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Kurze Zusammenfassung

Gegenstand der vorliegenden Arbeit sind Verfahren zum Entrauschen, qua-
litativen Verbessern und Vereinfachen digitaler Bilddaten. Besonderes Augen-
merk liegt dabei auf den Beziehungen und der strukturellen Ähnlichkeit zwischen
unterschiedlich motivierten Verfahrensklassen. Insbesondere lassen sich die hier
behandelten Methoden in drei Klassen einordnen: Bei den Variationsansätzen
und partiellen Differentialgleichungen steht der Begriff der Ableitung im Mittel-
punkt, um Regularität der Daten und des gewünschten Resultats zu modellie-
ren. Hier wird ein einheitlicher Rahmen für solche Ansätze angegeben, die alle
partiellen Ableitungen einer vorgegebenen Ordnung involvieren und experimen-
tell auf stückweise polynomielle Approximationen der gegebenen Daten führen
können. Die zweite Klasse von Methoden nutzt Wavelets zur Repräsentation von
Daten, mit deren Hilfe sich Filterung als sehr einfache punktweise Anwendung
einer nichtlinearen Funktion verstehen lässt. Diese Wavelets als Ableitungen von
Glättungskernen aufzufassen bildet die Grundlage für die hier untersuchte Ver-
bindung dieser Verfahren zu Integrodifferentialgleichungen. Im dritten Fall wer-
den Werte des Bildes in einer Nachbarschaft gemittelt, wobei die Gewichtung bei
dieser Mittelung adaptiv nach verschiedenen Kriterien angepasst werden kann.
Durch Verfeinern des Pixelgitters und Übergang zu Skalierungslimites werden
auch hier Verbindungen zu partiellen Differentialgleichungen sichtbar, die in den
vorher dargestellten Rahmen eingeordnet werden. Numerische Aspekte beim Ver-
einfachen von Bildern werden anhand der NDS-Energiefunktion dargestellt, eines
einheitlichen Ansatzes, mit dessen Hilfe sich viele der vorgenannten Methoden
realisieren lassen. Das Verhalten der einzelnen Filtermethoden wird dabei jeweils
durch numerische Beispiele dokumentiert.
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Abstract

The topics of this thesis are methods for denoising, enhancement, and simplifi-
cation of digital image data. Special emphasis lies on the relations and structural
similarities between several classes of methods which are motivated from different
contexts. In particular, one can distinguish the methods treated in this thesis in
three classes: For variational approaches and partial differential equations, the
notion of the derivative is the tool of choice to model regularity of the data and
the desired result. A general framework for such approaches is proposed that in-
volve all partial derivatives of a prescribed order and experimentally are capable
of leading to piecewise polynomial approximations of the given data. The sec-
ond class of methods uses wavelets to represent the data which makes it possible
to understand the filtering as very simple pointwise application of a nonlinear
function. To view these wavelets as derivatives of smoothing kernels is the basis
for relating these methods to integrodifferential equations which are investigated
here. In the third case, values of the image in a neighbourhood are averaged
where the weights of this averaging can be adapted respecting different criteria.
By refinement of the pixel grid and transfer to scaling limits, connections to par-
tial differential equations become visible here, too. They are described in the
framework explained before. Numerical aspects of the simplification of images
are presented with respect to the NDS energy function, a unifying approach that
allows to model many of the aforementioned methods. The behaviour of the
filtering methods is documented with numerical examples.
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Zusammenfassung

Gegenstand der vorliegenden Arbeit sind Modelle zum Entrauschen, Vereinfa-
chen und zur qualitativen Verbesserung digitaler Bilddaten. Mit der wachsenden
Leistung der vorhandenen Rechner erfreut sich dieses Anwendungsgebiet einer
stetig steigenden Relevanz. Dies hat in den letzten Jahrzehnten zu einer starken
Forschungsaktivität in diesem Bereich geführt, deren Resultat eine große An-
zahl verschiedener Herangehensweisen zur qualitativen Verbesserung von Bildern
ist. Besonderes Augenmerk liegt in dieser Arbeit auf den Beziehungen zwischen
scheinbar unterschiedlichen Verfahren. Dabei werden im Wesentlichen drei Ver-
fahrensklassen betrachtet: Die erste Klasse bilden Variationsansätze und partielle
Differentialgleichungen. Das zentrale mathematische Hilfsmittel sind hierbei Ab-
leitungen. Die zweite Klasse von Verfahren basiert auf der Repräsentation der
Daten mit Hilfe von Wavelets. Diese Darstellung erlaubt es, den Filtervorgang
als sehr einfache punktweise Anwendung einer nichtlinearen Funktion auf die
Wavelet-Koeffizienten durchzuführen. Als dritte und letzte Klasse werden adap-
tive Mittelungsfilter betrachtet. Hierbei ergibt sich ein Grau- oder Farbwert im
gefilterten Bild als gewichtetes Mittel aus allen Werten innerhalb einer Umge-
bung des betrachteten Pixels. Unterschiedliche Strategien zur Wahl der Gewichte
in Abhängigkeit von den vorhandenen Daten in der Umgebung oder im gesamten
Bild erlauben diesen sehr anschaulich konstruierten Filtern, qualitativ hochwer-
tige Resultate zu erzielen.

Ziel der Arbeit ist es nun, mit Hilfe der Beziehungen zwischen diesen Me-
thoden das Verständnis für den Filtervorgang zu vertiefen. Über den reinen Er-
kenntnisgewinn hinaus soll dies dazu genutzt werden, Konzepte von einer Verfah-
rensklasse auf die andere übertragen zu können und so eine qualitative Verbesse-
rung möglich zu machen. An zentraler Stelle stehen für uns dabei die partiellen
Differentialgleichungen: Zum einen wird ein allgemeiner Rahmen für Regularisie-
rung und zugehörige Evolutionsgleichungen angegeben, der auf allen partiellen
Ableitungen einer vorgegebenen Ordnung basiert. Interessant ist hierbei, dass die
Lösungen experimentell lokal durch Polynome beschrieben werden können, deren
Grad sich aus der gewählten Ableitungsordnung ergibt. Zum anderen werden die
Wavelet-Verfahren sowie die Mittelungsfilter mit Integrodifferentialgleichugen in
Beziehung gebracht. Die hierbei hergeleiteten Gleichungen entsprechen nicht ex-
akt den vorher behandelten Evolutionsgleichungen, was zur Veranschaulichung
der Unterschiede im Verhalten der Verfahren beiträgt.

Die vorliegende Arbeit gliedert sich wie folgt in sechs Kapitel: Das erste Kapi-
tel gibt eine Einführung in das Problem sowie den bisherigen Stand der Forschung.

Im zweiten Kapitel werden Methoden betrachtet, die auf Ableitungen der
gegebenen Daten oder des gesuchten Resultats beruhen. Dazu gehören Variati-
onsansätze, die unter Verwendung von Ableitungen eine Glattheitsforderung an
die Resultate modellieren. Zur Lösung der auftretenden Minimierungsprobleme
werden im zweiten Schritt partielle Differentialgleichungen herangezogen. Die be-
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schriebenen Verfahren werden im Hinblick auf ihre Stabilitäts- und Skalenraum-
eigenschaften untersucht.

Das dritte Kapitel beschäftigt sich mit dem Entrauschen durch Wavelet Shrin-
kage und seiner Formulierung durch Integrodifferentialgleichungen. Die zugrunde
liegende Idee dabei ist, die Daten mit Hilfe von Wavelets in eine geeignete Re-
präsentation zu überführen, in der sich Rauschen durch sehr einfache nichtlineare
Transformationen entfernen lässt. Im Falle des klassischen Shrinkage besteht diese
Transformation einfach in der punktweisen Anwendung einer Shrinkage-Funktion
auf die Wavelet-Koeffizienten. Schlüssel zum Verständnis des Wavelet Shrinkage
als Integrodifferentialgleichung ist, die Wavelets als Ableitungen von Glättungs-
kernen aufzufassen. Aus der dadurch entstehenden Vorglättung der Ableitungen
ergeben sich die wesentlichen Unterschiede der Wavelet-Verfahren zu den vorher
beschriebenen Differentialgleichungen.

Zu den einfachsten und zeitlich am längsten bekannten Methoden zum Ent-
rauschen gehören adaptive Mittelungsverfahren, die in Kapitel vier behandelt
werden. Hier geht man von diskreten Formulierungen der Mittelung aus, die di-
rekt die Implementierungen widerspiegeln. Eine Verfeinerung des Pixelgitters und
der Übergang zu Skalierungslimites ordnet den Mittelungsverfahren zugehörige
partielle Differentialgleichungen zu. In einer Raumdimension ergibt sich dadurch
eine Variante der nichtlinearen Diffusion, die eine verbesserte Kantenverstärkung
aufweist. Die Verallgemeinerung auf den 2-D-Fall ist nicht eindeutig. Hier werden
mehrere Wege beschrieben, die auf anisotrope Diffusionsgleichungen führen. Be-
sonderes Gewicht erhält hier die Untersuchung einer Filtermethode, die eine Ver-
allgemeinerung der Mean Curvature Motion darstellt, jedoch im Gegensatz zur
klassischen Gleichung in der praktischen Implementierung visuell scharfe Kanten
möglich macht.

Kapitel fünf untersucht numerische Probleme im Zusammenhang mit dem
Verbessern von Bildern anhand des NDS-Optimierungsansatzes, der ähnlich wie
die adaptiven Mittelungsverfahren eine erweiterte Nachbarschaft eines Pixels
beim Entrauschen mit berücksichtigt. Für das bei diesem Ansatz zu lösende
Minimierungsproblem wird die Existenz eines Minimums gezeigt. Daneben wer-
den unterschiedliche numerische Methoden zur Approximation eines Minimums
erläutert und verglichen.

Eine Zusammenfassung der wesentlichen Resultate sowie ein Ausblick auf in-
teressante Fragestellungen, die sich in diesem Kontext ergeben, bilden mit Kapitel
sechs den Abschluss der Arbeit.
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Preface

The topics of this thesis are models for denoising, simplification, and qual-
itative enhancement of digital image data. With the growing calculating and
storage capacity of present computers, this area of application enjoys an increas-
ing relevance. This has led to a strong scientific activity whose result is a large
choice of different approaches for image enhancement. Special focus in this thesis
is on the relations between apparently different methods. In essence, three classes
of methods are considered here: The first class is build by variational methods
and partial differential equations. The central mathematical tool in this class are
derivatives. The second class of methods is based on data representation with the
help of wavelets. This representation allows to pursue the filtering as a simple
pointwise application of a nonlinear function on the wavelet coefficients. As third
and last class, adaptive averaging filters are considered. Here, a grey or colour
value in the filtered image is calculated as weighted average out of all values
inside a neighbourhood of the pixel under consideration. Different strategies to
choose the weights depending on the present data in the neighbourhood or in
the whole image allow these very intuitively constructed filters to achieve high
quality results.

The goal of the present thesis is to deepen the understanding of the filtering
behaviour with the help of the relations of the methods to each other. Beyond
the pure gain of insight, this shall be used to carry on concepts from one class
of methods to the other and thus to make a qualitative enhancement possible.
The partial differential equations are at the central position for us: On the one
hand we describe a general framework for regularisation and corresponding evo-
lution equations which is based on all partial derivatives of a given order. An
interesting feature of this framework is that experiments show that the solutions
can locally be described by polynomials whose degree is determined by the order
of the derivatives. On the other hand, the wavelet methods and the adaptive
averaging methods are related to integrodifferential equations. The differential
equations deduced in this reasoning are not exactly equal to the evolution equa-
tions discussed before, which contributes to the illustration of the differences in
the behaviour of the methods.

The present thesis consists of six chapters: The first chapter provides an
introduction to the problem and the state of the art.

In the second chapter, methods based on derivatives of the given data and the
desired result are considered. This encompasses variational methods that model
a smoothness demand on the results with the help of derivatives. To solve the
occurring minimisation problems, in the second step, partial differential equations
are used. The described methods are investigated with respect to their stability
and scale-space properties.

The third chapter considers denoising by wavelet shrinkage. Here the basic
idea is to transform the data with the help of wavelets into a suitable represen-
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tation such that noise can be removed by very simple nonlinear operations. In
the case of classical wavelet shrinkage, this operation is just the pointwise appli-
cation of a nonlinear shrinkage function on the wavelet coefficients. The key to
the understanding of wavelet shrinkage as integrodifferential equation is to inter-
pret wavelets as derivatives of smoothing kernels. This models a presmoothing
of derivatives from which the fundamental differences between the wavelet-based
methods to the previously described differential equations originate.

