
Synchronization in the
Network-Integrated Multimedia Middleware (NMM)

Stephan Didas

didas@studcs.uni-sb.de

Bachelor-Arbeit

nach einem Thema von

Prof. Dr.-Ing. Philipp Slusallek

Naturwissenschaftlich-Technische Fakultät I

Fachrichtung 6.2 – Informatik

Universität des Saarlandes, Saarbrücken, 2004

S
A

R
A V I E N

S
I

S

U
N

I V
E R S I T

A
S

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbst ange-
fertigt und nur die angegebenen Quellen und Hilfsmittel verwendet habe.

Saarbrücken, den

Disclaimer

The software described in this document is under continuous development.
Some concepts and software components therefore may be different in the
software distributions available on the internet. For further information
about the current state of the project and the software distribution see [1].

Contents

1 Introduction 3

1.1 Media classification . 3
1.2 Introduction to synchronization 4
1.3 Synchronization requirements . 5

1.3.1 Hard and soft real-time constraints 6
1.3.2 The special case of lip synchronization 6

2 Introduction to NMM 7

2.1 Nodes . 8
2.2 Messages . 9

3 Synchronization in NMM 11

3.1 Overview . 11
3.2 Elementary data types . 13

3.2.1 Rational numbers . 13
3.2.2 Time representation - Time, Interval and UserTime . . 13
3.2.3 Time information in the multimedia stream - Timestamp 14

3.3 Objects in the graph . 15
3.3.1 Clock and TimedElement 15
3.3.2 Timestamp creation - StreamTimer 16
3.3.3 GenericSyncSinkNode and its subclasses 16
3.3.4 Controller and its subclasses 18
3.3.5 Synchronizer . 21

3.4 Events related to synchronization 22
3.4.1 sync enable and sync disable 22
3.4.2 sync reset . 23

4 Plug-ins and Applications 25

4.1 Source nodes . 25
4.1.1 Live sources . 25

4.2 Filter nodes . 26
4.3 Converter nodes . 26
4.4 Sink nodes . 27

4.4.1 Video sinks . 27
4.4.2 Audio sinks . 27

4.5 Audio visualization . 29

I

CONTENTS II

4.5.1 The mp3vis and mp3vis2 applications 29
4.5.2 ScopeNode and SAnalyzerNode 30
4.5.3 Synchronization in the application code 31

4.6 MPEG decoding . 31

A Source Files 34

Chapter 1

Introduction

Multimedia is becoming a more and more important field of application for com-
puters. The traditional media like radio and television have been supplemented
and even partionally replaced by streaming media and multimedia internet sites.
Even the traditional receiver devices change: Not only the personal computer,
but also the personal digital assistant and the cellular phone can take part in
multimedia applications. Typically these components are able to communicate
via a network connection.
The aim of the Network-Integrated Multimedia Middleware (NMM) for Linux
project is to create a middleware that allows to access different kinds of media
on a variety of devices. The network is considered as an integral part of the
multimedia system, and the application programmer should be able to use and
control distributed devices in a network-transparent way. See [1] for further in-
formation about the project, its goals and its current state. The subject of this
practical project is to extend this already existing multimedia software system
by basic facilities for the synchronization of multimedia streams. These syn-
chronization abilities are especially important for dealing with multiple media
streams.

1.1 Media classification

One can distinguish between continuous and discrete media. In this case con-
tinuous means the same as time-dependent and discrete means the same as
time-independent. A book is an example for a discrete medium, a video se-
quence for a continuous medium. A system for an electronic lecture-room is
an example of increasing popularity that mixes both media types: The audio
and video data that shows the lecturer as continuous media and the texts he
presents as discrete media.

In the literature the notion continuous media is also used for media which
consists of presentation units with equal durations (see [13], page 567).

Although a medium is continuous it can not be stored and worked up like
this: All what can be done is to divide it into discrete parts so that a computer
is capable to work it up. This division has to be fine enough that a human
observer can not notice it. For example, a continuous motion is split up in 25

3

CHAPTER 1. INTRODUCTION 4

or 30 video frames per second. The audio signal of a 1kHz sine wave is sampled
44100 times per second, and only the value at the sample times is stored. That
means even continuous media are stored as discrete values. A multimedia data
stream is a sequence of such values which do not in any case provide useful
information for themselves. For example, one audio sample without the context
of other samples does not tell us anything about the song it is taken from. To
characterize a multimedia stream, it is necessary to divide it into sensible parts
which are called logical data units, or short LDU’s.

There is no unique way to divide a stream in LDU’s. Regard a stream of
raw audio data (Stereo, 16 bits per sample with a sample rate of 48000 kHz):
One could say that each audio sample in the stream is an LDU. We have seen
that this does not make sense in most of the cases. Another possibility is to
group a reasonable number of samples, let us say 1024, together to one LDU.
With the above parameters, 1024 samples are 4096 bytes. So this LDU would
be a unit that can be practically transported and worked up by a computer. If
the presentation consists of multiple songs, one can even regard a whole song as
an LDU. In a video stream it can make sense simply to view each video frame
as an LDU. However even in this case there could be other sensible possibilities:
In an MPEG stream, several following video frames form a so-called group of
pictures or GOP. This GOP can also be seen as the LDU of the MPEG video
stream.

So there are different levels of granularity how to regard media data. It
depends on the application which point of view to choose.

1.2 Introduction to synchronization

Now we want to introduce some useful notions related to multimedia and syn-
chronization. In the context of multimedia systems synchronization in general
refers to the content, spatial and temporal relations between different media
objects. Like in most of the literature we will use the notion synchronization
with the main focus on the temporal relations between the media objects.

The notion can be further specialized according to the regarded media ob-
jects:

• Intra-object synchronization: Intra-object synchronization refers to the
temporal relations between several presentation units of the same time-
dependent media object. An example for this is the presentation of a
video with a constant rate of 25 frames per second which is shown in
figure 1.1.

40ms 40ms 40ms 40ms

Video Frame

Figure 1.1: Intra-object synchronization

CHAPTER 1. INTRODUCTION 5

Video

Audio Audio

Slide

Audio Audio

Video Video

Figure 1.2: Inter-object synchronization

• Inter-object synchronization: Inter-object synchronization refers to the
temporal relations between different media objects. The easiest exam-
ple is the synchronization between the visual and acoustical information
in television. Figure 1.2 shows another example with three multimedia
streams.

We will see in chapter 3 that this differentiation even has an effect on the
software components that are used. Intra-object synchronization is strongly
connected with the notion of jittering. Jittering means that the temporal dis-
tance between two following objects in a stream with constant rate varies. One
can state that one main aim of intra-object synchronization is the reduction of
jittering.

Regarding to the origin of temporal relations one can make another distinc-
tion:

• Live synchronization: The aim is to reproduce the temporal correlations of
different media objects as they existed during the capturing process. This
is the case for a video recording program or a video conference system.

• Synthetic synchronization: Here the temporal relations are artificial spec-
ified. One can speak of synthetic synchronization if one adds a new audio
stream to a given video stream.

1.3 Synchronization requirements

What are the requirements that we have for the synchronization of multimedia
streams?

At first one can note that the requirements on principle depend on the actual
types of media to synchronize. A slide in the electronic lecture-room can have
a greater skew according to the audio as the speakers lips, for example.

Another obvious fact is that the requirements result from the capabilities
of the observer’s senses. On the one hand this makes it impossible to precisely
define the temporal constraints: The reactions to a certain error in the presen-
tation time are individually different for various observers. On the other hand
that gives us the possibility to limit the dimension of the required accuracy of
the presentation time to a range of some 10 milliseconds. Shorter periods of

CHAPTER 1. INTRODUCTION 6

time are normally not noticeable for a human observer. [12] and [13] give a
more detailed description of synchronization requirements for different types of
media.

