
Noname manuscript No.
(will be inserted by the editor)

Techniques for Gradient Based
Bilevel Optimization with
Nonsmooth Lower Level Problems

Peter Ochs · René Ranftl ·
Thomas Brox · Thomas Pock

Received: date / Accepted: date

Abstract We propose techniques for approximating

bilevel optimization problems with non-smooth lower

level problems that can have a non-unique solution. To

this end, we substitute the expression of a minimizer of

the lower level minimization problem with an iterative

algorithm that is guaranteed to converge to a minimizer

of the problem. Using suitable non-linear proximal dis-

tance functions, the update mappings of such an iter-

ative algorithm can be differentiable, notwithstanding

the fact that the minimization problem is non-smooth.

P. Ochs
Mathematical Image Analysis Group
University of Saarland, Germany
E-mail: ochs@mia.uni-saarland.de

R. Ranftl
Visual Computing Lab
Intel Labs, Santa Clara, CA, United States
E-mail: rene.ranftl@intel.com

T. Brox and P. Ochs
Computer Vision Group
University of Freiburg, Germany
E-mail: {ochs,brox}@cs.uni-freiburg.de

T. Pock
Institute for Computer Graphics and Vision
Graz University of Technology, Austria
and
Digital Safety & Security Department
AIT Austrian Institute of Technology GmbH
1220 Vienna, Austria
E-mail: pock@icg.tugraz.at

1 Introduction

We consider numerical methods for solving bilevel op-

timization problems of the form

min
ϑ
L(x∗(ϑ), ϑ)

s.t. x∗(ϑ) ∈ arg min
x∈RN

E(x, ϑ) ,
(1)

where L (denoted loss function) is a function penaliz-

ing the differences between the output of the lower level

problem x∗(ϑ) and some given ground truth data. In ad-

dition, L can also contain a regularizer on the parame-

ter vector ϑ, e.g. a sparsity prior. The mapping x∗(ϑ) is

the solution of an optimization problem (parametrized

by ϑ) that solves a specific task, e.g. multi-label seg-

mentation.

In the general bilevel literature, (1) is often pre-

sented as a leader–follower problem. The leader (upper

level problem) tries to optimize the next move (mini-

mization of the upper level problem) under considera-

tion of the move of an opponent, the follower. Given

some information ϑ to the follower, the leader tries to

anticipate the follower’s next move (minimization of the

lower level problem).

In this paper, we focus on a class of problems that

allows for non-smooth convex functions x 7→ E(x, ϑ)

in the lower level problem, e.g. sparse models based on

the `1-norm. Such models have become very popular

in the computer vision, image processing and machine

learning communities since they are robust with respect

to noise and outliers in the input data.

Due to the possibly high dimensionality of the pa-

rameter vector, we pursue the minimization of the bilevel

problem (1) using gradient based methods. Hence, a

descent direction of L with respect to ϑ must be de-

termined. Its estimation involves the Jacobian of the

ar
X

iv
:1

60
2.

07
08

0v
2 

 [
m

at
h.

O
C

] 
 2

6 
A

pr
 2

01
6



2 Peter Ochs et al.

solution map x∗(ϑ) with respect to the parameter vec-

tor ϑ, which causes three kinds of problems:

(i) The solution mapping x∗(ϑ) is only defined implic-

itly (as a minimizer of the lower level problem).

(ii) The lower level’s solution is not unique.1

(iii) The lower level problem is non-smooth.

(i) A reduction to a single level problem by explicitly

solving the lower level problem is not always possible.

Nevertheless, if the lower level problem is sufficiently

smooth, sometimes, it can be replaced by its optimality

condition, and the implicit function theorem (cf. Sec-

tion 4.1) provides an explicit formula for the derivative

of the solution map. This approach does not work for

non-smooth lower level problems.

(ii) Consider the example

min
ϑ∈R

(x∗(ϑ)− 1)2

s.t. x∗(ϑ) ∈ arg min
x∈[0,1]

ϑx ,
(2)

which reduces to minimization of a step function

min
ϑ∈R
L(x∗(ϑ)) , L(x∗(ϑ)) =


1, if ϑ > 0 ;

0, if ϑ < 0 ;

[0, 1], if ϑ = 0 .

A gradient based method will get stuck almost ev-

erywhere, as the derivative vanishes for all ϑ 6= 0. Sim-

ilar situations arise for robust models in the lower level

problem. By definition the solution is not affected by

small perturbations of the input data (or the param-

eter ϑ). For instance in the multi-label segmentation

problem, small changes in the pixel likelihoods do not

change the segmentation result; the energy landscape

of the loss function will have the form of a high dimen-

sional step function.

(iii) Due to the non-smoothness of the lower level

problem, standard calculus cannot be applied. In vari-

ational (non-smooth) analysis, there are many general-

izations of derivatives, such as the convex subdifferen-

tial, the Fréchet subdifferential, or the limiting subdif-

ferential. However they are often set-valued and gener-

alizations of the chain rule and rely on constraint qual-

ifications that are sometimes quite restrictive and often

hard to verify.

In the conference version of this paper [30], we in-

troduced an approach to overcome the smoothness re-

striction in some cases of practical interest. The idea is

to replace the lower level problem by an iterative algo-

rithm that is guaranteed to converge to a solution of

1 Note that the bilevel problem as in (1) is not well-defined
in this case. We discuss some details in Section 3.

the problem. If the update mapping of the algorithm

is a smooth function, the chain rule can be applied to

the composition of these update mappings recursively

and the exact derivatives with respect to the param-

eter vector ϑ can be computed. Algorithms based on

Bregman distances are key for this development. The

number of iterations of the iterative algorithm steers

the approximation quality of the lower level problem.

The iterative algorithm that replaces the lower level

is stopped after a small number of iterations. However,

once the algorithm and the number of iterations are

fixed, the resulting bilevel optimization problem seeks

for optimal ϑ for exactly this algorithm and this (fixed)

number of iterations. Numerically, the derivative that

is involved in gradient based minimization is exact: the

number of chain rule recursions is finite. This is in con-

trast to an approach based on the optimality condi-

tion of a smooth approximation of the lower level prob-

lem. In this case, the descent direction is based on the

derivative of the optimality condition evaluated at the

minimizer of the lower level problem, which is only de-

termined approximately.

Beyond the analysis of the conference paper, we dis-

cuss approximations to the derivative evaluation that

reduce the memory requirements and the computational

cost significantly. We extend the class of problems that

can be used in our framework and give some more de-

tails about the general implementation of our approach.

Moreover, we consider the limiting case, i.e., the fixed

point equation of an iterative algorithm in the lower

level problem.

We point out several applications of our approach

and evaluate it for a multi-label segmentation problem

coupled with a convolutional neural network.

2 Related Work

We propose a simple approximation of the lower level

problem that naturally addresses non-smoothness and

non-uniqueness.

For a non-unique solution map (a set-valued map-

ping) of the lower level problem (1) is not even well-

defined (cf. Remark 1). [14] describes three possible op-

tions to cope with this problem. The optimistic bilevel

optimization problem assumes a cooperative strategy

of leader and follower, i.e., in case of multiple solutions

the follower tries to minimize the upper level objective.

The pessimistic bilevel problem is the other extreme,

where the leader tries to bound the damage that the

follower could cause by its move. The selection function

approach assumes that the leader can always predict the

followers choice. Of course, these three approaches are

the same for lower level problems with a unique output.



Bilevel Optimization with Nonsmooth Lower Level Problems 3

Our approach does not fall into any of the three

cases, however the selection function approach is the

closest. The difference is that our approximation changes

the output also at (originally) unique points. Our so-

lution strategy reduces the solution map to be single-

valued, similar to the approaches mentioned above.

Dempe et al. [14] classifies the following optimality

conditions2. The primal Karush–Kuhn–Tucker (KKT)

transformation replaces the lower level problem by the

necessary and sufficient optimality condition for a con-

vex function. The equivalence to the original problem is

shown in [15]. The classical KKT transformation sub-

stitutes the lower level problem with the classical KKT

conditions. Due to the extra variable, the problems are

not fully equivalent anymore (see [14]). This approach,

which leads to a non-smooth mathematical problem

with complementary constraints (MPEC), is the most

frequently used one. The third approach is the opti-

mal value transform, which introduces a constraint that

bounds the lower level objective by the optimal value

function.

Our approach is—in the limit—motivated by the

first class of the primal KKT transformation. We con-

sider the fixed point equation of an algorithm, which

represents the optimality condition without introduc-

ing additional variables, and approximate this situation

with finitely many iterations of the algorithm.

We focus on gradient based methods, such as gra-

dient descent, L-BFGS [25], non-linear conjugate gra-

dient [19,1], Heavy-ball method [40], iPiano [29], and

others, for solving the bilevel optimization problem. In

particular, this paper focuses on the estimation of de-

scent directions. As one option, the gradient can be

approximated numerically with finite differences such

as in [16]. We rather pursue what is known as algorith-

mic/automatic differentiation. It is based on the idea

to decompose the derivative evaluation into small parts

by means of a chain rule, where the analytic deriva-

tive of each part is known. A whole branch of research

deals with this technique [21]. Obviously, the idea to

differentiate an algorithm in the lower level problem is

not new [37,17]. The difference is that our algorithm

has a smooth update mapping while actually minimiz-

ing a non-smooth objective function. Another idea to

approach a non-smooth problem with an iterative algo-

rithm is presented in [12], where a chain rule for weak

derivatives is used (cf. Section 4.4).

The special case of a lower level problem that de-

pends linearly on the parameters is treated by struc-

tured output support vector machines [38]. The linear

structure of the lower level problem allows the construc-

2 The classification in [14] applies to the optimistic bilevel
problem.

tion of an upper bound of the upper level objective func-

tion, which needs to be minimized. In general, this ap-

proach is only an approximation to the bilevel problem

in (1), which can be solved using subgradient descent.

