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Abstract

In a previous work [7], we developed a novel time-selection strategy for iterative
image restoration techniques. We call it decorrelation criterion as the stopping time is
chosen so that the correlation of signal and noise in the filtered image is minimised. This
research report presents a detailed experimental evaluation of this stopping criterion,
running several types of filters on various images artificially corrupted with noise, and
comparing the optimal values of the stopping time T with the estimates.
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Figure 1: Model of the time-selection problem for
the diffusion filtering. We want to select the fil-
tered image u(T ) which is as close as possible to
the ideal signal f̃ .

1 Introduction

If we want to restore noisy images using some method which starts from the input data
and creates a set of possible filtered solutions by gradually removing noise and details from
the data, the crucial question is when to stop the filtering in order to obtain the optimal
restoration result. The choice of the stopping time T has a strong effect on the diffusion
result: small T gives more trust to the input data (and leaves more details and noise in the
data unfiltered), while large T means that the result becomes dominated by the model of
the filtering process.

We work with the following model (see Fig. 1): let f̃ be an ideal, noise-free (discrete)
image; this image is observed by some imprecise measurement device to obtain an image f .
We assume that some noise n is added to the signal during the observation so that

f = f̃ + n. (1)

Furthermore, we assume that the noise n is uncorrelated with the signal f̃ , and that the
noise has zero mean value, E(n) = 0.

The diffusion filtering starts with the noisy image as its initial condition, u(0) = f , and
the diffusion evolves along some trajectory u(t). This trajectory depends on the diffusion
parameters and on the input image; the optimistic assumption is that the noise will be
removed from the data before any important features of the signal commence to deteriorate
significantly, so that the diffusion leads us somewhere ‘close’ to the ideal data. This should
be the case if the signal adheres to the piecewise constant model inherent in the diffusion
equation.

The task of the stopping time selection can be formulated as follows: select that point
u(T ) of the diffusion evolution which is nearest to the ideal signal f̃ . Obviously, the ideal
signal is normally not available; the optimal stopping time T can only be estimated by
some criteria, and the distance1 between the ideal and the filtered data serves only in the
experiments to evaluate the performance of the estimation procedure.

In [7] we claimed that a near-optimal estimate of the stopping time can be often obtained
if we use the formula

T = arg min
t

corr
(
u(0)− u(t),u(t)

)
. (2)

1In the experiments below, we measure the distance of two images by the mean absolute deviation,
MAD(x − y) = E(|x − y|). The MAD distance is equivalent to the l1 norm normalized by the number of
pixels; we favour it over e.g. the l2 norm because it is less sensitive to outliers.
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Figure 2: The distance MAD(u(t)− f̃) (solid line) and the correlation coefficient corr
(
u(0)−

u(t),u(t)
)

(dashed line) developing with the diffusion time. The graphs were measured
experimentally on noisy cymbidium data of SNR = 6 filtered using anisotropic NL diffusion.

We call this equation the decorrelation criterion. In this paper, we test and evaluate its
performance experimentally.

2 Experiments

In the experiments below, we simulate the image formation process sketched above by tak-
ing some image, either natural of artificially created, and declaring it to be noise-free and
represent the ground truth f̃ . Then we add some noise n to the image artificially, filter the
noisy image u(0) = f̃ +n using several methods, and observe the development of the distance
between the filtered signal and the noise-free image, MAD

(
u(t)− f̃

)
, and the development

of the correlation between the filtered signal u(t) and the ‘filtering noise’ u(0)− u(t).
Ideally, the two graphs will look something like those in Fig. 2. You can see that the

distance MAD
(
u(t)− f̃

)
decreases in the first iterations as the noise is smoothed, and then

starts to increase again as also the useful signal begins to disappear under the filtering
process. The graph of the correlation coefficient corr

(
u(0) − u(t),u(t)

)
exhibits a highly

similar behaviour; this similarity lets us hope that we can estimate the stopping time T which
optimises the filtering quality (measured by the MAD distance) by locating the minimum
of the correlation corr

(
u(0)− u(t),u(t)

)
.

In our experiments, we will compare several values: Topt will stand for the optimal
stopping time which minimizes the distance between the filtered and the ideal data (known
in the experimental setup only), and Dopt will denote the value of this optimal distance,
Dopt = MAD

(
u(Topt) − f̃

)
. The symbol Tcorr will stand for the stopping time estimated

using the decorrelation criterion (2), and Dcorr will represent the filtering residual at such
a stopping time. In some cases we also compare the results to the estimation using the
method of Weickert [10] which requires knowledge of the signal-to-noise ratio (SNR) in the
input image and iterates the diffusion until the filtered signal is in some distance from the
noisy input; the values obtained using this method will be denoted TSNR and DSNR.
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Figure 3: Original images used in experiments A–H.

The filtering methods we use include linear diffusion alias low-pass filtering [4], nonlinear
(NL) diffusion [8, 2], anisotropic NL diffusion (especially its ‘edge-enhancing’ form [9]),
monotonicity-enhancing NL diffusion[5] (see also the thesis [6] for more information on these
diffusion filters), and iterated median filtering.

Linear and NL diffusion (both isotropic and anisotropic) are representatives of information-
reducing scale spaces obeying e.g. the maximum-minimum principle. Although we have
proved such a property for linear diffusion only, the experiments suggest that all these meth-
ods guarantee non-negativity of the correlation between filtered signal and filtering noise,
corr

(
u(0) − u(t),u(t)

)
≥ 0. This non-negativity is not ensured by monotonicity-enhancing

NL diffusion and iterated median filtering; for these two methods, we employ absolute value
of the correlation in (2) to estimate the stopping time.

In this paper, we present the results of several series of experiments. In Experiments A–
H (sections 2.2 to 2.9) we corrupt the original image with varied amount of noise2, filter
the noisy image using several filters, and compare the filtering results. We present and
compare the optimal and decorrelation-estimated stopping times, Topt and Tcorr, as well as
the corresponding distances between the filtered and ideal signal, Dopt and Dcorr.

Experiment I (section 2.11) offers a comparison between estimations of stopping time
using the decorrelation criterion and the SNR method of Weickert [10], measured on the
cymbidium data with additive Gaussian noise filtered using anisotropic NL diffusion.

Experiment J (section 2.12) examines the possibility to use minimum of the signal–
noise correlation to select optimal filtering method or optimal filtering parameters. The idea
is that the less the filtered signal is correlated with the filtering noise, the better the filtering
performance. We will test this assumption through varying the diffusivity parameter λ, and
running several experiments to compare between different filters.

Last, some images filtered using the decorrelation estimaton of the stopping time are
gathered for illustration in section 2.13.
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Figure 4: Layout of the presented graphs in experiments B–H.

2.1 Introduction to experiments A–H

In experiments A–H we will use several images (shown in Fig. 3), declare them to be noise-
free, corrupt each of them with varied amount of noise and filter with several filters. For
each image, we will then show a table which compares the optimal stopping time Topt with
the estimated Tcorr, and a table comparing the distances between the original and filtered
images for both stopping times, Dopt and Dcorr. Then (with the exception of Experiment A),
we show a series of graphs drawn using the measured values T and D, with the structure
illustrated in Fig. 4. In each of these graphs, the horizontal axis represents the amount
of noise in the input image, so that the intersection of one vertical line with the graphs
represents the results obtained from one noisy input image using one or several filters.

2We employ Gaussian additive noise in all cases except Experiment G, where the image is corrupted with
salt&pepper noise.
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2.2 Experiment A
No signal, Gaussian noise

In the first experiment, we filter pure noise with only a constant value as the ideal, noise-free
signal. In such a case the optimal diffusion filtering result – the constant – is reached at
time t = ∞ with the classical diffusion methods. The experimental results are shown for
varied amount of noise and for various filtering methods in Table 1. (The computation was
limited to 100 iterations, so T = 100 can be understood as ‘almost infinity’.)

Fig. 5 shows the obtained filtering quality measured by MAD(u(T )− f̃) for various filters.
The plot gives results for a series of experiments, drawn against the amount of noise in the
input image (the horizontal axes represents the standard deviation of noise).

You can see from Table 2 and from Fig. 5 that the noise is in this experiment best
removed by the diffusion filters using (piecewise) constant function as their model; these
methods include linear diffusion, isotropic and anisotropic NL diffusion. This observation is
expected as the noise-free function itself is constant. The monotonicity-enhancing diffusion
filter uses a piecewise linear model, which is more general and thus weaker at filtering noise
from the constant function. The iterated median filter is easily outperformed by the diffusion
filters.