1.3.1 Hard and soft real-time constraints

Synchronization always deals with real-time constraints. From the operating
system’s point of view such real-time constraints can be divided into hard and
soft real-time constraints. The real-time constraints are called hard if it is nec-
essary for the correct behaviour of the software or system that a given deadline
is kept. This can even lead to a danger for human’s life (one may think of indus-
trial robots or airbag control). But what happens in a multimedia application
if a deadline cannot be kept? We will see later that in several cases a delay of
the presentation is not even noticeable to the observer. Therefore in the case of
multimedia applications one can speak of soft real-time constraints. This makes
it possible to avoid using special software like a real-time operating system (see
also [3]). At the moment the NMM project uses a standard Linux operating
system. That means the operating system does not support any guaranteed
reaction times.

1.3.2 The special case of lip synchronization

Lip synchronization refers to a presentation of audio and video and the temporal
relations between them for the particular case of human speaking.

In this case it is also difficult to gain clear results: Even a test sequence
without any skew between video and audio is declared as incorrect by some
test users (see [12] for more details.) Moreover there are many conditions that
have an influence on the recognition of synchronization errors that complicate
a general statement. Regard an audio/video sequence that shows a human
speaker: The brightness of the images and the distance to the speaker have an
influence on the detection of synchronization errors.

Experiments have shown that in most cases it is sufficient to keep the skew
between audio and video in a region between -80 milliseconds (audio behind
video) and 80 milliseconds (audio ahead of video). Regard an example appli-
cation that plays MPEG-encoded audio/video streams. This application has
to ensure that a single video frame is displayed at most 80 milliseconds before
or after the intended presentation time. For further information please take a
look at [12], pages 580 - 584, or [13], pages 588 - 592.

It is interesting that people are more tolerant against audio/video skews if
the audio follows the video. As a result of the different velocities of sound and
light we make the experience of a slightly delayed acoustic impression every
day.

Chapter 2

Introduction to NMM

The Network-Integrated Multimedia Middleware (NMM) for Linux is being devel-
oped for the last 2 years by the computer graphics group of Saarland University.
Information about the project in general and its current state can be found on
the internet (see [1]). NMM is free software implemented in C++; the current
distribution is available for download at the project’s homepage.

One main aim of NMM is to simplify implementing multimedia applications
by providing easy access to different kinds of hardware and different multimedia
formats.

Central objects in NMM are Nodes and Messages. Nodes serve to encap-
sulate certain functionality, Messages are data or information units that are
created, processed, or consumed by nodes. Figure 2.1 shows how a node can
use messages to communicate with other nodes and with the application. Mul-
timedia data is sent between two nodes with a message type called Buffer –
indicated as B. To exchange information with other nodes and the application
there is a second message type called Event – indicated as E. These notions will
be further explained in the next two sections.

Node

Application

E BB

process()

B B

EE

InputJack OutputJack

B
E E

E
handle()

Figure 2.1: The relationship between Nodes, Messages and the application

7

CHAPTER 2. INTRODUCTION TO NMM 8

2.1 Nodes

On the one hand a node can provide an interface to a concrete hardware device
like a soundcard or a camera. On the other hand it can also be a software
object like a video colorspace converter or an audio filter.

To realize connections with each other nodes have so-called Input- and
OutputJacks. One could compare the nodes to things like a guitar, an amplifier
or effects and the Jacks to the real jacks that connect them.

In principle there is no restriction on the number of input and output jacks.
Not every node must have both Input- and OutputJacks. One may think of
a file reader node as a data producer (source node) that does not need an
InputJack or a video display sink node without an OutputJack a a pure data
consumer. Multiple OutputJacks (demultiplexer node with one input only) or
multiple InputJacks (multiplexer node with one output only) are allowed. The
above types together with filter node and converter node make the six types
of nodes that are distingiushed. There are so-called Formats to describe the
data content of a multimedia stream. A filter node usually has the same input
and output data format. An example is a node that adds an effect to an audio
stream. A converter node explicitly changes the format of incoming data. One
may think of a node that decodes compressed MPEG video data into single
video frames.

There is a group of classes that represents the different generic node types:
GenericSourceNode, GenericProcessorNode, GenericMultiplexerNode, Ge-
nericDemultiplexerNode, GenericConverterNode, GenericFilterNode and
GenericSinkNode. They simplify the programming of new nodes, so that a
programmer only needs to implement the functionality of the new node. For
example, the GenericSourceNode has a member function with the type

Buffer* produceBuffer()

and the GenericProcessorNode has a function called

Buffer* processBuffer(Buffer*)

which serves to encapsulate the functionality of the nodes1. A Buffer is a
container for multimedia data. This will be further explained in section 2.2.

With their jack connections nodes are able to form general flow graph struc-
tures. Figure 2.2 shows an example graph for a simple MPEG video player. It
consists of six nodes: The only source in the graph is an MPEGReadNode that
reads the MPEG-encoded data from the hard disc. Then the data is split up
into the audio and video components by the MPEGDemuxNode. The MPEGVi-

deoDecodeNode converts the MPEG video stream into a raw video stream, the
same is done by the MPEGAudioDecodeNode for the audio stream. The XDis-

playNode and the PlaybackNode finally present the video and audio data to
the user.

One path in such a flow graph describes a path of data or information flow
in the graph; the messages that flow along such a path are called a stream.

1For more information about the node types and a list of currently available nodes see
http://www.networkmultimedia.org/NMM/Status/Plugins/index.html.

CHAPTER 2. INTRODUCTION TO NMM 9

MPEGRead-
Node

MPEGDemux-
Node

XDisplay-
Node

Playback-
Node

MPEGVideo-
DecodeNode

MPEGAudio-
DecodeNode

Figure 2.2: A simple node graph for an MPEG video player

Especially for nodes that provide an interface for a hardware device, there
are operations that should only be executed in certain states of the whole sys-
tem. For example, the audio device should not be closed during a presentation.
To allow the node programmer to define such contexts for operations, nodes
have different states. These states can be questioned and changed by the ap-
plication. The node programmer can restrict certain actions (e.g. changing the
input file for a reader node or changing the output device for a sound playback
node) to the states that make sense. He can also implement node-specific func-
tionality for the state transitions. This makes it possible to reserve an exclusive
used hardware device or to allocate needed memory before the application starts
the presentation. The possible states of a node are CONSTRUCTED, INITIALIZED,
ACTIVATED and STARTED2.

2.2 Messages

Messages can either contain multimedia data or information for the nodes.
Messages which carry multimedia data are called Buffers, the other Message
type is called CEvent3 . (In figure 2.1, the two types are indicated as B and E.)
At the level of application programming in NMM, a data buffer is the usual
size of an LDU (see section 1.1). Events can not only occur between the data
buffers in a multimedia stream (then they are called in-stream-events), but they
can also be used as a way of communication between the application and the
nodes (as so-called out-of-band-events.)

There are BufferManagers that can allocate the necessary memory if a node
requests a new buffer. Each message can be used multiple times in different
paths of the application graph: A reference counter makes sure that the message
object is not returned to its BufferManager for later reuse until the last user
releases it.

2Further information about the state model and the accompanying methods is given at
http://www.networkmultimedia.org/NMM/Docs/state.html.

3The subclass of Message is called CEvent, which stands for Compound Event. A CEvent

can include several Events. In the following text we will simply use the term Event to
distinguish events from data buffers.

CHAPTER 2. INTRODUCTION TO NMM 10

Each node has generic methods for the handling of events and processing of
data buffers. We have already seen the Buffer* processBuffer(Buffer*)-
method in the last section. To handle incoming events, each node has an
EventDispatcher. The node programmer has the ability to define the node’s re-
action to a certain event by registering event handler functions at its dispatcher.
For each incoming event the dispatcher calls the accompanying handler function
(if it exists).