There are several practical examples of bilevel op-

timization in the computer vision and machine learn-

ing. Bilevel optimization was considered for task spe-

cific sparse analysis prior learning [32] and applied to

signal restoration. In [23,10,11] a bilevel approach was

used to learn a model of natural image statistics, which

was then applied to various image restoration tasks. A

variational formulation for learning a good noise model

was addressed in [35] in a PDE-constrained optimiza-

tion framework, with some follow-up works [6,34,7].

In machine learning bilevel optimization was used to

train a SVM [4] and other techniques [27]. Recently,

it was used for the end-to-end training of a Convolu-

tional Neural Network (CNN) and a graphical model

for binary image segmentation [33] (cf. Section 8).

Finally, we refer to [13] for an annotated bibliogra-

phy with many references regarding the theoretical and

practical development in bilevel optimization.

Preliminaries

We work in a Euclidean vector space RN of dimen-

sion N equipped with the standard Euclidean norm

‖ · ‖ :=
√
〈·, ·〉 that is induced by the standard inner

product. We use the notation R := R ∪ {∞} to denote

the extended real numbers.

We use the notation [x ∗ a] for x, a ∈ RN to denote

the set {x ∈ RN | ∀i : xi∗ai}, where ∗ ∈ {<,≤,=,≥, >}
is a binary relation on R × R. For example [x ≥ 0]

denotes the non-negative orthant in RN .

3 The Bilevel Problem

We consider bilevel optimization problems of the form:

min
ϑ∈RP

L(x∗(ϑ), ϑ) + `(ϑ)

s.t. x∗(ϑ) ∈ arg min
x∈RN

E(x, ϑ)
(3)

The function ` : RP → R is assumed to be proper, lower

semi-continuous, convex, and “prox-friendly”3 and the

function L : RN ×RP → R to be continuously differen-

tiable on dom `. The optimization variable is the (pa-

rameter) vector ϑ ∈ RP . It appears implicitly and ex-

plicit in the upper level problem. It is implicit via the

3 The associated proximity operator has a closed-form solu-
tion or the solution may be determined efficiently numerically.



4 Peter Ochs et al.

solution mapping x∗(ϑ) ∈ RN of the lower level prob-

lem and explicit in ` and in the second argument of

L. The lower level is a minimization problem in the

first variable of a proper, lower semi-continuous func-

tion E : RN × RP → R. For each ϑ ∈ RP the objective

function (energy) x 7→ E(x, ϑ) is assumed to be con-

vex.

Note that our formulation includes constrained opti-

mization problems in the upper and lower level prob-

lem. The functions ` and E are defined as extended-

valued (real) functions. Of course, in order to handle the

constraints efficiently in the algorithm, the constraint

sets should not be too complicated.

In order to solve the optimization problem in (3),

we can apply iPiano [29], a gradient-based algorithm

that can handle the non-smooth part `(ϑ). The exten-

sion of iPiano in [28, Chapter 6] allows for a prox-

bounded (non-convex, non-smooth) function `(ϑ). In-

formally, the update step of this algorithm (for the pa-

rameter vector ϑ) reads

ϑk+1 ∈ proxαk`

(
ϑk − αk∇ϑL(x∗(ϑk), ϑk)

+βk(ϑk − ϑk−1)
)
, (4)

where proxαk`
denotes the proximity operator of the

function `, and αk is a step-size parameter and βk steers

the so-called inertial effect of the algorithm (usually

βk ∈ [0, 1]). For details about αk and βk, we refer to

[29,28], where convergence to a stationary point (a zero

in the limiting subdifferential) is proved under mild as-

sumptions. We could also apply proximal gradient de-

scent (forward–backward splitting) [2] (βk = 0). In our

experiments, iPiano was usually faster and less sensitive
to local optima, however. If the non-smooth term is not

present, several gradient based solvers can be used [25,

40,19,1].

The structure of the update step in (4) points out

that the main aspect in applying such gradient-based

algorithm is the evaluation of the gradient∇ϑL(x∗(ϑ), ϑ).

The remainder of this paper deals with exactly this

problem: compute ∇ϑL(x∗(ϑ), ϑ) with a solution map-

ping ϑ 7→ x∗(ϑ) of a possibly non-smooth objective

function in the lower level. Note that the following ap-

proximations naturally yield or require a unique solu-

tion of the lower level problem.

Remark 1 The formulation (3) of a bilevel optimization

problem only makes sense when arg minx∈RN E(x, ϑ)

yields a unique minimizer. In that case, optimality of

the bilevel problem can be derived from standard op-

timality conditions in non-linear programming. If the

lower level problem does not provide a unique solution,

the loss function L must be defined on the power set of

RN and a different notion of optimality must be intro-

duced. Since, this results in problems beyond the scope

of this paper, we refer to [14]. A common circumven-

tion is to consider the corresponding optimistic bilevel

problem.

4 Computing descent directions

For a given parameter value ϑ ∈ RP , we would like to

compute a descent direction of L in (3) with respect

to ϑ to find a numerical solution using some gradient

based method. Obviously, we need the derivative of the

solution map x∗(ϑ) with respect to ϑ. In the following,

we present strategies to approximate the (possibly non-

smooth) lower level problem and to compute a descent

direction.

4.1 Derivative of a smoothed lower level problem

If the objective function of the lower level problem of

(3) can be approximated well with a twice continuously

differentiable function (again denoted E), we can make

use of the implicit function theorem to find the deriva-

tive of the solution map with respect to ϑ. The optimal-

ity condition of the lower level problem is ∇xE(x, ϑ) =

0, which under some conditions implicitly defines a func-

tion x∗(ϑ). As we assume that the problem minxE(x, ϑ)

has a solution, there is (x∗, ϑ) such that ∇xE(x∗, ϑ) =

0. Then, under the conditions that ∇xE(x∗, ϑ) is con-

tinuously differentiable and (∂(∇xE)/∂x)(x∗, ϑ) is in-

vertible, there exists an explicit function x∗(ϑ) defined

on a (open) neighborhood of x∗. Moreover, the function

x∗(ϑ) is continuously differentiable at ϑ and it holds

that

∂x∗

∂ϑ
(ϑ) =

(
−∂(∇xE)

∂x
(x∗(ϑ), ϑ)

)−1
∂(∇xE)

∂ϑ
(x∗(ϑ), ϑ) .

Using the Hessian HE(x∗(ϑ), ϑ) := ∂2E
∂x2 (x∗(ϑ), ϑ) yields

∂x∗

∂ϑ
(ϑ) = −(HE(x∗(ϑ), ϑ))−1 ∂

2E

∂ϑ∂x
(x∗(ϑ), ϑ) . (5)

The requirement for using (5) from the implicit function

theorem is the continuous differentiability of ∂E/∂x

and the invertibility of HE . Application of the chain

rule yields the total derivative of the loss function L of

(3) w.r.t. ϑ

dL
dϑ

= −

[
∂L
∂x

H−1
E

]
∂2E

∂ϑ∂x
+
∂L
∂ϑ

, (6)

where the function evaluation at (x∗(ϑ), ϑ) is dropped

for brevity. A clever way of setting parentheses, as it is



Bilevel Optimization with Nonsmooth Lower Level Problems 5

indicated by the squared brackets, avoids explicit inver-

sion of the Hessian matrix. However, for large problems

iterative solvers are required.

4.2 Derivative of iterative algorithms

We can replace the minimization problem in the lower

level of (3) by an algorithm that solves this problem,

i.e., the lower level problem is replaced by an equal-

ity constraint. This approach shows three advantages:

(i) After approximating the lower level of (3) by an al-

gorithm, the approach is exact; (ii) the update step of

the algorithm can be smooth without the lower level

problem to be smooth; (iii) the output is always unique

(for a fixed initialization), which circumvents the criti-

cal issue of a non-unique lower level solution.

Let A and A(n) : X × RP → X describe one or n

iterations, respectively, of algorithm A for minimizing

E in (3). For simplicity, we assume that the feasible set

mapping ϑ 7→ {x ∈ RN | (x, ϑ) ∈ domL} is constant4,

i.e., the same X is assigned to all ϑ ∈ RP . Note that

X = RN is permitted.

For fixed n ∈ N, we replace (3) by

min
ϑ
L(x∗(ϑ), ϑ) + `(ϑ)

s.t. x∗(ϑ) = A(n+1)(x(0), ϑ) ,
(7)

where x(0) is some initialization of the algorithm. The

solution map of the lower level problem x∗(ϑ) is the out-

put of the algorithm A after n+1 iterations. If we write

down one iteration of the algorithm, i.e., x(n+1)(ϑ) =

A(x(n)(ϑ), ϑ), we have to assume that x(n) depends

on the choice of ϑ. However, this dependency can be

dropped for the first iterate, which emerges from the

initialization.

A suitable algorithm has the properties that x(n)(ϑ)

converges pointwise (i.e. for each ϑ) to a solution of the

lower level problem as n goes to infinity and E(x(n), ϑ) =

E(A(n)(x(0), ϑ), ϑ) → minxE(x, ϑ) for n → ∞. Note

that for Bregman proximity functions in algorithm A,

the solution for n → ∞ could lie on bdry(X), despite

x(n) ∈ int(X) for all n. However, this matters only for

an asymptotic analysis.

If A is (totally) differentiable with respect to ϑ,

then, by the standard chain rule, A(n) is differentiable

with respect to ϑ as well. This way, we obtain a totally

differentiable approximation to the lower level problem

4 More generally, the concept of outer semi-continuity of
the feasible set mapping is needed, otherwise a gradient based
method could converge to a non-feasible point.

of (3), where the approximation quality can simply be

controlled by the number of iterations. For so-called de-

scent algorithms, it holds that

E(x(n+1), ϑ)−min
x
E(x, ϑ) ≤ E(x(n), ϑ)−min

x
E(x, ϑ) .

A large number of iterations usually approximates the

minimum of E better than a small number of iterations.

Nevertheless, also a small number of iterations is in-

teresting for our approach. Once a certain number of it-

erations is fixed, the bilevel optimization problem seeks

for an optimal performance with exactly this chosen

number of iterations. Solving the bilevel optimization

problem accurately with a small number of iterations n

of the lower level algorithm can result in a better per-

formance than a poorly solved bilevel problem with a

large number of iterations in the lower level.