Adaptive averaging methods belong to the easiest and historically earliest
methods known in the context of denoising and are discussed in Chapter 4. Here,
one starts with a discrete formulation of the averaging which directly mirrors
practical implementations. A refinement of the pixel grid and the transfer to
scaling limits maps the averaging methods to corresponding partial differential
equations. In 1-D, this yields a variant of nonlinear diffusion filtering with in-
creased edge enhancement. The generalisation to the 2-D case is not unique.
Here, several ways will be described which lead to anisotropic diffusion equa-
tions. Special focus is on the investigation of a filtering method which can be
seen as generalisation of mean curvature motion. In practical implementations,
this family can make visually sharp edges possible in opposite to the classical
process.

Chapter 5 investigates numerical problems in the context of image enhance-
ment on the basis of the NDS optimisation approach. Similar to the adaptive
averaging processes, this approach takes an augmented neighbourhood of the
pixels into consideration. We prove the existence of a minimum for the minimi-
sation problem arising here. Further we illustrate and compare several numerical
methods for the approximation of this minimum.

A summary of the essential results and an outlook of interesting questions
arising in this context build the conclusion of this thesis in Chapter 6.

vi



Acknowledgements

First of all, I would like to thank Prof. Dr. Joachim Weickert for providing me
the interesting topic and giving me the opportunity to persue my studies in his
group. He has helped me with all the scientific and administrative questions and
problems and always encouraged me whenever problems came up. Most of the
work presented here was done within the project “Relations Between Nonlinear
Filters in Digital Image Processing” which was a part of the priority programme
1114 “Mathematical Methods for Time Series Analysis and Digital Image Pro-
cessing” financed by the German Research Foundation (Deutsche Forschungs-
gemeinschaft, DFG). My thank goes to the DFG for financing this project and
establishing the connections between the participating scientists. I would like to
thank Prof. Dr. Gabriele Steidl for giving me the chance to work in this joint
project of the groups in Saarbrücken and Mannheim. I am grateful to her for
many fruitful discussions. I would like to thank her and Prof. Dr. Xue-Cheng Tai
for serving as external reviewers of this thesis.

I am also grateful to Prof. Dr. Jürgen Franke for helpful discussions on
the stochastical interpretation of the NDS functional and to Prof. Dr. Roland
Duduchava for his interest and his helpful comments on pseudodifferential oper-
ators and their regularity properties.

I would like to thank all current and former members of the Mathematical
Image Analysis (MIA) group at Saarland University for creating a creative and
comfortable atmosphere which made me enjoy working here. In addition my
thank goes to all co-authors of joint publications written during my studies.
Concerning this thesis, I am grateful to Natalie Marx and Markus Zacharski for
proof-reading.

Finally, I would like to thank my parents for their constant support during
my studies and my whole life, and my girlfriend Natalie for being with me.

Saarbrücken, February 2008 Stephan Didas

vii



viii



Contents

1 Introduction 5
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Variational Methods and PDEs . . . . . . . . . . . . . . . . . . . 6

1.2.1 Scale-Space Concept and Linear Diffusion . . . . . . . . . 6
1.2.2 Regularisation and Isotropic Nonlinear Diffusion . . . . . . 8
1.2.3 Anisotropic Nonlinear Diffusion . . . . . . . . . . . . . . . 19
1.2.4 Mean Curvature Motion and Related Filters . . . . . . . . 19

1.3 Denoising with Wavelets . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.1 Wavelet Shrinkage . . . . . . . . . . . . . . . . . . . . . . 23
1.3.2 Relations to Nonlinear Diffusion . . . . . . . . . . . . . . . 25

1.4 Adaptive Averaging Filters . . . . . . . . . . . . . . . . . . . . . . 26
1.4.1 Classical Methods . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.2 Nonlocal Data and Smoothness Terms . . . . . . . . . . . 29
1.4.3 Nonlocal Means . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Variational Methods and PDEs 31
2.1 Linear Filtering with Fractional Derivatives . . . . . . . . . . . . 31

2.1.1 Fractional Powers of the Laplacian . . . . . . . . . . . . . 32
2.1.2 Regularisation with Fractional Derivative Orders . . . . . 34
2.1.3 Diffusion with Fractional Derivative Orders . . . . . . . . . 39
2.1.4 Semi-Discrete Linear Filtering . . . . . . . . . . . . . . . . 44
2.1.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . 46

2.2 Nonlinear Filtering with Higher Derivatives . . . . . . . . . . . . . 47
2.2.1 Calculus of Variations . . . . . . . . . . . . . . . . . . . . 48
2.2.2 Higher Order Regularisation and Diffusion . . . . . . . . . 50
2.2.3 Local Feature Enhancement . . . . . . . . . . . . . . . . . 55
2.2.4 Discrete Nonlinear Filtering . . . . . . . . . . . . . . . . . 59
2.2.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . 67

2.3 Higher Order Data Terms . . . . . . . . . . . . . . . . . . . . . . 73
2.3.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.3.2 Discretisation and Numerical Experiments . . . . . . . . . 76

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

1



2 CONTENTS

3 Integrodifferential Equations 81

3.1 Relations in the Continuous Setting . . . . . . . . . . . . . . . . . 81

3.1.1 Wavelet Shrinkage . . . . . . . . . . . . . . . . . . . . . . 82

3.1.2 Wavelet Transforms as Smoothed Derivative Operators . . 84

3.1.3 Wavelet Shrinkage and Evolution Equations . . . . . . . . 86

3.1.4 Variational Methods and Correspondences . . . . . . . . . 88

3.1.5 Pseudodifferential Operators . . . . . . . . . . . . . . . . . 90

3.2 Relations in the Discrete Setting . . . . . . . . . . . . . . . . . . . 94

3.2.1 Description of the Classical Methods . . . . . . . . . . . . 94

3.2.2 Discrete Wavelets and Convolution Kernels . . . . . . . . . 98

3.2.3 Relations Between Both Methods . . . . . . . . . . . . . . 105

3.2.4 Generalisation to Higher Dimensions . . . . . . . . . . . . 107

3.2.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . 110

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4 Adaptive Averaging and PDEs 117

4.1 Averaging Filters and Scaling Limits in 1-D . . . . . . . . . . . . 117

4.1.1 Derivation of the Scaling Limit . . . . . . . . . . . . . . . 118

4.1.2 Discretisation and Properties . . . . . . . . . . . . . . . . 120

4.2 Averaging Filters and Scaling Limits in 2-D . . . . . . . . . . . . 122

4.2.1 Local Averaging and Anisotropic Diffusion . . . . . . . . . 122

4.2.2 Rotational Invariance with the Bilateral Filter . . . . . . 124

4.3 Generalised Mean Curvature Motion . . . . . . . . . . . . . . . . 126

4.3.1 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.3.2 Choices for the Nonlinearity . . . . . . . . . . . . . . . . . 127

4.3.3 Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 130

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5 Semilocal Methods, NDS 139

5.1 The NDS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.1.1 The NDS Energy Function . . . . . . . . . . . . . . . . . . 139

5.1.2 Included Classical Methods . . . . . . . . . . . . . . . . . 141

5.1.3 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . 142

5.2 Minimisation Methods . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2.1 Jacobi Method . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2.2 Gauß-Seidel Method . . . . . . . . . . . . . . . . . . . . . 147

5.2.3 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . 147

5.2.4 Gauß-Seidel Newton Method . . . . . . . . . . . . . . . . . 148

5.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 148

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



CONTENTS 3

6 Conclusions and Outlook 153
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A Contributions and Publications 157
A.1 Further Contributions . . . . . . . . . . . . . . . . . . . . . . . . 157
A.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158



4 CONTENTS



Chapter 1

Introduction

Acquisition, storing, and processing of digital images are still becoming more and
more important applications in our daily life. Denoising, smoothing, and simpli-
fication are central problems in digital image processing. All three of them aim
at enhancing the quality of an image either to a human observer or as prepro-
cessing step for a computer vision system. The crucial point in these approaches
is to distinguish between important image features that should be kept or even
enhanced, and those parts of the image content that are considered as noise and
should be removed. Mathematically very different ways have been used to model
how a smooth image should look like: For example, a certain smoothness can be
formalised in terms of differentiability orders and small modulus of derivatives.
This idea leads to regularisation methods and related partial differential equa-
tions. Another kind of smoothness assumption is that certain wavelet coefficients
should be small, leading to the popular wavelet shrinkage methods. While the
preceeding ideas already use formulations with the help of functions, adaptive
averaging approaches usually start directly on the level of digital data sampled
at discrete pixels. Comparing the differences of the grey value helps to find
important features such as edges in this case.

1.1 Motivation

The topics of this thesis are techniques for image simplification and noise removal.
For simplification, we investigate techniques to remove details while the important
information is kept. We do not specify what is important information here since
we do not focus on a specific application. Usually, image edges are considered as
important features. We will see that there are also other criteria, for examples
large values of higher derivatives or wavelet coefficients. For noise removal, the
underlying model for the image degradation is an additive noise model. Thus in
the discrete setting, we have three images f, g, n ∈ RN such that

f = g + n (1.1)
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6 CHAPTER 1. INTRODUCTION

where f denotes the observed noisy image, g is an unknown ideal image and n is
the noise. The task is to recover an image u ∈ RN that is as close as possible to
the ideal image g in a certain sense. For some numerical examples to determine
the denoising quality, we will use a prescribed g and artificial noise. To measure
the distance of the result u to the ideal image g, we usually take the following
simple error norms:

‖u− g‖1 :=
∑
j∈J

|uj − gj| and ‖u− g‖2 :=

(∑
j∈J

|uj − gj|2
) 1

2

(1.2)

where J := {1, . . . , N} denotes the set of pixel indices. We do not make any
assumptions on the noise distribution except the fact that we usually assume zero
mean of the noise. Our focus is on different image denoising and simplification
techniques rather than on the physical modelling of noise and of the design of
appropriate noise removal strategies for a certain acquisition technique here.

The major goal of this thesis is to investigate the relations between several
of the above sketched approaches for image denoising. The knowledge obtained
hereby is used to extend the existing filters and to carry over useful filter prop-
erties from one class to the other. At central position for the thesis are the
derivative-based methods. In this context, an extension of the classical methods
to arbitrary order nonlinear regularisation and diffusion will be shown. This will
provide the basis to link the wavelet-based methods and the adaptive averaging
methods to derivative-based methods. In both cases, we do not obtain exactly
the standard diffusion equations, but different variants of it.

The following sections of this chapter will give a short overview over several
classes of methods for denoising and simplification that have been proposed in
the literature and will be of importance for this thesis. The chapter is concluded
with an outline of the thesis in Section 1.5.

1.2 Variational Methods and PDEs

Regularisation and diffusion filtering are frequently used and well-studied meth-
ods in image processing. First we start with describing linear filters and the
scale-space concept and then turn our attention to nonquadratic regularisation
and nonlinear PDE methods.

1.2.1 Scale-Space Concept and Linear Diffusion

The scale-space concept is a popular way to formally and axiomatically describe
image simplification. Given an image f , a scale-space is a family of simplified
versions Ttf of the image which depends on one parameter t ≥ 0. For t = 0, we
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obtain the original image T0f = f , and for the limit t → ∞, it is common to
demand that the scale-space approaches the average grey value of f .

Already in the 1960s Iijima [102, 103, 204] has axiomatically described a family
of operators to simplify images that satisfies four axioms: linearity, translational
invariance, scale invariance, and semigroup property. The most prominent special
case of this family is the well-known Gaussian scale-space. It has become a
popular concept in the western world in the 1980s [211, 112, 116, 80, 171]. It is
built by filtering the image with a linear diffusion equation

∂tu = ∆u

u(·, 0) = f

or, equivalently, convolve the image with a Gaussian kernel

Gσ :=
1

(2πσ2)n/2
exp

(
−|x|

2

2σ2

)
with standard deviation σ =

√
2t. Often this filter family is described on un-

bounded domains like the real axis R or on the whole space Rn. Its properties
include a maximum-minimum principle, convergence towards the average grey
value, translational invariance, and in 2-D, it also satisfies rotational invariance.

One of the most important applications of such scale-spaces is feature detec-
tion on multiple scales [117, 118]. Points of interest can be maxima and minima
of the image itself or of its derivatives. For example, the gradient magnitude or
the zero-crossings of the Laplacian are used to detect edges. It has also been in-
vestigated to which extend an image can be reconstructed out of certain features
in scale-space [105, 106].

