
Higher Order Motion Models and Spectral Clustering

Peter Ochs and Thomas Brox
Computer Vision Group

University of Freiburg, Germany
{ochs, brox}@informatik.uni-freiburg.de

Abstract

Motion segmentation based on point trajectories can in-
tegrate information of a whole video shot to detect and
separate moving objects. Commonly, similarities are de-
fined between pairs of trajectories. However, pairwise sim-
ilarities restrict the motion model to translations. Non-
translational motion, such as rotation or scaling, is penal-
ized in such an approach. We propose to define similari-
ties on higher order tuples rather than pairs, which leads to
hypergraphs. To apply spectral clustering, the hypergraph
is transferred to an ordinary graph, an operation that can
be interpreted as a projection. We propose a specific non-
linear projection via a regularized maximum operator, and
show that it yields significant improvements both compared
to pairwise similarities and alternative hypergraph projec-
tions.

1. Introduction
The need for segmented training data in visual learning

is enormous. Even though crowd sourcing provides a cost
efficient solution to manually annotate larger datasets, re-
cent trends towards learning subcategories and attributes in-
crease the demand for more and more annotated data – ide-
ally obtained via unsupervised or very weakly supervised
object segmentation.

Motion is key in unsupervised object segmentation, as
indicated in psychophysical studies with infants and blind
persons who gained eyesight as adults [17]. Recently, [4]
presented a promising approach based on dense point tra-
jectories. Due to the long term analysis of motion, this ap-
proach can reliably extract moving objects in a video, even
if the motion in some frames is ambiguous. This adds sig-
nificantly to classical motion segmentation methods based
on two-frame optical flow.

[4] is based on direct, pairwise comparison of trajecto-
ries. The pairwise similarities between all trajectories are
expressed by an affinity matrix, which can be analyzed by
spectral clustering [19, 15]. However, the pairwise analy-

Pairwise
affinities

3-affinities

Figure 1. First row: Trajectory clustering on a video sequence
with 800 frames. The approaching man labeled in blue generates
a scaling motion that cannot be described properly with a transla-
tional model and pairwise affinities. Our spectral clustering model
based on triplets describes similarity transformations and can cap-
ture it easily. Bottom rows: The top eigenvectors of the pairwise
clustering model are far from being piecewise constant, whereas
thresholding the topmost eigenvector of the higher order model is
already sufficient in this example.

sis comes with a limitation: comparing two trajectories al-
lows to decide only if they belong to the same translational
model or not. All motion that deviates from a translational
model, for instance rotation or scaling, leads to a non-zero
distance. This problem is alleviated by the rather dense set
of trajectories used in [4], but it does not go away. Con-
sequently, the method works well if objects move coarsely
according to a translational model, but fails in case of dom-
inant complex motion. Multi-body factorization methods,
such as [6, 21, 18, 8], can incorporate (affine) higher order
motion models easily, but they require all trajectories to be
roughly the same length. As motion across many frames
leads to significant occlusion/disocclusion phenomena, the
factorization framework is restricted to much shorter shots.

In this paper, we are aiming for the best of both mod-

ochs
Schreibmaschine
CVPR 2012



els: we keep the flexible comparison of trajectories of var-
ious length, and we allow for higher order motion mod-
els that do not penalize rotation and scaling anymore. Our
approach can work with motion models of arbitrary order,
though in our experiments we have focused on in-plane ro-
tation and scaling, i.e., 2D similarity transformations with-
out reflections. To uniquely determine the parameters of
such a model, two motion vectors are required. Obviously
pairwise affinities are not applicable: a pair of motion vec-
tors always fits a similarity transformation perfectly. A third
motion vector is necessary to decide on the compatibility of
a triplet. Rather than pairwise affinities, we obtain tertiary
affinities. The affinity matrix becomes an affinity tensor and
the underlying graph a hypergraph.

To cluster trajectories based on a higher order motion
model we need a hypergraph version of spectral clustering;
but what is the normalized Laplacian of a hypergraph? All
definitions of hypergraph Laplacians come down to a pro-
jection of the hypergraph to an ordinary graph, on which the
classical Laplacian is trivially applied [1]. The projections
applied in practice end up in setting the edge weights to the
sum over all corresponding hyperedge weights. We argue
that at least in the case of motion segmentation this is not a
good projection, because many triplets in the hyperedge set
will comprise multiple objects though the considered pair
just covers a single object. This can be particularly prob-
lematic in case of small objects. For this reason, we propose
a regularized maximum projection, which just requires one
of the triplets to cover the same object. Since hypergraphs
come with a larger computational complexity than ordinary
graphs, we also present a subsampling strategy that leads to
acceptable computation times while not losing the effect of
the higher order model.

