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Preface

Malé poměry nevznikaj́ı t́ım, že máme malá města, nýbrž t́ım, že
jsme v nich neradi. Hledá-li člověk romantické dobrodružstv́ı,

je mu v takovém př́ıpadě jeho zahrádka ovšem př́ılǐs malá;
ale chce-li uhrabat cestičky nebo vyplejt bejĺı, shledá,

že je zatraceně veliká, věťśı, než v̊ubec tušil.1

Karel Čapek: O malých poměrech.
Př́ıtomnost 1925/1926, č. 48, 10. 12. 1925.

This is a PhD thesis about filtering of images and other similar kinds of data.
Before starting to read or browse the pages, the reader is likely to ask one important
question: after so much effort spent on this problem in the last ten, twenty, forty
years, what is the reason for writing even a single more page? What contribution
does it make?

Postponing precise contribution statements for a moment, we have to warn you
at the very beginning: if you hope to witness a breakthrough, an opening of a
brand new theory, or some other kind of ‘romantic adventure’, you will not find it
in this work. Rather, in the sense of Čapek’s words quoted above, we entered a
garden which other people had built and developed; we tried to smooth the paths,
rake over the soil and weed some flower beds. The garden was big enough, and
being busy with these tasks, we did not mind we were not involved in the discovery
of new continents; hopefully, our time and effort has helped to cultivate one or two
small and useful plants.

The work would be impossible, or at least much less enjoyable to complete
without the support and assistance of many people, either colleagues, friends, or
relatives. The author is grateful to all of them. From those involved in the scientific
part of the project, I owe much to Mirko Navara, my thesis supervisor at the Center
for Machine Perception, Czech Technical University: he supported me during all
those years, from directing my attention towards the topics of this thesis at the

1“Provincialism does not arise from our living in small towns, but from our dislike of living
there. If a man seeks romantic adventure, his garden obviously appears too small to him; but
wanting to rake the paths or pull out weeds, he will find the garden damn big, bigger than he could
ever imagine.” Excerpt from a magazine article by Karel Čapek, Czech playwright, journalist and
writer (1890–1938).
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beginning, to expressing many helpful comments on the manuscript. I would like
to acknowledge Karol Mikula from the Slovak University of Technology who was
the first to introduce nonlinear diffusion concept to me; I drew much inspiration
and encouragement from the discussions with him and other people involved in
diffusion filtering whom I have had the chance to meet: Joachim Weickert, Eber-
hard Bänsch, Pietro Perona, Alessandro Sarti and Zuzka Krivá are just a few of
them. Many thanks must also go to all my colleagues at the Center for Machine
Perception who helped to create the friendly and motivating atmosphere I have
had the pleasure to experience.

Prague, June 2001 Pavel Mrázek

A technical note: If you are reading the thesis in its electronic form as a PDF
document, the references to chapters, equations, citations etc. are for your conve-
nience linked to the referenced destination. If your viewer supports this feature
(and the Adobe Acrobat Reader does), you can follow links and references easily
by a mouse click, and come back using the viewer’s navigation.

The document is available at
ftp://cmp.felk.cvut.cz/pub/cmp/articles/mrazek/Mrazek-phd01.pdf

or through my homepage http://cmp.felk.cvut.cz/~mrazekp.

ftp://cmp.felk.cvut.cz/pub/cmp/articles/mrazek/Mrazek-phd01.pdf
http://cmp.felk.cvut.cz/~mrazekp
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1 Introduction

1.1 Motivation

Reconstruction of full three-dimensional shape of real objects from visual infor-
mation, i.e. from essentially two-dimensional data, belongs to main domains of
computer vision applications. Only a brief introduction of all the methods which
have been employed would result in a long text, we will mention here only a few
(possibly the most) important groups.

The main representative of passive vision, stereo, starts from (at least) two
images of a scene, taken from different positions (either by two or more cameras,
or by one moving camera). Then from the known change of camera positions
between the two images and by finding the corresponding points (belonging to the
same object/feature) in both images it is possible to compute angles from cameras
to the point in 3D space and thus reconstruct its 3D position.

Stereo is intrinsically a difficult task, partly because of the computationally
expensive search for corresponding points in different images. Where possible, it is
helpful to restrict the generality of the approach and try a simpler one. So active
vision techniques came into play for moderately sized scenes; with them, the cor-
respondence problem is avoided by introducing special light conditions artificially.
Various structured light types can be used. Perhaps the most commonly used
laser-plane range finder lights the observed scene by a single plane of laser light, a
single strip of light is then seen in the camera. From the known mutual position
of laser and camera and the position of bright pixels in the image two angles are
obtained and the 3D shape of the scene is reconstructed.

The major advantage of this approach lies in its simplicity and accuracy (see
[26]); on the other hand it reveals a drawback that a single plane is illuminated
by the laser light at one moment, and only points residing in that plane can be
reconstructed from a single image. Many images (which implies longer time) are
needed to capture a complete scene, which makes the method unusable for any
moving, non-rigid or non-stationary objects.

A different lighting scheme may provide a better solution. In [9] several possi-
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Figure 1.1: Rainbow range finder - a system for 3D reconstruction by active vision: light
of monotonically increasing wavelength is projected into the scene and full 3D shape is
reconstructed from the colour image observed by the camera.

bilities are reviewed and a colour light coding method (using projection of several
planes) developed as a compromise between accuracy of the reconstruction and the
acquisition period.

If we want to accomplish the reconstruction from a single image, we may employ
colour coded illumination in a system called rainbow range finder [39, 35, 36]: the
light projected into the scene forms a rainbow with the wavelength increasing in
one direction (see Figure 1.1 for a sketch of the setting).

As the colours are created by decomposing white light by an interference filter,
each plane consists of light of a single wavelength; then the colour in the image
observed by the camera is not affected by reflections from the scene and should
also exhibit the property of monotonically increasing wavelength in one direction,
at least piecewise, with discontinuities at object boundaries. We should be able to
assign a point in the image to a single plane passing through the light projector
uniquely, based only on the observed colour of that point. The plane’s angle from
the projector, α, together with the point’s location in the image, corresponding
to angle β, and with the relative position of the projector and the camera deter-
mine the 3D, real-world position of that point. However, the unique and precise
identification of the point’s position from its observed colour is complicated by an
imprecision in colour measurement and by other kinds of noise present in the ex-
periment. The data which should be piecewise continuous and piecewise increasing
in one direction do not always comply with this rule.

This situation (piecewise continuous and piecewise increasing data corrupted
by noise) is not restricted to the rainbow range finder discussed so far: similar
properties are valid for other types of range finders (using laser-plane, structured
light, etc.) as well. And, more important, similar properties can be also assumed
for other types of data: the depths of some objects in the scene from a measurement
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device increase or decrease continuously on continuous surfaces and change abruptly
at object boundaries, grey values in some types of images change gradually in
homogeneous regions and suddenly across edges, etc.

1.2 Goal of the thesis

In this text we assume that there exists an ideal function f̃ which is piecewise
continuous and piecewise monotone (i.e. piecewise increasing or decreasing; see
Chapter 4 for a more detailed definition). This ideal information is observed by
an imperfect measurement device and we obtain discrete and noisy data f = (fi,j);
the acquisition process is modeled by

fi,j = hi,j ∗ f̃ + n, xi = i ·∆x, yj = j ·∆y (1.1)

where hi,j is the sampling kernel for position xi, yj , and ∆x,∆y are the sampling
intervals in the directions of axes x and y, respectively. Some noise n is added to
the samples during the discretization.

The ideal goal of our work is to replace the noisy measurements f by some other
values f̂ which would contain all the useful information of f̃ but discard the noise.
Unfortunately, it is generally not possible to accomplish the task. Mathematically
speaking, the problem is ill posed1: we cannot distinguish the contribution of the
noise n from the contribution of the signal in f . Also, the information about the
positions of the discontinuities in f̃ is irreversibly lost by the discretization.

To achieve a more realistic task, we have to add and employ some more infor-
mation, in other words we have to regularize the problem. So we will try to filter
the data f , i.e. to smooth and simplify the measurements, hoping that if we use
a good filtering procedure which reflects the assumptions about the desired data
properties (as mentioned above), we will be able to remove the noise and get close
to the original function f̃ . The regularization, or the added information will consist
in our case in choosing the method for the filtering, in adapting the method for
the data properties, and in selecting the parameters of the method. To be more
specific, the main goal of the thesis is to develop a filtering procedure
suitable to remove noise from data which should be piecewise continu-
ous and piecewise monotone while preserving (or enhancing) the desired
data properties.

1.3 Thesis contributions

This thesis is mainly about nonlinear diffusion, a powerful filtering technique, cre-
ated at an intersection of many strong fields such as scale space, energy minimiza-
tion, modeling of physical phenomena, robust statistics, and mathematical mor-
phology. Consistently with the stated goal, the main contribution of the thesis

1In the sense of Hadamard, a problem is well posed if there exists a unique solution and if the
solution depends continuously on the measurements. Otherwise, the problem is ill posed [41, 5].



4 Introduction

is the design of a monotonicity-enhancing nonlinear diffusion filter. The
classical NL diffusion filters are described by partial differential equations which
use piecewise constant functions as their model. We extend the filter to piecewise
monotone (or, ultimately, piecewise linear) data by considering directional deriva-
tives of the original function. We discuss the ideas, develop the algorithms, and
analyse the theoretical properties of the new method in Chapter 4.

On the pursuit of this final goal, we learned that not all of the questions linked
to the nonlinear diffusion filtering had been answered. So in Chapter 3 we offer a
novel approach to selection of optimal stopping time for NL diffusion, based
on the claim that it is reasonable to minimize the correlation between signal and
noise resulting from the filtering procedure; see Section 3.1 for details. In the
same chapter, we also analyse the possibilities of consistent positive directional
splitting of anisotropic NL diffusion into four directions, and summarize various
ideas into an autonomous diffusion filtering algorithm.

1.4 Overview of the chapters

The structure of the thesis is as follows:

• Chapter 2 introduces nonlinear diffusion and summarizes previous work in
this quickly developing field; it classifies the methods, discusses the role of
the parameters, and offers a brief overview of numerical methods for NL
diffusion.

• Chapter 3 offers several smaller contributions the author has made to NL
diffusion; perhaps the most important is the choice of the diffusion stopping
time, other topics include directional splitting of anisotropic diffusion on a
3×3 window, and a summary of an autonomous diffusion filtering algorithm.

• Chapter 4 develops the monotonicity-enhancing nonlinear diffusion filter as
motivated above. The main idea is to filter the directional derivatives instead
of the original data; such an approach removes noise while preserving both
discontinuities and trends of growth present in the data.

• Some experimental results are shown in Chapter 5, both for the classical and
the monotonicity-enhancing nonlinear diffusion procedures.

• Finally, the conclusions and possible directions for further research are pro-
posed in Chapter 6.



2 Nonlinear diffusion filtering
(state of the art)

2.1 Introduction

In this chapter we introduce nonlinear diffusion, a powerful image filtering method,
particularly suitable for piecewise constant data and additive noise. This introduc-
tion should also survey the “state of the art”, i.e. to give a brief overview of the
field before we entered it, in order to anchor our contributions to (and distinguish
them from) previous work of other authors.

Let f̃ : Ω ⊂ R2 → R be an unknown real function, in the following we will
assume that f̃ is piecewise continuous and reasonably smooth. More knowledge on
the function properties would be highly useful: piecewise constancy and piecewise
monotonicity will be explored, discussed and exploited later in this text.

The function f̃ is sampled and represented by a 2D array of values f = (fi,j),1

our input data:

fi,j = hi,j ∗ f̃ + n, xi = i ·∆x, yj = j ·∆y (2.1)

where hi,j is the sampling kernel for position xi, yj , and ∆x,∆y the sampling
intervals in the directions of axes x and y, respectively. Some noise n is added to
the samples during the discretization process.

We want to find another set of sampled values, u = (ui,j), such that it contains
as much information on the original, noise-free f̃ as possible: try to remove the
noise but preserve the useful information in fi,j . To this end, we first introduce the
scale concept both in linear and nonlinear settings, and concentrate in more detail
on nonlinear diffusion.

2.2 Linear scale space

The tasks of approximation and noise filtering are closely linked to that of replacing
the input by its smoother version with fewer local extrema, and this smoothing or

1We will use the bold symbol f both for a function and for the vector of its discrete samples.
The distinction should be clear from the context.
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simplification of a signal leads directly to the notion of scale space.
Typically, an image contains useful information at various levels of detail, at

various object sizes, or at different scales. If we embed the original data, f(x),
x ∈ RN , into a family {Ttf | t ≥ 0} of gradually simplified versions of f , we obtain
a scale space representation which describes the original signal at a continuum of
scales. By the analysis of such a representation at different levels, we may obtain
some information which was only implicit in the original data.

The scale space representation is usually required to be endowed with some
attributes which can be classified as architectural, stability, and invariance proper-
ties [3].

The architectural requirements include the semi-group property, or recursivity

T0f = f ,

Tt+sf = Tt(Tsf) ∀s, t ≥ 0, (2.2)

regularity (continuity) of Tt, and locality: for a small t, the value of Ttf at any
point x is determined by the behaviour of f near x.

The stability property is stated differently by different authors: as a comparison
principle [3]

Tt(f) ≤ Tt(g) on RN ∀t ≥ 0,∀f ≤ g, (2.3)

as a maximum-minimum alias extremum principle [45]

inf
RN

f ≤ Ttf ≤ sup
RN

f , (2.4)

as a causality requirement, nonenhancement of local extrema, or in another way.
Generally, these formulations all express the fact that the operator Tt should be
information-reducing, smoothing, and should not create any spurious details which
were not present in the original data.

The invariance properties formalize the intuitive request that the scale space
creation should ideally not depend on the shift in grey values of the input data, on
the translation of the original function, etc.

In their work, Alvarez, Guichard, Lions and Morel [3] show that any scale space
satisfying some of these natural architectural, stability, and invariance assumptions
is formed by a sequence of images u(x, t) = (Ttf)(x) found by solving the partial
differential equation of second order

∂u
∂t

= F (∇2u,∇u, t) (2.5)

where ∇ is the gradient operator.2

2Let us introduce some notation here. For data u ∈ RN , the gradient operator ∇ is a column
vector of N elements

∇ ≡
(

∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xN

)T

where xi, i = 1, . . . ,N are the coordinate axes. For the case of normal images, N = 2 and the
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If we add the linearity principle

Tt(af + bg) = aTtf + bTtg ∀t ≥ 0, ∀a, b ∈ R (2.6)

to the set of requirements on Tt, the scale space representation is restricted to a
single possibility, and the best explored one: the linear scale space.

As pointed out recently by Weickert et al. in [51], the 1D linear scale space was
derived axiomatically by Iijima as early as in 1959. However, his papers (most of
which were written in Japanese) passed unnoticed by the western scientific commu-
nity, so the Witkin’s 1983 paper [56] is usually cited as the beginning of the linear
scale space idea. The formalism has been further developed by Koenderink [15].
A comprehensive presentation of the linear scale space can be found e.g. in the
collection [40], or in the monograph [17] by Lindeberg, who also extends the linear
scale space to discrete signals.

Starting from the data f(x), x ∈ RN , let us add a scale parameter t and con-
struct the scale-space representation L as follows:

L(x, 0) = f(x),

L(x, t) = (Gσ ∗ f)(x) =
∫

RN

Gσ(x− y) f(y) dy. (2.7)

For t = 0 the representation is identical with the original data, a higher level L(x, t)
is obtained as a convolution of f and a smoothing kernel Gσ.

The smoothing kernel Gσ is the Gaussian kernel given in the continuous case
and arbitrary dimension N by

Gσ(x) =
1

(2πσ2)N/2
e−xT x/2σ2

. (2.8)

The width (standard deviation) σ of the Gaussian is linked to the ‘time’ of the
linear scale space L by the expression σ =

√
2t.

There is also an alternative way to construct the linear scale space: for any
bounded function f , the linear diffusion process, or heat equation

∂tu = ∆u (2.9)
u(x, 0) = f(x) (2.10)

image gradient is

∇u =

(
∂u

∂x
,
∂u

∂y

)T

.

The term ∇2u is called the Laplacian; we reserve the symbol ∆ for it and write (again in two
dimensions)

∆u ≡ ∇2u = 〈∇,∇u〉 =

(
∂2u

∂x2
+
∂2u

∂y2

)
.

Last of these notation remarks: we will often abbreviate the partial derivative into the symbol ∂t:

∂tu ≡ ∂u

∂t
.
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↑

t

−→ x

Figure 2.1: Linear scale-space representation: signal becomes smoother as the scale pa-
rameter t increases.

possesses the solution

u(x, t) =

{
f(x) t = 0
(G√2t ∗ f)(x) t > 0.

(2.11)

We see that u(x, t) and L(x, t) are identical, and the linear scale space can be formed
either by convolving the input signal f with the Gaussian G√2t, or by solving the
partial differential equation (2.9).

Either way of the linear scale space creations fulfills all of the above mentioned
requirements imposed on a scale space transformation Tt: for example, it never
introduces new local extrema into the one-dimensional data during the smoothing
process, it possesses the semi-group property. As the scale parameter t translates
into the width of the smoothing kernel G√2t, higher t means that more input points
contribute significantly to the computation of an output point, and the output data
become smoother. This important observation is illustrated in Figure 2.1.

However, the linear scale space has its limitations: whether we smooth uni-
formly by a rotationally symmetric Gaussian kernel, or diffuse the data equally
in all directions, the process not only removes undesirable local extrema (noise)
but also harms important features of the image, blurs and dislocates edges. To
overcome these drawbacks, we have to move to nonlinear filters; nonlinear diffusion
offers an excellent alternative.

2.3 Nonlinear diffusion

2.3.1 General formulation

Nonlinear diffusion has deservedly attracted much attention in the field of image
processing for its ability to reduce noise while preserving (or even enhancing) impor-
tant features of the image, such as edges or discontinuities; this can be opposed to
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linear diffusion (alias Gaussian filtering or linear scale-space representation) which
not only removes noise but also blurs and dislocates edges. A good introduction
to NL diffusion can be found e.g. in [40, 44] or [45].

Diffusion as a physical process equilibrates concentration differences without
creating of destroying mass. This observation can be translated into the following:

• Fick’s law
ψ = −D · ∇u (2.12)

says that a concentration gradient ∇u causes a flux ψ which aims to com-
pensate this gradient; the relation between ∇u and ψ is described by the
diffusion tensor D.3

• The continuity equation expresses the idea that mass can be only transported,
not created or destroyed,

∂tu = −divψ (2.13)

where ∂t represents differentiation with respect to time t and the divergence
operator is equivalent to a scalar product of the gradient operator with the
vector ψ, i.e. divψ = 〈∇, ψ〉.4

The two equations can be combined to yield the diffusion equation

∂tu = div(D · ∇u) (2.14)

The simply looking equation (2.14) and other forms derived from it describe
a large class of image processing operations. If we replace the diffusion tensor
D by a single scalar value for the whole image domain, the process is equivalent
to uniform smoothing and the linear scale space from the preceding section. If D
itself depends on the evolving image u, the resulting equation describes a nonlinear
diffusion filter. We adopt the Weickert’s terminology [45] and call the diffusion
anisotropic if the flux ψ and ∇u are not parallel. If ψ ‖ ∇u, the diffusion process
is isotropic and the diffusion tensor can be replaced by a scalar-valued diffusivity
g.

2.3.2 History

Nonlinear diffusion was first suggested in the pioneering work of Perona and Ma-
lik [28]. Motivated mainly by edge detection, they criticized the linear scale space
for which the true location of a boundary at a fine scale is not directly available in

3The diffusion tensor D is generally a N ×N square matrix different for each point of the data
u ∈ RN . Its role is basically to rotate and scale the gradient vector ∇u. More information on the
diffusion tensor and its creation will be given in the succeeding paragraphs and in Section 2.4.

4The equation (2.13) formulates the conservation law in a local, differential form, omitting
boundary conditions. The equivalent (and perhaps more intuitive) integral form can be obtained
using the divergence theorem ∫

V

divψ dV =

∫
∂V

〈ψ, n〉 dr

where V is some region, ∂V its closed boundary, and n is a unit vector normal to this boundary.
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the coarse scale image, edges are blurred and dislocated, and their tracking to finer
scales is complicated and computationally expensive. They suggested to move to
nonlinear scale space, formed under the following criteria for generating multiscale
‘semantically meaningful’ description of images:

• Causality: no spurious detail should be generated passing from finer to coarser
scales.