In the meantime, also other linear scale-spaces enjoy a growing popularity:
A whole class of linear scale-spaces depending on a fractional order α > 0 was
axiomatically deduced by Pauwels et al. [153]. Duits et al. [69] further investi-
gated these α-scale-spaces where α ∈ (0, 1] can be interpreted as fractional power
of the Laplacian in a pseudodifferential equation creating the scale-space. The
restriction on α comes from the demand of a maximum-minimum principle for
the resulting filters. The most prominent representative of these linear scale-
spaces with fractional order is the Poisson scale-space by Felsberg and Sommer
[77] and its extension as monogenic scale-space [78]. Other recently presented lin-
ear scale-spaces include the relativistic scale-space [26] and the Bessel scale-space
[25]. Often the image domain is the complete real axis in scale-space theory,
whereas some publications are explicitly treating the bounded domain [67, 76],
and others are interested in the discrete setting [116].

We also would like to mention the so-called inverse scale-space by Scherzer
and Groetsch [164] which is coming from inverse problems. Here one starts with
a constant signal for t = 0 and adds more and more details until the initial signal
appears in the limit for t tending to infinity.
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In Chapter 2, we are going to investigate the combination of several fractional
powers of the Laplacian for regularisation and generalised diffusion filtering. This
can be seen as an extension to the α-scale-space framework.

1.2.2 Regularisation and Isotropic Nonlinear Diffusion

Now we are going to take a look at nonlinear simplification methods. The ap-
proaches described here can also be seen in the scale-space context. The most
interesting step in contrast to the previous subsection is that the requirement
of linearity is dropped. This axiom has rather been introduced to simplify the
mathematical treatment. If an image is to be enhanced for a human observer, for
example, linearity is not motivated by this application, and thus it makes sense
to turn the attention to nonlinear methods.

Regularisation Methods

Originally invented as a technique to determine minimum-norm solutions for ill-
posed equations by Tikhonov [184], regularisation methods also became popular
in image simplification (see [147, 166, 40, 163, 165], for example). A typical
energy functional that is minimised for regularisation is given by

E (u) =

∫
Ω

(
(u− f)2 + αΨ(|∇u|2)

)
dx . (1.3)

Here, Ω ∈ Rn is the image domain and ∇u denotes the image gradient. The first
summand is the so-called data term. It rewards similarity of the result u with the
given data f . For solving an operator equationAu = f one would replace the data
term by (Au − f)2. This is often applied for the restoration of blurred images
under the presence of noise. In the initial regularisation framework (1.3) for
denoising, the operator is the identity. The second summand is called smoothness
term since it penalises deviations from an underlying smoothness assumption.
With the smoothness term, one has the possibility to model additional constraints
and requirements at the solution. Table 1.1 shows several possible choices for the
penaliser functions Ψ. More examples can be found in [55, 145], for example.
All penalisers discussed here are continuous and monotonically increasing such
that Ψ(s2) ≤ s2 for all s ∈ R. We notice that not all of the functions shown
in Table 1.1 are convex. Strict convexity offers the advantage that the existence
and uniqueness of a minimiser can be proven directly. The nonconvex penalisers
usually lead to ill-posed problems in a continuous framework [165]. To circumvent
this problem, an attempt has been to regularise the derivative in the smoothness
term by convolving the image with a Gaussian kernel Gσ of standard deviation
σ:

E (u) =

∫
Ω

(
(u− f)2 + αΨ

(
|∇Gσ ∗ u|2

))
dx . (1.4)
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Table 1.1: Possible choices for penalising functions Ψ.

Ψ(s2) shape source

s2 quadratic regularisation,
Tikhonov [184]

2λ2

(√
1 + s2

λ2 − 1

)
nonquadratic regularisation,
Charbonnier et al. [39]

log
(
cosh

(
s
λ

)) nonquadratic regularisation,
Green [91]

|s| total variation,
Rudin et al. [158]

√
λ2 + s2 − λ

regularised total variation,
Acar and Vogel [1]

min(s2, λ2)
robust statistics,
Hampel et al. [97]

This presmoothing makes it possible to show theoretically useful properties like
weak lower semicontinuity [165] for nonconvex penalisers such as

Ψ(s2) = λ2 log

(
1 +

s2

λ2

)
(1.5)

related to Perona-Malik diffusion [154]. We will meet this strategy of regularising
derivatives with presmoothing in connection with nonlinear diffusion equations
again where it has been applied successfully, for example in the filter by Catté et
al [32].

Nevertheless, the presmoothed regularisation does not give useful results in
practice as examples in [165] show. We will see more examples for this in Chapter
3. Discretising the classical problems (1.3) with finite differences can have such
a regularising effect that these methods directly work in practice [202]. The
nonconvex penalisers yield edge enhancement and high robustness with respect
to noise and outliers which can significantly improve the reconstruction results.
Depending on the type of noise or outliers, one can also use a nonquadratic
penaliser in the data term. This has shown to be especially helpful for removing
impulse noise [146].

Regularisation methods as sketched above are interesting image processing
tools since they satisfy some important scale-space properties [165]. For example,
they preserve the average grey value of the initial data. Lyapunov functionals
and the facts that these methods are translationally and rotationally invariant
play also an important role in practice.
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Of special interest in the literature is the so-called total variation regular-
isation, or shortly TV regularisation, introduced by Rudin, Osher and Fatemi
[158]:

E (u) =

∫
Ω

(
(u− f)2 + α |∇u|

)
dx . (1.6)

This so-called ROF model has several interesting properties: As convex energy
function it marks the limiting case between the convex and nonconvex regularis-
ers. In this sense, it is a compromise between the aims of achieving robustness
against noise and of allowing for a theoretical investigation. From a practical
point of view, it is interesting that the regularisation weight is the only param-
eter of the model. In order to allow for easier numerical implementation, Acar
and Vogel [1] have proposed to regularise the penaliser and to use

Ψ(s2) =
√
λ2 + s2 − λ (1.7)

with a small parameter λ > 0. In the discrete 1-D case, one can see that TV
regularisation can be described as a sequence of merging events of neighbouring
pixels [176]. There is a finite regularisation weight α for which all pixels have
merged, and one obtains the average grey value.

There are many possibilities to solve total variation problems, for example
the algorithm by Chambolle [33], or the so-called tube methods [129, 98]. For
more information on other applications of TV regularisation, see also [36]. During
the last years, also nonlinear inverse scale-space [21] involving total variation has
become a field of research.

Nonlinear Isotropic Diffusion

In their pioneering work [154], Perona and Malik proposed to use the nonlinear
diffusion equation

∂tu = div
(
g(|∇u|2)∇u

)
(1.8)

u(·, 0) = f

on the domain Ω ⊂ Rn with homogeneous Neumann boundary conditions ∂νu = 0
to simplify images. Here, ν denotes the outer normal of the boundary ∂Ω. The
derivative operators ∇ and div are concerning only the spatial variables in this
context. The initial conditions are the same for all PDE methods in this thesis,
and thus they will not be written down explicitly every time. We will see later on
that the boundary conditions differ for higher order equations. Possible choices
for the diffusivity function g can be found in Table 1.2. Depending on the chosen
diffusivity function, one important feature of nonlinear diffusion is that it is able
to enhance edges while structures with low contrast are smoothed adaptively.
This is explained in terms of forward and backward diffusion [154]: With the help
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Table 1.2: Possible choices for the diffusivity function g.

g(s2) shape source flux Φ

1
linear diffusion,
Iijima [102], Witkin [211](

1 + s2

λ2

)− 1
2 related to the penaliser by

Charbonnier et al. [40]

(s2 + λ2)
− 1

2
regularised total variation flow,
Feng and Prohl [79]

1
|s|

total variation flow,
Andreu et al. [4](

1 + s2

λ2

)−1 nonlinear diffusion,
Perona and Malik [154]

exp
(
− s2

2λ2

) nonlinear diffusion,
Perona and Malik [154]

1
s2

balanced forward-backward diffusion,
Keeling and Stollberger [109]

of the flux function Φ(s) := g(s2)s, the one-dimensional Perona-Malik equation
can be written as

∂tu = ∂x

(
g((∂xu)

2)∂xu
)

= Φ′(∂xu)∂
2
xu . (1.9)

This means that the sign of Φ′ determines if we locally have a forward or backward
diffusion equation. In Table 1.2, we have displayed the flux functions besides the
diffusivities. We see that the upper three flux functions, related to linear, Char-
bonnier, and regularised total variation diffusion are monotonically increasing.
The total variation diffusion has constant flux for nonzero argument. The lower
three diffusivities allow for backward diffusion. In particular, the diffusivities

g(s2) =
1

1 + s2

λ2

and g(s2) = exp

(
− s2

2λ2

)
(1.10)

proposed by Perona and Malik [154] are suited for this purpose, since they adap-
tively allow for forward and backward diffusion. The variable λ plays the role of
a contrast parameter to distinguish between regions to be smoothed and edges to
be preserved in this case. The balanced-forward-backward diffusivity (BFB) is
always in the backward diffusion case. In Chapter 2 we will review this property
of nonlinear diffusion filtering in detail and extend it to more general higher order
filters.
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Even if edge enhancement is a desired property in practice, it can give rise
to theoretical difficulties: Kichenassamy [110] has shown that the Perona-Malik
filter is not well-posed in the continuous setting. Further interpretations in terms
of coupled heat equations or concerning conditions under which comparison prin-
ciples hold have been given by Esedoglu [73, 74] and Kawohl and Kutev [107].

These ill-posedness problems have led to a regularised version introduced by
Catté et al. [32]. It uses a Gaussian kernel to presmooth the argument of the
diffusivity:

∂tu = div
(
g
(
|∇Gσ ∗ u|2

)
∇u
)
. (1.11)

This is sufficient to allow for proving well-posedness properties and also renders
the filter more robust against noise. Nevertheless, discrete versions of the original
filter (1.8) with finite differences have shown to work well in practice even without
this regularisation. A theoretical justification for this fact has been given by
Weickert and Benhamouda [202]: The regularising effect of the spatial finite
difference discretisation itself is strong enough to make the filter well-posed.

As one can see from the title of the first paper about nonlinear diffusion in
image processing by Perona and Malik [154], the nonlinear diffusion filters have
been understood in the scale-space context from the beginning. They satisfy
some of the most important scale-space properties, for example translational and
rotational invariance, preservation of the average grey value, maximum-minimum
principle, and Lyapunov functionals [198].

An important special case related to total variation regularisation is

g(s2) =
1

|s|
, (1.12)

which called total variation flow or short TV flow and has been introduced by
Andreu et al. [4]. Steidl et al. [176] have used finite differences to discretise
this equation and shown equivalence to total variation regularisation and soft
Haar wavelet shrinkage. Feng and Prohl [79] have analysed a finite element
discretisation of this problem and introduced

g(s2) = (s2 + λ2)−
1
2 (1.13)

as regularised and bounded version of the diffusivity.
Nonlinear diffusion filtering can be implemented in a very efficient way with

the so-called additive operator splittings (AOS) by Lu et al. [121] and Weickert
et al. [206]. A very simple way to extend the filters to colour images has been
proposed by Gerig et al. [87]: All channels are processed by the same equation
with a joint diffusivity depending on the sum of the squared gradient norms of
all channels. This has been consequently carried over also to the matrix-valued
setting [17, 207, 75, 203]. Here, one considers the sum over the squared gradients
of all matrix components. In that sense, the matrices entries are treated like mul-
tiple channels of a vector-valued image. This does not reflect the special structure
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of the matrix-valued data. Nevertheless, there are also promising approaches for
generalising nonlinear diffusion equations to matrix-valued data which emphasise
the operator-algebraic viewpoint [24, 23, 27]. Here, the derivatives are under-
stood as matrix-valued operations, and also the diffusivity is applied to a matrix
in the sense of a functional calculus.

In practical results, there is only one major drawback visible for the Perona-
Malik filters: Since the results contain piecewise constant regions, linear grey
value transitions in the initial image are hard to recover. Usually the filters tend
to oversegment them in constant stairs which gives rise to the name staircasing
for this artefact. In Figure 1.1 one can see a practical example for staircasing.
The stopping time has been chosen such that the `2-error to the original image
was minimised in this case. We have displayed an approximation of the gradient
norm, multiplied by a factor of 25 for better visibility. The visualisation of the
gradient norm and the sections of the images show clearly some artificial stairs
introduced by the second order total variation filter. It is one of the major goals
of the nonlinear higher order methods described in Chapter 2 to present a general
framework of filtering methods overcoming this drawback.

Relation between Regularisation and Diffusion

Since this will be useful in several contexts later on, we will shortly sketch how
regularisation and evolution equations can be related [147, 165].

Our prototype of a variational method for denoising or simplifying an image
f can be written as follows: We seek to minimise the energy functional

E (u) =

∫
Ω

(u− f)2 dx + α

∫
Γ

Ψ(|Lu|2) dy . (1.14)

We see that it consists of two summands which are weighted by a constant reg-
ularisation weight α ≥ 0. As in (1.3) these two summands can be understood
as data and smoothness term. In this more general case, a linear operator L is
used to extract the features of the image u which are relevant for the smoothness
assumption. Examples for such operators are derivatives as well as wavelet or
Fourier transforms. For the wavelet transform L = Wψ, we are going to use
this energy functional in Chapter 3. The amount of the extracted features is
penalised with a typically nonlinear penalising function Ψ. The variable name y
should indicate that the function Lu can have another domain Γ than u has. For
example, the wavelet transform Wψf has two variables: The scale and the trans-
lation. This will be further specified in Chapter 3. In this way we can use such
a variational method for encoding prior knowledge about the image or certain
requirements at the solution.

