
Saarland University
Faculty of Natural Sciences and Technology I

Department of Mathematics

Master’s Thesis
Bregman Iteration for Optical Flow

submitted by
Laurent Hoeltgen

on August 25, 2010

Supervisor Dr. Michael Breuß
Reviewer Dr. Michael Breuß
Reviewer Prof. Dr. Joachim Weickert

Statement

I hereby declare that this master’s thesis has been written only by the undersigned and
without any assistance from third parties.
Furthermore, I confirm that no sources have been used in the preparation of this thesis
other than those indicated in the thesis itself.

Saarbrücken, August 25, 2010

Acknowledgements

I would like to express my sincere thanks to Dr. Michael Breuß for his excellent mentoring
and support during the development of this thesis. Furthermore, I would also like to
thank Henning Zimmer for his numerous suggestions and ideas on how to improve the
optical flow models and algorithms used in this thesis.
Special thanks go to Prof. Dr. Joachim Weickert and Dr. Andrés Bruhn for sparking my
interest in image processing and computer vision.
Last but not least, I have to express my special thanks to my friends and family, in
particular Claudine Schiltz and Sylvain Delvaux, for their continuous support.

Abstract

Osher and his colleagues introduced Bregman iterations in image processing in 2005. This
technique is known to yield excellent results for denoising/deblurring and compressed
sensing tasks but it has so far been rarely used for other image processing problems.
Some of the assets of the Bregman framework are the high flexibility and the existence
of a thorough convergence theory. In this thesis we adapt the split Bregman iteration,
originally developed by Goldstein and Osher, to the optical flow problem. The versatility
of the Bregman framework allows us to present a general approach to solve variational
formulations with modern data terms incorporating higher order constancy assumptions
as well as discontinuity preserving smoothness terms such as the popular total variation
regulariser. Several models will be analysed, and for each one a detailed algorithm based
on the split Bregman iteration will be presented. Finally, we will analyse the theoretical
properties of the Bregman iteration. The most interesting questions such as convergence
and error estimation will be treated in detail, thus providing a solid mathematical basis
for further research.

Contents

Contents

1 Introduction 1

2 Mathematical prerequisites 7
2.1 Fundamental results from functional analysis 7
2.2 Elementary notions about convex functions and sets 14
2.3 Subdifferential calculus . 26
2.4 Shrinkage operators . 41

2.4.1 Soft shrinkage . 41
2.4.2 Generalised shrinkage . 43

2.5 Summary and concluding remarks . 44

3 The Bregman algorithms 47
3.1 The standard Bregman iteration . 50

3.1.1 Deduction of the Bregman iteration 50
3.1.2 Convergence behavior of the standard Bregman algorithm 55
3.1.3 Alternative formulation of the standard Bregman algorithm 63
3.1.4 The Bregman iteration and the Lagrangian penalty method 66

3.2 The split Bregman algorithm . 68
3.2.1 Convergence speed of the split Bregman algorithm 76

3.3 Summary and concluding remarks . 79

4 The Bregman iteration for optical flow 81
4.1 Problem formulation . 81

4.1.1 Modeling the data term . 82
4.1.2 Modeling the smoothness term . 84
4.1.3 The optical flow models in the continuous setting 85
4.1.4 Discretizing the energy functionals 85
4.1.5 The discrete optical flow models 87

4.2 Preprocessing steps . 88
4.3 Course of action for applying the Bregman algorithms 88
4.4 The model of Horn and Schunck . 89
4.5 The L1-L2 model . 92
4.6 The non-rotationally invariant L2-L1 model 94
4.7 The rotationally invariant L2-L1 model 95
4.8 The non-rotationally invariant L1-L1 model 99
4.9 Summary of the results from the previous sections 100
4.10 Properties of the linear systems occurring in the Bregman algorithms . . . 102

ix

Contents

4.11 Handling large displacements with coarse-to-fine strategies 107
4.11.1 Further enhancements . 108

4.12 Occlusion detection . 109
4.13 Summary and concluding remarks . 109

5 Numerical evaluation 111
5.1 Evaluation of the Bregman algorithms . 112
5.2 Comparison with other algorithms . 114

5.2.1 Bregman L1-L1 without gradient constancy and TV-L1-M 114
5.2.2 Bregman L2-L1 and Brox-QDT-M 115

5.3 Occlusion handling . 117
5.4 Summary and concluding remarks . 117

6 Summary and outlook 119
6.1 Summary . 119
6.2 Outlook . 120

Bibliography 123

x

List of Figures

List of Figures

1.1 Two consecutive images of the Marbled-Block sequence. 3

2.1 Separation of convex sets by the Hahn-Banach theorem. 9
2.2 Construction used in the proof of Proposition 2.2. 10
2.3 Example illustration of Proposition 2.3. 11
2.4 Illustration of a level set and an epigraph. 17
2.5 Graphical illustration of Proposition 2.12. 18
2.6 Illustration of lower semi-continuity. 19
2.7 Visualisation of Proposition 2.19. 21
2.8 Construction described in Theorem 2.26. 24
2.9 Construction considered in Theorem 2.28. 25
2.10 Geometric interpretation of the subgradient. 27
2.11 A function and its corresponding subgradients. 28
2.12 Graphical representation of the soft shrinkage operator. 43

3.1 Geometric representation of the Bregman divergence. 49
3.2 Orthogonal and non-orthogonal projections. 51

4.1 Visualisation of the optical flow problem. 82
4.2 Pixel naming convention. 103
4.3 Reordering scheme used to show positive definiteness. 106
4.4 Visualisation of the warping step. 108

5.1 Color code for the displacement field. 111
5.2 Test sequences and their exact ground truths. 112
5.3 The resulting flow fields for the different models. 113
5.4 Benefits of the occlusion handling algorithm. 118

xi

List of Tables

List of Tables

5.1 Parameter choices and errors for the L2–L1 Model. 113
5.2 Parameter choices and errors for the L1–L2 Model. 114
5.3 Parameter choices and errors for the L1–L1 Model. 114
5.4 Parameter choices for the two Bregman algorithms. 116
5.5 Parameter choices for TV-L1-M and Brox-QDT-M. 116

xiii

List of Algorithms

List of Algorithms

3.1 The augmented Lagrangian penalty method for solving eq. (3.76). 67
3.2 Split Bregman algorithm with alternative Bregman iteration. 71
3.3 Split Bregman algorithm with standard Bregman iteration. 73
3.4 Variant of the split Bregman algorithm. 75
3.5 Example of the split Bregman algorithm. 76

4.1 Split Bregman algorithm for the Horn and Schunck model. 91
4.2 The split Bregman algorithm for the L1–L2 model. 93
4.3 The split Bregman algorithm for the non-rotationally invariant L2–L1 model. 96
4.4 The split Bregman algorithm for the rotationally invariant L2–L1 model. . 98
4.5 The split Bregman algorithm for the non-rotationally invariant L1–L1 model.101

xv

List of Symbols

List of Symbols

cl (S) The closure of S.

conv (S) The convex hull of S.

dom f The effective domain of f .

Epi f The epigraph of f .

int (S) The interior of S.

R (A) Range of the operator A.

N {0, 1, 2, 3, . . .}

N∗ {1, 2, 3, . . .}

‖·‖∞ Operator norm.

R The whole real line plus the symbols +∞ and −∞.

∂f (x) Subdifferential of f at x.

A∗ The adjoint operator of A.

Br (x) The open ball with radius r and center x.

Dp
f (x, y) Bregman divergence of f at x and y with subgradient p.

Lc (f) The lower levels set of f associated with c.

X∗ The dual space of X.

xvii

Introduction

1 Introduction
The original work of Bregman

In 1967 L.M. Bregman presented an iterative algorithm to compute a common point
of a family of convex sets [14]. The basic idea was to project a certain starting vector
iteratively onto the sets of that family until it arrived in their intersection. Similar
strategies were already known before, however the novelty in Bregman’s approach was
that he used non-orthogonal projections which allowed him to steer the iterates in such
a way that the limiting point could even possess certain desired properties. These
projections were computed with the help of a function that Bregman himself called the
D-projection and which people later referred to as the Bregman divergence or Bregman
distance. Bregman exploited the fact that he could steer the iterates and showed that
it was possible to solve certain problems in convex programming. Unfortunately, his
algorithm had a significant disadvantage. It could only be applied under rather strict
conditions. The cost function of the convex programming problem for example had
to be continuously differentiable and strictly convex. Nevertheless, his idea of using
non-orthogonal projections in combination with this D-projection was interesting enough
that people continued to research in that direction.

The Bregman iteration in image processing

In 2005 Stanley Osher and his colleagues proposed an algorithm for the iterative reg-
ularisation of inverse problems that was based on the Bregman divergence [62]. This
algorithm, nowadays called Bregman iteration, possessed a high flexibility and was ap-
plicable under much weaker assumptions than Bregman’s original formulation, thus
rendering it particularly attractive for image processing tasks, where one often considers
variational problems with non-differentiable/not strictly convex energies. Osher and
his colleagues successfully used the algorithm for image restoration purposes such as
denoising and deblurring. They were able to produce excellent results, especially in
combination with the Rudin-Osher-Fatemi (ROF) model for denoising [71]. This made
the Bregman iteration relatively popular, and many adaptations of the algorithm were
published in the following years. Among the numerous application fields it has for
example been used to solve the basis pursuit problem [28, 63, 94] and was subsequently
applied to medical imaging problems in [47]. Further applications include deconvolution
and sparse reconstruction [96], wavelet based denoising [92] and nonlinear inverse scale
space methods [24, 26]. Generally speaking, the Bregman iteration can be applied to any
problem that can be written under the form

arg min
u

J (u) such that H (u) = 0 (1.1)

with convex functions J and H and H (u) > 0 ∀u.

1

Introduction

Algorithmic variants of the Bregman iteration

There exists also a certain number of variations of Osher’s Bregman iteration. Among the
most prominent ones are the split Bregman algorithm [43] and the linearised Bregman
iteration [28].

The linearised Bregman formulation solves the same kind of problems as the standard
Bregman iteration. The difference lies essentially within the fact that it approximates the
constraining function H in eq. (1.1) by its first order Taylor expansion. This approach
leads in certain cases, such as compressed sensing and sparse denoising (denoising
of undersampled sparse signals) [28, 63], to extremely efficient algorithms with high
convergence speeds.

On the other hand, the split Bregman algorithm is a formulation that solves a different
kind of problems. It can be used to solve a rather large class of L1 regularized problems
in a fairly easy way, while offering, at the same time, good performance. It is capable of
solving the following problems

arg min
u

‖Au− b‖1 +H (u) (1.2)

with a matrix A, a vector b and a convex function H. The difficulty in solving such
optimisation problems lies in the fact that the 1-norm is not differentiable. The trick
behind the split Bregman algorithm is that one divides the initial problem into two
subproblems that can be solved very efficiently. This is done by introducing an auxiliary
variable d and considering the equivalent problem

arg min
u

‖d‖1 +H (u) such that ‖d−Au− b‖22 = 0 (1.3)

By applying Osher’s standard Bregman iteration and a few other transformations one
arrives finally at an algorithm that consists essentially in solving the following two
subproblems

arg min
u

H (u) + ‖Au− d+ b‖22 (1.4)

arg min
d
‖d‖1 + ‖d−Au− b‖22

If for example H (u) = ‖Bu+ c‖22 for some matrix B and vector c, then these two
problems can be solved in a highly efficient manner since the first one can be reduced to
solving a linear system and the second one possesses a well known analytical solution
that can be formulated with the help of so called shrinkage operators.

The optical flow problem

The excellent results that have been achieved in the past with the Bregman framework
motivate us to investigate if it can also be applied to another area in image processing,
namely computer vision and there especially the optical flow problem. The optical flow
problem is a highly ill-posed inverse problem. It consists in determining the displacement

2

Introduction

(a) Frame 1 (b) Displacement field (c) Frame 2

Figure 1.1: Two consecutive images of the Marbled-Block sequence by Otte and Nagel [60] and the sought
displacement field (author: Andrés Bruhn [19]).

field between different frames of a given image sequence. Figure 1.1 illustrates the
problem: given two consecutive frames, one is interested in determining the displacement
vector field that maps all points of the first frame onto their new location in the second
frame. The difficulty lies essentially in the fact that in many cases this correspondence
will not be unique or simply fails to exist because of various problems such as noise,
illumination changes and overlapping objects.

From a practical point of view these problems allow the extraction of motion information
such as the direction and velocity of moving objects. This knowledge is for example
highly interesting in the context of object tracking, driver assistance systems, autonomous
navigation of robots and video surveillance.

As for solving the optical flow problem, variational formulations and regularisation
strategies belong to the most accurate and best understood techniques. They determine
the unknown displacement field as the minimiser of an energy functional that penalises
deviations from the model assumptions. If we denote by ∂kf the set of all partial
derivatives of order k of an image sequence f , then the general form of a variational
approach can be given by

arg min
u

∫
Ω
D
(
∂kf, u

)
+ S

(
∇f,∇u

)
dx (1.5)

where D(∂kf, u) denotes a data term that represents one or more constancy assumptions
on ∂kf , while S (∇f,∇u) stands for a smoothness term that assumes the flow field u
to be smooth or piecewise smooth. The first such formulation was given by Horn and
Schunck in their seminal work [50] and dates back to 1981. Variational formulations have
the advantage that they allow a transparent modelling and that the resulting flow fields
are dense and generally relatively accurate. However, the minimisation of the energy
functional is usually highly non-trivial, especially for non-differentiable and/or non-convex
formulations. Although numerous approaches have been proposed in the past to handle
these problems, it is still a very active field of research. Highly efficient minimisation

3

Introduction

schemes that would allow realtime performance are often only possible in combination
with rather simple models such as the one of Horn and Schunck. On the other hand,
more complex models, such as the complementary optic flow model of Zimmer et al. [98],
yield much more accurate results but possess relatively high computation times.

Although many developments have been made on the modelling side (c.f. [9, 10, 18,
56, 59, 61, 85, 90, 93, 98] for a small account), there are just a few works concerned
with the mathematical validation of the considered algorithms. In [53, 57] it has been
shown that the classical approach of Horn and Schunck converges. Furthermore, the
authors of [57] showed that the linear system obtained through the Euler-Lagrange
equations has a symmetric and positive definite matrix and thus allows the usage of many
efficient solvers. The authors of [86, 95] developed an algorithm that solves the so called
TV-L1 model through an alternating minimisation scheme. This algorithm gives excellent
results in practice. However, it does not converge towards a solution of the orginal
energy functional. The author of [19] discussed the usage of efficient algorithms such
as the Multigrid approach [45] and the so called Lagged-Diffusivity or Kac̆anov method
[31, 39, 54]. A certain number of convergence results can be found within this work and
its references. Finally, it is also possible to consider the solutions of the Euler-Lagrange
equations as a steady-state of a corresponding diffusion-reaction system that one may
solve by means of a steepest descend approach [87, 88].

The Bregman iteration and the optical flow problem

In this thesis we present a novel method to solve the optical flow problem by combining
the strengths of the Bregman framework with the advantages of variational formulations.
The standard approach to solve variational formulations considers the Euler-Lagrange
equations of the corresponding energy functional. This leads, in general, to a non-linear
system of partial differential equations that is difficult to solve. Our approach will not
make this detour to the Euler-Lagrange equations. Instead it minimises the energy
functional directly by finding a suitable discretisation such that we can rewrite the
optimisation problem in the form

arg min
u,v

∥∥F (uv)+ f
∥∥2
2 + λ (‖∇u+ bu‖2 + ‖∇ v + bv‖2) , λ > 0 (1.6)

with matrices F and∇ and vectors f , bu and bv. This unconstrained convex optimisation
problem can then easily be solved with the split Bregman iteration. All in all, the
final algorithm that we will obtain consists mostly in solving a large and extremely
sparse linear system and solving an optimisation problem whose analytical solution is
well known and which can easily be computed with shrinkage operators. The fact that
our approach is based upon the split Bregman iteration also allows us to adapt the
existing mathematically sound convergence theory of the Bregman framework to our
optical flow algorithms. We will show in this context that the obtained iterates must
necessarily converge towards a minimum of the energy functional. Further questions that
are important for numerical purposes will also be discussed. We will for example show that
the above mentioned linear system has a symmetric and positive definite matrix. Because

4

Introduction

of the vast number of algorithms known to solve such systems, it will be possible to easily
implement our new approach. This simplicity, when compared to the Euler-Lagrange
formalism, certainly represents one of the assets of our new algorithm. Furthermore, our
approach is highly flexible when it comes to the underlying model. It can be combined
with functionals that use only quadratic terms as well as with formulations that use both
quadratic and subquadratic terms or even with approaches that use subquadratic terms
exclusively. As a consequence, simple energies such as the one used in the model of Horn
and Schunck may just as well be used as more modern and complicated approaches such
as the TV-L1 model of Zach et al. [95].

Outline of the thesis

This thesis is organised as follows.
In Chapter 2 we will introduce the mathematical tools needed in the later chapters.

Most results stem from functional and convex analysis. Important concepts are the notion
of subgradients and the subdifferential calculus. The subgradient is a generalisation of
the classical gradient and is a key element of the Bregman algorithm. Another interesting
concept that we will present are the so called shrinkage operators. It is an intriguing fact
that many unconstrained minimisation problems have an analytical solution that can be
formulated via these operators.

In Chapter 3 we will present three variants of the Bregman algorithm and analyse
their different properties. The first one will be the standard Bregman iteration developed
by Osher and his colleagues in [62]. Then, we will present a slight modification of this
algorithm that simplifies certain minimisation steps and thus yields a slightly better
performance. Finally, we will consider the split Bregman algorithm from Goldstein
and Osher as presented in [43]. We will also discuss the convergence behaviour of each
approach and give conditions under which the algorithms are well defined. The fact that
it is possible to present a solid theory of convergence for the Bregman iteration is one of
the main reasons that make this algorithm so attractive.

Chapter 4 will be dedicated to the optical flow problem. We will give a precise
formulation of the problem and consider several variational models to compute the
sought displacement field. We will then develop our algorithm by demonstrating that
the Bregman framework can be used to compute the optical flow. A detailed formulation
of the algorithm will be presented for each model that we consider and further ways to
improve the formulations will be discussed. Chapter 4 together with Chapter 3 represent
the main part of this thesis. They contain the core ideas as well as most of the important
contributions.

In Chapter 5 we will prove empirically that the Bregman formulation is well suited
for the optical flow problem by applying our algorithms against the test sequences of
the Middlebury database [74]. Since the exact ground truths for these test sequences are
known, we will be able to provide both quantitative and qualitative results.

Finally, in Chapter 6 we will conclude this thesis with a summary and an outlook on
possible future research regarding the Bregman iteration.

This outline is also summarised in a more graphical form on the next page to allow a
quicker reference.

5

Introduction

Outline of the thesis

Introduction

Mathematical
prerequisites,

Chapter 2

The Bregman
algorithms,
Chapter 3

The Bregman iteration
for optical flow,

Chapter 4

Reformulation as
a convex optimi-
sation problem

Description of
the problem

Application of the
Bregman algorithms

The Bregman algo-
rithms for optical flow,

Sections 4.4 to 4.8

Numerical evaluation,
Chapter 5

Conclusions
and Outlook,

Chapter 6

consists of

6

2. Mathematical prerequisites

2 Mathematical prerequisites

In this chapter we will present the necessary mathematical tools that will allow us later on
to perform a thorough analysis of the Bregman algorithms. Most of the following results
stem from functional and convex analysis. We will assume that the reader is familiar
with the notion of convex sets. Furthermore, we assume that the Hölder inequality and
the operator norm are well known. The structure of this chapter is as follows: Section 2.1
will contain a certain number of preliminary results that we are going to need for the
forthcoming tasks. Afterwards we will present a few of the appealing properties of convex
sets and functions. One of this properties is that under certain rather weak conditions
convex functions are continuous. This will be shown in Section 2.2. Finally, we will focus
on the concept of subdifferentiability. Subdifferentials represent a generalisation of the
classical gradient and are a powerful tool to compute the possible locations of extrema
for convex functions. Furthermore, the Bregman framework makes intensive use of this
notion and therefore, it will be necessary to study it in detail. All the important results
will be shown in Sections 2.3 and 2.4.

Notations used throughout this chapter
In the following, X shall always denote a normed vector space over R. Furthermore, X∗
will be the dual space of X, i.e. the set of all linear and continuous maps from X to R.
For x∗ ∈ X∗ and x ∈ X we will denote x∗ (x) by 〈x∗, x〉. Finally, a convex function will
usually map from X to R. For further notations we refer to the list of symbols given on
page xvii.

2.1 Fundamental results from functional analysis
The main goal of this section is to show that one can separate two disjoint convex sets
by linear functionals. Separating two convex sets A and B means that there exists a
continuous linear functional x∗ and a number γ such that 〈x∗, a〉 < γ for all a ∈ A and
〈x∗, b〉 > γ for all b ∈ B. We say that the separation is strict if the above mentioned
inequalities hold with “<” and “>”. Figure 2.1 depicts a graphical illustration of an
example scenario in the two dimensional case. If the functional x∗ is known explicitly, then
it allows us to distinguish the elements from the sets A and B through a simple evaluation.
In most cases however, we can only guarantee the existence of such a functional and
know very little about its exact form. Fortunately, the knowledge of its existence is
often sufficient, as we will see later in the proofs of Theorem 2.45 and Theorem 2.46.
In Theorem 2.1 and Proposition 2.3 we are going to state the necessary conditions that
allow such a separation. Theorem 2.1 is also known in the literature as the theorem of
Hahn-Banach and it is one of the most important results from functional analysis.

7

2. Mathematical prerequisites

We note that, except for Proposition 2.3, all the results in this section can also be
found in [1, 2, 40, 70, 72, 83, 91]. Results such as the Theorem of Hahn-Banach are
mostly presented to clarify which formulation we will be using, as there exists a certain
number of variations with slightly different phrasings.
Theorem 2.1 (Theorem of Hahn-Banach: separation of convex sets)
Assume A, B are two convex, non-empty and disjoint subsets of X. If A is open, then
there exists a x∗ ∈ X∗ and γ ∈ R, such that for all a ∈ A and b ∈ B we have

〈x∗, a〉 < γ 6 〈x∗, b〉 (2.1)

If A is compact and B closed, then there exist x∗ ∈ X∗, γ ∈ R and ε > 0 such that for
all a ∈ A and b ∈ B we have

〈x∗, a〉 < γ − ε < γ < 〈x∗, b〉 (2.2)

Since both inequalities contain a “<”, it follows that x∗ 6≡ 0.

Proof: We will not proof this theorem here as it is a well known result from functional
analysis. The complete proof would be rather lengthy and require the introduction of
further concepts that would be of no use for us later on. Furthermore, the only point
where we will need this theorem, will be to prove the correctness of Theorem 2.45 and
Theorem 2.46. Therefore, we refer to [1] (Theorem 6.11, p. 61) or [72] (Theorem 3.4
p. 59) for a detailed proof. �

Note that the previous theorem only guarantees the existence of a functional x∗. It does
not give us any information on its exact form.

As already mentioned, Fig. 2.1 is a graphical illustration of the Hahn-Banach theorem.
The left picture presents a strict separation whereas the other picture illustrates a non-
strict separation. The separating functional for the right picture would be 〈x∗, (x, y)〉 := y
and γ = 0.

Theorem 2.1 states that one can separate two convex sets A and B if either A is open
and B arbitrary or if A is compact and B closed. The theorem also requires that the
sets have no common point. But what would happen if we relaxed the last requirement?
What if we had two closed convex sets that only intersect at some boundary points?
Theorem 2.1 clearly states that we can still separate the interior of one of the sets from
the other. All one has to check is that int (A) remains convex if A is already convex. This
assertion will be proven in Proposition 2.8. However, at this point it is unclear whether
we can say something about the boundary. Such scenarios are going to appear in the
proofs of Theorem 2.45 and Theorem 2.46 and therefore, they need to be discussed in
detail. This will be done in Proposition 2.3. But before doing so, we need to introduce
another necessary result which is also known in the literature as the line segment principle.
It can be found completely with its proof in [70].
Proposition 2.2 (Line segment principle)
Assume K ⊆ X is a convex set with x1 ∈ cl (K) and x2 ∈ int (K). Then we have
λx1 + (1− λ)x2 ∈ int (K) for any λ ∈ [0, 1), i.e. the line segment [x2, x1) is a subset of
int (K).

8

2. Mathematical prerequisites

A

〈x∗, x〉 > γ

B

〈x∗, x〉 < γ

〈x∗, x〉 = γ

(a) Strict separation by a linear functional x∗.

A

〈x∗, x〉 > γ

B 〈x∗, x〉 6 γ

(b) Non-strict separation.

Figure 2.1: Separation of convex sets by a linear functional x∗. The second example uses the sets
A :=

{
(x, y) ∈ R2 | y > e−x

}
and B :=

{
(x, y) ∈ R2 | y 6 0

}
. The separating functional would be

〈x∗, (x, y)〉 := y.

Proof: By assumption we have x2 ∈ int (K) and thus there exists a ε > 0 with
Bε (x2) ⊆ K. Now choose y := λx1 + (1− λ)x2 for some λ ∈ (0, 1). We will show
that Br (y) ⊆ K holds for r := (1− λ) ε. This would imply that y ∈ int (K). By
choosing z ∈ Br (y) arbitrary, it follows that ‖y − z‖ < r = (1− λ) ε. On the other hand,
x1 ∈ cl (K) means that Bδ (x1) ∩K 6= ∅ for every δ > 0. Especially for

δ := (1− λ) ε− ‖y − z‖
λ

> 0 (2.3)

there exists a z1 ∈ Bδ (x1) ∩K, i.e. we have

z1 ∈ K and ‖z1 − x1‖ <
(1− λ) ε− ‖y − z‖

λ
(2.4)

The above described construction is also outlined in Fig. 2.2. Now we define

z2 := 1
1− λz −

λ

1− λz1 (2.5)

For this z2 we have

z2 − x2 = z − λz1
1− λ − x2 = z − λz1 − (y − λx1)

1− λ (2.6)

As a consequence we obtain

‖z2 − x2‖ 6
1

1− λ (‖z − y‖+ λ ‖x1 − z1‖) (2.7)

<
1

1− λ (‖z − y‖+ (1− λ) ε− ‖z − y‖)

= ε

9

2. Mathematical prerequisites

x2

x1
y

z

K

z1

ε

r
δ

Figure 2.2: Construction used in the proof of Proposition 2.2.

Thus z2 ∈ Bε (x2) and z2 ∈ K. Since z = λz1 + (1− λ) z2 it follows from the convexity
of K, that z ∈ K. But z was chosen arbitrarily from Br (y). Therefore, we must even
have Br (y) ⊆ K. �

Proposition 2.3
Assume that A and B are two convex and non-empty subsets of X with int (A) 6= ∅ and
int (A) ∩ B = ∅. Then there exists a x∗ ∈ X∗ and γ ∈ R, such that for all a ∈ A and
b ∈ B we have

〈x∗, a〉 6 γ 6 〈x∗, b〉 (2.8)

and 〈x∗, a〉 < γ for all inner points of A.

Proof: Theorem 2.1 implies that there exist x∗ ∈ X∗, x∗ 6≡ 0 and γ ∈ R, such that

〈x∗, a〉 < γ 6 〈x∗, b〉 (2.9)

for all points in b ∈ B and inner points of a ∈ A. Now choose a1 ∈ int (A) and a2 ∈ A.
It follows from Proposition 2.2, that [a1, a2) ⊂ int (A) and therefore, for every point
a3 ∈ [a1, a2) we have 〈x∗, a3〉 < γ. By considering a3 → a2 it follows 〈x∗, a2〉 6 γ. �

As we can see from the previous proposition, the worst that can happen if two convex
sets intersect at their boundary is that there exist elements a ∈ A and b ∈ B such that
〈x∗, a〉 = γ = 〈x∗, b〉 holds. So we lose, in a certain sense, the ability to separate the sets
A and B, because 〈x∗, a〉 = γ = 〈x∗, b〉 does not necessarily mean that a and b are always
elements of the intersection. The sets

A :=
{
(x, y) ∈ R2

∣∣∣ y > |x|
}

and B :=
{
(x, y) ∈ R2

∣∣∣ y 6 0
}

(2.10)

for example intersect at the origin and the separating function is given by 〈x∗, (x, y)〉 := y
and γ = 0. Any point with y coordinate 0, fulfils 〈x∗, (x, y)〉 = 0, but only the point

10

2. Mathematical prerequisites

A

〈x∗, x〉 > γ

B

〈x∗, x〉 6 γ

〈x∗, x〉 = γ

Figure 2.3: Example illustration of Proposition 2.3.

(0, 0) lies in A and B. All the others are only elements of B. The functional x∗ cannot
tell us whether such points belong to A or not.

However note that in general int (A) and B can still be separated, therefore, the loss is
often not really substantial. In this context one may also keep Fig. 2.3 in mind. In this
figure the polygon B touches the ellipse A on a boundary point. Proposition 2.3 says the
we can still draw a line (in this case the tangent to the ellipse) that separates the interior
of the ellipse from the polygon. Furthermore, the separation even holds for all but one
boundary point of the ellipse, namely the point in the intersection.

We already mentioned that the separation results that we have seen until now will
be used in the proof of the subdifferential sum formula (Theorem 2.45) in Section 2.3.
The proof of this formula will require us to separate epigraphs of convex functions. An
epigraph is a set in X × R and therefore, we will have to work with functionals from
(X × R)∗. It is difficult to give a good description of the functionals from this space.
However, the following proposition tells us that we can identify the space (X × R)∗ with
X∗ × R∗ ∼= X∗ × R. The latter space is much more comfortable to handle and will allow
us to explain the underlying ideas of Theorem 2.45 in an intelligible manner. The here
presented proof of this assertion is identical with the one found in [83].

Proposition 2.4 (Dual space of product spaces)
Assume X1 and X2 are two normed vector spaces over R and 1 < p, q < ∞ such that
1
p + 1

q = 1. We define the spaces X := X1 ×X2 and X ′ := X∗1 ×X∗2 equipped with the
norms

‖(x1, x2)‖X :=
(
‖x1‖pX1

+ ‖x2‖pX2

) 1
p

‖(y1, y2)‖X′ :=
(
‖y1‖qX∗1 + ‖y2‖qX∗2

) 1
q

and consider the mapping T : X ′ → X∗ defined by

〈T (y) , x〉 := 〈y1, x1〉+ 〈y2, x2〉 (2.11)

Then T is a linear isometric isomorphism between X ′ and X∗.

11

2. Mathematical prerequisites

Proof: The linearity of T is obvious. T is also continuous. In order to show this, assume
that y := (y1, y2) ∈ X ′ and define x := (x1, x2) ∈ X. Then it follows from the Hölder
inequality

|〈T (y) , x〉| 6 |〈y1, x1〉|+ |〈y2, x2〉| (2.12)
Def. operator norm for y1, y2 → 6 ‖y1‖ ‖x1‖+ ‖y2‖ ‖x2‖

Hölder inequality for sums→ 6 (‖x1‖p + ‖x2‖p)
1
p (‖y1‖q + ‖y2‖q)

1
q

= ‖x‖X ‖y‖X′

This implies the inequality ‖Ty‖X∗ 6 ‖y‖X′ and thus ‖T‖∞ 6 1. Now we show that
‖Ty‖X∗ = ‖y‖X′ and thus ‖T‖∞ = 1 is true. For y ≡ 0 the statement is trivial.
Therefore, assume now that y 6= 0. Consider ε > 0 and choose zk ∈ Xk, k = 1, 2 such
that ‖zk‖Xk = 1 and ‖yk‖X∗

k
6 〈yk, zk〉 + ε. Such zk must necessarily exist because

of the definition of the operator norm which is defined as the supremum over the set{
|〈yk, zk〉| : ‖zk‖Xk = 1

}
. The supremum is the smallest upper bound, therefore, there

exists for every ε > 0 a zk with ‖zk‖Xk = 1 such that ‖yk‖X∗
k
− ε 6 |〈yk, zk〉|. If

〈yk, zk〉 > 0, then we can omit the absolute value, otherwise simply consider −zk. We
define further x̃ :=

(
‖y1‖q−1 z1, ‖y2‖q−1 z2

)
. From this we can conclude that

‖x̃‖pX = ‖z1‖p︸ ︷︷ ︸
=1

‖y1‖p(q−1) + ‖z2‖p︸ ︷︷ ︸
=1

‖y2‖p(q−1) (2.13)

= ‖y1‖p(q−1) + ‖y2‖p(q−1)

= ‖y‖qX′

where the relation q = p (q − 1) was used for the last equality. Using this estimation we
can conclude that

‖y‖qX′ = ‖y1‖q + ‖y2‖q (2.14)
6 ‖y1‖q−1 (〈y1, z1〉+ ε) + ‖y2‖q−1 (〈y2, z2〉+ ε)

x̃k := ‖yk‖q−1 zk → = 〈y1, x̃1〉+ 〈y2, x̃2〉+ ε
(
‖y1‖q−1 + ‖y2‖q−1

)
= 〈T (y) , x̃〉+ ε

(
‖y1‖q−1 + ‖y2‖q−1

)
6 ‖Ty‖X∗ ‖x̃‖X + ε

(
‖y1‖q−1 + ‖y2‖q−1

)
6 ‖Ty‖X∗ ‖y‖

q
p

X′ + ε
(
‖y1‖q−1 + ‖y2‖q−1

)
Multiplying both sides with ‖y‖1−qX′ > 0 gives (note: q

p + 1− q = 0)

‖y‖X′ 6 ‖Ty‖X∗ + ε ‖y‖1−qX′

(
‖y1‖q−1 + ‖y2‖q−1

)
ε→0−→ ‖Ty‖X∗ (2.15)

Therefore, ‖Ty‖X∗ = ‖y‖X′ and thus T is clearly injective. In order to show that T
is also surjective, we choose L ∈ X∗ and xk ∈ Xk, k = 1, 2 arbitrary. We define the

12

2. Mathematical prerequisites

following two functionals yk ∈ X∗k , k = 1, 2 by

〈y1, x1〉 := L (x1, 0) (2.16)
〈y2, x2〉 := L (0, x2)

Then we have

〈T (y) , x〉 = 〈y1, x1〉+ 〈y2, x2〉 = L (x1, 0) + L (0, x2) = L (x1, x2) (2.17)

and thus L = T (y). The continuity of the inverse T−1 follows immediately from the
equality ‖Ty‖X∗ = ‖y‖X′ . This concludes the proof. �

We will now close this section with three results that have no direct link to the separation
of convex sets but which will be used later on and actually belong to the domain of
functional analysis.

In Section 2.3 we will introduce a generalisation of the concept of differentiability
which is well suited for convex functions. The problem is that many convex functions
have very good properties but fail to be differentiable. The euclidean norm in Rn is such
an example. These generalised differentials will be called subdifferentials and one can
show that many convex functions are subdifferentiable, i.e. they have a subdifferential
at every point. Especially the subdifferentials of norms will be important for us later
on. They will be presented in Proposition 2.48 and Corollary 2.49. The proofs of these
results however will require that there exists in every normed vector space a continuous
linear functional x∗0 and a vector x0 such that

〈x∗0, x0〉 = ‖x0‖ and ‖x∗0‖∞ = 1 (2.18)

In order to guarantee the existence of such a linear functional, we need another variant
of the Theorem of Hahn-Banach. Interestingly this version is frequently used to prove
Theorem 2.1. The actual existence will be shown afterwards in Corollary 2.6.
Theorem 2.5 (Theorem of Hahn-Banach: extension of linear functionals)
Assume U a subspace of X equipped with the same norm as X. Then, for every linear
functional τ ∈ U∗ there exists a functional T ∈ X∗ such that the restriction of T onto U
is equal to τ . Furthermore, we have ‖T‖X,∞ = ‖τ‖U,∞.