• Immediate localization: boundaries should be sharp and coincide with the
semantically meaningful boundaries at that resolution.

• Piecewise smoothing: intra-region smoothing should be preferred to inter-
region smoothing.

To satisfy these criteria, they proposed to adapt the diffusion to the local im-
age characteristics by introducing a space- and time-variant diffusion coefficient
c(x, y, t), and formulated the following nonlinear diffusion equation5

∂tu = div(c(x, y, t) · ∇u) (2.15)

with u the image, div the divergence operator and ∇ the gradient operator.
To make the filter prefer intra-region to inter-region smoothing and thus pre-

serve edges, we need to know the region boundaries at each scale. Obviously, this
information is not available a priori; the best we can do is to estimate the boundary
location by an edge detector. Perona and Malik claim that the simplest ∇u(x, y, t)
works excellently. The conduction coefficient c(x, y, t) is chosen as a function

c(x, y, t) = g(|∇u(x, y, t)|) (2.16)

with g(·) a nonnegative monotonically decreasing function with g(0) = 1 and
g(∞) = 0, for example

g(s) =
1

1 + (s/λ)1+α
, α > 0. (2.17)

Let |ψ(s)| = s · g(s) denote the flux magnitude6; it is nonmonotone, increasing for
s < λ and decreasing for s > λ – see Figure 2.2 on page 19. A good choice of the
parameters in g leads to the desirable result of blurring small discontinuities simul-
taneously with sharpening important edges. The parameter λ serves as a threshold
of gradient size: a smaller gradient is diffused, positions of a larger gradient are
treated as edges. However, the distinction is not crisp; the parameter α influences
the steepness of the classification function g around λ.

Perona and Malik [28] prove the maximum–minimum principle for the discrete
approximation of their diffusion equation. They suggest that the nonlinear diffusion

5Perona and Malik called their diffusion equation anisotropic. However, they used a scalar-
valued diffusivity, the flux is parallel to the image gradient and the diffusion is isotropic in the
terminology of Weickert [44, 45].

6This formula is consistent with the isotropic case of equation (2.12) if we choose s = |∇u|.
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filter can be applied to a variety of fields: it outperforms the widely used Canny
approach to edge detection, produces clear edges even without non-maximum sup-
pression, preserves junctions, is simply formulated and the edges can be computed
in parallel. Another application can be the image restoration and segmentation.
Perona and Malik compare their filter to the approaches using the minimization of
some energy functional which evaluates the quality of the filtering result (Mumford
and Shah [24], Blake and Zisserman [8]) and show that the nonlinear diffusion may
be seen as a gradient descent for a suitable functional minimization. We return to
this point in Section 2.3.3.

The publications which followed on the Perona-Malik’s paper were numerous;
we recommend the reader to consult the Weickert’s book [45] for a very good
overview. We mention only several of the most important ideas in the following
paragraphs.

First to a theoretical problem: Catté, Lions, Morel and Coll [10] showed that
the continuous Perona–Malik model is ill posed; very close pictures can produce
divergent solutions and therefore – in the context of edge detection – very different
edges. This is caused by the fact that the diffusivity g used in [28] leads to flux
s · g(s) decreasing for some s and the scheme may work locally like the inverse
heat equation which is known to be ill posed, and can develop singularities of
any order in arbitrarily small time. This possible misbehaviour surely represents a
severe drawback of the Perona–Malik model when applied to data effected by noise.
However, as Catté et al. mention and Weickert and Benhamouda [50] study in more
detail, discrete implementations work as a regularization factor by introducing
implicit diffusion into the model, and the filter is usually observed to be stable
(with staircasing effect as the only observable instability: a single ramp-like edge
may lead to several steps of piecewise constant values).

To solve the problem correctly in the continuous settings, Catté et al. propose
a new model with the only modification of replacing the gradient |∇u| in equa-
tion (2.15) by its estimate |∇Gσ ∗ u| where Gσ can be any smoothing kernel, the
Gaussian represents a classical example7. With this simple modification, Catté et
al. were able to obtain the proofs of existence and uniqueness of the solution for
any σ > 0, so the new equation

∂tu = div(g(|∇uσ|) · ∇u) (2.18)

represents a correct basis for a nonlinear scale space. We will employ results of
Catté et al. when giving a complete isotropic NL diffusion formulation together
with its discretization in Section 2.6.

The second problem with the Perona–Malik (as well as with the Catté et al.)
isotropic model is a practical one: as the diffusion is stopped near strong edges,
not only the desired information but also the noise will be left untouched there.

7Note that the differentiation and the convolution commute,

(∇Gσ) ∗ u = ∇(Gσ ∗ u).

We will denote either of these expressions by ∇uσ in the following text.
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To provide a solution, we have to turn our attention to anisotropic filters where
the flux is not generally parallel to the image gradient. Anisotropic diffusion filters
have been studied thoroughly by Weickert [43, 45, 48, 46, 47]. The same author
can be also praised for the analysis of semidiscrete (i.e. with sampled data but
continuous time parameter) and fully discrete versions of the nonlinear diffusion
scale spaces [42, 45]. We include some information on the nonlinear scale-space
properties in Section 2.3.4; anisotropic nonlinear diffusion forms the main topic of
Section 2.4.

2.3.3 Link to other methods

We mentioned in the introduction that image restoration using nonlinear diffusion
was created at an intersection of many strong fields such as scale space, energy
minimization, modeling of physical phenomena, robust statistics, and mathematical
morphology. In addition to the points discussed above, we mention in this section
several of the most pertinent connections to other methods, needed for a better
understanding of the filtering procedures. The list will be by no means exhaustive.
The interested reader is referred to the Weickert’s book [45] for an excellent and
abundant survey of diffusion and adjacent fields; we neither intend nor dare to
equal the 453 references cited there.

Variational formulation

Many authors dealing with the ill posed tasks of edge detection or reconstruction of
corrupted data choose to regularize the problem by turning it into minimization of
a given energy functional. In this section we consider an approach which illustrates
very well the connection between such a variational formulation and the algorithms
for nonlinear diffusion.

Nordström [25]8 suggests to solve the global regularization and edge detection
problem by minimizing the energy functional

Ef (u,w) =
∫

Ω

(
β · (u− f)2 + w · |∇u|2 + λ2 · (w − lnw)

)
dx (2.19)

where the parameters β, λ are positive weights and w : Ω → (0, 1] is a smooth conti-
nuity control function which can also be understood as a fuzzy edge representation:
w approaches 1 in the interior of a region; at edges, w is close to 0. The first of
the summands of Ef punishes deviations of the solution u from the input data f
(deviation cost), the other two measure the ‘quality’ of the solution: the middle
one is the stabilizing cost favouring smoothness of u within continuous regions, and
the last, edge cost, is intended to penalize edges in order to prevent pathological
solutions with edges filling a large part of the image domain.

Minimum of the functional Ef is attained where its first variation is zero; this

8We changed the notation to that of Weickert [45] to keep it consistent with other sections.
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basic rule of the calculus of variations yields the following Euler equations:

0 = β · (u− f)− div(w∇u) on Ω (2.20)

0 = λ2

(
1− 1

w

)
+ |∇u|2 on Ω (2.21)

0 = w
∂u
∂n

on ∂Ω (2.22)

where n is the direction perpendicular to the image boundary ∂Ω. The last equa-
tion (2.22) expresses the Neumann boundary conditions: the derivative of u in the
direction of n is zero, i.e. the image is reflected at the boundary and the image
region exchanges no flow with the exterior.

Solving (2.21) for w gives

w =
1

1 + |∇u|2
λ2

(2.23)

and we can see that w is identical with a special case of the Perona-Malik diffusivity
g(|∇u|) from equation (2.17). Therefore, the equation (2.20) can be regarded as
the steady state of the biased diffusion equation

∂tu = div(g(|∇u|) · ∇u) + β · (f − u). (2.24)

The diffusion-reaction equation (2.24) consists of the Perona-Malik process with
an additional bias term β · (f − u). Nordström stresses that his biased diffusion
leads to nontrivial steady-state solutions and thus frees the user from setting a
finite stopping time T . However, we support the Weickert’s argument [45] that
the Nordström’s formulation just shifts the problem of setting T to the problem
of determining the weighting factor β. The biased diffusion with a nonzero β is
essentially equivalent to the unbiased diffusion of Perona and Malik with a finite
T , so it is only a matter of personal taste which of the two approaches to prefer.
Moreover, the functional (2.19) is nonconvex so the biased diffusion is likely to
converge towards its local minimum.

Link to robust statistics

Black and Sapiro [7, 6] offer an interesting insight into nonlinear diffusion from the
viewpoint of robust statistical estimation. They demonstrate that the Perona-Malik
equation is equivalent to a robust procedure that estimates a piecewise constant
function from noisy input data.

Let us form a statistical model of the image: piecewise constant function is
corrupted by zero-mean Gaussian noise with small variance. Consider the image
intensity differences, Ip − Is, between the pixel s and its neighbouring pixels p.
Within one constant image region, the neighbour differences will be small, zero-
mean and normally distributed. An optimal estimator of the ‘true’ value at pixel
s minimizes the sum of squares of the neighbour differences, which is attained if Is
is set to be the mean of the neighbouring pixels.
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If there is an edge, boundary or discontinuity near pixel s, the differences will
not be normally distributed as the neighbours are sampled from two different dis-
tributions. To prevent the estimate at such a position from being distorted, the
robust statistical procedures assign smaller weights to the (large) neighbour differ-
ences Ip − Is which can be viewed as outliers. The choice of the function which
would downweight or reject outliers is critical for the method.

Black and Sapiro state that the Perona–Malik stopping function

g(s, λ) =
2

2 + s2

λ2

(2.25)

is after multiplication by s (to obtain the flux function |ψ|) proportional to the
influence function used in robust statistics. The flux after integration is propor-
tional to the Lorentzian error norm. As a result, outliers have little influence on
the solution.

The authors compare the Perona–Malik g to a stopping function derived from
the Tukey’s biweight, which they claim is more robust and leads to sharper bound-
aries9:

g(s, λ) =

1
2

(
1− ( s

λ·
√

5
)2
)2

|s| ≤ λ ·
√

5

0 otherwise
(2.26)

Using this diffusivity, the outliers (i.e. the data separated from the current position
by an edge) will have no influence on the solution. The Perona-Malik and the Tukey
diffusivity functions are plotted in Figures 2.2 and 2.4, respectively.

Adopting the robust statistical terminology, edges can be defined as outliers of
some local image statistics, and detected simply by considering the locations where
the diffusivity function g approaches zero.

2.3.4 Theoretical properties

In [45], Weickert proved many useful properties of the nonlinear diffusion under
some general assumptions about the input function f and some conditions im-
posed on the diffusion tensor D. More precisely, Weickert studies the continuous
anisotropic model

∂tu = div(D(∇uσ) · ∇u) on Ω× (0, T ], (2.27)
u(x, 0) = f(x) on Ω, (2.28)

〈(D(∇uσ) · ∇u), n〉 = 0 on ∂Ω× (0, T ] (2.29)

where σ, T > 0, and the diffusion tensor10 D =
(

d11 d12
d21 d22

)
, itself a function of the

image gradient, D(∇uσ), satisfies the following properties:
9We added the constant

√
5 to the fraction denominator of the original Black–Sapiro’s equation

to keep the formula consistent with other diffusivities: we require that the flux function s · g(s, λ)
starts to decrease at λ.

10Weickert was mainly interested in anisotropic NL diffusion with a diffusion tensor D; however,
the results transfer directly to the isotropic case which uses the scalar diffusivity g. Clearly, the
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(C1) Smoothness : D depends continuously and smoothly on its parameter ∇uσ.

(C2) Symmetry : d12 = d21.

(C3) Uniform positive definiteness : there exists a positive lower bound for the
eigenvalues of D, and the bound is uniform (i.e. independent of the argu-
ment).

We mention several of the results obtained under these assumptions.

• Well-posedness (anisotropic extension of the proof by Catté et al. [10]): the equa-
tions (2.27)–(2.29) have a unique solution u(x, t) which depends continuously
on the input image f .

• Extremum principle:
inf
x∈Ω

f(x) ≤ u(x, t) ≤ sup
x∈Ω

f(x). (2.30)

• Average grey level invariance: the average grey level µ is preserved by the diffu-
sion filtering,

1
|Ω|

∫
Ω

u(x, t) dx = µ, ∀t. (2.31)

• Nonenhancement of local extrema: if u(·, t) has a local extremum with a nonzero
Hessian at x, then

∂tu(x, t) < 0 if x is a local maximum, (2.32)
∂tu(x, t) > 0 if x is a local minimum. (2.33)

• Information-reduction, smoothing:

◦ all even central moments,

1
|Ω|

∫
Ω
(u(x, t)− µ)2n dx, n ∈ N, (2.34)

are decreasing for t ∈ [0,∞);

◦ the energy ‖u(t)‖2
L2(Ω) is decreasing with t;

◦ the Shanon-Wiener entropy

S1(u(x, t)) = −
∫

Ω
u(x, t) ln(u(x, t)) dx (2.35)

is increasing with t (see also [37, 38] for details and a study of the
behaviour of generalized entropies in a scale space).

following equality holds:

g · ∇u = g · I · ∇u =

(
g 0
0 g

)
· ∇u

and the isotropic ‘diffusion tensor’ has the form D =
(

g 0
0 g

)
.
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◦ the diffusion converges to a constant,

lim
t→∞

u(x, t) = µ, (2.36)

and the convergence is uniform on the closure of the function domain,
Ω.

There exist discretization schemes of the (isotropic or anisotropic) NL diffusion
for which the properties mentioned above carry over to the semidiscrete (continuous
time t, discrete space) or fully discrete situations. The latter case is the most
common in practice: an image is discretized and represented by values fx,y, x =
1, . . . ,N1, y = 1, . . . ,N2, and the diffusion is computed for a discrete set of scales
tk. We will denote by uk the discrete solution of the diffusion equation at time tk.
For sake of notation simplicity, a discrete image will be sometimes regarded as a
vector f ∈ RN where N = N1 · N2 is the total number of pixels, and the image
elements are fj , j ∈ J ≡ {1, . . . ,N}.

Still in [45], Weickert studies the following discrete nonlinear diffusion model:

u0 = f (2.37)

uk+1 = Q(uk) · uk, ∀k ∈ N0 (2.38)

where the N ×N diffusivity matrix Q = (qij) has the following properties:

(D1) Q depends continuously on the data u: Q ∈ C(RN ,RN×N ),

(D2) symmetry: qij = qji,

(D3) unit row sum:
∑

j∈J qij = 1,

(D4) nonnegativity: qij ≥ 0,

(D5) irreducibility: any two pixels can be connected by a path of nonvanishing
diffusivities. Formally:

∀i, j ∈ J ∃l0, . . . ,lr ∈ J, l0 = i, lr = j :
qlplp+1 6= 0, ∀p = 0, . . . ,r − 1. (2.39)

(D6) positive diagonal: qii > 0.

For this model, Weickert proves discrete counterparts of the continuous diffusion
properties; we list a similar selection as above.

• extremum principle:

min
j∈J

fj ≤ uk
i ≤ max

j∈J
fj ∀i ∈ J, ∀k ∈ N0 (2.40)

where uk
i is the i-th element of the solution at time k.



2.3 Nonlinear diffusion 17

• the average grey value µ = 1
N

∑
j∈J fj is preserved by the discrete diffusion filter,

1
N

∑
j∈J

uk
j = µ, ∀k ∈ N0. (2.41)

• Information-reduction, smoothing:

◦ all even central moments,

1
N

∑
j∈J

(uk
j − µ)2n, n ∈ N, (2.42)

are decreasing in k;

◦ the energy ‖uk‖p =
(∑

j∈J

(
uk

j

)p) 1
p is decreasing in k for all p ≥ 1;

◦ the entropy

S(uk) = −
∑
j∈J

uk
j ln(uk

j ) (2.43)

is increasing with k if minj∈J fj > 0.

◦ the diffusion converges to a constant,

lim
k→∞

uk
j = µ, ∀j ∈ J. (2.44)

Numerical algorithms which approximate the continuous diffusion process and
fall into the discrete scheme (2.37)–(2.38), thus possessing all the properties men-
tioned in the previous paragraph, are explored in Section 2.6.

2.3.5 The diffusion parameters

The meaning and choice of the parameters for nonlinear diffusion is discussed in
this section.

Noise scale σ

The parameter σ denotes the width of the Gaussian kernel used to pre-smooth the
image gradient before the diffusivity function computation. It is also called noise
scale: by smoothing by Gσ, the noise of scale smaller than σ will not influence the
diffusion results. Note also that the discretization artefacts are mitigated by the
pre-smoothing.

If the noise in neighbouring pixels is uncorrelated, the value σ = ∆x (where
∆x is the grid size; we usually assume ∆x = 1) is sufficient for a large interval of
noise variances, and is used exclusively in our experiments.
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Diffusivity function g

The diffusivity function g : s → [0, 1] is a nonincreasing function of either the size
of the image gradient, s = |∇u|, or its regularized version, the smoothed gradient
s = |∇uσ|. The function g(s) plays a role of a ‘fuzzy detector’ of the presence of an
edge at a particular position: if s is small, there is a minor probability of an edge
at that position, and g is close to 1; if, on the other hand, s is large, the location
is likely to belong to an edge, and the value of g will be close to zero.

The adjectives ‘small’ or ‘large’ for s in the previous paragraph have to be
understood relative to the edge threshold parameter λ. All the diffusivity functions
we will mention are constructed so that the flux magnitude |ψ(s)| = s · g(s) is
increasing on the interval [0, λ] and decreasing (or at least nonincreasing) on [λ,∞).
This way, the areas with s� λ are considered as flat regions where the diffusivity is
allowed; at the locations of s� λ, the (isotropic) NL diffusion is virtually stopped
and the diffusion process behaves locally like a backwards heat equation with the
effect of edge enhancement.

Quite a few formulations of the diffusivity function have appeared in the liter-
ature. The original Perona-Malik’s formulation was

g(s) =
C

1 + (s/λ)1+α
, α > 0, (2.45)

an example with α = 1 (and C = 1) is drawn together with its flux function in
Figure 2.2.

Black and Sapiro [7] link the Perona-Malik diffusivity to the weighting functions
of robust statistical estimation — see page 13. The alternative diffusivity function
of equation (2.26), developed from the Tukey’s biweight, is shown in Figure 2.4.
Note that being identically equal to zero for s > λ ·

√
5, their diffusivity function

does not satisfy the criteria for nonlinear scale spaces stated in Section 2.3.4.
Weickert [45, 53] uses the diffusivity function of the following type for his

isotropic and edge-enhancing methods:

g(s) = 1− exp
(

c

(s/λ)m

)
. (2.46)

In our experiments, we use this formula with the case m = 4 and the constant
c
.= −2.33667 determined so that the flux s·g(s) is increasing for s < λ and decreas-

ing for s > λ.11 This diffusivity formulation combines the theoretical advantages
of a diffusivity positive everywhere with a fast decline of g around λ, implying that
strong edges are well preserved for a long time period of the diffusion process.

Diffusivity parameter λ

We explained the role of the parameter λ in the preceding paragraph. This section
discusses how to determine its value.

11Weickert used a different constant c in his original formulation. The difference arises from the
fact that Weickert computes the diffusivity from the squared gradient size, g(|∇uσ|2); we keep the
equation consistent with other sections and use s = |∇uσ|.
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Figure 2.2: The Perona–Malik diffusivity g(s) = 1
1+(s/λ) (left); the corresponding flux
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Figure 2.3: The Weickert diffusivity g(s) = 1 − exp
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(s/λ)4

)
(left); the corresponding

flux function s · g(s) (right).
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Figure 2.4: The Black–Sapiro diffusivity g(s) = 1
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for s ≤ λ ·
√

5, g(s) = 0
otherwise (left); the corresponding flux function s · g(s) (right).
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Perona–Malik [28] suggest two possibilities how to choose λ: set a fixed value
by hand, or exploit the idea of Canny’s noise estimator and set λ equal to some
percentile p of the image gradients at each diffusion iteration (e.g. 90%; we will
write it as a decimal number p ∈ [0, 1]). This way a chosen (1 − p) percentage of
the strongest edges (given by an area of the image) remains almost unharmed by
the diffusion filter, and the approach has two advantages: firstly, choosing some
percentile of the image to be treated as edges is more natural and intuitive than
having to decide directly on a fixed value for λ. Secondly, recomputing the per-
centile in each diffusion step leads to a fast decrease in λ and has a stabilizing effect
on the diffusion results (although theoretically the procedure still converges to a
globally constant function).