To characterise a minimiser of E , we follow the calculus of variations [86,
5, 178, 88, 7] to obtain a necessary condition on the minimiser u, the so-called
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Figure 1.1: Top left: Original image, 256×256 pixels. Top middle: With additive
Gaussian noise, standard deviation σ = 20. Top right: Regularised total variation
diffusion g(s2) = (s2 + λ2)−1/2 with λ = 0.01, stopping time t = 20.75. Middle
row: Corresponding gradient norm approximations. Bottom row: Sections of the
images of size 128× 128 pixels.
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Euler-Lagrange equation

0 = u− f + αL∗
(
Ψ′(|Lu|2)Lu

)
. (1.15)

Here, L∗ denotes the adjoint operator to L. For the interesting case α > 0, this
can be written as

u− f

α
= −L∗

(
Ψ′(|Lu|2)Lu

)
. (1.16)

The idea in [165] is now to interpret the left-hand side as approximation of a
derivative. To this end we introduce an artificial time variable t in the function u
and set u(·, 0) = f . Then the right-hand side is a finite difference approximation
of the time derivative ∂tu(0) with step size α. Together, (1.16) can then be
considered as an implicit approximation for the evolution equation

∂tu = −L∗
(
Ψ′(|Lu|2)Lu

)
. (1.17)

In the case that L is the gradient, the adjoint operator is the divergence with a
negative sign, and (1.17) coincides with the Perona-Malik equation (1.8). This
also explains why the diffusivity function g is often identified with the derivative
Ψ′ of a penaliser, as we do it for example in the Chapters 2 and 5.

Modifications Leading to Integrodifferential Equations

Besides the pure regularisation and PDE models discussed so far, we want to
emphasise the fact that we have already seen some examples for integrodifferential
equations. For example, an integration comes into play when a derivative is
presmoothed with a convolution kernel. A prominent example for a nonlinear
filter using this principle is the regularised nonlinear diffusion (1.11) by Catté
et al. [32]. In this example, the presmoothing introduces well-posedness in the
problem and makes the filter more robust against noise. Nevertheless, this filter
is not directly connected to a variational formulation any more since the inner
and outer operators are not adjoint.

An attempt to come close to this filter with variational methods was the pre-
smoothed regularisation (1.4) by Scherzer and Weickert [165]. The corresponding
diffusion process to this energy functional is given by

∂tu = Gσ ∗ div
(
g
(
|∇Gσ ∗ u|2

)
∇Gσ ∗ u

)
. (1.18)

However, these approaches have hardly found practical applications so far. One
problem is that smoothing all derivatives with a fixed scale σ makes the method
incapable of removing noise on a smaller scale. This can not happen with the
method by Catté et al. since the outer derivatives are not smoothed in this model.

It also has been proposed to replace all derivative operators consequently
with Gaussian-smoothed derivatives [144]. The use of presmoothed derivatives
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with Gaussian convolution kernels can be seen as one application of the linear
scale-space as discussed in Subsection 1.2.1.

In Chapter 3, understanding the wavelet transform as presmoothed derivative
operator will play a key role for the connection of wavelet shrinkage to integro-
differential equations.

Higher Order Methods

We have already mentioned the staircasing artefacts arising from nonlinear dif-
fusion filters and shown an example in Figure 1.1. The most promising idea
to overcome this problem is to introduce higher derivative orders in the filter
models [163, 189, 195, 213, 37, 122, 56, 123, 108]. For second or higher order
derivatives, one has many different choices how to combine partial derivatives in
the smoothness term of the variational method or the nonlinearity of the PDE,
respectively.

An extension of classical regularisation by choosing (∆u)2 as argument of the
penaliser has been proposed by You and Kaveh [213]. With the reasoning given
above, such a regularisation is related to evolution equations of the form

∂tu = −∆
(
g((∆u)2) ∆u

)
. (1.19)

You and Kaveh already mention that equations of this type tend to introduce
speckle artefacts around edges. This can be made plausible by the fact that even
if ∆u = 0, this does not mean that the second order derivatives have to be zero,
and it can come to cancellation effects. Figure 1.2 shows some example for this
filtering method where the artefacts are clearly visible. It has been proposed to
remove them by postprocessing with a thresholding filter. An approach involving
the absolute value of all second order partial derivatives has been proposed by
Scherzer [163]. Nevertheless, the resulting method is not rotationally invariant.
Taking instead the squared Frobenius norm of the Hessian ‖H(u)‖2

F as penaliser
argument solves both problems: It involves all squared partial derivatives of sec-
ond order and therefore makes cancellation effects impossible, and it is invariant
under rotations. This was proposed by Lysaker et al. [122] for the total variation
penaliser and is based on an energy functional of the form

E (u) =

∫
Ω

(
(u− f)2 + α‖H(u)‖F

)
dx . (1.20)

In practice, it yields results without artefacts around the edges, see Figure 1.2, for
example. This is the motivation for taking this method as starting point for the
framework for higher order regularisation and nonlinear diffusion filters shown in
Chapter 2. Since the method of Lysaker et al. [122] is included as a special case
of this framework, more details will be given there.
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Figure 1.2: Higher order nonlinear diffusion with g(s2) = 1/(1 + s2/λ2). Top
left: Original image, 256× 256 pixels. Top right: With additive Gaussian noise,
standard deviation σ = 10. Bottom left: Method by You and Kaveh [213] without
postprocessing, λ = 2.5, t = 100. Bottom right: Method by Lysaker et al. [122]
λ = 0.01, t = 6.
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Methods without Variational Formulation. Two very similar methods
without variational formulation have been proposed by Tumblin and Turk [189],
and Wei [195]. They use fourth order equations of the form

∂tu = −div
(
g(m)∇∆u

)
(1.21)

where m is a measurement depending on u. In [189], the gradient norm is taken
as measurement, while in [195], the Frobenius norm of the Hessian is used. The
existence, uniqueness, and properties of solutions for this class of filters are dis-
cussed by Greer and Bertozzi in [92]. It should be noted that these methods
are not directly related to a variational regularisation approach as we have dis-
cussed it before. This comes from the fact that for variational formulations, the
corresponding evolution equations always have the adjoint operator outside the
nonlinear function as seen above. For the filter (1.21), the divergence as outer
derivative is not the adjoint to the (inner) third order derivatives. We will meet
filters of this class again in Chapter 3, when we use biothogonal wavelets for
shrinkage.

Combinations of Smoothness Terms. Apart from using only classical
equations and only higher order methods, it has also been proposed to use a
combination of several filtering orders (see [37, 56, 123], for example). Lysaker
and Tai [123] used spatially adaptive weights for local convex combinations of
second and fourth order terms which gave promising results in practice.

Recently, methods with higher order derivatives have also proved their useful-
ness for other computer vision applications like optic flow [180, 95, 151] or shape
from shading [193].

Pseudodifferential Models

In the last few years, also pseudodifferential operators in the sense of fractional
derivative orders have become popular for image filtering. For general information
on fractional powers of derivatives and pseudodifferential operators we refer to
[148, 64, 181, 90].

Cuesta et al. [50, 51] have introduced a linear equation which yields a transi-
tion between the heat and the wave equation. They proposed an equation which
can formally be understood as

∂α

∂tα
u = ∆u (1.22)

with 1 ≤ α ≤ 2, and so-called semi-linear extensions to it. The diffusion effect is
visibly reduced by considering α→ 2.

Bai and Feng [9] recently proposed a model for isotropic nonlinear diffusion
where not the time derivative, but the spatial derivative orders are real numbers.
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They used this model to build the transfer between second and fourth order
filtering. Nevertheless, in their model they do not take mixed derivatives into
account: They use only higher derivative orders with respect to the coordinate
axes’ directions.

Pseudodifferential operators have also become popular for other applications
such as edge detection [133] or line detection [6]. We are going to use pseudodif-
ferental operators in two contexts in this thesis: Firstly, fractional powers of the
Laplacian are building the foundamental tool for the linear scale-spaces consid-
ered in Section 2.1. Secondly, power series of derivative operators will allow us
to write the wavelet transform without an integral in Section 3.1.

1.2.3 Anisotropic Nonlinear Diffusion

The isotropic filters presented so far have several drawbacks when it comes to
the treatment of fiber-like structures or edges. For example, nonlinear isotropic
diffusion tends to round edges of objects. To overcome these drawbacks, Weickert
has proposed a class of anisotropic filters [198] given by

∂tu = div
(
D(∇Gσ ∗ u)∇u

)
. (1.23)

Depending on the construction of the diffusion tensor D, it is possible not only
to steer the amount of diffusion, but also the direction. This can be used to make
the process edge-enhancing or coherence-enhancing, for example (see also [199]).

In this filter family, the presmoothing of the inner derivative is not only used
for regularisation, but also necessary for the anisotropy: Due to the construction
of the diffusion tensor D, the preferred directions for the anisotropy are the one of
∇Gσ ∗ u and its orthogonal direction. Without presmoothing one would simply
go in direction of ∇u which directly leads to an isotropic model.

In Chapter 4 we are going to see that some scaling limits coming from adaptive
averaging approaches such as bilateral filtering will be anisotropic diffusion filters.

1.2.4 Mean Curvature Motion and Related Filters

Besides anisotropic diffusion, there is a rich class of filters which depend on the
local feature directions in the image. Figure 1.3 gives an impression of the prop-
erties of several filtering methods.

Following the ideas in [2, 30], one can decompose the Perona-Malik equation
(1.8) into two parts acting in orthogonal directions. We consider two relevant
local orientations of an image:

η :=
∇u
|∇u|

=
1√

u2
x + u2

y

(
ux
uy

)
(1.24)
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Figure 1.3: Classical PDE-based filters. Left: Original image, 256× 256 pixels,
with Gaussian noise (standard deviation σ = 20). Second left: Perona-Malik
filtering, λ = 1, t = 50. Second right: Mean curvature motion, t = 20. Right:
Self-snakes, λ = 1, t = 50.
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is the direction of the gradient or steepest ascent, that means across an edge in
the image. Orthogonal to the gradient we have the direction of the level set

ξ :=
∇u⊥

|∇u⊥|
=

1√
u2
x + u2

y

(
−uy
ux

)
, (1.25)

which locally points along an edge. In the following considerations we want to
decompose a diffusion process into diffusion along and across image edges. For
this reason we need the second derivatives of the image in the directions ξ and
η, namely

uξξ =
uxxu

2
y − 2uxuyuxy + uyyu

2
x

u2
x + u2

y

and (1.26)

uηη =
uxxu

2
x + 2uxuyuxy + uyyu

2
y

u2
x + u2

y

. (1.27)

With these equations we follow Alvarez et al. [2] and decompose the Perona-Malik
equation (1.8) into two diffusion components acting in direction ξ and η:

∂tu = g(|∇u|2)uξξ +
(
g(|∇u|2) + 2g′(|∇u|2)|∇u|2

)
uηη . (1.28)

We see that on the one hand, the factor g(|∇u|2) can reduce the velocity of the
diffusion close to an edge (when the gradient is large). On the other hand, the
first derivative of g in the second summand makes backward diffusion in direction
η possible. This gives the filter the capability of edge enhancement.

Starting from (1.28), Carmona and Zhong [30] proposed a more general evo-
lution equation

∂tu = c(auηη + buξξ) (1.29)

where the function c controls the whole amount of smoothing, and a and b weight
this smoothing between the two feature directions. Carmona and Zhong let the
functions a, b, and c as given by the Perona-Malik equation (1.28) and focus on
different ways to choose the orthogonal set of local feature directions ξ and η.
For example, they use eigenvectors of the Hessian H(u) of u or Gabor filters.
An alternative framework leading to very similar filters has been proposed by
Tschumperlé and Deriche [187, 188]:

∂tu = tr (TH(u)) (1.30)

with a suitable tensor T . Actually this framework is included in the approach by
Charmona and Zhong.

Although this was not mentioned by Carmona and Zhong, mean curvature
motion (MCM) can be obtained by choosing special parameters in their general
filter class. It only performs smoothing in the direction ξ of the isophotes in the
image:

∂tu = uξξ = |∇u| div

(
∇u
|∇u|

)
. (1.31)
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There are some very useful properties of this technique [83, 84, 101] that has been
introduced in image processing in [150, 111]: First it is contrast invariant and
thus belongs to the morphological operations. Furthermore, it makes nonconvex
shapes convex and obeys a shape inclusion principle. Convex shapes are shrunken
to circular points and finally vanish. In filtering time t = 1

2
r2, a circle of radius

r and everything inside has vanished. Nevertheless, mean curvature motion has
the disadvantage to blur the edges during the evolution.