Once the affinities for the ordinary graph are computed,
we apply spectral clustering with spatial regularity as pro-
posed in [4]. The clustering comes with an automatic selec-
tion of the model parameters, i.e., we do not need to specify
the number of objects. Our experiments show clearly im-
proved results on the Berkeley motion segmentation bench-
mark with regard to the translational model but also with
regard to a projection based on the sum of hyperedges.

2. Related Work
Opposed to VLSI design, where hypergraph partitioning

has been used for decades [3], hypergraphs have appeared
in computer vision only recently. One of the first papers is
the one by Agarwal et al. [2], who analyzed a set of exist-
ing hypergraph partitioning methods and showed their ap-
plication to illumination invariant clustering of faces. In [1]
they showed that all existing methods for spectral clustering
on k-uniform hypergraphs can be expressed as clique aver-
aging, which means that the hypergraph is projected onto
an ordinary graph and spectral clustering is applied there.

b

u1

b

u2

b

u3

b u4

b

u5

e1

e2

e3 V \E e1 e2 e3
u1 1 0 0
u2 1 1 0
u3 1 1 1
u4 0 0 1
u5 0 1 1

Figure 2. Example of a hypergraph (left) and its incidence rela-
tionships h (right), e.g., h(u1, e1) = 1 and h(u4, e2) = 0. A
hypergraph describes the relation among an arbitrary number of
vertices, here triples.

Their proof includes the method in [22], and it is easy to
see that [10, 5] are also approximations of this formulation
based on sampling. The general p-norm introduced in [2]
includes our maximum projection for p→∞. These previ-
ous works are mainly concerned with a general hypergraph
formulation and consider applications as a proof of concept.
In contrast, the present paper comes with a specific applica-
tion that requires hypergraphs, and we argue why the max-
imum projection fits this application much better than the
common average projection.

Hypergraphs have become popular also in conjunction
with inference in higher order MRFs [12, 11]. Like here,
the goal of using hypergraphs is to consider larger cliques.
However, due to the Markov property, vertices are only lo-
cally connected by hyperedges, which is in contrast to this
paper, where hyperedges cover the graph globally.

Although [1] argue that all existing spectral clustering on
hypergraphs can be expressed on ordinary graphs, a hyper-
graph partitioning method based on tensor algebra that can-
not be reduced to ordinary graph partitioning is conceivable.
Apart from generalized power iteration for graph matching
[7], there are many theoretical works in the tensor algebra
literature [9, 14, 13].

3. Hypergraph Modelling
A hypergraphH = (V, E) consists of a vertex set V and

a hyperedge set E of subsets of V . The number of vertices
and hyperedges is finite and given by the cardinality | · | of
the respective set. A vertex v ∈ V and a hyperedge e ∈ E
are called incident if v ∈ e. We represent this relationship
by an indicator function h : V ×E → {0, 1}. Figure 2 shows
an example.

We focus on undirected, weighted, k-uniform hyper-
graphs, i.e., the ordering of vertices in a hyperedge does not
matter, each hyperedge e is assigned a weight wH(e) ∈ R+

0

and the number of vertices in a hyperedge (the degree)
δH(e) := |e| =

∑
v∈V h(v, e) = k is constant. In the



b

b

b
u

b

b
v

π
w

H
(u, v)

wH(e1)

wH(e2)
wH(e3)

Figure 3. A hypergraph which shows the hyperedge weights (el-
lipses) that are projected to the edge (line) between the vertices u
and v. The hyperedges incident with both vertices contribute to
the weight of the projected edge.

special case k = 2, hypergraphs become ordinary graphs.
As the weights of 2-hypergraphs are represented by an
R|V |2 := R|V |×|V | affinity matrix, weights of k-uniform
hypergraphs are represented by a R|V |k := R|V |×...×|V |
affinity tensor. For undirected hypergraphs the affinity ten-
sor is a symmetric k-order tensor with non-negative entries,
where symmetry means that the entries of all index permu-
tations are the same.