Our approach is well suited for minimizing the bilevel

problem using gradient based methods. The differenti-

ation of L with respect to ϑ in (7) is exact; one an

algorithm is selected no additional approximation is re-

quired for computing the derivatives. In contrast, the

smoothing approach from Section 4.1 requires the min-

imization of a smooth objective function, the solution

of which can be found only approximatively. Therefore,

the descent direction, which is based on the optimality

condition, is always erroneous.

The “smoothing parameter” in our approach is the

number of iterations of the algorithm that replaces the

lower level problem. Since the algorithm’s update map-

ping is assumed to be smooth, in particular, locally Lip-

schitz continuous, which formally means

‖A(x, ϑ)−A(y, ϑ)‖ ≤ const. ‖x− y‖

holds in a neighborhood of the initial point, the varia-

tion of the output after one iterations is limited. There-

fore, intuitively, for a large number of iterations n, less

smoothness of A(n) can be expected.

In order to obtain the derivative of the lower level

problem of (7), there are two prominent concepts: for-

ward mode and backward mode. For any vector ξ ∈ RN ,

the forward mode corresponds to evaluating the deriva-

tive as

ξ>
dx(n+1)

dϑ
(ϑ) =

ξ>
[
∂A
∂x

(x(n), ϑ)
dx(n)

dϑ
(ϑ)

]
+ ξ>

∂A
∂ϑ

(x(n), ϑ) , (8)



6 Peter Ochs et al.

whereas the backward mode/reverse mode evaluates the

derivative as(
dx(n+1)

dϑ
(ϑ)

)>
ξ

=

(
dx(n)

dϑ
(ϑ)

)> (∂A
∂x

(x(n), ϑ)

)>
ξ


+

(∂A
∂ϑ

(x(n), ϑ)

)>
ξ

 , (9)

where the squared brackets symbolize the different or-

ders of evaluating the terms. In both approaches, re-

placing and evaluating the term dx(n)/dϑ using the pre-

ceding iterate (n− 1) is done in the respective order.

Mathematically both concepts result in the same so-

lution. However, numerically the approaches are very

different. The reverse mode is usually more efficient

when the optimization variable ϑ is high dimensional

(i.e., P is large) and the range of the objective func-

tion L is low dimensional—it is always 1 in our setting.

This corresponds to ξ being a column vector instead of

a derivative matrix. The forward mode is often easier

to implement, since it is executed in the same order

as the optimization algorithm itself and can be com-

puted online, i.e., during the iteration of the algorithm.

As a downside, each partial derivative must be initial-

ized and propagated through the iterations. Therefore,

the memory requirement is vastly increasing with the

dimension P . We focus on the reverse mode for evalu-

ating the derivatives, due to its computationally more

appealing nature.

The backward mode is executed in the reverse or-

der of the iterations of the algorithm and needs the

optimum x∗, which is x(n+1) in our case, for executing

the first matrix vector multiplication. All intermediate

results toward the optimum must be available. The im-

plementation of the backward mode (9) is shown in Al-

gorithm 1. This approach is quite expensive. But, for a

reasonable number of iterations, it is still practical. It

is still faster than the inversion of the Hessian matrix in

Section 4.1; see (6). In the following section, we present

approximations that reduce the cost significantly.

4.3 Derivative of fixed point equations

We generalize the result from Section 4.1, where the

lower level problem of (3) is replaced by the first-order

optimality condition of a smooth approximation. The

idea is to consider a different optimality condition. A

point is optimal, if it satisfies the fixed point equation

of an algorithm A : X × RP → X solving the original

lower level problem, i.e., we address the bilevel problem:

min
ϑ
L(x∗(ϑ), ϑ)

s.t. x∗(ϑ) = A(x∗(ϑ), ϑ) ,
(10)

where X ⊂ RN is as in Section 4.2 and we have a fixed

point x∗. This approach is more general than the one in

Section 4.1, since we could actually first smoothly ap-

proximate the lower level problem and then consider

the fixed point equation. For many algorithms both

approaches are equivalent, because optimization algo-

rithms are often derived from the first-order optimality

condition.

Following the idea of Section 4.2, we can consider

a differentiable fixed point equation without the lower

level problem to be differentiable. An algorithm that

has a differentiable update rule yields a differentiable

fixed point equation.

Assume that (x∗, ϑ) solves the fixed point equation.

By differentiating the fixed point equation, we obtain

dx

dϑ
(ϑ) =

∂A
∂x

(x∗(ϑ), ϑ)
dx

dϑ
(ϑ) +

∂A
∂ϑ

(x∗(ϑ), ϑ) ,

which can be rearranged to yield

dx

dϑ
(ϑ) =

(
I − ∂A

∂x
(x∗(ϑ), ϑ)

)−1
∂A
∂ϑ

(x∗(ϑ), ϑ) . (11)

Assuming the spectral radius of (∂A/∂x)(x∗(ϑ), ϑ) is

smaller than 1, we can approximate the inversion using

the geometric series:

dx

dϑ
(ϑ) =

∞∑
n=0

(
∂A
∂x

(x∗(ϑ), ϑ)

)n
∂A
∂ϑ

(x∗(ϑ), ϑ) ,

where ((∂A/∂x)(x∗(ϑ), ϑ))n means the n-fold matrix

product with itself. Let us approximate this term with

a finite summation of 0, . . . , n0. Then by a simple re-

arrangement, for ξ ∈ RN , we have (by abbreviating

(∂A/∂x)(x∗(ϑ), ϑ) by ∂A/∂x; the same for ∂A/∂ϑ):

ξ>
dx

dϑ
(ϑ) ≈ ξ>

n0∑
n=0

(
∂A
∂x

)n
∂A
∂ϑ

= ξ>
∂A
∂x

(
∂A
∂ϑ

+
∂A
∂x

(
∂A
∂ϑ

+ . . .

))
= ξ>

[
∂A

∂x(n0)

dx(n0)

dϑ

]
+ ξ>

∂A
∂ϑ

.

The difference between the last line in this equation

and (8) and (9) is the evaluation point of the terms.

While in (8) and (9) the terms for dx(n+1)/dϑ are eval-

uated at (x(n)(ϑ), ϑ), here, all terms are evaluated at



Bilevel Optimization with Nonsmooth Lower Level Problems 7

Algorithm 1 Derivative of an abstract algorithm

– Assumptions: A is totally differentiable.
– Initialization at n+ 1:

z(n+1) :=

(
∂L
∂x

(x∗(ϑ), ϑ)

)>
∈ RN and w(n+1) := 0 ∈ RP

– Iterations (n ≥ 0): Update

for n to 0 :
w(n) = w(n+1) +

(
∂A
∂ϑ

(x(n), ϑ)

)>
z(n+1)

z(n) =

(
∂A
∂x(n)

(x(n), ϑ)

)>
z(n+1)

– Final derivative of L in (7) wrt. ϑ:

dL
dϑ

(x∗(ϑ), ϑ) = (w(0))> +
∂L
∂ϑ

(x∗(ϑ), ϑ) .

(x∗(ϑ), ϑ). Although the condition on the spectral ra-

dius is rarely met in practice, this approximation works

well empirically and needs to store only the optimum

of the algorithm. This leads to an immense reduction

of the memory requirements.

4.4 Weak differentiation of iterative algorithms

The approach in [12] also considers an algorithm replac-

ing the non-smooth lower level problem. Their underly-

ing methodology, however, is based on weak differentia-

bility, which can be guaranteed for Lipschitz continuous

mappings thanks to Rademacher’s theorem. If all iter-

ation mappings are Lipschitz continuous with respect

to the iteration variable and the parameter ϑ, weak dif-

ferentiability follows from the chain rule for Lipschitz

mappings [18, Theorem 4]. For details, we refer to [12],

in particular Section 4.

5 Explicit derivatives for exemplary algorithms

The framework of Bregman proximity functions is key

for the idea to approximate a non-smooth optimization

problem by an algorithm with smooth update map-

pings. In this section, we instantiate two such algo-

rithms. Details and examples of Bregman proximity

functions are postponed to Section 6.1. For understand-

ing this section, it suffices to know that Dψ(x, x̄) pro-

vides a distance measure between two points x and x̄,

and it can be used to define a Bregman proximity op-

erator proxψ which generalizes the common proximity

operator that is based on the Euclidean distance.

5.1 Derivative of forward–backward splitting

Let us consider forward–backward splitting [24,31] with

Bregman proximity function Dψ (e.g. [3]). It applies to

minimization problems of the form

min
x∈RN

f(x) + g(x) ,

where f : RN → R is a continuously differentiable, con-

vex function with Lipschitz continuous gradient and

g : RN → R is a proper, lower semi-continuous, con-

vex function with a (Bregman) proximity operator that

is easy to evaluate. The update rule of the forward–

backward splitting we consider is:

x(n+1) = arg min
x∈RN

g(x;ϑ) + f(x(n);ϑ)

+
〈
∇f(x(n);ϑ), x− x(n)

〉
+

1

α
Dψ(x, x(n))

=: proxψαg

(
∇ψ(x(n))− α∇f(x(n);ϑ);ϑ

)
=: proxψαg

(
y(n)(x(n);ϑ);ϑ

)
,

(12)

where we denote y(n)(x(n);ϑ) := ∇ψ(x(n))−α∇f(x(n);ϑ),

the intermediate result after the forward step. The im-

plementation of the reverse mode for determining the

derivative of the solution map of the lower level problem

with respect to ϑ is given in Algorithm 2.

5.2 Derivative of primal–dual splitting

Since the primal–dual algorithm with Bregman proxim-

ity functions from [9] provides us with a flexible tool,



8 Peter Ochs et al.

Algorithm 2 Derivative of a forward–backward splitting algorithm

– Assumptions: proxψαg and id + α∇f are totally differentiable.