There are two nonlinear extensions of the MCM method [3, 162] and we want
to sketch one of them here: In the context of segmentation, Sapiro [162] proposed
the so-called self-snakes that can be understood as nonlinear extension of mean
curvature motion. The corresponding equation is

∂tu = |∇u|div

(
g(|∇u|) ∇u

|∇u|

)
(1.32)

and allows for sharper edges. This can also be seen at the example in Figure 1.3.

In Chapter 4, we will obtain equations that fit into the framework (1.29) by
Carmona and Zhong as scaling limits of adaptive averaging filters. The decom-
position into the two feature directions will help us to understand the behaviour
of these filters.

1.3 Denoising with Wavelets

The second class of denoising algorithms we are interested in is based on wavelets.

Wavelets allow for a multiresolution representation of data which aims to
have a good localisation both in space and frequency. In this sense they can be
seen as complement of the spatial representation yielding only spatial informa-
tion on the one hand and the Fourier representation containing only frequency
information on the other hand. An earlier attempt to find a link between both
representations was the windowed Fourier transform: It uses Gaussian windows
to obtain both localisation in the frequency and the spatial domain and is also
called Gabor transform [81]. In contrast to the Gabor transform, it is possible
to construct bases with scaled and translated versions of the wavelet and avoid
redundancy in the representation. Redundancy and missing basis properties are
also drawbacks of an approach for multiresolution in image processing, namely
the image pyramids [28].

The search for non-redundant basis representation is also the context where
the first example for a wavelet appears in the literature: It goes back to the
investigation of orthogonal function systems by Haar [96] in 1910. Mainly because
of its simplicity, these Haar wavelets are still used very often in image processing
even if there have been many different kinds of wavelets proposed in the meantime,
for example Daubechies wavelets, symmlets, and coiflets [52, 128].
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In electrical engineering, especially in signal and speech processing, the meth-
ods of subband coding and filter banks became popular [48, 49]. Of special inter-
est are perfect reconstruction filter banks with orthogonal filters (introduced by
Mintzer [136], Smith, and Barnwell [168]) or biorthogonal filters (Vetterli [191]).
The approach has also been extended to multiple dimensions [190]. However, this
technique was rather an engineering approach for processing discrete data and
not embedded in a sound mathematical theory.

The link between these engineering techniques and the wavelet theory was
built by Mallat and Meyer with the concept of multiresolution analysis [126,
127, 134]. With this idea it is possible to perform the wavelet transform in a very
efficient way and understand it as perfect reconstruction filter bank. This was one
of the milestones on which the popularity of wavelets has its roots, since this made
it possible to link several fields and provide fast wavelet transform algorithms
with optimal linear complexity. The frame theory gives a mathematical analysis
of overcomplete representations (for an overview see [52, 128] and the references
therein).

1.3.1 Wavelet Shrinkage

The principle of transforming an image to the wavelet domain and enhancing the
quality by shrinking its coefficients has been proposed by Weaver et al. [194] in
the context of medical imaging. The notion wavelet shrinkage became popular by
the papers of Donoho and Johnstone [65, 66]. The general idea is to transform
the data to a representation that allows to reduce noise in a straightforward way,
namely by diminishing the modulus of the wavelet coefficients. In particular, the
low computational complexity of the wavelet transform has made such approaches
highly interesting for signal and image processing applications. Obtaining sparse
representations by setting small wavelet coefficients to zero can also be used
for data compression. This is applied, for example, in the image compression
standard JPEG2000 [104].

We will only sketch the idea here, and the mathematical details will be pro-
vided in Chapter 3. As already mentioned, wavelet shrinkage consists of three
elementary steps:

1. Analysis: The data is transformed into a wavelet representation with the
help of scaled and translated versions of a mother wavelet. This transform
is isometric, and especially there is no information lost.

2. Shrinkage: These wavelet coefficients are diminished by pointwise appli-
cation of a nonlinear shrinkage function S : R −→ R. Some examples for
typical shrinkage functions can be found in Table 3.1. For a more complete
list, see [140], for example.
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Table 1.3: Possible choices for the shrinkage function S.

S(x) shape source

λx linear shrinkage

{
0, |x| ≤ λ
x, |x| > λ

hard shrinkage,
Mallat [128]{

0, |x| ≤ λ
x− λsgn(x), |x| > λ

soft shrinkage,
Weaver et al. [194]{

0, |x| ≤ λ

x− λ2

x
, |x| > λ

garrote shrinkage,
Gao [85]

3. Synthesis: The changed coefficients and a synthesis filter are used to con-
struct the output image with the inverse wavelet transform.

As one example for a shrinkage function, we would like to mention the soft shrink-
age here

S(x) :=


x− λ, x > λ
x+ λ, x < −λ
0, else

(1.33)

since it was introduced first [194] and visualises best the idea of shrinking the
coefficients. This means the modulus of all wavelet coefficients is reduced by a
given value λ. Other possibilities for shrinkage functions are displayed in Table
1.3.

Wavelet shrinkage in its original form has the serious drawback of lacking
translational invariance. A method to overcome this is named cycle spinning and
has been proposed by Coifman and Donoho [44]. In this approach, translational
invariance is introduced by performing wavelet shrinkage on all possible shifted
versions of the data. The results are shifted back and averaged afterwards. The
computational complexity is reduced by the algorithme à trous by Holschneider
et al. [99].

To apply wavelet methods in multiple dimensions, usually tensor product
wavelets are used [128]. These wavelets have only a limited set of orientations
derived from the coordinate directions, and the shrinkage methods do not satisfy
rotational invariance. In the discrete 2-D setting, different shrinkage rules for hor-
izontal, vertical and diagonal components can significantly reduce this drawback
[137, 138]. Choosing these shrinkage rules was inspired by investigating relations
between shrinkage and rotationally invariant nonlinear diffusion filters. Other
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approaches for extending the wavelet idea to optimise the representation with
respect to orientation or curved edges are, for example, ridgelets and curvelets
[29] or orientation scores [68].

Shrinkage as Energy Minimisation

As shown in [34, 35, 14], continuous wavelet shrinkage can be understood as
minimisation of certain energy functionals. Of special interest has been soft
wavelet shrinkage in this context, which is related to gradient descent along Besov
norms.

The discretisation of the scale and the translation parameter allows to work
with orthogonal wavelets here. This orthogonality makes it possible to minimise
the energy functionals componentwise on all wavelet coefficients.

Hybrid Methods

Besides pure wavelet- and derivative-based approaches, the question how to com-
bine them into hybrid methods has triggered many scientific activities [29, 38,
45, 70, 71, 125]. Since we mainly focus on relations between the two classes, we
will not describe details of these methods here.

1.3.2 Relations to Nonlinear Diffusion

During the last years there has been a growing interest in analysing the rela-
tions between wavelet-based methods and methods based on partial differential
equations (PDEs) such as diffusion filters and their corresponding variational ap-
proaches. This includes both works in the continous [10, 34, 35, 42, 43, 53, 135,
172] and in the discrete setting [46, 137, 140, 176, 208, 156]. Let us now focus on
some examples that are particularly relevant in the context of this thesis.

As already mentioned above, a variational formulation for wavelet shrink-
age has been presented by Chambolle et al. [34, 35] in the continuous setting.
This makes it possible to understand wavelet shrinkage as an image smooth-
ing scale-space. Since the scale-space concept originated from diffusion equations
[102, 211], this already points out some structural similarities. Nevertheless, a di-
rect comparison between the scale-space properties remained still open. Bredies
et al. [14] have shown the equivalence of variational wavelet shrinkage to ab-
stract pseudodifferential evolution equations. One open question in practice is
the connection of these pseudodifferential equations to well-known image process-
ing methods such as nonlinear diffusion of Perona-Malik type.

Equivalence results between methods of both classes have also been shown for
discrete problems and under certain conditions [176, 140]. For example, discrete
soft Haar wavelet shrinkage on the finest scale is equivalent to total variation flow
and total variation diffusion [176]. Under more general assumptions, for other
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diffusivities or with other kinds of wavelets, one still can show close relationships
[140, 205]. These ideas are based on the fact that discrete wavelets on the finest
scale approximate derivatives. The derivative order is determined by the number
of vanishing moments of the discrete filters. An open question in this context is
what happens if we take coarser scales than only the finest one into considera-
tion. In this context only experimental results are available [141]: They indicate
that iterations within nonlinear diffusion implementations play a similar role as
performing shift-invariant wavelet shrinkage at multiple scales. So far, however,
no results have been derived that may be helpful in understanding the differences
between both techniques.

1.4 Adaptive Averaging Filters

Adaptive averaging filters belong to the simplest and most effective tools for
image processing. Since taking the average of the grey values of all pixels in a
certain spatial neighbourhood is an intuitive concept, already early methods in
image processing use averaging filters. We can only give an idea of the variety of
filters in this context in the following.

In general, a simple averaging filter has the following structure:

ui =
∑
j∈J

w(f, i, j) fj for all i ∈ J . (1.34)

Here, f ∈ RN is the initial discrete image and u ∈ RN denotes its filtered version.
The pixels xi are in a discrete one- or multidimensional domain Ωh. The index set
of these pixels and the corresponding grey values is denoted by J := {1, . . . , N}.
The weights w depend on the initial data and the two indices i and j. Usually,
the weights are assumed to be positive such that

∑
j∈J w(f, i, j) = 1 for all i ∈ J

in order to have convex combinations of the pixel values. Some of the methods
in the literature are used iteratively such that the weights typically depend on
the initial data and the result of the last iteration:

u0 = f (1.35)

uk+1
i =

∑
j∈J

w(uk, f, i, j)ukj . (1.36)

It would also be possible to construct methods which involve also results of pre-
vious iteration steps comparable to multistep methods for ordinary differential
equations, but here we restrict ourselves to filters involving the initial image and
the result from the last step. For example, the discretisation of a nonlinear dif-
fusion filter can be written in such a framework. In general, iterative application
of a method with a small neighbourhood can lead to similar results as a single
step with a larger neighbourhood, see [141, 155], for example. This will also be
the subject of numerical experiments in Chapter 5.
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Table 1.4: Possible choices for spatial weights w.

w(s2) =

{
1, |s| ≤ λ
0, |s| > λ

hard window

w(s2) = exp
(
− s2

λ2

)
soft window

Often, adaptive averaging filters are motivated as minimisation of energy func-
tions. This is especially popular in the statistical context where smoothing is mo-
tivated as estimation of the true underlying value under the influence of certain
noise characteristics. In the following subsections, we will give an overview over
methods for choosing the averaging weight w presented in the literature.

1.4.1 Classical Methods

Historically among the first methods in this area are the sigma filter by Lee
[114] and the neighbourhood filter by Yaroslavsky [212]. These methods use two
quantities to obtain the weights for averaging: the tonal and spatial distance
between pixels. The tonal distance denotes the difference of the grey values
|fi − fj| here, while the spatial distance for the corresponding pixels is their
distance on the pixel grid |xi− xj|. The prototype of a sigma filter looks then as
follows:

ui =

∑
j∈J wt(|fi − fj|2)ws(|xi − xj|2)fj∑
j∈J wt(|fi − fj|2)ws(|xi − xj|2)

(1.37)

where wt is the tonal and ws the spatial weight. Table 1.4 shows the two most
important types of spatial weights, defining the so-called hard and soft window.
The only assumption on the spatial weight functions in this thesis will be that
they are nonnegative and have a positive value at zero. In general, one could think
of negative values in the spatial weight as well: For example, the discretisation of
a higher order nonlinear diffusion filter can be understood as adaptive averaging
filter involving negative values in its stencil.

A frequently used adaptive averaging method is motivated by statistical es-
timation: the so-called spatially weighted M-smoother [93, 210]. The model is to
minimise an energy function of the form

E(u) =
∑
i∈J

∑
j∈J

Ψ(|ui − fj|2)ws(|xi − xj|2) . (1.38)

This can, for example, be implemented with an iterative scheme

uk+1
i =

∑
j∈J wt(|uki − fj|2)ws(|xi − xj|2)fj∑
j∈J wt(|uki − fj|2)ws(|xi − xj|2)

(1.39)
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setting u0 = f . The tonal weight is in this case the derivative of the penaliser
wt = Ψ′. The parallels to the sigma filter are obvious.