For all filters except the iterated median, the decorrelation criterion yields a good esti-
mate of the optimal stopping time; cf. Table 1.
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Figure 5: Experiment A. Plots of the error residual MAD(u(T )− f̃) after filtering: optimal
for each method and each noise level on the left, with estimated stopping time on the right.
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linear diff. iso. NL diff. aniso. NL diff. mono. NL diff. iter. median
var(n) Topt Tcorr Topt Tcorr Topt Tcorr Topt Tcorr Topt Tcorr

0 0 2 0 18 0 6 0 0 0 0
0.01 100 100 100 100 100 100 2 3 45 3
0.025 100 100 100 100 100 100 3 3 45 3
0.05 100 100 100 100 100 100 3 3 45 3
0.075 100 100 100 100 100 100 3 3 45 3
0.1 100 100 100 100 100 100 3 4 45 3
0.15 100 100 100 100 100 100 3 4 45 3
0.2 100 100 100 100 100 100 3 4 45 3
0.3 100 100 100 100 100 100 4 4 45 3
0.4 100 100 100 100 100 100 4 4 45 3
0.5 100 100 100 100 100 100 4 4 45 3
0.6 100 100 100 100 100 100 4 4 45 3
0.8 100 100 100 100 100 100 4 5 45 3
1 100 100 100 100 100 100 4 5 45 3

Table 1: Experiment A: Optimal and estimated values of T .

linear diff. iso. NL diff. aniso. NL diff. mono. NL diff. iter. median
var(n) Dopt Dcorr Dopt Dcorr Dopt Dcorr Dopt Dcorr Dopt Dcorr

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.01 0.001 0.001 0.001 0.001 0.002 0.002 0.024 0.024 0.015 0.021
0.025 0.003 0.003 0.002 0.002 0.003 0.003 0.035 0.035 0.024 0.033
0.05 0.004 0.004 0.003 0.003 0.005 0.005 0.048 0.048 0.034 0.047
0.075 0.005 0.005 0.004 0.004 0.006 0.006 0.058 0.058 0.041 0.057
0.1 0.006 0.006 0.005 0.005 0.007 0.007 0.066 0.068 0.048 0.066
0.15 0.007 0.007 0.006 0.006 0.009 0.009 0.080 0.082 0.058 0.081
0.2 0.008 0.008 0.007 0.007 0.010 0.010 0.087 0.089 0.068 0.094
0.3 0.010 0.010 0.008 0.008 0.013 0.013 0.105 0.105 0.083 0.115
0.4 0.012 0.012 0.010 0.010 0.015 0.015 0.121 0.121 0.096 0.133
0.5 0.013 0.013 0.011 0.011 0.017 0.017 0.130 0.130 0.107 0.149
0.6 0.015 0.015 0.012 0.012 0.018 0.018 0.142 0.142 0.117 0.163
0.8 0.017 0.017 0.014 0.014 0.021 0.021 0.160 0.162 0.136 0.189
1 0.019 0.019 0.016 0.016 0.024 0.024 0.172 0.175 0.152 0.211

Table 2: Experiment A: Values of MAD(u(T )− f̃) for optimal and estimated values of the
stopping time T .
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Figure 6: Some of the input images for Experiment B (size 128× 128). Increasing amount
of noise from left to right from SNR = ∞ (no noise) to SNR = 1. The top and bottom lines
present the same images, at the bottom the grey values are shown rescaled into [0,255].

2.3 Experiment B
Step function in 2D, Gaussian noise

In the second experiment, the ideal signal is a step function in 2D. The noise-free and the
noisy images (additive Gaussian noise) are shown in Fig. 6.

What can be seen from the filtering results in Tables 3 and 4 and Figures 7–12:

• The estimation of T yields obsolete results if there is no noise in the input image,
especially when isotropic and anisotropic NL diffusion is concerned. However, these
errors in the estimation of T lead only to small errors in the distance Dcorr because
other parameters of the diffusion are also estimated from the input images, and the
diffusion was kept very slow in the images without noise.

• T seems badly estimated also for other noise levels of the isotropic and anisotropic NL
diffusion filters. Still, these methods are best suited for the data properties and even
with this bad T outperform all the others in the filtering quality.

• The estimation of T does not work with iterated median filter.

10



linear diff. iso. NL diff. aniso. NL diff. mono. NL diff. iter. median
var(n) Topt Tcorr Topt Tcorr Topt Tcorr Topt Tcorr Topt Tcorr

0 0 2 0 100 0 43 0 1 0 0
162 2 2 100 12 14 7 3 1 45 1
406 3 2 100 18 20 10 4 2 45 1
812 3 3 100 25 28 13 5 3 45 1

1219 4 3 100 28 34 15 5 3 45 1
1625 5 4 100 32 39 16 5 4 45 1
2438 6 4 100 41 46 19 5 4 46 1
3251 7 4 100 45 52 20 6 5 45 1
4877 8 5 100 56 54 21 7 6 45 1
6502 9 6 100 74 47 20 8 7 45 3
8128 10 6 100 72 45 20 9 8 45 3
9754 11 7 100 76 46 21 9 9 45 3

13005 12 8 100 43 51 23 10 11 45 3
16257 14 8 100 32 52 24 11 14 45 3

Table 3: Experiment B: Optimal and estimated values of T .

linear diff. iso. NL diff. aniso. NL diff. mono. NL diff. iter. median
var(n) Dopt Dcorr Dopt Dcorr Dopt Dcorr Dopt Dcorr Dopt Dcorr

0 0.00 2.34 0.00 0.09 0.00 1.71 0.00 1.02 0.00 0.00
162 4.18 4.18 0.39 0.89 1.65 1.93 3.85 4.69 2.08 4.22
406 5.23 5.27 0.58 1.16 2.16 2.46 4.88 5.44 3.30 6.68
812 6.17 6.17 0.79 1.36 2.56 2.92 5.95 6.25 4.67 9.44

1219 6.78 6.89 0.93 1.54 2.81 3.23 6.73 7.25 5.72 11.57
1625 7.27 7.29 1.04 1.65 3.02 3.53 7.46 7.59 6.60 13.36
2438 8.00 8.15 1.15 1.76 3.34 3.92 8.70 8.90 8.09 16.36
3251 8.57 8.87 1.18 1.84 3.60 4.31 9.57 9.66 9.34 18.89
4877 9.41 9.72 1.28 1.83 4.07 4.96 10.86 10.94 11.44 23.14
6502 10.07 10.33 1.38 1.66 4.59 5.65 11.82 11.87 13.20 17.80
8128 10.60 11.05 1.52 1.84 5.03 6.18 12.62 12.64 14.75 19.89
9754 11.07 11.41 1.66 1.93 5.37 6.51 13.31 13.31 16.15 21.78

13005 11.84 12.21 1.88 3.08 5.89 7.07 14.48 14.48 18.58 25.08
16257 12.48 13.06 2.49 4.19 6.41 7.70 15.45 15.64 20.69 27.96

Table 4: Experiment B: Values of MAD(u(T ) − f̃) for optimal and estimated values of
stopping time T .
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Figure 7: Experiment B. Plots of the error residual MAD(u(T )− f̃) after filtering: optimal
for each method and each noise level on the left, with estimated stopping time on the right.
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Figure 8: Experiment B, linear diffusion. Values of MAD(u(T ) − f̃) for the optimal and
estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 9: Experiment B, isotropic NL diffusion. Values of MAD(u(T )− f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 10: Experiment B, anisotropic NL diffusion. Values of MAD(u(T )−f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 11: Experiment B, monotonicity-enhancing NL diffusion. Values of MAD(u(T )− f̃)
for the optimal and estimated time on the left; the optimal and estimated values of time T
on the right.
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Figure 12: Experiment B, iterated median filter. Values of MAD(u(T )− f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 13: Some of the input images for Experiment C (size 128× 128). Increasing amount
of noise from left to right from SNR = ∞ (no noise) to SNR = 1. The top and bottom lines
present the same images, at the bottom the grey values are shown rescaled into [0,255].

2.4 Experiment C
Triangle and rectangle, Gaussian noise

The ideal and noisy signals used in Experiment C are shown in Fig. 13. We present the
filtering results in Tables 5 and 6, and Figures 14–19. Some observations:

• As in Experiment B, the estimation of T yields obsolete results if there is no noise in
the input image. Again, these errors have only moderate effect on the filtering quality.

• The optimal and estimated stopping times are in a very good correspondence with
linear diffusion filter. Also the anisotropic diffusion reveals relatively good estimation
results.

• Again, there is a relatively high error in the estimation of T for isotropic NL diffusion.
Again however, the filtering performance of this filter is the best of all in spite of these
errors.

