xk+1 = arg min
Ax=b

‖Tx− g‖qq + ‖diag(Λ)(wk · x)‖1, (10)

where the weights given by the superdifferential of F2 are

wk
i =

p

(|xki |+ ε)1−p
or wk

i =
β

1 + β|xi|
, (11)

2Here by stationary point we mean x∗ such that 0 ∈ ∂LF (x∗).
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Figure 2. Top right: Non-convex functions of type (9): `1-norm,
`p-norm with p = 1/2, and log-function with β = 2.

respectively. By construction, Proposition 1 applies and
(F (xk)) is monotonically decreasing. Proposition 2 guar-
antees existence of an accumulation point given Condi-
tion (6) being true. This is crucial for solving the optimiza-
tion problem. The following Lemma reduces Condition (6)
to a simple statement about the intersection of the kernels
ker of the operators T and diag(Λ) with the affine constraint
space.

Lemma 2. Let

kerT ∩ ker diag(Λ) ∩ kerA = {0}. (12)

then F (x)→∞, whenever ‖x‖ → ∞ and Ax = b.

Proof. By Condition (12) we have

kerA = (kerT ∩ kerA)⊕ (ker diag(Λ) ∩ kerA)

⊕ (kerA/((kerT ⊕ ker diag(Λ)) ∩ kerA)). (13)

For any x such that Ax = b this gives x = x0 + e1 +
e2 + e3, where x0 is a fixed point such that Ax0 = b and ei

lie in respective subspaces from the decomposition (13). If
‖x‖ → ∞, then maxi ‖ei‖ → ∞. It is easy to see that then
the maximum of summands in (8) goes to infinity.

Considering Proposition 3; as our prototypes (9) are one-
dimensional it is easy to see that (C1) and (C2) are satis-
fied (c.f. Lemma 3 of supplementary material for details).
Therefore, only Condition (12) needs to be confirmed in or-
der to make full use of the results proved in Subsection 3.2.

In the sequel, for notational convenience, let Iu be the
identity matrix of dimension dim(u) × dim(u). The same
applies for other operators, e.g., Tu be an operator of di-
mensions such that it can be applied to u, i.e., a matrix with
range in a space of dimension dim(u).

Using this convention, we set in (8)

x = (u, v)>, T =

(
Tu 0
0 0

)
, g = (gu, 0)>,

Λ = (0, (1/λ)v)>, A =
(
Ku −Iv

)
, b = (0, 0)>,



where T is a block matrix with operator Tu and zero blocks.
This yields a template for typical computer vision problems:

min
u
λ‖Tuu− gu‖qq + F2(|Kuu|). (14)

The Criterion (12) in Lemma 2 simplifies.

Corollary 1. Let Tu be injective on kerKu. Then, the se-
quence generated by (10) is bounded and has at least one
accumulation point.

Proof. The intersection in Condition (12) equals

kerT ∩ ker diag(Λ) ∩ kerA

= {(u, v)> : u ∈ kerTu} ∩ {(u, 0)>}
∩ {(u, v)> : Kuu = v}

= {(u, 0)> : u ∈ kerTu ∧ u ∈ kerKu},

where the latter condition is equivalent to Tu being injective
on kerKu. Lemma 2 and Proposition 2 apply.

Examples for the operator Ku are the gradient or the
learned prior [15]. For Ku = ∇u

3 the condition from
the Corollary is equivalent to Tu1u 6= 0, where 1u is the
constant 1-vector of same dimension as u.

We also explore a non-convex variant of TGV [6]

min
u,w

λ‖Tuu− gu‖qq + α1F2(|∇uu− w|) + α2F2(|∇ww|),
(15)

or as constrained optimization problem

min
u,w,z1,z2

‖Tuu− gu‖qq +
α1

λ
F2(|z1|) +

α2

λ
F2(|z2|)

s.t. z1 = ∇uu− w
z2 = ∇ww,

(16)

which fits to (8) by setting

x = (u,w, z1, z2)>, T =


Tu 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

g = (gu, 0, 0, 0)>, Λ = (0, 0, (α1/λ)z1 , (α2/λ)z2)>,

A =

(
∇u −Iw Iz1 0
0 ∇w 0 −Iz2

)
, b = (0, 0)>.

The corresponding statement to Corollary 1 is:

Corollary 2. If Tu is injective on {u : ∃t ∈ R : ∇uu =
t1u}, then the sequence generated by (10) is bounded and
has at least one accumulation point.

3∇u does not mean the differentiation with respect to u, but the gradi-
ent operator such that it applies to u, i.e, ∇u has dimension 2 dim(u) ×
dim(u) for 2D images.