3.1. Projecting the Hypergraph to its Primal Graph

To partition a hypergraph via spectral clustering, we
must project it to an ordinary graph. Therefore, we define
the primal graph that consists of the same vertex set as the
hypergraph but its edge set connects each pair of vertices
incident with the same hyperedge.

Define the projection operator πwH : V ×V → R+
0 , which

assigns to each pair of vertices a weight by projecting the
weights of all hyperedges incident with both of the vertices;
see Figure 3. Appropriate projection operators are positive,
symmetric, and monotone [2].

Based on such a projection operator, we can write the
projection from an affinity tensor to an affinity matrix as

ΠH : R|V |
k

→ R|V |×|V |,
wH 7→ ΠH(wH) := (πwH(u, v))u,v∈V .

(1)

The common projection is via summation:

πwH(u, v) =
∑
e∈E

wH(e)

δH(e)
h(u, e)h(v, e). (2)

It has been proposed, for instance, in [2, 22]. Let H :=
(h(u, e))u∈V,e∈E ∈ R|V |×|E| be the incidence matrix and
DE ∈ R|E|×|E| the hyperedge degree diagonal matrix. Then
(2) can be written as HWD−1E H>, which is the affinity
matrix in [22]. This means, the hypergraph Laplacian in
[22] fits in this projection framework as a special case [1].

b

b

b

b

b

wH(e1) = 0

wH(e2) = 0
wH(e3) = 1

max = 1

b

b

b

b

b

∑
= 1

3

wH(e1) = 0

wH(e2) = 0
wH(e3) = 1

Figure 4. max-projection vs.
∑

-projection if the edge covers
a single object. One additional trajectory on the object indicates
that the motion model is consistent. The

∑
-projection yields the

average affinity of all hyperedges, which is way too low.

b
b

b

b b

wH(e1) = 0

wH(e2) = 0
wH(e3) = 0

max = 0

b
b

b

b b

wH(e1) = 0

wH(e2) = 0
wH(e3) = 0

∑
= 0

Figure 5. max-projection vs.
∑

-projection if the edge covers two
different objects. Both projections yield the optimal affinity.

3.2. max-Affinity Projections for Motion Segmenta-
tion

In [2] a class of functions parameterized by p ∈ R+

is proposed. For p = 1 this corresponds again to the
∑

-
projection in (2). In the following, we will argue that a
larger p, in particular p → ∞ that corresponds to the max-
imum operator, is more appropriate for motion segmenta-
tion.

In motion segmentation, the hypergraph’s vertices are
point trajectories and the hyperedges are k-tuples of these
trajectories. For each k-tupel of trajectories we define an
affinity based on their motion similarity; details will follow
in Section 4. According to the definition in (1), the max-
projection reads

πwH(u, v) = argmax
wH(e)
u,v∈e∈E

wH(e) l(e), (3)

where we include a weight l(e) that is the number of com-
mon frames of all trajectories in e. This weighting treats
longer, strongly overlapping trajectories as more reliable.

In Figure 4, 5 let us analyze two important cases in the
motion segmentation scenario: (1) both vertices of a pair-
wise edge lie within a single object; (2) they cover two dif-
ferent objects. For simplicity, we focus on hyperedges of



degree 3. The first case reveals the advantage of projecting
with the max-operator: a single third vertex in the object
is sufficient for a high affinity, whereas the

∑
-projection

leads to a bad compromise.
In the second case both vertices of the pairwise edge be-

long to different objects and we want the affinity to be low.
The motion model suggested by the two vertices is not com-
patible with one of two object motions and so there is no hy-
peredge with a high affinity for this pair. Both projections
lead to the correct affinity.

These considerations are only valid in the noise-free case
and if the motion subspaces do not overlap. In contrast to
the sum, the maximum operator is unstable. A single out-
lier or a non-empty cut of the two motion subspaces will
spoil the result in case (2). Both problems exist in prac-
tice. For this reason, we must regularize the max-operator
by adding the following condition: if the projection yields a
high affinity, but 90% of the considered hyperedges have 0
affinity, we assign 0 affinity to the pairwise edge. This con-
dition makes the use of the max-operator stable enough for
our motion segmentation task. Other types of regulariza-
tion are conceivable as well, e.g., an Lp-norm with a finite,
sufficiently large p.