Proof: Again this is a well known result from functional analysis and will not be proven
here since this theorem will only be used at a single occurrence and a complete proof
would be rather lengthy. Therefore, we omit the demonstration and refer instead to [2]
(Theorem 4.15 p. 181) or [91] (Theorem III.1.5 p. 97). �

The next corollary is closely related to the previous theorem. It can also be found with
its proof within the just mentioned references.
Corollary 2.6
Assume X is a normed vector space. Then, for every x0 6= 0 there exists a functional
x∗0 ∈ X∗ such that

〈x∗0, x0〉 = ‖x0‖ and ‖x∗0‖∞ = 1 (2.19)

13

2. Mathematical prerequisites

Proof: We consider U := span {x0} and equip this subspace with the same norm as X.
Then, every y ∈ U is of the form y = αx0 with α ∈ R. We now define τ (y) := α ‖x0‖ on
U . τ is a linear and continuous functional on U with norm 1 because all unit vectors in
U simplify either to x0

‖x0‖ or to −x0
‖x0‖ . Therefore, we have

‖τ‖∞ := sup
x,‖x‖=1

‖〈τ, x〉‖ = ‖x0‖
‖x0‖

= 1 (2.20)

The statement follows now immediately from Theorem 2.5. �

Definition 2.7 (Adjoint Operator)
Let X,Y be two normed vector spaces and A a continuous linear operator from X to Y .
Then we define the adjoint operator A∗ : Y ∗ → X∗ of A by

〈A∗y∗, x〉 := 〈y∗, Ax〉 ∀y∗ ∈ Y ∗, x ∈ X (2.21)

From this definition we can conclude immediately that the adjoint operator is uniquely
defined and linear. If A is a matrix, then it follows from the definition that the adjoint
operator is simply the transpose of the matrix A. We will encounter the adjoint operator
again in Theorem 2.46. This theorem will be of great importance for the Bregman
framework as it will reduce significantly the complexity of the algorithms presented in
Chapter 3.

2.2 Elementary notions about convex functions and sets
The goal of this section will be to recall some elementary notions about convex functions
and to prove a certain number of useful properties. The ultimate goal will be to show
under which conditions convex functions are continuous. This result will be presented in
Theorem 2.30. Similarly as for the previous section all the results presented here can
easily be found in the literature. The following references were used: [17, 40, 49, 51, 52,
68, 69, 70]. The first half of this section (everything until Proposition 2.17) is mostly
based on the presentation given in [17, 68, 69], whereas the second half is based almost
exclusively on the results as stated in [68].

We will call a function convex if it fulfils the inequality

f (λx+ (1− λ) y) 6 λf (x) + (1− λ) f (y) (2.22)

for all x, y in X and λ ∈ [0, 1]. If this inequality is strict for x 6= y, then we speak of
strict convexity.

A certain number of statements in this section will be local statements, i.e. they tell us
something about the properties of a function in a neighbourhood of an arbitrary point.
The following simple observation from [68] shows, that all these cases can be reduced to
a single one which is, in general, more comfortable to handle. Assume that f is convex
on an open set U and that x0 ∈ U . Now define

V := {x ∈ X | (x+ x0) ∈ U} (2.23)
g (x) := f (x+ x0)− f (x0) (2.24)

14

2. Mathematical prerequisites

Then it is clear that V is an open set around 0 and that g (0) = 0. Furthermore, the
functions g and f share all important characteristics such as continuity, differentiability,
convexity, etc. Therefore, one can usually make the simplifying assumption that x0 = 0
and that f (x0) = 0 when one has to prove local characteristics.

We will now present a rather general overview of the properties of convex functions.
Special attention will be paid to their relationship with convex sets and epigraphs, as this
will be important for us in the proofs of Theorem 2.45 and Theorem 2.46. Proposition 2.12,
Proposition 2.15 and Proposition 2.16 are especially important in this context. Another
point of interest will be the existence of global minima of convex functions. This will be
discussed in Proposition 2.17. The reason why this result is so important, is that later on
in Chapter 3 and Chapter 4 we are going to solve convex optimisation problems where
it is essential to know that minimisers exist. The first proposition that we are going to
state now has no direct link with convex functions. We claimed in the previous section
that the interior of a convex set is also convex, but did not prove this statement at that
time. Therefore, the proof is given in all its details now. The proof stems from [70] where
this result was discussed within the context of variational analysis.

Proposition 2.8
Assume K ⊂ X is a convex set with non-empty interior. Then its interior int (K) and
its closure cl (K) are also convex.

Proof: Choose x, y ∈ int (K) and consider z = λx+ (1− λ) y with λ ∈ (0, 1). For any
u ∈ X we actually have z + u = λ

(
x+ u

λ

)
+ (1− λ) y. Now, if ‖u‖ is sufficiently small,

then it follows that x + u
λ ∈ K and consequently we must have z + u ∈ K since we

assumed K to be convex. This again implies that z ∈ int (K) and therefore, we can
conclude that the interior int (K) must be a convex set as well.

Next let x, y ∈ cl (K). Then there exist sequences {xi}i and {yi}i in K converging
to x and y respectively. For any λ ∈ (0, 1) the sequence λxi + (1− λ) yi converges to
λx+ (1− λ) y, so cl (K) must also be convex. �

Definition 2.9 (Effective domain of a convex function)
We define the effective domain of a convex function as the set of all x such that f (x) is
finite:

dom f := {x ∈ X | −∞ < f (x) <∞} (2.25)

It is a prevailing custom in convex analysis not to restrict oneself to the class of all convex
functions with a common fixed effective domain, but rather to consider functions defined
on the whole space X (see for example [17, 69]). These functions may then of course
also attain the values ±∞. This approach has the advantage that technical nuisances
about the effective domain usually can be suppressed almost entirely. For example, when
a convex function is constructed according to certain formulas, the same formulas specify
the effective domain of f implicitly, because they specify where f (x) is or is not +∞.
Without this approach one would always have to describe the effective domain explicitly
before the values of f on that domain could be given. However, in this setting we might
very well encounter arithmetic computations that include ±∞. Thus one has to be

15

2. Mathematical prerequisites

careful to avoid undefined forms such as ∞−∞. We will adopt the usual convention (as
described in [69]) for computations with ±∞:

• α+∞ = +∞+ α = +∞ for −∞ < α 6 +∞

• α−∞ = −∞+ α = −∞ for −∞ 6 α < +∞

• α (±∞) = ±∞α = ±∞ for 0 < α 6 +∞

• α (±∞) = ±∞α = ∓∞ for −∞ 6 α < 0

• 0 (±∞) = ±∞0 = 0

• − (−∞) = +∞

The reason for the above described approach lies in the fact that convex functions, like
the Fenchel conjugate of a function f : Rn → R, may attain the value +∞. The Fenchel
conjugate of a convex function f is defined by

f∗ (x̄) := sup
x∈Rn

{〈x̄, x〉 − f (x)} (2.26)

and is used for example to show the existence of solutions to certain convex optimisation
problems. It is easy to see that if f ≡ 0 then f∗ is 0 in 0 and +∞ anywhere else. We
refer to [69] for more information about the Fenchel conjugate.

In this context certain authors also speak of proper convex functions. A proper convex
function satisfies f (x) < +∞ for at least one x and f (x) > −∞ for all x. Proper convex
functions are an effective way to avoid undefined forms involving∞. We will from now on
always assume that our convex functions are actually proper convex functions. Further,
R will denote in the following the whole real line plus the symbols +∞ and −∞.
Definition 2.10 (Level set)
Given a scalar c ∈ R and a function f : X → R, the (lower) level set of f associated with
c is given by

Lc (f) := {x ∈ X | f (x) 6 c} (2.27)

Definition 2.11 (Epigraph)
The epigraph of a function f : X → R is defined as

Epi f := {(x, α) ∈ X × R | f (x) 6 α} (2.28)

From a geometric point of view, the epigraph of a function from R to R is the set of all
points that lie above the graph of the function f . Figure 2.4 visualises the difference
between a level set and an epigraph.

The next proposition illustrates the fundamental link between convex functions and
convex sets. For every convex function from X to R, there exists a corresponding convex
set in X ×R. This relationship makes it easy to pass back and forth between a geometric
and analytic approach in the analysis of convex functions. The proof presented here is a
generalisation of the proof found in [52]. There, the author restricted himself to convex
functions from Rn to R.

16

2. Mathematical prerequisites

1

(a) Level set of f associated with 1.

1

(b) Epigraph of the same function f .

Figure 2.4: Illustration of a level set and an epigraph (marked in grey).

Proposition 2.12
A function f : X → R is convex if and only if Epi f is convex.
Proof: Assume that f is convex and that (x, α), (y, β) are elements of the epigraph.
Then it follows that we have for all µ ∈ [0, 1]

f (µx+ (1− µ) y) 6 µf (x) + (1− µ) f (y) 6 µα+ (1− µ)β (2.29)

and therefore, µ (x, α) + (1− µ) (y, β) ∈ Epi f . But this implies that Epi f is convex.
On the other hand, if Epi f is convex, then clearly (x, f (x)) and (y, f (y)) are elements

of the epigraph whenever x and y lie in the effective domain of f and it follows also, that
for all µ ∈ [0, 1] the point µ (x, f (x)) + (1− µ) (y, f (y)) is an element of the epigraph as
well. Therefore, by the definition of Epi f , we have

f (µx+ (1− µ) y) 6 µf (x) + (1− µ) f (y) (2.30)

If x or y is not an element of dom f , then the above equation is trivially fulfilled. Thus f
is convex. �

As we can see, the epigraph is of high importance in the study of convex functions.
We deem it necessary to present at least some of its properties and to discuss their
consequences. These results will be given in the next few statements. They show, that to
a certain extend, the continuity of a convex function is linked to topological properties of
its epigraph, such as closedness and non-empty interior. These observations will be crucial
in the proof of Theorem 2.45. Proposition 2.13, stated hereafter, was already treated
in [69]. We will present a slightly more general formulation by not restricting ourselves
to Rn. However, the proof remains identical to the one found in [69]. Proposition 2.16
originates from [17], although it was stated there without a proof. We will prove it
here with a short and elegant argumentation. The ideas for our reasoning stem from
observations found in [37], where the authors intended to solve variational problems and
discussed the local boundedness of convex functions in a much more general setting than
we will need it here. Finally Proposition 2.15 can be found almost verbatim in [70] and
Proposition 2.17 is presented in a similar formulation in [52].

17

2. Mathematical prerequisites

(a) A convex function with a convex
epigraph.

(b) A non-convex function with a
non-convex epigraph.

Figure 2.5: Graphical illustration of Proposition 2.12.

Proposition 2.13
If f : X → R is a convex function, then its effective domain is a convex subset of X.

Proof: Assume x, y ∈ dom f . Then clearly (x, f (x)) and (y, f (y)) are elements of the
epigraph. Since the epigraph of a convex function is also convex, it follows that

(λx+ (1− λ) y, λf (x) + (1− λ) f (y)) ∈ Epi f ∀λ ∈ [0, 1] (2.31)

From this it follows immediately that

|f (λx+ (1− λ) y)| <∞ (2.32)

and therefore, we have λx+ (1− λ) y ∈ dom f . But this means that the effective domain
of f is convex. �

Definition 2.14 (Lower semi-continuous)
A function f is lower semi-continuous at a point x0 if for every sequence (xk)k converging
to x0 we have

f (x0) 6 lim inf
k→∞

f (xk) (2.33)

We say that f is lower semi-continuous over a set S ⊆ X, if f is lower semi-continuous at
every x ∈ S.

Figure 2.6 illustrates the idea behind lower semi-continuity. The left picture depicts
a lower semi-continuous function. The function in the right picture is not lower semi-
continuous in x0. If one chooses a sequence {xk}k approaching x0 from the left, then
the limit inferior will be strictly smaller than f (x0). Also note that every continuous
function is obviously lower semi-continuous.
Proposition 2.15
For a function f : X → R ∪ {+∞} the following three properties are equivalent:

1. f is lower semi-continuous over X

18

2. Mathematical prerequisites

x0

(a) Lower semi-continuous in x0.

x0

(b) Not lower semi-continuous in x0.

Figure 2.6: Illustration of lower semi-continuity. The solid dot indicates f (x0).

2. Epi f is a closed set in X × R

3. The level sets Lr (f) are closed (possibly empty) for all r ∈ R.

Proof: 1 ⇒ 2: Let (yk, rk)k be a sequence of Epi f converging to (x, r) for k → ∞.
Since f (yk) 6 rk for all k, the lower semi-continuity of f readily gives

r = lim
k
rk > lim inf

k
f (yk) > lim inf

y→x
f (y) > f (x) (2.34)

Implying that the epigraph must be closed.
2⇒ 3: If Epi f is closed, then the set

Fr := {(x, r) | x ∈ X, f (x) 6 r} = Epi f ∩ (X × {r}) (2.35)

is closed in X × R. Now consider the embedding jr : X → X × R defined by x 7→ (x, r).
Because of the continuity of jr it follows that Lr (f) = j−1

r (Fr) must also be closed.
3 ⇒ 1: Suppose that f is not lower semi-continuous at some x: then, there is a

sequence (yk)k converging to x such that f (yk) converges to ρ < f (x). Now pick any
r ∈ (ρ, f (x)): for k large enough we have f (yk) 6 r < f (x); hence Lr (f) contains the
tail of (yk)k but not its limit x. Consequently, this Lr (f) is not closed. �

Proposition 2.16
Assume f is a convex function and continuous in x ∈ int (dom f), then int (Epi f) is a
non-empty set.

Proof: Since x ∈ int (dom f) and f is continuous in x, there exists an open neighbour-
hood O of x in dom f , such that f is bounded by a constant c on O. Then O × (c,+∞)
is an open subset of X × R. Furthermore,

O × (c,+∞) ⊆ Epi f (2.36)

It follows that for any α > c, the point (x, α) is an inner point of Epi f . �

19

2. Mathematical prerequisites

The next proposition gives us criteria for global minimisers of convex functions. It is
of fundamental importance for numerical considerations as it implies that minimisation
algorithms applied on convex functions cannot get stuck in local minima.
Proposition 2.17
Assume that f is convex and that dom f is an open set. Then every local minimum of f
in dom f is already a global minimum. Furthermore, if f is even strictly convex, then
the minimum (in case it exists) is unique.

Proof: Assume x is a local minimum and U a small open neighbourhood of x in dom f
with radius ε. Then f (x) 6 f (z) for all z ∈ U . Furthermore, assume that there exists
y ∈ dom f such that f (y) < f (x). Because of the convexity of f it follows that for every
λ ∈ (0, 1) we have

f (λy + (1− λ)x) 6 λf (y) + (1− λ) f (x) (2.37)
< λf (x) + (1− λ) f (x)
= f (x)

This is a contradiction, since for sufficiently small λ we have

‖x− (λy + (1− λ)x)‖ = λ ‖x− y‖ < ε (2.38)

and thus λy + (1− λ)x would be an element of U . Therefore, every local minimum is
also a global minimum.

Now assume that f is strictly convex and that x and y are two different global minima.
Then

f

(1
2x+ 1

2y
)
<

1
2f (x) + 1

2f (y) = f (x) = f (y) (2.39)

which is impossible, since x and y are global minima. Thus, the global minimum must
be unique for strictly convex f . �

Remark 2.18
Note that the previous proposition does not imply that a minimum must always exist.
The function could be unbounded or the infimum could simply not be attained in a finite
point. One of the simplest examples is the exponential function. It is strictly convex but
reaches is minimum for x→ −∞.

Propositions 2.19, 2.20 and 2.22 and Definitions 2.21 and 2.23, that we will present now,
are preliminary results that we will need for the proof of the main goal of this chapter,
namely the continuity of convex functions. The formulations given here can also be
found almost verbatim in [17, 68]. The continuity of convex functions will be discussed
afterwards in Theorem 2.30.
Proposition 2.19
Assume f : R → R is convex and x, y ∈ R. Then for λ ∈ (0, 1) and z = λx+ (1− λ) y
we have

f (z)− f (x)
z − x

6
f (y)− f (x)

y − x
6
f (y)− f (z)

y − z
(2.40)

20

2. Mathematical prerequisites

x yz

Figure 2.7: Visualisation of Proposition 2.19.

Geometrically this means that the slope of the line that connects the points (x, f (x))
and (z, f (z)) is smaller than the slope of the line that connects the points (x, f (x)) and
(y, f (y)). The latter is itself again smaller than the slope of the line that connects the
points (z, f (z)) and (y, f (y)). A graphical representation is shown in Fig. 2.7.

Proof: This is a matter of simple computations. The first inequality follows from

f (z)− f (x)
z − x

= f (λx+ (1− λ) y)− f (x)
λx+ (1− λ) y − x (2.41)

6
λf (x) + (1− λ) f (y)− f (x)

λx+ (1− λ) y − x

= f (y)− f (x)
y − x

And the second is easily deduced from

f (y)− f (z)
y − z

= f (y)− f (x+ (1− λ) y)
y − λx− (1− λ) y (2.42)

>
f (y)− λf (x)− (1− λ) f (y)

y − λx− (1− λ) y

= f (y)− f (x)
y − x �

Proposition 2.20
A set K is convex if and only if for every n ∈ N, the convex combination ∑n

i=1 λixi, with
xi ∈ K, λi > 0, i = 1, . . . , n and ∑n

i=1 λi = 1, is an element of K.

Proof: If any convex combination of elements from K is again in K, then K is obviously
convex. It is enough to consider n = 2.

21

2. Mathematical prerequisites

Conversely, assume that K is convex. We will prove the statement by induction. For
n = 2, we simply have the definition of the convexity of a set. Therefore, we assume now
that n > 2 and that the assertion holds for n− 1. Consider the convex combination

x =
n∑
i=1

λixi, xi ∈ K,
n∑
i=1

λi = 1 (2.43)

where λi < 1 for all i. We have to show that this x is an element of K. We rewrite x
under the following form

x = λnxn + (1− λn) y, y =
n−1∑
i=1

λi
1− λn

xi (2.44)

Since ∑n−1
i=1

λi
1−λn = 1 it follows from the induction hypothesis that y ∈ K and from this

that x ∈ K as well. �

Definition 2.21 (Convex hull)
Assume S ⊂ X. Then we call the set

conv (S) :=
⋂

S⊆K⊆X
K convex

K (2.45)

the convex hull of S in X. Since intersections of convex sets are again convex, it follows
that the convex hull of a set S is the smallest convex set containing S.

Proposition 2.22
Assume S ⊆ X. Then

conv (S) = {x ∈ X | x is a convex combination of elements from S} (2.46)

Proof: We denote the righthand side of eq. (2.46) by C. If K ⊇ S is a convex set, then
it follows from Proposition 2.20 that K ⊇ C and therefore, conv (S) ⊇ C. Obviously we
also have S ⊆ C. Therefore, it will now be enough to show that C is convex, because
this implies that conv (S) ⊆ C must also hold. We consider x, y ∈ C with

x =
n∑
i=1

λixi, y =
m∑
j=1

µjyj (2.47)

For α ∈ [0, 1] we have

αx+ (1− α) y =
n∑
i=1

αλixi +
m∑
j=1

(1− α)µjyj ∈ C (2.48)

since the coefficients fulfil the requirements of a convex combination. �

22

2. Mathematical prerequisites

Definition 2.23 (Simplex)
Assume that the n+ 1 vectors xi, i = 0, . . . , n are affine independent (i.e. the n vectors
x0 − xi, i = 1, . . . , n are linearly independent). Then we call conv ({x0, . . . , xn}) a
(n-dimensional) simplex. The elements xi are called the corners of the simplex.

Remark 2.24
From Proposition 2.22 it follows immediately, that we can write every element of the
simplex conv ({x0, . . . , xn}) as a convex combination of the corners of this simplex

x =
n∑
i=0

λixi

At this point we have completed all the necessary preparations to show the main result of
this chapter, namely that convex functions on Rn are continuous. This statement will be
proven in several steps. Starting with a local boundedness assumption, we will improve
the properties of our convex function step by step until we arrive at the continuity.
The proof that we will present actually holds for any convex function that is locally
bounded, but in general a convex function need not to have this characteristic. In Rn

however, convex functions are always locally bounded. This will be proven with the
help of the simplexes from Definition 2.23. The results formulated in Proposition 2.25
and Theorems 2.26 and 2.28 to 2.30 all originate from [68]. We will present a slight
generalisation of these statements. The authors of [68] restricted themselves to convex
functions that are finite everywhere. We will show that this restriction is not necessary.
Proposition 2.25
Let f be a convex function on X. If f is bounded above in an ε-neighbourhood of some
point x0, then it is bounded from below in the same neighbourhood.

Proof: Without loss of generality, we can assume that this point is x0 = 0 and suppose
that f is bounded above by B in a ε-neighbourhood Nε of x0. Since

0 = 1
2x+ 1

2 (−x) , f (0) 6
1
2f (x) + 1

2f (−x) (2.49)

we have f (x) > 2f (0)− f (−x). Now ‖x‖ 6 ε implies ‖−x‖ 6 ε so that f (−x) 6 B and

f (x) > 2f (0)−B (2.50)
meaning that f is bounded from below. �

Theorem 2.26
Let f be convex and U ⊆ dom f an open set. If f is bounded from above in a neighbour-
hood of x0 ∈ U , then it is locally bounded. That means each x ∈ U has a neighbourhood
on which f is bounded.

Proof: We can safely assume that x0 = 0. By Proposition 2.25 it follows that f is
bounded on an ε-neighbourhood N of 0 by some B. Now take y ∈ U , y 6= 0 and ρ > 1 so
that z = ρy ∈ U still holds. Define λ = 1

ρ and consider

M := {v ∈ X | v = (1− λ)x+ λz, x ∈ N} (2.51)

23

2. Mathematical prerequisites

U

x0

y

z

N

M

ε

Figure 2.8: Construction described in Theorem 2.26.

Figure 2.8 shows a simple sketch of the sets U , N and M . For x = 0, we have v = λz = y.
Furthermore, if ‖x− 0‖ = ‖x− x0‖ = ε, then

‖v − y‖ = ‖(1− λ)x+ λz − λz‖ = (1− λ) ε (2.52)

Thus M is a neighbourhood of y = λz with a radius of (1− λ) ε. Moreover the convexity
of f implies that for every v ∈M we have

f (v) 6 (1− λ) f (x) + λf (z) 6 B + f (z) <∞ (2.53)

and as a consequence, f is bounded above on M . By Proposition 2.25, it follows that f
is also bounded from below on M . �

Theorem 2.26 is highly interesting. It says that local boundedness in a single point is
enough for a convex function to be locally bounded in every point. This is by no means
a trivial statement.
Definition 2.27 (Locally Lipschitz function)
A function f defined on an open set U ⊆ X is said to be locally Lipschitz, if for each x ∈ U
there exists a ε-neighbourhood Nε (x) and a constant K (x) such that, if y, z ∈ Nε (x),
then

|f (y)− f (z)| 6 K ‖y − z‖ (2.54)

If this inequality holds throughout a set V ⊆ U with K independent of x, then we say
that f is Lipschitz on V .

24

2. Mathematical prerequisites

U

x0
N2ε

Nε

x2

x1

x3

2ε

ε

ε

Figure 2.9: Construction considered in Theorem 2.28.

Theorem 2.28
Let f be convex and U ⊆ dom f an open set. If f is bounded from above in a neighbour-
hood of one point U , then f is locally Lipschitz in U .

Proof: By Theorem 2.26, f is locally bounded. Given x0, we may find a neighbourhood
N2ε (x0) ⊆ U with radius 2ε on which f is bounded, say by M . Then f satisfies the
stated Lipschitz condition on Nε (x0), for if it does not, we may choose x1, x2 ∈ Nε (x0)
such that

f (x2)− f (x1) >
2M
ε
‖x2 − x1‖ (2.55)

⇔ f (x2)− f (x1)
‖x2 − x1‖

>
2M
ε

and α > 0 such that x3 = x2 + α (x2 − x1) is still in N2ε (x0) with ‖x2 − x3‖ = ε.
Figure 2.9 is a visual depiction of this construction. By the convexity of f and Proposi-
tion 2.19, it follows that

f (x3)− f (x2)
‖x3 − x2‖

>
f (x2)− f (x1)
‖x2 − x1‖

>
2M
ε

(2.56)

This implies that f (x3)− f (x2) > 2M , which is in contradiction with |f (x)| 6 M on
N2ε (x0). �

Theorem 2.29
Let f be convex and U ⊆ dom f an open set. If f is bounded from above in a neighbour-
hood of one point of U , then f is continuous on U .

25

2. Mathematical prerequisites

Proof: Theorem 2.28 implies that f is locally Lipschitz, from which continuity follows
immediately. �

Theorem 2.30
Assume f is a convex function on Rn. Then f is continuous on int (dom f).

Proof: If we consider the convex combination x = ∑n
i=1 λixi with xi ∈ dom f ∀i, then

it follows from the convexity of f that

f (x) 6
n∑
i=1

λif (xi) 6

(
n∑
i=1

λi

)
max
i
f (xi) = max

i
f (xi) <∞ (2.57)

Now let us consider an arbitrary x ∈ int (dom f) and choose any n-dimensional simplex
S = conv ({x0, x1, . . . , xn}) with x ∈ int (S) and S ⊆ dom f . Then it follows from what
we have just seen that for any y in S we have

f (y) 6 max
i
f (xi) <∞ (2.58)

and Theorem 2.29 states that f must be continuous on int (dom f). �

Remark 2.31
A convex function can have discontinuities on the boundary of its domain. Consider for
example the function f : R→ R defined by

f (x) =

x2 x ∈ (−1, 1)
2 x ∈ {−1, 1}
+∞ else

Then f is obviously not continuous in 1 and −1. Furthermore, Theorem 2.30 only holds
in finite dimensional spaces. In infinite dimensional spaces there exist linear functions
(which are of course also convex) that are not continuous.

2.3 Subdifferential calculus
Our next goal will be study of the subdifferential calculus. As we will see, subdifferentials
represent a generalisation of gradients for non-differentiable functions. Three questions
are of great importance for us. What exactly are subdifferentials? When do they exist?
What properties do they have? All these questions will be answered in detail in this
section.

The theory presented in this section is based on results from [17, 52, 69]. The results
presented here in this section differ from the references in so far that we adapted the
statements such that they hold for general normed vector spaces. In [17] certain results
are stated for locally convex spaces, whereas [52, 69] restrict themself to finite dimensional
spaces.

26

2. Mathematical prerequisites

y x

f (y)

〈p, x− y〉

Figure 2.10: Geometric interpretation of the subgradient.

Definition 2.32 (Subdifferential and Subgradient)
The subdifferential of f at x̄ ∈ X is defined as

∂f (x̄) := {x∗ ∈ X∗ | f (x)− f (x̄) > 〈x∗, x− x̄〉 ∀x ∈ X}

The elements x∗ ∈ ∂f (x̄) are called subgradients. If f (x̄) = ±∞, then we set the
subdifferential of f at that position to ∂f (x̄) = ∅.

Before continuing with the theory of subdifferentials, let us consider a few simple examples.
It is a well known fact that a convex and differentiable function f : Rn → R verifies for
all x, y ∈ Rn the following equation

f (x) > f (y) + 〈∇f (y) , x− y〉 (2.59)

As a consequence the classical gradient is a subgradient for convex and differentiable
functions.

Figure 2.10 shows us a nice geometric interpretation of the subgradient for functions
from R to R. The thin straight line with slope p touches the graph of f only at the point
y and remains below the graph at every other point. As we see from the picture, we have

f (x) > f (y) + 〈p, x− y〉

for every point x. Definition 2.32 now implies that p is a subgradient of f at y. This
means that in general, for functions from R to R, the subgradients are the slopes of the
lines that touch a function at one point at least and remain always below the graph of
the function. Note that the subgradient need not to be unique. The function f (x) := |x|
has a non-unique subgradient in 0. It is easy to verify that its subdifferential is given by

∂f (x) =

−1 x < 0
[−1, 1] x = 0

1 x > 0

27

2. Mathematical prerequisites

(a) Plot of f (x) = |x|.

−1

1

(b) Corresponding subgradients.

Figure 2.11: A function and its corresponding subgradients.

In this example we see that the subgradient is unique at all points where f is differentiable.
In 0 however, f is not differentiable and we also lose the uniqueness of the subgradient.
This is an interesting fact that is true in a more general setting as we are going to see
later.

Furthermore, it should be clear, that subgradients do not necessarily always exist.
Strictly concave functions from R to R obviously do not have subgradients. Also functions
that are not continuous often lack subgradients at their points of discontinuity. Consider
for example

f (x) :=
{

1 x > 0
0 x < 0

(2.60)

Then ∂f (0) = ∅. Interestingly, if we change the definition of that function in 0 to the
following function

f (x) :=
{

1 x > 0
0 x 6 0

(2.61)

then ∂f (0) = {0}. It follows that even if there is a discontinuity, there can still exist a
subgradient.

Finally, we know that, for differentiable functions, the points at which the derivative
vanishes, mark possible extrema of the function. Now if we look again at the subgradient
of the absolute value, we see that 0 is a subgradient at x = 0. Interestingly this is also
the point where we attain the minimum. Whether this is coincidence or not, will also be
investigated in this section.

The first theorem that we will discuss now concerns the existence of subgradients for
convex functions. This result as well as all the other statements up to Theorem 2.39
stem from [17]. The only significant difference between the results stated here and the
ones found in [17] lies in the definition of the Gâteaux differential. We will use the
definition found in [91] which requires it to be continuous. This assumption simplifies
the argumentation at certain points. Furthermore, some proofs given here are presented
with more details compared to [17], but the general approach remains identical.

28

2. Mathematical prerequisites

Theorem 2.33
Assume f is a proper convex function. If f is continuous in x ∈ X and x ∈ int (dom f),
then ∂f (x) 6= ∅.

Proof: Since f is continuous in x, it follows from Proposition 2.16 that int (Epi f) is non-
empty. Furthermore, Epi f and int (Epi f) are convex sets because of Proposition 2.8 and
Proposition 2.12. It is also clear that (x, f (x)) 6∈ int (Epi f), since (x, f (x)− δ) /∈ Epi f
for all δ > 0. From Proposition 2.3 it follows that we can separate the sets {(x, f (x))}
and int (Epi f) through a linear functional. So there exists z∗ ∈ (X × R)∗, z∗ 6≡ 0 such
that

〈z∗, (x, f (x))〉 6 〈z∗, z〉 (2.62)
for all z ∈ Epi f . We now decompose z∗ in the following way

〈z∗, (ξ, α)〉 = 〈x∗, ξ〉+ λα (2.63)

with x∗ ∈ X∗ and λ ∈ R. λ cannot be 0, otherwise we would have

〈x∗, x〉 6 〈x∗, ξ〉 ∀ξ ∈ dom f (2.64)

But since x is an inner point of dom f , there exists for any h ∈ X a δ > 0 such that we
have x+ δh ∈ dom f and x− δh ∈ dom f . It follows for ξ = x± δh,

〈x∗, x〉 6 〈x∗, x+ δh〉 ⇔ 〈x∗, h〉 > 0 ∀h ∈ X (2.65)
〈x∗, x〉 6 〈x∗, x− δh〉 ⇔ 〈x∗, h〉 6 0 ∀h ∈ X (2.66)

This would imply x∗ ≡ 0 which contradicts z∗ 6≡ 0. Therefore, we have λ 6= 0. Now it
follows from eq. (2.62), that for all ξ ∈ dom f we get with z = (ξ, f (ξ))

〈x∗, x〉+ λf (x) 6 〈x∗, ξ〉+ λf (ξ) (2.67)

Which is equivalent to
f (ξ)− f (x) > 〈− 1

λ
x∗, ξ − x〉 (2.68)

for all ξ ∈ dom f . If ξ 6∈ dom f , then the lefthand side must be +∞ because we assumed
f to be proper convex. Thus the inequality also remains verified in this case and therefore,
we have

− 1
λ
x∗ ∈ ∂f (x) (2.69)

�

The previous theorem shows the importance of Theorem 2.30. It guarantees the existence
of subgradients for convex functions with dom f = Rn and it states that for the general
case, where f : X → R with an arbitrary space X, all we need is to require local
boundedness.

Now that we have proven the existence of subgradients, we would like to know what
additional constraints are necessary to have uniqueness. The uniqueness of the subgradient
is closely linked to the concept of differentiability. Therefore, we start with introducing a
certain number of concepts that generalise the classical notion of differentiability. Our
goal will be the definition of the so called Gâteaux differential.

29

2. Mathematical prerequisites

Lemma 2.34
Let f : R→ R ∪ {+∞} be a convex function and x ∈ dom f . Then

d (t) := f (x+ t)− f (x)
t

(2.70)

is a monotonically increasing function on (0,∞) with values in R. Furthermore, we have
d (−t) 6 d (t) for all t > 0.

Proof: For 0 < s < t we have

x+ s = t− s
t

x+ s

t
(x+ t) (2.71)

and because of the convexity of f it follows that

f (x+ s) 6
t− s
t

f (x) + s

t
f (x+ t) (2.72)

Subtracting f (x) and then dividing by s > 0, implies

d (s) = f (x+ s)− f (x)
s

6
f (x+ t)− f (x)

t
= d (t) (2.73)

which yields the monotonicity. Furthermore, for t > 0 we have

f (x) 6
1
2f (x− t) + 1

2f (x+ t) (2.74)

and thus
f (x)− f (x− t) 6 f (x+ t)− f (x) (2.75)

If we divide by t, we obtain

f (x− t)− f (x)
−t

6
f (x+ t)− f (x)

t
(2.76)

which is the desired inequality. �

Definition 2.35 (Directional derivative)
Let f be a function from X to R and x, h ∈ X. If the limit

f ′ (x;h) := lim
t↘0

f (x+ th)− f (x)
t

(2.77)

exists, then we call it the directional derivative of f at x in direction h. It describes the
rate at which a function f changes at the point x in direction h.

Proposition 2.36
The directional derivative is positive homogeneous, i.e. we have

f ′ (x; sh) = sf ′ (x;h) x, h ∈ X, s > 0 (2.78)

30

2. Mathematical prerequisites

Proof: By definition we have

f ′ (x; sh) = lim
t↘0

f (x+ tsh)− f (x)
t

= lim
t↘0

f (x+ tsh)− f (x)
st

s

= s · lim
st↘0

f (x+ tsh)− f (x)
st

= sf ′ (x;h) �

Theorem 2.37
Assume f : X → R is a proper convex function and x ∈ dom f . Then the directional
derivative exists for all h ∈ X and we have

f ′ (x;h) = inf
t>0

f (x+ th)− f (x)
t

(2.79)

Furthermore, we have
f ′ (x;h) 6 f (x+ h)− f (x) (2.80)

and
−f ′ (x;−h) 6 f ′ (x;h) (2.81)

Proof: We apply Lemma 2.34 on φ (t) := f (x+ th). Then the difference quotient

dh (t) = φ (t)− φ (0)
t

= f (x+ th)− f (x)
t

(2.82)

is monotonically increasing on (0,∞), and therefore, limt↓0 dh (t) exists and is equal to
inft>0 dh (t). Equation (2.80) follows immediately from dh (1) = f (x+ h) − f (x) and
eq. (2.81) follows from Lemma 2.34 and

−f (x− th)− f (x)
t

= dh (−t) 6 dh (t) = f (x+ th)− f (x)
t

(2.83)

by considering the limit when t ↓ 0. �

Definition 2.38 (Gâteaux differential)
Assume M ⊆ X an open subset with f : M → R and x ∈M . If the directional derivative
f ′ (x;h) exists for all h ∈ X and if the mapping h 7→ f ′ (x;h) is linear and continuous,
then we call the function f ′ (x) : X → R defined by

〈f ′ (x) , h〉 := f ′ (x;h) (2.84)

the Gâteaux differential of f in x. If f has a Gâteaux differential in every point of M ,
then we say that f is Gâteaux differentiable on M .

31

2. Mathematical prerequisites

The Gâteaux differentials are the generalisation of the partial derivatives for functions in
Rn. As the following theorem suggests, their existence is essential for the uniqueness of
the subgradient.

Note that Theorem 2.37 does not imply that every proper convex function is Gâteaux
differentiable. In order to be Gâteaux differentiable, the directional derivative f ′ (x;h)
has to be a linear and continuous map. These properties do not follow from Theorem 2.37.