Every node has got its own thread, so several nodes can work in parallel. For
this reason it makes sense that messages can be stored in a StreamQueue at the
InputJack. One can choose the maximal number of messages that this queue
should be able to store in the node’s constructor. There are also different modes
for the queue: MODE KEEP OLDEST, MODE KEEP NEWEST and MODE SUSPEND. The
modes describe the behaviour of the queue if it is full and the predecessor node
tries to put in another message. For synchronized applications, the queues
should always use MODE SUSPEND. The other modes can cause that messages
are discarded. As we will see later these queues can play an important role for
synchronization for two reasons:

• Reduction of jittering: The message queues form a data storage between
two nodes that work in parallel. A sink node can present the data stored
in its queue, even if its predecessor node can not produce any new data
for a short time.

• Latency: Message queues and multiple data buffers in the graph increase
the time a buffer needs to “travel” along the graph from source to sink.
This can be a problem with time-critical messages: It would not be a good
idea to sent a stop-signal for all nodes as an in-stream-event, because it
would take too long to get to the sink node.

This section should only introduce the notions referring to NMM that are
necessary to understand the main concepts and the synchronization extensions.
NMM is still work in progress, and changes to the described notions may occur.
Please refer to [1] to get to know more about the current state of the project.

Chapter 3

Synchronization in NMM

This chapter presents the synchronization concepts and components introduced
in NMM as part of this practical project.

3.1 Overview

To get a first impression of the new software components we will take a look at
a generic flow graph with two synchronized sink nodes.

Synchronizer

SyncSinkNode

SinkController

Application

SyncSinkNode

SinkController

StreamQueue

T

B TB B
T

B

B

T

Stream-
Timer

SourceNode

T
T

B

B
Stream-
Timer

SourceNode

T
T

B

StreamQueue

T

B E B T

EBuffer Event Timestamp Clock

Figure 3.1: General overview of synchronization components

11

CHAPTER 3. SYNCHRONIZATION IN NMM 12

This graph only contains four nodes: two source nodes and two sink nodes.
One can see the fundamental objects that will be explained in this chapter:
Clocks, Timestamps, StreamTimer, Controller, SyncSinkNodes and Syn-

chronizer.
All components that want to have access to a Clock are subclasses from

TimedElement; they share a common Clock that is a static member of Timed-
Element. Timestamps contain the time information for a data buffer. The
StreamTimer is an object that can be used by nodes to simplify timestamp
creation. All synchronized sink nodes are subclasses of GenericSyncSinkNode.
These nodes come along with a Controller. They pass the timestamps of
incoming buffers to their controller which decides what to do with this buffer:
Present it immediately, wait some time until presentation or discard the buffer
because it arrived too late at the sink node. One can say that the controller
realizes the intra-stream synchronization. If you want to combine multiple
streams, the controllers of the sink nodes are connected to a Synchronizer

object which realizes the inter-stream synchronization. It also serves as an
interface for the application which can pause or wakeup the presentation via
the synchronizer.

How does the controller decide which buffer to present and which to discard?
The main idea is that a controller tries to present all buffers as if they had the
same latency. Figure 3.2 shows that one can imagine the latency as the time a
buffer takes from source to sink. This notion is defined as

latency := presentation time − sync time

with sync time as the time value included in a buffer’s timestamp. One can
also express it the other way round: If a latency is given, the controller tries
to present all buffers to the time sync time + latency. The given latency is
called theoretical latency. In practice the controller has to compute the latency
for each incoming buffer (its real latency). If the latency exceeds a pre-defined
value depending on the theoretical latency, the buffer is too old and declared as
invalid. If the real latency is smaller than the theoretical latency, the node has
to wait some time until he can present the buffer. The aim of the intra-stream
synchronization is to keep the latency constant for the buffers of the stream.
A constant latency means that the temporal distance between two buffers is

sync_time
intended

presentation time

theoretical latency

Source Sink

real latency

arrival at
the sink

Figure 3.2: The notion of latency

CHAPTER 3. SYNCHRONIZATION IN NMM 13

equal to the difference of their sync time, and so they are presented with the
intended velocity.

The controller also computes an average value of the latency of incoming
buffers. With this value it is possible to compare the latencies of two or more
multimedia streams. This is the part of the synchronizer: If the average latency
of a stream changes, the synchronizer computes a new theoretical latency to
take these changes into account. The aim of this inter-stream synchronization
is that the latencies for the different streams are equal. The easiest way to
reach this is to set the theoretical latency to the maximal average latency of all
streams: Then the streams with a small latency have to wait until their latency
has reached the value from the “slower” ones.

This should give a first impression of how synchronization works in NMM.
Before going into details, we first have to take a look at some elementary data
structures that are used by synchronization.

3.2 Elementary data types

To represent points of time, time durations and frame rates and to put some
time information into a multimedia stream there are some elementary datatypes
in NMM.

3.2.1 Rational numbers

All frame rates or time durations in multimedia applications are measured by
clocks and are therefore of limited precision. One can express them as rational
numbers. Therefore the class Rational for representation and basic arithmetic
functions of rational numbers has been added to NMM. It stores a rational
number as

class Rational {

long int numerator;

long int denominator;

};

Note that the numerator carries the sign information for the fraction; the de-
nominator is always greater than zero. If the denominator reaches the value
zero during a computation, a RationalDivisionByZeroException is thrown.

3.2.2 Time representation - Time, Interval and UserTime

There are two types for representation of time in NMM. Time represents a
point of time, Interval stands for a duration (which can be considered as
the difference between two points of time.) Both Time and Interval have a
precision of one nanosecond. They are internally stored as

struct Time { struct Interval {

long int sec; long int sec;

long int nsec; long int nsec;

}; };

CHAPTER 3. SYNCHRONIZATION IN NMM 14

where the variable nsec is bounded by the values 0 and 109
− 1 and sec

can take all possible values, both positive and negative. To bound the nsec

value makes comparison and elementary arithmetical operations for Time and
Interval faster by reducing the number of cases to distinguish. A precision of
one nanosecond was chosen to gain compatibility to the OpenML – Standard
(see [7]). One should note that the precision of the clocks available at the mo-
ment is smaller than one microsecond. We have seen in section 1.3 that such a
precision suffices for the main synchronization purposes.

As described in [14] (page 81), it is guaranteed that a long int has at least
32 bits. This ensures that both of the types have a range of about 68 years
in the past and the future. At the moment this should be sufficient for every
multimedia application.

The main idea behind the separation between points of time and intervals
was to gain a typesafe interface for time calculations. A set of standard op-
erators comes along with the two types, and so it should not be necessary to
manipulate them at low level.

There is also a type to provide a human readable time representation:
UserTime. This is meant to be used in time displays in various applications. A
UserTime consists of the following members:

struct UserTime {

int hour;

int min;

int sec;

int msec;

};

The precision of one millisecond for UserTime should suffice for the intended
usage as time display.

3.2.3 Time information in the multimedia stream - Timestamp

In most of the applications it is necessary to send some time information within
the data stream. For this reason the class Message has a Timestamp as member
variable. A Timestamp is build up like this:

struct Timestamp {

Time sync_time;

long int stream_counter;

bool is_valid;

};

The sync time carries the time information. Usually it marks the intended be-
ginning of the presentation of the buffer’s media content. The stream counter

simply counts the data buffers in the stream. The flag is valid indicates if the
time value has been set correctly. This is necessary because you do not always
have enough information to set the timestamp for each outgoing buffer correctly.
For example, a generic source node that reads different kinds of formats from

CHAPTER 3. SYNCHRONIZATION IN NMM 15

a hard disc does not have the knowledge to extract the time information for
every format. With this flag it can indicate that a buffer’s timestamp contains
no useful time information. A specific decoder node then can compute the right
time values. You can get and set a message’s timestamp with the two methods

void setTimestamp(const Timestamp timestamp);

Timestamp getTimestamp();

from the class Message. Although the timestamps are contained in a general
message, they are only in use for data buffers and not for events at the mo-
ment (as shown in figure 3.1). The concept of a timestamp is similar to SGI’s
Unadjusted System Time (see [11] for details).