In [7, 6], Black and Sapiro suggest to globally or locally estimate λ by a pro-
cedure from robust statistics [32]. What they call ‘robust scale’ is computed as

λ = 1.4826 median
( ∣∣ |∇f | −median(|∇f |)

∣∣ ) (2.47)

where f is the image and the constant in the formula comes from the fact that
the median absolute deviation12 of a normal distribution with unit variance is
approximately 0.6745 = 1/1.4826.

The paper [6] adds a spatially varying λ. The authors compute the robust
scale estimate λel using equation (2.47) in a n×n window, and define the spatially
varying λl as the maximum of this local and the global one:

λl = max(λ, λel) (2.48)

The locally adapted λl may be useful for simplification and filtering of spatially
varying textures: in areas of high contrast, larger gradient is needed to consider
a pixel as belonging to an edge; the global estimate as a lower bound prevents
the amplification of noise in the low contrast areas. Then it is possible to detect
edges robustly by detecting the points which are treated as outliers by the given
function g.

Stopping time T

The stopping time T has a strong effect on the diffusion result. Its choice has to
balance two contradictory motivations: small T gives more trust to the input data
(and leaves more details and noise in the data unfiltered), while large T means
that the result becomes dominated by the (piecewise) constant model which is
inherent in the diffusion equations. The scale-space people often set T to a large
value (ideally infinity) and observe how the diffused function evolves with time (and
converges to a constant value). As we are more concerned with image restoration
and we want to obtain nontrivial results from the diffusion filter, we will have to
pick a single (finite) time instant T and stop the diffusion evolution there. We
cite here the approaches to stopping time selection which have appeared in the
literature, and comment on them.

12The median absolute deviation of f is defined as median(|f −median(f)|).
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Catté et al. [10] argue that the regularization by Gσ for the diffusivity com-
putation introduces a sort of time: the result of convolution is the same as the
solution to the linear heat equation at time t = σ2

2 , so it is coherent to correlate
the stopping time T and the ‘time’ of the linear diffusion. However, the equality
t = σ2

2 is rather a lower estimate of the stopping time: because of the diffusion
process inhibited near the edges, the nonlinear diffusion is always slower than the
linear one, and needs a longer time to reach the desired results.

Dolcetta and Ferretti [12] recently formulated the time selection problem as a
minimization of the functional

E(T ) =
∫ T

0
Ec + Es (2.49)

where Ec is the computing cost and Es the stopping cost, the latter encouraging
filtering for small T . The authors provide a basic example

Ec = c (2.50)

Es = −
(∫

Ω
|u(x, T )− u(x, 0)|2 dx

)2

(2.51)

where the constant c balancing the influence of the two types of costs has to be
computed from a typical image to be filtered.

Sporring and Weickert in [38] study the behaviour of generalized entropies,
and suggest that the intervals of minimal entropy change indicate especially stable
scales with respect to evolution time. They estimate that such scales could be good
candidates for stopping times in nonlinear diffusion scale spaces. However, as the
entropy can be stable on whole intervals, it may be difficult to decide on a single
stopping instant from that interval; we are unaware of their idea being brought to
practice in the field of image restoration.

Weickert mentioned more ideas on the stopping time selection, more closely
linked to the noise-filtering problem, in [47]. They are based on the notion of
relative variance.

Let var(u(t)) denote the variance of an image u(t). This variance is monoton-
ically decreasing with t and converges to zero as t → ∞. The relative variance

r(u(t)) =
var(u(t))
var(u(0))

(2.52)

decreases monotonically from 1 to 0 and can be used to measure the distance of
u(t) from the initial state u(0) and the final state u(∞). Prescribing a certain
value for r(u(T )) can therefore serve as a criterion for selection of the stopping
time T .

Let again f̃ be the ideal data, the measured noisy image f = f̃ + n, and let
the noise n be of zero mean and uncorrelated with f̃ . Now assume that we know
the variance of the noise, or (equivalently, on the condition that the noise and the
signal are uncorrelated) the signal-to-noise ratio, defined as the ratio between the
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original image variance and the noise variance,

SNR ≡
var
(
f̃
)

var(n)
. (2.53)

As the signal f̃ and the noise n are uncorrelated, we have

var(f) = var
(
f̃
)

+ var(n). (2.54)

Substituting from this equality for var(n) into (2.53), we obtain by simple rear-
rangement that

var
(
f̃
)

var(f)
=

1
1 + 1

SNR

. (2.55)

We take the noisy image for the initial condition of our diffusion filter, u(0) = f .
An ideal diffusion filter would first eliminate the noise before significantly affecting
the signal; if we stop at the right moment, we might substitute the filtered data
u(T ) for the ideal signal f̃ in (2.55). Relying on this analogy, we can choose the
stopping time T such that the relative variance satisfies

r(u(T )) =
var(u(T ))
var(u(0))

=
1

1 + 1
SNR

(2.56)

Weickert remarks that the criterion (2.56) tends to underestimate the optimal
stopping time, as even a well-tuned filter cannot avoid influencing the signal before
eliminating the noise.

So far the Weickert’s suggestions from [47]: knowing the SNR, the formula (2.56)
tells us when to stop the diffusion. However, our experiments indicate that this
approach does not usually yield the optimal stopping time; we study the situation
in more detail and develop a novel and reliable time-selection strategy based on
signal–noise decorrelation in Section 3.1.

2.4 Anisotropic NL diffusion

Isotropic nonlinear diffusion with a scalar diffusivity g is stopped near the object
boundary; it preserves the important edges/discontinuities in the data, but also
leaves the noise near such positions unfiltered. To mitigate this undesirable effect,
Weickert [43, 45, 46] proposes to make the amount of diffusion dependent not only
on the position in the image, but vary it also between various directions at a single
location. The process can be designed so that the smoothing perpendicular to the
image gradient, i.e. along coherent structures (such as edges or lines) is preferred to
smoothing across edges. To obtain this behaviour, the flux cannot be parallel to the
image gradient (as is the case with the ‘classical’, isotropic NL diffusion equation),
the diffusivity controlling the process is not a scalar any more, but a matrix, D,
leading to a more general equation of the anisotropic nonlinear diffusion

∂tu = div (D(∇uσ) · ∇u) (2.57)
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with the initial and boundary conditions, respectively,

u(x, 0) = f(x), 〈D(∇uσ) · ∇u, n〉 = 0 on ∂Ω (2.58)

where n denotes the normal to the image boundary ∂Ω. The diffusion starts from
the input image f at t = 0, and the boundary condition expresses the fact that no
flux should pass through the image boundary.

The diffusion tensor D(∇uσ) and the way it is constructed have crucial in-
fluence on the properties of the resulting method, leading e.g. to edge-enhancing
or coherence-enhancing procedures [45]. Whereas the latter can be used to close
interrupted line-like structures, the former one, the edge-enhancing diffusion, and
similar methods derived from it, are of importance for our task of noise reduction.

In this section we review the Weickert’s suggestion to construct the diffusion
tensor D from a structure tensor, and propose a minor alternation to make the
method more suitable for the image restoration task.

2.4.1 Structure tensor

The strength of NL diffusion relies on its adaptation to the local image properties
(such as gradient magnitude and orientation, or coherence of the structures). One
possibility how to describe the local image information is to employ the structure
tensor (see p. 56 of the Weickert’s book [45] or again the paper [46], and references
there).

Convolving an image u with a Gaussian kernel Gσ (where σ stands for the kernel
variance, or noise scale), we obtain a smoothed version of the image, uσ = Gσ ∗u.
The gradient ∇uσ points in the direction of the highest intensity change in the
smoothed image.

In order to identify gradients with the same orientation but of opposite di-
rections, the gradient can be reconsidered in a matrix framework. Let us form a
matrix S0 by a tensor product of the gradient vectors,

S0 = ∇uσ ⊗∇uσ = ∇uσ ∇uT
σ . (2.59)

The matrix S0 possesses an orthonormal basis of eigenvectors ~v1, ~v2 with ~v1‖∇uσ

and ~v2 ⊥ ∇uσ. The respective eigenvalues |∇uσ|2 and 0 give the contrast (the
squared gradient) in the eigendirections.

The information contained in the matrix S0 is already sufficient to control a
combined diffusion (of different amounts) in the directions parallel and perpendic-
ular to the gradient, so as to remove the small-scale noise both in homogeneous
regions and at the edges without blurring the discontinuities in image intensity;
we will return to this point later on. However, the local information cannot pro-
vide enough clues if we were after coherence enhancement, e.g. the restoration of
interrupted line-like structures as in [46]. In such a case, information from some
neighbourhood has to be assembled. This can be attained by a componentwise
convolution of the matrix S0 with a Gaussian G%, where the integration scale %
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should reflect the characteristic window size over which the orientation is to be
analysed:

S%(∇uσ) = G% ∗ (∇uσ ⊗∇uσ) (% ≥ 0) (2.60)

Weickert recalls several names of the matrix S% from the literature: structure tensor,
interest operator, scatter matrix, second moment matrix. The matrix is symmetric,
S% = ( s11 s12

s12 s22 ), positive semidefinite, possesses orthonormal eigenvectors ~v1, ~v2 with

~v1

∥∥∥( 2s12

s22 − s11 +
√

(s11 − s22)2 + 4s212

)
(2.61)

and the corresponding eigenvalues µ1, µ2,

µ{1,2} =
1
2

(
s11 + s22 ±

√
(s11 − s22)2 + 4s212

)
(2.62)

where the plus sign belongs to µ1. The eigenvalues describe the average, integrated
contrast in the eigendirections; since µ1 ≥ µ2 ≥ 0, ~v1 is the orientation of the
highest grey-value fluctuations, whereas ~v2 gives the prevailing local orientation,
or coherence direction. Furthermore, the eigenvalues can be used to analyse the
local structure: µ1 = µ2 = 0 in constant areas, straight edges lead to µ1 � µ2 = 0,
corners can be identified by µ1 ≥ µ2 � 0, and the expression (µ1− µ2)2 may serve
as a measure of coherence of a structure. These properties can be exploited to
control the amount of diffusion in the coherence direction.

2.4.2 From structure to diffusion tensor

The information contained in the structure tensor can be readily exploited to adapt
the diffusion process to the local image structure. Weickert [45, 46] suggests to
perform a principal axis transformation: construct the diffusion tensor D with the
same eigenvectors as the structure tensor S%, but change the eigenvalues, depending
on the desired functionality of the diffusion: higher values mean simply that the
diffusion in the direction of the corresponding eigenvector will be encouraged.

Let us arrange the orthonormal eigenvectors of S% columnwise into a 2 × 2
matrix X; then the characteristic equation reads

S% X = X diag(µ1, µ2). (2.63)

where diag(·) stands for a diagonal matrix.
Let f1 and f2 be two continuous functions (R2 → [α, 1], α is a positive lower

bound). Moreover, the function f1 (which influences the diffusion component par-
allel to the gradient) has to satisfy the theoretical requirements imposed on the
isotropic diffusivity function g (namely its monotone descent) and might be set
identical to it, depending only on µ1; the function f2 controls the smoothing in the
coherence direction.
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Let us transform the eigenvalues µ1, µ2 of the structure tensor by the functions
f1, f2 to obtain the eigenvalues ϕ1, ϕ2 of the diffusion tensor:

ϕ1 = f1(µ1, µ2),
ϕ2 = f2(µ1, µ2).

(2.64)

Using the new eigenvalues, we arrive at the characteristic equation for the diffusion
tensor D:

DX = X diag(ϕ1, ϕ2) (2.65)

from which we get directly the formula enabling us to calculate D from the struc-
ture tensor’s eigenvectors and the adapted eigenvalues (noting that XXT = I):

D = X diag(ϕ1, ϕ2) XT . (2.66)

Clearly, the diffusion tensor D constructed this way satisfies the theoretical
requirements of Section 2.3.4.

2.4.3 Choosing the diffusivity functions f1, f2

Back to an important detail: what functions f1,2 can we choose to convert the
structure tensor eigenvalues into the diffusion ones? Weickert in [45] presents two
cases:

Edge-enhancing diffusion is intended to overcome the problem of noise remain-
ing near the image edges. The integration parameter % is set to zero, and
the diffusion along the image gradient is subjected to the classical diffusivity
function of the first eigenvalue µ1 (which estimates the gradient magnitude),
while the diffusion perpendicular to it is encouraged maximally:

ϕ1 = g(µ1)
ϕ2 = 1.

(2.67)

Coherence-enhancing diffusion is capable of restoring or enhancing coherent
structures (e.g interrupted lines). The integration scale % takes on positive
values; the diffusion along coherent structures is preferred (increasing with
respect to the coherence measure (µ1 − µ2)2), a small amount α in other
directions remains for theoretical reasons:

ϕ1 = α

ϕ2 =

{
α if µ1 = µ2,

α+ (1− α) exp
(

−C
(µ1−µ2)2m

)
otherwise.

(2.68)

In the following we concentrate on the first case, closer to the general image restora-
tion problem, and suggest to improve it in several ways.

Weickert himself noticed ([45]) that the good noise-filtering behaviour of an-
isotropic diffusion (esp. with a nonzero integration scale % > 0) is paid for by



26 Nonlinear diffusion filtering (state of the art)

rounding of corners. Additionally, we observed in our experiments that the high
value of ϕ2 not only removes noise from the edges, but also causes more smoothing
in other directions than that of the maximum coherence and leads thus to blurring
of important discontinuities. Although this latter objection is linked to the way the
diffusion equation is discretized and will be discussed later, there are some simple
ways both the drawbacks can be alleviated.

Suggestion 1 : setting the second eigenvalue to a smaller constant value (e.g. ϕ2 ∈
[0.05, 0.25]) is still sufficient to filter the noise near the image edges. At the
same time, both the blurring and the corner rounding are greatly reduced.

Suggestion 2 : alternate the anisotropic NL diffusion and the isotropic NL diffu-
sion in the subsequent iterations. This should also limit the blurring across
edges while reducing the overall computational complexity (comparing the
mixed isotropic and anisotropic algorithm to the same number of iterations
of a purely anisotropic method).

2.5 NL diffusion of vector-valued data

We stated in the introduction that the input data for filtering can be understood as
a function f : Ω → R. This model covers grey-scale images, range data representing
the depths of points in the scene, some medical data etc. In some other cases, sev-
eral physical quantities are measured at the same location in space: colour (RGB)
images fall into this category, together with e.g. multi-echo magnetic resonance
medical data, multispectral LANDSAT measurements, and many others. Then,
the function f maps to an m-dimensional space Rm and the vector-valued data f
are represented by a collection of m images, f = (f1, f2, . . . ,fm).

For vector-valued images, the diffusion equation (2.14) translates into a set of
equations

∂tu1 = div (D(∇u)∇u1)
... (2.69)

∂tum = div (D(∇u)∇um)

where the solution u is also composed of m images, u = (u1,u2, . . . ,um), with
the initial condition ui = fi. Note that the diffusion tensor D depends on the
whole vector u and is identical for all equations in the set (2.69). This has been
adopted as a common practice for vector-valued diffusion (see [55, 47, 16]): to
avoid inconsistencies between separate channels ui, the equations (2.69) are coupled
and the diffusion of individual images is synchronized through a common set of
diffusivities D.

The way the common diffusivity is assembled from the vector components de-
pends on the nature of the problem. Going directly to the anisotropic diffusion,
Weickert in [47] proposes to construct the common structure tensor S% for the
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vector-valued image as a convex combination of the structure tensors of its com-
ponents:

S%(∇u) =
m∑

i=1

wi S%(∇ui) (2.70)

with
∑
wi = 1 and wi > 0. In the absence of a priori knowledge on the significance

or reliability of individial channels, all weights can be set equal, wi = 1
m .

2.6 Numerical methods for NL diffusion

We introduced the nonlinear diffusion, discussed its properties and the meaning of
its parameters in the previous sections. This section concentrates on the methods
that can be employed to solve, or model, the diffusion equations numerically. Before
moving to the discretization issues, we review the continuous formulation here.

We take the filter of Catté et al. [10] as a typical representative of a well founded
isotropic nonlinear diffusion process. With this scheme, the filtered image is found
as a solution to the equation

∂u
∂t

= div (g(|∇uσ|)∇u) (2.71)

with the image f as the initial state, and the reflecting Neumann boundary condi-
tions,

u(x, 0) = f(x), 〈∇u, n〉 = 0 on ∂Ω, (2.72)

where n denotes the normal to the image boundary ∂Ω. In words, the equa-
tion (2.71) expresses the fact that the value of u(x, t) changes with time according
to the flow to and from the neighbourhood of x; this flow depends on the image
gradient ∇u and its amount is controlled by the scalar diffusivity function g of the
smoothed gradient ∇uσ (smoothing makes the filter insensitive to noise at scales
smaller then σ); no flow passes through the image boundary.

To be suitable for numerical computations with sampled data, the continuous
diffusion equation (2.71) has to be discretized. Discretization of partial differen-
tial equations represents a vast subject on its own; see e.g. [29] for a brief and
general introduction. The issue is even more crucial with the nonlinear diffusion
applied to fields of vision or medical imagery where a large quantity of data has
to be processed. If many operations can be described in the mathematically sound
framework of partial differential equations, computational efficiency may represent
an argument against using it; that is why many papers concentrate on numeri-
cally efficient implementation of the nonlinear diffusion scheme (e.g. [53, 4, 16]),
suggest to employ parallelism [54], reduce the computational cost by using pyra-
midally subsampled versions of the image [49], or to make use of fast hardware
operations [33].

In this section we give an overview of several approaches to PDE discretization.
As the discretization of continuous time into discrete steps is considered, explicit
and semi-implicit methods have been proposed for the diffusion equation. From the



28 Nonlinear diffusion filtering (state of the art)

point of view of space discretization, we will distinguish finite elements , finite vol-
ume, and finite difference schemes. After this classification, we will concentrate on
the finite differences in more detail; we first develop the simplest, explicit (Euler) fi-
nite difference discretization of the isotropic diffusion equation, discuss the stability
and efficiency issues and move to the absolutely stable, and thus also more efficient
additive operator splitting (AOS) scheme of Weickert et al. [53]. Having presented
numerical methods for the isotropic equations, we continue to the anisotropic NL
diffusion, and introduce briefly the Weickert’s AOS schemes for the anisotropic NL
diffusion [45, 46]. Later in the text (in Section 3.2) we will follow and extend the
Weickert’s ideas to offer a new directional splitting procedure for the anisotropic
AOS scheme.

2.6.1 Time discretization

A vast majority of the numerical schemes for NL diffusion uses first order discretiza-
tion in time, and approximates ∂u

∂t by uk+1−uk

τ where τ stands for the discrete time
step and uk is the solution of the diffusion equation at time tk = k ·τ . The methods
differ in the way the solutions at times k and k+ 1 are arranged into the equation.

The explicit (or Euler forward difference) scheme controls the diffusion by the
diffusivities calculated from the previous time step according to

uk+1 − uk

τ
= div

(
g(|∇uk

σ|)∇uk
)
. (2.73)

The scheme is called explicit because the solution uk+1 is obtained explicitely from
uk by a simple rearrangement of equation (2.73),

uk+1 = uk + τ · div
(
g(|∇uk

σ|)∇uk
)
. (2.74)

After space discretization, this scheme can be described by a matrix equation

uk+1 =
(
I + τA(uk)

)
uk. (2.75)

Advantage of the explicite scheme is that very simple operations are performed at
every iteration; however, this discretization requires only small time steps in order
to be stable [53].