• The estimation of T does not work at all with monotonicity-ehnancing diffusion or the
iterated median filter.
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linear diff. iso. NL diff. aniso. NL diff. mono. NL diff. iter. median
var(n) Topt Tcorr Topt Tcorr Topt Tcorr Topt Tcorr Topt Tcorr

0 0 2 0 100 0 39 0 43 0 1
148 1 2 88 8 8 4 1 38 45 1
370 1 2 100 11 10 6 2 36 45 1
740 2 2 100 16 13 9 3 33 45 1

1111 2 2 100 17 15 10 3 32 45 1
1481 2 3 100 20 17 11 3 31 45 1
2222 2 3 100 24 20 13 3 29 45 1
2963 3 3 100 28 22 14 3 28 45 1
4445 3 3 100 37 24 15 4 27 46 1
5927 3 4 100 43 25 15 4 26 45 1
7409 4 4 100 45 25 15 4 25 45 1
8891 4 4 100 53 24 16 5 25 45 1

11854 4 5 100 38 22 16 5 24 45 3
14818 5 5 45 20 19 16 6 24 45 3

Table 5: Experiment C: Optimal and estimated values of T .

linear diff. iso. NL diff. aniso. NL diff. mono. NL diff. iter. median
var(n) Dopt Dcorr Dopt Dcorr Dopt Dcorr Dopt Dcorr Dopt Dcorr

0 0.00 7.14 0.00 0.31 0.00 4.83 0.00 31.46 0.00 0.07
148 7.18 8.59 0.82 1.41 2.68 3.21 5.89 30.96 2.33 4.21
370 8.79 9.49 1.18 1.95 3.43 3.82 7.40 30.87 3.64 6.62
740 10.53 10.53 1.56 2.40 4.17 4.38 8.80 30.78 5.11 9.33

1111 11.34 11.34 1.70 2.73 4.59 4.83 9.74 30.67 6.25 11.42
1481 12.02 12.58 1.87 2.93 4.96 5.25 10.58 30.59 7.20 13.17
2222 13.19 13.44 2.07 3.20 5.49 5.77 12.02 30.10 8.80 16.11
2963 14.16 14.16 2.12 3.30 5.87 6.20 13.25 30.00 10.15 18.60
4445 15.40 15.40 2.22 3.30 6.45 6.92 15.10 30.01 12.42 22.76
5927 16.45 16.56 2.23 3.26 6.93 7.60 16.51 29.94 14.30 26.25
7409 17.33 17.33 2.26 3.34 7.45 8.27 17.68 29.80 15.95 29.31
8891 18.02 18.02 2.34 3.21 8.10 8.73 18.60 30.11 17.40 32.05

11854 19.26 19.27 2.67 4.13 9.63 10.09 20.13 30.09 19.93 25.49
14818 20.22 20.22 5.15 6.49 11.24 11.48 21.35 30.54 22.05 28.31

Table 6: Experiment C: Values of MAD(u(T ) − f̃) for optimal and estimated values of
stopping time T .
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Figure 14: Experiment C. Plots of the error residual MAD(u(T )− f̃) after filtering: optimal
for each method and each noise level on the left, with estimated stopping time on the right.
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Figure 15: Experiment C, linear diffusion. Values of MAD(u(T ) − f̃) for the optimal and
estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 16: Experiment C, isotropic NL diffusion. Values of MAD(u(T )− f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 17: Experiment C, anisotropic NL diffusion. Values of MAD(u(T )−f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 18: Experiment C, monotonicity-enhancing NL diffusion. Values of MAD(u(T )− f̃)
for the optimal and estimated time on the left; the optimal and estimated values of time T
on the right.
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Figure 19: Experiment C, iterated median filter. Values of MAD(u(T )− f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 20: Some of the input images for Experiment D (size 60 × 50). Top: increasing
amount of noise from left to right from SNR = ∞ (no noise) to SNR = 1. Bottom: 3D mesh
of three least noisy images from the top line (SNR = ∞ ,20 and 5, respectively).

2.5 Experiment D
Inclined surface, Gaussian noise

In Experiment D, we use piecewise linear and piecewise increasing surface as the ideal data
(see Fig. 20). Such data properties are not covered well by the classical diffusion filters
(linear, isotropic or anisotropic nonlinear) which use (piecewise) constant as their model.
On the other hand, this kind of data is exactly suitable for the monotonicity-enhancing NL
diffusion filter. Let us observe Tables 7–8 and Figures 21–26 and see whether the results
reflect these expectations.

• We obtain very good estimates of T for the linear, isotropic and anisotropic NL diffu-
sion (except the no-noise input image with isotropic NL diffusion filter).

• Monotonicity-enhancing NL diffusion filter gets very good estimates of T for smaller
amounts of noise (up to SNR = 5), for more noise the estimates deviate more from the
optimum. Also the filtering performance confirms expectations and this filter which
is based on a piecewise-linear model gives the best results, measured both visually
(cf. Figure 69 on page 56) and in the MAD distance from ideal data. The numerical
difference from the anisotropic NL diffusion filter is not significant, though.

• Here as before, the estimation of T does not work with iterated median filtering.
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linear diff. iso. NL diff. aniso. NL diff. mono. NL diff. iter. median
var(n) Topt Tcorr Topt Tcorr Topt Tcorr Topt Tcorr Topt Tcorr

0 0 1 0 100 0 2 0 1 0 1
46 2 1 3 2 6 5 3 2 2 1

116 2 2 4 3 8 7 3 2 5 1
233 3 2 5 3 10 8 4 3 13 1
350 3 3 6 4 11 9 4 4 21 1
467 4 3 6 4 12 9 5 5 21 1
700 4 3 9 5 13 10 5 6 21 1
934 5 4 9 5 13 11 6 7 21 1

1401 6 4 8 6 13 12 6 10 22 1
1868 6 5 9 7 14 13 7 13 24 1
2336 7 5 9 7 15 14 7 16 24 3
2803 7 5 9 7 15 15 8 23 24 3
3737 8 6 9 8 17 16 9 28 26 3
4672 9 7 10 9 18 17 9 32 26 3

Table 7: Experiment D: Optimal and estimated values of T

linear diff. iso. NL diff. aniso. NL diff. mono. NL diff. iter. median
var(n) Dopt Dcorr Dopt Dcorr Dopt Dcorr Dopt Dcorr Dopt Dcorr

0 0.00 1.17 0.00 8.22 0.00 0.32 0.00 0.62 0.00 0.16
46 2.52 2.60 2.35 2.50 2.37 2.41 2.08 2.10 2.33 2.57

116 3.04 3.04 3.12 3.25 3.03 3.04 2.79 2.95 3.10 3.80
233 3.57 3.67 3.74 4.15 3.55 3.59 3.53 3.57 3.96 5.21
350 3.92 3.92 4.12 4.35 3.84 3.89 4.01 4.01 4.55 6.31
467 4.20 4.24 4.38 4.76 4.05 4.16 4.40 4.40 5.05 7.23
700 4.64 4.78 4.62 5.03 4.41 4.53 4.99 5.01 5.80 8.76
934 4.99 5.02 4.91 5.48 4.78 4.84 5.48 5.53 6.42 10.04

1401 5.54 5.68 5.56 5.86 5.42 5.44 6.27 6.56 7.45 12.19
1868 5.97 6.04 6.01 6.12 5.89 5.91 6.92 7.52 8.32 14.00
2336 6.34 6.48 6.33 6.52 6.28 6.29 7.48 8.39 9.09 10.78
2803 6.66 6.89 6.62 6.87 6.62 6.62 7.98 9.64 9.77 11.72
3737 7.21 7.38 7.18 7.27 7.17 7.17 8.84 10.95 10.98 13.40
4672 7.67 7.79 7.62 7.65 7.62 7.63 9.58 12.05 12.08 14.91

Table 8: Experiment D: Values of MAD(u(T ) − f̃) for optimal and estimated values of
stopping time T .
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Figure 21: Experiment D. Plots of the error residual MAD(u(T )− f̃) after filtering: optimal
for each method and each noise level on the left, with estimated stopping time on the right.
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Figure 22: Experiment D, linear diffusion. Values of MAD(u(T ) − f̃) for the optimal and
estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 23: Experiment D, isotropic NL diffusion. Values of MAD(u(T )− f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 24: Experiment D, anisotropic NL diffusion. Values of MAD(u(T )−f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 25: Experiment D, monotonicity-enhancing NL diffusion. Values of MAD(u(T )− f̃)
for the optimal and estimated time on the left; the optimal and estimated values of time T
on the right.
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Figure 26: Experiment D, iterated median filter. Values of MAD(u(T )− f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 27: Some of the input images for Experiment E (size 176× 236). Increasing amount
of artificially added noise from left to right from SNR = ∞ (no noise) to SNR = 1.