– Initialization at n+ 1:

z(n+1) :=

(
∂L
∂x

(x∗(ϑ), ϑ)

)>
∈ RN and w(n+1) := 0 ∈ RP

– Iterations (n ≥ 0): Update (where derivatives of proxψαg are evaluated at (y(n), ϑ) and

derivatives of ∇f at (x(n);ϑ))

for n to 0 :
w(n) = w(n+1) +

(∂ proxψαg
∂ϑ

)>
+

(
− α

∂(∇f)

∂ϑ

)>(
∂ proxψαg

∂y

)> z(n+1)

z(n) =

(
id− α

∂(∇f)

∂x

)>(
∂ proxψαg

∂y

)>
z(n+1)

– Final derivative of L in (7) wrt. ϑ:

dL
dϑ

(x∗(ϑ), ϑ) = (w(0))> +
∂L
∂ϑ

(x∗(ϑ), ϑ) .

we specify the implementation of the reverse mode for

this algorithm. It applies to the convex–concave saddle-

point problem

min
x

max
y
〈Kx, y〉+ f(x) + g(x)− h∗(y) ,

which is derived from minx f(x) + g(x) +h(Kx), where

f is convex and has a Lipschitz continuous gradient and

g, h are proper, lower semi-continuous convex functions

with simple proximity operator for g and for the convex

conjugate h∗.

Let the forward iteration of the primal–dual algo-

rithm with variables x(n) = (u(n), p(n)) ∈ RNu+Np be

given as

u(n+1) = PDu(u(n), p(n), ϑ)

:= arg min
u

〈
∇f(u(n)), u− u(n)

〉
+ g(u)

+
〈
Ku, p(n)

〉
+ 1

τDu(u, u(n))

p(n+1) = PDp(2u(n+1) − u(n), p(n), ϑ)

:= arg min
p

h∗(p)−
〈
K(2u(n+1) − u(n)), p

〉
+ 1

σDp(p, p
(n)) ,

(13)

where f, g, h,K can depend on ϑ. The step size pa-

rameter τ and σ must be chosen according to (τ−1 −
Lf )σ−1 ≥ L2 where L = ‖K‖ is the operator norm of

K and Lf is the Lipschitz constant of ∇f .

To illustrate the application of the chain rule through-

out the primal–dual algorithm, we show a graphical rep-

resentation of the information flow in Figure 1, where

we use the following abbreviations (analogously for PDp):

PD(n)
u := PDu(u(n), p(n), ϑ) ;

PD(n)
p := PDp(2u(n+1) − u(n), p(n), ϑ) ;

∂uPDu :=
∂PDu
∂u

; ∂pPDu :=
∂PDu
∂p

; ∂ϑPDu :=
∂PDu
∂ϑ

.

Remark 2 In Section 5.1, we evaluated the forward and

the backward step separately using the chain rule. Of

course, this could be done here as well.

Based on this graphical representation, it is easy to de-

rive Algorithm 3.

A running average is used to implement the ergodic

primal–dual algorithm whose output is the average of

all iterates, i.e., u∗ = 1
n+1

∑n
i=0 u

(i): denote s
(n)
u :=

1
n+1

∑n
i=0 u

(i), then s
(n+1)
u = 1

n+2u
(n+1)+n+1

n+2s
(n)
u . Since

the derivative is a linear operator, we can estimate the

derivative for the ergodic primal–dual sequence by av-

eraging all w(n). These can be computed as a running

average in the loop of Algorithm 3.

6 “Smoothing” using Bregman proximity

Splitting based techniques like those in Section 5 usu-

ally handle non-smooth terms in the objective function

via a (non-linear/Bregman) proximal step. Convex con-

jugation makes terms in the objective amenable for sim-

ple and differentiable proximal mappings. Adding the

possibility of considering a primal, primal–dual, or dual

formulation yields many examples of practical interest.



Bilevel Optimization with Nonsmooth Lower Level Problems 9

du∗

dϑ

dϑ du(n)

dϑ
dp(n)

dϑ

dϑ du(n−1)

dϑ
dp(n−1)

dϑ
dϑ

dϑ du(n−2)

dϑ
dp(n−2)

dϑ
dϑ

∂uPD
(n)
u ∂pPD

(n)
u

∂ϑPD
(n)
u

∂uPD
(n−1)
u ∂pPD

(n−1)
u

∂ϑPD
(n−1)
u

∂uPD
(n−2)
u ∂pPD

(n−2)
u

∂ϑPD
(n−2)
u

∂pPD
(n−1)
p

∂ϑPD
(n−1)
p

2∂uPD
(n−1)
p

−∂uPD
(n−1)
p

∂pPD
(n−2)
p

∂ϑPD
(n−2)
p

2∂uPD
(n−2)
p

−∂uPD
(n−2)
p

2∂uPD
(n−3)
p

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 1 The graph shows how the information is backprogated to estimate the derivatives in Algorithm 3. The derivatives
at the nodes show what derivative is to be evaluated from this point downwards through the graph. The edges represent
multiplicative (transposed) factors. The final derivative is the sum over all leaf nodes.

Algorithm 3 Derivative of a primal–dual algorithm

– Assumptions: PDu and PDp are totally differentiable.
– Initialization at n+ 1:

z(n+1) :=

(
∂L
∂u

(u∗(ϑ), ϑ)

)>
∈ RNu , q(n+1) := 0 ∈ RNp

and w(n+1) := 0 ∈ RP

– Iterations (n ≥ 0): Update

for n to 0 :

w(n) = w(n+1) +

(
∂PD(n)

u

∂ϑ

)>
z(n+1) +

(
∂PD(n)

p

∂ϑ

)>
q(n+1)

q(n) =

(
∂PD(n)

u

∂p

)>
z(n+1) +

(
∂PD(n)

p

∂p

)>
q(n+1)

z(n) =

(
∂PD(n)

u

∂u

)>
z(n+1) + 2

(
∂PD(n−1)

p

∂u

)>
q(n) −

(
∂PD(n)

p

∂u

)>
q(n+1)

– Final derivative of L in (7) with A = (PDu,PDp) wrt. ϑ:

dL
dϑ

(u∗(ϑ), ϑ) = (w(0))> +
∂L
∂ϑ

(u∗(ϑ), ϑ) .

In the following, we introduce the class of Bregman

functions that can be used in combination with the al-

gorithms in Section 5. Then, we discuss a few exam-

ples that allow the reformulation of several non-smooth

terms arising in applications.

6.1 Bregman proximity functions

We consider Bregman proximity functions [5] with the

following properties: Let ψ : RN → R be a 1-convex

function with respect to the Euclidean norm, i.e., it

is strongly convex with modulus 1, and denote its do-

main by X := domψ. We assume that ψ is continuously

differentiable on the interior of its domain int(X) and

continuous on its closure cl(X).

Then, ψ generates a Bregman proximity function

Dψ : X × int(X)→ R by

Dψ(x, x̄) := ψ(x)− ψ(x̄)− 〈∇ψ(x̄), x− x̄〉 . (14)



10 Peter Ochs et al.

For a sequence (xn)n∈N converging to x ∈ X, we require

that limn→∞Dψ(x, xn) = 0. The 1-convexity of ψ im-

plies that the Bregman function satisfies the inequality

Dψ(x, x̄) ≥ 1

2
‖x− x̄‖2 , ∀x ∈ X, x̄ ∈ int(X) .

These are the kind of Bregman proximity functions con-

sidered in [9]. Obviously ψ(x) = 1
2‖x‖

2 corresponds to

Dψ(x, x̄) = 1
2‖x− x̄‖

2.

In iterative algorithms, the Bregman proximity func-

tion is used via the proximity operator for a proper,

lower semi-continuous, convex function g : X → R

proxψαg(x̄) := arg min
x∈X

αg(x) +Dψ(x, x̄) , (15)

where we define proxαg := prox
1
2‖·‖

2

αg .

There are two kinds of Bregman proximity func-

tions: (i) The function ∇ψ can be continuously ex-

tended to X, i.e., Dψ can be defined on X × X, and

(ii) ψ is differentiable on int(X) (i.e. ∇ψ cannot nec-

essarily be extended to cl(X)). In this case Dψ(x, x̄)

makes sense only on X × int(X) and we must assure

that proxψαg(x̄) ∈ int(X) for any x̄ ∈ int(X). For this,

we need to assume that ‖∇ψ(x)‖ → ∞ whenever x ap-

proaches a boundary point bdry(X) := cl(X) r int(X)

(which is sometimes referred to as ψ being essentially

smooth [36]).

While solutions of the proximity operator for the

first class can lie on the boundary bdry(X), this is not

possible for the second class; boundary points can be

reached only in the limit when the proximity operator

is applied sequentially. Moreover, for x̄ ∈ bdry(X), (14)

would imply that, unless x = x̄, the Bregman distance

is +∞ for any x, which can be represented by δ[x=x̄](x).

This means x̄ ∈ bdry(X) is always a fixed point of this

Bregman proximity operator. This precludes applica-

tion of the fixed-point approach from Section 4.3.

6.2 Examples of Bregman functions

Since Bregman proximity functions play a key role in

this paper, we consider a few examples.

Example 1 The Euclidean length ψ(x) = 1
2‖x‖

2
2 is con-

tinuously differentiable on the whole space RN , and

therefore, belongs to class (i) of Bregman proximity

functions.

Example 2 The Bregman proximity function generated

by ψ(x) = 1
2 ((x + 1) log(x + 1) + (1 − x) log(1 − x)) is

defined on the interval (−1, 1) and can be continuously

extended to [−1, 1], and is continuously differentiable

on (−1, 1) with |ψ′(x)| → ∞ when x → ±1. It is 1-

strongly convex.

Example 3 The entropy function ψ(x) = x log(x), which

can be continuously extended to [x ≥ 0], is continu-

ously differentiable on [x > 0] with derivative ψ′(x) =

log(x) + 1. The derivative cannot be continuously ex-

tended to x = 0. For x→ 0 we have |ψ′(x)| → +∞. Un-

fortunately, this function is not even 1-strongly convex

on [x ≥ 0]. However, the function ax log(x) is 1-strongly

convex when restricted to a bounded subset [0, 1/a],

a > 0. For a = 1, the Bregman function Dψ(x, x̄) =

x(log(x)− log(x̄))− (x− x̄) is generated.