Proof. The intersection in Condition (12) equals

{(u,w, z1, z2)> : u ∈ kerTu} ∩ {(u,w, 0, 0)>}
∩ {(u,w, z1, z2)> : z1 = ∇uu− w ∧ z2 = ∇ww}

= {(u,w, 0, 0)> : u ∈ kerTu ∧∇uu = w ∧∇ww = 0},

which implies the statement by Lemma 2 and Proposition 2.

4.1. Algorithmic realization

As the inner problem (10) is a convex minimization
problem, it can be solved efficiently, e.g., [18, 3]. We use
the algorithm in [8, 21]. It can be applied to a class of prob-
lems comprising ours and has proved optimal convergence
rate: O(1/n2) when F1 or F2 from (8) is uniformly convex
and O(1/n) for the more general case.

We focus on the (outer) non-convex problem. Let (xk,l)
be the sequence generated by Algorithm (2), where the in-
dex l refers to the inner iterations for solving the convex
problem, and k to the outer iterations. Proposition 1, which
proves (F (xk,0)) to be monotonically decreasing, provides
a natural stopping criterion for the inner and outer problem.
We stop the inner iterations as soon as

F (xk,l) < F (xk,0) or l > mi, (17)

where mi is the maximal number of inner iterations. For
a fixed k, let lk the number of iterations required to satisfy
the inner stopping criterion (17). Then, outer iterations are
stopped when

F (xk,0)− F (xk+1,0)

F (x0,0)
< τ or

k∑
i=0

li > mo, (18)

where τ is a threshold defining the desired accuracy andmo

the maximal number of iterations. As default value we use
τ = 10−6 and mo = 5000. For strictly convex problems
we set mi = 100, else, mi = 400. The difference in (18) is
normalized by the initial function value to be invariant to a
scaling of the energy. When we compare to ordinary convex
energies we use the same τ and mo.

The tasks in the following subsections are implemented
in the unconstrained formulation. The formulation as a con-
strained optimization problem was used for theoretical rea-
sons. In all figures we compare the non-convex norm with
its corresponding convex counterpart. We always try to find
a good weighting (usually λ) between data and regulariza-
tion term. We do not change the ratio between weights
among regularizers as for TGV (α1 and α2).

4.2. Image denoising

We consider the extension of the well-known Rudin, Os-
her, and Fatemi (ROF) model [24] to non-convex norms

min
u

λ

2
‖u− gu‖22 + F2(|Kuu|),



Figure 3. Natural image denoising problem. Displayed is the zoom into the right part of watercastle. Non-convex norms yield sharper
discontinuities and show superiority with respect to their convex counterparts. From left to right: Original image, degraded image with
Gaussian noise with σ = 25. Denoising with TGV prior, α1 = 0.5, α2 = 1.0, λ = 5 (PSNR = 27.19), and non-convex log TGV
prior with β = 2, α1 = 0.5, α2 = 1.0, λ = 10 (PSNR = 27.87). The right pair compares the learned prior with convex norm
(PSNR = 28.46) with the learned prior with non-convex norm p = 1/2 (PSNR = 29.21).
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Figure 4. Left to right: Comparison of the energy decrease for the
non-convex log TV and TGV between our method and NIPS [25].
Our proposed algorithm achieves a lower energy in the limit and
drops the energy much faster in the beginning.

and arbitrary priors Ku, e.g., here, Ku = ∇u or Ku from
[15]. Since kerTu = ker Iu = {0} Condition (12) is triv-
ially satisfied for all priors, c.f. Corollary 1 and 2. The reg-
ularizing norms F2(|x|) =

∑
i(F2(|x|))i are the `p-norm,

0 < p < 1, and the log-function according to (9).
Figure 3 compares TGV, the learned image prior from

[15] and their non-convex counterparts. Using non-convex
norms combines the ability to recover sharp edges and being
smooth in between.

Figure 4 demonstrates the efficiency of our algorithm
compared to a recent method, called, non-convex inexact
proximal splitting (NIPS) [25], which is based on smooth-
ing the objective. Reducing the smoothing parameter ε bet-
ter approximates the original objective, but, on the other
hand, increases the required number of iterations. This is
expected as the ε directly effects the Lipschitz constant of
the objective. We do not require such a smoothing epsilon
and outperform NIPS.

4.3. Image deconvolution

Image deconvolution is a prototype of inverse problems
in image processing with non-trivial kernel, i.e., the model
is given by a non-trivial operator Tu 6= I in (14) or (15).

Usually, Tu is the convolution with a point spread func-
tion ku, acting as a blur operator. The data-term here reads
‖ku ∗ u− gu‖qq . Obviously ker ku = {0} and Corollaries 1
and 2 are fulfilled. We assume Gaussian noise, hence, we
use q = 2.

We use the numerical scheme of [8] based on the fast
Fourier transform to implement the data-term and combine
it with the non-convex regularizers.

Deconvolution aims for the restoration of sharp discon-
tinuities. This makes non-convex regularizers particularly
attractive. Figure 5 compares different regularization terms.

