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Abstract. Anisotropic nonlinear diffusion filters describe a large class of
powerful image filtering operations. In order to be applicable to sampled
data, the continuous diffusion equations have to be discretized, e.g. using
additive operator splitting scheme which approximates the continuous
equation by one-dimensional processes along several chosen directions.
In this paper we concentrate on one step of the separation of the continu-
ous diffusion into one-dimensional processes: we analyse, design and test
consistent positive directional splitting on a 3 × 3 window. We derive a
set of formulas for directional diffusivities with one free parameter, and
demonstrate that the best results are obtained if the parameter is chosen
from the interior of the admissible interval.

1 Introduction

Nonlinear diffusion has deservedly attracted much attention in the field of image
processing for its ability to reduce noise while preserving (or even enhancing)
important features of the image, such as edges or discontinuities; this can be
opposed to linear diffusion (alias Gaussian filtering or linear scale-space repre-
sentation [2]) which not only removes noise but also blurs and dislocates edges.
A good introduction to NL diffusion can be found e.g. in [4,8] or [9].

The isotropic nonlinear diffusion was first introduced by Perona and Malik
in [3], and put on solid mathematical grounds by Catté et al. [1]. Their filter has
the form

∂u
∂t

= div(g(|∇uσ|) · ∇u) (1)

where u is the function (e.g. image data) which develops with time t. The dif-
fusion process is controlled by diffusivity g, a function of the magnitude of the
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estimated image gradient, ∇uσ = ∇(Gσ ∗ u); Gσ can be any smoothing ker-
nel (the Gaussian represents a classical example), and the symbol ∗ denotes
convolution.

Isotropic nonlinear diffusion with a scalar diffusivity g is stopped near the ob-
ject boundary; it preserves the important edges/discontinuities in the data, but
also leaves the noise near such positions unfiltered. To mitigate this undesirable
effect, Weickert [7,9,5] proposes to make the amount of diffusion dependent not
only on the position in the image, but vary it also between various directions at
a single location. The process can be designed so that the smoothing perpendic-
ular to the image gradient, i.e. along coherent structures (such as edges or lines)
is preferred to smoothing across edges. To obtain this behaviour, the flux cannot
be parallel to the image gradient (as is the case of the ‘classical’, isotropic NL
diffusion equation), the diffusivity controlling the process is a matrix, D. If D
depends on the gradient of the evolving image itself, we obtain the equation of
anisotropic nonlinear diffusion

∂u
∂t

= div (D(∇uσ) · ∇u) (2)

with the initial and boundary conditions, respectively,

u(x, 0) = f(x), 〈D(∇uσ) · ∇u, n〉 = 0 on ∂Ω (3)

where n denotes the normal to the image boundary ∂Ω. The diffusion starts
from the input image f at t = 0, and the boundary condition expresses the fact
that no flux should pass through the image boundary.

The diffusion tensor D(∇uσ) and the way it is constructed have crucial in-
fluence on the properties of the resulting method, leading e.g. to edge-enhancing
or coherence-enhancing procedures [9]. Whereas the latter can be used to close
interrupted line-like structures, the former one, the edge-enhancing diffusion and
similar methods derived from it are of importance for the task of additive noise
filtering.

In this paper we concentrate on a later stage of the design of a diffusion filter:
how to transform the continuous equation (2) to make it applicable to discrete
image data. More precisely, we want to separate the continuous diffusion tensor
into several diffusivities acting along one-dimensional directions, and we want
the splitting to be consistent with the continuous formulation, positive, and
rotationally symmetric. Before going into details, we review in section 2 some
basics of additive operator splitting, an efficient discretization scheme solving
equation (2), and show why the separation of D into one-dimensional diffusivities
is needed. Section 3 presents the splitting results of Joachim Weickert; then we
analyse the possibilities of consistent positive splitting on a 3 × 3 window in
section 4, derive the formulas and suggest that the anisotropic diffusion algorithm
exhibits the best properties if the splitting parameter si chosen from the interior
of the admissible interval.



2 AOS scheme for nonlinear diffusion

The simplest way to a numerical solution of equation (1) is to discretize it using
finite differences, and summarize the equations for individual pixels using matrix
notation into

uk+1 =
(
I + τA(uk)

)
uk. (4)

(see [6]). Here τ is the iteration time step, uk is the vector of image pixels at
time instant k · τ , and the matrix A(uk) contains the diffusivity information
for the connections between neighbouring pixels. The matrix A is composed of
matrices Al which store the diffusivities for one direction of pixel connections,
A =

∑
l Al; each of the matrices Al can be transformed into a tridiagonal form

by some permutation of image pixels.
The advantage of the explicit scheme is that only very simple operations

between neighbouring pixels are performed in every step. Its drawback lies in
the fact that the time step τ has to be small in order for the equation (4) to
be stable, more iterations are needed to reach a fixed stopping time T and the
computational demands might prevent the method from being used in practical
situations. In [6], Weickert et al. suggest to replace the explicit method by the
additive operator splitting (AOS) scheme which separates and discretizes the
diffusion equation (2) by

uk+1 =
1
m

m∑
l=1

(I −mτAl(uk))−1uk (5)

with l the direction index, l = 1, . . . ,m (for isotropic diffusion, m is set equal to
the dimensionality of the data).