3.3 Objects in the graph

3.3.1 Clock and TimedElement

TimedElement is the superclass for all objects that want to have access to a
time source. All TimedElements of one application share one global and static
Clock object and therefore have access to the same time. The shared access to
one clock is the reason why there is no possibility to change the clock’s value.
They can get the current time with the method

Time getTime();

The Clock is a static member of the class TimedElement and is therefore auto-
matically created and destroyed. At the moment there’s only one kind of Clock
that uses the internal system clock.

On a local system it might be interesting to use another timebase, especially
in the context of continuous media played by an internally buffered device. The
simplest and also the best example for this situation is given by a sound device.
The soundcard chip uses its own internal timebase that is not synchronized with
the computers clock. So there can be a slight skew between these two clocks. If
we only rely on the computer’s internal clock, this skew can be noticeable over
a long presentation. This problem could be solved by using the sound devices
clock instead of the computers clock as timebase for audio and video.

The first and obvious problem with this approach is that in most of the
cases one does not even have direct access to the sound devices internal clock.
Another problem appears in context of a network environment: Here the two
sink nodes must not necessarily be located on the same computer. The question
arises how to synchronize the video sink computer with the clock of the sound
device, because this includes synchronization via network connections.

It suffices as a first step to use the computer’s hardware clock as timebase.
The Network Time Protocol (NTP) is used to reduce the clock skew between
the different machines in the network.

CHAPTER 3. SYNCHRONIZATION IN NMM 16

3.3.2 Timestamp creation - StreamTimer

Nodes that want to create timestamps for a data stream can use a StreamTimer.
A StreamTimer has two different modes, REAL TIME and CONST RATE. You can
choose the mode with the method

Result setMode(const Mode mode);

In the REAL TIME mode the StreamTimer uses the common clock to create the
timestamps. This mode is meant to be used in nodes for life-sources like a
camera or a microphone. Although most of these sources offer the possibility
to choose a frame- or buffer rate, the chosen rates cannot always be kept. So it
seems to be better to use the computer’s clock to get the timestamp information
for incoming buffers instead of relying on what we have chosen as framerate.
This is just what the StreamTimer does in CONST RATE mode. You can set a
frame rate or an inter-frame-gap, and the timestamps are simply computed as
increasing values from 0 on and regarding this constant rate. This can be useful
if you know the exact frame rate, e.g. in a video stream read from disc, but
the stream does not have timestamps yet. The interval between two following
buffers can be set with the two methods

Result setRate(const float rate);

Result setInterval(const Interval interval);

where the first method uses the buffer rate and the second the interval between
two following buffers.

For both of the modes the StreamTimer sets the timestamps into the mes-
sages when the following method is called:

Result setTimestamp(Message* message);

Note that this method has the side-effect of increasing the internal timestamp
value of the StreamTimer to make it right for the next buffer. So it should be
called only once for each buffer.

3.3.3 GenericSyncSinkNode and its subclasses

The superclass for all sink nodes that are capable to be synchronized is called
GenericSyncSinkNode. Instead of the Buffer* processBuffer(Buffer*) -
methods from the other nodes, these have the two methods

void prepareBuffer(Buffer* in_buffer);

void presentBuffer(Buffer* in_buffer);

In the prepareBuffer(Buffer*)-method, all time-wasting preparations for the
presentation of the buffer should happen. For example, a video display node
could copy the next frame in a shared memory region used by the X window
system. In other cases, this method is not used and then simply should not be
overloaded.

CHAPTER 3. SYNCHRONIZATION IN NMM 17

In the presentBuffer(Buffer*)-method the presentation should happen as
soon as possible. The idea behind this is that the presentBuffer(Buffer*)-
method can be triggered right at the time the presentation should happen. The
video display node sets the flag for presentation of the next frame in this method.
Surely this is only an approximation: There is always a small duration between
the presentBuffer(Buffer*)-call and the actual presentation, but this time
interval is neglected.
The method

setSynchronized(bool);

can be used to turn the synchronization on and off. Per default it is turned
off, so that all applications that do not use synchronization do not have to care
about it.

GenericSinkNode

GenericSyncSinkNode

GenericBSyncSinkNode GenericUSyncSinkNode

Figure 3.3: GenericSyncSinkNode in the NMM class hierarchy

As shown in figure 3.3, there are two subclasses for GenericSyncSinkNode
with names that only differ in one letter: GenericBSyncSinkNode stands for
Generic Buffered Synchronized Sink Node and GenericUSyncSinkNode stands
for Generic Unbuffered Synchronized Sink Node.

This differentiation has been made to allow for the fact that some sink nodes
can present multimedia data directly while other nodes just give the data to
low level hardware drivers with an own internal buffer. An audio playback
node is an example for such a buffered sink node. Not the node itself sends the
data to the soundcard’s chip, but it only writes the data to the sound driver’s
internal cache memory. So there is a delay between the write command of the
node and the actual presentation of the audio data. This delay depends on the
amount of data that is stored in this buffer at the time you write the new data
in and is limited by the total size of this buffer. To take this into account the
GenericBSyncSinkNode has got a method called

Interval getOutputDelay();

that returns the period of time between a writing command and the presentation
of the written data at this moment. The computation of this returned value
will be further explained at the example of the PlaybackNode in section 4.4.2.

CHAPTER 3. SYNCHRONIZATION IN NMM 18

We have already seen in section 3.1 that each GenericSyncSinkNode has a
Controller as member variable. The main difference between the unbuffered
and buffered node is that they have different controllers. These will be further
explained in section 3.3.4.

The following code sample taken out of GenericSyncSinkNode shows what
such a node does with an incoming buffer:

timestamp = in_buffer->getTimestamp();

if(!(controller -> isBufferValid(timestamp))) {

// if the buffer is too old or invalid, release it

in_buffer -> release();

} else {

// otherwise, prepare it for presentation

prepareBuffer(in_buffer);

// wait until the time for presentation has come ...

suspendThread(controller -> waitToPresent(timestamp));

// and present it!

presentBuffer(in_buffer);

}

3.3.4 Controller and its subclasses

As we have seen in the last section, each GenericSyncSinkNode has its own
Controller which tells the node what to do with an incoming buffer: discard
it, present it directly or present it after waiting some time. This controller is a
member of its parent node and therefore a local object from the node’s point of
view. So the communication between node and controller can use simple and
fast function calls. Like the corresponding sink node types there are different
classes for Buffered Sink Controller and Unbuffered Sink Controller.

We have already described some of the internal parameters like real latency
in section 3.1. Now a more detailed description will be given.

The controller gets the timestamp of each incoming buffer with the call of
the method bool isBufferValid(Timestamp) by the GenericSyncSinkNode
shown in the source code example above. We now explain what the controller
does in this method:

For each incoming buffer the controller computes the real latency as the
difference between the earliest possible presentation time and the buffer’s sync
time. An USinkController assumes that the node has no internal buffer and
can present the data immediately. The controller therefore uses the current
time as approximation of the presentation time and computes the real latency
as follows:

real latency := current time − sync time.