Example 4 The entropy function can also be used in

higher dimensions. Unfortunately, it is hard to assert a

simple evaluation of an associated proximity mapping

in this case. Consider a polyhedral set ∅ 6= X ∈ RN
given by

X = {x ∈ RN | ∀i = 1, . . . ,M : 〈ai, x〉 ≤ bi}

=

M⋂
i=1

{x ∈ RN | 〈ai, x〉 ≤ bi}

for vectors 0 6= ai ∈ RN , and bi ∈ RM , i = 1, . . . ,M .

Then, the generating function

ψ(x) =

M∑
i=1

(bi − 〈ai, x〉) log(bi − 〈ai, x〉)

is designed such that for any point x̄ ∈ int(X) any

other point x 6∈ X is “moved infinitly far away” with

respect to the Bregman distance Dψ(x, x̄). Therefore

‖∇ψ(x)‖ → ∞ for x tends towards a point on the

boundary bdry(X). Nevertheless, ψ is continuous on

X and strongly convex, if X is bounded.

6.3 Examples of smooth Bregman proximity operators

The Bregman proximity functions that we presented are

particularly interesting if the evaluation of the proxi-

mal mapping (15) is a constrained minimization prob-

lem, i.e. the involved function g in proxψg is extended-

valued and +∞ outside the constraint (closed) convex

set X ⊂ RN . The Bregman function can replace or sim-

plify the constraint set. In the following, we consider a

few examples of practical interest. The class of functions

that are amenable to our approach can be broadened

significantly thanks to the concept of (convex) conju-

gation.

We consider a basic class of functions g(x) = 〈x, c〉+
δX(x) for some c ∈ RN . The associated (non-linear)

proximity operator from (15) is given by

proxψαg(x̄) = arg min
x∈X

α 〈x, c〉+Dψ(x, x̄) .



Bilevel Optimization with Nonsmooth Lower Level Problems 11

The corresponding (necessary and sufficient) optimality

condition, which has a unique solution, is

0 ∈ c+∇ψ(x)−∇ψ(x̄) + ∂δX(x)

⇔ ∇ψ(x̄)− c ∈ ∇ψ(x) + NX(x) ,

where NX(x) denotes the normal cone at x of the set X.

Suppose x̄ ∈ int(X). If ψ is chosen such that ‖∇ψ(x)‖ →
+∞ for x → x̃ ∈ bdry(X), then the solution of the

proximal mapping is in int(X). Since NX(x) = 0 for

x ∈ int(X), the optimality condition simplifies to

∇ψ(x̄)− c = ∇ψ(x) , (16)

i.e. the constraint is implicitly taken care of by the Breg-

man proximity function. Summarizing, the goal of our

approach (for this basic function g) consists of deter-

mining ψ, respectively Dψ, such that

– the constraint set can be handled implicitly,

– (16) can be solved efficiently (possibly in closed form),

– and the solution function of (16), which yields the

solution of (16) for a given x̄, is required to be dif-

ferentiable wrt. x and ϑ, where possibly c = c(ϑ).

Example 5 For a linear function g(x) = 〈c, x〉+δ[x≥0](x)

the entropy function from Example 3 can be summed-

up for each coordinate to remove the non-negativity

constraint. The proximity operator reads:(
prox

∑
j xj log xj

αg (x̄)

)
i

= x̄i exp(−αci) .

A closer look at the iterations of the forward–backward

splitting (FBS) algorithm (12) reveals that such a func-

tion g arises with c = ∇f(x̄), i.e. in the iterations of

FBS for the minimization of

min
x∈RN

f(x) + δ[x≥0](x) .

A particular instance of this problem is the non-negative

least squares problem, i.e. f(x) = 1
2‖Ax − b‖22 with a

matrix A and a vector b.

Example 6 The most frequent application of the entropy-

prox is for the minimization of a linear function g(x) =

〈c, x〉 over the unit simplex in RN . Since the entropy

function restricts the solution of the proximity opera-

tor to the positive orthant, projecting a point x̄ ∈ RN+
onto the unit simplex {x ∈ RN |

∑N
i=1 xi = 1 and xi ≥

0} reduces to the projection onto the affine subspace

{x ∈ RN |
∑N
i=1 xi = 1}, which can be given in closed-

form, i.e.,(
prox

∑
j xj log xj

αg (x̄)

)
i

=
x̄i exp(−αci)∑N
j=1 x̄j exp(−αcj)

.

This proximal problem arises for example in the multi-

label segmentation problem in Section 8.1 or in Matrix

games (see [9, Section 7.1]).

Example 7 For the function g(x) = 〈c, x〉+δ[−1≤x≤1](x)

the Bregman function from Example 2 reduces the min-

imization problem in the proximal mapping to an un-

constrained problem. The proximal mapping with ψ(x) =∑
i

1
2 ((xi + 1) log(xi + 1) + (1− xi) log(1− xi)) reads:

(
proxψαg(x̄)

)
i

=
exp(−2αci)− 1−x̄i

1+x̄i

exp(−2αci) + 1−x̄i

1+x̄i

.

Obviously, this example can be adjusted to any Carte-

sian product of interval constraints. The importance of

this exemplary function g becomes clear in the follow-

ing.

Functions that are linear on a constraint set also

arise when conjugate functions are considered. For in-

stance the `1-norm can be represented as

‖x‖1 = max
y
〈x, y〉+ δ[−1≤y≤1](y) .

In combination with the primal–dual (PD) algorithm

(13), this representation results in subproblems of the

type discussed in the preceding examples. From this

perspective, optimization problems involving a linear

operator D and the `1-norm ‖Dx‖1 are also easy to

address.

This idea of conjugation can be put into a slightly

larger framework, as the convex conjugate of any posi-

tively one-homogeneous proper, lsc, convex function is

an indicator function of a closed convex set. Unfortu-

nately, it is required that projecting onto such a set is

easy (“prox-friendliness”). Therefore, the following ex-

ample is restricted to the (additively) separable case.

Example 8 Let g be an (additively) separable, posi-

tively one-homogeneous, proper, lsc, convex functions

g(x) =
∑N
i=1 gi(xi). Thanks to its properties g coincides

with its bi-conjugate function g∗∗ and we can consider

g(x) = g∗∗(x) =

N∑
i=1

max
yi

xiyi − δYi(yi) ,

where Yi = [ai, bi] is a closed interval in R. Again the

dual update step of (13) involves problems such as in

Example 7 with h∗(y) =
∑
i δYi

(yi).



12 Peter Ochs et al.

−1 0 1 2 3 4
0

0.005

0.01

0.015

0.02

0.025

0.03

ϑ

L
(x

∗
(ϑ

),
ϑ
)

−1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

ϑ

x
∗
(ϑ

)

Fig. 2 Visualization of the loss function L(x(ϑ), ϑ) for the 1D
example (17) on the left side. The optimum is marked with
a black star. On the right hand side, the solution map of the
lower level problem is shown.

7 Toy example

The bilevel problem that we consider here is a parame-

ter learning problem of a one dimensional non-negative

least-squares problem:

min
ϑ∈R

1

2
(x∗(ϑ)− g)2

s.t. x∗(ϑ) = arg min
x∈R

λ

2
(ϑx− b)2 +

1

2
x2 + δ[x≥0](x) ,

(17)

where ϑ is the optimization variable of the bilevel prob-

lem, b ∈ R is the input of the least squares problem,

and λ is a positive weighting parameter. Given ϑ and

b the lower level problem solves the non-negative least

squares problem. The squared Euclidean loss function

in the upper level problem compares the output of the

lower level problem for some ϑ and b to the ground truth

g := x∗(ϑ∗), which is generated by solving the lower

level problem with some predefined value ϑ∗. The goal

of the bilevel optimization problem is to find ϑ∗ given

b and g.

The analytic solution of the lower level problem (the

solution map) is

x∗(ϑ) = max
(

0,
λϑb

1 + λϑ2

)
and is shown on the right hand side of Figure 2. It is ob-

viously a non-smooth function with a non-differentiable

point at ϑ = 0. Plugging the solution map into the

upper level problem shows the actual objective to be

minimized; see the left hand side of Figure 2.

7.1 Experimental setup

In the following experiments, we numerically explore

the gradients computed with the proposed techniques.

We do not consider the actual minimization of the bilevel

problem. The computed gradients could be used by any

first-order gradient based method.

Analytic subdifferential. For ϑ 6= 0 the standard chain

rule from calculus can be applied and we can directly

write down the derivative of the whole problem, namely

dL
dϑ

(x(ϑ)) =
λb(1− λϑ2)

(1 + λϑ2)2
(x(ϑ)− g) .

For ϑ = 0, we consider the derivative

dL
dϑ

(x(ϑ)) = [0, λb(x(0)− g)] ,

where [0, λb] is replaced by [λb, 0] if λb < 0.

Implicit differentiation approach Section 4.1. In order

to apply this technique, we must smooth the lower level

problem. Since we want to avoid solutions x∗(ϑ) = 0,

we introduce a log-barrier and replace the lower level

problem by

fµ(x, ϑ) :=
λ

2
(ϑx− b)2 +

1

2
x2 − µ log(x)

for some small µ > 0. Thus, we can drop the non-

negativity constraint. To compute the gradient via the

implicit differentiation formula (6), we minimize fµ with

respect to x and compute the second derivatives (we ab-

breviate the x-derivative with f ′µ and ϑ-derivative with

∂ϑfµ)

f ′µ(x, ϑ) = λϑ(ϑx− b) + x− µ

x
;

f ′′µ (x, ϑ) = λϑ2 + 1 +
µ

x2
;

∂ϑf
′
µ(x, ϑ) = 2λϑx− λb .

(18)

Then, (6) yields

dL
dϑ

(x∗(ϑ)) = −(x(ϑ)−g)(f ′′µ (x∗(ϑ), ϑ))−1∂ϑf
′
µ(x∗(ϑ), ϑ) .

This approach is denoted Smoothed-impl.