A very popular method in image processing is the so-called bilateral filter of
Tomasi and Manduchi [185, 72, 11]. Although it has been presented as a method
with one single step, we write it down here in an iterative form:

uk+1
i =

∑
j∈J wt(|uki − ukj |2)ws(|xi − xj|2)fj∑
j∈J wt(|uki − ukj |2)ws(|xi − xj|2)

k ∈ N (1.40)

starting with u0 = f . It has first been proposed as non-iterative method and thus
corresponds to the sigma filter. Altough the filter was becoming popular under
the name bilateral filter, it has been described before as nonlinear Gaussian filter
by Aurich and Weule [8] and as SUSAN by Smith and Brady [169]. Tomasi
and Manduchi proposed weights of the form exp(−s2/λ2) for the spatial and
tonal weights. This special choice allows for a speedup of the method [152]
by understanding the spatial and tonal components as one higher-dimensional
vector. This is similar to the idea behind the Beltrami flow [170] to consider the
image as a surface. Applications of a technique very close to the bilateral filter
for other tasks than image denoising are investigated by Smith and Brady with
the SUSAN approach [169].

In all these filters, the spatial and tonal weights depend on additional pa-
rameters which are chosen globally for the whole image. Sometimes it is hard
or even impossible to choose the weights such that semantically important edges
are preserved in the whole image while noise is reduced properly. Thus the idea
of choosing parameters adaptively depending on local image behaviour came up,
which is addressed in the adaptive weights smoothing by Polzehl and Spokoiny
[157].

Research on relations between neighbourhood filters and PDEs go back to the
beginnings of the 1990s [161]. Usually, scaling limits for a spatial and temporal
step size tending to zero are used to to build a connection on the way from
averaging filters to differential equations [161, 11, 20]. This research direction
is somehow natural if one considers similar properties such as edge preservation
and enhancement. Furthermore, it is clear that time-explicit discretisations of
classical Perona-Malik filters are in fact very special averaging methods. Since
they can act edge enhancing, neighbourhood filters can also suffer from staircasing
effects. This has been investigated in [20] where a linear regression is proposed
to reduce such artefacts.

The first connection of a simple averaging filter named adaptive smoothing
to Perona-Malik diffusion has been sketched by Saint-Marc et al. [161]. This is
also an early example for the attempt to connect averaging methods to nonlinear
diffusion filtering which had been proposed only a short time before. For the
relations to the Perona-Malik filter, they have considered an averaging filter of
the form

uk+1
i = c1u

k
i−1 + c2uik + c3u

k
i+1 (1.41)
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with c1 + c2 + c3 = 1. This normalisation constraint is not used in the derivation
of the scaling limit any more. Further, as Barash [11] pointed out, the approxi-
mation used in [161] is actually not consistent.

In Chapter 4 we will start with a slightly modified averaging filter to directly
involve the normalisation in the scaling limit. Therefore, the derived scaling limit
will not be exactly the Perona-Malik equation, but contain an additional factor
on the right-hand side coming from the normalisation.

1.4.2 Nonlocal Data and Smoothness Terms

In [139], Mrázek et al. proposed an energy-based approach allowing to consider a
whole spectrum of well-known methods as special cases of the same model. This
approach makes use of so-called Nonlocal Data and Smoothness terms. It will be
called NDS here. These terms can consider not only information from a small
region around a pixel, but can also involve large neighbourhoods. The data term
rewards similarity of our filtered image to the given one while the smoothness
term penalises high deviations inside a neighbourhood of the evolving image.

To integrate the NDS methods into the framework for neighbourhood filters
given above, we will see in Chapter 5 that one way of minimising the function
can be written as follows:

u0 = f (1.42)

uk+1
i =

∑
j∈J

w1(u
k, f, i, j)ukj +

∑
j∈J

w2(u
k, f, i, j) fj . (1.43)

The difference to the iterated average filter (1.35) is that we include some portion
of the initial data f in the average in each iteration. This allows for nonflat steady
states of the filter for a large class of weight functions w1 and w2. One of the
major drawbacks of this approach in practice is the relatively high running time.
In Chapter 5 we describe several numerical methods for the minimisation of the
NDS energy function.

1.4.3 Nonlocal Means

Recently, Buades et al. [18, 19] proposed a new averaging filter which is both
appealing through its simple idea and its excellent results: the so-called nonlocal
means, or shortly NL-means. The idea is to determine the weights for an adaptive
averaging process by taking similarity of whole neighbourhoods B(i) ⊆ J and
B(j) ⊆ J of the pixels xi and xj into account. Let f|B(i)

denote the entries of
f inside the neighbourhood B(i). The corresponding weights for an NL-means
filter are determined as

w(f, i, j) =
g(‖f|B(i)

− f|B(j)
‖)∑

k∈J g(‖f|B(i)
− f|B(k)

‖)
. (1.44)
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This is especially suitable for the denoising of images which contain repeated
image patches, for example in textures. The NL-means approach yields high-
quality results. Its major drawback is the high computational complexity since
all possible patches or neighbourhoods in the image have to be compared. Ideas
for speeding up the process include a pre-selection of patches according to simple
pre-computable comparison criteria like the average grey value [124]. If patches
differ too much, there is no need to calculate the exact weight, and they are
neglected in the averaging step.

NL-means is proposed as one single averaging step, but it is reported to give
even higher quality when it is iterated [16]. It has also been shown that only to
include the n pixels with the closest patches in the averaging process can increase
the quality even further. This number n is typically fixed and small compared to
the total number of pixels. In the classical procedure, it can happen that many
pixels which have small weights contribute too much to the final result.

The NL-means process will not be directly used in this thesis. Nevertheless,
it has been included here as one of the most intersting recent approaches for
denoising with averaging filters.

1.5 Outline

So far, we have given an introduction on image processing methods in the liter-
ature that are connected to the goals of this thesis.

Let us now take a look at the outline: In Chapter 2 we investigate regularisa-
tion and PDE methods involving higher or fractional derivatives of the image. In
the first part of the chapter, we describe quadratic regularisation techniques and
related linear diffusion methods with linear combinations of fractional derivative
orders. We will focus on the scale-space properties of these combinations. The
second part will take a closer look at nonlinear methods. We will introduce a gen-
eral framework for higher-order nonlinear filtering techniques and discuss some
of its properties. This framework includes the method by Lysaker et al. [122] as
special case. A link between multiscale wavelet methods and integrodifferential
equations is build in Chapter 3. We try to characterise the central differences
between these integrodifferential equations and classical PDE-based methods as
shown in the previous chapter. The considerations will cover both the contin-
uous and the discrete setting. Chapter 4 relates adaptive averaging schemes to
nonlinear PDE methods appearing as scaling limits. In two dimensions, there
are several possibilities how to generalise the corresponding methods. This will
lead to generalised mean curvature motion, a filter family with interesting prac-
tical properties. In Chapter 5 we take a closer look at numerical aspects. We
investigate several numerical methods for minimising a nonlocal function at the
example of he NDS energy function. The thesis is concluded with Chapter 6
where also some interesting questions for further research are pointed out.



Chapter 2

Variational Methods and PDEs

In this chapter we investigate variational methods and related PDE models for
denoising and simplification of image data.

In the first section, we focus on quadratic regularisation with linear combina-
tions of fractional powers of the Laplacian and the corresponding pseudodiffer-
ential equations. These equations build an extension of the classical scale-space
theory as it has been sketched in Section 1.2.1. This section generalises results
in [57] to arbitrary spatial dimensions.

Regularisation and PDE methods with integer derivative orders, but nonlinear
penalising or diffusivity functions, are considered in the second section. Based
on [63], variational methods with higher order smoothness terms are related to a
generalisation of the Perona-Malik equation.

The third section discusses some extensions and more general methods. Spe-
cial emphasis lies on regularisation with derivatives in the data term and the
PDE methods originating from this idea.

2.1 Linear Filtering with Fractional Derivatives

We investigate the use of fractional powers of the Laplacian in linear filtering
methods for image data. Starting from variational techniques where the smooth-
ness term consists of linear combinations of fractional derivatives, we also describe
the corresponding parabolic pseudodifferential equations with constant coeffi-
cients. The focus in this description is on the behaviour of the filtering methods
in terms of regularity and scale-space properties.

We will see that with the regularisation methods, it is possible to prescribe
a certain desired increase in regularity. In contrast to this, the pseudodifferen-
tial equations always yield arbitrary smooth solutions and in addition lead to
semi-groups. This builds the link to the well-known α-scale-spaces for one single
derivative order where we also allow the parameter values α > 1 known to vio-
late common maximum-minimum principles. Nevertheless, we show with several

31



32 CHAPTER 2. VARIATIONAL METHODS AND PDES

examples that it is possible to construct positivity-preserving combinations of
high and low-order filters. Numerical experiments in this direction indicate that
non-integer orders play an essential role in this construction. A semi-discrete
formulation allows for a very similar formulation to the continuous case and for
efficient implementations which make such experiments practicable. In additional
numerical experiments we compare the variance decay rates for white noise and
edge signals through the action of different filter classes.

This section is organised as follows: In Subsection 2.1.1 we introduce the basic
notions related to fractional powers of the Laplacian. Subsection 2.1.2 presents
fractional order regularisation as a first application of these notions. The corre-
sponding diffusion equations are described in Subsection 2.1.3. Subsection 2.1.4
reformulates both approaches in a space-discrete framework directly leading to
efficient implementations. Our numerical experiments in Subsection 2.1.5 are
dedicated in particular to the question of maximum-minimum property and vari-
ance decay.

2.1.1 Fractional Powers of the Laplacian

In order to present an elegant concept for fractional powers of the Laplacian, we
have to introduce some basic notions first. We consider the n-dimensional case,
n ∈ N. Let us introduce the notations

Lp(Rn) :=

{
f : Rn → R

∣∣∣∣∣
(∫

Rn

|f(x)|p dx
) 1

p

<∞

}
for 1 ≤ p <∞

and
L∞(Rn) := {f : Rn → R | ess sup f <∞} .

We denote the Lebesgue spaces where the kernel of the corresponding seminorm
is factorised out with L p(Rn). Let ‖f‖p be the norm for f ∈ L p(Rn). The
Fourier transform of a function f ∈ L 1(Rn) is pointwise defined by

f̂(ξ) := (2π)−
n
2

∫
Rn

f(x) exp(−i〈x, ξ〉) dx

for ξ ∈ Rn. Let F : L 2(Rn) −→ L 2(Rn) denote the Fourier-Plancherel trans-
form, i. e. the extension of the mapping L 1(Rn) 3 f 7−→ f̂ onto L 2(Rn). It is
well-known that F is isometric with respect to the norm in L 2(Rn) (see [159] for
details). For a multi-index γ ∈ Nn, we define

ξγ := ξγ11 · . . . · ξγn
n , |γ| :=

n∑
k=1

γk , and Dγf := ∂γ1x1
. . . ∂γn

xn
f (2.1)

under the assumption that the corresponding derivatives exist. Later on we will
especially make use of the property

i|γ|ξγFf = F (Dγf) (2.2)
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which builds the link between differentiation in the spatial domain and multipli-
cation in the Fourier domain. For f ∈ L∞(Rn) let Mf : L 2(Rn) −→ L 2(Rn)
denote the multiplication operator defined by Mfg := fg. With this notation
(2.2) reads as Mi|γ|ξγFf = F (Dγf). As we are going to write the linear filter-
ing operations in this section as multiplications with bounded functions in the
Fourier domain, let us first consider some useful properties of these multiplication
operators:

Lemma 2.1 (Properties of Multiplication Operators)
For f, g ∈ L∞(Rn) the multiplication operator Mf is continuous with respect to
the L 2(Rn)-norm with ‖Mf‖ ≤ ‖f‖∞. Further, fg ∈ L∞(Rn) and MfMg =
Mfg.

Proof: With f ∈ L∞(Rn) we can write

‖Mfh‖2
2 =

∫
Rn

|fh|2dx ≤ sup
x∈Rn

|f(x)|2‖h‖2
2 = ‖f‖2

∞‖h‖2
2

for all h ∈ L 2(Rn), and thus we have ‖Mf‖ ≤ ‖f‖∞. The other two properties
follow directly from the definitions. �

Following the notation in [182] we define the Sobolev space

H s(Rn) :=
{
u ∈ L 2(Rn)

∣∣∣ (1 + |ξ|2
) s

2 û ∈ L 2(Rn)
}

(2.3)

of all functions in L 2(Rn) and s ∈ R. For a vector ξ ∈ Rn, |ξ|2 :=
∑n

k=1 ξ
2
k

denotes the squared Euclidean norm here. For natural numbers s ∈ N, functions
in H s(Rn) are weakly differentiable up to the order s. From (2.2) we deduce the
spectral decomposition of the negated Laplacian −∆ = F−1M|ξ|2F . Since the
Laplace operator is negative semidefinite, we consider the positive semidefinite
operator −∆ here. This allows us to define fractional powers

(−∆)α = F−1M|ξ|2αF (α > 0) (2.4)

as multiplication operators in the Fourier domain (see [183, 181] for further de-
tails).