Alternatively, we may employ the semi-implicit time discretization [4, 14, 19, 53]
of the form

uk+1 − uk

τ
= div

(
g(|∇uk

σ|)∇uk+1
)
. (2.76)

Here the diffusivities g are still computed from the previous time step, but the
unknown uk+1 has to be found by solving a system of linear equations

uk =
(
I + τA(uk)

)
uk+1. (2.77)

The system is stable for all time step sizes, and the sparse control matrix (I +
τA(uk)) can be inverted using some iterative techniques, such as Gauss–Seidel or
preconditioned conjugate gradient methods.
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The fully implicit scheme

uk =
(
I + τA(uk+1)

)
uk+1 (2.78)

would involve solution of nonlinear equations without accompanying this difficulty
by any special advantages; this approach is not used in practice.

We will present additive operator splitting scheme [53] in Section 2.6.4. It may
be understood as an attempt to combine the advantages of the explicit and the semi-
implicit methods: absolute stability for all time steps, and one iteration consisting
of simple and efficient operations.

2.6.2 Discretization in space

From the point of view of space discretization, the numerical methods employed
to solve the diffusion equation (2.71) may be classified into finite elements, finite
volume and finite differences.

Let us start from the equation

ut − div(g ∇u) = 0, (2.79)

multiply it by an arbitrary function v defined on the same domain Ω as u, and
integrate the equation over Ω. We obtain∫

Ω
ut v dx−

∫
Ω

div(g ∇u) v dx = 0, (2.80)

which can be rewritten (using integration per partes of the second term and Neu-
mann boundary conditions, and discretizing in time) into the formula∫

Ω

uk+1 − uk

τ
v dx−

∫
Ω
g ∇u∇v dx = 0. (2.81)

Equation (2.81) is called weak formulation of the diffusion equation. The function
u is a weak solution of (2.79) if it satisfies this integral equality for all admissible
functions v (see [14]).

To derive the finite element discretization, the domain Ω is partitioned by tri-
angulation and the equation (2.81) is solved by considering the basis functions vh

which describe all functions v continuous on Ω and linear on each of the trian-
gles. Then the solution u (represented by values at the triangle vertices) is also
understood as piecewise linear. Computationally, the system boils down to solving
systems of linear equations as described in the previous section. Finite elements
have been employed for NL diffusion e.g. by Bänsch and Mikula in [4], and by
Preußer and Rumpf in [30] (who use bilinear functions on rectangles instead of lin-
ear triangular patches in their discretization). Both these papers incorporate mesh
coarsening strategies into the algorithms, which reduces the number of unknowns
and thus speeds the computations significantly as the diffusion time advances.
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Alternatively, we may separate the continuous image domain into small regions
and look for a solution which will be constant on each such region. Let us call one
such small region Vi, and integrate the diffusion equation (2.79) on it to obtain∫

Vi

ut dx−
∫

Vi

div(g ∇u) dx = 0. (2.82)

Using divergence theorem on the second term we can write∫
Vi

ut dx−
∫

∂Vi

g 〈∇u, n〉 dx = 0 (2.83)

where n is the normal to ∂Vi, the boundary of Vi, and the scalar product 〈∇u, n〉
represents flux across the boundary. The equation (2.83) represents the integral
form of the diffusion equation13. This integral diffusion formulation leads naturally
to the finite volume discretization.

Integrating the first term of (2.83) and discretizing in time, we have∫
Vi

ut dx =
uk+1

i − uk
i

τ
|Vi| (2.84)

where uk
i is the mean value of u over the volume Vi at time k (uk

i can be also
understood as a representative of u at Vi and k; the finite volume method considers
the solution constant on each Vi), and |Vi| is the measure of Vi.

Let us introduce some more notation: let N (i) be the set of indeces j such that
Vi and Vj are neighbours, i.e. there exists a common interface eij between Vi and
Vj with nonzero measure |eij | > 0. Let for each i there exists a representative point
xi such that for all j ∈ N (i), the unit vector normal to eij can be expressed using
these representative points as nij = xj−xi

|xj−xi| . Let gij stand for the diffusivity at the
edge eij : with xij the center point of eij , we write gij = g(|∇uσ(xij)|).

With this notation, we can rewrite the flux term of (2.83):∫
∂Vi

g 〈∇u, n〉 dx =
∑

j∈N (i)

gij ·
uj − ui

|xj − xi|
· |eij |. (2.85)

Now let us put (2.84) and (2.85) together and formulate the finite volume scheme
(semi-implicit in time) for nonlinear diffusion: |Vi|

τ
+
∑

j∈N (i)

gij ·
|eij |

|xj − xi|

uk+1
i −

∑
j∈N (i)

gij ·
|eij |

|xj − xi|
·uk+1

j =
|Vi|
τ
·uk

i . (2.86)

This scheme was introduced by Mikula and Ramarosy in [19] where the authors also
show convergence of the discrete scheme (2.86) to the weak solution of the contin-
uous equation (2.79). It appeared also in the overview [14]; Krivá and Mikula [16]

13A small remark: we find the integral form more intuitive and easier to understand than the
differential diffusion equation in the divergence form. From (2.83) you can see directly that the
value of u inside the region Vi changes with time exactly with the flux which passes through the
region boundary.
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combined the finite volumes with mesh adaptivity using quadtrees and applied it
to diffusion filtering of colour images.

Finite volumes show the advantages of being conceptually clear, this discretiza-
tion arises naturally from pixel structure of discrete images. The possibility of grid
coarsening allows to speed up the computations and handle large amounts of data
(e.g. in three dimensions) efficiently. The numerical computations again restrict,
as with all the schemes, to solution of sparse systems of linear equations.

The last scheme of out brief overview, the finite difference scheme, is named
after the main principle of replacing a partial derivative ∂f

∂x by a finite difference
f(x1)−f(x2)

x1−x2
. The finite difference diffusion equation can be derived easily from the

finite volume scheme (2.86) for a regular grid. If each pair of representative points
has the same distance, ∀i, ∀j ∈ N (i) : ∆x = |xi − xj |, we have also |eij | = ∆x,
|Vi| = ∆x2 (in 2D), and we can rewrite the finite volume scheme into∆x2

τ
+
∑

j∈N (i)

gij

uk+1
i −

∑
j∈N (i)

gij · uk+1
j =

∆x2

τ
· uk

i . (2.87)

Dropping the bar from the representative values uk
i and rearranging the equation,

we obtain readily the finite difference scheme (semi-implicit in time) as it appeared
e.g. in [53]:

uk
i = uk+1

i − τ ·
∑

j∈N (i)

gij

∆x2
·
(
uk+1

j − uk+1
i

)
. (2.88)

Conceptually, the finite differences are usually treated in a slightly less rigor-
ous way than finite elements or finite volumes, omitting the volumes of the dis-
cretization elements or their exact geometry with boundary adjacency, boundary
lengths etc. The function u is represented by values ui at regularly spaced grid
points xi. The neighbourhood relation is defined in an abstract way from the 4-
neighbourhood, 8-neighbourhood, or other topological arrangements. Grid adap-
tivity is not allowed, the structure is kept regular. However, the scheme is simple to
derive and there exist efficient finite difference schemes for nonlinear diffusion, both
for the isotropic [53] and for the anisotropic case [45, 23]. We present the explicit
and AOS finite difference schemes more thoroughly in the succeeding sections.

2.6.3 Explicit finite difference discretization scheme

Let us start for simplicity with a one-dimensional, isotropic case, for which the
diffusion equation (2.57) simplifies to

∂tu = ∂x (g(|∂xuσ|) ∂xu) . (2.89)

For discrete data uk
i (approximating u at position xi = i ·∆x and time instant

tk = k ·τ , with τ the discretization time step and ∆x the spatial grid size), replacing
the derivatives by finite differences, the equation (2.89) becomes

uk+1
i − uk

i

τ
=
∑

j∈N (i)

gk
ij

∆x2
(uk

j − uk
i ) (2.90)
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where N (i) is the set of the neighbours of pixel i and gk
ij is the diffusivity belonging

to the connection between pixels i and j at time tk.
The equation (2.90) is called the explicit discretization scheme of (2.89); the

solution at time t+ 1 can be obtained from the solution at time t explicitly by the
following formula which summarizes the equation (2.90) using a matrix notation:

uk+1 =
(
I + τA(uk)

)
uk, (2.91)

where τ is a discrete time step, I is the identity matrix and A(uk) contains the
diffusivity information:

ai,j =



gk
ij

∆x2
for j ∈ N (i)

−
∑

n∈N (i)

gk
in

∆x2
for j = i

0 otherwise

(2.92)

(note that only the elements ai,j of A for which either j ∈ N (i) of i = j are nonzero;
in 1D A is tridiagonal). For two-dimensional data u another term appears:

uk+1 =
(
I + τAx(uk) + τAy(uk)

)
uk (2.93)

and Ax(uk) and Ay(uk) are matrices containing information about the diffusivities
between individual pixels in the directions of axes x and y, respectively. There are
only two differences: the diffusivities gij to fill the matrices Al are computed as
a function of a two-dimensional gradient size g(|∇uσ|) = g

(√
|∂xuσ|2 + |∂yuσ|2

)
,

and the pixels of u must be arranged into a single column vector to allow the matrix
multiplication.

The explicit (or Euler) discretization scheme used in this section is the most
straightforward one but requires a small time step τ in order to be stable. Weickert
shows in [53] that the stability condition (assuming ∆x = 1 and ∀s : g(s) ≤ 1) is

τ <
1

2N
(2.94)

with N being the number of dimensions of the data. This is a severe limitation,
implying that more iterations are needed to reach a fixed stopping time T , and
that poor efficiency may prevent nonlinear diffusion from being applied in practical
situations. Slightly more complex, but absolutely stable, and thus more efficient
methods are discussed in the sections below.

2.6.4 AOS finite difference scheme for nonlinear diffusion

In [53], Weickert et al. suggest to replace the explicit method by the additive op-
erator splitting (AOS) scheme which separates and discretizes the diffusion equa-
tion (2.57) by

uk+1 =
1
m

m∑
l=1

(I −mτAl(uk))−1uk (2.95)
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with l the direction index, l = 1, . . . ,m (for isotropic diffusion, m is set equal to
the dimensionality of the data; for anisotropic diffusion, larger values of m will be
necessary).

Each of the summands in (2.95) represents a one-dimensional diffusion process
along the direction l. The compound diffusion iteration is obtained as an average
of these one-dimensional processes, regardless of the dimensionality of the input
data.

Both the AOS and the explicit schemes are of the same approximation order
(first order in τ , second order in the grid size ∆x) to the continuous diffusion
equation (2.71); this can be easily checked if you compare the equations (2.93) and
(2.95), and use the equality (I − αA)−1 = I + αA + (αA)2 + · · · . In this sense,
the two discretizations are equivalent.

The matrices Al which store the diffusivity information for the diffusion direc-
tion l are formed in the same way as with the explicit algorithm. The matrices
I −mτAl(uk) can be made tridiagonal and diagonally dominant by a simple re-
arrangement of the pixels, and then inverted efficiently by Thomas algorithm [53].
This way, one iteration of the AOS scheme requires only about twice the computa-
tional effort needed for one iteration of the explicit scheme. What we gain for this
price is absolute stability: the AOS scheme is stable and creates a discrete scale
space for any choice of the discretization step τ . The freedom to select a larger
τ means that fewer iterations are needed to reach a fixed stopping time T , and
the algorithm becomes faster. Although a large τ also weakens the filtering effect
and the solution may become less precise an approximation to the ideal continuous
solution, Weickert et al. [53] report that for typical precision requirements of 2%14,
the AOS scheme is at least 11 times faster than any stable explicit scheme.

The AOS scheme can be extended to any number of dimensions. Also, as each
direction and each line in that direction can be processed independently from other
lines/directions, a parallel implementation is straightforward [54].

2.6.5 AOS finite difference scheme for anisotropic diffusion

Moving to the anisotropic diffusion for which the diffusivity need not be equal in
all directions, we again want to approximate the continuous process by a discrete
algorithm. Again, the AOS scheme will separate the 2D diffusion into several one-
dimensional diffusion processes along chosen directions. However, the anisotropic
diffusion will need more directions than the isotropic filter did. There exists a di-
rect relation between the number of one-dimensional processes and the achievable
anisotropy of the compound diffusion filter. For sake of simplicity and computa-
tional efficiency, we restrict the approximation to four directions defined by the
boundary pixels of a 3 × 3 window. In this situation, the AOS discretization is

14The precision was computed with respect to an explicit scheme with a very small time step
τ = 0.1 which was proclaimed the ground truth.
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computed according to

uk+1
l =

1
4

2∑
l=−1

(I − 4τAl(uk))−1uk. (2.96)

The main difficulty is to split the 2D diffusion tensor D correctly into one-dimen-
sional diffusivities to fill the matrices Al.

In [45], Weickert gives a constructive proof of the following theorem: given D, a
symmetric positive definite matrix with a spectral condition number κ, there exists
some n(κ) ∈ N such that div(D · ∇u) reveals a second-order nonnegative forward
difference discretization on a (2n+ 1)× (2n+ 1) window.

The boundary pixels of a (2n + 1) × (2n + 1) window define 4n principal ori-
entations βi ∈ (−π

2 ,
π
2 ], i = −2n + 1, . . . ,2n. The theorem says that it is possible

to separate the continuous process into 4n one-dimensional processes along these
orientations. Moreover, Weickert showed that only three of these orientations are
actually needed to guarantee the positive discretization at any single location, so
that we end up with the approximation

div(D · ∇u) = ∂eβ0
(α0 ∂eβ0

u) + ∂eβk
(αk ∂eβk

u) + ∂eβ2n
(α2n ∂eβ2n

u) (2.97)

where eβi
= (cosβi, sinβi)T , and α0, αk, α2n are the nonnegative directional diffu-

sivities along the orientations β0, βk, β2n.
For the particular case of 2D data and a 3× 3 window (implying four principal

orientations15 β−1 = −π
4 , β0 = 0, β1 = π

4 , β2 = π
2 ) with the diffusion tensor

D =
(

a b
b c

)
, its condition number bounded by κmax = 3 + 2

√
2, Weickert proposes

the following directional diffusivities:

α−1 =
|b| − b

2
α0 = a− |b| (2.98)

α1 =
|b|+ b

2
α2 = c− |b|. (2.99)

The directional diffusivities are assembled into matrices Al, and the AOS dis-
cretization of the 2D continuous anisotropic diffusion process is computed using
the equation (2.96). This directional splitting leads to an algorithm which reveals
(discrete versions of) all theoretical properties of the continuous diffusion filter pre-
sented in Section 2.3.4. As for practical properties, some problems arise with the
rotational symmetry of the discrete filter; we return to this point in Section 3.2.

In a private communication, Joachim Weickert suggested that any diffusivity
splitting method can only possess two of these three desirable properties:

1. positivity (max-min principle);

2. anisotropy (strong directionality without limits on the condition number of
D);

15We assume equal grid size ∆x = 1 in both dimensions.
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3. consistency with the continuous equation (the splitting should converge to
the continuous equation as the discretization steps approach zero, τ → 0,
∆x→ 0).

Weickert and Scharr renounced the positivity to obtain rotational symmetry and
good directionality (with less blurring in other than coherence directions) in [52].
The disadvantage of that choice is that the maximum-minimum principle is lost,
some oscillations may appear, and the method is not suitable for noise filtering.
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We present here the contributions that the author has made to the general (isotropic
and anisotropic) nonlinear diffusion as applied to image filtering. The first part
(Section 3.1) reopens an important question: at what time T should we stop the dif-
fusion process in order to obtain the best filtering result? The second one (sec. 3.2)
studies one detail of the anisotropic diffusion: what is the correct way to split
the continuous anisotropic diffusion process into four one-dimensional processes as
needed for the numerical additive operator splitting scheme. The two topics have
been published in [22] and [23], respectively. The last section in this chapter then
summarizes all the ideas mentioned above into a complete and autonomous image
filtering algorithm.

3.1 Optimal stopping time selection for NL diffusion

Section 2.3.5 discussed the role of stopping time T for nonlinear diffusion. We also
mentioned the previously suggested strategies to select a good T , but were not
satisfied with any of them. We offer a new stopping-time selection method in this
section.

We work with the following model (see Figure 3.1): let f̃ be the ideal, noise-free
(discrete) image; this image is observed by some imprecise measurement device to
obtain an image f . We assume that some noise n is added to the signal during the
observation so that

f = f̃ + n. (3.1)

Furthermore, we assume that the noise n is uncorrelated with the signal f̃ , and
that the noise has zero mean value, E(n) = 0.1

1Let us review the statistical definitions used in this section (see e.g. Papoulis [27]). For the
statistical computations on images, we treat the pixels of an image as independent observations
of a random variable.
The mean or expectation of a vector x is x = E(x) = 1

N

∑N
i=1 xi.

We define the variance of a signal x as var(x) = E
[
(x− x)2

]
.

The covariance of two vectors x, y is given by cov(x, y) = E [(x− x) · (y − y)] .
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s
f ≡ u(0)

s

?

f̃

+n

u(t)

u(T )
s

Figure 3.1: Model of the time-selection problem
for the diffusion filtering. We want to select the
filtered image u(T ) which is as close as possible to
the ideal signal f̃ .

The diffusion filtering starts with the noisy image as its initial condition, u(0) =
f , and the diffusion evolves along some trajectory u(t). This trajectory depends on
the diffusion parameters and on the input image; the optimistic assumption is that
the noise will be removed from the data before important features of the signal
commence to deteriorate significantly, so that the diffusion leads us somewhere
‘close’ to the ideal data. This should be the case if the signal adheres to the
piecewise constant model inherent in the diffusion equation.

The task of the stopping time selection can be formulated as follows: select
that point u(T ) of the diffusion evolution which is nearest to the ideal signal f̃ .
Obviously, the ideal signal is normally not available; the optimal stopping time T
can only be estimated by some criteria, and the distance2 between the ideal and
the filtered data serves only in the experiments to evaluate the performance of the
estimation procedure.

We introduced the previous approaches to the time selection problem in Sec-
tion 2.3.5, and were rather critical about their applicability. Even the most promis-
ing of them, the Weickert’s formula (2.56), based on the knowledge of the noise
variance and measuring somehow the distance of the filtered image from its noisy
initialization, does not usually yield the optimal stopping time. Let us study in
more detail why the problems occur.

The equality (2.54) and hence the equation (2.55) are valid only if the signal
and the noise are uncorrelated. This assumption is valid for f̃ and n, but not
necessarily for the filtered signal u(T ) and the difference u(0) − u(T ); the latter

The normalized form of the covariance is called the correlation coefficient, corr(x, y) =
cov(x,y)√

var(x)·var(y)
.

2In the experiments below, we measure the distance of two images by the mean absolute de-
viation, MAD(x − y) = E (|x− y − E(x− y)|) . If the two random variables x, y share the same
mean value, we have E(x− y) = 0 and the MAD distance simplifies to MAD(x− y) = E(|x− y|).
We can use this latter formula as neither the noise nor the diffusion process change the average
grey value of the data, E

(
f̃ − u(t)

)
= 0.
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is needed for the equation (2.56) to be justified. In other words (if we substitute
mentally the filtered function u(T ) for f̃ , the difference nu ≡ u(0) − u(T ) for the
noise n, and u(0) for f in (2.54) and (2.55)), the formula (2.56) is useful only if the
random variables u(T ) and (u(0)− u(T )) are uncorrelated.

The influence of the covariance on the equations is even better visualised if
we compute the difference of the general form var(nu) = var(u(0)− u(t)) and the
‘uncorrelated’ result3 var(nu) ≈ var(u(0))− var(u(t)):

var
(
u(0)− u(t)

)
−
(
var
(
u(0)

)
− var

(
u(t)

))
=

= var
(
u(0)

)
+ var

(
u(t)

)
− 2 · cov

(
u(0),u(t)

)
−
(
var
(
u(0)

)
− var

(
u(t)

))
= 2 ·

(
var
(
u(t)

)
− cov

(
u(0),u(t)

))
= 2 ·

(
E
[(

u(t)− u(t)
)2]

− E
[(

u(0)− u(0)
)
·
(
u(t)− u(t)

)])
= 2 · E

[((
u(t)− u(t)

)
−
(
u(0)− u(0)

))
·
(
u(t)− u(t)

)]
= 2 · E

[(
u(t)− u(0)− (u(t)− u(0))

)
·
(
u(t)− u(t)

)]
= −2 · cov

(
u(0)− u(t),u(t)

)
.