Theorem 2.39
Let f be a proper convex function on X, x ∈ int (dom f) and assume that f has a
Gâteaux derivative f ′ (x) in x. Then it follows that ∂f (x) = {f ′ (x)}.
Proof: We apply Theorem 2.37. Equation (2.80) implies that we have

〈f ′ (x) , y − x〉 = f ′ (x; y − x) 6 f (y)− f (x) ∀y ∈ X (2.85)

and therefore, we immediately have f ′ (x) ∈ ∂f (x). Assume now that x∗ ∈ ∂f (x). The
definition of the subgradient implies that

f (x+ th)− f (x) > 〈x∗, th〉 = t〈x∗, h〉 (2.86)

for all h ∈ X and t > 0. From this we conclude

〈x∗, h〉 6
f (x+ th)− f (x)

t
∀h ∈ X, t > 0 (2.87)

Considering the limit when t↘ 0 we obtain

〈x∗, h〉 6 〈f ′ (x) , h〉 ⇔ 〈f ′ (x)− x∗, h〉 > 0 (2.88)

for all h ∈ X. By considering h and −h we can conclude that f ′ (x) = x∗ �

Corollary 2.40
Assume f : Rn → R is a convex function and y ∈ int (dom f). If f is differentiable in y,
then ∇f (y) is the only subgradient of f in y.
Proof: This is an immediate consequence from Theorem 2.39. The classical notion
of differentiability in Rn is a special case of the Gâteaux differential and satisfies all
requirements from Theorem 2.39. �

So far, all our statements made the assumption that f was a convex function and we were
then able to make claims about the existence and uniqueness of subgradients. We will
now briefly examine if it is also possible to make statements in the other direction. Can
we make statements about f if we know for example that the subgradient exists at every
point? Before we answer this question, we will shortly present an interesting link between
the definition of the subdifferential and the definition of strict convexity. We will then be
able to give results about convexity and strict convexity simultaneously in the statements
that will follow afterwards. Propositions 2.41 and 2.43 and Theorem 2.42, presented
hereafter, have already been discussed in [52] in the context of convex optimisation. The
formulations given here are almost identical. We will, however, present Proposition 2.43
in a slightly more general form by using the Gâteaux differentials which we introduced
earlier.

32

2. Mathematical prerequisites

Proposition 2.41
Assume f is strictly convex on X. Then, for every subgradient x∗ at x0 ∈ dom f , we
have

f (x) > f (x0) + 〈x∗, x− x0〉 ∀x ∈ dom f (2.89)

Proof: By definition of the subgradient, we have

f (x) > f (x0) + 〈x∗, x− x0〉 ∀x ∈ X (2.90)

Assume now that there exists a z ∈ dom f such that we have equality between the two
expressions.

f (z) = f (x0) + 〈x∗, z − x0〉 (2.91)

Because of the strict convexity we have for every λ ∈ (0, 1)

f (λx0 + (1− λ) z) < λf (x0) + (1− λ) f (z) (2.92)
= f (x0) + (1− λ) 〈x∗, z − x0〉

The definition of the subgradient now implies for x = λx0 + (1− λ) z that we have

f (λx0 + (1− λ) z) > f (x0) + 〈x∗, λx0 + (1− λ) z − x0〉 (2.93)
> f (x0) + (1− λ) 〈x∗, z − x0〉

This contradicts the previous equation. Thus such a z cannot exist. Therefore,

f (x) > f (x0) + 〈x∗, x− x0〉 ∀x ∈ dom f (2.94)
�

Theorem 2.42
Assume f : X → R is a function and S ⊆ X a convex set. If there exists a subgradient
of f at every point y ∈ int (S), then f is convex on int (S). Furthermore, if the strict
inequality holds, then f is even strictly convex on int (S).

Proof: Assume y1 and y2 are two points inside int (S). Proposition 2.8 implies that
int (S) must also be convex and therefore, λy1 + (1− λ) y2 ∈ int (S) for all λ ∈ (0, 1).
Assume now that x∗ is a subgradient in such a point (for any λ). The we have

f (y1) > f (λy1 + (1− λ) y2) + (1− λ) 〈x∗, y1 − y2〉 (2.95)
f (y2) > f (λy1 + (1− λ) y2) + λ〈x∗, y2 − y1〉 (2.96)

If we multiply these two inequalities with λ (resp. 1− λ) and add them, we receive

λf (y1) + (1− λ) f (y2) > f (λy1 + (1− λ) y2) (2.97)

and therefore, f is convex. The same argumentation proves the statement about the
strict convexity if we exchange “>” with “>”. �

33

2. Mathematical prerequisites

Proposition 2.43
Let f : X → R be a function, S ⊆ X open and convex and assume that f has a Gâteaux
derivative f ′ (x) in every x in S. Then f is convex on S if and only if for all x, y in S
the following inequality holds

f (x) > f (y) + 〈f ′ (y) , x− y〉 (2.98)

If we have
f (x) > f (y) + 〈f ′ (y) , x− y〉 (2.99)

for all x 6= y in S, then f is even strictly convex.

Proof: From Theorem 2.39 it follows that if f is convex and has a Gâteaux derivative
in X∗ at every point y in S, then f ′ (y) is the unique subgradient. Therefore, eq. (2.98)
must hold. The strict inequality is a direct consequence of Proposition 2.41. On the other
side if eq. (2.98) holds, then f ′ (y) is a subgradient of f in every y ∈ S and it follows
from Theorem 2.42 that f must be convex on S, respectively strictly convex if the strict
inequality holds. �

If we are in Rn, then the previous proposition simply states that a differentiable function
is convex if and only if

f (x) > f (y) + 〈∇f (y) , x− y〉

holds for all x, y ∈ Rn. Thus, we have proven the well known formula that we stated in
the beginning of this section.

We now know that the subgradient is a generalisation of the gradient and we are able
to state under which conditions it exists and when we can expect uniqueness. Our next
goal will be to study how far the other properties of the gradient extend to subgradients.
The most important question is certainly whether we can still make statements about
the existence of extrema of a function similarly as with the help of gradients. Also we
know that gradients are linear, i.e. they fulfill

∇ (f + g) (x0) = ∇f (x0) +∇g (x0) (2.100)

The next few propositions and theorems will show, that under certain conditions, similar
results also hold for subgradients. If our functions behave sufficiently well, then we have

∂ (f + g) (x0) = ∂f (x0) + ∂g (x0) (2.101)

This highly useful property will be of great importance later on and therefore, it is
necessary to study the exact conditions under which this equality holds. This will be done
in Proposition 2.44 and Theorem 2.45. Another similar result related to the composition
with linear maps will be discussed in Theorem 2.46. Our proofs of these three statements
closely follow the argumentation presented in [17]. However, a few steps were reformulated
such that it becomes possible to reuse some of the results from this thesis. Furthermore,
we added a few details to facilitate the lecture of the proofs.

34

2. Mathematical prerequisites

Proposition 2.44
Assume that y ∈ dom f ∩ dom g, p ∈ ∂f (y) and q ∈ ∂g (y). Then p+ λq ∈ ∂ (f + λg) (y)
for all λ > 0.

Proof: By definition we have:

f (x)− f (y) > 〈p, x− y〉 ∀x ∈ X
g (x)− g (y) > 〈q, x− y〉 ∀x ∈ X

Adding the two equations gives:

(f + λg) (x)− (f + λg) (y) > 〈p+ λq, x− y〉 ∀x ∈ X, λ > 0

And therefore, p+ λq ∈ ∂ (f + λg) (y) �

Theorem 2.45 (Subdifferential sum formula)
Assume f1, f2 are two proper convex functions on X. Furthermore, let there be a vector
x̄ ∈ int (dom f1) ∩ dom f2 and assume f1 is continuous in x̄. Then we have

∂ (f1 + f2) (x) = ∂f1 (x) + ∂f2 (x) (2.102)

for all x ∈ dom f1 ∩ dom f2.

Proof: We already know from Proposition 2.44 that the inclusion

∂ (f1 + f2) (x) ⊇ ∂f1 (x) + ∂f2 (x) ∀x ∈ dom f1 ∩ dom f2 (2.103)

is true. Therefore, it is enough to show the inverse inclusion. Choose x ∈ dom f1∩dom f2
and assume x∗ ∈ ∂ (f1 + f2) (x). We have to show that there exist x∗1 and x∗2 such that
x∗ = x∗1 + x∗2 with x∗1 ∈ ∂f1 (x) and x∗2 ∈ ∂f2 (x). By the definition of ∂ (f1 + f2) (x), we
have

f1 (y)− f1 (x)− 〈x∗, y − x〉 > f2 (x)− f2 (y) ∀y ∈ dom f1 ∩ dom f2 (2.104)

Consider now the following sets

C1 := {(y, α) | f1 (y)− f1 (x)− 〈x∗, y − x〉 6 α} (2.105)
C2 := {(y, α) | α 6 f2 (x)− f2 (y)} (2.106)

Since f1 and f2 are convex functions, it is easy to see that these sets are again convex.
But C1 is also the epigraph of the convex function

g (y) := f1 (y)− f1 (x)− 〈x∗, y − x〉 (2.107)

From Proposition 2.16 it follows that the interior of C1 is non-empty, since x̄ ∈ int (dom g)
and g is continuous in x̄. We will now show that int (C1) ∩C2 = ∅. Take any (y, β) from
int (C1), then there exists ε > 0 such that (y, β − ε) ∈ C1. Equation (2.104) implies that

g (z) > f2 (x)− f2 (z) ∀z ∈ dom f1 ∩ dom f2 (2.108)

35

2. Mathematical prerequisites

From this equation we conclude that for our (y, β) ∈ int (C1) we have

f2 (y) > f2 (x)− g (y)
⇔ f2 (y) + β > f2 (x)− g (y) + β

> f2 (x)− (β − ε) + β (because g (y) 6 (β − ε))
= f2 (x) + ε (2.109)

This implies that f2 (y)+β > f2 (x)+ε and thus f2 (x)−f2 (y) < β. Therefore, (y, β) 6∈ C2.
It follows that we have two sets int (C1) and C2, where int (C1) is by definition open,
which are disjoint. Proposition 2.3 implies there exists a z∗ ∈ (X × R)∗ and a α ∈ R,
such that

〈z∗, c1〉 < α 6 〈z∗, c2〉 ∀ c1 ∈ int (C1) , c2 ∈ C2 (2.110)

and 〈z∗, c1〉 6 α for all c1 ∈ C1. This z∗ can be rewritten in the in the following form

〈z∗, (x, β)〉 = 〈y∗, x〉+ λβ (2.111)

where y∗ ∈ X∗ and λ ∈ R. We notice, that (x, 0) ∈ C1 ∩ C2. Plugging this point in
eq. (2.110) implies that α = 〈y∗, x〉 and therefore, we have

〈y∗, y〉+ λβ 6 〈y∗, x〉 6 〈y∗, z〉+ λγ (2.112)

for all (y, β) ∈ C1 and (z, γ) ∈ C2. We will now show that λ < 0 must hold. Clearly
(x̄, g (x̄) + 1) ∈ intC1 and (x̄, f2 (x)− f2 (x̄)) ∈ C2. Again by eq. (2.110), we obtain

〈y∗, x̄〉+ λ (g (x̄) + 1) < 〈y∗, x̄〉+ λ (f2 (x)− f2 (x̄)) (2.113)

So that we have
λ (g (x̄)− f2 (x) + f2 (x̄) + 1)︸ ︷︷ ︸

>0 by eq. (2.108)

< 0 (2.114)

Equation (2.108) now implies that λ < 0 must hold. This allows us now to consider the
following decomposition

x∗ =
(
x∗ − 1

λ
y∗
)

+ 1
λ
y∗ (2.115)

We will show that
x∗ − 1

λ
y∗ ∈ ∂f1 (x) and 1

λ
y∗ ∈ ∂f2 (x)

It is clear that (y, g (y)) ∈ C1 and (z, f2 (x)− f2 (z)) ∈ C2 for all y ∈ dom f1 = dom g
and z ∈ dom f2. Using the first half eq. (2.112) it follows that

〈y∗, y〉+ λg (y) 6 〈y∗, x〉
⇔ 〈y∗, y〉+ λ (f1 (y)− f1 (x)− 〈x∗, y − x〉) 6 〈y∗, x〉

⇔ f1 (x)− f1 (y) > 〈x∗ − 1
λy
∗, x− y〉 (2.116)

36

2. Mathematical prerequisites

As a consequence x∗− 1
λy
∗ ∈ ∂f1 (x). And similarly the second half of eq. (2.112) implies

that

〈y∗, x〉 6 〈y∗, y〉+ λ (f2 (x)− f2 (y))
⇔ f2 (x)− f2 (y) > 〈 1λy

∗, x− y〉 (2.117)

and therefore, 1
λy
∗ ∈ ∂f2 (x). This concludes the proof. �

It is clear that the previous theorem also applies to sums with more than two functions.
We just have to apply it recursively. In [37] the authors showed that the previous theorem
remains true under slightly weaker requirements. It is enough if the space on which
our functions operate is locally convex. It does not need to be a normed vector space.
However, the formulation that we considered here is simpler to prove and will be sufficient
for our needs. The more general proof from [37] requires a generalisation of the Theorem
of Hahn-Banach (Theorem 2.1) for locally convex spaces. Such a generalisation can be
found in [37, 91].

The next theorem will state a similar result as the subdifferential sum formula, but
this time, for the composition with linear maps.

Theorem 2.46 (Subdifferential for composition with linear maps)
Assume X,Y are normed vector spaces over R, A : X → Y a continuous linear mapping
and f a proper convex function on Y . Furthermore, assume that the range R (A) of A is
a subset of dom f and that there exists x̄ ∈ X such that Ax̄ ∈ int (dom f) and that f is
continuous in Ax̄. Then we have for all x ∈ X

∂ (f ◦A) (x) = A∗∂f (Ax) (2.118)

where A∗ is the adjoint operator of A.

Proof: “⊇”: Assume y∗ ∈ ∂f (Ax). Then we have by definition of the subdifferential

f (y) > f (Ax) + 〈y∗, y −Ax〉 ∀y ∈ Y (2.119)

and therefore, also

f (Aξ) > f (Ax) + 〈y∗, Aξ −Ax〉 ∀ξ ∈ X (2.120)

This implies that
f (Aξ) > f (Ax) + 〈A∗y∗, ξ − x〉 ∀ξ ∈ X (2.121)

Thus we have A∗y∗ ∈ ∂ (f ◦A) (x).
“⊆”: Assume now that x ∈ dom (f ◦A) and x∗ ∈ ∂ (f ◦A) (x). Define the subset

U ⊆ Y × R by
U := {(Aξ, f (Ax) + 〈x∗, ξ − x〉) | ξ ∈ X} (2.122)

Since Ax̄ is an inner point of dom f and f is continuous in Ax̄ it follows from Proposi-
tion 2.16 that int (Epi f) is non-empty. Furthermore, we have U ∩ int (Epi f) = ∅, because
if we assume that (y, β) ∈ int (Epi f), then there exists ε > 0 sufficiently small, such that

37

2. Mathematical prerequisites

(y, β − ε) is still an element of Epi f . If (y, β) were an element of U , then there would
have to exist a ξ ∈ X such that y = Aξ and β = f (Ax) + 〈x∗, ξ − x〉. Since (y, β) lies in
the epigraph, this ξ fulfills the inequality

f (Aξ) 6 f (Ax) + 〈x∗, ξ − x〉 − ε (2.123)

which is a contradiction to x∗ ∈ ∂ (f ◦A) (x). Thus, the sets must be disjoint. Proposi-
tion 2.3 now implies that there exists z∗ ∈ (Y × R)∗ and an α ∈ R. such that

〈z∗, u〉 6 α 6 〈z∗, e〉 (2.124)

for all u ∈ U and e ∈ Epi f and α < 〈z∗, e〉 for all inner points of Epi f . We now rewrite

〈z∗, (y, β)〉 = 〈y∗, y〉+ λβ (2.125)

with y∗ ∈ Y ∗ and β ∈ R. This implies that

〈y∗, Aξ〉+ λf (Ax) + λ〈x∗, ξ − x〉 6 α 6 〈y∗, y〉+ λµ (2.126)

must hold for all ξ ∈ X and (y, µ) ∈ Epi f . Obviously λ cannot be 0, because if it were,
we simply consider ξ = x̄ and (Ax̄, f (Ax̄) + 1) ∈ int (Epi f) and obtain from eq. (2.126)

〈y∗, Ax̄〉 6 α < 〈y∗, Ax̄〉 (2.127)

which is impossible. Furthermore, if we consider y = Aξ and µ = f (Aξ) + 1, then
eq. (2.126) gives us

〈y∗, Aξ〉+ λf (Ax) + λ〈x∗, ξ − x〉 6 〈y∗, Aξ〉+ λ (f (Aξ) + 1) (2.128)
⇔ λ (f (Aξ)− f (Ax)− 〈x∗, ξ − x〉+ 1)︸ ︷︷ ︸

>0

> 0

which implies that λ > 0 because the expression inside the brackets is positive since x∗ is
a subgradient. Finally the first half of eq. (2.126) can be rewritten as

〈y∗, Aξ〉+ λ〈x∗, ξ〉+ λf (Ax)− λ〈x∗, x〉 6 α (2.129)

Now assume that 〈y∗, Aξ〉 + λ〈x∗, ξ〉 6= 0. Then we could make it arbitrarily large by
multiplying it with a constant. Thus we could find a ξ such that the inequality in
eq. (2.129) does not hold anymore. Therefore, we must have

〈y∗, Aξ〉+ λ〈x∗, ξ〉 = 0 (2.130)

From which we can conclude that

x∗ = A∗
(
− 1
λ
y∗
)

(2.131)

Applying eq. (2.130) and eq. (2.131) to eq. (2.126) leads to (µ = f (y))

λf (Ax)− λ〈x∗, x〉 6 〈y∗, y〉+ λf (y) (2.132)

38

2. Mathematical prerequisites

for all y ∈ dom f so that we get

f (y) > f (Ax) + 〈− 1
λ
y∗, y −Ax〉 (2.133)

from which we can conclude that − 1
λy
∗ ∈ ∂f (Ax). Because of eq. (2.131), it follows that

x∗ ∈ A∗∂f (Ax) (2.134)
This concludes the proof. �

Similarly as for Theorem 2.45, it is also possible to generalise the previous theorem to
locally convex spaces. The difficulties that arise are the same as for the subdifferential
sum formula and the proof can again be found in [37].

Theorems 2.45 and 2.46 show us that subgradients share many characteristics with
classical gradients. However, one of the most useful properties of gradients is that they
can be used to find extrema of convex functions. So far we do not know whether this
is possible with subdifferentials. The following proposition discusses this problem. It
shows, that there exists a simple way to determine the minima of convex functions by
looking at the subgradients. This is a highly useful observation and will greatly simplify
the proofs given in Section 2.4. The formulation of Proposition 2.47, as it is given here,
is a generalisation of a similar result found in [52], where it was discussed in the context
of convex optimisation problems in Rn. The proofs for both formulations are identical.
Proposition 2.47
For a convex function f , the following statements are equivalent.

1. There exists a subgradient x∗ of f in x0 that fulfills

〈x∗, x− x0〉 > 0 ∀x ∈ X (2.135)

2. x0 ∈ dom f is a global minimum of f .

3. 0 is a subgradient of f in x0.

Proof: (1)⇒ (2): For a subgradient we have by definition

f (x) > f (x0) + 〈x∗, x− x0〉 (2.136)

for all x in X. It immediately follows that when eq. (2.135) is fulfilled, then x0 must be
a global minimum.

(2) ⇒ (3): If x0 is a global minimum, then f (x) > f (x0) for all x and x∗ ≡ 0 is a
valid subgradient.

(3)⇒ (1): Assume x∗ ≡ 0 is a subgradient. Then eq. (2.135) is trivially fulfilled. �

In later chapters (e.g. Section 2.4), we will frequently encounter the subgradient of a norm.
Therefore, it would be handy to have an analytical expression for these subdifferentials.
This problem has already been treated in [44]. The following proposition summarises
their findings and presents a slightly more detailed proof as the one given in [44].

39

2. Mathematical prerequisites

Proposition 2.48
‖·‖ is subdifferentiable at every point in X and the subdifferential is given by

∂ (‖·‖) (x) =
{
{x∗ ∈ X∗ | 〈x∗, x〉 = ‖x‖ and ‖x∗‖∞ = 1} , if x 6= 0
{x∗ ∈ X∗ | ‖x∗‖∞ 6 1} , if x = 0

(2.137)

Proof: From Corollary 2.6, it follows immediately, that for all x0 ∈ X, x0 6= 0, there
exists a continuous linear functional x∗0 ∈ X∗ such that

〈x∗0, x0〉 = ‖x0‖ and ‖x∗0‖∞ = 1 (2.138)

This implies that we have

〈x∗0, x− x0〉 = 〈x∗0, x〉 − 〈x∗0, x0〉 (2.139)
= 〈x∗0, x〉 − ‖x0‖
6 ‖〈x∗0, x〉‖ − ‖x0‖
6 ‖x∗0‖∞︸ ︷︷ ︸

=1

‖x‖ − ‖x0‖

= ‖x‖ − ‖x0‖ , ∀x ∈ X

which is equivalent to x∗0 ∈ ∂ (‖·‖) (x0). Conversely if we assume that x∗0 ∈ ∂ (‖·‖) (x0)
holds, then from the definition of the subdifferential we can conclude that for all x ∈ X
we have

‖x0‖ − ‖x‖ 6 〈x∗0, x0 − x〉 (2.140)

If we plug in x = λx0 with λ ∈ R and λ > 0 we obtain

(1− λ) (〈x∗0, x0〉 − ‖x0‖) > 0 (2.141)

If λ > 1, then we must have x0 (x0) − ‖x0‖ 6 0. Analogously λ < 1 would require
x0 (x0)− ‖x0‖ > 0. Therefore, we must have

〈x∗0, x0〉 = ‖x0‖ (2.142)

and from eq. (2.140) it follows that 〈x∗0, x〉 6 ‖x‖ , ∀x ∈ X and thus ‖x∗0‖∞ = 1. This
yields the desired equality for x0 6= 0. If x0 = 0 then it follows immediately from the
definition of the subdifferential that we must have

∂ (‖·‖) (x0) = {x∗ ∈ X∗ | x∗ (x) 6 ‖x‖ ∀x ∈ X} (2.143)

which is equivalent to

∂ (‖·‖) (x0) = {x∗ ∈ X∗ | ‖x∗‖∞ 6 1} (2.144)
�

40

2. Mathematical prerequisites

Corollary 2.49
The subdifferential of ‖·‖2 : Rn → R is given by

∂ (‖·‖2) (x) =

x
‖x‖2

, if x 6= 0
{y ∈ Rn | ‖y‖2 6 1} , if x = 0

(2.145)

Note that therefore, every subgradient q ∈ ∂ (‖·‖2) (x) fulfills ‖q‖2 6 1.

Proof: The statement follows immediately from Proposition 2.48 if one remembers that
for x 6= 0, ‖·‖2 is differentiable and its gradient is given by ∇‖x‖2 = x

‖x‖2
, which in this

case coincides with the subdifferential. The case x = 0 follows directly from (Rn)∗ ∼= Rn
�

2.4 Shrinkage operators
In this section we will analyse two so called shrinkage operators. They are interesting for
us for a very specific reason. The split Bregman algorithm that we will see later needs
the minimiser of

‖x‖1 + λ

2 ‖x− b‖
2
2 (2.146)

an sometimes also the minimiser of

‖x‖2 + λ

2 ‖x− b‖
2
2 (2.147)

for some vector b ∈ Rn and λ > 0. Both problems have an analytical solution that can
be expressed through shrinkage operators. The first one with the help of the so called
soft shrinkage operator and the second one by using the generalised shrinkage operator.

Shrinkage operators are generally used in combination with wavelet decompositions
for denoising purposes. See for example [58, 79], where the authors also presented
other shrinkage operators such as the garrote and hard shrinkage operator. The proofs
presented in this section will make heavy use of subgradients. They clearly illustrate the
elegance and power of this concept of subdifferentiability.

2.4.1 Soft shrinkage

The first operator that we consider is the so called soft shrinkage operator. It is defined
as follows:
Definition 2.50 (Soft shrinkage operator)
Assume y ∈ R and α > 0. Then the soft shrinkage operator is given by

shrink (y, α) := sgn (y) ·max (|y| − α, 0) =

y − α if y ∈ (α,∞)
0 if y ∈ [−α, α]
y + α if y ∈ (−∞,−α)

(2.148)

41

2. Mathematical prerequisites

As already mentioned, the soft shrinkage operator is able to solve one of the above
mentioned optimisation problems. First we will show that this is true in R and then we
show that it easily extends to Rn.
Proposition 2.51
Consider the function f : R→ R defined by

f (x) = |x|+ λ

2 (x− b)2 (2.149)

where λ > 0 and b ∈ R. Then f becomes minimal for x = shrink
(
b, 1
λ

)
.

Proof: We note that f is a strictly convex function and thus every local minimum must
necessarily also be a global minimum. Because of Proposition 2.47 it is enough to find
those x for which 0 is an element of the subgradient of f . Theorem 2.45 implies that the
subgradient of f is given by

∂f (x) = ∂ (|x|) + λ (x− b) (2.150)

Therefore, x is a global minimiser if the following equation is fulfilled for some element
q ∈ ∂ (|x|)

0 = q + λx− λb ⇔ q = λb− λx (2.151)
As we already know, there are only three possible choices for q. If x > 0 then q = 1,
if x < 0 then q = −1 and if x = 0, then q ∈ [−1, 1]. Now if λb > 1 then x must be
positive because q cannot be larger than 1. But for positive x, ∂ (|x|) = q = 1 and x
must be b− 1

λ . On the other side, if λb < −1, then x must be negative, since q cannot
be smaller than −1. For negative x, ∂ (|x|) = q = −1 and x is given by b + 1

λ . Now
assume λb ∈ [0, 1], then −λx = q − λb must hold. If we suppose q > λb, then x would
have to be strictly negative. However, for strictly negative x, q = −1 and we have a
contradiction. In the same way we cannot have q < λb since then we must have x > 0
and q = 1. It follows that q = λb is the only remaining choice. This implies x = 0. The
case λb ∈ [−1, 0] leads by identical reasoning to the same result x = 0 and q = λb. This
tells us that the minimiser is given by

x =

b− 1

λ if b ∈
(

1
λ ,∞

)
0 if b ∈

[
− 1
λ ,

1
λ

]
b+ 1

λ if b ∈
(
−∞,− 1

λ

) (2.152)

which is exactly the definition of shrink
(
b, 1
λ

)
. �

Corollary 2.52
Consider the function f : Rn → R defined by

f (x) = ‖x‖1 + λ

2 ‖x− b‖
2
2 (2.153)

where λ > 0 and b ∈ Rn. The minimiser of f is the vector whose components are given
by xi = shrink

(
bi,

1
λ

)
.

42

2. Mathematical prerequisites

−γ
γ

Figure 2.12: Graphical representation of f(x) = x (dashed line) and f(x) = shrink(x, γ) (thick line).

Proof: ‖x‖1 + λ
2 ‖x− b‖

2
2 can be rewritten as

‖x‖1 + λ

2 ‖x− b‖
2
2 =

n∑
i=1
|xi|+

λ

2 (xi − bi)2 (2.154)

Obviously this sum is minimal, exactly when every term |xi|+ λ
2 (xi − bi)2 is minimal.

Since Proposition 2.51 states that the minimiser of such an expression is given by
xi = shrink

(
bi,

1
λ

)
the conclusion follows immediately. �

2.4.2 Generalised shrinkage

The second operator that we will consider is a generalisation of the soft shrinkage operator
from Definition 2.50. We will simply call it generalised shrinkage operator and it is given
by the following definition.
Definition 2.53 (Generalised shrinkage)
Let b be a vector in Rn and λ > 0, then we define the generalised shrinkage operator as

gshrink (b, λ) := max (‖b‖2 − λ, 0) b

‖b‖2
=

b−
λ
‖b‖2

b, if ‖b‖2 > λ

0, else
(2.155)

where we adopt the convention 0 · 0
0 = 0.

As in the case of the soft shrinkage operator, the generalised shrinkage operator allows
us to solve a specific minimisation problem.
Proposition 2.54
Consider the function f : Rn → R given by

f (x) = ‖x‖2 + λ

2 ‖x− b‖
2
2 (2.156)

43

2. Mathematical prerequisites

with b ∈ Rn and λ > 0. Then f becomes minimal for x∗ = gshrink
(
b, 1
λ

)
.

Proof: We will proceed by a similar reasoning as in Proposition 2.51. Since f is strictly
convex, it has at most one minimiser. Thus x∗ is a minimiser if and only if 0 is a
subgradient of f at x∗. Since ‖·‖22 is differentiable, it is enough to find an x∗ that solves
the following equation

0 = λ (x∗ − b) + q ⇔ q + λx∗ = λb (2.157)

where q is an element of ∂ (‖x∗‖2). Now if λ ‖b‖2 > 1, then x∗ cannot be 0, since we
know from Corollary 2.49 that the norm of q is at most 1. But for x∗ 6= 0, we know that
q = x∗

‖x∗‖2
. From this it follows that we have to solve

λx∗
(

1 + 1
λ ‖x∗‖2

)
= λb (2.158)

Taking the norm on both sides implies that ‖x∗‖2 = ‖b‖2− 1
λ . By plugging this expression

back into our equation, we obtain

x∗

1 + 1
λ
(
‖b‖2 −

1
λ

)
 = b (2.159)

which easily simplifies to

x∗ = b

(
1− 1

λ ‖b‖2

)
(2.160)

Now let us consider the case λ ‖b‖2 6 1 and assume x∗ 6= 0. Then we have q = x∗

‖x∗‖2
.

and the very same computations as in the case λ ‖b‖2 > 1 lead us to ‖x∗‖2 = ‖b‖2 − 1
λ .

However, because of λ ‖b‖2 6 1 it follows that we also have ‖b‖2 − 1
λ 6 0 so that the

equation ‖x∗‖2 = ‖b‖2 − 1
λ can only be verified for ‖b‖2 = 1

λ and ‖x∗‖2 = 0. Therefore,
our assumption that x∗ 6= 0 was wrong and as a consequence we must have x∗ = 0.
Combining these the two cases gives us

x∗ = gshrink
(
b,

1
λ

)
(2.161)

�

2.5 Summary and concluding remarks
In this chapter we have proven a few important results. For our purposes, the first
important result being Proposition 2.17. It guarantees that minimisation strategies
cannot get stuck in local minima if we apply them on convex functions.

The other important observation concerns the continuity of convex functions. Theo-
rem 2.29 and Theorem 2.30 show that, under fairly weak assumptions, convex functions
are automatically continuous. This result will play a crucial role in later chapters. Also

44

2. Mathematical prerequisites

almost everything about subdifferentials that we have seen here will be important at
some point. Especially their existence, as shown in Theorem 2.33, will play a significant
role. The two formulas for sums of subdifferentials (Theorem 2.45) and compositions with
linear maps (Theorem 2.46) will also be of great use. Finally, one should also mention
the two shrinkage operators that we presented. They will play a key role in the split
Bregman algorithm which we will analyse in Section 3.2.

45

3. The Bregman algorithms

3 The Bregman algorithms

Now that we have presented all the necessary preliminary results, we can start to focus
our analysis on the Bregman algorithms and their applications. The goal of this chapter
will be to present the various forms of Bregman iterative formulations and to discuss
their properties and convergence behaviour. We will begin with presenting the standard
Bregman algorithm as developed by Osher and his colleagues in [62]. The deduction of
the algorithm presented in this thesis will however differ significantly from the deduction
given in [62]. There, the authors based their presentation on the fact that a noisy signal
S can be decomposed into S = u + v, where u is the true signal and v is the noise.
They then arrived at the Bregman formulation by trying to recover u with the help of
the Rudin-Osher-Fatemi (ROF) model. We will present a deduction that is based on
the simple observation that the Bregman algorithm is a combination between a non-
orthogonal projection onto a convex set and a regularisation strategy. As a consequence,
our interpretation allows us to consider the Bregman framework from a more general
point of view than the authors of [62] did. Also, it makes the relation between the
original work of Bregman [14] and the algorithm, that we call today Bregman iteration,
much more apparent. We will further present an alternative formulation of the Bregman
algorithm which has already been discussed in [41, 43]. This alternative formulation is
interesting for problems that involve linear operators for which the adjoint is not known
explicitly. Beside these “classical” Bregman formulations, we will also consider the split
Bregman strategy from Goldstein and Osher [43]. The split Bregman algorithm is a
simple trick to reformulate optimisation problems, that could basically not be solved with
the Bregman iteration, in such a way that the Bregman framework can still be applied.
It will be the basis for our optical flow computations that we will present in Chapter 4.
The thorough convergence theory that we will present here is based on the results from
[23, 24, 27, 29, 43, 62]. The authors of these references used different vector spaces for
their results. Some of the results require Hilbert spaces, whereas other results can be
stated in rather general vector spaces only equipped with semi-norms. We will present
the results for finite dimensional normed vector spaces. Although this is often much
more restrictive than it needs to be, it allows us to present all the results with a common
set of requirements, thus making the relations between the different statements a lot
clearer. Furthermore, this restriction will be sufficient for our application on optical flow
problems later on. Finally, we will shortly present an equivalence between the Bregman
algorithm and the augmented Lagrange method. The proof that we will present here is a
more detailed reformulation of the proof found in [94]. This equivalence will allow us to
interpret the algorithms given in Chapter 4 not only as Bregman iterations, but also as
augmented Lagrangian penalty methods.

As in the previous chapter, f will usually denote a convex function from some normed

47

3. The Bregman algorithms

vector space X to R. Its effective domain, as defined in Definition 2.9, will for simplicity
be denoted by Ω.

Before we can formulate the Bregman algorithms, we need to introduce one of the
central concepts of the Bregman iteration, namely the Bregman divergence. It has been
presented by Bregman in 1967 [14], where it has been used to solve convex optimisation
problems through non-orthogonal projections onto convex sets. Our definition of the
Bregman divergence will be slightly more general than the one given in [14]. In fact it
corresponds to the definition found in [43].

Definition 3.1 (Bregman divergence)
The Bregman divergence Dp

f : Ω× Ω→ R of f is defined as

Dp
f (x, y) := f (x)− f (y)− 〈p, x− y〉 (3.1)

where p is a subgradient of f at y.

Note that the Bregman divergence only exists at position (x, y), if there exists a sub-
gradient of f in y. Furthermore, it is not necessarily unique, since a function can have
arbitrarily many subgradients at a given location. If X is equal to Rn, then Theorem 2.30
states that convex functions are continuous and Theorem 2.33 implies the existence of at
least one subgradient. Furthermore, as presented in Theorem 2.39, the existence of a
Gâteaux differential guarantees the uniqueness of the subgradient and as a consequence
also of the Bregman divergence.

The Bregman divergence is also known under the name Bregman distance even though
it is not a distance function. The Bregman divergence is in general neither symmetric, i.e.
Dp
f (x, y) 6= Dp

f (y, x), nor does it satisfy the triangular inequality. Therefore, it cannot
be a distance.

The following reflections give a simple analytical interpretation of the Bregman diver-
gence. If we assume that f is a convex and differentiable function on Rn, then its first
order Taylor expansion around y is given by

f (x) ≈ f (y) + 〈∇f (y) , x− y〉 (3.2)

From this it follows that the difference between f (x) and its Taylor expansion is given
by

f (x)− f (y)− 〈∇f (y) , x− y〉 (3.3)

which is exactly the Bregman divergence of f in (x, y). Therefore, the Bregman divergence
measures, in a certain sense, how much f (x) differs from its Taylor expansion. For a
more geometric interpretation we return to Fig. 2.10. The Bregman divergence of that
function is depicted in Fig. 3.1. Based on the figure we can already distinguish one of the
useful properties of the Bregman divergence, namely that it is always non-negative. The
next example also justifies, in a certain sense, why some authors speak of a Bregman
distance. For certain functions, the square root of the Bregman divergence becomes a
distance function. A more detailed analysis of this subject can be found in [32, 33]. We
will not go further into this direction, as it is of no interest for us at the moment.

48

3. The Bregman algorithms

y x

f (y)

〈p, x− y〉

Dp
f (x, y)

f (x)

Figure 3.1: Geometric representation of the Bregman divergence Dpf for a function f with subgradient p
at position y.

Example 3.2
The Bregman divergence of ‖·‖22 : Rn → R is given by

D (x, y) = ‖x‖22 − ‖y‖
2
2 − 〈2y, x− y〉 (3.4)

= ‖x− y‖22

Let us now discuss a few simple but useful characteristics of the Bregman divergence.
All theses properties are rather well known and can easily be found in the literature. See
for example [16, 62].

Proposition 3.3
Let f and g be two proper convex functions on X. Furthermore, assume that there exist
points x, y and z in X at which f , resp. g, possess a subgradient. Then the Bregman
divergence satisfies the following properties

1. Dp
f (x, x) = 0

2. Dp
f (x, y) > 0

3. The Bregman divergence is convex in its first argument.

4. If f and g are two convex functions and λ > 0, then we have

Dp
f+λg (x, y) = Dp

f (x, y) + λDp
g (x, y) (3.5)

5. Dp
f (x, y) +Dp̃

f (y, z)−Dp̃
f (x, z) = 〈p− p̃, y − x〉

Proof: The first property follows immediately from the definition of the Bregman
divergence. The second property is a clear because of the definition of the subgradient.