Algorithmic differentiation approach Section 4.2. We

consider two algorithms: projected gradient descent and

forward–backward splitting with Bregman proximity func-

tions. Both algorithms are splitting methods that dis-

tribute the objective into a smooth function f and a

non-smooth function g, for our example it reads

f(x, ϑ) =
λ

2
(ϑx− b)2 +

1

2
x2 and g(x) = δ[x≥0](x) .

Projected gradient descent operates by a gradient de-

scent step with respect to the smooth function f fol-

lowed by a projection onto the (convex) set [x ≥ 0]:

x(n+1) = proj[x≥0](x
(n) − αf ′(x(n), ϑ))

= max(0, x(n) − αf ′(x(n))) .
(19)



Bilevel Optimization with Nonsmooth Lower Level Problems 13

Note that the projection onto the convex set can also be

interpreted as solving the proximity operator associated

with the function g.

The second algorithm is obtained by changing the

distance function for evaluating the proximity operator

to the Bregman distance from Example 3. It results in

x(n+1) = xn exp(−αf ′(x(n), ϑ)) . (20)

As we assume that x0 ∈ [x > 0] the Bregman proximity

function ensures that the solution stays in the feasible

set. Thus, the back-projection can be dropped.

To apply Algorithm 1 or 2, we need the second

derivatives of the update steps (19) and (20). The sec-

ond derivatives of f = fµ with µ = 0 are given in (18).

Although, (19) is not differentiable, it is differentiable

almost everywhere, and in the experiment, we formally

applied the chain rule and assigned an arbitrary sub-

gradient wherever it is not unique, i.e.,

∂ proj[x≥0]

∂x
(x, ϑ) =


0, if x < 0 ;

1, if x > 0 ;

[0, 1], if x = 0 ;

and
∂ proj[x≥0]

∂ϑ = 0. This approach is denoted Proj.GD.

For (20), we use Algorithm 1 and obtain5

∂A
∂ϑ

(x(n), ϑ) = − αx exp(−αf ′(x(n), ϑ))
∂f ′

∂ϑ
(x(n), ϑ)

∂A
∂x

(x(n).ϑ) = exp(−αf ′(x(n), ϑ))

− αx(n) exp(−αf ′(x(n), ϑ))f ′′(x(n), ϑ) .

This approach is denoted Bregman-FB.

Implicit differentiation of the fixed point equation ap-

proach from Section 4.3. As explained above, direct dif-

ferentiation of the fixed point equation of an algorithm

implies two techniques. One is by applying Algorithm 1

to (20) but evaluating all derivatives at the optimum

(denoted Bregman-FB2). The other is to do the numer-

ical inversion as in (11) (denoted Bregman-FB-impl).

7.2 Analysis of the 1D example

In the experiments, we focus on the estimation of the

gradient (in Figure 3). Therefore, the step size param-

eters of the individual algorithms are chosen such that

a comparable convergence of the lower level energy is

achieved, if possible.

5 Note that we kept the order of the terms given by the
chain rule, since for multi-dimensional problems the products
are matrix products and are, in general, not commutative.

−1 0 1 2 3 4
0

0.005

0.01

0.015

0.02

0.025

0.03

ϑ

L
(x

∗
(ϑ

),
ϑ
)

−1 0 1 2 3 4
0

0.005

0.01

0.015

0.02

0.025

0.03

ϑ

L
(x

∗
(ϑ

),
ϑ
)

Fig. 3 Analytic tangents to the upper level objective function
of (17) at ϑ = 0.3 and ϑ = 0. The function is non-smooth and,
thus, at ϑ = 0 there exists many tangent lines.

10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

10
0

iterations

|E
−

E
m

i
n
|

 

 

Proj. GD  
Proj. GD2  
Bregman−FB    
Bregman−FB2     
Bregman−FB−impl    
Smoothed−impl 0.01   
Smoothed−impl 0.0001   

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

iterations

|E
−

E
m

i
n
|

 

 

Proj. GD  
Proj. GD2  
Bregman−FB    
Bregman−FB2     
Bregman−FB−impl    
Smoothed−impl 0.01   
Smoothed−impl 0.0001   

10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

10
0

iterations i

‖
w

(n
−

i
) −

d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)‖

 

 

Proj. GD  
Proj. GD2  
Bregman−FB    
Bregman−FB2     

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

iterations i
‖
w

(n
−

i
) −

d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)‖

 

 

Proj. GD  
Proj. GD2  
Bregman−FB    
Bregman−FB2     

Fig. 4 The upper row shows the energy decrease along the
forward iterations. The lower row shows the convergence to
the respective gradient value along the back-iterations. On
the left hand side the plot is generated with ϑ = 0.3 and
on the right hand side with ϑ = 0. The “-impl” methods
do not appear in the bottom row as no back-iterations are
involved. For ϑ = 0, due to the simple structure of the lower
level problem, projected gradient descent converges exactly
in one iteration, thus it is not shown. The gradient converges
linearly to its final value, which means that often a few back-
iterations are enough to achieve a gradient estimate of good
quality.

For Proj.GD, Bregman-FB, and Bregman-FB2 the

chain rule must be applied recursively. We plot the

change of the gradient accumulation along these back-

iterations (of 200 forward-iterations) in bottom of Fig-

ure 4 and the energy evolution in the upper part of

this figure. In this example, we can observe a linear

decrease in the contribution to the respective final gra-

dient value, which shows that back-iterations can be

stopped after a few iterations without making large er-

rors.

Interestingly, the approximations Bregman-FB2 and

Proj.GD2 work well, as they show the same gradient ac-

cumulation as Bregman-FB and Proj.GD, respectively.

This situation changes when the number of forward-



14 Peter Ochs et al.

10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

10
0

iterations n

‖
d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)
−

d
L

d
ϑ
(x

∗
(ϑ

),
ϑ
)‖

 

 

Proj. GD  
Proj. GD2  
Bregman−FB    
Bregman−FB2     
Bregman−FB−impl    
Smoothed−impl 0.01   
Smoothed−impl 0.0001   

10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

10
0

iterations n

‖
d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)
−

d
L

d
ϑ
(x

∗
(ϑ

),
ϑ
)‖

 

 

Proj. GD  
Proj. GD2  
Bregman−FB    
Bregman−FB2     
Bregman−FB−impl    
Smoothed−impl 0.01   
Smoothed−impl 0.0001   

10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

10
0

iterations n

‖
d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)
−

d
L

d
ϑ
(x

∗
(ϑ

),
ϑ
)‖

 

 

Proj. GD  
Proj. GD2  
Bregman−FB    
Bregman−FB2     
Bregman−FB−impl    
Smoothed−impl 0.01   
Smoothed−impl 0.0001   

10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

10
0

iterations n

‖
d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)
−

d
L

d
ϑ
(x

∗
(ϑ

),
ϑ
)‖

 

 

Proj. GD  
Proj. GD2  
Bregman−FB    
Bregman−FB2     
Bregman−FB−impl    
Smoothed−impl 0.01   
Smoothed−impl 0.0001   

10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

10
0

iterations n

‖
d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)
−

d
L

d
ϑ
(x

∗
(ϑ

),
ϑ
)‖

 

 

Proj. GD  
Proj. GD2  
Bregman−FB    
Bregman−FB2     
Bregman−FB−impl    
Smoothed−impl 0.01   
Smoothed−impl 0.0001   

10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

10
0

iterations n
‖

d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)
−

d
L

d
ϑ
(x

∗
(ϑ

),
ϑ
)‖

 

 

Proj. GD  
Proj. GD2  
Bregman−FB    
Bregman−FB2     
Bregman−FB−impl    
Smoothed−impl 0.01   
Smoothed−impl 0.0001   

Fig. 5 Convergence of the numerical gradients towards the analytic gradient for ϑ = 0.3. Row-wise, from left to right, the
number of back-iterations is increased: 5, 10, 20, 50, 100, 200. More back-iterations lead to more accurate gradient estimates.
The “-impl” methods always perform equally, as no back-iterations are required. Smoothed-impl performs worst due to the
rough approximation. Our methods Bregman-FB, Bregman-FB2, and Bregman-FB-impl are the best; and converge slightly better
than Proj.GD and Proj.GD2.

50 100 150 200

−0.1

−0.08

−0.06

−0.04

−0.02

0

d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)

iterations n

 

 

Proj. GD  
Proj. GD2  
Bregman−FB    
Bregman−FB2     
Bregman−FB−impl    
Smoothed−impl 0.01   
Smoothed−impl 0.0001   

50 100 150 200

−0.1

−0.08

−0.06

−0.04

−0.02

0

d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)

iterations n

 

 

Proj. GD  
Proj. GD2  
Bregman−FB    
Bregman−FB2     
Bregman−FB−impl    
Smoothed−impl 0.01   
Smoothed−impl 0.0001   

50 100 150 200

−0.1

−0.08

−0.06

−0.04

−0.02

0

d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)

iterations n

 

 

Proj. GD  
Proj. GD2  
Bregman−FB    
Bregman−FB2     
Bregman−FB−impl    
Smoothed−impl 0.01   
Smoothed−impl 0.0001   

50 100 150 200

−0.1

−0.08

−0.06

−0.04

−0.02

0

d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)

iterations n

 

 

Proj. GD  
Proj. GD2  
Bregman−FB    
Bregman−FB2     
Bregman−FB−impl    
Smoothed−impl 0.01   
Smoothed−impl 0.0001   

50 100 150 200

−0.1

−0.08

−0.06

−0.04

−0.02

0

d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)

iterations n

 

 

Proj. GD  
Proj. GD2  
Bregman−FB    
Bregman−FB2     
Bregman−FB−impl    
Smoothed−impl 0.01   
Smoothed−impl 0.0001   

50 100 150 200

−0.1

−0.08

−0.06

−0.04

−0.02

0

d
L

d
ϑ
(x

(n
)
(ϑ

),
ϑ
)

iterations n

 

 

Proj. GD  
Proj. GD2  
Bregman−FB    
Bregman−FB2     
Bregman−FB−impl    
Smoothed−impl 0.01   
Smoothed−impl 0.0001   

Fig. 6 Convergence of the numerical gradients towards the analytic gradient for ϑ = 0. Row-wise, from left to right, the
number of back-iterations is increased: 5, 10, 20, 50, 100, 200. All methods perform equally well, as they lie in the bright green
area that indicates the range of the subdifferential.