Lemma 2.2 (Order of Differentiability)
Applying (−∆)α to functions in a certain Sobolev space H s(Rn) with s > 2α
reduces the order of differentiability by 2α, i. e.

(−∆)α : H s(Rn) −→ H s−2α(Rn) . (2.5)

Proof: Choose f ∈ H s(Rn), then we know

(1 + |ξ|2)
s
2 f̂ ∈ L 2(Rn) ⇐⇒ |ξ|sf̂ ∈ L 2(Rn) . (2.6)



34 CHAPTER 2. VARIATIONAL METHODS AND PDES

With the definition of fractional powers of the Laplacian given above, we obtain

(−∆)αf ∈ H s−2α(Rn) ⇐⇒ |ξ|s−2α
(
|ξ|2αf̂

)
∈ L 2(Rn)

⇐⇒ |ξ|sf̂ ∈ L 2(Rn) .

This shows how the order of differentiability decreases by applying the fractional
derivative order. �

In the next sections we are going to replace derivative operators in classical
image processing approaches with operators of the type (−∆)α and investigate
the properties of the resulting filter methods.

2.1.2 Regularisation with Fractional Derivative Orders

To extend linear regularisation to fractional derivative orders we consider the
energy functional

E (u) =

∫
Rn

(
(u− f)2 +

m∑
k=1

βk ((−∆)αku)2

)
dx . (2.7)

It consists of a quadratic data term, and the smoothness term is a linear combi-
nation of m ∈ N fractional derivatives. The fractional derivative orders are given
as α = (α1, . . . , αm)T ∈ Rm

+ , and the regularisation weights are denoted with
β = (β1, . . . , βm)T ∈ Rm

+ . Since the regulariser terms are squared, we can sim-
ply work with the negated Laplacian here and do not need an additional minus
sign. For integer derivative orders αk, similar functionals have been considered
by Nielsen et al. [143]. We assume that the signals u and f may only attain
real values. With the Plancherel identity we can rewrite functional (2.7) in the
Fourier domain as

E (û) =

∫
Rn

(∣∣∣û− f̂
∣∣∣2 +

m∑
k=1

βk|ξ|2αk |û|2
)
dξ (2.8)

depending on the complex Fourier transform û. A decomposition into the real
and imaginary part shows that it is necessary for a minimiser u to satisfy the
Euler-Lagrange equation

û− f̂ +
m∑
k=1

βk|ξ|2αk û = 0 for all ξ ∈ Rn . (2.9)

We deduce that the minimiser u of the functional E has the Fourier transform

û =

(
1 +

m∑
k=1

βk|ξ|2αk

)−1

f̂ for all ξ ∈ Rn . (2.10)

To obtain a regularised version of f we transform this minimiser û in the spatial
domain which motivates the following definition:
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Definition 2.3 (Fractional Order Regularisation)
For α = (α1, . . . , αm), β = (β1, . . . , βm) ∈ Rm

+ we denote the multipliers appearing
in (2.10) by

rαβ : Rn −→ R, rαβ (ξ) :=

(
1 +

m∑
k=1

βk|ξ|2αk

)−1

(2.11)

and use these functions to define the regularisation operators

Rα
β : L 2(Rn) −→ L 2(Rn), Rα

β = F−1Mrα
β
F . (2.12)

First we assure ourselves that the above definition leads to a continuous op-
erator. Furthermore we give a measure for the increase of smoothness obtained
by applying a regularisation operator of this class.

Proposition 2.4 (Stability and Regularity of Regularisation)

1. The regularisation operator Rα
β is continuous with respect to the norm in

L 2(Rn) with ‖Rα
β‖2 ≤ 1.

2. Regularisation Rα
β increases the smoothness order by twice the maximal

derivative order used in the smoothness term:
For all s > 0, Rα

β : H s(Rn) −→ H s+2α∗(Rn) with α∗ := max
k=1,...,m

αk.

Proof:

1. The Fourier multipliers satisfy 0 ≤ rαβ (ξ) ≤ 1 for all α, β ∈ Rm
+ and all

ξ ∈ Rn, i. e. ‖rαβ‖∞ ≤ 1. Lemma 2.1 then shows that
∥∥∥Mrα

β

∥∥∥ ≤ 1 and

‖Rα
β‖ ≤

∥∥F−1
∥∥∥∥∥Mrα

β

∥∥∥ ‖F‖ ≤ 1 (2.13)

using the fact that the Fourier transform is L 2-isometric.

2. Fix f ∈ H s(Rn). To characterise the Sobolev spaces, we again use (2.6).
Let k∗ be the index of the maximal exponent α∗. Then we can see that(

1 +
m∑
k=1

βk|ξ|2αk

)−1

|ξ|2α∗ =

 1

|ξ|2α∗
+

m∑
k=1

k 6=k∗

βk
|ξ|2αk

|ξ|2α∗
+ βk∗


−1

(2.14)

is a bounded factor, and thus it follows that(
1 +

m∑
k=1

βk|ξ|2αk

)−1

|ξ|s+2α∗ f̂ ∈ L 2(Rn) (2.15)

which implies Rα
βf ∈ H s+2α∗(Rn). �
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For integer derivative orders a corresponding statement to the second part of
the previous lemma has been shown by Nielsen et al. [143]. As they state for
integer orders, also fractional order regularisation is not a projection operator:
Applying regularisation iteratively increases the smoothness in each step by twice
the maximal derivative order α∗. Starting with a function in L 2(R) = H 0(Rn)
we now are able to reach a given degree of smoothness with linear regularisa-
tion. This smoothness property does not depend on the size of the regularisation
weights βk > 0. The multiplication in the Fourier domain is equivalent to a
convolution in the spatial domain.

Several examples for the Fourier multipliers rαβ and the corresponding con-
volution kernels are displayed in the Figures 2.1, 2.2, and 2.3. In Figure 2.1 we
show the behaviour for one single filtering order, fixed weight β = 1, and varying
orders α. One can see that the kernels for α = 0.5 (corresponding to the Poisson
scale-space) and for α = 1 (Gaussian scale-space) are positive, while a larger α
introduces negative parts. This reflects that the maximum-minimum principle is
violated for α > 1. The fact that the convolution kernel for α = 2.0 reaches nega-
tive values indicates that the corresponding filter violates a maximum-minimum
property. Figure 2.2 again shows the case α = 2, but now with changing weight
β. The stronger smoothing properties can be seen by the wider kernels in this
case. A combination of two filter orders is displayed in Figure 2.3. This is an
example that combining a filter of an order α1 < 1 with one of order α2 > 1 can
yield positive convolution kernels and thus lead to a scale-space with maximum-
minimum principle. This will be the topic of further numerical experiments in
Subsection 2.1.5.

Besides its smoothing behaviour the linear filtering technique is also expected
to satisfy some scale-space properties. We summarise these in the case of frac-
tional order regularisation:

Proposition 2.5 (Properties of Regularisation)
The regularisation operators Rα

β are linear, invariant under translations and ro-
tations, and preserve the average grey value, i. e.∫

Rn

(
Rα
βf
)
(x)dx =

∫
Rn

f(x)dx . (2.16)

Proof: For the translational invariance we note that translations correspond to
multiplications with phase factors exp(i〈c, ξ〉) with a suitable constant c ∈ Rn of
absolute value one in the Fourier domain. Since the multipliers rαβ only assume
real values these do not affect the argument of the Fourier coefficients and thus
do not interfere with the complex phase factors.

We notice that the rotation of a function and the Fourier transform commute.
The functions rαβ do only depend on |ξ|2, and thus they are rotationally symmetric
or radial functions. Together this means that the regularisation operator Rα

β and
a rotation commute: The operator is rotationally invariant.



2.1. LINEAR FILTERING WITH FRACTIONAL DERIVATIVES 37

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -3 -2 -1  0  1  2  3  4
-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

-0.04 -0.02  0  0.02  0.04

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -3 -2 -1  0  1  2  3  4
-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

-0.03 -0.02 -0.01  0  0.01  0.02  0.03

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -3 -2 -1  0  1  2  3  4
-0.001

 0

 0.001

 0.002

 0.003

 0.004

-0.04 -0.02  0  0.02  0.04

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -3 -2 -1  0  1  2  3  4
-0.001

 0

 0.001

 0.002

 0.003

 0.004

-0.1 -0.05  0  0.05  0.1

Figure 2.1: Fourier multipliers and corresponding convolution kernels for frac-
tional order regularisation in the one-dimensional case and for one single order
α with β = 1. Left: Fourier multipliers rαβ . Right: Corresponding convolution
kernels. From top to bottom: α = 0.5, 1, 2, 4.
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Figure 2.2: Behaviour of the multipliers and convolution kernels for fractional
order regularisation with order α = 2 for different β. Left: Fourier multipliers
rαβ . Right: Corresponding convolution kernels. Top: β = 10. Bottom: β = 100.
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Figure 2.3: Positive combination of two kernel orders α1 = 0.5 and α2 = 2 with
weights β1 = 1 and β2 = 10. Left: Fourier multiplier rαβ . Right: Corresponding
convolution kernel.
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The average grey value can be expressed as f̂(0) =
∫

Rn f(x) exp(−i〈x, 0〉)dx.
Since rαβ (0) = 1 for all α, β ∈ Rm

+ , the average grey value remains unchanged by
multiplication with rαβ in the Fourier domain. �

2.1.3 Diffusion with Fractional Derivative Orders

The elliptic differential equations appearing in regularisation techniques are re-
lated to parabolic diffusion equations as already described in Subsection 1.2.2.
Now we investigate such parabolic equations involving a linear combination of
different fractional powers of the Laplacian. To this purpose we choose frac-
tional derivative orders α1, . . . , αm > 0 and weight parameters λ1, . . . , λm > 0
and consider the linear pseudodifferential equation

∂tu = −
m∑
k=1

λk(−∆)αku (2.17)

with initial condition u(x, 0) = f(x) for all x ∈ Rn. In the Fourier domain (2.17)
reads as

∂tû = −
m∑
k=1

λk|ξ|2αk û .

This is an ordinary differential equation with parameter ξ and can be analytically
solved by

û(ξ, t) = exp

(
−t

m∑
k=1

λk|ξ|2αk

)
f̂ =

m∏
k=1

exp
(
−tλk|ξ|2αk

)
f̂ . (2.18)

This formula expresses fractional order linear diffusion filtering as multiplication
in the Fourier domain. In the following, we define the corresponding convolution
kernels in the spatial domain:

Definition 2.6 (Multipliers and Convolution Kernels for Diffusion)
For the order α > 0, the weight λ > 0 and the stopping time t ≥ 0, we define the
multiplier function

Gα
λ(ξ, t) := exp

(
−tλ|ξ|2α

)
for all ξ ∈ Rn .

We also define the convolution kernels appearing in linear filtering as the Fourier
backtransform

pαλ(x, t) :=
1√
2π
F−1 (Gα

λ(·, t)) (x) =
1

2π

∫
R

exp
(
−tλ|ξ|2α + i〈x, ξ〉

)
dξ .
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Figure 2.4: Fourier multipliers and corresponding convolution kernels for frac-
tional order diffusion filtering in the one-dimensional case n = 1 and with one
single filtering order α for λ = 1 and t = 1. Left: Fourier multipliers Gα

λ . Right:
Corresponding convolution kernels pαλ . From top to bottom: α = 0.5, 1, 2, 4.
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Figure 2.5: Behaviour of the multipliers and convolution kernels for fractional
order diffusion with order α = 2 and stopping time t = 1 for different λ. Left:
Fourier multipliers Gα

λ . Right: Corresponding convolution kernels pαλ . Top: λ =
10. Bottom: λ = 100.
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Figure 2.6: Positive combination of two kernel orders α1 = 0.5 and α2 = 2 with
weights λ1 = 1 and λ2 = 1. Left: Fourier multiplier Gα

λ . Right: Corresponding
convolution kernel pαλ .
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We would like to mention that the convolution kernels pαλ(·, t) were already dis-
cussed by Iijima in [102] and [103] for α ∈ N. With this definition we are able to
express the Fourier backtransform of the solution of (2.17) as convolution:

u(x, t) =
(
pαm
λm

(·, t) ∗ . . . ∗ pα1
λ1

(·, t) ∗ f
)
(x) . (2.19)

It is an interesting feature of (2.18) and (2.19) that one can successively add dif-
ferent derivative orders to the right-hand side of (2.17) and obtain the particular
solution step by step by convolution with corresponding kernels. The Figures 2.4,
2.5, and 2.6 show some examples for the Fourier multipliers and the correspond-
ing convolution kernels coming from diffusion with fractional orders. Similar to
the examples for regularisation, we first take a look at the behaviour of kernels
with one single order when this order changes (see Figure 2.4). Again we notice
that for orders α ≤ 1, we obtain positive convolution kernels. In the case of
diffusion, orders α > 1 lead to more oscillations of the convolution kernels than
in the regularisation case. For larger λ the kernels show a similar behaviour and
get wider, as it can be seen in Figure 2.5. As the example in Figure 2.6 indicates,
it is also possible for fractional order diffusion to construct positive combinations
of low and high orders.