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25
corr(u(0)−u(t),u(t))

t

co
rr

Figure 28: Example of irregular be-
haviour of corr(u(0) − u(t),u(t)).
Experiment E (MRI data), addi-
tive Gaussian noise of SNR = 2,
anisotropic NL diffusion filter. The
optimal Topt was equal to 8, this
graph attains its minimum at t = 15.

2.6 Experiment E
MRI image, Gaussian noise

In Experiment E we use a slice of MRI data as the ideal signal, see Fig. 27. The good aspect
in this experiment is that the data are more realistic than the artificial examples before. On
the other hand, there will be some amount of noise present already in the original image
which we declare to be noise-free; this noise will bias the performance of the time estimation
procedures, and the ‘optimal’ stopping time minimizing the MAD distance to input data
does not necessarily correspond to the smallest noise artefacts in the filtered signal.

In this experiment, we observed for the first time that the graph of corr
(
u(0)−u(t),u(t)

)
is not always unimodal. The case is shown in Fig. 28. Other experimental results are
presented in Tables 9–10 and Figures 29–34. Let us comment on them briefly.

• Here as before, the estimation of T does not work with iterated median filtering.

• Quite surprisingly, the estimation of T gives completely obsolete results for linear
diffusion and for monotonicity-enhancing NL diffusion.

• The estimation works well for isotropic and anisotropic NL diffusion filters. Relatively
worse estimation results for smaller amount of artificialy added noise are influenced
by the noise present already in the original input data as discussed above.
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linear diff. iso. NL diff. aniso. NL diff. mono. NL diff. iter. median
var(n) Topt Tcorr Topt Tcorr Topt Tcorr Topt Tcorr Topt Tcorr

0 0 100 0 48 0 23 0 74 0 1
31 0 100 1 32 2 7 0 71 0 1
79 0 100 2 37 3 7 1 69 1 1

158 1 100 2 28 4 9 1 66 1 1
238 1 100 3 27 4 10 1 65 1 1
317 1 100 3 16 5 10 1 63 2 1
476 1 100 3 12 6 11 1 62 2 1
635 1 100 4 12 6 12 1 60 3 1
953 1 100 4 11 7 13 2 56 4 1

1271 2 99 4 12 7 14 2 53 6 1
1589 2 97 5 12 8 15 2 50 6 1
1907 2 96 5 12 8 15 2 48 7 1
2543 2 94 5 12 8 15 3 43 8 1
3179 2 93 6 11 9 16 3 40 9 1

Table 9: Optimal and estimated values of T for varied amount of noise and for various
filtering methods in Experiment E.

linear diff. iso. NL diff. aniso. NL diff. mono. NL diff. iter. median
var(n) Dopt Dcorr Dopt Dcorr Dopt Dcorr Dopt Dcorr Dopt Dcorr

0 0.00 27.81 0.00 7.86 0.00 9.09 0.00 27.10 0.00 3.88
31 4.49 27.82 3.36 7.64 3.45 5.24 4.49 27.04 4.49 5.23
79 7.11 27.83 4.65 8.77 4.60 5.75 5.78 27.00 6.11 6.11

158 7.96 27.84 5.70 9.15 5.60 6.85 6.51 26.84 7.15 7.15
238 8.44 27.85 6.47 9.71 6.26 7.50 7.14 26.86 7.97 7.97
317 8.86 27.86 6.99 9.32 6.76 7.83 7.70 26.76 8.49 8.67
476 9.61 27.87 7.81 9.42 7.50 8.53 8.69 26.85 9.35 9.85
635 10.27 27.88 8.45 9.96 8.06 9.17 9.56 26.80 10.06 10.83
953 11.43 27.90 9.41 10.70 8.98 10.13 10.54 26.70 11.09 12.52

1271 12.28 27.88 10.16 11.70 9.71 11.01 11.31 26.66 11.85 13.98
1589 12.72 27.83 10.73 12.16 10.28 11.65 12.00 26.57 12.51 15.27
1907 13.14 27.81 11.22 12.56 10.76 12.02 12.64 26.59 13.08 16.44
2543 13.91 27.77 12.03 13.44 11.67 12.84 13.64 26.42 14.11 18.55
3179 14.61 27.76 12.67 13.78 12.38 13.68 14.39 26.41 15.03 20.41

Table 10: Optimal and estimated values of MAD(u(T )− f̃) for varied amount of noise and
for various filtering methods in Experiment E.
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Figure 29: Experiment E. Plots of the error residual MAD(u(T )− f̃) after filtering: optimal
for each method and each noise level on the left, with estimated stopping time on the right.
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Figure 30: Experiment E, linear diffusion. Values of MAD(u(T ) − f̃) for the optimal and
estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 31: Experiment E, isotropic NL diffusion. Values of MAD(u(T )− f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 32: Experiment E, anisotropic NL diffusion. Values of MAD(u(T )−f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 33: Experiment E, monotonicity-enhancing NL diffusion. Values of MAD(u(T )− f̃)
for the optimal and estimated time on the left; the optimal and estimated values of time T
on the right.
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Figure 34: Experiment E, iterated median filter. Values of MAD(u(T )− f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 35: Some of the input images for Experiment F (size 433× 437). Increasing amount
of noise from left to right from SNR = ∞ (no noise) to SNR = 1.

2.7 Experiment F
Cymbidium data, Gaussian noise

Some of the input images for experiment F are seen in Fig. 35. Unlike the MRI image of
previous section, the original image here does not contain much noise. What results were
obtained in this case (see Tables 11–12 and Figures 36–41):

• The estimation of T does not work with iterated median filtering and with monotonicity-
enhancing NL diffusion.

• The stopping time estimated for linear and nonlinear diffusion (isotropic and anisotropic)
corresponds very well to the optimal values.

• The isotropic and anisotropic NL diffusion yields the best filtering performance, both
for the optimal and estimated stopping time T .
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linear diff. iso. NL diff. aniso. NL diff. mono. NL diff. iter. median
var(n) Topt Tcorr Topt Tcorr Topt Tcorr Topt Tcorr Topt Tcorr

0 0 3 0 3 0 2 0 61 0 1
44 1 3 2 4 4 6 1 64 2 62

110 1 3 4 6 6 8 2 65 4 5
221 2 3 5 7 8 11 2 66 10 1
332 2 3 5 8 8 11 3 67 17 1
443 2 3 6 9 9 13 3 67 34 1
665 2 4 6 10 10 14 3 67 43 1
887 3 4 7 10 11 15 4 66 45 1

1330 3 5 7 10 12 16 4 64 39 1
1774 4 5 8 11 13 17 5 62 45 3
2218 4 6 8 12 13 17 5 60 47 3
2661 5 6 9 12 14 18 6 58 51 3
3549 6 7 9 12 14 18 6 53 43 3
4436 6 7 9 12 15 19 7 48 51 3

Table 11: Optimal and estimated values of T for varied amount of noise and for various
filtering methods in Experiment F.

linear diff. iso. NL diff. aniso. NL diff. mono. NL diff. iter. median
var(n) Dopt Dcorr Dopt Dcorr Dopt Dcorr Dopt Dcorr Dopt Dcorr

0 0.00 4.95 0.00 1.56 0.00 1.04 0.00 19.51 0.00 1.90
44 3.57 5.09 2.61 2.73 2.58 2.67 3.14 19.16 3.36 3.62

110 4.33 5.27 3.26 3.43 3.16 3.25 4.00 19.03 4.08 4.08
221 5.11 5.54 3.83 3.96 3.68 3.84 4.66 19.06 4.72 5.88
332 5.48 5.78 4.20 4.42 4.05 4.18 5.16 19.17 5.20 6.90
443 5.81 6.00 4.50 4.69 4.32 4.49 5.52 19.18 5.61 7.77
665 6.38 6.64 4.94 5.19 4.77 4.96 6.12 19.23 6.29 9.24
887 6.73 6.90 5.29 5.52 5.14 5.36 6.60 19.16 6.87 10.50

1330 7.34 7.54 5.83 5.98 5.73 5.92 7.32 19.07 7.86 12.61
1774 7.78 7.87 6.26 6.44 6.19 6.38 7.88 19.00 8.69 10.31
2218 8.16 8.30 6.62 6.85 6.59 6.72 8.33 18.91 9.42 11.32
2661 8.47 8.55 6.93 7.14 6.94 7.10 8.71 18.81 10.08 12.23
3549 9.00 9.08 7.47 7.64 7.58 7.71 9.36 18.46 11.26 13.86
4436 9.42 9.44 7.96 8.10 8.13 8.30 9.88 18.01 12.30 15.30

Table 12: Optimal and estimated values of MAD(u(T )− f̃) for varied amount of noise and
for various filtering methods in Experiment F.
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Figure 36: Experiment F. Plots of the error residual MAD(u(T )− f̃) after filtering: optimal
for each method and each noise level on the left, with estimated stopping time on the right.
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Figure 37: Experiment F, linear diffusion. Values of MAD(u(T ) − f̃) for the optimal and
estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 38: Experiment F, isotropic NL diffusion. Values of MAD(u(T )− f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 39: Experiment F, anisotropic NL diffusion. Values of MAD(u(T )− f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 40: Experiment F, monotonicity-enhancing NL diffusion. Values of MAD(u(T )− f̃)
for the optimal and estimated time on the left; the optimal and estimated values of time T
on the right.
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Figure 41: Experiment F, iterated median filter. Values of MAD(u(T )− f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 42: Some of the input images for Experiment G (size 433× 437). From left to right,
increasing amount of pixels was corrupted with salt&pepper noise: 0, 5, 20, 40, and 70
percent, respectively.