Each of the summands in (5) represents a one-dimensional diffusion process
along the direction l. The compound diffusion iteration is obtained as an average
of these one-dimensional processes, regardless of the dimensionality of the input
data.

Both the AOS and the explicit schemes are of the same approximation order
(first order in τ , second order in the grid size ∆x) to the continuous isotropic
diffusion equation (1); this can be easily checked if you compare the equations
(4) and (5), and use the equality (I − αA)−1 = I + αA + (αA)2 + · · · . In this
sense, the two discretizations are equivalent.

The matrices Al which store the diffusivity information for the diffusion
direction l are formed in the same way as with the explicit algorithm. The
matrices I −mτAl(uk) can be made tridiagonal and diagonally dominant by a
simple rearrangement of the pixels, and then inverted efficiently by the Thomas
algorithm [6]. This way, one iteration of the AOS scheme requires only about
twice the computational effort needed for one iteration of the explicit scheme.
What we gain for this price is absolute stability: the AOS scheme is stable and
creates a discrete scale space for any choice of the discretization step τ . The
freedom to select a larger τ means that fewer iterations are needed to reach a
fixed stopping time T , and the algorithm becomes faster. Although a large τ



also weakens the filtering effect and the solution may become less precise an
approximation to the ideal continuous solution, Weickert et al. [6] report that
for typical precision requirements of 2%1, the AOS scheme is at least 11 times
faster than any stable explicit scheme.

The AOS scheme can be extended to any number of dimensions. Also, as
each direction and each line in that direction can be processed independently
from other lines/directions, a parallel implementation is straightforward [11].

Moving to the anisotropic diffusion of equation (2) for which the diffusivity
need not be equal in all directions, we again want to approximate the continuous
process by a discrete algorithm. Again, the AOS scheme will separate the 2D dif-
fusion into several one-dimensional diffusion processes along chosen directions.
However, the anisotropic diffusion will generally need more directions than the
isotropic filter did. There exists a direct relation between the number of one-
dimensional processes and the achievable anisotropy of the compound diffusion
filter. For sake of simplicity and computational efficiency, we restrict the approx-
imation to four directions defined by the boundary pixels of a 3× 3 window. In
this situation, the AOS discretization is computed according to

uk+1
l =

1
4

2∑
l=−1

(I − 4τAl(uk))−1uk. (6)

The main difficulty is to split the 2D diffusion tensor D correctly into one-
dimensional diffusivities to fill the matrices Al. In order to obtain good proper-
ties of the resulting filter, such as maximum–minimum principle, stability and
well–posedness, smoothing properties etc. (see e.g. [9]), we require that each
directional diffusivity is nonnegative. The design of a nonnegative directional
splitting of the diffusion equation forms the main topic of this paper.

3 Weickert’s positive directional splitting

In [9], Weickert gives a constructive proof of the following theorem: given D, a
symmetric positive definite matrix with a spectral condition number κ, there ex-
ists some n = ν(κ) ∈ N such that div(D ·∇u) reveals a second-order nonnegative
forward difference discretization on a (2n + 1)× (2n + 1) window.

The boundary pixels of a (2n + 1) × (2n + 1) window define 4n principal
orientations βi ∈ (−π

2 , π
2 ], i = −2n + 1, . . . ,2n. The theorem says that it is

possible to separate the continuous process into 4n one-dimensional processes
along these orientations. Moreover, Weickert showed that only three of these
orientations are actually needed to guarantee the positive discretization at any
single location, so that we end up with the approximation

div(D · ∇u) = ∂eβ0
(α0 ∂eβ0

u) + ∂eβk
(αk ∂eβk

u) + ∂eβ2n
(α2n ∂eβ2n

u) (7)
1 The precision was computed with respect to an explicit scheme with a very small

time step τ = 0.1 which was proclaimed the ground truth.



where eβi
= (cos βi, sinβi)T , and α0, αk, α2n are the nonnegative directional

diffusivities along the orientations β0, βk, β2n.
The latter result says that, given a spectral condition number κ, it suffices to

use three one-dimensional processes. The first acts in the horizontal direction,
the second in the vertical direction. The orientation of the third is chosen from
the set of 4n = 4 · ν(κ) angles according to the direction of the eigenvectors of
the diffusion tensor. A literal application of this principle would require the use
of neighbourhoods of different sizes dependent on the spectral condition number
of the diffusion tensor. This would cause problems in implementation, e.g. at the
borders of the image where some data are not available. Also the discretization
of the diffusion in (almost) arbitrary orientations would be difficult.