(3.2)

Inspired by these computations, we arrive to the following idea: if the unknown
noise n is uncorrelated with the unknown signal f̃ , wouldn’t it be reasonable to
minimize the covariance of the ‘noise’ (u(0) − u(t)) with the ‘signal’ u(t), or –
better – employ its normalized form, the correlation coefficient

corr
(
u(0)− u(t),u(t)

)
=

cov
(
u(0)− u(t),u(t)

)√
var
(
u(0)− u(t)

)
· var

(
u(t)

) (3.3)

and choose the stopping time T so that the expression (3.3) is as small as possible?
This way, instead of determining the stopping time so that (u(0)− u(T )) satisfies
a quantitative property and its variance is equal to the known variance of the noise
n, we try to enforce a qualitative feature: if the ideal f̃ and n were uncorrelated,
we require that their artificial substitutes u(T ) and (u(0)− u(T )) reveal the same
property, to the extent possible, and select

T = arg min
t

corr
(
u(0)− u(t),u(t)

)
. (3.4)

We will call formula (3.4) decorrelation criterion; let us test and validate its per-
formance experimentally.

We took the cymbidium image shown in Figure 5.5, added various levels of
Gaussian noise to it, filtered by nonlinear diffusion, and observed how the signal–
noise correlation measured by equation (3.3) develops with time. A typical example

3Meaning again that the random variables u(T ) and (u(0)− u(T )) should be uncorrelated.
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Figure 3.2: The distance MAD(u(t) − f̃ ) (solid line) and the correlation coefficient
corr

(
u(0) − u(t),u(t)

)
(dashed line) developing with the diffusion time. The input file

‘p5n.pgm’ from the cymbidium experiment in Section 5.1.2 was filtered with the diffusion
parameters σ = 1, τ = 0.1, and the Black-Sapiro’s λ = 192.8.

is drawn in Figure 3.2: you can observe that the plot of the MAD criterion measur-
ing the actual filtering quality coincides very well with the graph of the correlation
coefficient corr

(
u(0)− u(t),u(t)

)
.

A more thorough study of the performance of the stopping time selection crite-
ria (measured again on the cymbidium data of Section 5.1.2) is seen in figures 3.3
and 3.4. The former compares three stopping times: the optimal Topt is the time
instant for which the filtered image u(t) is closest to the noise-free f̃ in the MAD
distance; obviously, Topt can be found only in the artificial experimental setting, the
noise-free f̃ is normally not available. The second stopping time TSNR is determined
using the criterion (2.56) (which requires the knowledge of the noise variance or
SNR; exact SNR values were supplied to the procedure in these artificial settings).
The stopping time Tcorr minimizing the signal-noise correlation is computed using
equation (3.4). All alternative stopping times are computed for a series of input
images with varied amount of noise present. While the SNR method easily under-
estimates or overestimates the optimal stopping time (depending on the amount of
noise in the input data), the correlation minimization leads to near-optimal results
for all noise levels and all time step sizes.

The actually obtained quality measure MAD(u(T ) − f̃) is shown in Fig. 3.4.
The graphs are plotted for the iteration step τ = 0.5. You can see that for all
noise levels the correlation-estimated time leads to filtering results very close to
the optimal values obtainable by the nonlinear diffusion.

Let us return for a moment to Figure 3.2. At the beginning of the diffusion
filtering, the correlation coefficient declines fast until it reaches its minimum. If for
some data the graph behaves differently, it may serve as a hint on some problems.
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Figure 3.3: The stopping time TSNR determined by the SNR method (dotted with crosses),
and Tcorr obtained through the covariance minimization (dotted with diamonds) compared
to the optimal stopping time Topt (solid line). The graphs are plotted against the standard
deviation of noise in the input image; the three figures represent the same measurements
for different iteration time-step sizes (top to bottom): τ = 0.1, τ = 0.5, τ = 1.
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Figure 3.4: Top: the MAD distance of the filtered data from the ideal noise-free image,
MAD(u(T )− f̃ ), using the SNR and the correlation-minimization time selection strategies.
Bottom: the difference between the estimated result and the optimal one, MAD(u(T ) −
u(Topt)).
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As an example, we observed that if there is only a small amount of noise in the
input image, the correlation corr

(
u(0)−u(t),u(t)

)
might grow from the first itera-

tions. In such a case, the iteration time step τ has to be decreased adaptively and
the diffusion restarted from time t = 0 until the correlation plot exhibits a clear
minimum.

We conclude this section on the time-selection strategies by stressing that not
only the correlation-minimization outperforms all other methods we know of: it is
also more general, being based only on the assumption that the noise n is uncor-
related with the original data f̃ . We do not need any knowledge on the variance of
the noise or the signal-to-noise ratio, neither do we need to tune any parameters
on ‘typical’ images. On the other hand, we should not forget that the decorrelation
criterion can only estimate a good T ; if some other information (e.g. the expected
noise variance) is available, two or more time-selection strategies can be combined
to increase reliability of the estimates.

Some images filtered using the correlation stopping time selection method are
to be seen in Section 5.1.

3.2 Consistent positive splitting
of anisotropic NL diffusion

In this section, we follow up the topic of Section 2.6.5 (numerical methods for
anisotropic diffusion) with a more detailed study of the consistent directional split-
ting of anisotropic diffusion on a 3 × 3 window. The splitting is needed to obtain
discrete numerical algorithms which approximate the continuous 2D anisotropic
diffusion process by several (four in our case) one-dimensional procedures acting
along chosen directions.

Let us start from the diffusion tensor D =
(

a b
b c

)
formed as in Section 2.4. We

want to approximate the (continuous) 2D diffusion by a diffusion composed of 1D
processes acting along four directions β−1 = −π

4 , β0 = 0, β1 = π
4 , β2 = π

2 ; we will
call the approximation consistent if

2∑
k=−1

∂eβk
(αk · ∂eβk

u) = div(D · ∇u) (3.5)

where αk is the diffusivity along the direction βk.
Let us expand the left hand side of equation (3.5). With eβk

= (cosβi, sinβi)T

and using the notation ux = ∂u
∂x (similarly for uy, uxx, etc.), we have

∂eβk
= 〈eβk

,∇u〉 = ux cosβk + uy sinβk (3.6)

from which

∂eβk
(αk · ∂eβk

u) = αk ·
(
uxx cos2 βk + 2uxy sinβk cosβk + uyy sin2 βk

)
. (3.7)

The right hand side of (3.5) yields

div(D · ∇u) =
〈(

∂x

∂y

)
,

(
a ux + b uy

b ux + c uy

)〉
= a uxx + 2b uxy + c uyy. (3.8)
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If we evaluate the trigonometric functions for the angles βk in (3.7), sum up the
contributions for all k, and assemble the elements corresponding to a given partial
derivative of u, we obtain the following set of linear equations:

for uxx :
1
2
α−1+α0 +

1
2
α1 = a (3.9)

for uxy : −α−1 +α1 = 2 b (3.10)

for uyy :
1
2
α−1 +

1
2
α1+α2 = c. (3.11)

We want to solve this set of equations for the unknown αk with the restriction
αk ≥ 0, ∀k (the splitting should be positive).

Let us take the second equation of the system, (3.10), and add another equation
to it, formed for a parameter p = α−1+α1

2 :

−α−1 + α1 = 2 b (3.12)
α−1 + α1 = 2 p. (3.13)

Summing and subtracting of the two equations lead to

α1 = b+ p ≥ 0 (3.14)
α−1 = p− b ≥ 0 (3.15)

from which we obtain the first solvability condition, p ≥ |b|.
Using the parameter p, the solutions of (3.9)–(3.11) may be expressed as

α0 = a− p α2 = c− p (3.16)
α−1 = p− b α1 = p+ b. (3.17)

As we require αk ≥ 0, the equation (3.16) provides directly the upper bound on
our splitting parameter: p ≤ min(a, c). To summarize, the consistent splitting
(3.16)–(3.17) remains positive if we select

p ∈
[
|b|,min(a, c)

]
. (3.18)

The conditions ensuring that this interval is nonempty can be expressed in terms of
the condition number of the diffusion tensor D. This has been done by Weickert [45]
and we have seen it in Section 2.6.5: the consistent positive splitting on a 3 × 3
window is possible if the condition number of D is smaller of equal to κmax =
3 + 2

√
2.

Let us now return to an important point: which value from the admissible
interval should be chosen for the parameter p? In the following we offer three
possibilities:

Splitting 1: p = |b|

Splitting 2: p = min(a, c)
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Figure 3.5: Gaussian hill, the input data to
test the rotational symmetry of the methods.

Splitting 3: p = |b|+min(a,c)
2 .

The first two suggestions take on the value of either of the limit cases; splitting 1 is
clearly equivalent to Weickert’s positive splitting (2.98)–(2.99). The third splitting
represents a compromise, an average of the two limits of the admissible inter-
val (3.18).

The three splitting alternatives are tested for rotational symmetry in Figure 3.6,
showing a diffused Gaussian hill. You can observe that although all the three
methods share the same property of consistency with the continuous formulation,
splitting 1 and 2 does not transfer the continuous rotational symmetry well into
the discrete situation. The artefacts become severe as the iteration time step τ
increases. On the other hand, the compromising splitting 3 restricts the artefacts
considerably, both for a large τ = 10 and for a small τ = 1 (the latter situation is
stressed in Figure 3.7 depicting the difference between the diffusion result and its
copy rotated by 45 degrees). Figure 3.7d illustrates that if the diffusivity parameter
λ is (too) small, the interval (3.18) becomes narrow on a large part of the image,
and the three splitting alternatives perform equivalently in preferring some diffusion
directions to others, which may create some irregular patterns in the data.

The noise-filtering capabilities of splitting 1 and splitting 3, tested on the data
from Figure 5.1, are compared in Figure 3.8. You can see that some cloth-like
artefacts remain in the filtered image with fewer iterations of splitting 1, and the
output data for τ = 1 and τ = 5 differ significantly. In contrast with that, all
the results of splitting 3 resemble, although – as usual for the AOS scheme – the
filtering effect weakens as the discretization time step increases. These results prove
that the differences between the splitting methods might be negligible if a small
time step τ is employed. However, if you ask for a more efficient algorithm and
wish to spend fewer iterations of the filtering procedure, thus needing a larger τ ,
splitting 3 becomes clearly superior.

To summarize this section: we have analysed the possibilities for consistent
positive directional splitting of anisotropic diffusion on a 3 × 3 window. We have
shown that such a splitting exists if the interval [b,min(a, c)], formed from the
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Figure 3.6: A rotationally symmetric Gaussian hill from Figure 3.5 filtered by the three
directional splitting methods for the anisotropic NL diffusion AOS scheme of Section 2.6.5.
Left column contains the results for the discretization time step τ = 1, the right for
τ = 10. The other diffusion parameters were σ = 1, T = 200, ϕ2 = 1; the parameter λ was
computed in each diffusion step as the 95th percentile of image gradients.
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a b

c d

Figure 3.7: The artefacts on rotational symmetry.
(a–c) the (amplified) difference between a diffusion result from Figure 3.6, τ = 1, and its
copy rotated by 45 degrees: (a) splitting 1, (b) splitting 2, (c) splitting 3.
(d) Star-like patterns appear on a Gaussian diffused with a small diffusivity parameter λ
(for any splitting method 1–3). Here T = 200, τ = 10, the Perona-Malik λ was computed
as the 10th percentile of image gradients.

elements of the diffusion tensor D =
(

a b
b c

)
, is nonempty. Moreover, we have

derived the formulas for the directional diffusivities depending on a single diffusivity
parameter, and demonstrated experimentally that the directional splitting reveals
better properties (regarding e.g. rotational symmetry and sensitivity to the time
step size) if the splitting parameter is chosen from the interior of the admissible
interval.
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Figure 3.8: Impact of the directional splitting on the results of the noise-filtering procedure:
splitting 1 on the left, splitting 3 on the right. In all cases, the stopping time of the diffusion
was T = 25, the time step τ increases from top to bottom, τ ∈ {1, 2.5, 5}.
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3.3 Diffusion filtering algorithm

In this section, we summarize the ideas on numerical methods and parameter selec-
tion mentioned above into a complete and autonomous image filtering algorithm.

Let again f̃ stand for the ideal, noise-free data; our input image f is consists
of the data and some additive noise n, f = f̃ + n. We assume that the noise has
zero mean value, E(n) = 0, and that it is uncorrelated with the signal f̃ . We want
to find a filtered image u(T ) which contains as much information of the ideal f̃
as possible. To achieve this goal, we propose to filter the data by the following
algorithm of anisotropic nonlinear diffusion.

Algorithm 1: Adaptive diffusion image filtering

1. Initialize the image data, u(0) = f .

2. Initialize the diffusion parameters
a. user specified parameters possible

values
suggested

value
σ noise scale (regularization, presmoothing) (0,∞) 1
ϕ2 anisotropy [0, 1] 0.2
% integration scale [0,∞) 0
τ0 initial value for the iteration time step (0,∞) 1
p parameter for the Perona–Malik estimation of λ (0, 1) (0.7, 0.95)

b. autonomously determined

λ the diffusivity parameter
If the noise n is known to be of normal distribution, estimate λ using
the Black–Sapiro formula (2.47); otherwise employ the Perona–Malik
procedure and set λ equal to the (100 · p)-th percentile of regularized
image gradients.

τ the iteration time step
Using the initial value τ0 for τ , compute the first two iterations of the
diffusion process (see below), u(τ) and u(2τ).
If corr

(
u(0) − u(τ),u(τ)

)
≤ corr

(
u(0) − u(2τ),u(2τ)

)
(see eq. (3.3)),

the signal–noise correlation is not decreasing, the value of τ is too large.
Set e.g. τ = τ/4, and repeat the two diffusion steps from u(0) with the
current value of τ until the correlation decreases. Initialize T = 2τ .

3. Iterate the diffusion filtering: repeat the diffusion filtering step from u(T ) to
u(T + τ) until the minimum of the signal–noise correlation,

corr
(
u(0)− u(T ),u(T )

)
< corr

(
u(0)− u(T + τ),u(T + τ)

)
.

When we reach the minimum, the filtered image u(T ) is found.
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One iteration of the anisotropic diffusion process consists of the following steps
(assuming the current data in u, and storing the diffusion result to o; see sections
2.4 and 2.6 for details on the procedure).

Algorithm 2: Anisotropic diffusion iteration

1. Calculate the structure tensor S%

a. Obtain the regularized image s = uσ.

b. Compute the gradient of the smoothed image,
(

dx
dy

)
= ∇s

(using finite differences).

c. Form the zero-order structure tensor, S0 =
(

dx
2 dx·dy

dx·dy dy
2

)
.

d. If the integration scale % is nonzero, calculate a component-wise convo-
lution S% = G% ∗ S0.

2. Transform S% into the diffusion tensor D

a. Get eigenvectors ~v1, ~v2 and eigenvalues µ1, µ2 of the matrix S%; assemble
the eigenvectors columnwise into a matrix X.

b. If needed, this is the point where to estimate the diffusivity parameter
λ from the array of eigenvalues µ1.

c. Calculate the diffusion tensor D = X
(

g(µ1) 0
0 ϕ2

)
XT where ϕ2 is the

parameter of anisotropy.

3. AOS diffusion scheme

a. Separate the diffusion tensor into four diffusion directions, find the di-
rectional diffusivities αl, l = −1, . . . ,2 (using splitting 3 with equa-
tions (3.16)–(3.17)); initialize the output, oi,j = 0, ∀i, j.

b. For all directions l, for each row in that direction

– extract a row of pixels, ul, from the image u
– form the diffusivity matrix Al from the diffusivities αl corresponding

to the row ul

– construct one row of the output for the direction l by solving the
equation ol = (I − 4τAl)−1ul. The matrix to be inverted is tridi-
agonal and the result can be computed efficiently using Thomas
algorithm [53].

c. Assemble the results of all directions, o = 1
4

∑2
l=−1 ol.



4 Monotonicity-enhancing
NL diffusion

4.1 Introduction

Consider the following situation: let f̃ be a piecewise continuous real function
defined on a rectangle Ω = [0, xmax]× [0, ymax] ⊂ R2. Moreover, let f̃ be piecewise
monotone, i.e. the domain Ω can be partitioned into K connected subsets Ωk, k =
1, . . . ,K, such that f̃ is continuous and monotone on Ωk:

f̃(x1, y) ≤ f̃(x2, y) ∀(x1, y), (x2, y) ∈ Ωk, x1 < x2

or f̃(x1, y) ≥ f̃(x2, y) ∀(x1, y), (x2, y) ∈ Ωk, x1 < x2 (4.1)

f̃(x, y1) ≤ f̃(x, y2) ∀(x, y1), (x, y2) ∈ Ωk, y1 < y2

or f̃(x, y1) ≥ f̃(x, y2) ∀(x, y1), (x, y2) ∈ Ωk, y1 < y2 (4.2)

For discrete data f , obtained from f̃ using the discretization formula (2.1), the
piecewise monotonicity assumption can be restated as follows: if K is the smallest
number of connected1 sets Ωk needed to partition the function domain so that the
discrete function f is continuous2 and monotone on each Ωk, we require that K is
much smaller than the number of pixels in the image. The discretization noise may
violate this monotonicity assumption; the gradient of the noisy samples fi,j will
change its orientation much more often than that of the original function. Our task
is to restore the desired function properties, filter the noise, smooth or simplify the
sampled function f so as to enforce the piecewise monotonicity (reduce the number
K described above) while preserving important discontinuities or edges.

The piecewise monotonicity is intended as a weakening or generalization of
piecewise linearity. Let us present three real-world examples which motivate and

1Using 4–neighbourhood to define discrete connectedness.
2Obviously, the notion of function continuity does not exist in the discrete situation. The

gradient (more exactly its estimate from the discrete data) may serve as a replacement: the smaller
the gradient at a given position, the more feasible it is to regard the function as continuous around
that position.
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↑
t

Figure 4.1: Classical nonlinear diffusion approaches a (piecewise) constant function; this
phenomenon can be observed first near the ends of growing function segments.

clarify this notion. First, the rainbow range finder which was already introduced
on page 2: the coordinate axes of the data measured by this device are fixed by
the illumination conditions, and the wavelength of light observed in the scene is
continuous on continuous object surfaces, and piecewise monotone, more precisely
piecewise increasing in one coordinate direction. It is possible to formulate a similar
property for other types of range finders (using laser rays, structured light, etc.)
as well.

As a second example of a situation where the piecewise monotonicity assump-
tion could be appropriate, we may mention the range data for 3D reconstruction
in computer vision. The function f̃ represents the distance of the objects in the
scene from the camera; the distance changes gradually on continuous surfaces,
with abrupt changes, i.e. discontinuities where a different object comes into view.
These distance data are measured at discrete positions xi, yj with some imprecision
modeled by the noise n, thus forming a 2D array (or image) of values fi,j .

As a third example, some black-and-white images can be considered piecewise
monotone if the grey values or light intensities change gradually in some parts of
the image, with possible discontinuities (i.e. edges) between image regions.

In this chapter we concentrate on the possibility to enhance piecewise mono-
tonicity by nonlinear diffusion. Unfortunately, as the classical nonlinear diffusion
filters presented in the previous chapters smooth the data more inside homogeneous
regions, the function u solving the diffusion equation tends to a piecewise constant
as time t increases. This is illustrated on a simple function in Figure 4.1; the
‘horizontalization’ of an increasing function can be observed first near the ends of
continuous function segments. While nonlinear diffusion yields impressive results
on some images and may be particularly useful for robust image segmentation,
the model assuming piecewise constancy is unsuitable for noise removal from most
natural scenes.

A variety of other possible models for image filtering, such as piecewise linear,
locally monotone or locally convex has been suggested in [1, 2]. The limitations



52 Monotonicity-enhancing NL diffusion

classical diffusion

data u(0) ≡ f

diffuse

piecewise constant u(t)
?

monotonicity enhancement

data f

differentiate

derivatives v(0),w(0)

diffuse

piecewise constant derivatives v(t),w(t)

integrate

piecewise linear u(t)
?

?

?