CHAPTER 3. SYNCHRONIZATION IN NMM 19

Controller

+isBufferValid(timestamp:const Timestamp): bool
+checkBufferValid(timestamp:const Timestamp): bool

SinkController
+theo_latency: Interval
+average_latency: Interval
+average_count: int
+max_delay: Interval
+max_average_delay: Interval
+max_disc: int
+waitToPresent(timestamp:const Timestamp): Interval
+checkBufferValid(timestamp:const Timestamp): bool
+setMaxDelay(max_delay:const Interval): Result
+setMaxAverageDelay(max_average_delay:const Interval): Result
+setTheoLatency(theo_latency:const Interval): Result
+setAverageCount(average_count:int): Result
+setMaxDiscardingCount(max_discarding_count:int): Result

BSinkController

+checkBufferValid(timestamp:const Timestamp): bool
+waitToPresent(timestamp:const Timestamp): Interval

USinkController

+checkBufferValid(timestamp:const Timestamp): bool
+waitToPresent(timestamp:const Timestamp): Interval

Figure 3.4: The class hierarchy for Controller and its subclasses

A BSinkController assumes that its parent node has an internal buffer. A data
buffer can not be presented before the presentation of the internal buffer’s data
has been finished. We will call the duration of this presentation the output delay.
Therefore a BSinkController uses the formula

real latency := current time + output delay − sync time

to compute the real latency of each buffer.
After the computation the real latency is used to decide whether the buffer

should be presented or discarded: If the real latency is greater than

theo latency + max delay

the buffer is declared as invalid. Here max delay is the limit for the maximal
delay of one single buffer, and theo latency is a value set by the synchronizer
(see section 3.3.5). Max delay can be set with the member function

Result setMaxDelay(Interval);

If we want to keep the requirements for lip synchronization in section 1.3.2, a
typical value for max delay is 80 milliseconds. The theo latency is updated by
the synchronizer with the member function

Result setTheoLatency(Interval);

Both of the controller types compute an average value out of the incoming
buffer’s real latencies. If r1, . . . , raverage count are the real latencies for the last
average count buffers, then the average latency is computed as

average latency :=
r1 + . . . + raverage count

average count
.

The number of buffers that are taken into account for such a computation can
be set by the member function

CHAPTER 3. SYNCHRONIZATION IN NMM 20

Result setAverageCount(int);

The number of buffers surely has an influence on the reaction time of the syn-
chronization system. Typical values are 10 buffers for video streams and 20
buffers for audio streams.

Similar to the real latency, the controller also checks if the average latency is
greater than theo latency + max average delay. In this case it calls the method

Result setAverageLatency(Interval, SinkController*);

from the synchronizer. This has no influence on the question if the last buffer
is considered as valid or invalid. The average latency value is used by the
synchronizer to update the value for the theoretical latency (see section 3.3.5).
Typical values for the max average delay range from 20 to 40 milliseconds. A
BSinkController also informs the synchronizer if its average latency is getting
smaller. For example, this can happen if the soundcard’s internal clock is a bit
slower than the computer’s clock and the sample rate is not kept exactly. So
the synchronizer has to take this into account to keep audio and video together.

Not every buffer that has been declared as invalid so far should be discarded.
To avoid discarding of too much immediately following buffers the controller
counts how many buffer it has considered as invalid after each other. If this
number exceeds the value max disc, the buffer will be presented even if it is too
old. This makes sense for a video presentation: If each third frame has to be
presented, one gets an impression of the motions in the video even if not every
frame is displayed. This value has no influence on discarding all buffers in the
state WAIT FOR RESET (see section 3.4.2). It is set with the member function

Result setMaxDisc(int);

Note that a value of zero causes the controller to declare all buffers as valid.
This is useful for audio playback: Discarding an audio buffer causes unwanted
noise output.

Now we have seen what a controller does to check if a buffer is valid. The
other key method of the controllers is the method

Interval waitToPresent(const Timestamp);

Here a BSinkController always returns zero: The node does not have to wait
until the intended presentation time. It can write the data into the internal
buffer, because the output delay has already been considered. An USinkCon-
troller returns the value

sync time + theo latency − current time

and the node waits until the presentation should happen.
The controller is always in one of the states shown in figure 3.5. The state

diagram shows which transitions between these states are allowed and which
member functions of the controller cause such a transition. None of these
functions is called by the application; they are internally called by the parent
node and the synchronizer. The states RESET and WAIT FOR RESET are made
necessary by the event sync reset, further explanations follow in section 3.4.2.

Note that we are in a multi-threaded environment, so the state variable is
made thread-safe with mutual exclusion.

CHAPTER 3. SYNCHRONIZATION IN NMM 21

WORKING The default state for the controller.
RESET The controller has received a reset()-call. All inter-

nal parameters are set to their default values.
WAIT FOR RESET In this state the controller declares all data buffers as

invalid until the next reset()-call arives. Then it will
get to state WORKING again.

PAUSE The controller has stopped its parent node and waits
until the wakeup()-method is called.

PAUSE

WAIT_FOR
_RESET

WORKING RESET
reset

restartwaitForReset

reset

pause wakeup

Figure 3.5: States and state transitions of a Controller

3.3.5 Synchronizer

So far we have only considered synchronization that refers to one multime-
dia stream and not introduced the link between multiple streams. This link
is constructed via the Synchronizer object which is connected to the con-
trollers of all sink nodes that should be kept in sync. The synchronizer realizes
inter-stream synchronization it is therefore not related to a special node. It
is created once for the application with two or more sink nodes for which it
encapsulates the synchronization strategy. One can build a new subclass of
Synchronizer if the existing ones do not fit to the requirements of the stream
constellation in the actual application. At the moment the only subclass of
Synchronizer is the AudioVideoSynchronizer which is designed for general
audio/video presentations. The synchronizer is also thought as a central access
point for run-time synchronization control: For example, the application can
sent pause and wakeup signals to the synchronizer.

The main task of the synchronizer is to keep the average latencies of all
connected sink controllers equal. For this reason it has to react to incoming
average latency values. If a controller calls the method

Result setAverageLatency(Interval, SinkController*);

the synchronizer checks if it is necessary to update the theo latency. We have
already seen in section 3.1 that one strategy is to simply take the maximum of
the old value for theo latency and the incoming average latency.

The AudioVideoSynchronizer also takes into account that the connected
sink nodes present audio and video: Here the theoretical latency is set to the

CHAPTER 3. SYNCHRONIZATION IN NMM 22

audio average latency to make the video stream fit to the audio stream.
Like a controller, a synchronizer also has got different states. These are

shown in figure 3.6. Note that the pause()- and wakeup()-methods are called
by the application; the reset()-method is called internally by the connected
controllers. See section 3.4.2 for further information about the state RESET.

WORKING The default state for the Synchronizer.
RESET The Synchronizer has received a reset()-call from one of

the connected Controllers. All internal parameters are set
to their default values.

PAUSE The Synchronizer takes the current time and switches the
state of all connected Controllers to PAUSE.

WORKING
reset

resetpause

wakeup
PAUSE RESET

Figure 3.6: States and state transitions of a Synchronizer

3.4 Events related to synchronization

At the moment there are three events that refer to synchronization. They
serve to enable and disable synchronization or reset the internal parameters of
synchronization components. They are typically sent in-stream: It is the only
way to make sure that they can bring their effects after the presentation of a
certain buffer.

3.4.1 sync enable and sync disable

The first two events, sync enable and sync disable, have only an effect on
synchronized sink nodes (i.e. all subclasses of GenericSyncSinkNode). They
have the same functionality as a call of the setSynchronized(bool)-method.
This way it is possible to disable or enable the synchronization after or before
the presentation of a certain buffer. In the constructor of GenericSyncSink-
Node the two accompanying event handler methods are registered which are
called

Result eventSyncEnable();

Result eventSyncDisable();

These methods simply call the setSynchronized(bool)-method with the right
arguments.

CHAPTER 3. SYNCHRONIZATION IN NMM 23

3.4.2 sync reset

The third event, sync reset, is also handled by many other nodes (including
MPEGDemuxNode, MPEGVideoDecodeNode, MPEGAudioDecodeNode, AC3Decode-
Node etc.). All of these register a handling method called eventSyncReset().
See [1] and [4] to get to know more about these nodes. Section 4.6 describes
the synchronization related aspects that are connected with them.

Source-
Node

Demux-
Node

SinkNode 1

SinkNode 2E

BE B

BBB BB

B BB

E

E

E

old timebase

new
time-
base

new timebase
old
time-
base

inconsis-
tent

Timestamps

Figure 3.7: Problems with different path lengths

The event sync reset is used to indicate that the parameters of synchro-
nization should be reset. For example, this is necessary if you switch to another
channel on TV or if you choose a new chapter in the DVD application. In
both cases, the timestamps in the new MPEG stream are not related to the
timestamps read before. Therefore one resets all internal parameters and uses
the new values from now on.