We usually proceed differently. We fix the size n of neighbourhoods that
are used in the algorithm. Thus we restrict the selection of orientations, too,
but the discretized diffusion is implemented easily. As a consequence, we can
perform diffusion only with a limited spectral condition number of the diffusion
tensor; its bound κmax is equal to the maximal κ such that ν(κ) ≤ n. If the
spectral condition number of the diffusion tensor exceeds this value, our diffusion
discretization cannot be both consistent and positive. Nevertheless, this case
can be avoided by the choice of the diffusion tensor. Notice that in isotropic
diffusion we had the spectral condition number equal to 1, so imposing a limit
on anisotropy need not represent a severe restriction.

For the particular case of 2D data and a 3×3 window (implying four principal
orientations2 β−1 = −π

4 , β0 = 0, β1 = π
4 , β2 = π

2 ) with the diffusion tensor
D =

(
a b
b c

)
, its condition number bounded by κmax = 3+2

√
2, Weickert proposes

the following directional diffusivities:

α−1 =
|b| − b

2
α0 = a− |b| (8)

α1 =
|b|+ b

2
α2 = c− |b|. (9)

The directional diffusivities are assembled into matrices Al, and the AOS dis-
cretization of the 2D continuous anisotropic diffusion process is computed using
the equation (6). This directional splitting leads to an algorithm which reveals
(discrete versions of) all theoretical properties of the continuous diffusion filter
(see [9]). As for practical properties, some problems arise with the rotational
symmetry of the discrete filter; we return to this point in the next section.

In a private communication, Joachim Weickert suggested that any diffusivity
splitting method can only possess two of these three desirable properties:

1. positivity (max-min principle);
2. anisotropy (strong directionality without limits on the condition number of

D);
3. consistency with the continuous equation (the splitting should converge to

the continuous equation as the discretization steps approach zero, τ → 0,
∆x → 0).

2 We assume equal grid size ∆x = 1 in both dimensions.



Weickert and Scharr renounced the positivity to obtain rotational symmetry and
good directionality (with less blurring in other that coherence directions) in [10].
The disadvantage of that choice is that the maximum-minimum principle is lost,
some oscillations may appear, and the method is not suitable for noise filtering.

4 Consistent positive splitting on a 3 × 3 window

In this section we study in more detail the consistent directional splitting on
a 3 × 3 window. Let us start from the diffusion tensor D =

(
a b
b c

)
. We want

to approximate the (continuous) 2D diffusion by a diffusion composed of 1D
processes acting along four directions β−1 = −π

4 , β0 = 0, β1 = π
4 , β2 = π

2 ; we
will call the approximation consistent if

2∑
k=−1

∂eβk
(αk ∂eβk

u) = div(D · ∇u) (10)

where αk is the diffusivity along the direction βk.
Let us expand the left hand side of equation (10). With eβk

= (cos βi, sinβi)T

and using the notation ux = ∂u
∂x (similarly for uy, uxx, etc.), we have

∂eβk
= 〈eβk

,∇u〉 = ux cos βk + uy sinβk (11)

from which

∂eβk
(αk · ∂eβk

u) = αk ·
(
uxx cos2 βk + 2uxy sinβk cos βk + uyy sin2 βk

)
. (12)

The right hand side of (10) yields

div(D · ∇u) =
〈(

∂x

∂y

)
,

(
a ux + b uy

b ux + c uy

)〉
= a uxx + 2b uxy + c uyy. (13)

If we evaluate the trigonometric functions for the angles βk in (12), sum up
the contributions for all k, and assemble the elements corresponding to a given
partial derivative of u, we obtain the following set of linear equations:

for uxx :
1
2
α−1+α0 +

1
2
α1 = a (14)

for uxy : −α−1 +α1 = 2 b (15)

for uyy :
1
2
α−1 +

1
2
α1+α2 = c. (16)

We want to solve this set of equations for the unknowns αk with the restrictions
αk ≥ 0.