2.8 Experiment G
Salt and pepper noise, cymbidium image

Some of the input images for experiment G are seen in Fig. 42; it shows again the cymbidium
image as in the previous section, but this time corrupted with salt&pepper noise. What
results were obtained in this case (see Tables 13–14 and Figures 43–48):

• The value of the stopping time is overestimated for higher amounts of noise with the
classical diffusion and iterated median filters; however, this error does not harm the
filtered results much.

• The estimation does not work with monotonicity-enhancing NL diffusion.

• Salt-and-pepper noise is best removed by the median filter. In this experiment, we
see for the first time that the estimated T (understood as number of iterations) for
iterated median filtering is in good correspondence with the optimal values – or is it
the other way round, and the optimal values here fit the unchanging estimates of T
(at least for relatively smaller amount of noise)?
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linear diff. iso. NL diff. aniso. NL diff. mono. NL diff. iter. median
var(n) Topt Tcorr Topt Tcorr Topt Tcorr Topt Tcorr Topt Tcorr

0 0 3 0 3 0 2 0 61 0 1
206 0 3 0 6 0 22 0 67 0 1
534 0 4 0 18 0 29 0 72 1 1

1052 0 4 8 19 12 30 0 74 1 1
1583 2 5 7 19 11 26 3 60 1 1
2112 2 6 6 14 10 23 3 77 1 1
3180 3 7 7 25 9 20 3 82 1 2
4291 3 9 6 17 9 21 3 99 2 2
6357 3 12 5 16 8 26 4 28 2 2
8430 3 18 4 18 8 34 4 25 4 2

10464 4 26 4 22 8 43 4 28 8 2
12587 4 38 5 31 9 59 4 25 17 2
14669 5 62 5 47 10 98 100 13 28 2

Table 13: Optimal and estimated values of T for varied amount of noise and for various
filtering methods in Experiment G.

linear diff. iso. NL diff. aniso. NL diff. mono. NL diff. iter. median
var(n) Dopt Dcorr Dopt Dcorr Dopt Dcorr Dopt Dcorr Dopt Dcorr

0 0.00 4.95 0.00 1.56 0.00 1.04 0.00 19.51 0.00 1.90
206 1.23 5.48 1.22 3.08 1.23 4.24 1.30 19.11 1.26 1.92
534 3.19 6.83 3.14 5.27 3.13 5.47 3.24 20.83 1.98 1.98

1052 6.28 8.09 6.34 6.87 6.21 7.08 6.47 20.43 2.07 2.07
1583 8.88 9.75 7.64 8.52 7.73 8.55 9.16 21.00 2.15 2.15
2112 10.42 11.47 9.49 10.07 9.26 10.12 10.87 21.91 2.27 2.27
3180 13.53 14.50 12.64 14.49 12.45 13.34 14.24 24.23 2.51 2.58
4291 16.68 17.95 15.67 17.20 15.80 17.08 17.43 28.81 2.70 2.70
6357 22.61 24.07 22.12 24.52 22.39 24.46 23.72 26.50 3.12 3.12
8430 28.83 30.67 28.36 30.67 29.03 31.22 29.39 31.86 3.73 4.24

10464 34.79 36.75 35.16 37.27 34.79 36.87 36.02 39.33 4.44 7.39
12587 41.37 43.33 41.33 43.43 41.19 43.18 42.11 45.19 6.23 15.67
14669 47.67 49.70 47.59 49.50 47.74 49.74 45.37 46.15 11.60 30.72

Table 14: Optimal and estimated values of MAD(u(T )− f̃) for varied amount of noise and
for various filtering methods in Experiment G.
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Figure 43: Experiment G. Plots of the error residual MAD(u(T )− f̃) after filtering: optimal
for each method and each noise level on the left, with estimated stopping time on the right.
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Figure 44: Experiment G, linear diffusion. Values of MAD(u(T ) − f̃) for the optimal and
estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 45: Experiment G, isotropic NL diffusion. Values of MAD(u(T )− f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 46: Experiment G, anisotropic NL diffusion. Values of MAD(u(T )−f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 47: Experiment G, monotonicity-enhancing NL diffusion. Values of MAD(u(T )− f̃)
for the optimal and estimated time on the left; the optimal and estimated values of time T
on the right.
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Figure 48: Experiment G, iterated median filter. Values of MAD(u(T )− f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 49: Some of the input images for Experiment H (size 433× 437). From left to right,
increasing amount of pixels was corrupted with salt&pepper noise: 0, 5, 20, 40, and 70
percent, respectively.

2.9 Experiment H
Gaussian noise, peppers image

In experiment H, we add Gaussian noise to the image of peppers; some of the input images
are seen in Fig. 49. The results are presented in Tables 15–16 and Figures 50–55, and our
comments will be brief:

• The decorrelation criterion gives very good estimates of the optimal stopping time for
classical diffusion filters (linear, isotropic and anisotropic nonlinear).

• The estimation of T does not work with iterated median filtering and with monotonicity-
enhancing NL diffusion.

• The isotropic and anisotropic NL diffusion yields the best filtering performance, both
for the optimal and estimated stopping time T .
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linear diff. iso. NL diff. aniso. NL diff. mono. NL diff. iter. median
var(n) Topt Tcorr Topt Tcorr Topt Tcorr Topt Tcorr Topt Tcorr

0 0 2 0 2 0 3 0 7 0 1
28 1 2 1 3 3 5 1 9 2 1
72 1 2 2 4 4 7 1 9 2 1

144 1 2 3 4 5 8 1 11 4 1
217 1 2 4 5 7 9 2 12 7 1
289 2 3 5 6 7 10 2 12 8 1
434 2 3 6 7 9 11 2 12 11 1
578 2 3 6 7 9 12 2 12 13 1
868 2 4 6 7 10 12 3 11 17 1

1157 3 4 7 8 11 14 3 10 21 1
1447 3 4 7 8 11 14 3 10 27 1
1736 3 5 7 8 11 14 4 10 27 1
2315 4 5 8 9 13 15 4 10 31 3
2894 4 6 8 9 13 16 4 10 32 3

Table 15: Optimal and estimated values of T for varied amount of noise and for various
filtering methods in Experiment H.

linear diff. iso. NL diff. aniso. NL diff. mono. NL diff. iter. median
var(n) Dopt Dcorr Dopt Dcorr Dopt Dcorr Dopt Dcorr Dopt Dcorr

0 0.00 4.94 0.00 2.23 0.00 2.08 0.00 8.99 0.00 2.74
28 3.94 5.05 3.05 3.21 2.85 3.08 3.65 10.58 3.63 3.69
72 4.37 5.20 3.71 3.83 3.50 3.73 4.15 10.49 4.15 4.42

144 4.97 5.42 4.21 4.26 4.02 4.18 4.87 11.80 4.72 5.34
217 5.49 5.64 4.55 4.60 4.33 4.44 5.39 12.50 5.11 6.10
289 5.83 6.31 4.82 4.87 4.55 4.65 5.69 12.82 5.42 6.76
434 6.20 6.53 5.21 5.25 4.90 4.95 6.20 12.91 5.94 7.89
578 6.53 6.74 5.47 5.51 5.20 5.30 6.66 13.47 6.39 8.87
868 7.13 7.39 5.90 5.92 5.68 5.74 7.29 13.23 7.14 10.53

1157 7.48 7.66 6.26 6.28 6.03 6.12 7.78 12.84 7.78 11.94
1447 7.81 7.91 6.56 6.59 6.39 6.48 8.26 13.13 8.34 13.20
1736 8.13 8.31 6.84 6.87 6.73 6.82 8.66 13.34 8.85 14.34
2315 8.59 8.67 7.30 7.33 7.21 7.28 9.29 13.88 9.75 11.59
2894 8.99 9.11 7.72 7.76 7.70 7.83 9.88 14.34 10.56 12.72