49

3. The Bregman algorithms

In order to show the convexity, we consider x1, x2, y ∈ Ω and λ ∈ [0, 1]. Then we have

λDp
f (x1, y) + (1− λ)Dp

f (x2, y) (3.6)
= λf (x1) + (1− λ) f (x2)− f (y)− 〈p, λx1 + (1− λ)x2 − y〉
> f (λx1 + (1− λ)x2)− f (y)− 〈p, λx1 + (1− λ)x2 − y〉
= Dp

f (λx1 + (1− λ)x2, y)

The fourth statement is a simple computation. It is enough to expand Dp
f+λg (x, y) and

to compare it to the definition of the Bregman divergence. Finally, the last claim follows
from

Dp
f (x, y) = f (x)− f (y)− 〈p, x− y〉 (3.7)

Dp̃
f (y, z) = f (y)− f (z)− 〈p̃, y − z〉

−Dp̃
f (x, z) = −f (x) + f (z) + 〈p̃, x− z〉

Adding all terms together then gives

Dp
f (x, y) +Dp̃

f (y, z)−Dp̃
f (x, z) = 〈p− p̃, y − x〉 (3.8)

�

Corollary 3.4
If f is strictly convex, then it follows immediately from Proposition 2.41 that we have

1. Dp
f (x, y) > 0 ∀x 6= y

2. Dp
f (x, y) = 0⇔ x = y

3.1 The standard Bregman iteration
In this section we will see how the Bregman divergence can be used to solve convex pro-
gramming problems in Rn. The main reason for restricting ourselves to finite dimensional
normed vector spaces is that it guarantees us the existence of subgradients for convex
functions and allows us to use the shrinkage operators from Section 2.4.

3.1.1 Deduction of the Bregman iteration

Numerous problems in mathematics and physical sciences can be recast in terms of the
famous convex feasibility problem:

Given closed convex intersecting sets C1, . . . , CN , find a point in C1 ∩ . . . ∩ CN .

Typically, the points in the intersection are the sought-after solutions of a given problem
and the sets C1, . . . , CN correspond to some constraints. The convex feasibility problem
arises in diverse areas such as best approximation theory, conformal mapping theory,

50

3. The Bregman algorithms

y0

y1 y2

y3

y′0

y′1y′2
y′3

C1

C2

C3

Figure 3.2: The sequence (yk)k consists of orthogonal projections onto the sets Ck, whereas the sequence
(y′k)k is made of non-orthogonal projections.

image reconstruction, minimisation of convex functions and statistical estimation. Often,
it is possible to calculate the orthogonal projection onto the constraints; thus, denoting
the orthogonal projection onto the kth constraint set by Pk, one can solve the convex
feasibility problem by the classical method of cyclic orthogonal projections. Given a
starting point y0, generate a sequence (yk)k by projecting cyclically onto the constraints,
that is

y0
P17−→ y1

P27−→ y2
P37−→ . . .

PN7−→ yN
P17−→ yN+1

P27−→ . . .

The sequence (yk)k converges to a solution, if the underlying space is some Euclidean
space Rl. This approach was generalised by Bregman in 1967. The novelty in his approach
was the use of non-orthogonal projections. He demonstrated that for a “sufficiently well
behaved” convex function f , one could also consider the projections with respect to the
Bregman divergence Df , i.e. computing

yk+1 = arg min
y∈Ck

Df

(
y, yk

)
(3.9)

Example 3.2 shows us, that using f (x) = ‖x‖22 would result in orthogonal projections. It
follows, that Bregman’s approach is really a generalisation of the well known classical
method. Figure 3.2 also visualises the idea behind these projections and the difference
between an orthogonal and non-orthogonal projection.

Bregman proceeded to show that his novel approach was able to solve convex optimi-
sation problems of the form

arg min
x

f (x) such that Ax = b, (3.10)

where f is strictly convex and smooth function, A a matrix and b some vector. He
observed that every equation in the linear system corresponds to a closed convex set.
Thus, every linear system corresponds to a family of convex sets and solutions of the

51

3. The Bregman algorithms

system always lie in the intersection of these sets. Bregman showed that using his above
mentioned algorithm, he could steer the projections not only towards a solution of the
system Ax = b, but also to a solution that, at the same time, minimises f . The iterates
were basically determined by solving

xk+1 = arg min
x∈Sk

Df

(
x, xk

)
(3.11)

where Sk is the set of all the solutions of the kth equation of Ax = b. These sets were
traversed cyclically. After attaining the last set Sn, one would continue with S1 again,
until the iterates xk reached a fix point. Bregman proved the convergence of this strategy
and demonstrated that these iterates could be computed very efficiently. In practice this
algorithm often yields very good convergence speeds. Unfortunately, the algorithm has
rather strong requirements. The function f , for example, must be strictly convex and at
least continuously differentiable on Rn. This makes it impossible to apply the algorithm
on problems of the form

arg min
x

‖x‖2 such that Ax = b (3.12)

since ‖·‖2 is not differentiable in 0.
Another common approach to solve problems of the form eq. (3.10), is to use reg-

ularisation techniques. Here, one approximates the above constrained problem by an
unconstrained problem of the form

arg min
x

f (x) + λ ‖Ax− b‖22 (3.13)

The idea is, that if λ is large enough, then solutions of eq. (3.13) should be close to
solutions of eq. (3.10). This approach is rather popular because unconstrained problems
are often simpler to solve. Furthermore, it also allows us to treat problems like eq. (3.12).
The drawback of this approach is that one does not know in advance how large λ must
be. Therefore, one often considers a sequence λ0 < λ1 < . . . < λn < . . . and computes

arg min
x

f (x) + λk ‖Ax− b‖22 for k = 1, 2, . . . (3.14)

until a fix point is reached. Unfortunately, such algorithms could lead to ill conditioned
problems if λ is chosen too large. This would make an efficient numerical solution difficult
to realise. Methods that employ strategies with an increasing parameter are also called
penalty methods since they penalise deviations from solutions of Ax = b.

The idea is now to combine the advantages of the two above mentioned approaches
into a single algorithm. Ideally we would like to have a formulation that can handle
convex non-differentiable cost functions and that avoids ill conditioned formulations. In
a first step, one could for example consider the following iterative strategy:

xk+1 = arg min
x∈Rl

Df

(
x, xk

)
such that Ax = b (3.15)

52

3. The Bregman algorithms

where we require that x solves Ax = b and thus, is not just an element of Sk for some index
k, as in the Bregman projection algorithm. However, if the linear system has multiple
solutions or has a very large system matrix, then it might be difficult to determine the
iterates xk. Therefore, we now apply the idea behind eq. (3.13) and obtain

xk+1 = arg min
x

Df

(
x, xk

)
+ λ ‖Ax− b‖22 (3.16)

with some fixed λ > 0. This iterative strategy motivates the following definition, which
coincides with the formulation found in [41, 43, 62, 94]. In [62, 94], the Bregman iteration
was formulated as a method for minimising convex functionals of the form J (u) +H (u).
However, the convergence theory presented in Section 3.1.2 clearly states that the
iterates converge towards the solution of a constrained formulation. Therefore, we define
the algorithm, from the beginning on, as method for solving constrained optimisation
problems.

Definition 3.5 (Bregman iteration)
Let J and H be two convex functions from Rn to R and H a non-negative function
with minuH (u) = 0. Furthermore, assume that dom J = domH = Rn. The Bregman
iteration of the constrained optimisation problem

arg min
u

J (u) such that H (u) = 0 (3.17)

is given by:

1. Choose u0 arbitrarily, λ > 0 and p0 ∈ ∂J
(
u0).

2. Compute iteratively

uk+1 = arg min
u

Dpk

J

(
u, uk

)
+ λH (u) (3.18)

= arg min
u

J (u)− J
(
uk
)
− 〈pk, u− uk〉+ λH (u)

= arg min
u

J (u)− 〈pk, u− uk〉+ λH (u)

where we have pk ∈ ∂J
(
uk
)
∀k.

Since J is assumed to be convex and defined on the whole Rn, it follows that it must be
continuous and that it has at least one subgradient at every point. Thus pk always exists,
but it is not necessarily unique. Furthermore, note that the function H can also have
multiple solutions. The case where H has exactly one solution is not of our interest as it
can be reduced to solving a (possibly non-linear) system of equations. Finally, note that
the parameter λ inside the Bregman iteration is constant. It can be chosen arbitrarily
and does not need to be large at all. It could even be chosen in such a way that it
optimises the performance of the algorithms used to solve the subproblem of eq. (3.18).
This is certainly a significant advantage over other penalty function methods that require
an increasing sequence of λk.

53

3. The Bregman algorithms

At this point we do not know whether the above strategy really works. Showing that
the above algorithm really does converge towards a solution of eq. (3.17) will be the task
of Section 3.1.2. The next proposition shows how one can simplify the computation of
the subgradients pk. The proof that we present here is based upon results from [94],
where the authors used to Bregman iteration for applications in compressed sensing.
Proposition 3.6
If H is differentiable, the Bregman iteration from Definition 3.5 becomes

uk+1 = arg min
u

J (u)− 〈pk, u− uk〉+ λH (u) (3.19)

pk+1 = pk − λ∇H
(
uk+1

)

Proof: One only has to show, that pk+1 := pk − λ∇H(uk+1) ∈ ∂J(uk+1). Since H is
convex and differentiable, it follows that λ∇H(uk+1) ∈ ∂λH(uk+1). Consider now the
function f(x) := −〈pk, x − uk〉. Clearly this function is differentiable and its gradient
(and thus also subgradient) is given by −pk. The definition of the iterates uk implies that
uk+1 is a minimiser of J(u)− 〈pk, u− uk〉+ λH(u) and from Proposition 2.47 it follows
that 0 ∈ ∂(J(u)−〈pk, u−uk〉+λH(u))(uk+1) must hold. Because of Theorem 2.45 there
must exist pk+1 ∈ ∂J(uk+1) the fulfills the equation

0 = pk+1 − pk + λ∇H
(
uk+1

)
(3.20)

The result now follows by solving this equation for pk+1. �

We see that the equality given by Theorem 2.45 is essential for the Bregman iteration.
Although one could basically use any subgradient of J at uk+1, the previous proposition
gives us a convenient way of finding a specific one that is easy to obtain. This makes the
computation of the iterates much simpler and improves the overall speed of the algorithm.
If H were non-differentiable, the same strategy could be applied by replacing ∇H(uk+1)
by an arbitrary subgradient of H at uk+1. However, we would have to find such a
subgradient at every iteration step, which could prove to be cumbersome. Therefore, it
is often desirable to choose H differentiable. For most practical applications this will not
be a severe restriction. Before we continue with the theory of the Bregman iteration, let
us quickly examine a simple example.
Example 3.7
Consider the following optimisation Problem

arg min
x

‖Ax− b‖22 under the condition 1
2 ‖Bx− c‖

2
2 = 0 (3.21)

where A and B are matrices and b and c two vectors. According to Proposition 3.6, the
Bregman iteration of this problem would be

xk+1 = arg min
x

‖Ax− b‖22 − 〈p
k, x− xk〉+ λ

2 ‖Bx− c‖
2
2 (3.22)

pk+1 = pk − λBT
(
Bxk+1 − c

)

54

3. The Bregman algorithms

with x0 arbitrary and p0 = 2AT
(
Ax0 − b

)
. Since the cost function above is differentiable,

xk+1 can be obtained by solving the following linear system(
ATA+ λBTB

)
x = AT b+ λBT c+ pk (3.23)

At this point a few things should be noted about eq. (3.18). First, it is not clear whether
the iterative formulation is simpler to solve than the constrained problem. In general all
we know about J is that it is convex, but it could be arbitrarily complicated. Simply
taking for J the absolute value already yields problems because it is not differentiable.
Even such simple examples as in Example 3.7 could cause difficulties. In that example we
had to solve a linear system at each iteration. For large matrices, this certainly becomes
a computational burden. Furthermore, this linear system may be ill-conditioned making
the efficient determination of a solution even more difficult. On the other hand the
performance of such iterative formulations as in eq. (3.18) heavily depends on how fast
one can determine the iterates. This issue certainly needs some investigation and will
partly be addressed later on. The other important point is of course the convergence,
which we will treat in the next section.

3.1.2 Convergence behavior of the standard Bregman algorithm

In this section we will apply the same requirements on J and H as in the previous one.
Namely we want J and H to be two convex functions from Rn to R. Further, H should be
a non-negative function with minuH(u) = 0. Our goal will be to analyse the convergence
behaviour of the algorithm given in Definition 3.5 and to show that its iterates converge
towards a solution of

arg min
u

J (u) such that H (u) = 0 (3.24)

In order to proof this assertion we will assume that the Bregman iteration is well defined
for J and H. That means we want that

arg min
u

Dpk

J

(
u, uk

)
+ λH (u) (3.25)

is always solvable. If J = H = ‖·‖22, then this assumption is true. Thus, there exist
functions that verify this hypothesis. But there might very well exist functions for which
the minimiser at a certain iteration is infinite. Such functions should be excluded from
our reasoning. In the following we will designate the iterates of the Bregman algorithm
by uk, and the subgradients of ∂J(uk) with pk. λ will be a strictly positive parameter.

We start with a few elementary results that follow almost immediately from the
definition of the Bregman iteration. Propositions 3.8, 3.9, 3.11 and 3.12 and Remark 3.10
are all well known and were already discussed in Osher’s original article about the
Bregman iteration [62]. The proofs presented here are almost identical to those found in
the reference. In order to clarify the arguments, a few details have been added at certain
places.

55

3. The Bregman algorithms

Proposition 3.8
The sequence

(
H(uk)

)
k

is monotonically decreasing.

H
(
uk+1

)
6 H

(
uk
)
∀k ∈ N (3.26)

Proof: By the definition of the iterates, we know that the vector uk+1 minimises
Dpk

J

(
u, uk

)
+ λH (u) and that Dpk

J

(
u, uk

)
> 0 for all u. As a consequence, we have

λH
(
uk+1

)
6 Dpk

J

(
uk+1, uk

)
+ λH

(
uk+1

)
(3.27)

6 Dpk

J

(
uk, uk

)
+ λH

(
uk
)

= λH
(
uk
)

Dividing by λ > 0 gives the desired result. �

Proposition 3.9
Let u ∈ Rn and assume that H is differentiable. Then we have for all λ > 0

Dpk

J

(
u, uk

)
+Dpk−1

J

(
uk, uk−1

)
+ λH

(
uk
)

6 λH (u) +Dpk−1

J

(
u, uk−1

)
(3.28)

Proof: By using Proposition 3.3 with p = pk and p̃ = pk−1 and by the fact that
pk − pk−1 = −λ∇H

(
uk
)

we get

Dpk

J

(
u, uk

)
+Dpk−1

J

(
uk, uk−1

)
−Dpk−1

J

(
u, uk−1

)
= −λ〈∇H

(
uk
)
, uk − u〉

= λ〈∇H
(
uk
)
, u− uk〉

6 λH (u)− λH
(
uk
)

where the last inequality follows from the fact that ∇H
(
uk
)

is a subgradient of H at
position uk. �

Remark 3.10
From the previous proposition we obtain, for the particular choice u = ũ, where ũ is a
solution of H (i.e. H (ũ) = 0), the following result

Dpk

J

(
ũ, uk

)
6 Dpk

J

(
ũ, uk

)
+Dpk−1

J

(
uk, uk−1

)
6 Dpk

J

(
ũ, uk

)
+Dpk−1

J

(
uk, uk−1

)
+ λH

(
uk
)
− λH (ũ) (3.29)

6 Dpk−1

J

(
ũ, uk−1

)
where we used the inequality from the previous proposition in eq. (3.29).

56

3. The Bregman algorithms

The preceding observations provide a few interesting results. We know that the Bregman
divergence is always non-negative and if J is strictly convex, then we have Dp

J (x, y) = 0
if and only if x = y. It follows, that for such J , the sequence (H(uk))k, presented
in Proposition 3.8, is even strictly monotonically decreasing as long as uk+1 6= uk.
Furthermore, it implies that

0 6 Dpk

J

(
ũ, uk

)
< Dpk−1

J

(
ũ, uk−1

)
(3.30)

holds in Remark 3.10. Thus, we can conclude that for strictly convex J , the iterates
converge towards a solution of H. The next proposition will give us an estimate how fast
this convergence is and prove that the strict convexity is in fact not necessary.
Proposition 3.11
If ũ is a solution of H and Dp0

J

(
ũ, u0) < +∞, then we have for all λ > 0

0 = H (ũ) 6 H
(
uk
)

6
Dp0

J

(
ũ, u0)
λk

(3.31)

Thus, the iterates uk always converge towards a solution of H.
Proof: Because of eq. (3.28) we have for all i > 1

Dpi

J

(
ui, ui−1

)
+ λH

(
ui
)
− λH (ũ)︸ ︷︷ ︸

=0

6 Dpi−1

J

(
ũ, ui−1

)
−Dpi

J

(
ũ, ui

)
(3.32)

⇔ Dpi

J

(
ui, ui−1

)
+ λH

(
ui
)

6 Dpi−1

J

(
ũ, ui−1

)
−Dpi

J

(
ũ, ui

)
(3.33)

and by summing both sides for i from 1 to k we receive
k∑
i=1

[
Dpi

J

(
ui, ui−1

)
+ λH

(
ui
)]

6 Dp0

J

(
ũ, u0

)
−Dpk

J

(
ũ, uk

)
(3.34)

But this implies that

Dpk

J

(
ũ, uk

)
+

k∑
i=1

[
Dpi−1

J

(
ui, ui−1

)
+ λH

(
ui
)]

6 Dp0

J

(
ũ, u0

)
(3.35)

Proposition 3.8 now says that H(uk) 6 H(ui) for all i = 0, . . . , k and since we also have
Dpi−1

J

(
ui, ui−1) > 0, we may further conclude that

kλH
(
uk
)

6
k∑
i=1

[
Dpi−1

J

(
ui, ui−1

)
+ λH

(
ui
)]

(3.36)

Inserting the last inequality into the second last one results in

Dpk

J

(
ũ, uk

)
+ kλH

(
uk
)

6 Dp0

J

(
ũ, u0

)
(3.37)

Since the Bregman divergence is non-negative, we immediately obtain

0 = H (ũ) 6 H
(
uk
)

6
Dp0

J

(
ũ, u0)
λk

(3.38)
�

57

3. The Bregman algorithms

Let us now shortly consider the case where our constraint H depends on some data f .
Assume that we do not know f exactly, but only a noisy version which we will call g.
Furthermore, assume that ũ is a solution of H (·, f) that minimizes our cost function
J and that H (ũ, g) 6 δ2. For some δ2 > 0. Then the following proposition gives us
information about the convergence when we have such noisy data.

Proposition 3.12
Assume f , g and ũ are as described above. Then the Bregman divergence between ũ and
uk is decreasing as long as H(uk, g) > δ2; more precisely,

Dpk

J

(
ũ, uk

)
< Dpk−1

J

(
ũ, uk−1

)

Proof: From eq. (3.28) we know that we have

Dpk

J

(
ũ, uk

)
+Dpk−1

J

(
uk, uk−1

)
+ λH

(
uk, g

)
6 λH (ũ, g) +Dpk−1

J

(
ũ, uk−1

)
(3.39)

6 λδ2 +Dpk−1

J

(
ũ, uk−1

)
The result follows now immediately from the fact that Dpk−1

J

(
uk, uk−1

)
> 0 and that

λH
(
uk, g

)
> λδ2. �

This implies that the Bregman iteration remains stable even if our data contains noise.
For practical applications this result is quite important since the assumption of noise
free data is rather unrealistic. Also note that the above assumption is only useful if δ2 is
small.

So far we have seen that the iterates converge towards a solution of H. But at this
point we do not know whether this solution also minimises our cost function J . If H has
a unique solution, than the above theory is sufficient. Thus it seems that such iterates
might be good candidates for solving eq. (3.17). The following proposition now states,
that under certain assumptions, the iterates that solve H also minimise our cost function,
even if H has multiple solutions. This highly important result was first pointed out
in [94], where the authors analysed the convergence behavior of the Bregman iteration
applied to the basis pursuit problem.

Proposition 3.13
Assume there exists a u0 such that it is possible to choose p0 = 0 in eq. (3.19). Furthermore,
assume that

H (u) = h (Au− b) (3.40)

where A is some matrix, b an arbitrary vector and h is a differentiable non-negative
convex function that only vanishes at 0. If an iterate uk fulfills H(uk) = 0, i.e. it solves
Au = b, then that iterate is also a solution of the constrained optimisation problem of
eq. (3.17).

58

3. The Bregman algorithms

Proof: Since h (and thus also H) is differentiable, we have

∇H (u) = AT∇h (Au− b) (3.41)

Because of Proposition 3.6 we have

pk = pk−1 − λ∇H
(
uk
)

(3.42)

= pk−2 − λ∇H
(
uk−1

)
− λ∇H

(
uk
)

= p0 − λ
k∑
i=1
∇H

(
ui
)

= −λ
k∑
i=1
∇H

(
ui
)

= −λAT
k∑
i=1
∇h

(
ui
)

From the definition of the subgradient for J at uk, it follows that

J
(
uk
)

6 J (u)− 〈pk, u− uk〉 (3.43)

= J (u) + 〈AT
k∑
i=1
∇h

(
Aui − b

)
, u− uk〉

= J (u) + 〈
k∑
i=1
∇h

(
Aui − b

)
, Au−Auk〉

= J (u) + 〈
k∑
i=1
∇h

(
Aui − b

)
, Au− b〉

This holds for all u. Especially for all solutions ũ of eq. (3.17). Plugging in any such
solution immediately gives J(uk) 6 J(ũ) and thus uk is also a solution of eq. (3.17). �

Remark 3.14
The previous proposition requires that h vanishes only at 0. However, the linear system
Au = b can have arbitrary many solutions. Thus H can have multiple solutions too. The
requirement the h only vanishes at 0 is essential in the previous proof. It enforces that
every zero of H solves the linear system. Without this information, the above proof
would not be valid.

At this point we know the following things:

1. The iterates of our Bregman algorithm converge towards a solution of H (Proposi-
tion 3.11).

2. If an iterate uk fulfills H(uk) = 0 and if H is of a certain special form, then that
iterate also solves eq. (3.17) (Proposition 3.13).

59

3. The Bregman algorithms

Thus we have guaranteed convergence under a certain number of restrictions. For our
optical flow problems that we will consider later, these restrictions will fit naturally into
our modelling and do not cause any problems for us.

Basically, the previous statements also provide some kind of stopping criterion for the
Bregman iteration. By evaluating H(uk) after each iteration, one could simply stop as
soon as this value drops below a certain threshold. However, this approach might be a
bit unreliable since we do not know how far we are away from the real solution, even if
H(uk) is very small.

During the rest of this chapter we will focus on the special case that h (x) := ‖x‖22. In
that case, it is possible to make some kind of estimate for the error at each iteration step.
Thus, from now on, we assume that A is a given m× n matrix and b a known vector in
Rn. The problem that we consider is

arg min
u

J (u) such that 1
2 ‖Au− b‖

2
2 = 0 (3.44)

Proposition 3.6 implies that we have the following algorithm

uk+1 = arg min
u

J (u)− 〈pk, u− uk〉+ λ

2 ‖Au− b‖
2
2 (3.45)

pk+1 = pk + λAT
(
b−Auk+1

)
For technical reasons we will continue to assume that it is possible to choose u0 such that
p0 = 0 can be used. This can always be done as long as J has a minimum at some finite
point.
Definition 3.15 (Minimising Solution)
A vector ũ is called J minimising solution of Au = b, if Aũ = b and J (ũ) 6 J (v) for all
other v that fulfill Av = b.
Definition 3.16 (Source Condition)
Let ũ be a J minimising solution of Au = b. We say ũ satisfies the source condition if
there exists an ω such that ATω ∈ ∂J (ũ).

The source condition can, in a certain sense, be interpreted as an additional regularity
condition that we impose on the solution. Not only do we require that the minimising
solution has subgradient, we even want that there exists a subgradient that lies in the
range of AT . Requirements like the source condition are a frequent tool in the analysis
of inverse problems.

The next theorem shows that it is possible to give an estimate for the error if this
source condition holds. This result was also presented in [27], where the authors discussed
the convergence behavior of the Bregman iteration in the context of inverse scale space
methods for image restoration purposes. The proof that we present here is essentially
the same as in the reference.
Theorem 3.17
Let ũ be a J minimising solution of Au = b and assume that the source condition holds,
i.e. there exists a vector ξ ∈ ∂J (ũ) such that ξ = AT q for some vector q. Furthermore,

60

3. The Bregman algorithms

assume that it is possible to choose u0 such that p0 = 0 is a subgradient of J at u0. Then
we have the following estimation for the iterates uk of eq. (3.45).

Dpk

J

(
ũ, uk

)
6
‖q‖22
2λk ∀k ∈ N∗ (3.46)

Proof: As we know from Proposition 3.6, the necessary subgradients at each step of
the Bregman iteration can be determined by

pk = pk−1 + λAT
(
b−Auk

)
(3.47)

= p0 +
k∑
j=1

λAT
(
b−Auj

)

=
k∑
j=1

λAT
(
b−Auj

)
We now define

xk = λ
k∑
j=1

(
b−Auj

)
for k > 1 (3.48)

x0 = 0

Then we have the following identities

pk = ATxk (3.49)

xk−1 − xk = λ
k−1∑
j=1

(
b−Auj

)
− λ

k∑
j=1

(
b−Auj

)
= λ

(
Auk − b

)
Let us now fix k ∈ N∗, then for any j ∈ N∗ with j 6 k we have

λDpj

J

(
ũ, uj

)
+ λDξ

J

(
uj , ũ

)
= λ

(
−〈pj , ũ− uj〉 − 〈ξ, uj − ũ〉

)
= λ〈pj − ξ, uj − ũ〉

= 〈ATxj −AT q, λ
(
uj − ũ

)
〉

= 〈xj − q, λ
(
Auj −Aũ

)
〉

= 〈xj − q, λ
(
Auj − b

)
〉

= 〈xj − q, xj−1 − xj〉

= 1
4

(∥∥∥xj−1 − q
∥∥∥2

2
−
∥∥∥(xj − q)− (xj−1 − xj

)∥∥∥2

2

)
(3.50)

where eq. (3.50) follows from the identity

〈z1, z2〉 = 1
4
(
‖z1 + z2‖22 − ‖z1 − z2‖

2
2

)
(3.51)

61

3. The Bregman algorithms

with z1 := xj − q and z2 := xj−1 − xj . This identity holds in any real-valued Hilbert
space. It can be easily verified by multiplying out the right hand side. Thus, we now
have

λDpj

J

(
ũ, uj

)
+ λDξ

J

(
uj , ũ

)
= 1

4
(
‖z1 + z2‖22 − ‖z1 − z2‖

2
2

)
(3.52)

By expanding the lefthand side, it is also easy to verify that the following identity

‖z1 + z2‖22 + ‖z1 − z2‖22 = 2
(
‖z1‖22 + ‖z2‖22

)
(3.53)

holds in any Hilbert space. But this implies that we also have

‖z1 − z2‖22 = 2
(
‖z1‖22 + ‖z2‖22

)
− ‖z1 + z2‖22 (3.54)

Finally, from this identity we can conclude that

λDpj

J

(
ũ, uj

)
+ λDξ

J

(
uj , ũ

)
= 1

4
(
‖z1 + z2‖22 − ‖z1 − z2‖

2
2

)
(3.55)

= 1
2
(
‖z1 + z2‖22 − ‖z1‖

2
2 − ‖z2‖

2
2

)
= 1

2

(∥∥∥xj−1 − q
∥∥∥2

2
−
∥∥∥xj − q∥∥∥2

2
−
∥∥∥xj−1 − xj

∥∥∥2

2

)
6

1
2
∥∥∥xj−1 − q

∥∥∥2

2
− 1

2
∥∥∥xj − q∥∥∥2

2

Using the previous estimation, it follows that

k∑
j=1

(
λDpj

J

(
ũ, uj

)
+ λDξ

J

(
uj , ũ

))
6

1
2

k∑
j=1

(∥∥∥xj−1 − q
∥∥∥2

2
−
∥∥∥xj − q∥∥∥2

2

)

6
1
2

(∥∥∥x0 − q
∥∥∥2

2
−
∥∥∥xk − q∥∥∥2

2

)
(3.56)

Finally, because of Remark 3.10 we have for all j 6 k

Dpk

J

(
ũ, uk

)
6 Dpj

J

(
ũ, uj

)
(3.57)

and by summing up both sides for j from 1 to k we obtain

kDpk

J

(
ũ, uk

)
6

k∑
j=1

Dpj

J

(
ũ, uj

)
6

k∑
j=1

(
Dpj

J

(
ũ, uj

)
+Dξ

J

(
uj , ũ

))
(3.58)

where the second step follows from 0 6 Dξ
J

(
uj , ũ

)
. Equation (3.56) leads us now to the

desired estimation

Dpk

J

(
ũ, uk

)
6

1
2λk

(∥∥∥x0 − q
∥∥∥2

2
−
∥∥∥xk − q∥∥∥2

2

)
6

1
2λk

∥∥∥x0 − q
∥∥∥2

2
= 1

2λk ‖q‖
2
2 (3.59)

�

62

3. The Bregman algorithms

Remark 3.18
Proposition 3.3 says that the Bregman divergence is always non-negative. If furthermore,
J is strictly convex, then Corollary 3.4 claims that we also have Dpk

J (ũ, uk) > 0 as long
as ũ 6= uk. It follows that Dpk

J (ũ, uk) = 0⇔ ũ = uk. In this setting the above theorem
guarantees that the iterates converge towards the unique solution ũ. Note that if J is
not strictly convex, then Dpk

J (ũ, uk) = 0 can hold even if ũ 6= uk. Consider for example
J (u) = |u| and ũ = 0, uk = 1 and pk = 1. Then we have Dpk

J (ũ, uk) = 0 but ũ 6= uk.

3.1.3 Alternative formulation of the standard Bregman algorithm

In this section we will show one possible approach to simplify the computations in the
Bregman algorithm. We will continue to consider the following problem

arg min
u

J (u) such that 1
2 ‖Au− b‖

2
2 = 0 (3.60)

where J is a convex function from Rn to R. A should be a m× n matrix and b a vector
in Rm. We also assume that the linear system Au = b has at least one solution. Because
of Definition 3.5 and Proposition 3.6, the Bregman iterations for eq. (3.60) are given by

uk+1 = arg min
u

Dpk

J

(
u, uk

)
+ λ

2 ‖Au− b‖
2
2 (3.61)

= arg min
u

J (u)− 〈pk, u〉+ λ

2 ‖Au− b‖
2
2

pk+1 = pk − λAT
(
Auk+1 − b

)
Let us make again the assumption that it is possible to find a u0 such that we can set
p0 = 0. As we have already seen in the proof of Proposition 3.13, the variables pk can
then be given by

pk = pk−1 − λAT
(
Auk − b

)
(3.62)

= p0 − λ
k∑
j=1

AT
(
Auj − b

)

= λ
k∑
j=1

AT
(
b−Auj

)
Now let us have a look at the cost function from eq. (3.61). The last two terms can be
reformulated in then following way

λ

2 ‖Au− b‖
2
2 − 〈p

k, u〉 = λ

2 ‖Au− b‖
2
2 − λ〈

k∑
j=1

AT
(
b−Auj

)
, u〉

= λ

2 ‖Au‖
2
2 + λ

2 ‖b‖
2
2 − λ〈Au, b〉 − λ〈

k∑
j=1

AT
(
b−Auj

)
, u〉

63

3. The Bregman algorithms

= λ

2 ‖Au‖
2
2 + λ

2 ‖b‖
2
2 − λ〈b+

k∑
j=1

(
b−Auj

)
, Au〉 (3.63)

If we define bk := b+∑k
j=1

(
b−Auj

)
, then eq. (3.63) can be rewritten as

λ

2 ‖Au− b‖
2
2 − 〈p

k, u〉 = λ

2 ‖Au‖
2
2 + λ

2 ‖b‖
2
2 − λ〈b

k, Au〉 (3.64)

and the righthand side of this equation can be reformulated as

λ

2 ‖Au‖
2
2 + λ

2 ‖b‖
2
2 − λ〈b

k, Au〉 = λ

2 ‖Au‖
2
2 + λ

2 ‖b‖
2
2 − λ〈b

k, Au〉+ λ

2
∥∥∥bk∥∥∥2

2
− λ

2
∥∥∥bk∥∥∥2

2

= λ

2
∥∥∥Au− bk∥∥∥2

2
+ λ

2 ‖b‖
2
2 −

λ

2
∥∥∥bk∥∥∥2

2
(3.65)

In other words, the functions J (u)− 〈pk, u〉+ λ
2 ‖Au− b‖

2
2 and J (u) + λ

2‖Au− b
k‖22 are

minimized by the same u, since they only differ by a constant independent of u. This
motivates the following proposition. Its result can also be found in [94], however, we will
not present the proof found within this reference, but use the slightly simpler proof given
in [41].

Proposition 3.19 (Alternative form of the Bregman iteration)
The Bregman iteration defined in Definition 3.5 and Proposition 3.6 for solving the
constrained optimisation problem

arg min
u

J (u) such that 1
2 ‖Au− b‖

2
2 = 0 (3.66)

can be simplified to the following iterative form

b0 = b (3.67)

uk+1 = arg min
u

J (u) + λ

2
∥∥∥Au− bk∥∥∥2

2

bk+1 = bk + b−Auk+1

if we can choose a u0 such that p0 = 0.

Proof: As seen above we have

J (u)− 〈pk, u〉+ λ

2 ‖Au− b‖
2
2 = J (u) + λ

2
∥∥∥Au− bk∥∥∥2

2
+ λ

2 ‖b‖
2
2 −

λ

2
∥∥∥bk∥∥∥2

2
(3.68)

Since λ
2 ‖b‖

2
2 −

λ
2

∥∥∥bk∥∥∥2

2
is constant in u, both objective functions are minimized by the

same u at every iteration step k. �

The advantage of this alternative formulation is that we do not explicitly need to know
the matrix AT . This can be of advantage when the matrix A is only available through
some approximation. In that case the transpose is often not known. For example, assume

64

3. The Bregman algorithms

that A were the Jacobian matrix of some complicated function F at a certain point z.
Then the action of this Jacobian on an arbitrary vector v can be approximated by the
simple difference formula

Av ≈ F (z + εv)− F (z)
ε

(3.69)

with ε > 0. Unfortunately there is no such formula to compute AT v. Thus, it is possible
to have cases where minimising this new formulation might be much easier to perform
than the standard Bregman iteration. Because of the equivalence of the two formulations
the iterates, given by this new Bregman algorithm, have the same properties as the ones
of the standard Bregman iteration. Thus, all the convergence results that we found in the
previous section also apply in this case. Interestingly this new formulation even allows a
somewhat simpler proof for Proposition 3.13. It was originally discovered by Goldstein
and Osher and presented in [43].

Proposition 3.20
An iterate uk of the algorithm presented in eq. (3.67) which satisfies Auk = b is also a
solution to the original constrained problem from eq. (3.60).

Proof: Let uk and bk be such that Auk = b and

uk = arg min
u

J (u) + λ

2
∥∥∥Au− bk∥∥∥2

2
(3.70)

Let ũ be a true solution of eq. (3.60). Then Aũ = b = Auk and therefore,∥∥∥Auk − bk∥∥∥2

2
=
∥∥∥Aũ− bk∥∥∥2

2
(3.71)

Because uk satisfies eq. (3.70) we have

J
(
uk
)

+ λ

2
∥∥∥Auk − bk∥∥∥2

2
6 J (ũ) + λ

2
∥∥∥Aũ− bk∥∥∥2

2
(3.72)

Now eq. (3.71) implies that
J
(
uk
)

6 J (ũ) (3.73)

must hold. Since ũ satisfies the original problem, this inequality can be sharpened to an
equality, showing that uk solves eq. (3.60). �

Example 3.21
Let us consider once again Example 3.7, but this time we will solve the problem with the
alternative Bregman formulation. The iterates are computed as follows

xk+1 = arg min
x

‖Ax− b‖22 + λ

2
∥∥∥Bx− ck∥∥∥2

2
(3.74)

ck+1 = ck + c−Bxk+1

with x0 = 0 and c0 = c. Interestingly the requirement that there must be an x0 such that
p0 = 0 is a subgradient is only needed for the deduction of the algorithm. x0 is nowhere

65

3. The Bregman algorithms

used in the iterations. Therefore, we can simply set x0 = 0. Similarly as in Example 3.7,
the iterates can again be determined by solving(

ATA+ λBTB
)
x = AT b+ λBT ck (3.75)

Note in this case the standard Bregman iteration and its alternative form are almost
identical. Both suffer under same potential problems that we already mentioned in
Example 3.7.