Figure 4.2: Main idea of the monotonicity enhancement by nonlinear diffusion: running
the NL diffusion on directional derivatives of the original data and integrating the result,
we obtain a filtered output which tends to a piecewise linear function.

of the piecewise constant model for noise removal using minimization of the total
variation of the image3 were observed by Chambolle and Lions in [11]. The authors
suggest to alleviate the problem by introducing second order terms (like the total
variation of the image gradient) into the functional to be minimized. A coupled
diffusion of partial derivatives, partly similar to the approach forming the main
topic of this chapter, has been proposed by Whitaker and Gerig in [55]; their main
motivation was to use the boundaries of the diffused derivatives (of some order N)
to make decisions about presence of higher order image features.

In this chapter we try to exploit the following simple idea: if we differentiate
the data first and run the diffusion on the arrays of partial derivatives instead
of the original function values, the piecewise smoothing of derivatives leads (af-
ter integration) to data which are piecewise monotone, for higher t approaching a
piecewise linear function. Where classical nonlinear diffusion simplifies an image
into segments of similar grey levels, the procedure using derivatives (the main topic
of this chapter; we will call it monotonicity-enhancing nonlinear diffusion, abbre-
viated ME NL diffusion) creates patches of similar trends, which can successfully
approximate a large class of images and other types of inputs and will be preferred
if piecewise monotonicity of the data is assumed and desired.

In the following, we first present an isotropic nonlinear diffusion algorithm for
monotonicity enhancement as developed in [20, 21]. The method approximates
directional derivatives by one-sided differences of neighbouring pixels. This ap-
proach keeps the image information contained in the derivatives located close to

3We should remark that image restoration by minimization of some functional is closely related
to nonlinear diffusion and scale-space theory, see e.g. [28, 45, 31, 34] and Section 2.3.3.
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Figure 4.3: Geometry of the discrete image: the partial derivatives of the data u in the
direction of axes x, y are approximated by finite differences forming arrays v and w, re-
spectively.

the original positions, but leads to complications as the elements of the arrays of
the derivatives and of the array of diffusivity information do not overlap. For more
complex anisotropic nonlinear diffusion filters, central differences for derivative ap-
proximation become advantageous. This latter method is described in Section 4.3.
We then discuss theoretical properties of the methods, and present experimental
results.

4.2 Isotropic ME NL diffusion

4.2.1 From data to partial derivatives

Consider the two-dimensional situation: a function f(x, y) is sampled and repre-
sented by values fi,j at positions (xi, yj), xi = i · ∆x, yj = j · ∆y, i = 1, . . . ,Ni,
j = 1, . . . ,Nj ; the samples (pixels) fi,j form an image, our input data.

The partial derivatives of the original function in the direction of axes x, y,
respectively, can be approximated from the discrete image by differences of the
neighbouring pixels, forming two arrays v and w:

∂f(x, y)
∂x

∣∣∣∣
xi,yj

≈ vi,j ≡
fi+1,j − fi,j

∆x
, i = 1, . . . ,Ni − 1, j = 1, . . . ,Nj , (4.3)

∂f(x, y)
∂y

∣∣∣∣
xi,yj

≈ wi,j ≡
fi,j+1 − fi,j

∆y
, i = 1, . . . ,Ni, j = 1, . . . ,Nj − 1. (4.4)

The arrays v,w must satisfy some requirements in order to represent the partial
derivatives of a real function. In the continuous domain, the integral of a function
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gradient along any closed curve is zero,∮
C
∇f(~r) · d~r = 0. (4.5)

In the discrete image any closed curve is composed of the elementary closed curves
passing through four pixels4 as illustrated in Figure 4.3, and the observation (4.5)
transforms into

∀i, j : ei,j ≡ wi,j + vi,j+1 − wi+1,j − vi,j = 0. (4.6)

While this constraint is satisfied automatically by (4.3)–(4.4), we have to be more
careful about it during the diffusion process.

4.2.2 The diffusion algorithm

Rewriting the isotropic nonlinear diffusion equation (2.71) for the arrays v,w in-
stead of u, we obtain the following set of equations:

∂tv = div (gv(v,w)∇v) (4.7)
∂tw = div (gw(v,w)∇w) (4.8)

These two equations could be solved separately from each other; however, the
information in the two fields v and w is not entirely independent, and we choose
to couple the two equations by a common array of diffusivities as usual for vector-
valued diffusion (see [55, 47, 16]). In the continuous settings, the diffusivities gv

and gw (computed using both the images v,w as the notation g(v,w) suggests)
will be identical.

The discrete algorithms for these equations can be developed analogically to a
single isotropic diffusion equation; we refer the reader to Section 2.6 for details. As
an example, the explicit discretization scheme will have the following form:

vk+1 =
(
I + τAx(vk,wk) + τAy(vk,wk)

)
vk (4.9)

wk+1 =
(
I + τBx(vk,wk) + τBy(vk,wk)

)
wk (4.10)

Here v, w are column vectors of generally different size, (Ni−1)·Nj , andNi·(Nj−1),
respectively; the matrices A, B which store the diffusivity information have also
different dimensions. However, as the connection between elements vi−1,j and vi,j ,
and between wi,j−1 and wi,j passes through a common point (ui,j in Figure 4.3),
we find it reasonable to assign these two connections the same diffusivity, namely
gi,j . This way the matrices A and B depend on both vk and wk; the equations
(4.9), (4.10) will be coupled through the common array of diffusivities and many
elements of Ax and By will be identical (similarly for the other pair of directions
and Ay, Bx, only the common point of the connections vi,j — vi,j+1 and wi,j —

4Assuming 4–neighbourhood, i.e. only vertical and horizontal connections are allowed.
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wi+1,j does not coincide with any input datum u; we denote the diffusivity of that
position by gi+ 1

2
,j+ 1

2
).

There are many possibilities how to assemble the information from the smoothed,
regularized versions ṽ, w̃ of the arrays v,w into the common diffusivities gi,j . Pro-
ceeding most directly from (2.71) to the diffusion of derivatives, we obtain the
following:

g
(
|∇2uσ|2

)
= g

(
|∇ · (∇uσ)|2

)
≈ g

(
|∇ · (ṽ, w̃)|2

)
= g

(∣∣∣∣ ṽ
∂x

+
w̃
∂y

∣∣∣∣2
)
≈

gi,j ≡ g
(
|ṽi,j − ṽi−1,j + w̃i,j − w̃i,j−1|2

)
. (4.11)

In our experiments, we used the equation (2.46) to define the function g.
The complication with this approach is that derivatives amplify high frequency

components of a signal (including noise), and the second order derivatives of the
input data which appear in formula (4.11) make the method more difficult to
tune and unsuitable for highly corrupted inputs. In some of our experiments we
employed the following trick successfully: steer the diffusion not with a gradient
of the partial derivatives, but with a gradient of the original data, thus avoiding
higher order derivatives. Using the arrays of partial derivatives we can write

g
(
|∇uσ|2

)
≈ gi,j ≡ g

(∣∣∣∣ ṽi−1,j + ṽi,j

2

∣∣∣∣2 +
∣∣∣∣ w̃i,j−1 + w̃i,j

2

∣∣∣∣2
)
, (4.12)

gi+ 1
2
,j+ 1

2
≡ g

(∣∣∣∣ ṽi,j + ṽi,j+1

2

∣∣∣∣2 +
∣∣∣∣ w̃i,j + w̃i+1,j

2

∣∣∣∣2
)
.

This alternative reveals a drawback, too: limited to first derivatives only, it may
neglect discontinuities of the second derivatives and round corners of a continuous
function. See some experiments below.

There is another problem with the simple formulation of nonlinear diffusion of
partial derivatives: the equations (4.7)–(4.8) do not guarantee that the constraint
(4.6) is satisfied. In the remaining part of this section we try to enforce the necessary
properties of the arrays of partial derivatives.

Denote by ẑ = [vk,wk]T the result of the diffusion process at time tk. We seek
a solution z as close as possible to ẑ while obeying the constraint (4.6) which can
be written in matrix form as

C z = 0 (4.13)

where C is a [(Ni − 1) · (Nj − 1)] ×N sparse matrix with four nonzero entries in
each row, and N is the total number of elements of the arrays v,w:

N = (Ni − 1) ·Nj +Ni · (Nj − 1). (4.14)

The rigorous way to solve this problem is to find z as an orthogonal projection of
ẑ into the null space S of matrix C; such solution minimizes the norm ‖z − ẑ‖2.
The following details are adapted from Luenberger [18].
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If we find the vectors forming the orthonormal basis of the null space S of C
and arrange them as columns of a matrix D, then satisfying C z = 0 corresponds
to evaluating z = Dδ for some vector δ, which we find as the one minimizing

‖D δ − ẑ‖2. (4.15)

As the columns of D are orthonormal, the equation (4.15) is minimized for δ =
DT ẑ, and the sought orthogonal projection of ẑ into the null space of matrix C is

z = DDT ẑ. (4.16)

The advantage is that DDT can be computed only once for the same image
size, the matrix C remains the same for all diffusion steps.

The trouble with this mathematically correct solution it that it involves the
construction of an orthonormal basis of the null space of C, and full matrix multi-
plication (processes of complexities O(N3) and O(N2), respectively). Already for
small images, these matrix computations become infeasible.

As a viable alternative, we choose to restore the property (4.6) by the following
iterative algorithm:

Algorithm 3: Restoration of the derivatives

1. Evaluate errors

ei,j = wi,j + vi,j+1 − wi+1,j − vi,j , ∀i, j.

2. For all i, j, update the values as follows5:

vi,j = vi,j + (ei,j − ei,j−1)/c, wi,j = wi,j − (ei,j − ei−1,j)/c

with obvious modifications at the image boundary.

3. If max |ei,j | is smaller than a given threshold θ, finish; otherwise go to 1.

Similarly to the vector ẑ (originating from v,w), also the errors êi,j can be
organized into one vector, ê. It may be computed by the formula ê = Cẑk, where
ẑk is the current (k-th iteration) solution of Algorithm 3.

The space S⊥, orthogonal to the null space S, is exactly the linear hull of all
rows of the matrix C. The orthogonal projection of ẑ onto S is the unique vector
z ∈ S such that z − ẑ ∈ S⊥. Algorithm 3 starts from ẑ0 ≡ ẑ; in each step of the
algorithm, we add to ẑk a linear combination of rows of C, i.e., a vector from S⊥.
Thus we remain in the hyperplane orthogonal to S and containing z. The linear
combination is nonzero iff ê has a nonzero entry. This implies that the only fixed
point of the algorithm is z. As a consequence, whenever Algorithm 3 converges, its
limit is z, the orthogonal projection of ẑ into the null space of matrix C.

5For simplicity, we use the same symbols for the original and the updated values, using a
MATLAB-like notation; new values are on the left.
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Figure 4.4: Number of iterations needed to complete the derivative-correction algorithm
for precision θ = 0.001 on a 20× 20 grid, plotted against the division constant c. Left: the
input was a basis function ẑl with nonzero entry in the center of array v; right: nonzero
entry at a corner of v. The algorithm converges for any c ≥ 4, the fastest convergence is
obtained with c ≈ 4.3.

The choice of the constant c determines the length of the vector added to ẑk

in each step. It influences the convergence and its speed. We can analyse the
convergence of Algorithm 3 and find the optimal value for c using linearity.

Let ẑ = [vk,wk]T stand again for the result of the diffusion process at time
tk. Any ẑ can be written as a linear combination of basis functions ẑl = [ẑl

i],
i = 1, . . . ,N , with zeros at all but one position:

ẑl
i =

{
1 i = l,

0 otherwise.
(4.17)

Then, if z̃ is the result of the derivative-correcting algorithm with ẑ as the input,
it can be composed as a linear combination (with the same coefficients as for ẑ) of
functions z̃l where z̃l is the result of the algorithm correcting the data ẑl. Therefore,
to verify convergence, it is sufficient to consider the basis functions ẑl.

To be able to compare the iterative restoration results with the correct least
square solution, we performed an experiment on a small 20× 20 grid, for which we
were able to evaluate equation (4.16). We obtained the following results:

• The derivative-restoration algorithm converges for any c ≥ 4.
The constant c in the algorithm divides the errors into the elements which
contributed to it. The value c = 4 is a reasonable choice as four elements
form each ei,j ; a slightly higher number (c ≈ 4.3) damps down oscillations
and leads to a faster convergence (see Fig. 4.4).

• The iteratively restored z̃ converges to the solution of equation (4.16) (i.e.
to the orthogonal projection of the diffused derivatives into the null space of
matrix C) as the threshold θ decreases to zero.
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The complexity of one iteration of this algorithm is only O(N). Although
several iterations are necessary, this still compares favorably with the complexity
of the matrix method.

4.2.3 From derivatives back to data

Let us now assume that the filtered arrays v,w are available, and that they contain
correct values in the sense of condition (4.6). These arrays contain (redundantly) all
the information needed for the reconstruction of the image u up to a scalar u0 added
to function values. The integration can be performed by the following algorithm:

Algorithm 4: Integration of u from v,w

1. Reconstruct the first row:
û1,1 = 0
for i = 2, . . . ,Ni : ûi,1 = ûi−1,1 + vi−1,1

2. Reconstruct the columns:
for i = 1, . . . ,Ni

for j = 2, . . . ,Nj : ûi,j = ûi,j−1 + wi,j−1

3. Fix the shift of function values:
for all i, j : ui,j = ûi,j + u0

The choice of the scalar u0 influences significantly the behaviour of the filtering
procedure as a whole. One possibility is to select it so that the average grey values
of the original, f , and the filtered image, u, remain equal:

u0 =
1

Ni ·Nj

 Ni∑
i=1

Nj∑
j=1

fi,j −
Ni∑
i=1

Nj∑
j=1

ûi,j

 . (4.18)

Alternatively, on the condition that the range of the filtered data is not larger than
that of the original function,

max û−min û ≤ max f −min f , (4.19)

it is possible to select u0 so that the monotonicity-enhancing procedure satisfies the
maximum-minimum principle (2.30). If that is the desired behaviour, we require

u0 ∈ [min f −min û, max f −max û]. (4.20)

If the average-value u0 from equation (4.18) falls into these bounds, the procedure
can fulfill both the grey-value invariance and the maximum-minimum principle;
however, these two conditions are contradictory for some data (see Theorem 4.2 on
page 62).
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4.3 Anisotropic ME NL diffusion

As well as the classical isotropic diffusion, the isotropic diffusion of derivatives
reveals the drawback of leaving the noise unfiltered near the locations where the
diffusivity is inhibited. These locations include the edges and discontinuities of the
image function, and newly also the corners, i.e. positions of higher curvature, or
higher magnitude of the second derivatives of the data. In analogy to the classical
case, the performance of the monotonicity-enhancing diffusion at filtering of such
noise can be improved by moving from isotropic to anisotropic diffusion.

The diffusion of derivatives is extended into the anisotropic filter similarly as the
classical diffusion. The only trouble is that we will again need the diffusivity com-
puted for several diffusion directions from the diffusion tensor; the computations
become again more complex in comparison to the isotropic filter, and our repre-
sentation from the previous section, using arrays of different size for each of the
directional derivatives v,w (and consequently differently sized diffusivity matrices
for the discrete computations) becomes rather unsuitable for the new situation.
Instead, we will use centralized finite differences to approximate the directional
derivatives,

∂f(x, y)
∂x

∣∣
xi,yj

≈ vi,j ≡
fi+1,j − fi−1,j

2 ∆x
, i = 2, . . . ,Ni − 1, j = 1, . . . ,Nj , (4.21)

∂f(x, y)
∂y

∣∣
xi,yj

≈ wi,j ≡
fi,j+1 − fi,j−1

2 ∆y
, i = 1, . . . ,Ni, j = 2, . . . ,Nj − 1 (4.22)

(combined with one-sided differences at the image border), and make the discrete
arrays u, v, w all have the same dimensions Ni ×Nj .

This arrangement results in a new geometry of the discrete image (see Fig-
ure 4.5) with the advantage that the arrays of derivatives now share the positions
of their elements with each other and with the original array of the data u. Also,
the arrays of diffusivities (understood either as the diffusion tensor D or separated
into the directional diffusivities αk) have the same dimensions Ni ×Nj , and their
elements are found at the same locations as the elements of u. The only disadvan-
tage of using the central differences lies in the fact that more distant data elements
are now directly connected by the derivatives, and the filtering tends to blur the
image a little bit more than the isotropic filter using one-sided differences.

4.3.1 Algorithms

In this section we summarize the updates and changes involved in the shift from
one-sided to central differences to approximate the directional derivatives, and
those linked to the extension of the isotropic filter to the anisotropic one.

The first step of the procedure, the conversion from the data u to the direc-
tional derivatives v,w, is defined by equations (4.21)–(4.22) above (except for the
boundary pixels for which one-sided differences are employed).

The second step, the vector-valued anisotropic nonlinear diffusion of the direc-
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Figure 4.5: Geometry of the lower left corner of a discrete image for the anisotropic
monotonicity-enhancing diffusion. The partial derivatives of the data u in the direction of
axes x, y are approximated by finite differences forming arrays v and w, respectively; the
elements ui,j , vi,j and wi,j all share the same position (black circle in the picture). As an
example, the lines corresponding to the derivatives which contribute to the error cycle e2,1

are colored in green (see the anisotropic error redistribution algorithm below.)

tional derivatives, can be expressed using the following set of equations:

∂tv = div (D(v,w)∇v) (4.23)
∂tw = div (D(v,w)∇w) . (4.24)

Analogically to the isotropic case, these two equations will be coupled through a
common diffusion tensor D(v,w), but unlike the situation of the one-sided differ-
ences in Section 4.2.2, their discrete counterparts will share the same structure of
the data. These anisotropic diffusion equations will be solved in the same way as
the classical anisotropic diffusion (see sections 2.4 and 2.6.5); the only difference lies
in the way the structure tensor S0 is constructed from the data, newly integrating
the gradient information from both channels v,w:

S0 =
1
2
(
∇vσ ∇vT

σ +∇wσ ∇wT
σ

)
. (4.25)

The rest of the procedure (forming D from S, separating it into one-directional
diffusivities, etc.) remains identical to the classical anisotropic diffusion.

A final remark on the diffusion part: having two arrays of derivatives v and
w we performed a vector-valued diffusion where the individual components of the
data were unified by the common field of diffusivity information. Note that this
situation is very easy to extend to colour or other images consisting of several
information channels, so we can readily obtain algorithms which are able either
to filter colour data by the classical (piecewise constant) diffusion, either isotropic
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or anisotropic, and to develop the method further into a monotonicity enhancing
diffusion of colour images. We will present some experiments later on.

The third step of the monotonicity-enhancing procedure consists in enforcing
the gradient field constraint (4.5). The reasoning remains unchanged from Sec-
tion 4.2.2; for central differences, the iterative correction algorithm assumes the
following form.

Algorithm 5: Restoration of the derivatives
(for central differences)

1. Evaluate errors

ei,j =
(
wi,j + vi,j+1 − wi+1,j − vi,j + wi,j+1 + vi+1,j+1 − wi+1,j+1 − vi+1,j

)
/2

∀i = 1, . . . ,Ni − 1, j = 1, . . . ,Nj − 1. (See the error cycle in Figure 4.5).

2. For all i, j, update the values as follows:

vi,j = vi,j + (ei−1,j+1 − ei−1,j−1 + ei,j+1 − ei,j−1)/c,
wi,j = wi,j − (ei+1,j−1 − ei−1,j−1 + ei+1,j − ei−1,j)/c,

c ≥ 4, with obvious modifications at the image boundary.

3. If max |ei,j | is smaller than a given threshold, finish; otherwise go to 1.

Note that leaving the derivatives unconstrained during the whole diffusion pro-
cess and restoring the derivatives afterwards gives more influence to the restora-
tion procedure at the final stage of the filtering algorithm. We prefer to restore
the derivatives after each step, so that the corrected derivatives can be iteratively
updated by the model of the diffusion equations. It seems that this latter alternat-
ing solution slightly restricts the blurring of the image caused by the restoration
algorithm which spreads the errors in all directions.