Let us take the second equation of the system, (15), and add another equation
to it, formed for a parameter p = α−1+α1

2 :

−α−1 + α1 = 2 b (17)
α−1 + α1 = 2 p. (18)



Summing and subtracting of the two equations lead to

α1 = p + b ≥ 0 (19)
α−1 = p− b ≥ 0 (20)

from which we obtain the first solvability condition, p ≥ |b|.
Using the parameter p, the solutions of (14)–(16) may be expressed as

α0 = a− p α2 = c− p (21)
α−1 = p− b α1 = p + b. (22)

As we require αk ≥ 0, the equation (21) provides directly the upper bound on
our splitting parameter: p ≤ min(a, c). To summarize, the consistent splitting
(21)–(22) remains positive if and only if we select

p ∈
[
|b|,min(a, c)

]
. (23)

The conditions ensuring that this interval is nonempty can be expressed in terms
of the condition number of the diffusion tensor D. This has been done by We-
ickert [9, pp. 88–95] and we have seen it in the previous section: the consistent
positive splitting on a 3×3 window is possible if and only if the condition number
of D is less than or equal to κmax = 3 + 2

√
2.

Let us now return to an important point: which value from the admissible
interval should be chosen for the parameter p? In the following we offer three
possibilities:

Splitting 1: p = |b|
Splitting 2: p = min(a, c)
Splitting 3: p = |b|+min(a,c)

2 .

The first two suggestions take on the value of either of the limit cases; split-
ting 1 is clearly equivalent to Weickert’s positive splitting (8)–(9). The third
splitting represents a compromise, an average of the two limits of the admissible
interval (23).

The three splitting alternatives are tested for rotational symmetry in Fig. 2,
showing a diffused Gaussian hill. You can observe that although all the three
methods share the same property of consistency with the continuous formula-
tion, splitting 1 and 2 does not transfer the continuous rotational symmetry well
into the discrete situation. The artefacts become severe as the iteration time
step τ increases. On the other hand, the compromising splitting 3 restricts the
artefacts considerably, both for a large τ = 10 and for a small τ = 1 (the latter
situation is stressed in figure 3 depicting the difference between the diffusion
result and its copy rotated by 45 degrees). Figure 3d illustrates that if the dif-
fusivity parameter λ is (too) small, the interval (23) becomes narrow on a large
part of the image, and the three splitting alternatives perform equivalently in
preferring some diffusion directions to others, which may create some irregular
patterns in the data.



a b

Fig. 1. Input images. Left: Gaussian hill, the input data to test the rotational
symmetry of the methods. Right: noisy input image ([0, 127]2 → [0, 255]) for
the ‘Triangle and rectangle’ experiment. Noise with uniform distribution in the
range [−255, 255] was added to two-valued synthetic data; the signal-to-noise
ratio is 1.4.

The noise-filtering capabilities of splitting 1 and splitting 3, tested on the
data from Fig. 1b, are compared in Fig. 4. You can see that some cloth-like
artefacts remain in the filtered image with fewer iterations of splitting 1, and
the output data for τ = 1 and τ = 5 differ significantly. In contrast with that, all
the results of splitting 3 resemble, although – as usual for the AOS scheme – the
filtering effect weakens as the discretization time step increases. These results
prove that the differences between the splitting methods might be negligible if a
small time step τ is employed. However, if you ask for a more efficient algorithm
and wish to spend fewer iterations of the filtering procedure, thus needing a
larger τ , splitting 3 becomes clearly superior.

5 Conclusion

We have analysed the possibilities for consistent positive directional splitting of
anisotropic diffusion on a 3 × 3 window. We have shown that such a splitting
exists if the interval [b, min(a, c)], formed from the elements of the diffusion ten-
sor D =

(
a b
b c

)
, is nonempty. Moreover, we have derived the formulas for the

directional diffusivities depending on a single diffusivity parameter, and demon-
strated experimentally that the directional splitting reveals better properties
(regarding e.g. rotational symmetry and sensitivity to the time step size) if the
splitting parameter is chosen from the interior of the admissible interval.
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Fig. 2. A rotationally symmetric Gaussian hill from Fig. 1a filtered by the three
directional splitting methods for the anisotropic NL diffusion AOS scheme. Left
column contains the results for the discretization time step τ = 1, the right
for τ = 10. The remaining diffusion parameters were given by σ = 1, T = 200,
ϕ2 = 1; the parameter λ was computed in each diffusion step as a 0.95-percentile
of the image gradients.
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Fig. 3. The artefacts on rotational symmetry.
(a–c) the (amplified) difference between a diffusion result from Fig. 2, τ = 1,
and its copy rotated by 45 degrees: (a) splitting 1, (b) splitting 2, (c) splitting
3.
(d) Star-like patterns appear on a Gaussian diffused with a small diffusivity
parameter λ (for any splitting method 1–3). Here T = 200, τ = 10, the Perona-
Malik λ was computed as a 0.1-percentile of the image gradients.
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Fig. 4. Impact of the directional splitting on the results of the noise-filtering
procedure: splitting 1 on the left, splitting 3 on the right. In all cases, the stopping
time of the diffusion was T = 25, the time step τ increases from top to bottom,
τ ∈ {1, 2.5, 5}.
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