Bilevel Optimization with Nonsmooth Lower Level Problems 15

iterations is reduced. For about 15 forward-iterations, a

difference of order 10−4 becomes visible (case ϑ = 0.3).

Figures 5 and 6 address the convergence of the gra-

dient towards the analytic gradient, with respect to dif-

ferent approximation accuracies (varied by the number

of back-iterations). Figure 5 shows the convergence for

ϑ = 0.3 and Figure 6 for ϑ = 0. Numerically, we observe

convergence to the analytic gradients.

Surprisingly, all methods perform equally well in the

case ϑ = 0. The estimated gradient lies always in the

subdifferential at this point. The range of the subdiffer-

ential is indicated with bright green color in Figure 6.

While Proj.GD and Proj.GD2 estimate a gradient from

the boundary of the subdifferential, the other methods

estimate a subgradient from the interior. However, all

of these values are feasible and belong to the analytic

subdifferential.

8 Application to Multi-Label Segmentation

In this section, we show how the idea can be applied

in practice. To this end, we introduce a multi-label seg-

mentation model. We use a convolutional neural net-

work (CNN) to parametrize the segmentation model.

Alternatively, this construction can be thought of as

having a segmentation model as the final stage of a

deep neural network. In this setting, the bilevel prob-

lem amounts to finding the parameters of the CNN such

that the loss on training data is minimized. The pre-

sented approach provides a generic way to train such

systems in an end-to-end fashion.

8.1 Model

Given a cost tensor c ∈ XNl , where X = RNxNy , that

assigns to each pixel (i, j) and each label k, i = 1, . . . , Nx,

j = 1, . . . , Ny, k = 1, . . . , Nl, a cost cki,j for the pixel

taking label k. We often identify RNx×Ny with RNxNy

by (i, j) 7→ i + (j − 1)Nx to simplify the notation.

The sought segmentation u ∈ XNl

[0,1], where X[0,1] =

[0, 1]NxNy ⊂ X, is represented by a binary vector for

each label. As a regularizer for a segment’s plausibility

we measure the boundary length using the total varia-

tion (TV). The discrete derivative operator ∇ : X → Y ,

where we use the shorthand Y := X×X (elements from

Y are considered as column vectors), is defined as:

(∇uk)i,j :=

(
(∇uk)xi,j
(∇uk)yi,j

)
∈ Y (= R2NxNy ),

Du :=(∇u1, . . . ,∇uNl),

(∇uk)xi,j :=

{
uki+1,j − uki,j , if 1 ≤ i < Nx, 1 ≤ j ≤ Ny
0 , if i = Nx, 1 ≤ j ≤ Ny

(∇uk)yi,j is defined analogously. From now on, we work

with the image as a vector indexed by i = 1, . . . , NxNy.

Let elements in Y be indexed with j = 1, . . . , 2NxNy.

Let the inner product in X and Y be given, for uk, vk ∈
X and pk, qk ∈ Y , as:

〈
uk, vk

〉
X

:=

NxNy∑
i=1

uki v
k
i ,
〈
pk, qk

〉
Y

:=

2NxNy∑
j=1

pkj q
k
j ,

〈u, v〉XNl :=

Nl∑
k=1

〈
uk, vk

〉
X
, 〈p, q〉Y Nl :=

Nl∑
k=1

〈
pk, qk

〉
Y
.

The (discrete, anisotropic) TV norm is given by

‖Du‖1 :=

Nl∑
k=1

2NxNy∑
j=1

|(∇uk)j| ,

where | · | is the absolute value. In the following, the

variables i = 1, . . . , NxNy and j = 1, . . . , 2NxNy always

run over these index sets, thus we drop the specification;

we adopt the the same convention for k = 1, . . . , Nl. We

define the pixel-wise nonnegative unit simplex

∆Nl := {∀(i, k) : 0 ≤ uki ≤ 1

and ∀i :
∑
k u

k
i = 1 u ∈ XNl} , (21)

and the pixel-wise (closed) `∞-unit ball around the ori-

gin

B`∞1 (0) := {p ∈ Y Nl | ∀(j, k) : |pkj | ≤ 1} .

Finally, the segmentation model reads

min
u∈XNl

〈c, u〉XNl + ‖WDu‖1 , s.t. u ∈ ∆Nl , (22)

where we use a diagonal matrixW to support contrast-

sensitive penalization of the boundary length.

This model and the following reformulation as a

saddle-point problem are well known (see e.g. [8])

min
u∈XNl

max
p∈Y Nl

〈WDu, p〉Y Nl + 〈u, c〉XNl , (23)

s.t. u ∈ ∆Nl , p ∈ B`∞1 (0) .

The saddle-point problem (23) can be solved using the

ergodic primal-dual algorithm [9], which leads to an

iterative algorithm with totally differentiable iterations.

The primal update in (13) is discussed in Example 6 and

the dual update of (13) is essentially Example 7. As a

consequence Algorithm 3 can be applied to estimate

the derivatives. A detailed derivation of the individual

steps of the algorithm can be found in [30].



16 Peter Ochs et al.

10 50 100 150 200

iterations n

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

L
o

s
s

10 50 100 150 200

iterations n

76

78

80

82

84

86

88

90

92

94

96

P
ix

e
l 
A

c
c
u
ra

c
y

10 50 100 150 200

iterations n

0

0.5

1

1.5

2

2.5

T
im

e
 [
s
]

Fig. 7 Training error vs. number of iterations of the algorithm solving the lower level problem. From left to right, average
per-pixel loss, per-pixel accuracy and time per outer iteration. The timing includes the forward pass as well as the gradient
computations. Timings were taken on a NVIDIA Geforce Titan X GPU. A higher number of iterations clearly leads to lower
error, but comes at the cost of a higher computational complexity.

8.2 Parameter Learning

We consider (22) where the cost c is given by the output

of a CNN which takes as input an image I ∈ XNc to

be segmented and is defined via a set of weights ϑ. For-

mally, we have cki = fki (ϑ, I) with f : RNϑ×XNc → XNl ,

where Nc denotes the number of channels of the input

image and Nϑ is the number of weights parametrizing

the CNN.

The training set consists ofNT images I1, . . . ,INT ∈
XNc and their corresponding ground truth segmenta-

tions g1, . . . , gNT ∈ {1, . . . , Nl}NxNy .

The parameters ϑ of the CNN are cast as an instance

of the general bilevel optimization problem (3):

min
ϑ∈RNϑ

NT∑
t=1

NxNy∑
i=1

log
( Nl∑
k=1

exp(uki (ϑ, It))
)
− gti(ϑ, I

t)

s.t. u(ϑ, It) = arg min
u∈XNl

E(u, f(ϑ, It)), (24)

where energy E in the lower level problem is (22) and

the higher-level problem is defined as the softmax loss.

Remark 3 We could equivalently use a multinomial lo-

gistic loss, since ui(ϑ, I
t) lies in the unit simplex by

construction. We use this definition to allow for a sim-

plified treatment of the case of training a CNN without

the global segmentation model.

8.3 Experiments

We implemented our approach as a custom layer in

the MatConvNet framework [39]. We used the Stanford

Background dataset [20], which consists of 715 input

images and pixel-accurate ground truth consisting of

the geometric classes sky, vertical and horizontal. We

used ADAM [22] for the minimization of the higher-

level problem. We found that general plain stochastic

gradient descent performs poorly in our setting, since

the global segmentation model can lead to vanishing

gradients.

In a first experiment we used a small subset of 9

images from the dataset to show the influence of the

number of iterations used to solve the lower-level prob-

lem (22) on the training objective. We learned a small

network consisting of four layers of alternating convo-

lutions with a kernel width of 3 pixels and ReLU units

followed by a fully connected layer. We added 3 × 3

max-pooling layers with a stride of two after the first

and the second convolutional layers, which effectively

downsamples the responses by a factor of 4. We added

an up-convolutional layer to upsample the responses to

the original image size. The penultimate layer of the

CNN consist of a multiplicative scaling (analogous to a

scalar smoothness parameter) of the CNN output fol-

lowed by the global segmentation model (22). We ran

ADAM with a learning rate of 10−3 for a total of 1000

iterations with a mini-batch size of one image to learn

the parameters of this network.

Figure 7 shows the average per-pixel loss, the aver-

age pixel accuracy as well as the time per ADAM iter-

ation vs. number of iterations used to solve the lower-

level problem (inner iterations). This experiment shows

that by solving the lower-level problem to higher accu-

racy the overall capacity and thus the accuracy of the

system can be enhanced. This comes at the price of a

higher computational complexity, which increases lin-

early with the number of iterations.

Finally, we performed a large scale experiment on

this dataset. We partitioned the images into a training

set of 572 images and used the remaining 143 images

for testing. We used the pre-trained Fully Convolutional

Network FCN-32s [26] as basis for this experiment. We

adapted the geometry of the last two layers to this

dataset and retrained the network. We then added a

multiplicative scaling layer followed by the global seg-



Bilevel Optimization with Nonsmooth Lower Level Problems 17

Fig. 8 Example results from the test set. Row-wise, from left to right: Input image, CNN, CNN+Global, ground truth. The
global model is able to align results to edges and is able to correct spurious errors.

mentation model and refined the parameters. The num-

ber of inner iterations was set to 100, which provides

a good trade-off between accuracy and computational

complexity. We use a mini-batch size of 5 images and a

learning rate of 10−3.

The average accuracy in terms of the average pixel

accuracy (Acc) in percent and Intersection over Union

(IoU ) on both the test and the training set is shown

in Table 1. We compare the plain Fully Convolutional

Network FCN to the network with the additional global

segmentation model FCN+Global. We observed an in-

crease of 1.4% in terms of IoU on the test set when us-

ing the global model. This can be attributed to the fact

that the CNN alone already provides good but coarse

segmentations and the segmentation model uses only

simple pairwise interactions. As such it is unable to

correct gross errors of the CNN.