3.1.4 The Bregman iteration and the Lagrangian penalty method

In this section we will show that the Bregman algorithm can be interpreted as an
augmented Lagrangian penalty method. This equivalence has already been pointed out
by Yin et al. in [94]. The reason why we discuss this result here is that it illustrates the
relationship between the algorithms which we will present in Chapter 4 and other well
known approaches. In the following we assume that J is a smooth and convex function
from Rn to R, A ∈ Rm×n a matrix and b ∈ Rm a vector. Let us consider the following
optimisation problem

arg min
x

J (x) such that Ax− b = 0 (3.76)

where we assume that the linear system Ax = b has at least one solution. In this context
let us quickly recall a few well known definitions. They can also be found in [40], where
they have been used to present a general approach to optimisation algorithms.

Definition 3.22 (Lagrange function)
The function L : Rn × Rm → R defined by

L (x, µ) = J (x) + 〈µ,Ax− b〉 (3.77)

is called the Lagrange function (Lagrangian) corresponding to eq. (3.76).

Definition 3.23 (Karush-Kuhn-Tucker point)
The conditions

∇xL (x, µ) = 0 (3.78)
Ax− b = 0

where we define
∇xL (x, µ) := ∇J (x) +ATµ (3.79)

are called the Karush-Kuhn-Tucker conditions of the constrained optimisation problem
from eq. (3.76). Any vector (x∗, µ∗) ∈ Rn × Rm that fulfills these conditions is called a
Karush-Kuhn-Tucker point or sometimes also a KKT point.

66

3. The Bregman algorithms

The Lagrange function and the Karush-Kuhn-Tucker conditions are classical tools that
are used to state when solutions of optimisation problems exist. They can be formulated
in much more general framework than we do it here. See for example [17]. Let us now
assume that x∗ is a solution of eq. (3.76). Then x∗ is obviously also a solution of

arg min
x

J (x) + α

2 ‖Ax− b‖
2
2 such that Ax− b = 0 (3.80)

with α > 0. The Lagrangian of eq. (3.80) is given by

L (x, µ, α) := J (x) + α

2 ‖Ax− b‖
2
2 + 〈µ,Ax− b〉 (3.81)

and is called the augmented Lagrangian of eq. (3.76). This augmented Lagrangian can
be used to formulate an algorithm to solve the initial problem given in eq. (3.76). It
is presented in Algorithm 3.1 and is also known as the augmented Lagrangian penalty
method. It is a relatively popular method to solve constrained optimisation problems

Data: J , A, b
Result: x∗ minimising eq. (3.76)
Initialize: x0 ∈ Rn, µ0 ∈ Rm, α0 > 0, c ∈ (0, 1]
while xk is not a KKT point of eq. (3.76) do

xk+1 ← arg min
x

L
(
x, µk, αk

)
µk+1 ← µk + αk

(
Axk+1 − b

)
if
∥∥∥Axk+1 − b

∥∥∥2

2
> c

∥∥∥Axk − b∥∥∥2

2
then

αk+1 = 10αk
else

αk+1 = αk
end
k = k + 1

end

Algorithm 3.1: The augmented Lagrangian penalty method for solving eq. (3.76).

such as eq. (3.76). A more detailed analysis of this algorithm can also be found in [40].
The algorithm is for us only interesting insofar that it can be linked to the Bregman
iteration. In order to see this, let us now slightly reformulate the different steps of
Algorithm 3.1.

arg min
x

L
(
x, µk, αk

)
= arg min

x
J (x) + αk

2 ‖Ax− b‖
2
2 + 〈µk, Ax− b〉 (3.82)

= arg min
x

J (x)− J
(
xk
)

+ 〈µk, Ax− b〉 − 〈µk, Axk〉+ αk
2 ‖Ax− b‖

2
2

= arg min
x

J (x)− J
(
xk
)

+ 〈µk, Ax−Axk〉 − 〈µk, b〉+ αk
2 ‖Ax− b‖

2
2

67

3. The Bregman algorithms

= arg min
x

J (x)− J
(
xk
)

+ 〈ATµk, x− xk〉 − 〈µk, b〉+ αk
2 ‖Ax− b‖

2
2

= arg min
x

J (x)− J
(
xk
)
− 〈−ATµk, x− xk〉+ αk

2 ‖Ax− b‖
2
2

Now let us define pk := −ATµk. Then the above formulation becomes

xk+1 = arg min
x

J (x)− J
(
xk
)
− 〈pk, x− xk〉+ αk

2 ‖Ax− b‖
2
2 (3.83)

pk+1 = pk − αkAT
(
Axk+1 − b

)
This looks almost like our Bregman algorithm from Proposition 3.6. Actually if µ0 = 0
and if 0 = −ATµ0 = p0 ∈ ∂J

(
u0) and c = 1 in Algorithm 3.1, then Proposition 3.8

guarantees that ‖Axk+1 − b‖22 6 ‖Axk − b‖22 for all k and thus αk is never increased and
remains constant. Under these conditions, the Bregman iteration applied to eq. (3.76) is
equivalent to the augmented Lagrangian method.

This equivalence is interesting for a few reasons. In the next section we will discuss
the so called split Bregman iteration. This variant of the Bregman algorithm leads to
problems of the form

arg min
u,d

J (u, d) such that d−Au− b = 0 (3.84)

with a convex function J , a matrix A and a vector b. The split Bregman formulation then
proceeds by solving this optimisation problem with the help of the Bregman iteration
from the previous sections. Interestingly it is also the same kind of problem for which
we have shown the equivalence between the Bregman framework and the augmented
Lagrangian method. It follows, that these three methods are closely linked to each other
and that they share a rather large set of common properties. Furthermore, the split
Bregman algorithm will also be the basis of our optical flow algorithms presented in
Chapter 4. As a consequence, all the forthcoming work could also be interpreted as an
application of the Lagrangian penalty method.

3.2 The split Bregman algorithm
The Bregman formulations that we have seen in Section 3.1 and Section 3.1.3 were
limited to constrained optimisation problems. Our next step will be to show that there
exists an elegant extension of the Bregman framework that makes it possible to minimise
unconstrained convex energy functionals. This extension was proposed by Goldstein
and Osher in [43] in 2009 and is known under the name split Bregman algorithm. Our
presentation of the algorithm will be almost identical to the description found within this
reference. We will, however, also discuss a certain number of extensions and variations
that the original authors did not consider. The split Bregman formulation is based upon
the Bregman algorithms from the previous sections. In Remark 3.24, we will show that
there is little difference whether one considers the alternative Bregman formulation or
whether one uses the standard form. This result cannot be found in [43]. Furthermore,

68

3. The Bregman algorithms

in Section 3.2.1 we will discuss how Theorem 3.17 can be applied to the split Bregman
algorithm. This result is also new. The split Bregman formulation is especially useful for
solving the following two problems:

arg min
u

‖Φ (u)‖1 +H (u) (3.85)

arg min
u

‖Φ (u)‖2 +H (u) (3.86)

In this context Φ is an affine mapping, i.e. Φ(u) = Λu+ b for some matrix Λ and some
vector b. H should be a convex function from Rn to R. The difficulty in minimising such
cost functions lies within the fact that ‖·‖1 and ‖·‖2 are not differentiable in 0.

The basic idea behind the split Bregman approach is to introduce an additional variable
that will enable us to separate the non-differentiable terms from the differentiable ones.
This separation will make it possible to consider each term individually and to devise
specific strategies that allow an efficient and accurate minimisation. Since the reasoning
will be almost identical for eq. (3.85) and for eq. (3.86), we will limit us on eq. (3.85)
and simply mention where both approaches would differ.

As already mentioned, the split Bregman algorithm introduces a new variable and
transforms the unconstrained problem into a constrained problem. This is done by
rewriting eq. (3.85) in the following way:

arg min
d,u

‖d‖1 +H (u) such that d = Φ(u) (3.87)

Clearly the formulations from eq. (3.85) and eq. (3.87) are equivalent. If we know the
minimiser of eq. (3.85), then we can easily obtain the minimiser of eq. (3.87) and vice
versa. In order to make the subsequent reasoning simpler and to avoid a cumbersome
notation, we introduce the following expressions:

η := (u, d)T (3.88)
J (η) := ‖d‖1 +H (u)
A (η) := d− Λu

Obviously J is again a convex function and A is a linear map. These properties follow
immediately from the properties of H and Φ. Using these notations, eq. (3.87) can be
rewritten as

arg min
η

J (η) such that 1
2 ‖A (η)− b‖22 = 0 (3.89)

Equation (3.89) looks exactly like the kind of problems we analysed in the chapters
before and can for example be solved with the alternative Bregman algorithm from
Proposition 3.19. We assume at this point that it is possible to choose η0 such that 0 is a
subgradient of J at η0. This is always possible if H attains its minimum. Functions like
H (u) := exp (u) are not allowed although they are convex. By applying the alternative

69

3. The Bregman algorithms

formulation of the Bregman algorithm we obtain the following simple iterative procedure.

b0 = b (3.90)

ηk+1 = arg min
η

J (η) + µ

2
∥∥∥A (η)− bk

∥∥∥2

2

bk+1 = bk + b−Aηk+1

with µ > 0 being a constant positive parameter. Now we reintroduce the definitions of
J and A and obtain the following iterative strategy(

uk+1, dk+1
)

= arg min
u,d

‖d‖1 +H (u) + µ

2
∥∥∥d− Λu− bk

∥∥∥2

2
(3.91)

bk+1 = bk + b− dk+1 + Λuk+1

At first glance it is not clear why this formulation might be beneficial since the cost
function contains now even more terms than before. Further, we have to minimise
with respect to two variables instead of just one. The trick is to minimise the cost
function in eq. (3.91) by alternating between the minimisation with respect to u and
the minimisation with respect to d. Since we are dealing with a convex problem the
alternating minimisation is actually a descent strategy and thus, we will obtain a sequence
(uk,j , dk,j)j that reduces the value of the cost function in each step and will sooner or
later come close to the global minimum. Although this method is far from being efficient,
the individual component functions can be minimized most of the time extremely fast.
This compensates for the slowness of the componentwise minimisation. All in all, we
have to perform the following two steps:

Step 1 : uk,j+1 = arg min
u

H (u) + µ

2
∥∥∥dk,j − Λu− bk

∥∥∥2

2
(3.92)

Step 2 : dk,j+1 = arg min
d

‖d‖1 + µ

2
∥∥∥d− Λuk,j+1 − bk

∥∥∥2

2

The optimization of step 1 depends largely on the exact nature of H. As a consequence
we cannot make any further claims about it at this point. We just note that for the
case where H (u) = ‖Cu− f‖22 with some matrix C and a vector f , the cost function
becomes differentiable and the minimiser can be obtained by solving a linear system of
equations with a positive semi-definite matrix. If either C or Λ has full rank, then the
system matrix will even be positive definite. In this case there exist many highly efficient
algorithms. Step 2 is a well known problem. We analysed it in Section 2.4. As shown in
Proposition 2.51 the solution is given by

dk,j+1
i = shrink

((
Λuk,j+1 + bk

)
i
,
1
µ

)
(3.93)

where the dk,j+1
i are the components of the vector dk,j+1. If we had used eq. (3.86)

instead of eq. (3.85), then we would have to use the generalised shrinkage operator and
apply Proposition 2.54. In that case, the solution is given by

dk,j+1 = gshrink
(

Λuk,j+1 + bk,
1
µ

)
(3.94)

70

3. The Bregman algorithms

This is the only significant difference between the approach for eq. (3.85) and for eq. (3.86).
Since the shrinkage operators only require elementary operations they can be carried out
extremely fast.

The detailed formulation of the split Bregman algorithm with N iterations and M
alternating minimisation steps is depicted in Algorithm 3.2.

Data: Λ, b, H, N , M
Result: uN and dN minimising eq. (3.87)
Initialize: u0 such that 0 ∈ ∂H

(
u0), d0 = 0, b0 = b

for k = 0 to N − 1 do
uk,0 = uk

dk,0 = dk

for j = 0 to M − 1 do
uk,j+1 = arg min

u
H (u) + µ

2
∥∥∥dk,j − Λu− bk

∥∥∥2

2

dk,j+1 = arg min
d

‖d‖1 + µ

2
∥∥∥d− Λuk,j+1 − bk

∥∥∥2

2

end
uk+1 = uk,M

dk+1 = dk,M

bk+1 = bk + b− dk+1 + Λuk+1

end

Algorithm 3.2: Split Bregman algorithm for N iterations with M alternating minimisation
steps based upon the alternative form of the Bregman iteration.

At this point one should note that the split Bregman algorithm is simply a way of
reformulating an unconstrained convex optimization problem in such a way that we
receive a constrained optimization problem in the form of eq. (3.87). This problem is
then solved with the Bregman algorithms that we saw in the previous sections. The
crucial point is that this constrained optimisation problem is of the form

arg min
u,d

J (u, d) sucht that
∥∥A(ud)− b∥∥2

2 = 0 (3.95)

with a convex function J , a matrix A and a vector b. Thus, it fits exactly into the
category of problems for which we have a complete convergence theory. Propositions 3.8,
3.11 and 3.13 tell us that the iterates (uk, dk) converge towards a solution of A

(u
d

)
= b

and that each iterate that solves this system also minimises the energy functional J . As
a consequence we always have convergence towards a solution of eq. (3.87) and thus also
towards a solution of eq. (3.85) (resp. eq. (3.86)).

Remark 3.24
The authors of [43] only considered the split Bregman iteration in combination with the
alternative formulation of the Bregman algorithm. However, it would also be possible to

71

3. The Bregman algorithms

use the standard Bregman iteration for the deduction of the split Bregman algorithm.
Our functional J in the split Bregman algorithm was of the form J (u, d) = ‖d‖+H (u).
The corresponding Bregman divergence would look as follows:

D
py
J

((x1
x2

)
,
(y1
y2

))
= J (x1, x2)− J (y1, y2)− 〈py,

(x1
x2

)
−
(y1
y2

)
〉 (3.96)

= J (x1, x2)− J (y1, y2)− 〈py1 , x1 − y1〉 − 〈py2 , x2 − y2〉

Therefore, the split Bregman algorithm would require us to solve the following problem
at each iteration step(

uk+1, dk+1
)

= arg min
u,d

J (u, d)− 〈pu, u〉 − 〈pd, d〉+
λ

2 ‖d− Λu− b‖22 (3.97)

= arg min
u,d

‖d‖+H (u)− 〈pu, u〉 − 〈pd, d〉+
λ

2 ‖d− Λu− b‖22

The corresponding alternating minimisation scheme is given by

arg min
u

H (u)− 〈pu, u〉+
λ

2 ‖d− Λu− b‖22 (3.98)

arg min
d

‖d‖ − 〈pd, d〉+
λ

2 ‖d− Λu− b‖22

The scalar products are differentiable functions and will not cause any additional difficul-
ties in the minimisation of the first expression. The second expression, however, requires
a modification of the shrinkage operator. If ‖d‖ = ‖d‖1, then the minimisation can be
reduced to 1-D problems of the form

arg min
di

|di| − pdi +
λ

2 (di − f)2 (3.99)

di is a minimiser if and only if it fulfils the equation

0 = ∂ (|·|) (d)− p+ λ (di − f) (3.100)

= ∂ (|·|) (d) + λ

(
di − f −

1
λ
p

)
With exactly the same arguments as in the proof of Proposition 2.51 it follows that di is
given by

di =

f + 1

λ (p− 1) if f + p
λ ∈

(
1
λ ,∞

)
0 if f + p

λ ∈
[
− 1
λ ,

1
λ

]
f + 1

λ (p+ 1) if f + p
λ ∈

(
−∞,− 1

λ

) (3.101)

which corresponds to di = shrink
(
f + 1

λp,
1
λ

)
. If ‖d‖ = ‖d‖2, then d must fulfil the

following equation

0 = ∂ (‖·‖2) (d)− pd + λ (d− Λu− b) (3.102)

72

3. The Bregman algorithms

= ∂ (‖·‖2) (d) + λ

(
d−

(
Λu+ b+ 1

λ
pd

)
︸ ︷︷ ︸

:=f̃

)

This is exactly the same equation that we considered in the proof of Proposition 2.54. It
follows that d is given by

d = gshrink
(
f̃ ,

1
λ

)
= gshrink

(
Λu+ b+ 1

λ
pd,

1
λ

)
(3.103)

To conclude, we can state that the split Bregman algorithm can also be formulated with
the standard Bregman iteration. The complete algorithm is given in Algorithm 3.3. In
the following we will continue to use the split Bregman algorithm based on the alternative
Bregman iteration. One of the reasons for this choice is given in Remark 3.26.

Data: Λ, b, H, N , M
Result: uN and dN minimising eq. (3.87)
Initialize: u0, d0 arbitrary, p0 =

(
p0
u, p

0
d

)T ∈ ∂ (‖d‖+H (u))
(
u0, d0)

for k = 0 to N − 1 do
uk,0 = uk

dk,0 = dk

for j = 0 to M − 1 do
uk,j+1 = arg min

u
H (u)− 〈pku, u〉+

µ

2
∥∥∥dk,j − Λu− b

∥∥∥2

2

dk,j+1 = arg min
d

‖d‖ − 〈pkd, d〉+
µ

2
∥∥∥d− Λuk,j+1 − b

∥∥∥2

2

end
uk+1 = uk,M

dk+1 = dk,M

pk+1
u = pku + µΛT

(
dk+1 − Λuk+1 − b

)
pk+1
d = pkd − µ

(
dk+1 − Λuk+1 − b

)
end

Algorithm 3.3: Split Bregman algorithm for N iterations with M alternating minimisation
steps based upon the standard Bregman iteration.

Remark 3.25
The split Bregman algorithm, as presented above, also applies to problems of the following
form

arg min
u

m∑
k=1
‖Φk (u)‖1 +H (u) (3.104)

arg min
u

m∑
k=1
‖Φk (u)‖2 +H (u) (3.105)

73

3. The Bregman algorithms

with m > 1 and where the same assumptions hold for the Φk and H as for eq. (3.85)
and eq. (3.86). Instead of one variable d, we will use m variables dk this time. Then one
can reformulate eq. (3.104) as

arg min
u,d1,...,dm

m∑
k=1
‖dk‖1 +H (u) such that 1

2

m∑
k=1
‖dk − Φk (u)‖22 = 0 (3.106)

In order to get an expression of the form of eq. (3.89), we take the following approach:
we define the vector d := (d1, d2, . . . , dm)T by stacking all the variables dk on top of each
other. Since the Φk are all affine mappings, they can each be described by a matrix Λk
and a vector bk which we can also stack on top of each other to obtain a very large matrix
Λ := (Λ1, . . . ,Λm)T and a vector b := (b1, . . . , bm)T . Then it is a trivial computation to
see that

m∑
k=1
‖dk − Φk (u)‖22 = ‖d−Λu− b‖22 (3.107)

and thus, eq. (3.106) can be reformulated as a problem of the form of eq. (3.89). As a
consequence, the alternative formulation for the Bregman iteration can also be applied to
this problem and all the nice properties like convergence remain verified. It remains to
analyse how the formulation of the algorithm is affected by the sum. By simply replacing
every occurrence of ‖d‖1 by ∑m

k=1 ‖dk‖1 in the presentation above, we see that there is
practically no change in the algorithm. The main difference is that we will have to apply
the shrinkage on every variable dk separately and that we will have to handle several
variables bk. The corresponding formulation is presented in Algorithm 3.4. Obviously
the same argumentation also holds for eq. (3.105). All one has to do, is to exchange the
soft shrinkage operator with the generalised shrinkage operator. The case m = 2 of this
formulation has been discussed in [43] in the context of denoising methods with the ROF
model.
Remark 3.26
The split Bregman algorithm, as presented in Algorithm 3.2 and Algorithm 3.4, requires
an initialisation for u0 that might be difficult to determine. However, by closely analysing
the algorithms, one notices u0 is actually never used during the iterations. Thus, it
is basically enough to prove that such a value exists and to set u0 to 0. Note, that
the existence is really necessary, otherwise the alternative Bregman formulation cannot
be applied. Also note, that this would not hold anymore if we would first minimise
with respect to d and only then with respect to u. The order in which the variables
are minimised is important. This observation certainly presents an advantage over the
formulation given in Algorithm 3.3, where we used the standard Bregman iteration.
It is not possible to avoid the (potentially highly non-trivial) computation of p0 in
Algorithm 3.3.

Remark 3.27
In theory, the parameter µ that appears in the above Bregman algorithms can be chosen
arbitrarily. We showed in Section 3.1.2 that we have convergence as long as µ is positive.
However, this parameter µ appears always inside the shrinkage operators during the

74

3. The Bregman algorithms

Data: Λk, bk, for k = 1, . . . ,m, H, N , M
Result: uN and dNk minimising eq. (3.106)
Initialize: u0 such that 0 ∈ ∂H

(
u0), d0

k = 0, b0k = bk for k = 1, . . . ,m
for i = 0 to N − 1 do

ui,0 = ui

di,0k = dik for k = 1, . . . ,m
for j = 0 to M − 1 do

ui,j+1 = arg min
u

H (u) + µ

2

m∑
k=1

∥∥∥di,jk − Λku− bik
∥∥∥2

2

di,j+1
k = arg min

d
‖d‖1 + µ

2
∥∥∥d− Λkui,j+1 − bik

∥∥∥2

2
for k = 1, . . . ,m

end
ui+1 = ui,M

di+1
k = di,Mk for k = 1, . . . ,m
bi+1
k = bik + bk − di+1

k + Λkui+1 for k = 1, . . . ,m
end

Algorithm 3.4: Variant of the split Bregman algorithm for N iterations with M alternating
minimisation steps.

alternating minimisation scheme of the split Bregman formulation. Therefore, setting it
too small would result in setting the variables d always to 0. This might lead to a serious
reduction in the convergence speed or possibly cause other problems.

As for the two previous Bregman algorithms, we also present a simple example on how
the split Bregman algorithm can be used.

Example 3.28
Assume A and B are matrices, b and c two vectors and λ > 0. We wish to solve the
following problem

arg min
x

‖Ax+ b‖2 + λ

2 ‖Bx− c‖
2
2 (3.108)

The split Bregman algorithm transforms this problem into the constrained form

arg min
x,d

‖d‖2 + λ

2 ‖Bx− c‖
2
2 such that 1

2 ‖d−Ax− b‖
2
2 = 0 (3.109)

and yields the following iterative strategy(
xk+1, dk+1

)
= arg min

x,d
‖d‖2 + λ

2 ‖Bx− c‖
2
2 + µ

2
∥∥∥d−Ax− bk∥∥∥2

2
(3.110)

bk+1 = bk + b− dk+1 +Axk+1

75

3. The Bregman algorithms

with x0 = 0, d0 = 0 and b0 = b. Note that this choice is possible because of Remark 3.26.
λ
2 ‖Bx− c‖

2
2 attains its minimum if x is a solution of BTBx = BT c. The next step

consists in minimising the cost function alternatively with respect to x and with respect
to d. The minimisation with respect to x comes down to solving the following linear
system (

λBTB + µATA
)
x = λBT c+ µAT

(
dk − bk

)
(3.111)

whereas for d it is enough to apply the generalised shrinkage operators. It follows that
the complete iterative procedure looks as in Algorithm 3.5.

Data: A, B, b, c, N , M
Result: xN minimising ‖Ax+ b‖2 + λ

2 ‖Bx− c‖
2
2

Initialize: x0 = 0, d0 = 0, b0 = b
for i = 0 to N − 1 do

xi,0 = xi

di,0 = di

for j = 0 to M − 1 do
Solve

(
λBTB + µATA

)
x = λBT c+ µAT

(
di,j − bi

)
−→ xi,j+1

di,j+1 = gshrink
(
Axi,j+1 + bi,

1
µ

)
end
xi+1 = xi,M

di+1 = di,M

bi+1 = bi + b− di+1 +Axi+1

end

Algorithm 3.5: Example of the split Bregman algorithm.

3.2.1 Convergence speed of the split Bregman algorithm

Since the split Bregman algorithm, as we consider it in this thesis, is based upon the
alternative formulation of the Bregman algorithm, we know that all the results about
the convergence that we have seen about that algorithm also hold here. In particular,
Theorem 3.17 must hold. This theorem gave us an estimate for the convergence speed if
certain regularity conditions were met. In the following, we would like to analyse if these
conditions can be fulfilled for the split Bregman algorithm. We are going to consider the
following problem

arg min
u

N∑
k=1
‖Aku+ bk‖2 + λ

2 ‖Bu− c‖
2
2 (3.112)

where Ak : Rn → Rm, B : Rn → Rl are matrices, bk ∈ Rm, c ∈ Rl some vectors and λ > 0
a real-valued parameter. This problem corresponds to those mentioned in Remark 3.25

76

3. The Bregman algorithms

with Φk (u) = Aku + bk and H (u) = λ
2 ‖Bu− c‖

2
2. After introducing the additional

variables, eq. (3.112) becomes

arg min
u,d1,...,dN

N∑
k=1
‖dk‖2 + λ

2 ‖Bu− c‖
2
2 such that

N∑
k=1
‖dk −Aku− bk‖22 = 0 (3.113)

Note, that the necessary conditions for the application of the split Bregman algorithm are
met. The cost function attains its global minimum for dk = 0 for all k and u a solution
of BTBu = BT c. The constraining condition obviously also has a solution. Let us now
define the matrix Λ : Rn+Nm → RNm by

Λ :=

−A1 I 0 . . . 0
−A2 0 I . . . 0

...
...

...
−AN 0 0 . . . I

 (3.114)

where I is the identity matrix in Rm. If we define further b̃ = (b1, b2, . . . , bN)T , then
eq. (3.113) can be rewritten as

arg min
u,d1,...,dN

N∑
k=1
‖dk‖2 + λ

2 ‖Bu− c‖
2
2︸ ︷︷ ︸

:=J(u,d1,...,dN)

such that
∥∥∥Λ (u, d1, . . . , dN)T − b̃

∥∥∥2

2
= 0 (3.115)

Now assume, that we have found u = (ũ, d̃1, . . . , d̃N)T , a J minimising solution of Λx = b̃.
In order to apply Theorem 3.17, we need to know how ∂J(ũ, d̃1, . . . , d̃N) looks like. So
assume, that (w,w1, . . . , wN)T is a subgradient. By definition, we must have for all
dk, k = 1, . . . , N and all u:

N∑
k=1
‖dk‖2 + λ

2 ‖Bu− c‖
2
2 −

N∑
k=1

∥∥∥d̃k∥∥∥2
+ λ

2 ‖Bũ− c‖
2
2 (3.116)

> 〈w, u− ũ〉+
N∑
k=1
〈wk, dk − d̃k〉

Since this must hold for all possible choices, it must hold especially for dk = d̃k with
k = 1, . . . , N . But then we see, that w must be a subgradient of λ

2 ‖Bu− c‖
2
2 at ũ.

Setting u = ũ and all but one dk to d̃k yields in the same way that every wk must be
a subgradient of ‖d‖2 at d̃k. From Corollary 2.49 it follows, that we have the following
representation

w = λBT (Bũ− c) (3.117)

wk = d̃k∥∥∥d̃k∥∥∥2

for k = 1, . . . , N (3.118)

77

3. The Bregman algorithms

We assume here, that all d̃k are different from 0. If this is not the case, then the
choice of the subgradient is not unique anymore and would complicate the following
discussion. Theorem 3.17 requires that there is a vector γ := (γ1, . . . , γN)T such that
ΛTγ ∈ ∂J(ũ, d̃1, . . . , d̃N). The matrix ΛT looks as follows

ΛT :=

−AT1 −AT2 . . . −ATN
I 0 . . . 0
0 I . . . 0
...

...
0 0 . . . I

 (3.119)

and therefore the following conditions must be fulfilled

ΛTγ =

−
∑N
k=1A

T
k γk

γ1
γ2
...
γN

 =

λBT (Bũ− c)
d̃1
‖d̃1‖2
d̃2
‖d̃2‖2...
d̃N
‖d̃N‖2

(3.120)

But this equation is equivalent to

N∑
k=1

ATk
d̃k∥∥∥d̃k∥∥∥2

= λBT (c−Bũ) (3.121)

If this relation holds for the minimising solution, then the estimate given in Theorem 3.17
also holds for the split Bregman algorithm.

Remark 3.29
Should any of the d̃k be 0, then Corollary 2.49 states that any vector with norm less or
equal than 1 would be a valid subgradient of ‖d‖2 at d̃k. In that case, we gain additional
degrees of freedom in the above formula and increase the chances that it can be fulfilled.
Further, if eq. (3.112) has a minimiser ũ such that the cost function becomes 0, then it
follows from eq. (3.113), that all the d̃k can be set to 0. Therefore, it might be appropriate
to adopt the convention 0

0 = 0. In this setting, eq. (3.121) could be reduced to the trivial
equation 0 = 0.

Remark 3.30
Equation (3.121) is basically of no use for practical purposes as it requires the knowledge
of the exact solution in order to give an estimate for the convergence speed. Also note that
the split Bregman algorithm still converges, even if eq. (3.121) is not fulfilled. Theorem 3.17
only gives an estimate for the convergence speed, not for the convergence itself. The
convergence is guaranteed by Proposition 3.8, Proposition 3.11 and Proposition 3.13 as
mentioned in the beginning of Section 3.2.

78

3. The Bregman algorithms

3.3 Summary and concluding remarks
In this section we presented mainly two versions of the Bregman iterative algorithm. The
classical formulation in Section 3.1 solves constrained problems of the form

arg min
u

J (u) such that H (u) = 0 (3.122)

by computing iteratively

uk+1 = arg min
u

Dpk

J

(
u, uk

)
+ λH (u) (3.123)

Furthermore, in Section 3.1 we discussed an alternative formulation, that does not
require the computation of subgradients if H is of the form ‖Au− b‖22. This alternative
formulation also plays a crucial role in the split Bregman algorithm which we presented
in Section 3.2. The split Bregman algorithm solves variational problems of the form

arg min
u

‖Au+ b‖+H (u) (3.124)

by applying the normal Bregman algorithm to the following equivalent constrained
problem

arg min
u,d

‖d‖+H (u) such that ‖d−Au− b‖ = 0 (3.125)

The split Bregman algorithm is especially interesting as it allows us to minimise non-
smooth convex energy functionals. Furthermore, we have presented a detailed convergence
theory in Section 3.1.2 that applies to the standard Bregman iteration as well as the split
Bregman approach. We were able to prove that both algorithms converge to the desired
solutions and that it is possible to give estimates for the error if certain conditions are
met. The convergence theory is especially important as it provides a mathematically
sound basis for the optical flow problem that we wish to solve in the coming chapter.
Finally we also proved an interesting link between the split Bregman algorithm and the
augmented Lagrangian penalty method in Section 3.1.4. This equivalence allows us to
interpret the forthcoming optical flow algorithms from different point of views. The
following graphic summarises the development of the algorithms presented in this chapter.
The arrows indicate which formulation can be deduced from which algorithm.

Standard Bregman
iteration from
Definition 3.5.

Alternative Bregman
formulation from
Proposition 3.19.

Split Bregman
iteration as shown
in Algorithm 3.4.

Split Bregman
iteration as discussed

in Remark 3.24.

Bregman iteration
for optical flow as

presented in Chapter 4.

Possible, but will
not be considered

in this Thesis.

79

4. The Bregman iteration for optical flow

4 The Bregman iteration for optical flow
As we have seen in the previous chapters, the Bregman iteration possesses, at least from the
theoretical point of view, several advantages over traditional penalty function/continuation
methods and appears to be an interesting alternative when it comes to solving convex
optimisation problems. Especially the split Bregman algorithm seems to be appealing
because it allows us to minimise non-smooth cost functions. Our next goal will be to
investigate how well the Bregman formulation really performs in practice. The main
objective will be the accurate estimation of the displacement field for a given image
sequence, also known as the optical flow problem.

In the following we will present a novel approach to solve the optical flow problem
based upon the results from the previous chapters. Especially the split Bregman iteration
will play a key-role role in our algorithms. The modelling part will be based mostly upon
[18, 19, 20, 35, 78, 86, 95]. Further references will be cited when necessary.

Hereinafter we will denote our image sequence by a function f : Ω× T → R, where Ω
is a subset of R2 representing the image domain (which in most cases can be assumed to
be rectangular) and T ⊆ R should denote the temporal dimension. We wish to determine
the flow field of f between two consecutive frames at the moments t and t + 1. The
two components of the vector displacement field will be denoted by u, v : Ω→ R. Since
f maps to R, it is clear that we restrict ourselves to grey value images. Extensions to
color valued images are possible but they render the modeling and the formulation of the
algorithms cumbersome.

4.1 Problem formulation
As already mentioned, the optical flow problem seeks the displacement vector field that
yields the correspondences between the pixels of two images. Figure 4.1 visualises this
idea. This figure depicts two frames of an image sequence containing one moving and
one static object. The task consists in determining those vectors that indicate where
a given pixel from the first frame can be found in the second frame. Although this
problem sounds rather simple, it is usually highly non-trivial. Solutions may or may not
always exist. Even if they exist, they are not necessarily unique. Beside the solution
already depicted in Fig. 4.1, one could also have mapped the upper end of the bar in
the first frame to the lower end in the second frame and subsequently the lower end of
the bar in frame one to the upper end of the bar in frame two. This is a valid solution
and corresponds to a rotation by half a turn followed by a translation. In general, the
considered image sequences are based off real world data and are even more difficult to
handle than this trivial example from Fig. 4.1. Large displacements, noise, occlusions
and illumination changes are only a few of the problems that must be handled properly.

81

4. The Bregman iteration for optical flow

Figure 4.1: Left: Frame at time t. Middle: Frame at time t+ 1. Right: Overlaid frames with positions
at time t marked in grey and sought displacement field in red.

As a consequence, it is important to chose a mathematical formulation that allows us
to handle all these difficulties. A plethora of more or less suited formulations can be
found in the literature. However, we will limit us to a single class, namely variational
formulations.

Variational formulations allow a mathematical sound integration of different concepts
into a single minimisation framework and therefore, they belong to the best performing
and best understood techniques for solving the optical flow problem. They can easily be
designed in such a way that they preserve motion boundaries, treat large displacements
correctly, are robust with respect to illumination changes or perform favourably in
the presence of noise and occlusions. See for example [5, 18, 19, 20, 35, 50, 95, 98].
Furthermore, they represent an almost optimal framework for the Bregman iteration.
Variational methods are based on the minimisation of an energy functional. This energy
functional is usually of the form

E (u, v) :=
∫
Ω
D
(
∂kf, u, v

)
+ λS (∇f,∇u,∇v) dx (4.1)

where λ > 0 is positive regularisation parameter and ∂kf the set of all partial derivatives
of order k of the image sequence f . In this context D is often called the data term, whereas
S is called smoothness term. In order to determine correspondences, we must assume
that a certain quantity remains constant through time. This constancy assumption is
usually stored inside the data term. Furthermore, it seems to be reasonable to assume
that the displacement does not change significantly when we consider the neighboring
pixels. In mathematical terms this means that we want the functions u and v to be
smooth. This requirement is represented by the smoothness term. The parameter λ
basically dictates how much we trust the different assumptions. Large values indicate
that the displacement field should be smooth, whereas small values express our desire for
fulfilling the constancy assumption as good as possible.

4.1.1 Modeling the data term

The data term expresses what part of the image remains constant through time. Several
choices are possible.

82

4. The Bregman iteration for optical flow

Grey value constancy: The simplest assumption that one can make. Here one assumes
that the following equality holds

f (x+ u (x, y) , y + v (x, y) , t+ 1) = f (x, y, t) (4.2)

Surprisingly, this assumption is relatively often fulfilled when the displacements
remain small enough. Unfortunately, we have two unknowns but only one equation.
Thus, there is no chance to recover the complete displacement field based on this
equation alone. This problem is known in the literature as the aperture problem.

Gradient constancy: Assuming that the spatial gradient of f remains constant leads to
the following equation

∇f (x+ u (x, y) , y + v (x, y) , t+ 1) = ∇f (x, y, t) (4.3)

Here we have two unknowns and two equations. As a consequence, the aperture
problem is not always present. Furthermore, the gradient constancy assumption
remains fulfilled when the image undergoes global illumination changes, whereas
the grey value constancy does not.

Other higher order assumptions: Alternative choices would be the constancy of the
Hessian or the Laplacian of f . However, due to the high order of differentiation,
these assumptions often suffer from stability problems, especially in presence of
noise. As a consequence they are less attractive and rarely used.