4.4. Optical flow

We estimate the optical flow field u = (u1, u2)> be-
tween an image pair f(x, t) and f(x, t+1) according to the
energy functional:

min
u,v,w

λ‖ρ(u,w)‖1 + ‖∇ww‖1

+ α1F2(|∇uu− v|) + α2F2(|∇vv|),

where local brightness changes w between images are as-
sumed to be smooth [8]:

ρ(u,w) = ft + (∇ff)> · (u− u0) + γw.

We define∇uu = (∇u1u1,∇u2u2)>, and v according to the
definition of TGV.

A popular regularizer is the total variation of the flow
field. However, this assigns penalty to a flow field describ-
ing rotation and scaling motion. TGV regularization deals
with this problem and affine motion can be described with-
out penalty. Figure 6 shows that enforcing the TGV prop-
erties by using non-convex norms yields highly desirable
sharp motion discontinuities and convex TGV regulariza-
tion is outperformed.

Since we analysed TGV already for Condition (12) only



Figure 5. Deconvolution example with known blur kernel. Shown is a zoom to the right face part of romy. From left to right: Original
image, degraded image with motion blur of length 30 rotated by 45◦ and Gaussian noise with σ = 5. Deconvolution using TGV with
λ = 400, α1 = 0.5, α2 = 1.0 (PSNR = 29.92), non-convex log-TGV, β = 1, with λ = 300, α1 = 0.5, α2 = 1.0 (PSNR = 30.15),
the learned prior [15] with λ = 25 (PSNR = 29.71), and its non-convex counterpart with p = 1/2 and λ = 40 (PSNR = 30.54).

the data-term is remaining. We obtain (8) by setting

T =

(
diag((∇ff)>) γIw

0 ∇w

)
, g = −

(
ft − (∇ff)> · u0

0

)
and the kernel of T can be estimated as

kerT = {(u,w)> : T (u,w)> = 0}
= {(u,w)> : (∇ff)> · u = −γw ∧∇ww = 0}
= {(u, t1w)> : (∇ff)> · u = −γt1w, t ∈ R}.

For TV and TGV this requires a constant or linear depen-
dency for x- and y-derivative of the image for all pixels.
Practically interesting image pairs do not have such a fixed
dependency, i.e., Lemma 2 applies.

4.5. Depth map fusion

In the non-convex generalization of TGV depth fusion
from [22] the goal is minimize

λ

K∑
i=1

‖u− gi‖1 + α1F2(|∇uu− v|) + α2F2(|∇vv|)

with respect to u and v, where the gi, i = 1, . . . ,K, are
depth maps recorded from the same view. The data-term in
(8) is obtained by setting T = (Tu1

, . . . , TuK
)> and Tui

=
Iui

, the identity matrix. Hence, Condition (12) is satisfied.
Consider Figure 7; the streets, roof, and also the round

building in the center are much smoother for the result with
non-convex norm, and, at the same time discontinuities are
not smoothed away, they remain sharp (c.f. Figure 1).

5. Conclusion
The iteratively reweighted `1 minimization algorithm for

non-convex sparsity related problems has been extended to
a much broader class of problems comprising computer vi-
sion tasks like image denoising, deconvolution, optical flow
estimation, and depth map fusion. In all cases we could
show favorable effects when using non-convex norms.

Figure 6. Comparison between TGV (left) and non-convex TGV
(right) for the image pair Army from the Middlebury Optical Flow
benchmark [1] and two zooms. The TGV is obtained with λ = 50,
γ = 0.04, α1 = 0.5, α2 = 1.0 and the result with non-convex
TGV using p = 1/2, λ = 40, γ = 0.04, α1 = 0.5, α2 = 1.0.

The presentation of an efficient optimization framework
for the considered class of linearly constrained non-convex
non-smooth optimization problems has been enabled by
proving decreasing function values in each iteration, the ex-
istence of accumulation points, and boundedness.
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Figure 7. Non-convex TGV regularization (bottom row) yields a
better trade-off between sharp discontinuities and smoothness than
its convex counterpart (upper row) for depth map fusion. Left:
Depth maps. Right: Corresponding rendering.
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Here we give a detailed proof of Lemma 1 of Subsec-
tion 3.2 (Convergence analysis). We also show that the
functions F (x) = F1(x) + F2(|x|) we optimize in appli-
cations fulfill the technical Conditions (C1) and (C2) which
are necessary for the results of Subsection 3.2 to hold. We
remind what these conditions are:

(C1) F2 is twice continuously differentiable in H+ and
there exists a subspace Hc ⊂ H such that for all
x ∈ H+ holds: h>∂2F2(x)h < 0 if h ∈ Hc and
h>∂2F2(x)h = 0 if h ∈ H⊥

c .