Since the presented approach is applicable to a broad

range of energies, training of more expressive energies

which include more complex interactions (cf. [41]) is

a promising direction of future research. Example seg-

mentations from the test set are shown in Figure 8.

Remark 4 For a comparison to the smoothing approach

from Section 4.1 we refer to the conference version [30].

Test Train
Acc IoU Acc IoU

FCN 92.40 82.65 97.54 92.21
FCN+Global 93.00 84.01 97.90 93.53

Table 1 Accuracy on the Stanford Background dataset [20].
We compare the plain CNN to the CNN with an additional
global segmentation model.

9 Conclusion

We considered a class of bilevel optimization problems

with non-smooth lower level problem. By an appropri-

ate approximation we can formulate an algorithm with

a smooth update mapping that solves a non-smooth

optimization problem in the lower level. This allows us

to apply gradient based methods for solving the bilevel

optimization problem. A second approach directly con-

siders the fixed-point equation of the algorithm as op-

timality condition for the lower level problem. Key for

both ideas are Bregman proximity functions.

The idea of estimating gradients for an abstract al-

gorithm was exemplified for a forward–backward split-
ting method and a primal–dual algorithm with Breg-

man proximity functions. Several potential application

examples were shown. A toy example confirmed our re-

sults and provided some more intuition. The contribu-

tion of our idea to practical applications was demon-

strated by a multi-label segmentation model that was

coupled with a convolutional neural network.

There are several open questions, for example con-

vergence of the sequence of gradients or a full classifica-

tion of optimization problems that allow for algorithms

with smooth update mapping.

Acknowledgment

Peter Ochs and Thomas Brox acknowledge support from

the German Research Foundation (DFG grant BR 3815/8-

1). René Ranftl acknowledges support from Intel Labs.

Thomas Pock acknowledges support from the Austrian

science fund under the ANR-FWF project “Efficient al-



18 Peter Ochs et al.

gorithms for nonsmooth optimization in imaging”, No.

I1148 and the FWF-START project “Bilevel optimiza-

tion for Computer Vision”, No. Y729.

References

1. Al-Baali, M.: Descent property and global convergence
of the Fletcher–Reeves method with inexact line search.
IMA Journal of Numerical Analysis 5(1), 121–124 (1985)

2. Attouch, H., Bolte, J., Svaiter, B.: Convergence of descent
methods for semi-algebraic and tame problems: proxi-
mal algorithms, forward–backward splitting, and regular-
ized Gauss–Seidel methods. Mathematical Programming
137(1-2), 91–129 (2013)

3. Beck, A., Teboulle, M.: Mirror descent and nonlinear pro-
jected subgradient methods for convex optimization. Op-
erations Research Letters 31(3), 167–175 (2003)

4. Bennett, K., Kunapuli, G., Hu, J., Pang, J.S.: Bilevel op-
timization and machine learning. In: Computational In-
telligence: Research Frontiers, no. 5050 in Lecture Notes
in Computer Science, pp. 25–47. Springer Berlin Heidel-
berg (2008)

5. Bregman, L.M.: The relaxation method of finding the
common point of convex sets and its application to the so-
lution of problems in convex programming. USSR Com-
putational Mathematics and Mathematical Physics 7(3),
200–217 (1967)

6. Calatroni, L., Reyes, J., Schönlieb, C.B.: Dynamic sam-
pling schemes for optimal noise learning under multiple
nonsmooth constraints. ArXiv e-prints (2014). ArXiv:
1403.1278

7. Calatroni, L., Reyes, J., Schönlieb, C.B., Valkonen, T.:
Bilevel approaches for learning of variational imaging
models. ArXiv e-prints (2015). ArXiv: 1505.02120

8. Chambolle, A., Pock, T.: A first-order primal-dual algo-
rithm for convex problems with applications to imaging.
Journal of Mathematical Imaging and Vision 40(1), 120–
145 (2011)

9. Chambolle, A., Pock, T.: On the ergodic convergence
rates of a first-order primaldual algorithm. Mathemat-
ical Programming pp. 1–35 (2015)

10. Chen, Y., Pock, T., Ranftl, R., Bischof, H.: Revisit-
ing loss-specific training of filter-based MRFs for image
restoration. In: German Conference on Pattern Recog-
nition (GCPR), no. 8142 in Lecture Notes in Computer
Science, pp. 271–281. Springer Berlin Heidelberg (2013)

11. Chen, Y., Ranftl, R., Pock, T.: Insights into analysis
operator learning: From patch-based sparse models to
higher order MRFs. IEEE Transactions on Image Pro-
cessing 23(3), 1060–1072 (2014)

12. Deledalle, C.A., Vaiter, S., Fadili, J., Peyré, G.: Stein
Unbiased GrAdient estimator of the Risk (SUGAR) for
multiple parameter selection. SIAM Journal on Imaging
Sciences 7(4), 2448–2487 (2014)

13. Dempe, S.: Annotated Bibliography on Bilevel Program-
ming and Mathematical Programs with Equilibrium Con-
straints. Optimization 52(3), 333–359 (2003)

14. Dempe, S., Kalashnikov, V., Pérez-Valdés, G., Kalash-
nykova, N.: Bilevel Programming Problems. Energy Sys-
tems. Springer Berlin Heidelberg (2015)

15. Dempe, S., Zemkoho, A.: The generalized Mangasarian–
Fromowitz constraint qualification and optimality condi-
tions for bilevel programs. Journal of Optimization The-
ory and Applications 148(1), 46–68 (2010)

16. Domke, J.: Implicit Differentiation by Perturbation. In:
Advances in Neural Information Processing Systems
(NIPS), pp. 523–531 (2010)

17. Domke, J.: Generic methods for optimization-based mod-
eling. In: International Workshop on Artificial Intelli-
gence and Statistics, pp. 318–326 (2012)

18. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine
Properties of Functions. CRC Press, Boca Raton (1992)

19. Fletcher, R., Reeves, C.: Function minimization by con-
jugate gradients. The Computer Journal 7(2), 149–154
(1964)

20. Gould, S., Fulton, R., Koller, D.: Decomposing a scene
into geometric and semantically consistent regions. In:
International Conference on Computer Vision (ICCV)
(2009)

21. Griewank, A., Walther, A.: Evaluating Derivatives, sec-
ond edn. Society for Industrial and Applied Mathematics
(2008)

22. Kingma, D.P., Ba, J.: Adam: A method for stochastic
optimization. CoRR abs/1412.6980 (2014)

23. Kunisch, K., Pock, T.: A bilevel optimization approach
for parameter learning in variational models. SIAM Jour-
nal on Imaging Sciences 6(2), 938–983 (2013)

24. Lions, P.L., Mercier, B.: Splitting algorithms for the sum
of two nonlinear operators. SIAM Journal on Applied
Mathematics 16(6), 964–979 (1979)

25. Liu, D.C., Nocedal, J.: On the limited memory BFGS
method for large scale optimization. Mathematical Pro-
gramming 45(1), 503–528 (1989)

26. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional
networks for semantic segmentation. In: International
Conference on Computer Vision and Pattern Recognition
(CVPR) (2015)

27. Moore, G.: Bilevel programming algorithms for machine
learning model selection. Ph.D. thesis, Rensselaer Poly-
technic Institute (2010)

28. Ochs, P.: Long term motion analysis for object level
grouping and nonsmooth optimization methods. Ph.D.
thesis, Albert–Ludwigs–Universität Freiburg (2015)

29. Ochs, P., Chen, Y., Brox, T., Pock, T.: ipiano: Inertial
proximal algorithm for non-convex optimization. SIAM
Journal on Imaging Sciences 7(2), 1388–1419 (2014)

30. Ochs, P., Ranftl, R., Brox, T., Pock, T.: Bilevel opti-
mization with nonsmooth lower level problems. In: In-
ternational Conference on Scale Space and Variational
Methods in Computer Vision (SSVM) (2015)

31. Passty, G.B.: Ergodic convergence to a zero of the sum of
monotone operators in Hilbert space. Journal of Math-
ematical Analysis and Applications 72(2), 383 – 390
(1979)

32. Peyré, G., Fadili, J.: Learning analysis sparsity priors. In:
Proceedings of Sampta (2011)

33. Ranftl, R., Pock, T.: A deep variational model for image
segmentation. In: German Conference on Pattern Recog-
nition (GCPR), pp. 107–118 (2014)

34. Reyes, J., Schönlieb, C.B., Valkonen, T.: The structure
of optimal parameters for image restoration problems.
ArXiv e-prints (2015). ArXiv: 1505.01953

35. Reyes, J.C.D.L., Schönlieb, C.B.: Image denoising:
Learning noise distribution via pde-constrained optimisa-
tion. Inverse Problems and Imaging 7, 1183–1214 (2013)

36. Rockafellar, R.T.: Convex Analysis. Princeton University
Press, Princeton (1970)

37. Tappen, M.: Utilizing variational optimization to learn
MRFs. In: International Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1–8 (2007)



Bilevel Optimization with Nonsmooth Lower Level Problems 19

38. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.:
Large margin methods for structured and interdependent
output variables. Journal of Machine Learning Research
6, 1453–1484 (2005)

39. Vedaldi, A., Lenc, K.: Matconvnet – convolutional neural
networks for matlab (2015)

40. Zavriev, S., Kostyuk, F.: Heavy-ball method in noncon-
vex optimization problems. Computational Mathematics
and Modeling 4(4), 336–341 (1993)

41. Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet,
V., Su, Z., Du, D., Huang, C., Torr, P.: Conditional ran-
dom fields as recurrent neural networks. In: International
Conference on Computer Vision (ICCV) (2015)


	1 Introduction
	2 Related Work
	3 The Bilevel Problem
	4 Computing descent directions
	5 Explicit derivatives for exemplary algorithms
	6 ``Smoothing'' using Bregman proximity
	7 Toy example
	8 Application to Multi-Label Segmentation
	9 Conclusion