Combinations of several constancy assumptions: It is possible to combine several con-
stancy assumption into a single formulation. This way one obtains the strengths of
each constancy assumption. The most popular choice is to enforce the constancy
of the grey value and the constancy of the gradient. Although combining several
assumptions easily leads to over determined systems, we will see that this does not
cause any major problems.

The above models are all non-linear and will lead to non-convex energy functionals.
However, as we have seen in the previous chapters, the Bregman formulation requires
convex optimization problems. In order to overcome this hurdle, we approximate the left
hand side of the equations above by their corresponding first order Taylor expansions.
Then eq. (4.2) becomes

fx (x, y, t)u (x, y) + fy (x, y, t) v (x, y) + ft (x, y, t) = 0 (4.4)

and eq. (4.3) becomes

fxx (x, y, t)u (x, y) + fxy (x, y, t) v (x, y) + fxt (x, y, t) = 0 (4.5)
fxy (x, y, t)u (x, y) + fyy (x, y, t) v (x, y) + fyt (x, y, t) = 0 (4.6)

where the indices designate the derivatives with respect to the corresponding variables.
Note that this approximation is only accurate as long as the displacements are small.

83

4. The Bregman iteration for optical flow

In the following we will be using the combined linearised grey value and gradient
constancy assumption for our purposes. This choice has proven in the past to be highly
successful. See for example [18, 98]. The following two definitions for the data term are
possible

D1 (u, v) = (fxu+ fyv + ft)2 + γ
(
(fxxu+ fxyv + fxt)2 + (fxyu+ fyyv + fyt)2

)
(4.7)

D2 (u, v) = |fxu+ fyv + ft|+ γ
(
|fxxu+ fxyv + fxt|+ |fxyu+ fyyv + fyt|

)
(4.8)

where the dependencies of the variables have been omitted for simplicity. γ is a positive
weight between the two assumptions. It basically states which one is more important.
D1 is interesting because it is convex and smooth. From a theoretical point of view it

has optimal characteristics. However, it is not robust with respect to outliers. Already
small violations of the constancy assumption could spoil the result due to the heavy
penalisation. On the other side, D2 is a much more robust term since the penalisation is
sub-quadratic. However, its disadvantage is that the absolute value is not differentiable
in 0.

4.1.2 Modeling the smoothness term

The smoothness term acts as a regularisation term. Inside homogeneous areas the data
term suffers from the aperture problem (no matter which constancy assumption we
consider as the image derivatives will always be 0, and thus every choice for u and v
would be optimal). The smoothness term guarantees the uniqueness and existence of a
solution even in such areas by extending the solution from non-homogeneous areas to
the homogeneous ones and enforcing that the results remain smooth. This effect is also
known as in-painting. Basically three smoothness terms are possible

S1 (u, v) := ‖∇u‖22 + ‖∇v‖22 (4.9)
S2 (u, v) := ‖∇u‖2 + ‖∇v‖2 (4.10)

S3 (u, v) :=
√
‖∇u‖22 + ‖∇v‖22 (4.11)

where we define
‖∇u‖2 :=

√
(∂xu)2 + (∂yu)2 (4.12)

The most interesting smoothness terms are S2 and S3. Both offer a sub-quadratic
penalisation. Furthermore, S3 is even rotationally invariant. Although S1 is convex and
differentiable and thus offers the best characteristics from a mathematical point of view,
its weakness is the quadratic penalisation that causes a strong smoothing effect and that
does not respect discontinuities in the motion field. The sub-quadratic penalisation of S2
and S3 on the other hand allows a conservation of these discontinuities. Therefore, we
can expect that S2 and S3 will offer better results in terms of accuracy. However, they
will be slightly more difficult to handle since they are not differentiable.

84

4. The Bregman iteration for optical flow

4.1.3 The optical flow models in the continuous setting

Now that we have presented the smoothness and data terms, we can combine them to
different energy functionals. The following choices are the most interesting ones.

E1 (u, v) :=
∫
Ω
D1 (u, v) + λS1 (u, v) dxdy (4.13)

E2 (u, v) :=
∫
Ω
D2 (u, v) + λS1 (u, v) dxdy (4.14)

E3 (u, v) :=
∫
Ω
D1 (u, v) + λS2 (u, v) dxdy (4.15)

E4 (u, v) :=
∫
Ω
D1 (u, v) + λS3 (u, v) dxdy (4.16)

E5 (u, v) :=
∫
Ω
D2 (u, v) + λS2 (u, v) dxdy (4.17)

E6 (u, v) :=
∫
Ω
D2 (u, v) + λS3 (u, v) dxdy (4.18)

If we set γ = 0, then E1 is also known as the model of Horn and Schunck. It dates back
to 1981. See for example [50]. This model is extremely simple and can be solved very
efficiently with the help of the corresponding Euler Lagrange equations. E5 is sometimes
also referred to as the TV-L1 model. The authors of [66, 86, 95] analysed this model
with a data term that only contained the grey value constancy and presented an efficient
method to solve this optimisation problem. E6 is a similar model that only differs in
the fact that it is rotationally invariant. Energy functionals similar to E3 have already
been studied in 1993 by Isaac Cohen. Some of his results can be found in [35]. E4 is a
rotationally invariant formulation of the same model. The three energies E2, E3 and E4
are exactly of the same type as the cost functions for which the split Bregman formulation
was initially designed for. One term is differentiable whereas the other is not.

4.1.4 Discretizing the energy functionals

The Bregman algorithms, such as we have formulated them, only work in the discrete
setting. Therefore, we must discretize the energy functionals from the previous section.
For simplicity we will assume that our image has N ×M pixels and that the image
domain is given by Ω = [0, n]× [0,m]. The pixels should be distributed on an regular
grid with distance hx and hy between two pixels in the respective direction marked by
the index. As for the discretisation, there are countless methods to discretize an integral.
The most simplest ones being the composite midpoint rule and the composite trapezoidal
rule. Generally these formulas transform an integral into a finite sum of the following
form ∫

Ω
g (x, y) dxdy ≈

∑
i,j

c (i, j) gi,j (4.19)

where (i, j) denotes the coordinates at the points we have discretized the integral and
c (i, j) designates a positive weight. gi,j stands for g (i, j). For the composite midpoint

85

4. The Bregman iteration for optical flow

rule, the c (i, j) are all equal to hxhy, whereas for the trapezoidal rule they are given by

c (i, j) =

hxhy

4 if (i, j) ∈ {1, N} × {1,M}
hxhy if (i, j) ∈ {2, . . . , N − 1} × {2, . . . ,M − 1}
hxhy

2 else
(4.20)

A more detailed discussion of these formulas can also be found in [65, 76]. Using higher
order formulas such as the composite Simpson rule would be possible but then we would
have to restrict ourselves on images with an odd number of pixels in every direction.
Since we do not want to abandon the freedom to have arbitrary numbers of pixels in our
images we do not consider these approaches. Furthermore, as we can see from eq. (4.20),
the weights for the trapezoidal rule and midpoint rule only differ along the boundaries.
If the image contains a large number of pixels, the number of boundary pixels becomes
insignificant. This suggests that the midpoint rule is a justified choice for discretizing
the energy functionals. The loss in accuracy will probably be relatively small.

Discretizing the data terms

The different elements of the data term D1 have the following discretisation:∫
Ω

(fxu+ fyv + ft)2 dxdy ≈ hxhy
∑
i,j

(
fxi,jui,j + fyi,jvi,j + fti,j

)2
(4.21)

∫
Ω

(fxxu+ fxyv + fxt)2 dxdy ≈ hxhy
∑
i,j

(
fxxi,jui,j + fxyi,jvi,j + fxti,j

)2
(4.22)

∫
Ω

(fyxu+ fyyv + fyt)2 dxdy ≈ hxhy
∑
i,j

(
fyxi,jui,j + fyyi,jvi,j + fyti,j

)2
(4.23)

Whereas the elements of D2 are given by∫
Ω
|fxu+ fyv + ft| dxdy ≈ hxhy

∑
i,j

∣∣∣fxi,jui,j + fyi,jvi,j + fti,j

∣∣∣ (4.24)
∫
Ω
|fxxu+ fxyv + fxt| dxdy ≈ hxhy

∑
i,j

∣∣∣fxxi,jui,j + fxyi,jvi,j + fxti,j

∣∣∣ (4.25)
∫
Ω
|fyxu+ fyyv + fyt| dxdy ≈ hxhy

∑
i,j

∣∣∣fyxi,jui,j + fyyi,jvi,j + fyti,j

∣∣∣ (4.26)

If we regroup the components of the flow field in a single vector (u, v)T then eq. (4.21)
can be written as hxhy

∥∥F (uv)+ ft
∥∥2
2 with a matrix F ∈ Rnp×2np given by

F := (Dx | Dy) (4.27)

where Dx and Dy are two diagonal matrices that contain the pixels fxi,j (resp. fyi,j) on
their diagonal and np is the total number of pixels. ft is the vector that contains the
elements fti,j . Obviously one can define in the very same way matrices Fx and Fy such

86

4. The Bregman iteration for optical flow

that eq. (4.22) and eq. (4.23) can also be written as the squared 2-norm of a matrix vector
product. Furthermore, the same idea can be applied to eqs. (4.24) to (4.26). Instead
of using the squared 2-norm, one uses the 1-norm. Equation (4.24) would then become
hxhy

∥∥F (uv)+ ft
∥∥
1.

Discretizing the smoothness terms

The discretisation of S2 is straightforward. We obtain∫
Ω
‖∇u‖2 + ‖∇v‖2 dxdy ≈ hxhy

∑
i,j

‖∇ui,j‖2 + ‖∇vi,j‖2 (4.28)

Note that, in the discrete setting, the operator ∇ is simply a matrix, which we will
designate for convenience by ∇ as well. This expression cannot be simplified any further.
The same applies to S3. We immediately obtain∫

Ω

√
‖∇u‖22 + ‖∇v‖22 dxdy ≈ hxhy

∑
i,j

√
‖∇ui,j‖22 + ‖∇vi,j‖22 (4.29)

For S1 we obtain the following discretisation∫
Ω
‖∇u‖22 + ‖∇v‖22 dxdy ≈ hxhy

∑
i,j

(∂xui,j)2 + (∂yui,j)2 + (∂xvi,j)2 + (∂yvi,j)2 (4.30)

= hxhy
(
‖∇u‖22 + ‖∇ v‖22

)
(4.31)

where ∇ is a matrix defined such that

∇u :=
(
∂xu

∂yu

)
(4.32)

∇ v :=
(
∂xv

∂yv

)
(4.33)

holds. Note the difference between ∇ and ∇. ∇ operates on ui,j and returns the gradient
of u at pixel (i, j). Thus ∇ui,j is a vector in R2. On the other hand ∇ operates on u
as a whole and returns a large vector containing ∂xu and ∂yu for every pixel. It follows
that ∇u ∈ R2np , where np is again the number of pixels of our image. Both ∇ and ∇
are linear operators and thus can be represented as matrices. Unless otherwise stated,
we will always approximate the first order derivatives of u and v with simple forward
difference schemes.

4.1.5 The discrete optical flow models

Now that all the preparations are done, we can formulate the discrete optimisation
problems that we wish to solve. To simplify the notation, we define

H1 (u, v) :=
∥∥F (uv)+ ft

∥∥2
2 + γ

(∥∥Fx(uv)+ fxt
∥∥2
2 +

∥∥Fy(uv)+ fyt
∥∥2
2

)
(4.34)

87

4. The Bregman iteration for optical flow

H2 (u, v) :=
∥∥F (uv)+ ft

∥∥
1 + γ

(∥∥Fx(uv)+ fxt
∥∥
1 +

∥∥Fy(uv)+ fyt
∥∥
1

)
(4.35)

where fxt and fyt are defined analogously to ft. Then our optical flow models from
Section 4.1.3 correspond (in the same order) to the following convex optimisation problems

arg min
u,v

H1 (u, v) + λ

2
(
‖∇u‖22 + ‖∇ v‖22

)
(4.36)

arg min
u,v

H2 (u, v) + λ

2
(
‖∇u‖22 + ‖∇ v‖22

)
(4.37)

arg min
u,v

λ

2H1 (u, v) +
∑
i,j

‖∇ui,j‖2 + ‖∇vi,j‖2 (4.38)

arg min
u,v

λ

2H1 (u, v) +
∑
i,j

√
‖∇ui,j‖22 + ‖∇vi,j‖22 (4.39)

arg min
u,v

λH2 (u, v) +
∑
i,j

‖∇ui,j‖2 + ‖∇vi,j‖2 (4.40)

arg min
u,v

λH2 (u, v) +
∑
i,j

√
‖∇ui,j‖22 + ‖∇vi,j‖22 (4.41)

where λ
2 is the regularisation weight described in the beginning of this chapter. The

different positions neither affect the model nor the algorithm. The regularisation pa-
rameter is placed in such a way that the formulas will be as elegant as possible later on.
Furthermore, we are sometimes using λ

2 instead of λ. This will allow us to eliminate a
certain number of multiplicative constants. Again, this choice has no influence on the
algorithm. Finally, note that we were able to omit the factor hxhy since we are only
interested in the minimiser and not in the minimum itself.

4.2 Preprocessing steps
Before continuing with minimising our energy functional, we should have a look at the
image sequence itself. In most cases it will be based off real world data. As a consequence,
we must be able to deal with noise and other image degradations. Furthermore, there is
no reason why f should be smooth or continuous, but such characteristics are generally of
advantage, especially for theoretical purposes. Also, the first order Taylor approximation
that we have performed in our approach requires the involved functions to be at least
twice continuously differentiable. The remedy is to convolve f with a Gaussian kernel
with a small standard deviation. This results in a smooth f and generally also eliminates
a good portion of the noise. Furthermore, the Gaussian kernel acts as a low-pass filter
which makes differentiation more stable.

4.3 Course of action for applying the Bregman algorithms
At this point we have presented all the energy functionals that we would like to consider.
We will now demonstrate how the Bregman framework can be used to minimise these

88

4. The Bregman iteration for optical flow

formulations. The first model that we will discuss, will be the one of Horn and Schunck
as formulated in eq. (4.36) and which corresponds to the energy E1 from Section 4.1.3.
It is our simplest approach and will allow us to conveniently introduce further necessary
notations and to explain the general approach in a clearly understandable way. The
respective Bregman formulation will be given in Section 4.4. Afterwards we will discuss
the energy E2, which is given in its discretized form by eq. (4.37) and which corresponds
to a L1-L2 model. The Bregman algorithm belonging to this formulation will be given in
Section 4.5. In Sections 4.6 and 4.7 we will analyse the L2-L1 models given by eqs. (4.38)
and (4.39) and which correspond to the energies E3 and E4. As we will see, the Bregman
approach for the isotropic formulation E4 can easily be deduced from the algorithm for
the anisotropic form E3. Finally, in Section 4.8, we will discuss the two L1-L1 models
represented by the energies E5 and E6 and which correspond to eqs. (4.40) and (4.41). In
this case it will also be easy to deduce the isotropic Bregman formulation for eq. (4.41)
from the anistropic approach for eq. (4.40). The minimisation of the L1-L1 functionals
will require a small adaptation of the split Bregman algorithm. Although it consists of
a rather simple trick, it cannot be found in the literature and therefore, it will also be
presented in Section 4.8.

4.4 The model of Horn and Schunck
As already mentioned, the model of Horn and Schunck can be solved extremely fast if one
combines the corresponding Euler-Lagrange equations with fast solvers for linear systems.
In this section we will limit ourselves on showing how the split Bregman framework can
be applied to the Horn and Schunck model. This means that we will set γ = 0 in the data
term D1 of the energy functional E1. Already this simple case will make clear why the
Bregman toolkit is not an optimal choice for this model. We will consider the problem

arg min
u,v

∥∥F (uv)+ ft
∥∥2
2 + λ

2
(
‖∇u‖22 + ‖∇ v‖22

)
(4.42)

with ‖∇u‖22 + ‖∇ v‖22 corresponding to the term H from eq. (3.105). The fact that
the other term is the squared euclidean norm and not just the euclidean norm will be
advantageous for our algorithm and not cause any difficulties. The first step of the split
Bregman algorithm is to transform this expression into a constrained problem:

arg min
u,v,d

‖d‖22 + λ

2
(
‖∇u‖22 + ‖∇ v‖22

)
such that 1

2
∥∥d− F (uv)− ft∥∥2

2 = 0 (4.43)

Note that it does not matter which term is substituted. One could have substituted the
smoothness term as well. Now we proceed exactly as for the split Bregman algorithm in
Section 3.2. The next step will be to check whether there exist u0, v0, d0 such that 0 is
a subgradient of the cost-function. In this case, the verification of this requirement is
trivial. It suffices to set all variables to 0. Then the cost function attains its minimum
and 0 will be a subgradient. Furthermore, note that the constraining condition obviously
also has a solution, namely u = v = 0 and d = ft. Thus all requirements are met and we

89

4. The Bregman iteration for optical flow

can almost immediately formulate the necessary equations as in eq. (3.91). The Bregman
iteration asks us to find, at each iteration step, a solution of

arg min
u,v,d

‖d‖22 + λ

2
(
‖∇u‖22 + ‖∇ v‖22

)
+ µ

2
∥∥d− F (uv)− ft∥∥2

2 (4.44)

We remind that it is not necessary to compute the Bregman divergence of the cost
function from eq. (4.43) since we consider the split Bregman framework in combination
with the alternative Bregman formulation as defined in Proposition 3.19. This observation
will also will also be true for all the forthcoming algorithms.

The cost function in eq. (4.44) is convex and differentiable. Thus the minimum can
be easily found through differentiation. We do not need an alternating minimisation
scheme as the split Bregman algorithm suggests it. The differentiation with respect to d
is simple and yields the equation

2d+ µ
(
d− F

(u
v

)
− ft

)
= 0 (4.45)

Differentiating the middle term of the sum is also simple. We observe that ∇T ∇ = −∆,
where ∆ is the discrete version of the Laplace operator. There are mainly two ways
to see this. For the first one, one remembers that the adjoint operator of the gradient
is the negative divergence. Then the conclusion follows from div ∇ = ∆. The second
way is to carry out the matrix multiplication ∇T ∇. Since we decided to use forward
difference schemes, the matrix ∇ only contains two non-zero entries per row and a simple
but lengthy computation shows that ∇T ∇ corresponds to the Laplace operator where
the second derivatives have been approximated by

(∂xxu)i,j ≈
ui+1,j − 2ui,j + ui−1,j

h2
x

(4.46)

(∂yyu)i,j ≈
ui,j+1 − 2ui,j + ui,j−1

h2
y

Differentiating the last term with respect to u and v gives us µF T
(
F
(u
v

)
+ ft − d

)
. Thus

it is necessary to know the structure of F T and F TF . Now, from eq. (4.27) we know
that

F = (Dx | Dy) (4.47)

and thus
F T =

(
Dx

Dy

)
(4.48)

Therefore, it follows immediately that

F TF =
(
DxDx DxDy

DyDx DyDy

)
(4.49)

90

4. The Bregman iteration for optical flow

Assembling all the pieces back together shows that we have to solve the following linear
system

µ (DxDxu+DxDyv +Dx (ft − d))− λ∆u = 0 (4.50)
µ (DxDyu+DyDyv +Dy (ft − d))− λ∆v = 0

2d+ µ (d−Dxu−Dyu− ft) = 0 (4.51)

From the third equation it follows immediately, that

d = µ

2 + µ
(Dxu+Dyv + ft) (4.52)

By plugging this into the first two equations, we obtain
2µ

2 + µ
(DxDxu+DxDyv +Dxft)− λ∆u = 0 (4.53)

2µ
2 + µ

(DxDyu+DyDyv +Dyft)− λ∆v = 0

Finally, this means that the complete algorithm looks as in Algorithm 4.1

Data: Dx, Dy, ft, λ, µ, N
Result: uN and vN minimising eq. (4.42)
Initialize: u0 = v0 = d0 = 0, ft0 = ft
for k = 0 to N − 1 do

Solve:
2µ

2+µ

(
DxDxu+DxDyv +Dxft

k
)
− λ∆u = 0

2µ
2+µ

(
DxDyu+DyDyv +Dyft

k
)
− λ∆v = 0

Update:
dk+1 = µ

2+µ

(
Dxu

k+1 +Dyv
k+1 + ftk

)
ft
k+1 = ft

k + ft − dk+1 +Dxu
k+1 +Dyv

k+1

end

Algorithm 4.1: Split Bregman algorithm for the Horn and Schunck model.

Remark 4.1
The system in eq. (4.53) is the very same linear system that one would have obtained
by applying the Euler-Lagrange equations on the Horn and Schunck model. See for
example [20, 57]. Thus it becomes immediately clear why the Bregman framework is not
suited for energy functionals like this one. The Bregman algorithm requires us to solve
a large linear system at every iteration step, whereas the Euler-Lagrange formulation
only requires us to solve the same linear system a single time. On the other hand, it also
shows that a single iteration with the Bregman iteration would already be enough to
solve the problem. This might be a strong hint that the Bregman toolkit will be very
efficient for more complicated models that contain non-differentiable terms.

91

4. The Bregman iteration for optical flow

4.5 The L1-L2 model
In this section we will show how the split Bregman algorithm can be used to solve

arg min
u,v

H2 (u, v) + λ

2
(
‖∇u‖22 + ‖∇ v‖22

)
(4.54)

The notations are the same as in eq. (4.37). Our approach will be very similar to the
strategy that we used for the Horn and Schunck model. In fact, ‖∇u‖22 + ‖∇ v‖22 will
correspond again to the term named H in eq. (3.105). However, this time the data term
contains non-differentiable parts. These will have to be transformed into a constraining
condition for the split Bregman approach. This gives us immediately the following
formulation

arg min
u,v,d,dx,dy

‖d‖1 + γ
(
‖dx‖1 + ‖dy‖1

)
+ λ

2
(
‖∇u‖22 + ‖∇ v‖22

)
(4.55)

such that 1
2
(∥∥d− F (uv)− ft∥∥2

2 +
∥∥dx − Fx(uv)− fxt∥∥2

2 +
∥∥dy − Fy(uv)− fyt∥∥2

2

)
= 0

Now, basically all that remains to be done is to verify whether the conditions to apply the
alternative Bregman algorithm are met and to give a concrete formulation corresponding
to Algorithm 3.4. The cost function reaches its minimum for d = dx = dy = u = v = 0,
whereas the constraint can be fulfilled for u = v = 0 and d = ft, dx = fxt and dy = fyt.
Thus, it is possible to apply the split Bregman algorithm. The iterates are found through

arg min
u,v,d,dx,dy

‖d‖1 + γ
(
‖dx‖1 + ‖dy‖1

)
+ λ

2
(
‖∇u‖22 + ‖∇ v‖22

)
+ (4.56)

µ

2
(∥∥d− F (uv)− ft∥∥2

2 +
∥∥dx − Fx(uv)− fxt∥∥2

2 +
∥∥dy − Fy(uv)− fyt∥∥2

2

)
by minimising alternatively with respect to u and v and with respect to d, dx and dy.
Obviously the variables d, dx and dy can be updated efficiently with the soft shrinkage
operator from Definition 2.50. Minimising with respect to u and v comes down to solving

arg min
u,v

µ

2
(∥∥d− F (uv)− ft∥∥2

2 +
∥∥dx − Fx(uv)− fxt∥∥2

2

+
∥∥dy − Fy(uv)− fyt∥∥2

2

)
+ λ

2
(
‖∇u‖22 + ‖∇ v‖22

)
(4.57)

Differentiating leads almost immediately to the corresponding linear system that we must
solve. Analogously to the matrices Dx and Dy that we used to define F , we now define
diagonal matrices Dxx and Dxy for Fx and Dyx and Dyy for Fy that contain fxx, fxy,
fyx and fyy respectively on their diagonals. With this notation and identical arguments
as for the Horn and Schunck model, it follows that we have to solve the following linear
system

(DxDx +DxxDxx +DyxDyx)u+ (DxDy +DxxDxy +DyxDyy) v (4.58)
+Dx (ft − d) +Dxx (fxt − dx) +Dyx (fyt − dy)− λ

µ∆u = 0

92

4. The Bregman iteration for optical flow

(DxDy +DxxDxy +DyxDyy)u+ (DyDy +DxyDxy +DyyDyy) v (4.59)
+Dy (ft − d) +Dxy (fxt − dx) +Dyy (fyt − dy)− λ

µ∆v = 0

This linear system is of similar structure as the corresponding system for the Horn and
Schunck model. The complete algorithm for the L1–L2 model can now be formulated
right away and is given in Algorithm 4.2. We observe that there is a high similarity

Data: F , Fx, Fy, ft, fxt, fyt, λ, γ, µ, N , M
Result: uN and vN minimising eq. (4.54)
Initialize: u0 = v0 = d0 = d0

x = d0
y = 0, ft0 = ft, fxt0 = fxt, fyt0 = fyt

for k = 0 to N − 1 do
uk,0 = uk, vk,0 = vk

dk,0 = dk, dk,0x = dkx, dk,0y = dky
for j = 0 to M − 1 do

Solve(
uk,j+1, vk,j+1

)
= arg min

u,v

µ

2
∥∥∥dk,j − F (uv)− ftk∥∥∥2

2
+ µ

2
∥∥∥dk,jx − Fx(uv)− fxtk∥∥∥2

2

+µ2
∥∥∥dk,jy − Fy(uv)− fytk∥∥∥2

2
+ λ

2
(
‖∇u‖22 + ‖∇ v‖22

)
by finding a solution of eq. (4.58) and eq. (4.59)

dk,j+1 = shrink
(
Dxu

k,j+1 +Dyv
k,j+1 + ftk,

1
µ

)
(done componentwise)

dk,j+1
x = shrink

(
Dxxu

k,j+1 +Dxyv
k,j+1 + fxtk,

γ

µ

)
(done componentwise)

dk,j+1
y = shrink

(
Dyxu

k,j+1 +Dyyv
k,j+1 + fytk,

γ

µ

)
(done componentwise)

end
uk+1 = uk,M , vk+1 = vk,M

dk+1 = dk,M , dk+1
x = dk,Mx , dk+1

y = dk,My
ft
k+1 = ft

k + ft − dk+1 +Dxu
k+1 +Dyv

k+1

fxt
k+1 = fxt

k + fxt − dk+1
x +Dxxu

k+1 +Dxyv
k+1

fyt
k+1 = fyt

k + fyt − dk+1
y +Dyxu

k+1 +Dyyv
k+1

end

Algorithm 4.2: The split Bregman algorithm for the L1–L2 model with N iterations and M
alternating minimisation steps.

between solving this model and the previous Horn and Schunck model. As a matter of
fact all the following algorithms will show this high similarity.

93

4. The Bregman iteration for optical flow

4.6 The non-rotationally invariant L2-L1 model
The next model that we will analyse has switched the differentiable and non-differentiable
terms when compared to the model from Section 4.5. This time the data term is
differentiable but the smoothness term is not. As we will see, this change does not present
any problem for the Bregman framework. We remind that our goal is to minimise the
following energy

arg min
u,v

λ

2H1 (u, v) +
∑
i,j

‖∇ui,j‖2 + ‖∇vi,j‖2 (4.60)

The notations are the same as in eq. (4.38). This case will also be an almost straightforward
application of Algorithm 3.4. The only significant difference, when compared to the
previous models, lies in the fact, that this time, the term H1 from eq. (4.60) corresponds
to H in eq. (3.105). As for the previous models, we transform the problem into a
constrained formulation

arg min
u,v

λ

2H1 (u, v) +
∑
i,j

∥∥∥dui,j∥∥∥2
+
∥∥∥dvi,j∥∥∥2

(4.61)

such that 1
2
∑
i,j

∥∥∥dui,j −∇ui,j∥∥∥2

2
+
∥∥∥dvi,j −∇vi,j∥∥∥2

2
= 0

and verify that the split Bregman algorithm can really be applied. The constraining
condition admits a trivial solution and thus, it does not pose any problem. The cost
function obviously has a minimum too. The variables dui,j , dvi,j act independently of u
and v. Simply setting them all to 0 and determining the minimising u and v of H1,
by solving a least squares problem, yields the desired existence of a minimiser. This
implies that the cost function attains its minimum and that there exists a point where
0 is a subgradient. Note that H1 can always be minimised since we operate in a finite
dimensional space, where such problems are always solvable. It follows that the split
Bregman algorithm is applicable. We now make the following helpful observation

‖du −∇u‖22 =
∑
i,j

∥∥∥dui,j −∇ui,j∥∥∥2

2
(4.62)

where we regrouped all the vectors dui,j into one large vector du. Note that the first half
of ∇u consists only of derivatives of u in x direction; thus, in order to have the right
correspondences, the first half of du consists of the first components of all the vectors
dui,j and the second half of all the second components of dui,j . Therefore, we can rewrite
eq. (4.61) in the following way

arg min
u,v,du,dv

λ

2H1 (u, v) +
∑
i,j

∥∥∥dui,j∥∥∥2
+
∥∥∥dvi,j∥∥∥2

(4.63)

such that 1
2
(
‖du −∇u‖22 + ‖dv −∇ v‖22

)
= 0

94

4. The Bregman iteration for optical flow

The corresponding Bregman iteration aims to solve

arg min
u,v,du,dv

λ

2
(∥∥F (uv)+ ft

∥∥2
2 + γ

(∥∥Fx(uv)+ fxt
∥∥2
2 +

∥∥Fy(uv)+ fyt
∥∥2
2

))
+ (4.64)∑

i,j

∥∥∥dui,j∥∥∥2
+
∥∥∥dvi,j∥∥∥2

+ µ

2
(
‖du −∇u− bu‖22 + ‖dv −∇ v − bv‖22

)
Because of the alternating minimisation strategy, we will have to solve the following
problem at each iteration step:

arg min
u,v

λ

2
(∥∥F (uv)+ ft

∥∥2
2 + γ

(∥∥Fx(uv)+ fxt
∥∥2
2 +

∥∥Fy(uv)+ fyt
∥∥2
2

))
(4.65)

+ µ

2
(
‖du −∇u− bu‖22 + ‖dv −∇ v − bv‖22

)
From what we have seen in the presentation of the last two models, it is immediately
clear how the corresponding linear system must look like

(DxDx + γDxxDxx + γDyxDyx)u+ (DxDy + γDxxDxy + γDyxDyy) v (4.66)

+Dxft + γDxxfxt + γDyxfyt −
µ

λ

(
∆u+∇T (du − bu)

)
= 0

(DxDy + γDxxDxy + γDyxDyy)u+ (DyDy + γDxyDxy + γDyyDyy) v

+Dyft + γDxyfxt + γDyyfyt −
µ

λ

(
∆v +∇T (dv − bv)

)
= 0

Similarly as for the previous model, the variables dui,j and dvi,j can be easily updated
with the help of the generalised shrinkage operators from Definition 2.53. The complete
algorithm is now given in Algorithm 4.3, where the indices k, l denote the coordinates of
the pixels.
Remark 4.2
Observe that the model parameters λ and γ appear in the linear system and thus can
influence directly the flow field components u and v. The L1–L2 model did not have
that characteristic. There, the parameter γ could only influence the auxiliary variables
directly. Its influence on u and v was indirect. Although this does not make a difference
from the theoretical point of view, it might suggest that there will be a difference in how
well the algorithms respond to parameter changes.

4.7 The rotationally invariant L2-L1 model
In this section we consider the following model:

arg min
u,v

λ

2H1 (u, v) +
∑
i,j

√
‖∇ui,j‖22 + ‖∇vi,j‖22 (4.67)

The difference between this model and the model from Section 4.6 is that this one is
rotationally invariant, whereas the other was not. Interestingly, the approach to minimise

95

4. The Bregman iteration for optical flow

Data: F , Fx, Fy, ft, fxt, fyt, λ, γ, µ, N , M
Result: uN and vN minimising eq. (4.60)
Initialize: u0 = v0 = 0, du,0k,l = 0, bu,0k,l = 0, dv,0k,l = 0, bv,0k,l = 0 ∀k, l
for i = 0 to N − 1 do

ui,0 = ui

vi,0 = vi

du,i,0k,l = du,ik,l for ∀k, l
dv,i,0k,l = dv,ik,l for ∀k, l
for j = 0 to M − 1 do

Solve(
ui,j+1, vi,j+1

)
= arg min

u,v

λ

2H1 (u, v)

+µ2

(∥∥∥du,i,j −∇u− bu,i
∥∥∥2

2
+
∥∥∥dv,i,j −∇ v − bv,i

∥∥∥2

2

)
by finding a solution of eq. (4.66)

du,i,j+1
k,l = gshrink

(
∇ui,j+1

k,l + bu,ik,l ,
1
µ

)
∀k, l

dv,i,j+1
k,l = gshrink

(
∇vi,j+1

k,l + bv,ik,l,
1
µ

)
∀k, l

end
ui+1 = ui,M , vi+1 = vi,M

du,i+1
k,l = du,i,Mk,l for ∀k, l
dv,i+1
k,l = dv,i,Mk,l for ∀k, l
bu,i+1
k,l = bu,ik,l − d

u,i+1
k,l +∇ui+1

k,l for ∀k, l
bv,i+1
k,l = bv,ik,l − d

v,i+1
k,l +∇vi+1

k,l for ∀k, l
end

Algorithm 4.3: The split Bregman algorithm for the non-rotationally invariant L2–L1 model.

96

4. The Bregman iteration for optical flow

both energies is almost identical. Before we start applying the Bregman algorithm, let us
have a look at the smoothness term first. It can be reformulated in the following way∑

i,j

√
‖∇ui,j‖22 + ‖∇vi,j‖22 =

∑
i,j

√
(∂xui,j)2 + (∂yui,j)2 + (∂xvi,j)2 + (∂yvi,j)2 (4.68)

=
∑
i,j

∥∥∥(∂xui,j ; ∂yui,j ; ∂xvi,j ; ∂yvi,j)T ∥∥∥2

=:
∑
i,j

∥∥∥∥∥
(
∇ui,j
∇vi,j

)∥∥∥∥∥
2

Thus, this model can also be written in the following more compact form

arg min
u,v

λ

2H1 (u, v) +
∑
i,j

∥∥∥∥∥
(
∇ui,j
∇vi,j

)∥∥∥∥∥
2

(4.69)

and is almost of the same form as the model from Section 4.6. The main difference
is that, this time, we have one vector with four components for the smoothness term
instead of two vectors with two components. The corresponding constraint formulation
to eq. (4.67) is now easily deduced:

arg min
u,v

λ

2H1 (u, v) +
∑
i,j

∥∥∥∥∥
(
dui,j
dvi,j

)∥∥∥∥∥
2

such that 1
2
∑
i,j

∥∥∥∥∥
(
dui,j
dvi,j

)
−
(
∇ui,j
∇vi,j

)∥∥∥∥∥
2

2
= 0 (4.70)

With the same reasoning as for the non-rotationally invariant L2–L1 model, it becomes
obvious that the split Bregman algorithm is also applicable here. Now, notice the
following detail

∑
i,j

∥∥∥∥∥
(
dui,j
dvi,j

)
−
(
∇ui,j
∇vi,j

)∥∥∥∥∥
2

2
=
∑
i,j

∥∥∥dui,j −∇ui,j∥∥∥2

2
+
∥∥∥dvi,j −∇vi,j∥∥∥2

2
(4.71)

= ‖du −∇u‖22 + ‖dv −∇ v‖22

with the same definitions of du and ∇u as before. The Bregman iteration can now be
easily expressed by

arg min
u,v,dv ,dv

λ

2H1 (u, v)+
∑
i,j

∥∥∥∥∥
(
dui,j
dvi,j

)∥∥∥∥∥
2
+ µ

2
(
‖du −∇u− bu‖22 + ‖dv −∇ v − bv‖22

)
(4.72)

Therefore, it follows that the necessary linear system we need to solve during the
alternating minimisation scheme is exactly the same as in Section 4.6. The only difference
between the two formulations lies in the minimisation with respect to the auxiliary
variables. They can still be updated by using the generalised shrinkage operators,
however, note that this time the vectors have four components each and not two as for
the previous model. This allows us to give immediately the complete formulation as
shown in Algorithm 4.4.