Figure 3.7 shows the problem that occurs when an in-stream-event generated
by a single source is duplicated by a demultiplexer node. The different path
length causes that the both copies of the event appear at the sinks at different
times. That can cause problems for all events that need to be worked up
at all sinks at the same time. In the case of a sync reset-event this leads
to inconsistent timestamp values: One controller has already reset internal
parameters and receives new timestamps, the other still receives old timestamps.

That is the reason for the state WAIT FOR RESET: If the first controller han-
dles an event sync reset, its state switches from WORKING to RESET (also for
the synchronizer). The internal parameters are then set to their default values.
The synchronizer now calls waitForReset() at the second controller. This
controller switches to state WAIT FOR RESET and declares all buffers as invalid
until the event sync reset is also received by its parent node. Figure 3.8 shows
the participating components in this state. Some buffers with corrupt times-
tamps are discarded and the presentation can continue with the new stream.
The second controller calls restart() at the synchronizer which calls the same
method at the first controller. All states turn back to WORKING again.

CHAPTER 3. SYNCHRONIZATION IN NMM 24

SinkNode 1

SinkNode 2

E

BBB BB

BBB

new
time-
base

new timebase

B

old
time-
base

B B

discarded
Buffers Synchronizer

Controller

Controller

reset()

waitForReset()

RESET

RESET

WAIT_FOR
_RESET

E

Figure 3.8: Sink nodes, controllers and synchronizer during a sync reset-event

This handling for sync reset has the disadvantage that data buffers are
discarded at one sink. Another strategy would be to stop the sink node which
receives the first sync reset-event until the second node also receives such an
event. This could be done with a conditional variable in the controller that is
checked in the method waitToPresent(Timestamp). If the state is WORKING

or WAIT FOR RESET, the controller returns the interval the node should wait.
In the state RESET the node’s thread has to wait at the conditional variable
until the other sink node receives the event, too. Even if no data is lost with
this strategy, it has the disadvantage that one stream has to be stopped. If
the presentation of the audio stream is stopped, the observer notices this as an
awkward noise.

One could try to avoid this with another approach: Both of the sink nodes
do not stop the presentation. The inter-stream synchronization is switched off
at the moment the first sink receives the sync reset-event. The second event
then switches it on again. This could simply be done with the state RESET of
the synchronizer: In this state the synchronizer would not react to incoming
average latency values.

Chapter 4

Synchronization in Plug-ins
and Applications

After describing the underlying datatypes and architecture we will have a look
at some practical examples of how synchronization takes place in plug-in nodes
and applications. The functionality of these nodes is described rather shortly
here. For further information how the nodes work, please refer to [4]. At first we
will describe the timestamp handling for some general node classes. We will do
this in the order of appearance of the nodes in a flow graph: From source nodes
over filter or converter nodes to the sink nodes. We will especially describe the
sink nodes as concrete node examples because almost every example application
contains one of the presented sink nodes. Then we will have a closer look
at two examples for synchronization in application programming: The audio
visualization examples have been written as part of this practical project, the
MPEG decoding examples were just extended by the synchronization part. See
[4] to learn more about the MPEG decoding example and the participating
nodes.

4.1 Source nodes

One can distinguish between live sources and “artificial” sources. Live sources
get their data from a device that captures it at that moment like a video camera
or a microphone. Artificial sources read data that was created before and stored
from hard disc, DVD or from other data sources. The main difference according
to synchronization is that live sources have to create timestamps for outgoing
buffers while the data read from artificial sources needs to contain some time
information in order to allow synchronization. Therefore we will have a closer
look at the timestamp creation in live sources.

4.1.1 Live sources

The live sources always use a StreamTimer for timestamp creation as described
in the last chapter. For this reason the nodes simply create a StreamTimer
object in the REAL TIME-mode and tell it to set the timestamp of each outgoing

25

CHAPTER 4. PLUG-INS AND APPLICATIONS 26

buffer in the produceBuffer()-method. The following code sample shows how
this works for a plug-in node called Source:

Source() {

// ...

StreamTimer timer = new StreamTimer(StreamTimer::REAL_TIME);

}

~Source() {

// ...

delete timer;

}

Buffer* produceBuffer() {

Message* out_buffer = getNewBuffer(out_buffer_size);

// produce the data content and

// put it into the out_buffer

timer->setTimestamp(out_buffer);

return out_buffer;

}

An example for such a live source is the RecordNode that uses the OSS
audio driver (see [2]) to read audio data from the sound device. Another live
source node example is the GenericFireWireNode which can be used to record
a video stream from a camera connected to the IEEE 1394 bus.

4.2 Filter nodes

This class of nodes is characterized by the fact that the format of incoming
and outgoing data and buffer quantities are equal. For example, a node that
displays a logo in the upper left corner of each incoming video frame belongs
to this cathegory. Another obvious example is a sound effects node. Both of
them sent one buffer with the same format for each buffer they receive.

These nodes normally do not need to know something about presentation
time or duration of incoming buffers. They only copy the timestamp of an
incoming buffer into the corresponding outgoing buffer they produce. This is
done automatically by the member function

Buffer* getNewBuffer(const size_t size, Buffer* in_buffer);

which is defined in the class IExternalBufferManager and returns a new buffer
with the expected size and the same timestamp as the in buffer.

4.3 Converter nodes

It is characteristic for a converter node that its input format is not equal to
its output format. This holds for a large spectrum of nodes. Not all of the

CHAPTER 4. PLUG-INS AND APPLICATIONS 27

converters have to change something at the buffer’s timestamps: One may
think of a node that converts video frames from an YUV colorspace to RGB.
From the synchronization point of view, these examples behave like the filter
nodes in the last section.

The example shown above only deals with raw formats: There are also
compressed formats like MPEG or AVI which come along with their own format
specific time information. Some nodes have to convert this time information
into values that can be used as timestamps in NMM or otherwise. The other
difference to a filter node is that for a converter node there is not always a
one-to-one correspondence between incoming and outgoing buffers.

In section 4.5 we will describe two nodes for which the assumption of such a
correspondence fails: the audio visualization nodes. In section 4.6 we will focus
on the nodes taking part in MPEG decoding.

4.4 Sink nodes

Most of the changes due to synchronization have been done in the sink nodes.
Some of these changes have been explained already in the last chapter, but now
we will see their influence on already existing nodes.

4.4.1 Video sinks

At the moment there are three video sinks available for NMM which are inher-
ited from GenericUSyncSinkNode: The XDisplayNode, the MatroxDisplayNo-
de and the GLDisplayNode. The XDisplayNode is the usual display node that
communicates with the X server while the MatroxDisplayNode uses a special
device and driver. See [4] to get to know more about these sink node. The
GLDisplayNode finally uses OpenGL to display incoming frames. The synchro-
nization related part of these nodes is very similar. With the inheritance from
GenericUSyncSinkNode there is no need for big changes in the plug-in nodes.

The main idea is to copy the next frame into a suitable memory region
in the prepareBuffer(Buffer*)-method. For the XDisplayNode and the Ma-
troxDisplayNode this is done by a real memory copy operation. They copy the
image data into an X shared memory or a special memory region of the driver.
The GLDisplayNode creates a texture out of the data in this method.

The presentBuffer(Buffer*)-method then just gives the command to
change the presented image. The nodes do this with special functions from
the X server, the Matrox driver or OpenGL.

4.4.2 Audio sinks

The NMM audio sink is called PlaybackNode. It uses the Open Sound System
(OSS) audio drivers to get access to the sound device. See [2] for details about
how to use the OSS drivers.

In this case we have an example for a buffered sink node since the OSS
driver allocates an internal data buffer. Therefore PlaybackNode is a subclass
of GenericBSyncSinkNode.