4. Computing Hyperedge Affinities
From the tracker in [20] we obtain n trajectories ci, i =

1, . . . , n in a video with M frames. Most trajectories do
not cover all M frames due to occlusion/disocclusion. If
a trajectory ci exists at a frame t ∈ {1, . . . ,M}, it comes
with pixel coordinates (x(t), y(t))

> at this frame. Consider
a k-tuple e of trajectories ci1 , . . . , cik . For each such tuple
we compute a distance d : E → R+

0 , which is converted into
an affinity via

wH(e) := exp (−λd(e)) (4)

with λ = 0.1.

4.1. Computing 3-Distances

In our experiments we focus on 3-tuples. Like in [4], we
compose the distance d for each triplet (ci, cj , ck), i, j, k ∈
{1, . . . , n} of the distances d(t) in all common frames t, i.e.,
frames in which all three trajectories are visible.

For a fixed t ∈ {1, . . . ,M} we estimate the error of
the underlying motion model according to the change from
frame t to t′ := t + 8. If less than 8 common frames
are available we restrict the computation to the common
frames.

The incentive of considering three trajectories at a time is
to have Euclidean translations, rotations, and scalings with-
out penalty. Formally, these movements can be described by
the group of special similarity transformations SSim(2). In
contrast to the group of similarity transformations Sim(2) it
excludes reflections.

b

b

b

b

b

b

b

b

b
b

b

b

Figure 6. Left: (a) Fitting a linear model to three points via least
squares. Even though the points do not fit a line, the total error (in
red) is small. Right: (b) A line is fit to all pairs of points and the
error is measured based on how well the third point fits the line.
The maximum discrepancy among all tuples clearly indicates that
the points do not fit a common model.

Let ci, cj be two of three trajectories. The motion model
Ti,j(t) ∈ SSim(2) is described by a scaling parameter
s, a rotation matrix Rα, and the translation vector v :=
(v1, v2)>. These parameters can be computed uniquely
from the coordinates at frames t and t′ as follows:

s =
‖ci(t′)−cj(t′)‖
‖ci(t)−cj(t)‖

α = arccos

(
(ci(t′)−cj(t′))

>
(ci(t)−cj(t))

‖ci(t′)−cj(t′)‖‖ci(t)−cj(t)‖

)
v = 1

2 ((ci(t
′) + cj(t

′))− sRα (ci(t) + cj(t))) .

(5)

We can test how well the third trajectory ck fits this trans-
formation by the L2-distance ‖Ti,jck(t)− ck(t′)‖.

Obviously, the motion model could be computed also
from ci, ck or from cj , ck. As illustrated in Figure 6b the
choice of the pair has a large impact on the distance. One
could also consider estimating the optimum model from
all three trajectories in the least-squares sense, as shown
in Figure 6a. However, this reduces the distance of an
incompatible triplet such that it cannot be distinguished
from noise in a compatible one anymore. For this rea-
son, we pick the maximum distance among all 2-tuples
(u, v) ∈ {(i, j) , (i, k) , (j, k)} with the third trajectory cw,
w ∈ {i, j, k}r {u, v}:

d(t)(i, j, k) := max d
(t)
ratio(u, v) ‖Tu,vcw(t)− cw(t′)‖. (6)

If the three trajectories do not fit the same model, it will be
very large leading to a clear separation of motion clusters.
The weight

d
(t)
ratio(i, j) :=

(
1
2

(
‖ci(t)−cj(t)‖
‖ci(t)−ck(t)‖ +

‖ci(t)−cj(t)‖
‖cj(t)−ck(t)‖

)) 1
4

.

(7)
is introduced to avoid numerical problems. When a motion
model Ti,j(t) is estimated based on very nearby trajectories,
small numerical errors can cause large errors at the location
of distant trajectories.

Like in [4] we normalize distances with the optical flow
variance in the image and weight them by the spatial dis-
tance of trajectories. For the final distance of the 3-tuple



we take the maximum distance over all common frames
d(i, j, k) = maxt d

(t)(i, j, k).