97

4. The Bregman iteration for optical flow

Data: F , Fx, Fy, ft, fxt, fyt, λ, γ, µ, N , M
Result: uN and vN minimising eq. (4.67)
Initialize: u0 = v0 = 0, du,0k,l = 0, bu,0k,l = 0, dv,0k,l = 0, bv,0k,l = 0 ∀k, l
for i = 0 to N − 1 do

ui,0 = ui

vi,0 = vi

du,i,0k,l = du,ik,l for ∀k, l
dv,i,0k,l = dv,ik,l for ∀k, l
for j = 0 to M − 1 do

Solve(
ui,j+1, vi,j+1

)
= arg min

u,v

λ

2H1 (u, v)

+µ2

(∥∥∥du,i,j −∇u− bu,i
∥∥∥2

2
+
∥∥∥dv,i,j −∇ v − bv,i

∥∥∥2

2

)
by finding a solution of eq. (4.66)(
du,i,j+1
k,l

dv,i,j+1
k,l

)
= gshrink

(∇ui,j+1
k,l

∇vi,j+1
k,l

)
+
(
bu,ik,l

bv,ik,l

)
,
1
µ

 ∀ k, l
end
ui+1 = ui,M , vi+1 = vi,M

du,i+1
k,l = du,i,Mk,l for ∀k, l
dv,i+1
k,l = dv,i,Mk,l for ∀k, l
bu,i+1
k,l = bu,ik,l − d

u,i+1
k,l +∇ui+1

k,l for ∀k, l
bv,i+1
k,l = bv,ik,l − d

v,i+1
k,l +∇vi+1

k,l for ∀k, l
end

Algorithm 4.4: The split Bregman algorithm for the rotationally invariant L2–L1 model.

98

4. The Bregman iteration for optical flow

4.8 The non-rotationally invariant L1-L1 model
The final model that we will discuss here is

arg min
u,v

λH2 (u, v) +
∑
i,j

‖∇ui,j‖2 + ‖∇vi,j‖2 (4.73)

In contrast to the previous formulations, none of the terms of the energy functional is
differentiable. This is unfortunate, because we need some differentiable parts that can
coincide with H from eq. (3.105). The solution is to add a 0 to the cost function and to
interpret it as a function H (u) ≡ 0. By using this little trick, it becomes possible again
to apply Algorithm 3.4 and to proceed as before. First, we move all the non-differentiable
terms into the constraining conditions. This leads us to

arg min
u,v,d,dx,dy ,dui,j ,d

v
i,j

λ
(
‖d‖1 + γ

(
‖dx‖1 + ‖dy‖1

))
+
∑
i,j

∥∥∥dui,j∥∥∥2
+
∥∥∥dvi,j∥∥∥2

(4.74)

such that 1
2
(∥∥d− F (uv)− ft∥∥2

2 +
∥∥dx − Fx(uv)− fxt∥∥2

2 +
∥∥dy − Fy(uv)− fyt∥∥2

2

)
+ 1

2

∑
i,j

∥∥∥dui,j −∇ui,j∥∥∥2

2
+
∥∥∥dvi,j −∇vi,j∥∥∥2

2

 = 0

Or in the slightly more compact form

arg min
u,v,d,dx,dy ,dui,j ,d

v
i,j

λ
(
‖d‖1 + γ

(
‖dx‖1 + ‖dy‖1

))
+
∑
i,j

∥∥∥dui,j∥∥∥2
+
∥∥∥dvi,j∥∥∥2

(4.75)

such that 1
2
(∥∥d− F (uv)− ft∥∥2

2 +
∥∥dx − Fx(uv)− fxt∥∥2

2 +
∥∥dy − Fy(uv)− fyt∥∥2

2

)
+ 1

2
(
‖du −∇u‖22 + ‖dv −∇ v‖22

)
= 0

Now we have to check whether the Bregman algorithm can be applied. The cost
function has a trivial minimiser. Namely setting all the variables to 0. Furthermore, the
constraining condition can also easily be solved by setting u and v to 0 and the auxiliary
variables such that they cancel the remaining terms. Thus, we are in the setting to apply
the split Bregman framework. It follows that we have to solve

arg min
u,v,d,dx,dy ,dui,j ,d

v
i,j

λ
(
‖d‖1 + γ

(
‖dx‖1 + ‖dy‖1

))
+
∑
i,j

∥∥∥dui,j∥∥∥2
+
∥∥∥dvi,j∥∥∥2

(4.76)

+ µ

2
(∥∥d− F (uv)− ft∥∥2

2 +
∥∥dx − Fx(uv)− fxt∥∥2

2 +
∥∥dy − Fy(uv)− fyt∥∥2

2

)
+ µ

2
(
‖du −∇u− bu‖22 + ‖dv −∇ v − bv‖22

)
by minimising alternatively with respect to u and v and with respect to all the d-variables.
As for all the other models, the minimisation with respect to u and v leads to a problem
of the following form

arg min
u,v

∥∥d− F (uv)− ft∥∥2
2 +

∥∥dx − Fx(uv)− fxt∥∥2
2 +

∥∥dy − Fy(uv)− fyt∥∥2
2 (4.77)

+ ‖du −∇u− bu‖22 + ‖dv −∇ v − bv‖22

99

4. The Bregman iteration for optical flow

All these terms already appeared in the previous models, such that it is easy now to
deduce the corresponding linear system that gives us the minimiser of this expression. It
is given by

(DxDx +DxxDxx +DyxDyx)u+ (DxDy +DxxDxy +DyxDyy) v (4.78)

+Dx (ft − d) +Dxx (fxt − dx) +Dyx (fyt − dy)−
(
∆u+∇T (du − bu)

)
= 0

(DxDy +DxxDxy +DyxDyy)u+ (DyDy +DxyDxy +DyyDyy) v

+Dy (ft − d) +Dxy (fxt − dx) +Dyy (fyt − dy)−
(
∆v +∇T (dv − bv)

)
= 0

The minimisation with respect to the d-variables is done once again with the help of the
shrinkage operators. Setting up the complete algorithm is now straightforward and is
presented in Algorithm 4.5.

Remark 4.3
Although it is possible to formulate a minimisation strategy with the Bregman iteration
for L1–L1 models, the formulation appears a bit “unnatural”. Three potential problems
become immediately apparent. The first one being the fact that we had to eliminate
the variables, with respect to which we initially wanted to minimise, completely from
the cost function. Secondly, none of the model parameters has a direct influence on u
and v. They can only interact by means of the auxiliary variables. Chances are, that
this will reduce the responsiveness of the algorithm to parameter changes. Although it
is generally desirable to have algorithms that do not react too sensitive with respect to
varying parameters, the other extreme of having an algorithm that reacts hardly at all,
is not desirable as well. The third point is that the alternating minimisation scheme
contains many more steps compared to all the previous models. It might take a lot of
iterations until we are close to a minimum. These observations certainly raise a certain
number of concerns about the efficiency of this algorithm.

Remark 4.4
A rotationally invariant formulation is also possible. Basically one has to do the same
adaptations to this model as we had to do in Section 4.7 for the L2–L1 model. Again,
the only significant change will lie in the minimisation of the auxiliary variables.

4.9 Summary of the results from the previous sections
Sections 4.4 to 4.8 represent the most important parts of this thesis. We have seen in
these sections how the Bregman framework can be applied to the discretised formulations
of the energy functionals given in Section 4.1.3 and we have presented algorithms based
upon the split Bregman formulation that allow us to find minimisers of each model
considered in that section. Basically, all the discretised models were of the form

arg min
η

N∑
i=1
‖Aiη − bi‖+

M∑
j=1
‖Bjη − cj‖ (4.79)

100

4. The Bregman iteration for optical flow

Data: F , Fx, Fy, ft, fxt, fyt, λ, γ, µ, N , M
Result: uN and vN minimising eq. (4.73)
Initialize: u0 = v0 = 0, d0 = d0

x = d0
y = 0, du0 = dv0 = 0, ft0 = ft, = fxt

0 = fxt,
fyt

0 = fyt, bu,0 = bv ,0 = 0
for i = 0 to N − 1 do

ui,0 = ui

vi,0 = vi

di,0 = di, di,0x = dix, di,0y = diy
du,i,0 = du,i, dv ,i,0 = dv ,i

for j = 0 to M − 1 do
Solve(
ui,j+1, vi,j+1

)
= arg min

u,v

∥∥∥di,j − F (uv)− bi∥∥∥2

2

+
∥∥∥di,jx − Fx(uv)− bix∥∥∥2

2
+
∥∥∥di,jy − Fy(uv)− biy∥∥∥2

2

+µ2

(∥∥∥du,i,j −∇u− bu,i
∥∥∥2

2
+
∥∥∥dv ,i,j −∇ v − bv ,i

∥∥∥2

2

)
by finding a solution of eq. (4.78)

di,j+1 = shrink
(
Dxu

i,j+1 +Dyv
i,j+1 + fti,

λ

µ

)
(done componentwise)

di,j+1
x = shrink

(
Dxxu

i,j+1 +Dxyv
i,j+1 + fxti,

λγ

µ

)
(done componentwise)

di,j+1
y = shrink

(
Dyxu

i,j+1 +Dyyv
i,j+1 + fyti,

λγ

µ

)
(done componentwise)

du,i,j+1
k,l = gshrink

(
∇ui,j+1

k,l + bu,ik,l ,
1
µ

)
∀k, l

dv,i,j+1
k,l = gshrink

(
∇vi,j+1

k,l + bv,ik,l,
1
µ

)
∀k, l

end
ui+1 = ui,M , vi+1 = vi,M

di+1 = di,M , di+1
x = di,Mx , di+1

y = di,My
du,i+1 = du,i,M , dv ,i+1 = dv ,i,M

ft
i+1 = ft

i + ft − di+1 +Dxu
i+1 +Dyv

i+1

fxt
i+1 = fxt

i + fxt − di+1
x +Dxxu

i+1 +Dxyv
i+1

fyt
i+1 = fyt

i + fyt − di+1
y +Dyxu

i+1 +Dyyv
i+1

bu,i+1 = bu,i − du,i+1 +∇ui+1

bv ,i+1 = bv ,i − dv ,i+1 +∇ vi+1

end

Algorithm 4.5: The split Bregman algorithm for the non-rotationally invariant L1–L1 model.

101

4. The Bregman iteration for optical flow

with linear operators Ai and Bj , vectors bi and cj and different choices for the norms. It
is interesting to note that all our optical flow algorithms are very similar. They consist
essentially of a linear system and shrinkage operations, independent of the choice of the
data and smoothness term. Minimising an energy functional with a robust data term
and/or a robust smoothness term is hardly more complicated than minimising the rather
simple model of Horn and Schunck. In this context it is important to emphasize that each
algorithm is in fact simply an application of the split Bregman iteration as formulated in
Algorithm 3.4. We showed in Proposition 3.8, Proposition 3.11 and Proposition 3.13 that
the Bregman algorithm and thus also the split Bregman formulation converge. Therefore,
it follows that the Algorithms 4.1 to 4.5 yield minimisers of the six functionals presented
in Section 4.1.5. This observation underlines the importance of the detailed presentation
of the Bregman framework given in Chapter 3. It guarantees us that our algorithms will
produce the desired displacement fields.

4.10 Properties of the linear systems occurring in the
Bregman algorithms

All the linear systems that appeared in our algorithms so far were of the form

(DxDx + γDxxDxx + γDyxDyx)u+ (DxDy + γDxxDxy + γDyxDyy) v (4.80)
− θ∆u = Ru

(DxDy + γDxxDxy + γDyxDyy)u+ (DyDy + γDxyDxy + γDyyDyy) v
− θ∆v = Rv

with parameters γ > 0, θ > 0 and righthand side vectors Ru and Rv. If np is the total
number of pixels, then this system has 2np equations and 2np unknowns. It is interesting
to note that the discretisation of the Euler-Lagrange equations of the Horn and Schunck
model would lead to a linear system with almost the same structure. See for example
[20, 57]. In [57] the authors analysed this linear system and showed that the discretisation
of the Euler-Lagrange equations leads to symmetric and positive definite matrix. Because
of the high similarity between the two problems it will be relatively simple to adapt their
proof such that we can show the same results for our Bregman algorithms. We will even
demonstrate that the proof given in [57] can be generalised. The authors of this article
required a specific indexing scheme for the pixels and assumed that there was only one
constancy assumption, namely the gray value constancy. The proof given in this section
demonstrates that these assumptions are not necessary. We will show that the inclusion
of higher order constancy assumptions does not affect the positive definiteness.

The fact that the matrix is symmetric and positive definite is highly useful for numerical
purposes. It guarantees the convergence of algorithms such as conjugate gradients and
will allow us later on to present efficient implementations with powerful solvers.

For the sake of simplicity, we will assume in the following that our image is discretized
on a rectangular grid with step sizes hx and hy in the respective direction. We will further
assume that the pixels are indexed by a single number i ∈ {1, . . . , np}. The neighbouring

102

4. The Bregman iteration for optical flow

il
i

ir

id

iu

Figure 4.2: Pixel naming convention. Nx (i) = {il, ir} whereas Ny (i) = {iu, id}.

pixels will be labelled il, ir, iu and id, where the indices stand for left, right, up and
down. The sets Nx (i) and Ny (i) will represent the neighbours of pixel i in x (resp. y)
direction. Figure 4.2 summarises the naming convention presented in this paragraph.

It is easy to see that the system matrix given in eq. (4.80) is symmetric and positive
semi-definite. This fact follows from the observation that for an arbitrary matrix

0 6 ‖Ax‖22 = xTATAx (4.81)

and thus ATA is symmetric and positive semi-definite. The linear system in eq. (4.80)
was obtained by differentiating terms of the form

∥∥A(uv)+ b
∥∥2
2 for some matrix A and

vector b. Thus, it must also have these properties. However, proving that the matrix is
even positive definite will not be as easy. If we call the matrix corresponding to eq. (4.80)
M , then we must show that it fulfils

(u
v

)T
M
(u
v

)
> 0 for all

(u
v

)
6= 0.

The first step, that we will perform, will be to rewrite the considered system in a more
explicit form. The matrices Dx, Dy, etc. are all diagonal matrices, thus it follows that
they can easily be multiplied with each other. As for ∆, we will assume that the second
derivatives are approximated in the following way

(∂xxu)i ≈
uil − 2ui + uir

h2
x

(4.82)

(∂yyu)i ≈
uiu − 2ui + uid

h2
y

and therefore,

(∆u)i = (∂xxu)i + (∂yyu)i =
∑

k∈Nx(i)

uk − ui
h2
x

+
∑

k∈Ny(i)

uk − ui
h2
y

(4.83)

Of course, the same formula also holds for (∆v)i. This leads us to the following explicit
form of our linear system (i = 1, . . . , np)(

fx
2 + γ

(
f2
xx + f2

xy

))
i
ui + (fxfy + γ (fxxfxy + fxyfyy))i vi (4.84)

− θ
∑

k∈Nx(i)

uk − ui
h2
x

− θ
∑

k∈Ny(i)

uk − ui
h2
y

= (Ru)i

103

4. The Bregman iteration for optical flow

(fxfy + γ (fxxfxy + fxyfyy))iui +
(
f2
y + γ

(
f2
xy + f2

yy

))
i
vi (4.85)

− θ
∑

k∈Nx(i)

vk − vi
h2
x

− θ
∑

k∈Ny(i)

vk − vi
h2
y

= (Rv)i

In eq. (4.80), the system is written down with matrices. Thus, the first equation of
eq. (4.80) corresponds to the np equations given by eq. (4.84), whereas the second equation
of eq. (4.80) corresponds to the np equations given by eq. (4.85). If we had numbered
the equations consecutively, then eq. (4.84) would correspond to the equations 1 to np
and eq. (4.85) would correspond to the equations np + 1 to 2np. However, because of the
special structure of these equations, it is usually more convenient to write them down
pairwise. Equation (4.86) shows the structure of the system matrix if the pixels had been
numbered row-wise. With the definitions of eq. (4.87), the red marks contain terms from
J11 and ∆u, the blue marks correspond to terms stemming from J22 and ∆v and the
green marks correspond to J12. The remaining marks contain terms from ∆.

n
p

+
n
p

ro
w

s

∗∗ ∗ ∗∗∗∗ ∗ ∗∗∗∗ ∗ ∗∗∗∗ ∗ ∗∗∗∗ ∗ ∗∗ ∗∗∗ ∗ ∗∗ ∗∗∗ ∗ ∗∗ ∗∗∗ ∗ ∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗ ∗ ∗∗∗ ∗∗ ∗ ∗∗∗ ∗∗ ∗ ∗∗∗ ∗∗ ∗ ∗∗∗∗ ∗ ∗∗∗∗ ∗ ∗∗∗∗ ∗ ∗∗∗∗ ∗ ∗∗

︸ ︷︷ ︸

np+np coloumns

u1
u2
u3
...
unp
v1
v2
v3
...
vnp

=

Ru

Rv

(4.86)

If we define the abbreviations

(J11)i :=
(
fx

2 + γ
(
f2
xx + f2

xy

))
i

(4.87)

(J12)i := (fxfy + γ (fxxfxy + fxyfyy))i
(J22)i :=

(
f2
y + γ

(
f2
xy + f2

yy

))
i

then we obtain the following final form (again i = 1, . . . , np)

(J11)i ui + (J12)i vi − θ
∑

k∈Nx(i)

uk − ui
h2
x

− θ
∑

k∈Ny(i)

uk − ui
h2
y

= (Ru)i (4.88)

(J12)i ui + (J22)i vi − θ
∑

k∈Nx(i)

vk − vi
h2
x

− θ
∑

k∈Ny(i)

vk − vi
h2
y

= (Rv)i (4.89)

104

4. The Bregman iteration for optical flow

By using this representation of the linear system, 0 <
(u
v

)T
M
(u
v

)
can be rewritten as

0 <
np∑
i=1

ui

(J11)i ui + (J12)i vi − θ
∑

k∈Nx(i)

uk − ui
h2
x

− θ
∑

k∈Ny(i)

uk − ui
h2
y

 (4.90)

+
np∑
i=1

vi

(J12)i ui + (J22)i vi − θ
∑

k∈Nx(i)

vk − vi
h2
x

− θ
∑

k∈Ny(i)

vk − vi
h2
y

Regrouping the terms we obtain

np∑
i=1

(J11)i u2
i + 2 (J12)i uivi + (J22)i v2

i − θui
∑

k∈Nx(i)

uk − ui
h2
x

(4.91)

−θui
∑

k∈Ny(i)

uk − ui
h2
y

− θvi
∑

k∈Nx(i)

vk − vi
h2
x

− θvi
∑

k∈Ny(i)

vk − vi
h2
y

By applying the definitions of J11, J12 and J22 it is easy to see that the first three terms
in each addend can be rewritten as

(fxu+ fyv)2i + γ
[
(fxxu+ fxyv)2i + (fxyu+ fyyv)2i

]
(4.92)

and thus they are always non-negative. Let us now consider the remaining terms (omitting
θ as it is strictly positive anyway).

np∑
i=1

 ∑
k∈Nx(i)

u2
i − uiuk
h2
x

+
∑

k∈Ny(i)

u2
i − uiuk
h2
y

+
∑

k∈Nx(i)

v2
i − vivk
h2
x

+
∑

k∈Ny(i)

v2
i − vivk
h2
y

 (4.93)

In order to show that eq. (4.93) is also positive, we will have to reorder these terms one
more time. Assume that we are in pixel i and that this pixel has a neighbour in every
direction. (If not, then certain terms in the following reflection are simply not present).
Then we preform the following exchanges (names are always based on the point of view
of i):

• Pixel i receives the terms 1
h2
x

(
u2
ir − uiuir

)
from pixel ir and 1

h2
y

(
u2
id
− uiuid

)
from

pixel id.

• Pixel i receives the terms 1
h2
x

(
v2
ir − vivir

)
from pixel ir and 1

h2
y

(
v2
id
− vivid

)
from

pixel id.

• Pixel i gives the terms 1
h2
x

(
u2
i − uiuil

)
to pixel il and 1

h2
x

(
u2
i − uiuiu

)
to pixel iu.

• Pixel i gives the terms 1
h2
x

(
v2
i − vivil

)
to pixel il and 1

h2
x

(
v2
i − viviu

)
to pixel iu.

105

4. The Bregman iteration for optical flow

Figure 4.3: Visualisation of the reordering scheme for the pixels of the image. Arrows depict to which
pixels the different terms are reassigned.

Figure 4.3 visualises the idea behind this reordering. The arrows depict the direction in
which a term is moved. It follows now that eq. (4.93) can be rewritten as

np∑
i=1

 ∑
k∈{ir}∩Nx(i)

1
h2
x

(
u2
i + u2

k − 2uiuk
)

+
∑

k∈{id}∩Ny(i)

1
h2
y

(
u2
i + u2

k − 2uiuk
)

+ (4.94)

∑
k∈{ir}∩Nx(i)

1
h2
x

(
v2
i + v2

k − 2vivk
)

+
∑

k∈{id}∩Ny(i)

1
h2
y

(
v2
i + v2

k − 2vivk
)

which conveniently simplifies to
np∑
i=1

 ∑
k∈{ir}∩Nx(i)

1
h2
x

(ui − uk)2 +
∑

k∈{id}∩Ny(i)

1
h2
y

(ui − uk)2 + (4.95)

∑
k∈{ir}∩Nx(i)

1
h2
x

(vi − vk)2 +
∑

k∈{id}∩Ny(i)

1
h2
y

(vi − vk)2

Equation (4.95) is 0 if and only if ui = constu and vi = constv for all i. But then, it
follows from eq. (4.92) that (fxu+ fyv)2i = 0 can only be verified for all i if and only if
the spatial gradient ∇f is perpendicular to the flow field (u, v). In particular, it has to
be constant as well. On the other hand, ∇f is also perpendicular to the level curves
Lc := {x | f (x, t) = c}. This implies, that the flow field must be tangent to Lc at every
point. All in all, this would mean that in the continuous setting the graph of f would
have to be a plane in R3 for all times t. Thus, if we exclude this case, where the graph
is a plane, then the system matrix that we obtain in our Bregman iterations is always
positive definite.
Remark 4.5
The above argumentation also holds if we only consider the gray value constancy, i.e.
γ = 0. On the other hand, the gray value constancy cannot be removed. If we only

106

4. The Bregman iteration for optical flow

considered the constancy of the gradient, then the matrix is not necessarily positive
definite.

4.11 Handling large displacements with coarse-to-fine
strategies

All the data terms in our models use linearised constancy assumptions. The linearisation
is essential to obtain convex energy functionals which allow us to apply the Bregman iter-
ations. However, it restrains our algorithms to image sequences with small displacements.
To also handle modern sequences with large displacements, we follow [18, 20, 78] and
embed the minimisation of our energy into a coarse-to-fine multiscale warping approach
using downsampled images. This means that we consider our image sequence at different
resolution levels. On the coarsest level the displacement will be small enough to justify
the models with linearised constancy assumptions; thus we can compute the displacement
field with our algorithms from the previous sections. On the subsequent finer levels
we split the flow field into a known part (uc, vc) which consists of the solution from
the coarser level that we projected through interpolation to the next finer level and an
unknown small flow increment (du,dv). Then, in a so called warping step, we compute
f (x+ uc, y + vc, t+ 1) by compensating the second frame f (x, y, t+ 1) by (uc, vc). In
order give a well understandable presentation of this warping step we will now assume
that we operate on a discrete grid with step size 1 in each direction. Extensions to
arbitrary grid sizes are simply a matter of scaling, but they would render the notations
cumbersome. In general, the flow components (uc, vc) are not multiples of the grid size.
Therefore, we perform the compensation by splitting (uc, vc) into an an integer part (ū, v̄)
and a fractional part (εu, εv):

uc = ū+ εu (4.96)
vc = v̄ + εv

Then we compute the value at f (x+ uc, y + vc, t+ 1) through bilinear interpolation of
the surrounding pixels.

[f (x+ uc, y + vc, t+ 1)]i,j = (1− εu) (1− εv) [f (x, y, t+ 1)]i+ū,j+v̄,t+1 (4.97)
+ (εu) (1− εv) [f (x, y, t+ 1)]i+ū+1,j+v̄,t+1

+ (1− εu) (εv) [f (x, y, t+ 1)]i+ū,j+v̄+1,t+1

+ (εu) (εv) [f (x, y, t+ 1)]i+ū+1,j+v̄+1,t+1

Proceeding with this formula for every pixel we obtain the warped image - the modified
version of the image at time t+1 with respect to the displacement vector field. Figure 4.4
also visualises the idea behind this warping. Note that the warping step incorporates
the current solution into the problem. The image at time t+ 1 is warped successively
closer to the image at time t. Therefore, what remains to be computed at each level is
the difference problem, i.e the next finer motion increment (du,dv) such that

f (x+ uc + du, y + vc + dv, t+ 1) = f (x, y, t) (4.98)

107

4. The Bregman iteration for optical flow

apply (uc, vc)

bilinear interpolation
using neighbour pixels

f(x, y, t) f(x+ uc, y + vc, t+ 1) f(x, y, t+ 1)

(x, y)

(x, y)

Figure 4.4: Visualisation of the warping step. The four pixels linked with a dashed line mark the points
used for the bilinear interpolation.

Since the increments are supposed to be small, the constancy assumptions can again be
linearised (with respect to du and dv) and one proceeds as before. After having obtained
the increments, one projects everything to the next finer resolution level and repeats
the procedure. In the end, one obtains the complete flow field by summing up all the
increments from the different levels. In this thesis we will always perform the resampling
by using an area averaging strategy as detailed in [21, 78], but it should also be clear
that any reasonable interpolation strategy can be applied.

Reasonable downsampling factors for the image resolution of such a coarse-to-fine
approach lie in the range [0.5, 1). Larger factors are likely to yield better approaches as
they provide smoother transitions from one level to the next. However, they also increase
the computational burden because one has more different resolution levels to compute
the flow field at.

4.11.1 Further enhancements

Our optical flow models all had a regularisation parameter λ, either placed in front of the
data term or in front of the smoothness term. The role of this parameter was to dictate
how smooth our solution should be. The idea is now to use a different regularisation
weight at each resolution level. If the resolution is coarse, then the resulting displacement
vector field should be very smooth. On finer levels it should be less smooth, thus allowing
discontinuities in the flow field caused by small objects that did not appear on the coarser
levels. One possible choice would be to set the regularisation weight α (l) at level l (0
being the finest level and N > 0 the coarsest) to α(l) := λcl. The positive constant c
should be larger than 1 if the regularisation parameter is placed in front of the smoothness
term and smaller than 1 if the regularisation weight stands in front of the data term.
This guarantees that we get smoother results on coarser levels. Another benefit from
this approach is that it stabilizes the interpolation steps that we perform during the
coarse-to-fine scheme.

Additionally to the above mentioned strategy, we follow an idea from [86]. There, the
authors suggested to apply a median filter on the components (uc, vc) that were obtained

108

4. The Bregman iteration for optical flow

from the coarser grid. This eliminates strong outliers that could lead to erroneous results
in the warping step at the next finer level.

4.12 Occlusion detection
Some of the models that we presented in Section 4.1.3 contain quadratic data terms and
thus, they impose a harsh penalisation on outliers. As occluded pixels cannot fulfill any
constancy assumptions, it makes sense to disable the data term at occlusions in order to
stabilise the algorithm and improve the results. This can be achieved by multiplying the
data term with an occlusion indicator function o ∈ {0, 1}, where o(x, y) = 0 if a pixel is
occluded and o(x, y) = 1 if a pixel is visible. This way, the flow of field of occluded pixels
is solely determined by the smoothness term and not by the erroneous information of the
data term.

There are several possibilities to detect occlusions. We will follow the popular cross-
checking technique from [34, 67]. The idea is the following: one determines, in addition
to the (forward) flow field (u, v), a backward flow field (ub, vb) that describes the dis-
placements from time t+ 1 to t. It is clear, that for non occluded pixels, the forward flow
will be the inverse of the backward flow. This motivates the definition of the cross-check
value by

c(x, y) :=
∥∥∥∥∥
(
u(x, y) + ub(x+ u(x, y), y + v(x, y))
v(x, y) + vb(x+ u(x, y), y + v(x, y))

)∥∥∥∥∥
2

(4.99)

If (x, y) is the location of an occluded pixel, then c (x, y) will be large, since the forward
and backward flow will not cancel each other. For non-occluded pixels, c (x, y) will be
close to 0. Thus, we obtain the occlusion indicator function o(x, y) by thresholding c(x, y)
using a threshold parameter Tocc.

Note that this strategy requires that the flow field needs to be computed at least three
times. Twice two determine the forward and backward flow and a third time where we
apply the occlusion indicator function. Thus, this strategy triples the computation time
and should only be applied on sequences that require such a proper occlusion handling.

4.13 Summary and concluding remarks
In this chapter we have seen how the split Bregman algorithm can be applied to optical
flow problems. We presented a certain number of models based on variational formulations
and showed how they can be discretized and solved with the split Bregman algorithm. The
corresponding algorithms were then presented in Sections 4.4 to 4.8. We also discussed
a certain number of possible improvements like occlusion handling (Section 4.12) and
coarse-to-fine strategies (Section 4.11) that help us tackle some of the weaknesses of the
optical flow models. The occlusion handling is especially important for those approaches
with a quadratic data term, whereas the coarse-to-fine strategy helps us to overcome the
restriction that the displacements must be small. As we could see, the formulations of
all the algorithms are very similar. One Bregman iteration always consists in solving

109

4. The Bregman iteration for optical flow

linear systems and applying thresholding operations. It follows that these algorithms are
generally relatively easy to implement. However, we also noticed that not every model is
equally well suited for the Bregman framework. The model of Horn and Schunck is “too
simple” and can be handled much more efficiently with the Euler-Lagrange equations.
The L1–L1 models can be treated with the Bregman iterations but also in this case
there appear to exist hints that the convergence behaviour might be suboptimal. The
remaining models with one differentiable and one non-differentiable term fit naturally
into the Bregman framework and are likely to yield the best performance. Finally, one
should also mention the results from Section 4.10. The positive definiteness of the system
matrix allows us to consider a broad range of highly efficient algorithms for solving the
occuring linear systems.

110

5. Numerical evaluation

5 Numerical evaluation

The goal of this chapter will be to demonstrate the usefulness of the Bregman framework
by applying some of our algorithms from Chapter 4 on a certain number of test sequences.
We will use the data sets from the Middlebury computer vision page [74]. The correct
ground truth of these sequences is known; therefore, it allows us to present an accurate
evaluation of our algorithms. In order to give a quantitative representation of the accuracy
of the obtained flow fields, we will consider the so called average angular error given by

AAE (ue, uc) := 1
np

∑
i,j

arccos
〈uci,j , uei,j〉∥∥uci,j∥∥2

∥∥uei,j∥∥2
(5.1)

as well as the average endpoint error defined as

AEE (ue, uc) := 1
np

∑
i,j

∥∥uci,j − uei,j∥∥2 (5.2)

The subscripts c and e denote the correct respectively the estimated spatiotemporal optic
flow vectors uc = (uc1, uc2, 1)T and ue = (ue1, ue2, 1)T . In this context np denotes the
number of pixels of an image from the considered sequence. The average angular error is
a relatively popular method to measure the quality of a flow field. However, as mentioned
by the authors of [6, 7], it is slightly biased. Errors in large flows are less penalised than
errors in small flows. In order to offer a fair comparison, we will, therefore, also consider
the endpoint error as suggested in [6].

As for the qualitative evaluation of the computed flow fields, we will use the colour
representation shown in Fig. 5.1. Here, the hue encodes the direction and the brightness
represents the magnitude of the vector. Although the color coding is difficult to interpret
exactly, it provides a comfortable way to visualise, at the same time, both direction and
magnitude of the displacement field.

Figure 5.1: Color code for the displacement field.

111

5. Numerical evaluation

(a) Yosemite sequence (b) Rubberwhale sequence (c) Grove 2 sequence

(d) Yosemite ground truth (e) Rubberwhale ground truth (f) Grove 2 ground truth

Figure 5.2: First Row: A frame from the tested sequences. Second Row: Corresponding exact ground
truth. Magenta pixels in the exact flow field depict locations where the correct ground truth cannot be
given.

5.1 Evaluation of the Bregman algorithms
In the following we will use the sequences depicted in Fig. 5.2 to test our algorithms.
From the five algorithms that we presented in Chapter 4 we will actually use the L1–L2
algorithm from Section 4.5, the rotationally invariant L2–L1 algorithm from Section 4.7
and the rotationally invariant L1–L1 approach mentioned in Section 4.8. Each algorithm
was implemented as described in Chapter 4. The occurring linear system was always
solved with a simple Gauß-Seidel algorithm. Additionally, we added a coarse-to-fine
strategy as described in Section 4.11 and set the downsampling factor in all the tests
to 0.9. The strategy with the median filter from Section 4.11.1 was also implemented.
The regularisation parameter, however, was left constant on each warping level. The
number of iterations for each model was chosen in such a way that the algorithm reached
convergence for every considered sequence.

Figure 5.3 depicts the obtained flow fields and the tables 5.1 to 5.3 present the parameter
choices as well as the error measures and runtimes for the different algorithms. In this
context AAE denotes the average angular error, AEE the average endpoint error and RT
the runtime in seconds. The meanings of the parameters λ, µ and γ are the same as in
the descriptions of the algorithms in Chapter 4. σ is the standard deviation used for the
preprocessing of the images with a gaussian convolution. Note that the values of the
parameter λ vary significantly in Table 5.2. The reason for these differences lies in the
fact that we placed λ in front of the smoothness term for the L1-L2 model and in front
of the data term for the other models. Concerning the results, it is interesting to note

112

5. Numerical evaluation

Figure 5.3: The resulting flow fields. First row: L2–L1 model. Second row: L1–L2 model. Third
row: L1–L1 model.

Sequence λ µ γ σ AAE AEE RT

Yosemite 0.0025 8.45 84.50 1.30 2.91 0.12 35
Rubberwhale 0.0100 11.25 20.00 0.40 4.06 0.12 93
Grove 2 0.0250 6.30 1.50 0.75 2.79 0.18 125

Table 5.1: Parameter choices and errors for the L2–L1 model with 30 Bregman iterations, 10 Gauss-Seidel
iterations and 3 alternating minimisations.

113

5. Numerical evaluation

Sequence λ µ γ σ AAE AEE RT

Yosemite 1300 1.10 15.00 0.90 4.57 0.19 72
Rubberwhale 1125 8.45 23.00 0.40 5.79 0.17 180
Grove 2 475 4.75 4.75 0.80 3.48 0.23 242

Table 5.2: Parameter choices and errors for the L1–L2 model with 50 Bregman iterations, 10 Gauss-Seidel
iterations and 3 alternating minimisations.

Sequence λ µ γ σ AAE AEE RT

Yosemite 0.0040 0.13 47.50 1.60 5.17 0.28 215
Rubberwhale 0.0065 0.23 1.00 0.38 4.67 0.14 530
Grove 2 0.0650 0.41 1.00 0.90 2.95 0.20 720

Table 5.3: Parameter choices and errors for the L1–L1 model with 150 Bregman iterations, 10 Gauss-Seidel
iterations and 3 alternating minimisations.

that the L2–L1 model converged much faster than the L1–L1 formulation. This is likely
due to the fact that in the L1–L1 algorithm we placed all the terms from the original
energy functional into the constraining condition, whereas for the other models, this was
not the case.

5.2 Comparison with other algorithms
We already presented various numerical evaluations for our Bregman formulations in the
previous section. In general, these results seem to be rather good. However, we do not
know yet how our approach compares to state of the art algorithms from the literature.
This will be subject of the next two sections. We will compare two of our Bregman
iterations from Chapter 4 with other algorithms that minimise the same variational
model. All our tests will be done using the Rubberwhale and Dimetrodon sequences from
the Middlebury pages [74].

5.2.1 Bregman L1-L1 without gradient constancy and TV-L1-M

In the following we will consider the TV-L1 method [95] with additional median filtering
[86] (TV-L1-M) and compare it to the anisotropic L1-L1 Bregman formulation from
Section 4.8. The TV-L1-M approach entails a similar strategy as the Bregman framework,
in the sense, that it introduces an additional variable and splits the minimisation process
into two subproblems. One of them is solved with shrinkage operators, whereas the other
requires the use of Chambolle’s algorithm [30]. Our implementation of the TV-L1-M
formulation will correspond to the presentation from [95]. In order to guarantee a fair

114

5. Numerical evaluation

comparison, we will, however, use the same warping scheme for both methods and
only consider the grey value constancy for the Bregman approach, i.e. we set γ = 0 in
Section 4.8. Under these conditions the considered algorithms solve exactly the same
model. Evaluating both approaches confirms the good results of the Bregman framework
from the previous section. The L1-L1 formulation achieves an average endpoint error of
0.15 for the Rubberwhale sequence and 0.13 for the Dimetrodon sequence. On the other
hand, the TV-L1-M algorithm returns an endpoint error of 0.16 for Rubberwhale and
0.15 for Dimetrodon. However, one should also note that the computation time of the
Bregman algorithm was 600 seconds for the Rubberwhale sequence and 140 seconds for
the Dimetrodon sequence, whereas the TV-L1-M formulation only needed 200 seconds for
Rubberwhale and 40 seconds for Dimetrodon. It follows that our algorithm is competitive
in terms of accuracy but not in terms of speed. The parameters that were used for
the evaluation are described in Table 5.4 and Table 5.5. The meanings of Bregman
parameters are the same as in the previous section. The notations in Table 5.5 correspond
to those in the references [86, 95]. The only parameter that is not mentioned in these
tables is the downsampling factor of the warping scheme. Unless mentioned differently, it
is always set to 0.9.