Table 16: Optimal and estimated values of MAD(u(T )− f̃) for varied amount of noise and
for various filtering methods in Experiment H.
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Figure 50: Experiment H. Plots of the error residual MAD(u(T )− f̃) after filtering: optimal
for each method and each noise level on the left, with estimated stopping time on the right.
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Figure 51: Experiment H, linear diffusion. Values of MAD(u(T ) − f̃) for the optimal and
estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 52: Experiment H, isotropic NL diffusion. Values of MAD(u(T )− f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 53: Experiment H, anisotropic NL diffusion. Values of MAD(u(T )−f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Figure 54: Experiment H, monotonicity-enhancing NL diffusion. Values of MAD(u(T )− f̃)
for the optimal and estimated time on the left; the optimal and estimated values of time T
on the right.
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Figure 55: Experiment H, iterated median filter. Values of MAD(u(T )− f̃) for the optimal
and estimated time on the left; the optimal and estimated values of time T on the right.
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Tcorr/Topt

experiment linear diff. iso. NL diff. aniso NL diff. mono NL diff. iter. median
A 1 1 1 1.15 0.07
B 0.71 0.43 0.44 0.8 0.04
C 1.28 0.3 0.65 10.79 0.03
D 0.76 0.72 0.87 1.68 0.12
E 76.32 7.74 2.13 43.01 0.44
F 1.68 1.49 1.35 21.44 2.53
G 5.47 4.26 4.09 14.74 0.81
H 1.66 1.38 1.36 5.45 0.16

Table 17: Ratios between correlation-estimated and optimal stopping times, Tcorr/Topt,
averaged for each combination of test image and filtering method across all noise levels.
The noise was additive Gaussian in the range of SNR ∈ [1,∞) except for experiment G, for
which 0–70 per cent of pixels were corrupted with salt&pepper noise.

Dcorr/Dopt

experiment linear diff. iso. NL diff. aniso NL diff. mono NL diff. iter. median
A 1 1 1 1.01 1.39
B 1.02 1.59 1.19 1.04 1.76
C 1.03 1.52 1.08 2.6 1.74
D 1.02 1.06 1.01 1.08 1.36
E 2.97 1.36 1.18 3.15 1.14
F 1.07 1.04 1.03 3.18 1.29
G 1.46 1.25 1.33 3.11 1.38
H 1.07 1.01 1.03 2 1.31

Table 18: Relative filtering quality Dcorr/Dopt computed as a ratio between the filtering
residuals MAD

(
u(T )− f̃

)
at the correlation-estimated and optimal stopping times T , aver-

aged for each image and filtering method across all noise levels.

2.10 Summary of experiments A–H

In experiments A–H we corrupted original images with either Gaussian or salt&pepper
noise artificially, filtered the signal using several methods, and compared the optimal and
correlation–estimated stopping time for each of them. The numerical measurements are
summarized in Tables 17–20.

The values of the ratio Tcorr/Topt, averaged for each test image and each filter type across
all noise levels, are given in Table 17. Table 18 presents the corresponding average relative
filtering quality

Dcorr

Dopt
=

MAD
(
u(Tcorr)− f̃

)
MAD

(
u(Topt)− f̃

) . (3)

Similar measurements, but presented for each noise level with averaged contribution of
individual images, are given in Tables 19 and 20.

You can see in Tables 17–20 that the estimation of the stopping time T using the decor-
relation criterion (2) gives usually good results for linear, isotropic and anisotropic NL
diffusion, where the values of Tcorr lie in most cases in the range [0.5Topt, 2Topt] (more pre-
cisely, the estimated values lie in this range in 68, 56, and 71 percent of all experiments for
linear, isotropic and anisotropic diffusion, respectively). The estimation results are more
reliable when there is a higher amount of noise in the input image.

The errors in the estimation of T lead usually to only small relative decay in the filtering
performance compared to the optimal results: the relative error is smaller than 20 percent
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Tcorr/Topt

SNR linear diff. iso. NL diff. aniso NL diff. mono NL diff. iter. median
100 1.58 5.55 1.36 18.92 5.35
40 1.61 3.43 1.2 18.67 0.44
20 15.31 2.68 1.17 17.62 0.22

13.33 15.32 2 1.16 15.23 0.19
10 15.29 1.46 1.1 14.97 0.12

6.67 15.35 1.29 1.04 14.76 0.11
5 15.17 1.13 1.08 13.6 0.08

3.33 15.28 1.15 1.05 8.28 0.07
2.5 7.99 1.21 1.08 7.5 0.07
2 7.81 1.14 1.06 7.25 0.08

1.67 7.75 1.13 1.08 6.58 0.07
1.25 7.58 1.08 1.06 5.13 0.09
1 7.5 0.99 1.07 4.68 0.08

Table 19: Ratios between correlation-estimated and optimal stopping times, Tcorr/Topt,
averaged for each combination of noise level and filtering method across all test images.

Dcorr/Dopt

SNR linear diff. iso. NL diff. aniso NL diff. mono NL diff. iter. median
100 1.87 1.49 1.14 3.36 1.37
40 1.49 1.38 1.09 2.76 1.36
20 1.39 1.29 1.07 2.46 1.42

13.33 1.34 1.27 1.07 2.29 1.45
10 1.33 1.23 1.07 2.16 1.47

6.67 1.29 1.2 1.06 1.98 1.51
5 1.26 1.21 1.07 1.86 1.54

3.33 1.22 1.16 1.07 1.71 1.58
2.5 1.19 1.12 1.07 1.62 1.45
2 1.18 1.13 1.07 1.55 1.39

1.67 1.17 1.1 1.06 1.52 1.41
1.25 1.15 1.19 1.05 1.45 1.28
1 1.14 1.15 1.05 1.4 1.29

Table 20: Relative filtering quality Dcorr/Dopt computed as a ratio between the filtering
residuals MAD

(
u(T )− f̃

)
at the correlation-estimated and optimal stopping times T , aver-

aged for each combination of noise level and filtering method across all test images.
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in 93 percent of experiments with the anisotropic NL diffusion filter, in 86 percent of ex-
periments with the linear diffusion, and in 71 percent of experiments with the isotropic NL
diffusion filtering. Note also that this higher error with isotropic NL diffusion is only relative
to the optimal values, the absolute results of isotropic NL filter with estimated stopping time
outperform other methods in most cases.

The estimation works well with linear diffusion except the MRI data (Experiment E). On
the other hand, the minimum of the signal-noise correlation does not lead to near-optimal
stopping times with monotonicity-ehnancing NL diffusion and with iterated median filters,
perhaps with the exception of the data suited directly for these types of filters (i.e. the
piecewise linear function, Experiment D, and the salt&pepper noise in Experiment G, re-
spectively). This worse performance may be caused by the fact that unlike classical diffusion
filters which create information-reducing scale-spaces and observe the maximum-minimum
principle, monotonicity-enhancing diffusion and iterated median filter often form a solution
for which the correlation corr

(
u(0)− u(t),u(t)

)
changes its sign into negative values. Also,

the median filtering does not preserve the average grey level of the image, which was one of
the theoretical assumptions on the filtering methods.

2.11 Experiment I: Comparison between correlation–
and SNR–estimated stopping time

Another example of the experimental performance of the decorrelation criterion is seen in
Figures 56 and 57, measured on cymbidium data (Fig. 3f) with varied amount of additive
Gaussian noise combined with an anisotropic NL diffusion filter. The former figure compares
three stopping times: the optimal Topt, TSNR determined using the knowledge on the signal-
to-noise ratio in the input image [10], and our decorrelation-estimated Tcorr. All alternative
stopping times are computed for a series of input images with varied amount of noise present;
the standard deviation of noise in the input data is represented by the horizontal axis of the
graphs. While the SNR method easily underestimates or overestimates the optimal stopping
time (depending on the amount of noise in the input data), the correlation minimization
leads to near-optimal results for all noise levels. The three graphs are plotted for iteration
time steps τ ∈ {0.1, 0.5, 1}.

The actually obtained quality measure MAD(u(T ) − f̃) is shown in Fig. 57, this time
with τ = 0.5. You can see that for all noise levels the correlation-estimated time leads to
filtering results very close to the optimal values obtainable by the nonlinear diffusion.
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Figure 56: The stopping time TSNR determined by the SNR method (dotted with crosses),
and Tcorr obtained through the covariance minimization (dotted with diamonds) compared
to the optimal stopping time Topt (solid line). The graphs are plotted against the standard
deviation of noise in the input image; the three figures represent the same measurements for
different iteration time-step sizes (top to bottom): τ = 0.1, τ = 0.5, τ = 1.
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Figure 57: Top: the MAD distance of the filtered data from the ideal noise-free image,
MAD(u(T )− f̃), using the SNR and the correlation-minimization time selection strategies.
Bottom: the difference between the estimated result and the optimal one, MAD(u(T ) −
u(Topt)).
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2.12 Experiment J
Can correlation help to choose the filtering method?