4.2. Higher Order Affinities

The above framework extends easily to more general
motion models. For instance, distances based on an affine
motion model could be computed from 4-tuples of trajec-
tories. While this fits 3D rigid motions even better, it also
further increases the computational costs. With 3-affinities
we have cubic complexity O

(
n3
)
. The complexity of a k-

tuple is O
(
nkk

)
, where k is due to the maximum in (6). In

the next section, we present a sampling strategy that reduces
the complexity of 3-affinities to O

(
n2
)

without significant
degradation compared to the full model. While k-affinities
with k > 3 are an interesting future option, they also come
with other issues. For example, as 3D rotations lead to self-
occlusion, trajectories are usually too short for a more com-
plex model to show advantages. This is why we consider
only 3-affinities in the remainder of this paper.

5. Sampling Strategy
We propose a combination of deterministic and random

sampling to reduce the number of hyperedges to be consid-
ered, which makes the approach tractable in case of large
numbers of trajectories. For each pairwise edge, we sample
hyperedges comprising both vertices of the edge and one
additional vertex. For both vertices in each pairwise edge,
we take the 12 spatially nearest neighbours and, addition-
ally, 30 vertices randomly as third vertex. It is worth noting
that we sample only over the third vertex, whereas the graph
is spanned globally over all trajectories, which is in contrast
to MRF approaches. The mixture of deterministic and ran-
dom sampling ensures finding enough relevant triplets.

We verified this in a synthetic experiment shown in Fig-
ure 7. The results for the full hypergraph, where all possible
triplets are considered, and two sampling strategies are re-
ported in Table 1.

The evaluation shows that sampling degrades the accu-
racy only a little when some objects are much smaller than
others. In some special cases, sampling is even advanta-
geous. If the smaller objects cover exactly 10% of all tra-
jectories, 90% of all triplets comprise a vertex outside the
object and, thus, yield 0 affinity. Since our regularized max-
projection treats this situation erroneously as outlier, it as-
signs 0 affinity to the pairwise edge in case of the full graph.
For the random sampling, it is sufficient to have 2 (> 12

10 )
triplets covering the object. Since only a small subset of the
pairwise edges needs high affinities, sampling such a subset
is very likely. Of course this probability decreases as the
object shrinks. In order to improve the performance in ob-
ject segmentation (cf. Table 2), where certain compactness
assumptions hold, we complement the random sampling by
a deterministic nearest neighbor sampling.

Figure 7. Two synthetic experiments with 100 trajectories and 3
regions of different motion and size (rotation, translation, scaling).
In the experiment we reduced the size of the left and right region
successively to 25, 20, . . ., 5, 4, and 3 trajectories simulating the
effect of small objects and a large background.

25 20 15 10 5 4 3

full 100 100 100 84 96 100 99
rnd 100 100 100 99.6 97.8 94.8 96
rnd+nn 100 100 100 100 97.2 97.6 96.3

Table 1. Results of the experiment in Figure 7. The number of
trajectories in the left and the right cluster is given in the first row.
The table shows the percentage of correctly clustered trajectories
for the full graph (full), random sampling (rnd) with 12 samples,
and a combination (rnd+nn) of 4 random samples and 4 nearest
neighbors at a time. The results on rnd and rnd+nn are averaged
over 10 evaluations. Sampling does not affect the accuracy much,
even for small objects, but reduces the complexity considerably.

6. Evaluation
6.1. Berkeley Motion Segmentation Benchmark

We compare to multi-body factorization [18] and the
translational motion model from [4] on the benchmark
dataset introduced in [4]. We used the evaluation code pro-
vided with the benchmark. Results are shown in Table 2.
The density is the percentage of labeled pixels. The overall
clustering error measures the percentage of erroneous la-
bels per labeled pixel, and the average clustering error the
pixel error per region averaged over all regions. The evalua-
tion also reports an over-segmentation penalty, which is the
number of merging events per ground truth region necessary
to make the labeling fit the ground truth annotation.

We use the same tracker as in [4], which allows to adjust
the density. We run the tracker with 4- and 8-spacing, mean-
ing that, the tracker samples only every 4th or 8th pixel,
respectively, in each direction.