CHAPTER 4. PLUG-INS AND APPLICATIONS 28

Besides the extensions for synchronization, the PlayBackNode has been ex-
tended by automatical recognition of supported audio formats. Raw audio
formats are build up with the following parameters:

• sample rate: The number of samples per second. Usual values are between
8kHz and 96kHz.

• bit per sample: The number of bits that build one sample. Normally this
value will be 16.

• number of channels: This number can vary between 1 and 6.

• sample representation: This refers to the byte order depending on the
processor architecture and is often refered as big endian or little endian.

The PlaybackNode automatically tests which combinations of these values are
supported by the soundcard.

To get synchronized we need some methods to get to know the delay caused
by the data in the internal buffer. Because the sampling rate does not change
while the driver is playing this is equivalent to get to know the number of bytes
that are stored in the internal buffer at the moment. The OSS drivers offer dif-
ferent ioctl()-calls to solve this problem. The are called GETOSPACE, GETOPTR
and GETODELAY. I have made the experience that they are not equivalently. The
GETODELAY-call gave the best results. All of the functions have one problem in
common: The internal buffer is separated in so-called fragments that are used
by the driver for double-buffering to avoid a data leak at the soundcard. When
you start to write audio data to the device, the driver starts the presentation
after the first fragment is filled. The delay values returned by the three methods
are zero until the presentation has been started, although data has been already
written to the device. Therefore it is sensible to work with small fragment sizes.
Per default the driver uses two fragments with 65536 bytes per fragment for all
sound cards we have tested. The PlaybackNode tries to configure the driver to
use an internal buffer of up to 16 fragments with 4096 bytes per fragment. The
sound driver can override these values depending on the hardware’s capabilities.
The internal buffer size means that 16 ∗ 4096/(48000 ∗ 2 ∗ 2) = 0.341 seconds of
audio can be stored in this buffer with a sample rate of 48 kHz, stereo and 16
bit per sample. We note that the consideration of this internal buffer plays an
important role to gain audio/video synchronization.

With the number of bytes bytes in buffer in the internal buffer one can
simply compute the duration t buf of playing the internal buffer’s content:

t buf =
bytes in buffer

sample rate · bytes per sample

Here the value bytes per sample is defined as

bytes per sample = number of channels · bit per sample.

If we write a data buffer to the device at the time now, the observer will hear
it at the time now + t buf. So this interval t buf is computed and returned by
the getOutputDelay()-method.

CHAPTER 4. PLUG-INS AND APPLICATIONS 29

See [2] and the source code file PlaybackNode.cpp in the NMM distribution
for more details about the programming internals.

In the PlaybackNode there is nothing to do for a prepareBuffer - method,
and it is therefore left empty. The only thing the PlaybackNode does with in-
coming audio data is to write it to the sound device in the presentBuffer(Buf-
fer*)-method.

4.5 Audio visualization

4.5.1 The mp3vis and mp3vis2 applications

There are two example applications that play MPEG 2 Layer 3 encoded au-
dio files and visualize the audio data. Both of the applications are build up
with six nodes, and their graphs only differ in the node used for visualiza-
tion. The application mp3vis uses the ScopeNode while mp3vis2 makes use of a
SAnalyzerNode. Figure 4.1 shows the graph of mp3vis or mp3vis2, respectively.
You simply need to replace VisNode with a ScopeNode or a SAnalyzerNode to
get the graph of mp3vis and mp3vis2 out of it.

MP3Read-
Node

MPEGAudio-
DecodeNode

VisNode XDisplay-
Node

Playback-
Node

CopyNode
AudioVideo-
Synchronizer

Application

VisNode stands for ScopeNode or SAnalyzerNode.

Figure 4.1: The graph of the MP3 visualization examples

The source node is an MP3ReadNode to read the compressed audio data
from the hard disc. This reader is connected to an MPEGAudioDecodeNode that
decodes the MP3-compressed data into raw audio data. After the decoder the
multimedia stream has to be split up into two streams, one for the audio output
and one for the visualization. This is done by a CopyNode which simply sends
incoming buffers to both of its output jacks. One of them is connected directly
to the PlaybackNode, an audio sink node which uses the OSS audio driver. The
other output jack leads to the VisNode. The VisNode itself is connected to the
video sink, the XDisplayNode. The MPEGAudioDecodeNode and the VisNode

are the two nodes in this graph that create and set the timestamps into the

CHAPTER 4. PLUG-INS AND APPLICATIONS 30

without blur effect . . . and with blur effect

Figure 4.2: Screenshots of mp3vis (ScopeNode)

Figure 4.3: Screenshot of mp3vis2 (SAnalyzerNode)

buffers. The MPEGAudioDecodeNode is further described in the section 4.6, and
we will at first describe the VisNodes.

4.5.2 ScopeNode and SAnalyzerNode

Both of these nodes create a raw video data stream out of a raw audio stream.
The ScopeNode draws points in a coordinate system with the time as x-value
and the audio sample value as y-value. This gives the impression of watching
the audio signal on an oscilloscope. With the two methods

Result setBlurEnabled(bool)

Result setBlurStep(int step)

one can add a blur effect to the visualized signal. step describes the intensity
of the blur effect. Small values at a range from 1 to 10 cause a long blur effect,
great values up to 40 a shorter duration.

The SAnalyzerNode shows the components of the audio signal at different
frequencies. To compute these values a Fourier transform of the audio data must
be computed. For this purpose the RFFTW library is used. Details about this
library and its API can be found in [10] where also an example similar to the
code in SAnalyzerNode.cpp is shown. The screenshots in this section (figure
4.2 and 4.3) should give an impression about what the nodes do.

CHAPTER 4. PLUG-INS AND APPLICATIONS 31

The nodes use a StreamTimer in the CONST RATE-mode to set timestamps
to the outgoing buffers.

4.5.3 Synchronization in the application code

We will now take a look at the application source code to understand what
an application programmer has to know about synchronization. At first the
synchronization must be switched on for all sink nodes. Then an AudioVideo-
Synchronizer is created and the sinks are registered to it.

XDisplayNode* display = new XDisplayNode(...);

display -> setSynchronized(true);

PlaybackNode* playback = new PlaybackNode(...);

playback -> setSynchronized(true);

AudioVideoSynchronizer* sync = new AudioVideoSynchronizer();

sync -> setVideoSink(display);

sync -> setAudioSink(playback);

These few lines of code suffice in these two examples to get a synchro-
nized audio/video presentation. Additionally the two examples offer a pause-
functionality which simply uses the two function calls sync -> pause(); and
sync -> wakeup();

4.6 MPEG decoding

In figure 4.4 we see the flow graph for a general MPEG video player similar to
the graph shown in figure 2.2. By replacing the source nodes and with small
modifications this graph can be used to play MPEG encoded files from the
hard disc, from DVD’s or to watch TV over DVB. The timestamp handling in
the participating nodes is a bit more complicated as in the nodes we have seen
before.

The source node in this graph is the MPEGReadNode. This node only reads
data content and does not write any timestamp into a buffer. The MPEGDe-

muxNode splits the MPEG stream into the video and the audio components.
This node has the ability to read the time information encoded in the MPEG
stream and convert them into Time objects. The node stores the first time
value read during a presentation and subtracts it from all following values be-
fore putting them into the buffers. So the sync time values of the buffers
start at zero. At the level the MPEGDemuxNode regards the stream, there is not
enough information to mark each audio or video packet. That is the point which
makes the is valid- flag in the timestamps necessary (see section 3.2.3). The
MPEGDemuxNode marks all buffers without a valid timestamp with a flag set to
false.

The successor nodes in the graph are the MPEGVideoDecodeNode and the
MPEGAudioDecodeNode. Depending on the audio format in the MPEG stream
an AC3DecodeNode is used instead of an MPEGAudioDecodeNode.