So far, we have been addressing the problem of selecting a good stopping time T from a
sequence of iterations. However, the correlation between the filtered signal and the filtering
noise corr

(
u(0) − u(t),u(t)

)
carries more information on the filtering process and can be

exploited further: to estimate the filtering quality, to select parameters of the filtering
process, or choose between several alternative filtering methods.

Let us return for a moment to Fig. 2. At the beginning of the diffusion filtering, the
correlation coefficient declines fast until it reaches its minimum. If for some data the graph
behaves differently, it may serve as a hint on some problems. As an example, we observed
that if there is only a small amount of noise in the input image, the correlation corr

(
u(0)−

u(t),u(t)
)

might grow from the first iterations. In such a case, the iteration time step τ has
to be decreased adaptively and the diffusion restarted from time t = 0 until the correlation
plot exhibits a clear minimum.

At its minimum, the term
∣∣corr

(
u(0) − u(t),u(t)

)∣∣ measures the residual correlation
between the filtered signal and the filtering noise. It can be also understood as a measure of
filtering quality obtained by a particular filter with a given set of parameters; hopefully, a
smaller residual correlation corresponds to a better filtering quality (the correlation is zero
for the ideal filter). Then, the minimum of

∣∣corr
(
u(0)−u(t),u(t)

)∣∣ can be used to compare
the outputs of different filters or of one filter with different parameters, and may help us
choose the best filter for the given input data.

As an initial attempt in this direction, we compare the filtering quality of three diffusion
filters (linear, isotropic and anisotropic) with the residual signal–noise correlation in Fig-
ure 58. It shows the result obtained in all experiments A–H seen so far, for each of them
starting with the smallest amount of noise on the left. You can see first that while the graph
of the distance MAD(u(T ) − f̃) naturally increases with the amount of noise, the residual
correlation

∣∣corr
(
u(0) − u(T ),u(T )

)∣∣ decreases. This is caused by the normalization with
noise variance in the computation of correlation. However, what interests us is the relative
order of the values of the filtering quality and the correlation between individual filters in
each experiment. In Fig. 58, it is seen that this ordering mostly holds, and if not, the dif-
ference in the filtering quality is very small. Therefore we conclude that the minimum of∣∣corr

(
u(0) − u(t),u(t)

)∣∣ might help us decide on the best filter from linear, isotropic and
anisotropic NL diffusion, alhough it would result in selecting isotropic NL diffusion in most
of the cases seen so far.

In the second experiment, we try to select the best filter for a particular input from
classical and monotonicity-enhancing anisotropic NL diffusion. We should assume that
piecewise constant data are best filtered using the classical diffusion, while monotonicity-
anhancing procedure is better suited for piecewise linear data. Figure 59 shows that the
residual correlation may be used to select the better of the two filters only with care: it works
fine for the data of Experiment B (indicating that classical diffusion with piecewise constant
model should be employed), feasibly in Experiment D (prefering piecewise linear model of
the monotonicity-enhancing procedure for piecewise linear data, although the decision does
not correspond completely to the MAD distance between filtered output of the two method
and the ideal data), but suggests an obsolete solution for the piecewise constant data of
Experiment C. The reason for the latter failure can be perhaps blaimed on the fact that
the monotonicity-enhancing procedure leads to results where the correlation corr

(
u(0) −

u(t),u(t)
)

is negative; then, the time T estimated from the minimum of its absolute value
is less stable and reliable than in the cases where the correlation does not change its sign
(such as is the case with classical diffusion filters).

In the third experiment testing the validity of the idea that residual correlation might
contribute to the selection or tuning of the restoration method, we filter the cymbidium
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Figure 58: Correspondence between the residual signal-to-noise correlation and the filtering
quality with linear, isotropic and anisotropic NL diffusion filter.
Top: quality of the filtering solution, measured by MAD(u(T )− f̃) at the time T determined
using the decorrelation criterion, for all inputs of Experiments A–H.
Bottom: the corresponding value

∣∣corr
(
u(0)− u(T ),u(T )

)∣∣.
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Figure 59: Can the residual correlation | corr
(
u(0)− u(T ),u(T )

)
| select the best model for

the input data? Top: quality of the filtering solution, measured by MAD(u(T ) − f̃) at
the time T determined using the decorrelation criterion. Bottom: the corresponding value
| corr

(
u(0) − u(T ),u(T )

)
|. The input data were (left to right) those of Experiments B, C,

and D, respectively. The plots compare results of classical anisotropic diffusion (using a
piecewise constant model) and monotonicity-enhancing diffusion (piecewise linear model).
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Figure 60: Comparison of filtering results obtained on the cymbidium image with var-
ied amount of noise using a single type of filter (isotropic NL diffusion), but varying
the parameter p which influences the computation of λ. Left: MAD(u(T ) − f̃); right:
| corr

(
u(0)− u(T ),u(T )

)
|. The graphs are plotted for p=0, 0.2, 0.5, 0.7 and 0.9.

image with Gaussian noise using isotropic NL diffusion, and vary the parameter λ which
serves as a threshold determining how strong edges should be preserved in the diffusion
process. More precisely, we vary the method which estimates the parameter λ from the
input image, or its parameter p. For p = 0, the value of λ is estimated using the method
of Black and Sapiro [1] from statistical properties of the image; for p ∈ (0, 1), we set the
parameter λ equal to a 100 ·p percentile of image gradients as proposed by Perona and Malik
in [8].

The results are shown in Figures 60–61. The former presents results for several values
of p and varied amount of noise in the input image; at each noise level, we would like the
graphs of MAD and correlation to be in the same ordering, which, as you can see, is not
exactly the case. The letter figure compares the filtering quality and correlation for one noise
level only, and it is visible that the minimum of the MAD distance from the ideal solution
does not coincide well with the minimum of the residual signal–noise correlation. While the
correlation is minimised around p = 0.2, the optimal filtering performance is obtained if
we either estimate λ using the method of Black and Sapiro, or employ the Perona–Malik
procedure but with p = 0.5.3

3We should also remark that the Perona–Malik’s idea to set λ to a 100 · p percentile of image gradients
is often used with p = 0.9, so that only 10 percent of strongest edges are preserved. Our experiments
here would suggest a smaller value of p; however, it also depends on whether the percentile of gradients is
recomputed in each step (which, due to gradients attenuated by the diffusion slows down the smoothing and
combines well with a higher p), or whether we compute λ in the first step only, which was our choice here.
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Figure 61: Graphs of MAD(u(T ) − f̃) and | corr
(
u(0) − u(T ),u(T )

)
| plotted for a single

input image (cymbidium, SNR=5) with variable parameter p. For p = 0, the diffusivity
parameter λ is estimated using the Black-Sapiro procedure [1]; in other cases, we set λ equal
to a 100 · p percentile of image gradients in the spirit of Perona and Malik’s [8].
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Figure 62: Noisy input image for the experiment in Figure 63.

2.13 Some filtered images

In this section, we show some images obtained using diffusion filtering combined with au-
tonomous stopping time selection using the decorrelation criterion (2).

2.13.1 Triangle and rectangle

The first example compares the results of different diffusion algorithms filtering an originally
black and white image with non-Gaussian additive noise. The input data are shown in
Fig. 62: the noisy image was obtained by adding noise of uniform distribution in the range
[−255, 255] to the ideal input (Fig. 3c), and by restricting the noisy values into the interval
[0, 255].

In Fig. 63, the noise is smoothed by linear diffusion, isotropic nonlinear diffusion, and
two anisotropic diffusion filters; the grey-values are stretched to the whole interval [0, 255]
so that a higher contrast between the dark and bright regions corresponds to a better noise-
filtering performance. In all cases, the stopping time was determined autonomously by the
signal–noise decorrelation criterion (2). You can see that in all cases, although quite different
filtering algorithms were employed, the stopping criterion leads to results where most of the
noise is removed and the ideal signal becomes apparent or suitable for further processing; we
support this statement by showing the thresholded content of the filtered images in Fig. 64.

The stopping criterion was designed to minimize the distance between the ideal and
filtered function. If visual quality was the goal to be achieved, we would probably stop the
diffusion later, especially as linear diffusion (Fig. 63a) and the Weickert’s edge-enhancing
anisotropic diffusion [9] with maximum amount of diffusion in the coherence direction (ϕ2 =
1, Fig. 63c) are concerned. We find however that the MAD distance and visual quality are
in a good agreement in Fig. 63d which represents the result of the edge-enhancing diffusion
with a smaller amount of diffusion in the coherence direction, ϕ2 = 0.2 (see the thesis [6]
for details on the filtering procedures).