5.2.2 Bregman L2-L1 and Brox-QDT-M

In this section we compare the isotropic Bregman L2-L1 formulation from Section 4.7 to a
variant of the method of Brox et al. [18] with a quadratic data term and median filtering
(Brox-QDT-M). This yields a model that only differs from ours by the differentiable
approximation of the TV regulariser required by the Euler-Lagrange framework. The
split Bregman algorithm was specifically designed to handle terms like ‖∇u‖2. However,
the Euler-Lagrange equations require differentiable terms. Therefore, one introduces the
following approximation

‖∇u‖2 ≈
√

(∂xu)2 + (∂yu)2 + ε2 (5.3)

with a small ε > 0. The Brox-QDT-M algorithm also uses a multigrid scheme as proposed
in [22]. In this setting, the Bregman formulation results in an endpoint error of 0.12
(runtime: 93s.) for the Rubberwhale sequence and 0.11 (runtime: 45s.) for Dimetrodon.
Brox-QDT-M achieves an endpoint error of 0.12 and a computation time of 5 seconds for
each sequence. Therefore, we can again conclude that the Bregman formulation is just
as accurate as other methods from the literature, but not as fast. However, one should
also keep in mind that our implementation of the Bregman iteration uses a Gauß-Seidel
scheme, which is much slower than the multigrid approach used in Brox-QDT-M. If both
algorithms were using the same solver, then the runtimes might become comparable. For
these tests we used the parameters given in Table 5.4 and Table 5.5. The multigrid solver
performed 1 W-cycle, 1 pre-/postsmoothing iteration and used a Gauß-Seidel type solver
with alternating line relaxation.

115

5. Numerical evaluation

Bregman L1-L1 Bregman L2-L1

Parameter Rubberwhale Dimetrodon Rubberwhale Dimetrodon

α 0.0073 0.0020 0.0100 0.1100
γ 0 0 20.00 8.43
µ 0.35 0.41 11.25 2.30
σ 0.44 0.78 0.40 0.73
i 100 30 30 10
j 20 15 10 10
k 3 3 3 3

Table 5.4: Parameter choices for the two Bregman algorithms.

Parameter Rubberwhale Dimetrodon

α 0.410 0.730
θ 0.250 0.380
σ 0.376 0.605
τ 0.125 0.125
iterations 40 15
chambolle steps 15 10

Parameter Rubberwhale Dimetrodon

α 125.00 48.00
γ 26.60 8.43
σ 0.50 0.50

Table 5.5: Left: Parameter choices for TV-L1-M. Right: Parameter choices for Brox-QDT-M.

116

5. Numerical evaluation

5.3 Occlusion handling
As already mentioned in the previous chapter, the quadratic penalisation of the data
term in the L2–L1 models may require additional treatment to avoid strong outliers. We
discussed one possible approach to overcome this deficit in Section 4.12. In the following
we demonstrate the benefits of that approach. We consider the Urban 2 sequence1 and
compute the flow field once without occlusion handling and another time with occlusion
handling using the rotationally invariant L2–L1 model. The resulting displacement fields
are shown in Fig. 5.4. The improvements are clearly visible in the upper left part.
Without occlusion handling we get unpleasant outliers. However these outliers completely
vanish if we apply the occlusion handling. These observations are also reflected in the
errors. Without occlusion handling the average angular error was 3.67, whereas the
average endpoint error was 0.48. The computation took about 43 seconds. Applying the
occlusion handling leads to an average angular error of 3.18 and an average endpoint error
of 0.41, thus yielding an improvement of almost 20% on the endpoint error. However,
the computation time also rose to 242 seconds due to the computation of the multiple
flow fields that are needed to determine the occluded pixels.

5.4 Summary and concluding remarks
In this chapter we made a short numerical evaluation of the Bregman algorithms that
we had developed in the previous chapters. We also demonstrated the benefits of an
occlusion handling strategy. In general, the obtained results are relatively good and
reflect the nice theoretical properties of the Bregman framework. A part of this quality
can certainly also be accredited to the versatility of the Bregman toolkit that easily
allows to incorporate higher order constancy assumptions in the data term as well as
rotationally invariant models for the smoothness terms. Unfortunately our premonition
from Remark 4.3 that the L1-L1 model might exhibit a slower convergence seems to be
verified. In the previous tests it was by far the slowest approach. On the other hand it is
interesting to note that the L2-L1 and L1-L2 model also present a certain discrepancy
in their convergence speeds, although the algorithms are of a similar form since their
corresponding models both have one differentiable term and one non-differentiable term.
Finally, one should note that our Bregman formulations are competitive to state of the
art algorithms in terms of accuracy. However, they are usually slower.

1also taken from the Middlebury page. See [74].

117

5. Numerical evaluation

(a) Frame 10 of the Urban 2
sequence

(b) Obtained occlusion indi-
cator function for Tocc = 1.30,
black pixels mark occlusions.

(c) The resulting flow field of
the Urban 2 sequence without
occlusion handling. Param.:
λ = 0.023, µ = 20.0, γ = 4.74,
σ = 0.5.

(d) Exact ground truth. (e) The resulting flow field of
the Urban 2 sequence with
occlusion handling. Param.:
λ = 0.2, µ = 20.0, γ = 1.73,
σ = 0.5 and Tocc = 1.30.

Figure 5.4: Benefits of a proper occlusion handling. Both flow fields were computed with 10 Bregman
iterations, 3 alternating minimisation steps and 10 Gauss-Seidel iterations.

118

6. Summary and outlook

6 Summary and outlook

6.1 Summary
Within the framework of this thesis we analysed the Bregman iteration of Osher et al.
and proved that it was possible to minimise variational formulations of the optical flow
problem by using the Bregman framework. Especially the split Bregman algorithm of
Goldstein and Osher proved to be well suited for this kind of problems. Our work can
basically be divided into two distinct parts.

In the first part, starting with Chapter 2, we recalled the necessary mathematical
prerequisites from convex and functional analysis. All the key results and important
subjects, such as the subdifferential calculus and the characteristics of shrinkage operators,
were discussed and complemented with detailed proofs. In Chapter 3 we analysed the
properties of various Bregman algorithms. We established a solid mathematical foundation
for the upcoming tasks by discussing three of the most popular Bregman iterations: the
original formulation of Osher, an alternative form of this algorithm which avoids the
computation of a subgradient and the split Bregman iteration of Goldstein and Osher.
One of the most important results from this chapter was the convergence of all these
iterative processes. In this context it is also interesting to note that it was possible to
give a concrete upper bound for the error at each iteration step. Finally, we were also
able to point out a relationship between our Bregman formulation and the Lagrangian
penalty method.

In the second part we turned our interest towards the optical flow problem. In Chapter 4
we developed a novel approach based upon the split Bregman algorithm and demonstrated
the high flexibility of our formulation by presenting the corresponding algorithms for
several different variational models. Within this context we were also able to show that
the Bregman framework easily allows the integration of modern higher order data terms
as well as advanced smoothness terms such as the popular total variation regulariser.
In order to be able to apply the Bregman framework to problems with robust data
and smoothness terms we also had to present a novel variation of the split Bregman
iteration. In this new formulation we place all the terms from the energy functional into
the constraining conditions. Interestingly, all our final algorithms were quite similar and
relatively easy to implement. They consisted essentially of a linear system and shrinkage
operations. A careful analysis even showed us that the matrix of this system is always
symmetric and positive definite. This result granted us many freedoms when it came to
the choice of the solver for the linear system and could be one potential starting point to
further increase the efficiency of our algorithms. Furthermore, we discussed several other
possible extensions and improvements. We showed that our Bregman algorithms could
be incorporated into a coarse-to-fine strategy and we presented a simple and yet efficient

119

6. Summary and outlook

way to deal with strong outliers.
Finally, we verified our findings through empirical tests which proved to be very

successful. Compared to other techniques in the literature, our approach performed
favorably. Although the Bregman approach was usually slower, we observed that the
resulting flow fields were of equal or even better quality.

6.2 Outlook
Regarding future work, research in the following directions could provide fruitful results:

The Bregman iteration itself
• The formulation presented within this thesis required a discrete setting to operate in.

It is unclear whether this is really necessary. Many results presented in Chapter 2
and Chapter 3 hold for any normed vector space. Therefore, it should also be
possible to use the Bregman iteration for optimisation problems in arbitrary spaces,
such as the Sobolev spaces. The main problems are clearly the well definedness of
the iterates. Convex functionals are only continuous in the finite dimensional case.
However, without continuity we cannot guarantee the existence of a subgradient.
Furthermore, one would have to investigate whether the iterates always exist,
i.e. whether the minimum in each iteration step can really be attained. The calculus
of variations provides results that guarantee the existence of minimisers for convex
functionals, but they are often bound to rather strict conditions and may not be
applicable. The authors of [5, 15] showed for example that minimisers exist if the
energy functional fulfils certain growth conditions. Further results directed towards
optical flow models can also be found in [48]. Osher and his colleagues proved
the well definedness of the Bregman iteration for the continuous setting in [62].
However, their argumentation was specific to the ROF model for image denoising
and it might be difficult to generalise their proof to other functionals.

• In [81] the authors noticed that, for certain problems, the split Bregman iteration is
equivalent to an augmented Lagrangian and penalty approach. We have shown such
an equivalence for a special case in Section 3.1.4. In [63] the authors showed that
the linearised Bregman algorithm, another variant of the Bregman iteration that we
did not mention here, is, for certain convex optimisation problems, equivalent to a
gradient descent approach applied on the dual problem. Further equivalences have
also been pointed out in [77]. From a mathematical point of view such equivalences
are highly interesting because they often imply that one can simply transfer the
knowledge about one algorithm to the other. The natural question that arises in
this context is whether such equivalences still exist in a general setting and not just
for specific problems. This could for example lead to a better understanding of the
convergence properties of the Bregman iteration. We showed in Chapter 3 that the
Bregman formulation converges for a very specific form of constraining conditions.
Only very few results exist for more generic problems. By means of equivalences it
might be possible to state a general convergence theory.

120

6. Summary and outlook

Better numerics
The computation of optical flow always requires the treatment of large amounts of data.
Therefore, an efficient treatment of this data could provide considerable speedups to our
algorithms.

• All the Bregman iterations in this thesis have one thing in common. They require
solving a large and sparse linear system with a symmetric and positive definite
matrix. Our tests proved that iterative approaches like the Gauß-Seidel algorithm
could be used for this task. Unfortunately, this solver exhibits rather slow conver-
gence speeds. On the other hand, multigrid methods rank among the fastest known
algorithms for solving linear systems and could basically lead to a tremendous
decrease in computation time if it were possible to apply them in the context of
Bregman iterations. The multigrid framework has already been applied to optical
flow problems in [19, 22]. The authors of these references were able to achieve
speedups of more than two orders of magnitude when compared to other algorithms
and reached, in certain cases, almost realtime performance. Since the multigrid
algorithm is relatively complex, it might also make sense to consider other simpler
methods like conjugate gradients, bicgstab and gmres. See [73, 76, 80] for a detailed
analysis of these algorithms. In that context it is certainly worth analysing whether
preconditioning strategies might be of any benefit. The matrix entries never change
during the Bregman iteration. Therefore, one can apply the same preconditioner
on the linear system at every iteration step. This observation must certainly be
exploited if one wants to achieve significant performance increases. However, we
have also seen in Chapter 5 that the linear system does not need to be solved with
full precision. Crude approximations often work surprisingly well and may present
an argument against preconditioners.

• Except for the linear system, all other operations in the split Bregman algorithm
are performed pointwise and could basically be performed in parallel. Considering
the increasing popularity of parallel architectures, this might be another beneficial
approach for speeding up the algorithm. Formulations such as the Jacobi or Red-
Black Gauß-Seidel iteration can easily be executed in parallel and would allow us
to formulate a complete parallelisation of the Bregman framework.

Better models for the optical flow problem
The following ideas have not been treated yet, but they seem natural and worth investi-
gating.

• The extension to colour images should not be too difficult and might provide slight
improvements in quality. As mentioned in [20], using the different representations
of the colour space and other photometric invariants could render our methods
more robust against illumination changes.

• Spatiotemporal extensions using more than two frames to compute the flow might
as well be beneficial to the results.

121

6. Summary and outlook

• We only considered simple quadratic or sub-quadratic smoothness and data terms
within this thesis. However, during the last years more complex models have also
been studied. Excellent results have been achieved by using flow and image driven
smoothness terms combined with various different data terms. A detailed survey and
evaluation of all these models can be found in [19, 64, 87]. Furthermore, formulations
such as the complementary optical flow model [98] yield excellent results in terms
of accuracy and outperform most other known approaches. Therefore, it might be
worth investigating how far these model assumptions can be incorporated into the
Bregman formulation.

Extensions to other correspondence problems
Motion estimation is not the only important correspondence problem in computer
vision. Stereo reconstruction and medical image registration are other widely researched
representatives of this type of problems. Since the Bregman algorithm proved to be useful
for the computation of the optical flow, it is natural to consider whether the algorithm
can also be applied to these topics. Stereo reconstruction requires the integration of
the epipolar constraint [38]. This constraint limits the search space of the underlying
correspondence problem to certain lines (epipolar lines) and the number of unknowns is
reduced to one. However, the structure of the equations gets significantly more complex
and is likely to cause many difficulties if one wanted to apply a Bregman formulation.
Similar problems are also to be expected in the context of medical image registration,
where one seeks the deformation field that allows to compare/combine information from
different image acquisition methods [20]. On the one hand one may have to consider
models that respect certain physical constraints and on the other hand one must also be
able to handle images that originate from completely different sources. This certainly
presents a non-trivial task, both in terms of modeling and numerics.

122

Bibliography

Bibliography

All cited webpages were available in August 2010.

[1] E. Albrecht. Funktionalanalysis 1 und 2. Vorlesungsskript Wintersemester 2008/2009
und Sommersemester 2009 Universität des Saarlandes, 2008, 2009. http://www.
math.uni-sb.de/ag/albrecht/ag-albrecht.html.

[2] H. W. Alt. Lineare Funktionalanalysis. Springer-Lehrbuch Masterclass. Springer,
5th edition, 2006.

[3] W. Alt. Numerische Verfahren der konvexen Optimierung: Eine anwendungsorien-
tierte Einführung. Vieweg+Teubner, 1st edition, 2004.

[4] P. Anandan. A computational framework and an algorithm for the measurement of
visual motion. International Journal of Computer Vision, 2(3):283–310, 1989.

[5] G. Aubert and P. Kornprobst. Mathematical problems in image processing, par-
tial differential equations and the calculus of variations, volume 147 of Applied
Mathematical Sciences. Springer, 2nd edition, 2006.

[6] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski. A
database and evaluation methodology for optical flow. In Proceedings of the 2007
IEEE International Conference on Computer Vision, pages 1–8, Rio de Janeiro,
Brazil, October 2007. IEEE Computer Society Press.

[7] J. Barron, D. J. Fleet, and S. Beauchemin. Performance of optical flow techniques.
International Journal of Computer Vision, 12(1):43–77, 1994.

[8] H. H. Bauschke and J. M. Borwein. Legendre functions and the method of random
Bregman projections. Journal of Convex Analysis, 4(1):27–67, 1997.

[9] R. Ben-Ari and N. Sochen. Variational stereo vision with sharp discontinuities and
occlusion handling. In Proc. 2007 IEEE International Conference on Computer
Vision, Rio de Janeiro, Brazil, 2007. IEEE Computer Society Press.

[10] M. Black and P. Anandan. The robust estimation of multiple motions: parametric
and piecewise smooth flow fields. Computer Vision and Image Understanding,
63(1):75–104, 1996.

[11] M. J. Black and P. Anandan. Robust dynamic motion estimation over time. In
Proceedings of the 1991 IEEE Computer Society Conference on Computer Vision

123

http://www.math.uni-sb.de/ag/albrecht/ag-albrecht.html
http://www.math.uni-sb.de/ag/albrecht/ag-albrecht.html

Bibliography

and Pattern Recognition, pages 292–302, Maui, Hawaii, June 1991. IEEE Computer
Society Press.

[12] J. M. Borwein and A. S. Lewis. Convex analysis and nonlinear optimization: Theory
and examples. CMS Books in Mathematics. Springer, 1st edition, 2000.

[13] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press,
1st edition, 2004. Availabe from: http://www.stanford.edu/~boyd/cvxbook/.

[14] L. M. Bregman. The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR
Computational Mathematics and Mathematical Physics, 7(3):200–217, 1967.

[15] D. Breit. Grundlagen der variationsrechnung I & II. Vorlesungsskript Wintersemester
2009/2010 und Sommersemester 2010 Universität des Saarlandes, 2009, 2010. http:
//www.math.uni-sb.de/ag/fuchs/GdV/gdv.html.

[16] M. Breuß. Numerical algorithms for visual computing III. Lecture summer
semester 2009 Saarland University, 2009. http://www.mia.uni-saarland.de/
breuss/index.shtml.

[17] M. Brokate. Konvexe Analysis. Vorlesungsskript Sommersemester 2008 und 2009
TU München, 2008, 2009. http://www-m6.ma.tum.de/~brokate/.

[18] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow
estimation based on a theory for warping. In T. Pajdla and J. Matas, editors,
Computer Vision – ECCV 2004, Part IV, volume 3024 of Lecture Notes in Computer
Science, pages 25–36. Springer, 2004.

[19] A. Bruhn. Variationelle Optische Flussberechnung Präzise Modellierung und ef-
fiziente Numerik. PhD thesis, Saarland University, 2006.

[20] A. Bruhn. Correspondence problems in computer vision. Lecture summer semester
2009 Saarland University, 2009. http://www.mia.uni-saarland.de/bruhn/index.
shtml.

[21] A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schnörr. Variational optic
flow computation in real-time. Technical Report 89, Department of Mathematics,
Saarland University, Saarbrücken, 2003.

[22] A. Bruhn, J. Weickert, T. Kohlberger, and C. Schnörr. A multigrid platform for
real-time motion computation with discontinuity-preserving variational methods.
International Journal of Computer Vision, 70(3):257–277, 2006.

[23] C. Brune, A. Sawatzky, and M. Burger. Primal and dual Bregman methods with
application to optical nanoscopy. Technical report, Westfälische Wilhelms-Universität
Münster, Institut für numerische und angewandte Mathematik, 2010. Submitted to
International Journal of Computer Vision.

124

http://www.stanford.edu/~boyd/cvxbook/
http://www.math.uni-sb.de/ag/fuchs/GdV/gdv.html
http://www.math.uni-sb.de/ag/fuchs/GdV/gdv.html
http://www.mia.uni-saarland.de/breuss/index.shtml
http://www.mia.uni-saarland.de/breuss/index.shtml
http://www-m6.ma.tum.de/~brokate/
http://www.mia.uni-saarland.de/bruhn/index.shtml
http://www.mia.uni-saarland.de/bruhn/index.shtml

Bibliography

[24] M. Burger, G. Gilboa, S. Osher, and J. Xu. Nonlinear inverse scale space methods.
Communications in Mathematical Sciences, 4(1):175–208, 2006.

[25] M. Burger and S. Osher. Convergence rates of convex variational regularization.
Inverse Problems, 20(5):1411–1420, 2004.

[26] M. Burger, S. Osher, J. Xu, and G. Gilboa. Nonlinear inverse scale space methods
for image restoration. In N. Paragios, O. D. Faugeras, T. Chan, and C. Schnörr,
editors, Variational, Geometric, and Level Set Methods in Computer Vision (VLSM).
Third international workshop, volume 3752 of Lecture Notes in Computer Science,
pages 25–36, Beĳing, China, October 2005. Springer.

[27] M. Burger, E. Resmerita, and L. He. Error estimation for Bregman iterations and
inverse scale space methods. Computing, 81(2–3):109–135, 2007.

[28] J.-F. Cai, S. Osher, and Z. Shen. Linearized Bregman iterations for compressed
sensing. Mathematics of Computation, 78(267):1515–1536, 2009.

[29] J.-F. Cai, S. Osher, and Z. Shen. Split Bregman methods and frame based image
restoration. Multiscale Modeling & Simulation, 8(2):337–369, 2009.

[30] A. Chambolle. An algorithm for total variation minimization and applications.
Journal of Mathematical Imaging and Vision, 20(1–2):89–97, 2004.

[31] T. F. Chan and P. Mulet. On the convergence of the lagged diffusivity fixed point
method in total variation image restoration. SIAM Journal on Numerical Analysis,
36(2):354–367, 1999.

[32] P. Chen, Y. Chen, and M. Rao. Metrics defined by Bregman divergences. Commu-
nications in Mathematical Sciences, 6(4):915–926, 2008.

[33] P. Chen, Y. Chen, and M. Rao. Metrics defined by Bregman divergences: Part 2.
Communications in Mathematical Sciences, 6(4):927–948, 2008.

[34] S. Cochran and G. Medioni. 3-D surface description from binocular stereo. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(10):981–994, 1992.

[35] I. Cohen. Nonlinear variational method for optical flow computation. In K. A. Høgda,
B. Braathen, and K. Heia, editors, Proceedings of the 8th Scandinavian Conference
on Image Analysis, volume 1, pages 523–530, Tromsø, Norway, May 1993. Nobim.

[36] R. Deriche, P. Kornprobst, and G. Aubert. Optical flow estimation while preserving
its discontinuities: a variational approach. In S. Z. Li, D. P. Mital, E. K. Teoh,
and H. Wang, editors, Recent Developments in Computer Vision, Second Asian
Conference on Computer Vision, ACCV ’95, volume 1035 of Lecture Notes in
Computer Science, pages 69–80, Singapore, December 1996. Springer.

125

Bibliography

[37] I. Ekeland and R. Téman. Convex analysis and variational problems. Number 28 in
Classics in Applied Mathematics. Society for Industrial and Applied Mathematics,
1st edition, 1999.

[38] O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. Artificial
Intelligence. MIT Press, 1st edition, 1993.

[39] S. Fuc̆ik, A. Kratochvil, and J. Nec̆as. Kac̆anov–Galerkin method. Commentationes
Mathematicae Universitatis Carolinae, 14(4):651–659, 1973.

[40] C. Geiger and C. Kanzow. Theorie und Numerik restringierter Optimierungsaufgaben.
Springer-Lehrbuch Masterclass. Springer, 1st edition, 2002.

[41] P. Getreuer. Notes on Bregman iteration. Online, 2009. http://www.math.ucla.
edu/~getreuer/.

[42] T. Goldstein, X. Bresson, and S. Osher. Global minimization of Markov random
fields with applications to optical flow. UCLA CAM Report 09-77, University of
California, Los Angeles, 2009.

[43] T. Goldstein and S. Osher. The split Bregman method for l1 regularized problems.
SIAM Journal on Imaging Sciences, 2(2):323–343, 2009.

[44] A. Göpfert, T. Riedrich, and C. Tammer. Angewandte Funktionalanalysis:
Motivationen und Methoden für Mathematiker und Wirtschaftswissenschaftler.
Vieweg+Teubner, 1st edition, 2009.

[45] W. Hackbusch. Multigrid Methods and Applications. Springer series in computational
mathematics. Springer, 1st edition, 2009.

[46] E. T. Hale, W. Yin, and Y. Zhang. A fixed-point continuation method for l1
regularized minimization with applications to compressed sensing. CAAM Technical
Report TR07-07, Department of Computational and Applied Mathematics, Rice
University, Houston, Texas, 2007.

[47] L. He, T.-C. Chang, S. Osher, T. Fang, and P. Speier. MR image reconstruction by
using the iterative refinement method and nonlinear inverse scale space methods.
UCLA CAM Report 06-35, University of California, Los Angeles, 2006.

[48] W. Hinterberger, O. Scherzer, C. Schnörr, and J. Weickert. Analysis of optical flow
models in the framework of calculus of variations. Numerical Functional Analysis
and Optimization, 23(1 & 2):69–89, 2002.

[49] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization algo-
rithms I: Fundamentals. A series of comprehensive studies in mathematics. Springer,
2nd edition, 1996.

[50] B. K. Horn and B. G. Schunck. Determining optical flow. Artificial Intelligence,
17(1–3):185–203, 1981.

126

http://www.math.ucla.edu/~getreuer/
http://www.math.ucla.edu/~getreuer/

Bibliography

[51] V. John. Mathematische Optimierung. Vorlesungsskript Sommersemester 2009
Universität des Saarlandes, 2009. http://www.wias-berlin.de/people/john/.

[52] D. Jungnickel. Optimierungsmethoden. Springer Lehrbuch. Springer, 2nd edition,
2008.

[53] Y. Kameda, A. Imiya, and N. Ohnishi. A convergence proof for the Horn-Schunck
optical-flow computation scheme using neighborhood decomposition. In V. E.
Brimkov, R. P. Barneva, and H. A. Hauptman, editors, Proceedings of the 12th
international conference on Combinatorial image analysis, volume 4958 of Lecture
Notes in Computer Science, pages 262–273, Buffalo, USA, April 2008. Springer.

[54] J. Kac̆ur, J. Nec̆as, J. Polák, and J. Souc̆ek. Convergence of a method for solving
the magnetostatic field in nonlinear media. Aplikace Matematiky, 13:456–465, 1968.

[55] R. Klette, K. Schlüns, and A. Koschan. Computer Vision: Three-Dimensional Data
from Images. Springer, 1st edition, 1998.

[56] A. Mansouri, A. Mitiche, and J. Konrad. Selective image diffusion: application
to disparity estimation. In Proc. 1998 IEEE International Conference on Image
Processing, volume 3, pages 284–288, Chicago, IL, 1998.

[57] A. Mitiche and A.-R. Mansouri. On convergence of the Horn and Schunck optical-flow
estimation method. IEEE Transactions on Image Processing, 13(6):848–852, 2004.

[58] P. Mrázek, J. Weickert, and G. Steidl. Correspondences between wavelet shrinkage
and nonlinear diffusion. In L. Griffin and M. Lillholm, editors, Scale-Space 2003,
volume 2695 of Lecture notes in computer science, pages 101–116. Springer, 2003.

[59] E. Ménim and P. Pérez. Hierarchical estimation and segmentation of dense motion
fields. International Journal of Computer Vision, 46(2):129–155, 2002.

[60] H. Nagel. Image sequence server. Online. http://i21www.ira.uka.de/image_
sequences/.

[61] T. Nir, A. Bruckstein, and R. Kimmel. Over-parameterized variational optical flow.
International Journal of Computer Vision, 76(2):205–216, 2008.

[62] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative regulariza-
tion method for total variation-based image restoration. Multiscale Modeling and
Simulation, 4(2):460–489, 2005.

[63] S. Osher, Y. Mao, B. Dong, and W. Yin. Fast linearized Bregman iteration for
compressive sensing and sparse denoising. Communications in Mathematical Sciences,
8(1):93–111, 2010.

[64] N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J. Weickert. Highly accurate
optic flow computation with theoretically justified warping. International Journal
of Computer Vision, 67(2):141–158, 2006.

127

http://www.wias-berlin.de/people/john/
http://i21www.ira.uka.de/image_sequences/
http://i21www.ira.uka.de/image_sequences/

Bibliography

[65] R. Plato. Numerische Mathematik kompakt. Grundlagenwissen für Studium und
Praxis. Vieweg+Teubner, 4th edition, 2010.

[66] T. Pock. Fast total variation for computer vision. PhD thesis, Graz University of
Technology, 2008.

[67] M. Proesmans, L. V. Gool, E. Pauwels, and A. Oosterlinck. Determination of optical
flow and its discontinuities using non-linear diffusion. In J.-O. Eklundh, editor,
Computer Vision – ECCV ’94, volume 801 of Lecture Notes in Computer Science,
pages 295–304. Springer, 1994.

[68] A. W. Roberts and D. E. Varberg. Convex functions. Pure & Applied Mathematics.
Academic Press Inc., 1st edition, 1973.

[69] R. T. Rockafellar. Convex analysis. Princeton Landmarks in Mathematics and
Physics. Princeton University Press, 10th edition, 1997.

[70] R. T. Rockafellar and J.-B. Wets. Variational Analysis, volume 317 of A series of
comprehensive studies in mathematics. Springer, 1st edition, 1998.

[71] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena, 60(1–4):259–268, 1992.

[72] W. Rudin. Functional Analysis. International series in pure and applied mathematics.
McGraw-Hill, 2nd edition, 1991.

[73] Y. Saad. Iterative methods for sparse linear systems. Society for industrial mathe-
matics, 2nd edition, 2000. Available from http://www-users.cs.umn.edu/~saad/
books.html.

[74] D. Scharstein and R. Szeliski. The middlebury computer vision pages. Online.
http://vision.middlebury.edu/.

[75] C. Schnörr. Determining optical flow for irregular domains by minimizing quadratic
functionals of a certain class. International Journal of Computer Vision, 6(1):25–38,
1991.

[76] H. R. Schwarz and N. Köckler. Numerische Mathematik. Teubner, 6th edition, 2006.

[77] S. Setzer. Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage.
In X.-C. Tai, K. Mørken, M. Lysaker, and K.-A. Lie, editors, Scale Space and
Variational Methods in Computer Vision, volume 5567 of Lecture Notes in Computer
Science, pages 464–476, Voss, Norway, June 2009. Springer.

[78] N. Slesareva. Dense disparity map estimation – A novel approach based on high
accuracy optic flow computation. Master’s thesis, Saarland University, 2005.

[79] G. Steidl, J. Weickert, T. Brox, P. Mrázek, and M. Welk. On the equivalence of soft
wavelet shrinkage, total variation diffusion, total variation regularization and sides.
SIAM Journal on Numerical Analysis, 42(2):686–713, 2004.

128

http://www-users.cs.umn.edu/~saad/books.html
http://www-users.cs.umn.edu/~saad/books.html
http://vision.middlebury.edu/

Bibliography

[80] J. Stoer and R. Bulirsch. Numerische Mathematik 2. Springer Lehrbuch. Springer,
5th edition, 2005.

[81] X.-C. Tai and C. Wu. Augmented Lagrangian method, dual methods and split
Bregman iteration for ROF model. In X.-C. Tai, K. Mørken, M. Lysaker, and K.-A.
Lie, editors, Scale Space and Variational Methods in Computer Vision, volume 5567
of Lecture Notes in Computer Science, pages 502–513, Voss, Norway, June 2009.
Springer.

[82] E. Trucco and A. Verri. Introductory Techniques for 3-D Computer Vision. Prentice
Hall, Englewood Cliffs, 1st edition, 1998.

[83] M. Ulbrich. Funktionalanalysis und Anwendungen. Vorlesungsskript Wintersemester
2004/2005 Universität Hamburg, 2005. http://www.math.uni-hamburg.de/home/
ulbrich/fa/.

[84] Y. Wang, W. Yin, and Y. Zhang. A fast algorithm for image deblurring with
total variation regularization. CAAM Technical Report TR07-10, Department of
Computational and Applied Mathematics, Rice University, Houston, Texas, 2007.

[85] A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive
regularization for high accuracy optic flow. In Proc. 2009 IEEE International
Conference on Computer Vision, Kyoto, Japan, 2009. IEEE Computer Society Press.

[86] A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm
for TV–L1 optical flow computation. In D. Cremers, B. Rosenhahn, A. L. Yuille,
and F. R. Schmidt, editors, Statistical and Geometrical Approaches to Visual Motion
Analysis, volume 5604 of Lecture Notes in Computer Science, pages 23–45. Springer,
2008.

[87] J. Weickert, A. Bruhn, T. Brox, and N. Papenberg. A survey on variational optic flow
methods for small displacements. Technical Report 152, Department of Mathematics,
Saarland University, Saarbrücken, 2005.

[88] J. Weickert, A. Bruhn, N. Papenberg, and T. Brox. Variational optic flow computa-
tion: From continuous models to algorithms. In L. Alvarez, editor, IWCVIA ’03:
International Workshop on Computer Vision and Image Analysis, volume 0026, pages
1–6, Spain, 2004. Cuadernos del Instituto Universitario de Ciencias y Tecnologias
Ciberneticas, University of Las Palmas de Gran Canaria.

[89] J. Weickert and C. Schnörr. A theoretical framework for convex regularizers in
pde-based computation of image motion. International Journal of Computer Vision,
45(3):245–264, 2001.

[90] M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total
variation regularization. In Proc. 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010. IEEE
Computer Society Press.

129

http://www.math.uni-hamburg.de/home/ulbrich/fa/
http://www.math.uni-hamburg.de/home/ulbrich/fa/

Bibliography

[91] D. Werner. Funktionalanalysis. Springer-Lehrbuch. Springer, 6th edition, 2007.

[92] J. Xu and S. Osher. Iterative regularization and nonlinear inverse scale space applied
to wavelet-based denoising. IEEE Transactions on Image Processing, 16(2):534–544,
2006.

[93] L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation.
In Proc. 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, San Francisco, CA, USA, 2010. IEEE Computer Society Press.

[94] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms for
l1-minimization with applications to compressed sensing. SIAM Journal on Imaging
Sciences, 1(1):143–168, 2007.

[95] C. Zach, T. Pock, and B. Horst. A duality based approach for realtime TV–L1
optical flow. In F. A. Hamprecht, C. Schnörr, and B. Jähne, editors, Proceedings of
the 29th DAGM Symposium on Pattern Recognition, volume 4713 of Lecture Notes in
Computer Science, pages 214–223, Heidelberg, Germany, September 2007. Springer.

[96] X. Zhang, M. Burger, X. Bresson, and S. Osher. Bregmanized nonlocal regularization
for deconvolution and sparse reconstruction. UCLA CAM Report 09-03, University
of California, Los Angeles, 2009.

[97] H. Zimmer, M. Breuß, J. Weickert, and H.-P. Seidel. Hyperbolic numerics for
variational approaches to correspondence problems. In X.-C. T. et al., editor, Scale-
Space and Variational Methods in Computer Vision, volume 5567 of Lecture Notes
in Computer Science, pages 636–647. Springer, 2009.

[98] H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P.
Seidel. Complementary optic flow. In D. Cremers, Y. Boykov, A. Blake, and F. R.
Schmidt, editors, Energy Minimization Methods in Computer Vision and Pattern
Recognition (EMMCVPR), volume 5681 of Lecture notes in computer science, pages
207–220. Springer, 2009.

130

	Introduction
	Mathematical prerequisites
	Fundamental results from functional analysis
	Elementary notions about convex functions and sets
	Subdifferential calculus
	Shrinkage operators
	Soft shrinkage
	Generalised shrinkage

	Summary and concluding remarks

	The Bregman algorithms
	The standard Bregman iteration
	Deduction of the Bregman iteration
	Convergence behavior of the standard Bregman algorithm
	Alternative formulation of the standard Bregman algorithm
	The Bregman iteration and the Lagrangian penalty method

	The split Bregman algorithm
	Convergence speed of the split Bregman algorithm

	Summary and concluding remarks

	The Bregman iteration for optical flow
	Problem formulation
	Modeling the data term
	Modeling the smoothness term
	The optical flow models in the continuous setting
	Discretizing the energy functionals
	The discrete optical flow models

	Preprocessing steps
	Course of action for applying the Bregman algorithms
	The model of Horn and Schunck
	The L1-L2 model
	The non-rotationally invariant L2-L1 model
	The rotationally invariant L2-L1 model
	The non-rotationally invariant L1-L1 model
	Summary of the results from the previous sections
	Properties of the linear systems occurring in the Bregman algorithms
	Handling large displacements with coarse-to-fine strategies
	Further enhancements

	Occlusion detection
	Summary and concluding remarks

	Numerical evaluation
	Evaluation of the Bregman algorithms
	Comparison with other algorithms
	Bregman L1-L1 without gradient constancy and TV-L1-M
	Bregman L2-L1 and Brox-QDT-M

	Occlusion handling
	Summary and concluding remarks

	Summary and outlook
	Summary
	Outlook

	Bibliography