(C2) F2(|x|) is a C1-perturbation of a convex function, i.e.
can be represented as a sum of a convex function and
a C1-smooth function.

We start by proving Lemma 1:

Lemma 1 (see Subsection 3.2 of the main text). Let (xk)
be the sequence generated by the Algorithm (3) and suppose
(xk) is bounded and the Condition (C1) holds for F2. Then

lim
k→∞

(∂F2(|xk|)− ∂F2(|xk+1|)) = 0. (1)

Proof. Taylor theorem for F2 gives:

F2(|xk|)− F2(|xk+1|) = (∆k)>∂F2(|xk|)

− 1

2
(∆k)>∂2F2(|x̃k|)∆k,

where ∆k := |xk| − |xk+1|, |x̃k| ∈ [|xk|; |xk+1|]. We use
this to refine the inequalities (6) from the proof of Proposi-

tion 1 in Subsection 3.2 (see main text for details):

F (xk)− F (xk+1)

= F1(xk)− F1(xk+1) + F2(|xk|)− F2(|xk+1|)
≥ (dk+1)>(xk − xk+1) + (wk)>∆k

−1

2
(∆k)>∂2F2(|x̃k|)∆k = (A>qk+1)>(xk − xk+1)

+(wk)>(|xk| − |xk+1| − ck+1 · (xk − xk+1))

−1

2
(∆k)>∂2F2(|x̃k|)∆k = (qk+1)>(Axk −Axk+1)

+(wk)>(|xk| − ck+1 · xk)− 1

2
(∆k)>∂2F2(|x̃k|)∆k

= (qk+1)>(b− b) +
∑
i

wk
i (|xki | − ck+1

i xki )

−1

2
(∆k)>∂2F2(|x̃k|)∆k ≥ −1

2
(∆k)>∂2F2(|x̃k|)∆k ≥ 0.

Therefore,

F (xk)− F (xk+1) ≥ −1

2
(∆k)>∂2F2(|x̃k|)∆k ≥ 0,

and, hence,

lim
k→∞

(∆k)>∂2F2(|x̃k|)∆k = 0.

Using definition of the spaceHc we get that

lim
k→∞

(Pr Hc
∆k)>∂2F2(|x̃k|)Pr Hc

∆k = 0, (2)

where Pr Hc denotes orthogonal projection onto Hc. From
boundedness of (xk) and negativity of ∂2F2

∣∣∣
Hc

we con-

clude that there exists ν > 0 such that for all k:

(Pr Hc
∆k)>∂2F2(|x̃k|)Pr Hc

∆k ≤ −ν‖Pr Hc
∆k‖2.

Together with (2) this gives

lim
k→∞

‖Pr Hc∆k‖2 = 0. (3)

Now we note that

∂F2(|xk|)− ∂F2(|xk+1|) = ∂2F2(|x̂k|)Pr Hc
∆k,



for some |x̂k| ∈ [|xk|; |xk+1|]. Together with (3) this com-
pletes the proof.

Now we show that the Conditions (C1) and (C2) actually
hold for the functions F2 used in applications, namely (cf.
Equations (8) and (9) of the main text):

F2(|x|) =
∑
i

λif(|xi|), where

f(|xi|) = (|xi|+ ε)p or f(|xi|) = log(1 + β|xi|),

with ε > 0, β > 0 and λi ≥ 0, ∀ i. Obviously, for both
choices the functions are infinitely differentiable and con-
cave in R+. Therefore it suffices to prove the following
lemma:

Lemma 3. Let F2(|x|) =
∑

i λif(|xi|), where λi ≥ 0, ∀ i
and f : R+ → R is increasing, twice continuously differen-
tiable and has strictly negative second derivative. Then the
Conditions (C1) and (C2) hold for F2.

Proof. We start with proving (C1). Obviously,

∂2F2(x) = diag((λif
′′(xi)))i=1:dim(H)), for x ∈ H+.

Hence,
h>∂2F2(x)h =

∑
i

λif
′′(xi)h

2
i .

Denote by Λ a diagonal operator with λi’s on diagonal.
Then forHc = (ker Λ)⊥ the desired condition holds.

Now we prove (C2). For each term of F2 we perform the
following decomposition:

λif(|xi|) = λif
′(0)|xi|+ λi(f(|xi|)− f ′(0)|xi|).

The first summand is convex due to non-negativity of λi and
f ′(0). The second summand is continuously differentiable
for xi 6= 0 and its derivative equals{

λi(f
′(xi)− f ′(0)), if xi > 0,

λi(−f ′(−xi) + f ′(0)), if xi < 0.

Both these values approach zero when xi approaches 0, so
the function is differentiable at 0 and, therefore, continu-
ously differentiable on R.

We proved that each term of F2 is a sum of a con-
vex function and a C1-smooth function. Sum of C1-
perturbations of convex functions is a C1-perturbation of
a convex function, so this completes the proof.