2.13.2 Cymbidium experiment

Noise of normal distribution was added to the image of a cymbidium flower (Figure 65
top, courtesy of Michal Haindl), the noisy image was subjected to anisotropic diffusion
filtering algorithm with the parameters σ = 1, τ = 0.5, ϕ2 = 0.2.4 The optimal values for

4Briefly, σ is a parameter to regularize the estimation of image gradient from noisy discrete data, τ the
iteration time step, ϕ2 the amount of diffusion in the direction of maximum coherence, and λ a threshold
determining how weak edges to smooth and how strong edges to preserve; details can be found in the
thesis [6].
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a b

c d

Figure 63: Comparing the different diffusion algorithms on the noisy data of Fig. 62, all
with the stopping time selected autonomously using the decorrelation criterion: (a) linear
diffusion, T = 3.8; (b) isotropic nonlinear diffusion, T = 125; (c) anisotropic NL diffusion,
ϕ2 = 1, T = 15; (d) anisotropic NL diffusion, ϕ2 = 0.2, T = 32.

a b c d

Figure 64: Thresholded versions of the images in Fig. 63
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the remaining parameters λ and T were estimated autonomously, using the Black–Sapiro’s
procedure for λ (see [1]), and our decorrelation criterion (2) to determine the optimal T . The
values of the parameters employed are shown together with the measured filtering results
in Table 21. The filtering performance is evaluated by the MAD distance from the ideal
data, so a smaller number means a better result. You can see that in all cases, the nonlinear
diffusion filter combined with our time-selection strategy leads to results largely superior
to median filter, and slightly better than the recursive filter [3]5. Several noisy and filtered
images can be seen in Figures 65 and 66.

Input image MAD after filtering diffusion params.
Filename SNR MAD median recursive diffusion T λ

p66n.pgm 48.95 0.45 2.07 0.03 0.76 1.0 8.58
p27n.pgm 31.02 2.41 2.60 2.3 1.76 2.5 8.49
p24n.pgm 28.10 3.21 2.85 3.1 2.05 3.0 8.55
p17n.pgm 19.95 7.32 4.37 5.4 3.20 6.0 26.15
p15n.pgm 17.96 8.97 5.04 5.8 3.55 7.0 26.51
p13n.pgm 14.87 12.33 6.43 6.6 4.24 8.5 35.97
p9n.pgm 9.99 20.84 10.08 8.2 5.93 10.5 77.56
p7n.pgm 8.41 25.10 11.91 8.8 6.79 11.0 119.37
p5n.pgm 6.17 33.62 15.59 10.5 8.38 11.5 192.79
p4n.pgm 4.69 42.14 19.26 13.0 9.99 12.0 284.34

Table 21: The cymbidium experiment. The first three columns give the filename of a given
noisy image, the signal-to-noise ratio, and the MAD distance between the original data and
the noisy input. The next three columns compare the filtering results of three methods: the
3x3 median filter, the Haindl’s recursive filter [3], and the anisotropic NL diffusion. The last
two columns present the actually employed diffusion parameters.

5Except the almost-no-noise case p66n.pgm; this exception was caused by different input data and dis-
cretization noise. The results of the recursive filter were kindly provided by Michal Haindl from the Academy
of Sciences of the Czech Republic.
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Figure 65: The cymbidium experiment. Top: original, noise-free image. Left column (top
to bottom): input images p27n.pgm and p17n.pgm. Right column: corresponding images
filtered by the anisotropic NL diffusion. The stopping time T was chosen autonomously using
the decorrelation criterion; see Table 21 for parameter values and a quantitative evaluation
of the filtering performance.
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Figure 66: The cymbidium experiment continued. Left column (top to bottom): input
images p13n.pgm, p7n.pgm, and p4n.pgm. Right column: corresponding images filtered by
the anisotropic NL diffusion. See text and Table 21 for details.
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2.13.3 Colour images

The algorithms for NL diffusion and the decorrelation criterion can be easily extended to
vector-valued data, including colour images. We present several filtering examples here.

First, Figure 67 shows the effect of the integration scale % on the result of anisotropic
diffusion. The results are obtained using the autonomous stopping criterion (2) and it
also shows the limitations of that method: although the input image contains no visible
corruptions, the high-frequency fur is erroneously considered as noise and oversmoothed in
the filtered result. We might advocate the stopping time by saying that the input does not
comply well with the piecewise constant assuption implicit in the diffusion equations; anyway,
this is an example of a situation where it would be desirable to combine the decorrelation
criterion with other information (e.g. the expected amount of noise in the input image) to
decide on a better (i.e. earlier) stopping time. Another observation: the filtering result
using the decorrelation stopping time (2) is in this case quite stable with respect to the
amount of additive noise in the data. This fact is depicted in Figure 68; the main features
become apparent in the filtered version and the smoothing may serve as a stabilizing factor
for further processing.

2.13.4 Inclined surface

In this section, we present an experiment with piecewise linear data. The ideal signal (image
3d visualized as a surface in three dimensions, where the original grey level is converted
to elevation) and the noisy input are drawn at the top of Fig. 69. Such an increasing
surface with discontinuities is not easily filtered using classical diffusion filters which are
based on the assumption that the data to be filtered are piecewise constant. The image
gradient is larger on the sloped surface, and it is rather difficult to tune the parameters
of the classical nonlinear diffusion to smooth the noise there without removing the signal
discontinuities. Piecewise linear or piecewise increasing data can be recovered better using
specialized monotonicity-enhancing diffusion filters, see [5, 6].

The results of two anisotropic NL diffusion filters with autonomous selection of T using
the decorrelation criterion can be seen in the bottom row of Figure 69 (the classical one on
the left and the monotonicity-enhancing on the right). While the classical filter leads to a
rather rough result, trying to approximate the surface with piecewise constant patches, the
monotonicity-enhancing procedure is better suited for this kind of data, combines well with
the time-selection procedure, and provides a good estimate of the ideal signal.
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Figure 67: Top left: input 512× 512 image of a baboon. Top right: filtered with anisotropic
NL ‘edge-enhancing’ diffusion (ϕ2 = 0.2); the estimated stopping time was T = 30. Center
and bottow rows: anisotropic NL diffusion with stronger diffusivity in the coherence direc-
tion. The integration parameter % for the computation of the maximum coherence direction
was varied (center to bottom and left to right): % = 0, 3, 5, 10, and the criterion (2) lead to
stopping times T = 45, 50, 51, 51, respectively.
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Figure 68: Left: baboon with additive Gaussian noise of variance (top to bottom) 30, 50,
100. Right: filtered with anisotropic diffusion using % = 3 and autonomous decorrelation
time T = 52, 61, 98, respectively. The remaining parameters were set as in Figure 67.
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Figure 69: Experiment with two-dimensional data. (a) Ideal data. (b) Noisy input.
(c) Classical anisotropic NL diffusion, T = 4.
(d) Anisotropic NL diffusion for monotonicity enhancement, T = 10. In (c)–(d), the stop-
ping time was determined autonomously using the decorrelation criterion.
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3 Conclusion

In a previous work [7], we developed a novel method to estimate the optimal stopping
time for iterative image restoration techniques such as nonlinear diffusion. The stopping
time is chosen so that the correlation of signal u(T ) and ‘noise’ u(0) − u(T ) is minimised.
This method, which we call decorrelation criterion is very general, being based only on the
assumption that the noise and the signal in the input image are uncorrelated, and that the
filtering method is suitable for that given type of signal; no knowledge on the variance of
the noise, and no training images are needed to tune any parameters of the method.

In the current report, we test and validate the performance of that criterion experimen-
tally. Our results suggest that in practical situations with diffusion filters the decorrelation
criterion generally provides a good estimate of the optimal stopping time for a wide range of
noise levels and filtering parameters. The decorrelation criterion combines best with classical
nonlinear diffusion (both isotropic and anisotropic), and with linear diffusion; it is less suit-
able to estimate the stopping iteration of monotonicity-enhancing diffusion [5], and seems
completely unsuitable for iterated median filtering. We have seen that in some cases with
NL diffusion, the new criterion outperforms other time selection strategies which use more
a priori information e.g. about the noise variance. However, we have also seen situations
where our estimation fails, so if more information is available, we would suggest to use it,
compute several stopping time estimates using different methods, and compare the results
to improve reliability of the estimation.

The minimum of the correlation | corr
(
u(0) − u(t),u(t)

)
| can be also used to evaluate

the filtering performance of the filter which created the sequence u(t). This measure can
then be used to choose one of several filters which is most suitable for the input data, or to
adapt parameters of the diffusion. We have shown some initial experiments in this direction
in section 2.12.
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