Lastly, we come to the integration of the data from the diffused directional
derivatives:

Algorithm 6: Integration of u from central differences v,w

1 Reconstruct the first row:
û1,1 = 0
for i = 2, . . . ,Ni : ûi,1 = ûi−1,1 + (vi−1,1 + vi,1)/2

2. Reconstruct the columns:
for i = 1, . . . ,Ni

for j = 2, . . . ,Nj : ûi,j = ûi,j−1 + (wi,j−1 + wi,j)/2

3. Fix the shift of function values:
for all i, j : ui,j = ûi,j + u0.
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Figure 4.6: For some data, the maximum-minimum principle contradicts the conservation
of average value.

4.4 Theoretical properties

Theorem 4.1. Let u(x, t) be the result of the monotonicity-enhancing diffusion at
time t. For t→∞, u(x, t) converges to a linear function.

Proof. For each of the directional derivatives v,w, the diffused result v(x, t),
w(x, t) approaches a constant function as t increases (see Section 2.3.4). By inte-
gration, the constant derivatives v(x, t), w(x, t) lead to a linear function u(x, t);
this fact is not effected by the derivative-restoration algorithm.

Theorem 4.2. For some data u, the monotonicity-enhancing diffusion cannot
satisfy both the maximum-minimum principle and the conservation of average grey
level.

Proof. The maximum-minimum principle was defined in equation (2.30); using a
modified notation, it reads

inf
x∈Ω

u(x, 0) ≤ u(x, t) ≤ sup
x∈Ω

u(x, 0) (4.26)

where the first parameter of u is the spatial position, and the second denotes the
diffusion time. The average grey level is conserved if

1
|Ω|

∫
Ω

u(x, t) dx = µ, ∀t. (4.27)

We can now prove this theorem by having a look at a simple 1D example
in Figure 4.6. If the arc was the original function u(x, 0), the straight line can
represent the solution to which the diffusion result u(x, t) converges for t → ∞.
Because NL diffusion conserves the average value of the diffused function, the
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diffused directional derivative in the monotonicity-enhancing diffusion must have
the same average value as the derivative of the original data; after integration
and for this particular (monotonic) example, the size of the interval of function
values of the diffused u(x, t) is the same as that of the original u(x, 0). More
precisely, let x1 and x2 be the left and right extreme of the domain of u; then
u(x1, 0)− u(x2, 0) = u(x1, t)− u(x2, t).

If we want to satisfy the extremum principle, the straight line has to lie within
the y-interval defined by the extreme points of the original arc; however, in this
position the whole line remains below the arc, and the average values of the two
object differ. If, on the other hand, we tried to fix the two objects to the same
average value, the line would extend above the arc at one end, thus violating the
maximum-minimum principle. Obviously, this reasoning applies not only to the
solution at infinity (the straight line), but to any intermediate result u(x, t).

Although the maximum-minimum principle and the conservation of average
grey-level may be incompatible, we did not experience this conflict in experiments
with piecewise continuous noisy data as presented in Section 5.2. Moreover, the
experiments suggest that the range of the filtered data spans a smaller interval
than the range of the noisy function, so – omitting the grey-level conservation –
it should be always possible to choose the integration constant u0 such that the
maximum-minimum principle holds.

If the choice between the maximum-minimum principle and the average grey-
level has to be made, the decision will depend on the application in mind. The
absolute level of image intensities might play some role e.g. in medical applica-
tions where the grey-values correspond to some physical measurements; in image
processing, the variety of possible changes of illumination, camera sensitivity or
aperture, etc., will often make the average grey-level unreliable, and preference
may be given to the maximum-minimum principle.

Corollary 4.3. Let again u(x, t) be the result of the monotonicity-enhancing diffu-
sion at time t. For t→∞, the number K of monotone regions of u(x, t) converges
to 1.

Proof. We introduced the number K in Section 4.1 as the smallest number of sets
needed to partition the function into monotone pieces. It follows directly from
Theorem 4.1 that this number converges to one as t→∞.

Remark: this descent of K is monotone for one-dimensional data. In 2D, new
separated monotone regions may appear (similarly to new local extrema which
are created even by the linear, Gaussian diffusion process) and the number K
does not need to decrease monotonically towards convergence. An example in
Figure 4.7 shows the number K for several first iterations of the monotonicity-
enhancing anisotropic diffusion for the noisy 2D data of Figure 5.12. Although
difficult to see, there are parts in this plot where K increases (around t = 15 and
t = 35).
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Figure 4.7: The number K developing with the diffusion time. K is the number of sets
needed to partition the function domain into regions such that the data are monotone on
each such region. This particular example employed anisotropic monotonicity-enhancing
diffusion to filter the data of Figure 5.12b.



5 Experiments

5.1 Image filtering with anisotropic NL diffusion

This section presents the experiments we performed to test the ability of the
anisotropic nonlinear diffusion to remove additive noise from image data. The
filtering method is based on the anisotropic NL diffusion of Section 2.4 and the ad-
ditive operator splitting (AOS) discretization scheme; the actually employed parts
of the methods and the ideas on parameter selection from Section 2.3.5 are sum-
marized into a complete and autonomous image filtering algorithm in Section 3.3.

The results we obtained confirm that anisotropic nonlinear diffusion is a pow-
erful image restoration method (the best we know of), particularly suitable for
piecewise constant data and additive noise1.

5.1.1 Triangle and rectangle experiment

This section presents an experiment comparing the results of different diffusion
algorithms filtering an originally black and white image with non-Gaussian additive
noise. We also demonstrate the influence of some parameters on the anisotropic
diffusion filtering; the effect of various numerical splitting procedures was shown
on the same data in Section 3.2.

The input data are shown in Figure 5.1: the noisy image was obtained by adding
noise of uniform distribution in the range [−255, 255] to the ideal input, and by
restricting the noisy values into the interval [0, 255].

In Figure 5.2, the noise is smoothed by linear diffusion, isotropic nonlinear dif-
fusion, and two anisotropic diffusion filters of Section 2.6.5; the grey-values are
stretched to the whole interval [0, 255] so that a higher contrast between the dark

1The anisotropic diffusion has been extended to restore shift-invariantly and shift-variantly
blurred images with noise by You and Kaveh in [57]. The degradation process is also described
by equation (2.1), but then their procedure tries both to remove the noise n and reconstruct the
convolution kernel h. Our method is based on the assumption that the discretization by h acts
locally, its blurring effect can be omitted and only the additive noise n has to be filtered.
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a b

Figure 5.1: Ideal and noisy input image ([0, 127]2 → [0, 255]) for the ‘Triangle and rect-
angle’ experiment. Noise with uniform distribution in the range [−255, 255] was added to
the two-valued synthetic data.

and bright regions corresponds to a better noise-filtering performance. The stop-
ping time was determined autonomously by the decorrelation criterion described
by the equation (3.4); see Section 3.1. You can see that in all cases, although quite
different filtering algorithms were employed, the stopping criterion leads to results
where most of the noise is removed and the ideal signal becomes apparent or suit-
able for further processing; we support this statement by showing the thresholded
content of the filtered images in Figure 5.3.

The stopping criterion was designed to minimize the MAD distance from the
ideal function. If visual quality was the goal to be achieved, we would probably stop
the diffusion later, especially as linear diffusion (Figure 5.2a) and the anisotropic
diffusion with maximum ϕ2 = 1 (Figure 5.2c) are concerned. We find however that
the MAD distance and the visual quality are in a good agreement in Figure 5.2d
which represents exactly the result of the diffusion filtering algorithms as proposed
in Section 3.3.

The effect of varying the anisotropic parameter2 ϕ2 is demonstrated in Fig-
ure 5.4. You can see that too small an anisotropy leaves noise at edges unfiltered
(and the image resembles that obtained by the isotropic NL diffusion), while set-
ting the level of ϕ2 too high results in rounding of corners and blurring of image
features. This latter drawback is caused by the bounds enforced on the condition
number of the diffusion tensor D: a high diffusivity in the coherence direction ϕ2

requires a nonzero diffusivity ϕ1 even if the diffusion in the direction of the maxi-
mum grey level change would be – without this bound – inhibited by the gradient

2More precisely, ϕ2 is the second eigenvalue of the diffusion tensor (see Section 2.4.2) and
controls the amount of diffusion in the direction of maximum coherence. At egdes where diffusion
in the gradient direction is inhibited, a higher ϕ2 means that the method is ‘more anisotropic’
(i.e. with different amounts of diffusion in different directions), and that is why we call ϕ2 the
parameter of anisotropy.
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a b

c d

Figure 5.2: Comparing the different diffusion algorithms on the noisy data of Figure 5.1,
all with the stopping time selected autonomously by minimizing the criterion (3.3): (a)
linear diffusion, T = 3.8; (b) isotropic nonlinear diffusion, T = 125; (c) anisotropic NL
diffusion, splitting 3, ϕ2 = 1 (maximum anisotropy), T = 15; (d) anisotropic NL diffusion,
splitting 3, ϕ2 = 0.2, T = 32.
In (b)–(d), the parameters σ = 1, τ = 1 were employed, and the parameter λ was estimated
using the Perona-Malik procedure from p = 0.9 (i.e. as the 90th percentile of regularized
image gradients) in each step.

a b c d

Figure 5.3: Thresholded versions of the images in Figure 5.2
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a b

c d

e f

Figure 5.4: Effect of varying the anisotropy parameter ϕ2 on the filtered result:
(a)–(f) ϕ2 = 0, 0.1, 0.2, 0.3, 0.5, 1, respectively. The remaining parameters were T = 100,
τ = 2, σ = 1, and λ was estimated using the Perona–Malik procedure from p = 0.9.
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magnitude. To reduce both the corner-rounding and the edge-blurring side effects
of anisotropic diffusion, we suggest to use smaller values for the parameter ϕ2; any
choice from [0.1, 0.25] is still sufficient to filter the noise near edges while reducing
the undesirable artefacts considerably.

5.1.2 Cymbidium experiment

Noise of normal distribution was added to the image of a cymbidium flower (Fig-
ure 5.5 top, courtesy of Michal Haindl), the noisy image was subjected to diffusion
filtering algorithm as described in Section 3.3, with the parameters σ = 1, τ0 = 0.5,
ϕ2 = 0.2. The optimal values for the remaining parameters λ and T were estimated
autonomously, using the Black–Sapiro’s equation (2.47) for λ, and our decorrelation
criterion (3.4) to determine the optimal T . The values of the parameters employed
are shown together with the measured filtering results in Table 5.1. The filtering
performance is evaluated by the MAD distance from the ideal data, so a smaller
number means a better result. You can see that in all cases, the nonlinear diffusion
filter combined with our time-selection strategy leads to results largely superior to
median filter, and slightly better than the recursive filter [13]3. Several noisy and
filtered images can be seen in Figures 5.5 and 5.6.

Input image MAD after filtering diffusion params.
Filename SNR MAD median recursive diffusion T λ

p66n.pgm 48.95 0.45 2.07 0.03 0.76 1.0 8.58
p27n.pgm 31.02 2.41 2.60 2.3 1.76 2.5 8.49
p24n.pgm 28.10 3.21 2.85 3.1 2.05 3.0 8.55
p17n.pgm 19.95 7.32 4.37 5.4 3.20 6.0 26.15
p15n.pgm 17.96 8.97 5.04 5.8 3.55 7.0 26.51
p13n.pgm 14.87 12.33 6.43 6.6 4.24 8.5 35.97
p9n.pgm 9.99 20.84 10.08 8.2 5.93 10.5 77.56
p7n.pgm 8.41 25.10 11.91 8.8 6.79 11.0 119.37
p5n.pgm 6.17 33.62 15.59 10.5 8.38 11.5 192.79
p4n.pgm 4.69 42.14 19.26 13.0 9.99 12.0 284.34

Table 5.1: The cymbidium experiment. The first three columns give the filename of a
given noisy image, the signal-to-noise ratio, and the MAD distance between the original
data and the noisy input. The next three columns compare the filtering results of three
methods: the 3x3 median filter, the Haindl’s recursive filter [13], and the anisotropic NL
diffusion. The last two columns present the actually employed diffusion parameters.

3Except the almost-no-noise case p66n.pgm; this exception was caused by different input data
and discretization noise. The results of the recursive filter were kindly provided by Michal Haindl
from the Academy of Sciences of the Czech Republic.
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Figure 5.5: The cymbidium experiment. Top: original, noise-free image. Left column (top
to bottom): input images p27n.pgm and p17n.pgm. Right column: corresponding images
filtered by the anisotropic NL diffusion. The stopping time T was chosen autonomously
using the decorrelation criterion; see Table 5.1 for parameter values and a quantitative
evaluation of the filtering performance.
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Figure 5.6: The cymbidium experiment continued. Left column (top to bottom): input
images p13n.pgm, p7n.pgm, and p4n.pgm. Right column: corresponding images filtered
by the anisotropic NL diffusion. See text and Table 5.1 for details.
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5.1.3 Colour images

As mentioned in Section 2.5, the algorithms for NL diffusion can be easily ex-
tended to vector-valued data, including colour images. We present several filtering
examples here.

First, Figure 5.7 shows the effect of the integration scale % on the result of
anisotropic diffusion. The results are obtained using the autonomous stopping
criterion (3.4) and it also shows the limitations of that method: although the
input image contains no visible corruptions, the high-frequency fur is erroneously
considered as noise and oversmoothed in the filtered result. We might advocate
the stopping time by saying that the input does not comply well with the piecewise
constant assuption implicit in the diffusion equations; anyway, this is an example of
a situation where it would be desirable to combine the decorrelation criterion with
other information (e.g. the expected amount of noise in the input image) to decide
on a better (i.e. earlier) stopping time. Another observation: the filtering result
using the decorrelation stopping time (3.4) is in this case quite stable with respect
to the amount of additive noise in the data. This fact is depicted in Figure 5.8;
the main features become apparent in the filtered version and the smoothing may
serve as a stabilizing factor for further processing.

So far, we tested the filtering capabilities of nonlinear diffusion mainly on ad-
ditive noise. A different kind of image distortion is caused by jpeg compression.
Especially when trying to keep the file size small, as is often needed e.g. for images
to be presented on the internet, some oscilations appear in the jpeg-compressed
data near edges. Also, if the image is subsampled, aliasing effects may appear.
Nonlinear diffusion filtering is able to alleviate both these artefacts.

Let us have a look at the example at the top of Figure 5.9, taken from the www
presentation of Škoda car manufacturer (http://www.skoda-auto.cz/). Typical
jpeg oscilations are visible e.g. inside the windscreen, an aliasing example at the
wheel rim or at the door. If we want to produce higher quality pictures, we can
supersample the image and smooth it using anisotropic diffusion. One filtering
result is seen at the bottom of Figure 5.9; both aliasing and jpeg oscilations are
reduced substantially. Several details of the original and the filtered image are
shown for comparison in Figure 5.10.

http://www.skoda-auto.cz/
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Figure 5.7: Top: input 512 × 512 image of a baboon. This image was filtered with
anisotropic diffusion with the following parameters: σ = 1, ϕ1 = g(µ1) with λ = 0.001,
ϕ2 = 1. The integration parameter % was varied (center to bottom and left to right):
% = 0, 3, 5, 10, and the criterion (3.4) lead to stopping times T = 45, 50, 51, 51, respec-
tively.
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Figure 5.8: Left: baboon with additive Gaussian noise of variance (top to bottom) 30, 50,
100. Right: filtered with anisotropic diffusion using % = 3 and autonomous decorrelation
time T = 52, 61, 98, respectively. The remaining parameters were set as in Figure 5.7.
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Figure 5.9: An example of JPEG restoration. Top: a 630 × 420 pixel jpeg image (40kB)
as available on the internet (courtesy Škoda auto). Bottom: resampled to 888 × 592 and
filtered with anisotropic NL diffusion, T = 3, τ = 1, p = 0.7, ϕ2 = 1. JPEG artefacts and
aliasing are substantially reduced at the price of a slight softening of the image.
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Original Filtered

Figure 5.10: Details from Fig. 5.9: original on the left, filtered on the right.
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5.2 Monotonicity enhancement

In this section, we test the performance of the monotonicity-enhancing NL diffusion
as developed in Chapter 4. The experiments include some artificial examples, grey-
level images, and range data for 3D reconstruction.

5.2.1 1D example

The results of several methods of nonlinear diffusion applied to a simple 1D function
are shown for comparison in Figure 5.11. In the center row, the preference of
the classical nonlinear diffusion for (piecewise) constant functions can be seen:
depending on the parameters, it either approximates the input by several steps, or
bends the function near the extrema. At the bottom, two results of the nonlinear
diffusion of first derivatives are shown for comparison: the left one, where the
diffusion was controlled by first derivatives, shares some properties of the ordinary
diffusion (rounding of the corner) but behaves better near the ends of continuous
segments. The right one, where the diffusion was controlled by a function of second
derivatives, is also able (for carefully chosen parameters) to precisely locate the
corner in the function values, i.e. the discontinuity of the second derivative.

5.2.2 Artificial 2D data

An experiment with synthetic noisy 2D data is presented in Figure 5.12. The image
gradient is larger on the sloped surface; to remove the noise from that area with
the ordinary nonlinear diffusion, a larger diffusivity parameter λ has to be chosen,
which leads to a higher risk of blurring the discontinuities. You can observe this
phenomenon, as well as the bending of increasing segments, in Figure 5.12c. In
contrast, our method controlled by second derivatives according to equation (4.11)
behaves in the same way regardless of the surface slope, the discontinuity is well
preserved for a large interval of parameters, and the function bending is avoided.
These properties are demonstrated in Figure 5.12d. Please note that figures 5.12c
and 5.12d show the best filtering result (evaluated using the MAD distance form
the ideal, noise-free data) of each method. Still, you may notice that some noise has
remained near the areas of higher second derivatives, i.e. near the discontinuities
and corners, where the diffusion is inhibited. This misbehaviour can be eliminated
by anisotropic filter where the diffusion is controlled by a diffusion tensor; the result
of two anisotropic filters can be seen in the bottom row of Figure 5.12 (the classical
one on the left and the derivative-smoothing on the right). The diffusion parameters
λ and T were chosen autonomously in these two examples (using the Black–Sapiro
estimation of λ, and the decorrelation criterion (3.3) for the stopping time); this
approach leads to a rather rough result in the classical case 5.12e, but yields nice
and well filtered data using the anisotropic monotonicity-enhancing procedure.

If we evaluate the four filtering results of Figure 5.12 using the MAD distance
of the filtered result from the ideal data f̃ , we obtain the measurements shown in
Table 5.2. You can see that the two isotropic filters (first two lines of Table 5.2) yield
similar numbers. However, not all kinds of errors can be considered equivalent. We
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Figure 5.11: Gaussian noise was added to a triangle function (a) to obtain the noisy data
(b), used to test the diffusion filtering methods. The filtering results (continuous lines) are
shown together with the noisy input (dots).
(c) Ordinary nonlinear diffusion, σ = 1, λ = 1, T = 10.
(d) Ordinary nonlinear diffusion, σ = 1, λ = 3, T = 10.
(e) Filtering by nonlinear diffusion of first derivatives, σ = 1, λ = 1, T = 10. The diffusion
is controlled by first derivatives according to (4.12).
(f) Filtering by nonlinear diffusion of first derivatives, σ = 3, λ = 0.05, T = 10. The
diffusion is controlled by the second order derivatives as described by (4.11).
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Figure 5.12: Experiment with two-dimensional data. (a) Ideal data. (b) Noisy input.
(c) Optimal result using classical isotropic nonlinear diffusion of (b), T = 3.
(d) Optimal result when the noisy input was filtered with the isotropic nonlinear diffusion
of first derivatives, controlled by second derivatives, T = 6. In (c)–(d), the parameters
σ = 1, τ = 1 were employed, and the diffusivity parameter λ was estimated by the Perona–
Malik procedure from p = 0.9 in each step.
(e) Classical anisotropic NL diffusion resulting in T = 4.
(f) Anisotropic NL diffusion for monotonicity enhancement leads to T = 10. In (e)–(f), we
used the Black–Sapiro estimation of λ, and the stopping time was determined autonomously
using the decorrelation criterion.