CHAPTER 4. PLUG-INS AND APPLICATIONS 32

Source-
Node

MPEGDemux-
Node

XDisplay-
Node

Playback-
Node

MPEGVideo-
DecodeNode

Audio-
Decoder

AudioVideo-
Synchronizer

Application

Depending on the data source, SourceNode can be one of
MPEGReadNode, DVDReadNode or DVBReadNode.

AudioDecoder depends on the current data format and can be

AC3DecodeNode or MPEGAudioDecodeNode.

Figure 4.4: A general flow graph for MPEG decoding applications

Creating the timestamps for the audio data is easy: If the incoming buffer
contains a valid timestamp, take this for the next outgoing buffer. Store the
last written time internally and add the duration for each outgoing buffer to
this value to get the time for the next buffer.

The MPEGVideoDecodeNode can extract the current duration of the presenta-
tion for one video frame out of the MPEG data. Together with the timestamps
of the incoming buffers this suffices to reconstruct the timestamps for all video
frames. What makes this a bit more complicated is that the compressed MPEG
data contains the frames in another order as they are finally displayed. This
makes sense because the MPEG format supports inter-frame compression. For
this reason an MPEG video stream is divided into groups of pictures or GOP’s
that consist of I-, P- and B-frames. The I-frames are encoded Independent of
other frames where P- and B-frames are encoded related to the information of
other frames. The P-frames only use forward prediction while the B-frames use
bidirectional prediction. See [6], page 167, for more details. The library that is
used by the node internally changes the order of the frames so that the output is
in right order for presentation. Therefore one looses the correlation between the
incoming and the outgoing buffers and does not know how to associate times-
tamps with outgoing buffers. The MPEGVideoDecodeNode solves this problem
by only taking the incoming timestamps for the I-frames. These frames are
decoded immediately after their data has been given to the library. The times-
tamps for P- and B-frames are generated using the last I-frame’s timestamp.
This does not cause a significant loss of precision because groups of pictures
have a limited maximal length. Usually they will contain up to 12 pictures.

CHAPTER 4. PLUG-INS AND APPLICATIONS 33

Then the next group of pictures will start and the next exact timestamp out of
the original stream will be taken.

Besides this we have already discussed in section 3.4.2 that selecting a new
DVD chapter or TV channel makes it necessary to reset all internally stored
time values in the nodes above. This is done when a sync reset-event occurs.

Appendix A

Source Files

There is not enough space here to show the whole source code that has been
implemented for the practical project. I will only give a list of the source files
which can be found in the NMM software distribution1.

The classes that build the underlying architecture are located in a special
directory (nmm/base/sync). These files contain:

• nmm/base/sync/Rational.hpp

• nmm/base/sync/Rational.cpp

• nmm/base/sync/Types.hpp

• nmm/base/sync/Types.cpp

• nmm/base/sync/Clock.hpp

• nmm/base/sync/Clock.cpp

• nmm/base/sync/TimedElement.hpp

• nmm/base/sync/TimedElement.cpp

• nmm/base/sync/Controller.hpp

• nmm/base/sync/Controller.cpp

• nmm/base/sync/SinkController.hpp

• nmm/base/sync/SinkController.cpp

• nmm/base/sync/BSinkController.hpp

• nmm/base/sync/BSinkController.cpp

• nmm/base/sync/USinkController.hpp

• nmm/base/sync/USinkController.cpp

1The NMM software is available for download at http://www.networkmultimedia.org.

34

APPENDIX A. SOURCE FILES 35

• nmm/base/sync/GenericSyncSinkNode.hpp

• nmm/base/sync/GenericSyncSinkNode.cpp

• nmm/base/sync/GenericBSyncSinkNode.hpp

• nmm/base/sync/GenericBSyncSinkNode.cpp

• nmm/base/sync/GenericUSyncSinkNode.hpp

• nmm/base/sync/GenericUSyncSinkNode.cpp

• nmm/base/sync/Synchronizer.hpp

• nmm/base/sync/Synchronizer.cpp

• nmm/base/sync/AudioVideoSynchronizer.hpp

• nmm/base/sync/AudioVideoSynchronizer.cpp

I wrote some examples for timestamp handling in plug-in nodes and syn-
chronization in application programs (described in chapter 4.5). These include
the following files:

• nmm/plugins/audio/visualization/ScopeNode.hpp

• nmm/plugins/audio/visualization/ScopeNode.cpp

• nmm/plugins/audio/visualization/SAnalyzerNode.hpp

• nmm/plugins/audio/visualization/SAnalyzerNode.cpp

• nmm/examples/mp3dec/mp3vis.cpp

• nmm/examples/mp3dec/mp3vis2.cpp

Besides these, synchronization handling has been added to many of the plug-
in nodes that already existed before. Most of the extensions consisted only of
a few lines of additional code. I would only like to mention the sink nodes and
especially the OSS audio sink node because there were significant changes to
the source code (see also chapter 4.4.2). It can be found in the files

• nmm/plugins/audio/PlaybackNode.hpp

• nmm/plugins/audio/PlaybackNode.cpp

List of Figures

1.1 Intra-object synchronization . 4
1.2 Inter-object synchronization . 5

2.1 Nodes and Messages . 7
2.2 A simple node graph for an MPEG video player 9

3.1 General overview of synchronization components 11
3.2 The notion of latency . 12
3.3 GenericSyncSinkNode in the NMM class hierarchy 17
3.4 The class hierarchy for Controller and its subclasses 19
3.5 States and state transitions of a Controller 21
3.6 States and state transitions of a Synchronizer 22
3.7 Problems with different path lengths 23
3.8 Sink nodes, controllers and synchronizer during a sync reset-

event . 24

4.1 The graph of the MP3 visualization examples 29
4.2 Screenshots of mp3vis (ScopeNode) 30
4.3 Screenshot of mp3vis2 (SAnalyzerNode) 30
4.4 A general flow graph for MPEG decoding applications 32

36

Bibliography

[1] Network-Integrated Multimedia Middleware (NMM). Project’s homepage:
http://www.networkmultimedia.org.

[2] 4Front Technologies. Open Sound System Programmer’s Guide, 2000.
http://www.opensound.com.

[3] Be, Inc. The Be Book for BeOS Release 5, 2000.

[4] Patrick Becker, Patrick Cernko, Wolfgang Enderlein, Marc Klein, and
Markus Sand. Design and Development of a Multimedia Home Enter-
tainment System for Linux. Universität des Saarlandes, 2002. Advanced
practical project.

[5] Gordon Blair and Jean-Bernard Stefani. Open Distributed Processing and
Multimedia. Addison-Wesley, 1. edition, 1998.

[6] John F. Koegel Buford. Multimedia Systems. ACM Press, 1. edition, 1994.

[7] Steve Howell. OpenML Version 1.0 Final Specification. Khronos Group,
2001. http://www.khronos.org/openml.

[8] Keith Jack. Video Demystified. LLH Technology Publisher, 2. edition,
1996.

[9] Helmut Kopka. LATEX – Einführung Band 1. Addison-Wesley Verlag, 3.
edition, 2000.

[10] Massachusetts Institute of Technology. FFTW Tutorial (for Version 2.1.3),
1999. http://www.fftw.org.

[11] Chris Pirazzi. Introduction to UST and UST/MSC. Internet site:
http://www.lurkertech.com/lg/time/intro.html.

[12] Ralf Steinmetz. Multimedia-Technologie. Springer-Verlag, 2. edition, 1999.

[13] Ralf Steinmetz and Klara Nahrstedt. Multimedia: Computing, Communi-
cations and Applications. Prentice Hall, 1. edition, 1995.

[14] Bjarne Stroustrup. Die C++ Programmiersprache. Addison-Wesley Ver-
lag, 4. edition, 2000.

[15] W3C. Synchronized Multimedia Integration Language (SMIL 2.0), 2001.
http://www.w3.org/TR/smil20.

37