Performance differences become clearly visible when
considering all frames. As already shown by [4], multi-
body factorization cannot deal with large occlusions, and
this shows in the numbers. Comparing the pairwise affini-
ties [4] to our higher order model reveals a significant im-
provement of 50% in the overall error. The higher quality
also shows in more objects being extracted correctly (de-



Density
overall
error

average
error

over-
segmentation

extracted
objects

All available frames
ALC corrupted [18] 0.99% 5.32% 52.76% 0.10 15
ALC incomplete* [18] 3.29% 14.93% 43.14% 18.80 5
pairwise affinities [4] 3.31% 6.52% 27.29% 2.12 29
pairwise affinities* [4] 3.28% 6.59% 26.69% 1.44 27∑

-projection* (rnd+nn) 3.22% 5.36% 20.08% 2.08 31
max-projection* (rnd+nn) 3.22% 4.48% 22.34% 1.84 31
pairwise affinities [4] 0.79% 6.78% 25.48% 1.73 30∑

-projection (rnd+nn) 0.78% 6.12% 22.71% 2.31 30
max-projection (rnd) 0.77% 7.32% 32.95% 1.92 22
max-projection (rnd+nn) 0.78% 4.33% 21.96% 1.58 34

Table 2. Evaluation on the Berkeley motion segmentation benchmark. Entries marked with “*” are evaluated without the sequence marple7.
The upper part of the table reports on a 4-spacing, the lower part on an 8-spacing. (rnd) refers to a purely randomized sampling using 54
samples. (rnd+nn) uses 30 random samples and for each vertex the 12 spatial nearest neighbors.

Figure 8. Top row: Result on marple8 obtained with the proposed method and a spatial subsampling of 8. Bottom row: Dense interpola-
tion of this result using the binaries from [16].

fined by [4] as regions with less than 10% error minus the
background region). Figures 9 and 10 show a qualitative
comparison.

We also compared the proposed max-projection to the∑
-projection that is used by previous works on hypergraph

partitioning, e.g., in [2]. The
∑

-projection performs better
than just the pairwise affinities, but only the max-projection
can fully exploit the higher order affinities. In fact, most of
the increase in performance is not due to the use of hyper-
graphs as such, but due to hypergraphs in conjunction with
the right projection method. Figure 11 shows an advantage
of our max-projection over the

∑
-projection with respect

to the leakage problem explained in Figure 4.

Figure 8 shows our result for marple8 and a dense seg-
mentation obtained using the code from [16].

Thanks to the sampling, the computational complexity
is still in O

(
n2
)
, yet practical computation times increase

over the translational model. While clustering the whole
sequence of cars1 with 4850 trajectories runs in 50s on a
single core with pairwise affinities, 3-affinities require 48
minutes. The computation of affinities can be perfectly par-

Figure 9. From left to right: frame 46 of marple8, result with
pairwise affinities, our result.

Figure 10. From left to right: frame 21 of cars5, result with pair-
wise affinities, our result.

allelized on the GPU though. With an expected speedup of
about 50× this would result in approximately 3s per frame,
which is well tractable also in a large scale task.



Figure 11. From left to right: frame 65 of marple13, result with∑
-projection, our result (max-projection).

Figure 12. Upper row: Windmill with rotating sails. Bottom left:
Result with pairwise affinities [4]. Bottom right: Our result with
3-affinities.

6.2. Other Real World Examples

The Berkeley motion segmentation benchmark focuses
mainly on translational motion. Hence, we collected some
additional videos with more complex motion and compare
our method to [4].

The advantage of higher order motion models becomes
very clear in Figure 12. It is not possible to describe the
rotation of the windmill sails with pairwise affinities. Con-
sequently, trajectories are either treated as outliers and are
removed completely, or they lead to over-segmentation. The
higher order model can handle this example easily. The
same effect can be seen in Figure 13. Although the 3D
rotation of the monkey is not without penalty in our 3-
affinity model, the penalty with pairwise affinities is even
larger. Figure 14 shows a very difficult sequence with cam-
era zoom. Some ducks move in a very similar manner and
there is strong articulation. Pairwise affinities lead to a sin-
gle cluster. In contrast, 3-affinities can capture the moving
ducks quite well. Executables are provided to allow evalua-
tions on other sequences.

7. Conclusions
We have presented a higher order motion segmentation

method based on spectral clustering on hypergraphs. We
showed that this model can handle the limitations of pair-
wise affinities very well. As a very interesting observation
in this work we note that the use of hypergraphs alone is
not sufficient. The usual

∑
-projection hardly improved re-

sults over pairwise affinities. It is actually the choice of the

Figure 13. First row: Monkey that lies in the beginning, stands
up, and turns to the other side. Second row: Result with pairwise
affinities [4] for the first and last frame. Third row: Our result
with 3-affinities. This examples shows that 3-affinities also bet-
ter fit 3D rotations than pairwise affinities, though not explicitly
modeled.

projection from the hypergraph to the ordinary graph that
makes the difference.