80 Experiments

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

t

M
A

D

mono NL diff
NL diff     

0 10 20 30 40 50 60

0
10

20
30

40
50

0

10

20

30

40

50

60

70

80

a 0 10 20 30 40 50 60

0
10

20
30

40
50

0

10

20

30

40

50

60

70

80

b

0 10 20 30 40 50 60

0
10

20
30

40
50

0

10

20

30

40

50

60

70

80

c 0 10 20 30 40 50 60

0
10

20
30

40
50

0

10

20

30

40

50

60

70

80

d

Figure 5.13: Top: a graph showing how the MAD distance of the filtered image from
the ideal data (fig. 5.12) develops with the time for the classical, and the monotonicity-
enhancing isotropic diffusion. Below, some results of the classical diffusion (left) and the
diffusion on the derivatives (right) are shown for comparison. Middle row: the result of
twice the optimal time, i.e. T = 6 for the classical, and T = 10 for the monotonicity-
enhancing diffusion. Bottom: the results for which MAD(u(T ), f̃ ) ≈ 1.2; left: classical NL
diffusion, T = 12, right: NL diffusion of derivatives, T = 50.
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Figure method T MAD(u(T ), f̃) corr(u(0)− u(T ),u(T ))
5.12b — 0 1.58 —
5.12c isotropic, classical 3 0.555 0.1213
5.12d isotropic, derivatives 5 0.567 0.0357
5.12e anisotropic, classical 4 0.764 0.0716
5.12f anisotropic, derivatives 10 0.560 0.0527

Table 5.2: Quantitative evaluation of the filtering results shown in Figure 5.12

have seen in Figure 5.12 that the monotonicity-enhancing diffusion gives visually
better results on piecewise monotone data.

Figure 5.13 demonstrates another fact: choosing the model which corresponds
better to the particular data properties leaves us more freedom for the intricate
task of stopping time selection. Figure 5.13 top plots the MAD quality of the
filtered output against the diffusion time of the two methods: the monotone model
on monotone data leads to a stable result for a wide interval of time T . The center
row of Figure 5.13 shows how different the results of the diffusion become if we
make a mistake in the choice of T . The bottom row then visualises that the same
MAD distance from the ideal data does not necessarily mean an equivalent result;
with the classical NL diffusion, the discontinuity of the data on the sloped surface
is completely lost.

These observations on time stability of the solution are confirmed by the last
two lines of Table 5.2 and the bottom row of Figure 5.12. In these anisotropic
examples, the stopping time T was determined autonomously by the decorrelation
criterion 3.3. While resulting in less-than-optimal solution of the classical diffusion
filter, the more appropriate monotonicity-enhancing method gives an excellent out-
put, outperforming other filters both visually and quantitatively.

5.2.3 Range data

We present an example of range data filtering, one of the main motivations for the
development of monotonicity-enhancing NL diffusion filter. The input range data
are shown in Figure 5.14; the image pixels represent distance from the measurement
device (brighter images are closer). Although this grey-level image does not look
noisy, small-scale fluctuations are present. The noise becomes clearly visible if we
visualise the data as a 3D mesh (see detail in Fig. 5.15 left) or render a 3D look of
the surface (Fig. 5.16 top).

Figures 5.15 right and 5.16 bottom show the same data after five iterations
of anisotropic monotonicity-enhancing NL diffusion. Most of the noise has been
eliminated, the images appear smoother, but the important discontinuities and also
the corners (e.g. at the table leg) have been preserved. Note that both images in
Fig. 5.16 were rendered using the same illumination conditions and other properties;
the rough surface of the original data reflects only a small portion of the incoming
light. Unfortunately, as the ground truth is not available, we cannot provide any
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Figure 5.14: Input range data (from http://eewww.eng.ohio-state.edu/~flynn/3DDB/
RID/).
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Figure 5.15: A detail from the range data (corner of the table) visualised as a 3D mesh.
Left: original data. Right: filtered using anisotropic monotonicity-enhancing NL diffusion
(as in Fig. 5.16 bottom).

http://eewww.eng.ohio-state.edu/~flynn/3DDB/RID/
http://eewww.eng.ohio-state.edu/~flynn/3DDB/RID/
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Figure 5.16: Range data filtering. Top: original depth data from Fig. 5.14 rendered into a
3D look using MATLAB graphics. Bottom: filtered by anisotropic monotonicity-enhancing
diffusion, T = 5, τ = 1, p = 0, ϕ2 = 0.2. Both images were rendered with the same
illumination conditions and camera parameters.
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assesment of the filtering quality better than this visual inspection.
In this experiment, we applied the filtering procedure to the range data in the

way usual for normal images. However, range data typically contain holes, some
parts of the measurements are either missing or unreliable. To make NL diffusion
more suitable to range data filtering, these cases should be treated systematically
and we should prevent some parts of the image from influencing the result.

5.2.4 Image filtering

Although not designed originally for that type of data, the monotonicity-enhancing
filter may be applied successfully to photographic images. Figure 5.17 top gives
an example of an image consisting mainly of regions of slow, gradual transitions
from dark to light colors (cheek, nose) and discontinuities or edges between regions,
so piecewise monotonicity can be assumed. The results of the classical nonlinear
diffusion from equation (2.71) and the derivative-based diffusion are shown for com-
parison in the middle row of Figure 5.17; both methods perform well in removing
the noise, the diffusion using first derivatives is better at preserving the gradual
transitions between different light intensities. At the bottom, in the plots of one
line extracted from the image, you can observe in more detail how the function
values, slopes and discontinuities develop with the diffusion time of both methods.
Rather for interest than for a practical application, Figure 5.18 shows the image
at several higher times of both diffusion methods.

5.3 Final remarks

To summarize the experiments, we make two small remarks. First, we have praised
the monotonicity-enhancing diffusion of directional derivatives for its superior filter-
ing performance on piecewise monotone data. We should stress, however, that this
success cannot be extended to any kind of data. Obviously enough, the piecewise
linear model hidden behind the procedure is more general (less restrictive) than the
piecewise constant one, and is therefore weaker at filtering of images which should
be piecewise constant.

A similar note can be made about the performance of the autonomous decorre-
lation stopping time estimation 3.4. We observed that the best results are obtained
if, to data with some properties, we apply a filter respecting those properties: filter
piecewise constant data with classical edge-enhancing diffusion ; run monotonicity-
enhancing procedure on piecewise linear data; etc.
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Figure 5.17: Top: Input image, a detail of Lena.
Center left: ordinary nonlinear diffusion of the input image; center right: the same using
nonlinear diffusion of first partial derivatives. Both methods were run with the parameters
σ = 1, λ = 1, τ = 1, T = 5.
Bottom: one horizontal line in the image (passing through the eye) develops with time
until T = 30. Note that the continuous function segments diffused by the classical method
on the left approach a (piecewise) constant function; the nonlinear diffusion of first partial
derivatives (on the right) tends to a function piecewise linear.
These images can also be seen at
http://cmp.felk.cvut.cz/˜mrazekp/Diffusion/diffusion.html.

http://cmp.felk.cvut.cz/~mrazekp/Diffusion/diffusion.html
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Figure 5.18: The section of Lena image diffused more by the classical isotropic NL diffusion
(left) and the NL diffusion of image derivatives (right); the time instants are (top to bottom)
T = 10, T = 20, and T = 50, respectively.



6 Conclusion

Motivated by the need to filter additive noise from discrete data expected to be
piecewise continuous and piecewise monotone (i.e. piecewise increasing or decreas-
ing on continuous regions), we started this text by reviewing previous work on
nonlinear diffusion, a powerful image restoration technique; we discussed its prop-
erties, and presented numerical methods for isotropic and anisotropic cases of the
filter. Nonlinear diffusion creates iteratively simplified versions of the input and
tends to piecewise constant functions.

As main contribution of this thesis, we extended NL diffusion for the special
case where the trends in the data are of importance. This generalization of nonlin-
ear diffusion uses a piecewise linear model in the equations instead of the piecewise
constant one. The task is accomplished by nonlinear vector-valued diffusion of par-
tial derivatives of image data combined with restoration of necessary properties of
the directional derivatives. We develop the algorithms for monotonicity enhance-
ment (isotropic and anisotropic), and analyse the theoretical properties of the new
approach in Chapter 4; experimental results appear in Section 5.2. The method
is applicable to filtering or smoothing of sampled functions expected to be piece-
wise continuous, piecewise monotone or piecewise linear. Many images fulfill these
properties, range data for 3D reconstruction represent a particular example.

On the pursuit of this main contribution, we ran across several open questions,
and solved some of them. So in Section 3.1 we develop a novel method to esti-
mate the optimal stopping time for iterative image restoration techniques such as
nonlinear diffusion. The stopping time is chosen so that the correlation of signal
and noise is minimised. The new criterion outperforms other time selection strate-
gies and yields near-optimal results for a wide range of noise levels and for various
filtering methods. The decorrelation criterion is also more general than previous
approaches, being based only on the assumption that the noise and the signal in
the input image are uncorrelated; no knowledge on the variance of the noise, and
no training images are needed to tune any parameters of the method.

We have analysed the possibilities for consistent positive directional splitting
of anisotropic diffusion on a 3× 3 window in Section 3.2; such a splitting is needed
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to transform the continuous anisotropic diffusion equations into efficient numerical
algorithms. We have shown that consistent positive splitting exists if the inter-
val [b,min(a, c)], formed from the elements of the diffusion tensor D =

(
a b
b c

)
, is

nonempty. We have also derived the formulas for the directional diffusivities de-
pending on a single diffusivity parameter, and demonstrated experimentally that
the directional splitting reveals better properties (regarding e.g. rotational symme-
try and sensitivity to the time step size) if the splitting parameter is chosen from
the interior of the admissible interval.

As a contribution of minor theoretical interest but important in practice, we
have summarized various aspects of the diffusion filtering, including previous ideas
on the choice of the diffusion parameters (and adding some of ourselves), to create
an autonomous image-filtering procedure in Section 3.3. The performance of this
algorithm is demonstrated experimentally in Chapter 5.

Future work. These are some of possible directions we can see now for further
development of the filtering methods:

• In the repeatedly mentioned task of 3D reconstruction from visual informa-
tion, some parts of the objects may be either invisible by the camera(s),
occluded from the light source, or its measurements made otherwise unavail-
able. To make our filter even more applicable, it would be desirable to handle
these cases of missing data systematically.

• On a similar problem: with many experimental methods, some parts of the
measured data can be considered more reliable than others. If such an in-
formation is available, it should be employed for the processing. We would
suggest to incorporate some kind of data reliability measure, for example in
the form of weights associated with the individual data, into the model. (In
this context, the missing data of the previous paragraph can be understood
as data of zero reliability.)

• Diffusion filtering can be applied in many areas we have not explored yet;
medical imaging represents a classical example, JPEG restoration has been
mentioned only briefly. Where motivated by the data properties, the mono-
tonicity-enhancing procedure should be employed and its performance eval-
uated.

• If needed for an application, the monotonicity-enhancing procedure could be
extended to three (or more) dimensions. Similarly to 2D, the main difficulty
would consist in the design of a derivative-correcting algorithm.



Notation

Ω (continuous) image domain, typically a rectangular area
[0, xmax]× [0, ymax] ⊂ R2

∂Ω boundary of the image domain Ω

|Ω| measure of Ω

Ω closure of Ω

f
(also u,v, . . .)

(image) data, either continuous, f : Ω → R, or discrete, stored in
a vector f = (fi)i=1,...,N where the sample fi represents the value
f(~xi), ~xi ∈ Ω. For 2D digital images, f = (fi,j) i=1,...,Ni

j=1,...,Nj

.

f̃ ideal, noise-free data

hi,j sampling kernel for position i, j

n noise, or normal to region boundary

Ni, Nj number of discrete samples in the directions of axes x and y, re-
spectively

∆x, ∆y discretization grid size; we usually set ∆x = ∆y = 1

t scale parameter, or time of the diffusion process

∂tu shorthand notation for the partial derivative ∂u
∂t

〈x, y〉 scalar product (or dot product) of vectors x and y

∇ gradient operator; for data u ∈ RN , ∇ is a column vector of N

elements, ∇ ≡
(

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xN

)T
where xi, i = 1, . . . ,N are the

coordinate axes. For the case of normal images, N = 2 and the

image gradient is ∇u =
(

∂u
∂x ,

∂u
∂y

)T
.

∆ Laplacian operator, ∆u ≡ ∇2u = 〈∇,∇u〉 =
(

∂2u
∂x2 + ∂2u

∂y2

)
where the last transformation assumes that u is defined on R2

div divergence operator, divψ = 〈∇, ψ〉
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Gσ Gaussian kernel; in RN , Gσ(x) = 1
(2πσ2)N/2 e

−xT x/2σ2

ψ flux

D diffusion tensor

g diffusivity function

λ parameter of the diffusivity function

p percentile for the Perona-Malik estimation of λ, or parameter for
directional splitting of anisotropic diffusion

uσ image smoothed by convolution with a Gaussian kernel, uσ = Gσ∗u

∇uσ gradient of the smoothed image, ∇uσ = (∇Gσ) ∗ u = ∇(Gσ ∗ u)

I identity matrix

A, B, Q matrices containing the diffusivity information

σ noise scale, width of the Gaussian kernel Gσ

T stopping time of the diffusion

S% structure tensor

% integration scale

ϕ1,2 eigenvalues of the diffusion tensor

µ1,2 eigenvalues of the structure tensor

~v1,2 eigenvectors of the structure and diffusion tensors

diag(a, b) diagonal matrix
(

a 0
0 b

)
τ iteration time step

uk solution of the diffusion process at time tk = k · τ

N (i) set of the neighbours of pixel i

gij diffusivity belonging to the connection between pixels i and j

x,E(x) mean (or expectation) of a vector x ∈ RN : x = E(x) = 1
N

∑N
i=1 xi

var(x) variance of x, var(x) = E
[
(x− x)2

]
cov(x, y) covariance of two vectors, cov(x, y) = E [(x− x) · (y − y)]

corr(x, y) correlation coefficient, corr(x, y) = cov(x,y)√
var(x)·var(y)
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SNR signal-to-noise ratio, SNR =
var
(
f̃
)

var(n)

βi direction of 1D diffusion process (for directional splitting of
anisotropic diffusion)

αi diffusivity in the direction βi

K number of connected regions Ωk needed to partition Ω so that u is
monotone on each Ωk

v,w fields of directional derivatives for the monotonicity-enhancing NL
diffusion

ṽ, w̃ v,w smoothed by convolution with Gσ

ẑ result of the diffusion of derivatives, ẑ = [vk,wk]T

C matrix expressing the discrete gradient field constraint

z orthogonal projection of ẑ into the null space of C, i.e. directional
derivatives after enforcement of the gradient field constraint

ei,j error of the gradient field constraint at position i, j

u0 integration constant for the reconstruction of u from v,w
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Nov.4–6 1993. Czech Pattern Recognition Society.
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Index

additive operator splitting, see AOS
algorithm

diffusion filtering, 4, 48–49, 88
integration, 58, 61
restoration of derivatives, 56–58, 61

complexity, 58
convergence, see convergence of de-

rivative restoration algorithm
Thomas, 33, 49

anisotropy, 33, 34, 48, 49, 66–68
AOS, 28, 29, 32–35, 36, 44, 49, 65

biased NL diffusion, see nonlinear diffu-
sion, biased

causality, see maximum–minimum princi-
ple

coherence, 23–25
direction, 24, 26, 35
enhancement, see nonlinear diffusion,

coherence-enhancing
consistency, see directional splitting, con-

sistent
constraint on directional derivatives, see

gradient field constraint
convergence

of biased diffusion, 13
of derivative restoration algorithm, 56–

57
of monotonicity-enhancing NL diffu-

sion, 62
of NL diffusion, 16, 17, 20, 30

correlation coefficient, 37, 38, 39
covariance, 36, 38, 40

D, see diffusion tensor
decorrelation criterion, 38, 66, 69, 70, 72,

77, 79, 81, 84, 87
diffusion

linear, see scale space, linear
nonlinear, see nonlinear diffusion

diffusion tensor, 9, 14, 23–26, 34, 49, 59,
60, 77

diffusivity, 9–11, 13, 14, 16, 18–20, 22,
24–27, 30, 32, 33, 42, 46, 49, 53–
55, 59, 60, 66, 88

parameter λ, 18–20, 44, 46, 48, 49,
77, 79

directional splitting, 4, 28, 34–35, 36, 42–
46, 88

consistent, 35, 42, 43
positive, 34, 43

discretization, 3, 5, 50, 53
of NL diffusion, 16, 27–35, 54

in space, see space discretization
in time, see time discretization

divergence
operator, 9, 10
theorem, 9, 30

entropy, 15, 17, 21
extremum principle, see maximum–mini-

mum principle

ϕ1,2, see diffusion tensor or anisotropy
finite difference, 31

central, 53, 59, 61
one-sided, 52, 53, 59
space discretization, see space discre-

tization, finite difference
flux, 9–12, 14, 18, 19, 22, 23, 30
functional minimization, 11, 12, 21, 52

Gσ, see Gaussian kernel
g, see diffusivity
Gaussian kernel, 7, 8, 11, 17, 23
gradient, 6, 7, 9–12, 14, 17, 18, 20, 22–25,

27, 32, 49, 50, 52, 54, 55, 60, 66,
77

gradient field constraint, 54, 55, 61
grey level invariance, 15, 17, 58, 62, 63
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heat equation, 7, 21
inverse, 11, 18

ill posed, 3, 11, 12
image gradient, see gradient
integration scale, 23, 25, 48, 49, 72, 73

λ, see diffusivity, parameter λ
linearity

piecewise, see piecewise linearity
principle, 7

MAD, 37, 39, 41, 66, 69, 77, 80, 81
maximum–minimum principle, 6, 10, 15,

16, 34, 35, 58, 62, 63
ME NL diffusion, see nonlinear diffusion,

monotonicity-enhancing
mean, 13, 21, 30, 36, 37, 48
mean absolute deviation, see MAD
monotonicity

enhancement, see nonlinear diffusion,
monotonicity-enhancing

piecewise, see piecewise monotone

Neumann boundary conditions, 13, 27, 29
NL diffusion, see nonlinear diffusion
noise, 2, 3, 5, 8, 9, 11, 13, 17, 20–23, 25–

27, 36–40, 42, 48, 50, 51, 55, 59,
65, 66, 69, 72, 77, 78, 81, 84, 87

noise scale, 17, 23, 48
nonlinear diffusion, 3, 5–88

algorithm, see algorithm, diffusion fil-
tering

anisotropic, 9, 12, 22–26, 33
biased, 12–13
coherence-enhancing, 23, 25
edge-enhancing, 18, 23, 25, 84
equation, 9

Catté, 11, 27
integral form, 30
Nordström, 13
Perona-Malik, 10
weak formulation, 29
Weickert, 14, 22

isotropic, 9, 27
monotonicity-enhancing, 4, 50–63, 77–

84, 87
parameters, 17–22, 48
vector-valued, 26, 54, 59, 60, 87

null space, 55, 56

operator
divergence, see divergence operator
gradient, see gradient

ψ, see flux
p, see percentile or directional splitting
percentile, 20, 45, 46, 48, 67
piecewise

constant, 4, 5, 11, 13, 20, 51, 77, 84,
87

continuous, 2, 3, 5, 50, 87
linear, 4, 50–52, 87
monotone, 3, 4, 50–52, 81, 84, 87

positivity, 15, 16, 18
of directional splitting, see directional

splitting, positive

%, see integration scale
range finder

laser plane, 1
rainbow, 2, 51

restoration of derivatives, see algorithm,
restoration of derivatives

rotational symmetry, 34, 35, 44, 46, 88

S%, see structure tensor
σ, see noise scale
sampling

interval, 3, 5
kernel, 3, 5

scale space, 6–8
linear, 7–8, 9
nonlinear, 10–12

signal-to-noise ratio, see SNR
smoothing kernel, see Gaussian kernel
SNR, 21, 22, 39–42, 69
space discretization, 29–31

finite difference, 28, 31–35
finite element, 28, 29
finite volume, 28, 29–31

stopping time, 13, 20, 32, 33, 66, 67, 72,
77, 81, 84, 87

selection, 4, 21–22, 36–42
structure tensor, 23–24, 26, 49, 60

T , see stopping time
τ , see time step
time discretization

AOS, see AOS
explicit, 28, 31–32
implicit, 29
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semi-implicit, 28
time step, 28, 29, 31–33, 35, 39, 40, 42,

44–48, 61, 88

variance, 13, 17, 20–23, 36, 37–39, 42, 74
relative, 21

vector-valued
data, 26, 72
diffusion, see nonlinear diffusion, vector-

valued
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