Acknowledgment
We gratefully acknowledge funding by the German Re-

search Foundation (DFG) via grant BR 3815/5-1.

References
[1] S. Agarwal, K. Branson, and S. Belongie. Higher order

learning with graphs. In International Conference on Ma-
chine Learning (ICML), 2006. 2, 3

[2] S. Agarwal, J. Lim, L. Zelnik-Manor, P. Perona, D. Krieg-
man, and S. Belongie. Beyond pairwise clustering. In Inter-
national Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2005. 2, 3, 6

[3] C. J. Alpert and A. B. Kahng. Recent directions in netlist
partitioning: a survey. Integration: The VLSI Journal, 1995.
2

[4] T. Brox and J. Malik. Object segmentation by long-term
analysis of point trajectories. In European Conference on
Computer Vision (ECCV), 2010. 1, 2, 4, 5, 6, 7

[5] G. Chen and G. Lerman. Spectral curvature clustering SCC.
International Journal of Computer Vision, 2009. 2

[6] J. Costeira and T. Kanande. A multi-body factorization
method for motion analysis. In International Conference on
Computer Vision (ICCV), 1995. 1

[7] O. Duchenne, F. Bach, I. Kweon, and J. Ponce. A tensor-
based algorithm for high-order graph matching. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2011.
2

[8] E. Elhamifar and R. Vidal. Sparse subspace clustering. In
International Conference on Computer Vision and Pattern
Recognition (CVPR), 2009. 1



Figure 14. Top row: A family of ducks passing the camera. While they are moving away, the camera starts zooming on them. Finally the
mother vanishes behind a green box. Pairwise affinities cannot model the zooming motion of the camera properly. This results in a single
cluster comprising the ducks and the background. Other rows: Our 3-affinities are invariant to scaling. The ducks can be separated from
the background. The method even separates most of the single ducks.

[9] E. Gnang, A. Elgammal, and V. Retakh. A spectral theory
for tensors. ArXiv e-prints, 2010. 2

[10] V. Govindu. A tensor decomposition for geometric grouping
and segmentation. In International Conference on Computer
Vision and Pattern Recognition (CVPR), 2005. 2

[11] H. Ishikawa. Higher-order clique reduction in binary graph
cut. In International Conference on Computer Vision and
Pattern Recognition (CVPR), 2009. 2

[12] P. Kohli, M. P. Kumar, and P. Torr. P3 & beyond: solving
energies with higher-order cliques. In International Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2007. 2

[13] T. Kolda and B. Bader. Tensor decompositions and applica-
tions. SIAM Journal on Applied Mathematics, 2009. 2

[14] L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A multilin-
ear singular value decomposition. SIAM Journal on Applied
Mathematics, 2000. 2

[15] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. In Advances in Neural Informa-
tion Processing Systems (NIPS), 2002. 1

[16] P. Ochs and T. Brox. Object segmentation in video: a hierar-
chical variational approach for turning point trajectories into
dense regions. In International Conference on Computer Vi-
sion (ICCV), 2011. 6

[17] Y. Ostrovsky, E. Meyers, S. Ganesh, U. Mathur, and P. Sinha.
Visual parsing after recovery from blindness. Psychological
Science, 2009. 1

[18] S. R. Rao, R. Tron, R. Vidal, and Y. Ma. Motion seg-
mentation via robust subspace separation in the presence of
outlying, incomplete, or corrupted trajectories. In Interna-

tional Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2008. 1, 5, 6

[19] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2000. 1

[20] N. Sundaram, T. Brox, and K. Keutzer. Dense point trajecto-
ries by GPU-accelerated large displacement optical flow. In
European Conference on Computer Vision (ECCV), 2010. 4

[21] J. Yan and M. Pollefeys. A general framework for motion
segmentation: independent, articulated, rigid, non-rigid, de-
generate and non-degenerate. In European Conference on
Computer Vision (ECCV), 2006. 1

[22] D. Zhou, J. Huang, and B. Schölkopf. Learning with hyper-
graphs: clustering, classification, and embedding. In Ad-
vances in Neural Information Processing Systems (NIPS),
2007. 2, 3