As in the last section for regularisation, we also express fractional order dif-
fusion as linear operator.

Definition 2.7 (Fractional Order Diffusion)
We choose fractional derivative orders α1, . . . , αm > 0 and the corresponding
weights λ1, . . . , λm > 0. For every t ≥ 0 we define the linear filtering operator
Tt : L 2(Rn) −→ L 2(Rn) as

Ttf := F−1MGαm
λm

(·,t) · . . . · MG
α1
λ1

(·,t)Ff . (2.20)

With respect to stability and smoothness of the solutions, we see that these
diffusion operators have very convenient properties:

Proposition 2.8 (Stability and Regularity of Diffusion)

1. For all t ≥ 0 the operator Tt is continuous with respect to the norm in
L 2(Rn) with ‖Tt‖ ≤ 1.

2. For positive real filter orders α1, . . . , αm > 0 we have Ttf ∈ C∞(Rn) for
initial data f ∈ L 2(Rn).

Proof:

1. We have 0 ≤ Gα
λ(ξ, t) ≤ 1 for all t ≥ 0, α, λ > 0 and all ξ ∈ Rn. An upper

bound for the norm of Tt is given by

‖Tt‖ ≤
∥∥F−1

∥∥( m∏
k=1

∥∥∥MG
αk
λk

(·,t)

∥∥∥) ‖F‖ ≤ 1
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with Lemma 2.1 and the fact that F is L 2-isometric.

2. We note that
lim

|x|−→∞
xγ exp(−|x|2α) = 0

for all γ ∈ Nn where the power is defined componentwise. Thus we have

ξγ exp

(
−t

m∑
k=1

λk|ξ|2αk

)
∈ L∞(Rn) .

Let γ ∈ Nn be an arbitrary derivative with order |γ|. The Fourier transform
of the corresponding weak derivative of our filtered image

FDγ (Ttf) = i|γ|ξγ exp

(
−t

m∑
k=1

λk|ξ|2αk

)
f̂ (2.21)

is in L 2(Rn) as the product of f̂ with a bounded function. Since this works
for all derivatives of order |γ|, we have shown that Ttf ∈ H |γ|(Rn). Since
|γ| was arbitrary we know with the Sobolev embedding theorem (see [182,
Chapter 4, Corollary 1.4]) that for each m ∈ N there is an u ∈ Cm(Rn) with
u = Ttf almost everywhere. In that sense the filtering results for fractional
order diffusion processes are arbitrary smooth for all stopping times t > 0.

�

We have seen that in opposition to regularisation, the diffusion processes
have much stronger smoothing behaviour. Furthermore, linear diffusion filtering
satisfies a number of scale-space properties:

Proposition 2.9 (Properties of Diffusion)

1. The set of linear diffusion operators {Tt : t ≥ 0} is a semigroup. We have
T0 = I and Tt1Tt2 = Tt1+t2 for all t1, t2 ≥ 0.

2. For all t ≥ 0 the average grey value is invariant under Tt.

3. The continuous filtering operator is invariant under translations and rota-
tions.

Proof:

1. Since Gα
λ(·, 0) = exp(0) = 1 it is clear that T0 = I. For t1, t2 > 0 and ξ ∈ R

one can directly verify Gα
λ(ξ, t1)G

α
λ(ξ, t2) = Gα

λ(ξ, t1 + t2). In the case of a
single order α we have with the second statement of Lemma 2.1:

Tt1Tt2 = F−1MGα
λ(·,t1)FF−1MGα

λ(·,t2)F
= F−1MGα

λ(·,t1+t2)F
= Tt1+t2 .

The same proof also works for multiple filter orders.
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2. Average grey value invariance is guaranteed by Gα
λ(0, t) = 1 for all t, λ ≥ 0

and α > 0.

3. Translational invariance follows directly from the representation of the op-
erator Tt as convolution with kernels of the type pαλ as in (2.19).

The multipliers Gα
λ only depend on the quadratic distance |ξ|2 to the origin

and thus are rotationally symmetric. This implies rotational invariance of
diffusion. �

Scale invariance is not given in the framework considered above: To achieve
this property we have to restrict ourselves to a single derivative order and one
spatial dimension.

Proposition 2.10 (Scale Invariance of Diffusion)
In one spatial dimension (n = 1), the diffusion filter Tf := F−1MGα

λ(·,t)F with
only one single derivative order is scale invariant in the following sense: For
every σ > 0 and every t > 0 there is a t̃ > 0 such that(

Ttf
( ·
σ

))
(x) = (Tt̃f(·))

(x
σ

)
.

Linear filtering with a combination of several orders or in multiple dimensions is
not scale invariant in this sense.

Proof: It can be shown by elementary calculations that t̃ = t
σ2α is the unique

value satisfying the above condition. Since t̃ depends on the order α such a time
can not exist for a combination of different orders. �

Remark 2.11 (Extension to Multi-Channel Images)
We have seen that regularisation and diffusion both can be described as convolu-
tions, and the convolution kernels are independent from the initial data. Thus the
reasoning given above would also work for multi-channel images u : Rn −→ Rm.
As the result would be to treat all channels independently, we only have described
the case m = 1 of one channel here.

2.1.4 Semi-Discrete Linear Filtering

For practical purposes a space-discrete formulation of generalised linear filtering
can be very useful. In this section we give a matrix representation for the filters
which can be understood as a finite-dimensional analogue of the operators given
above. Again we consider the n-dimensional case with an equidistant orthogonal
grid with Nn pixels xj for even N , indexed by j ∈ J := {0, . . . , N − 1}n. The
index of the central pixel in this rectangular grid is given by c := 1

2
(N, . . . , N)T .
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In correspondence to the operator F we define the discrete Fourier transform
matrix F ∈ C(Nn)×(Nn) by

F :=
1√
Nn

(
exp

(
−2πi〈j − c, k〉

Nn

))
j,k∈J

. (2.22)

Since the rows of F are orthonormal in C(Nn), F is unitary and its inverse is given

by its transposed complex conjugated matrix F
T
. The matrix-vector product of

F with g ∈ R(Nn) yields the Fourier coefficients Fg =: ĝ ∈ C(Nn). We define the
analogue to the multiplication operator M as the diagonal matrix

Mf := diag

(
f

(
2π (j − c)

Nn

))
j∈J

(2.23)

which multiplies a vector with the values of a function f : [−π, π)n −→ C at the
equidistant grid points in the Fourier domain.

Definition 2.12 (Semi-Discrete Regularisation and Diffusion Matrices)
As space-discrete analogues to (2.12) and (2.20), for α, β, λ ∈ Rm

+ and t > 0 we

define the regularisation matrix Rα
β := F

T
Mrα

β
F and the linear diffusion matrix

via Tt := F
T
MGαm

λm
(·,t) · . . . ·MG

α1
λ1

(·,t)F .

In the discrete setting, the corresponding filtering techniques are thus defined as
diagonalised matrices where the multiplier functions directly yield the eigenval-
ues. This simplifies the consideration of the scale-space properties in the follow-
ing:

Proposition 2.13 (Properties of Regularisation)

1. Semi-discrete regularisation is linear.

2. The average grey value is invariant under the operators Rα
β for all nonneg-

ative regularisation weights. For β → ∞ in all components the solution
converges towards the average grey value, i. e.

lim
β→∞

Rα
β f = (µ, . . . , µ)T with µ :=

1

Nn

∑
j∈J

fj .

Proof: The scaled average grey value can be written as f̂0 = 1√
Nn

∑
j∈J fj. This

coefficient is left unchanged by the diagonal matrices Mrα
β

since rαβ (0) = 1. Thus

claimed convergence follows from limβ→∞ rαβ (ξ) = 0 for all ξ 6= 0. �

We see that diffusion has the same scale-space properties, and in addition,
the diffusion operators form a semigroup:
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Figure 2.7: Positive combinations of derivatives of order 0.5 with higher orders,
n = 1. Left: Regularisation. Right: Diffusion filtering.

Proposition 2.14 (Properties of Diffusion)

1. Semi-discrete diffusion is linear.

2. The set of operators {Tt : t ≥ 0} is a semigroup.

3. The average grey value is invariant under the operators Tt for all t ≥ 0,
and we have convergence towards the average grey value for t −→∞.

Proof: The proof of the second statement is analogous to the proof of Proposition
2.9 exchanging the operators F and M by their finite-dimensional counterparts
F and M . The third statement is proven as in the regularisation case. �

So far, we have not considered invariance with respect to translation and
rotation in the discrete setting. As rotations can only be approximated on a
rectangular pixel grid, we only obtain approximative rotational invariance here.
On the other hand, translational invariance is possible with one restriction: We
have to consider the finite extension of our pixel grid and take a look at what
happens at the boundaries. In our setting here, the filters are translationally
invariant if the translations are cyclic shifts.

2.1.5 Numerical Experiments

In the first numerical experiment we investigate the possibility of building linear
combinations with different derivative orders such that the regularisation and
diffusion filters satisfy a maximum-minimum property. Knowing from Subsection
2.1.3 that combinations of two orders are no longer scale-invariant we try to
preserve one scale-space property at the expense of the other. To reduce the
number of possible combinations we consider diffusion equations of the form

∂tu = −
(√

−∆ + β (−∆)α
)
u (2.24)
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Figure 2.8: Variance diminishing properties of fractional order regularisation and
diffusion filtering, n = 1. Variance depending on regularisaton weight/diffusion
stopping time. Left: Regularisation. Right: Diffusion filtering.

and the corresponding regularisation. For α between 1.5 and 8, we started with
β = 0 and increased it as long as nonnegative convolution kernels were obtained.
The maximal values of β are shown in Figure 2.7. This experiment shows the
usefulness of the Poisson scale-space: Using a Gaussian scale-space instead makes
it impossible to find a weight β 6= 0 that leads to a nonnegative combination. In
that sense the fractional order scale-space has a clear advantage in comparison
with the integer order ones.

In our second experiment we study the variance diminishing properties of
different filters R and T . Figure 2.8 shows the variance of a white noise signal
depending on regularisation weight / stopping time. We visualise the parameters
needed for reducing the variance of a white noise and a step edge signal to half of
its value in Figure 2.9. The experiments show a similar behaviour of regularisation
and corresponding diffusion techniques in terms of variance reduction. We note
that higher orders lead to the same variance decay with smaller stopping times.

2.2 Nonlinear Filtering with Higher Derivatives

After investigating linear filtering methods which could be expressed as convo-
lutions, we now turn our attention to nonlinear methods. Since we start with a
variational formulation for the nonlinear filters, it is necessary to provide some
technical background in terms of the calculus of variations in Subsection 2.2.1.
This knowledge will be immediately applied in the following Subsection 2.2.2 to
characterise possible minimisers for a certain class of nonlinear higher order reg-
ularisation functionals. The necessary conditions for such minimisers are PDEs
which directly lead us to higher order nonlinear diffusion equations which are the
central filter class discribed in this section. A property of these diffusion equations
which is especially interesting in practice, namely local feature enhancement, will



48 CHAPTER 2. VARIATIONAL METHODS AND PDES

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.5 1 1.5 2 2.5 3 3.5 4

st
op

pi
ng

 ti
m

e 
t

regularisation order alpha

stopping time for half variance

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.5 1 1.5 2 2.5 3 3.5 4

st
op

pi
ng

 ti
m

e 
t

filtering order alpha

stopping time for half variance

0

0.0005

0.001

0.0015

0.002

0.0025

0.5 1 1.5 2 2.5 3 3.5 4

st
op

pi
ng

 ti
m

e 
t

regularisation order alpha

stopping time for half variance

0

0.0005

0.001

0.0015

0.002

0.0025

0.5 1 1.5 2 2.5 3 3.5 4

st
op

pi
ng

 ti
m

e 
t

filtering order alpha

stopping time for half variance

Figure 2.9: Regularisation weight/diffusion stopping time for reducing the vari-
ance to half its value, n = 1. Left column: Regularisation. Right column:
Diffusion filtering. Top row: Experiment for white noise signal. Bottom row:
Experiment for step edge signal.

be enlightened in Subsection 2.2.3. To visualise these properties in practice, we
will formulate possible discretisations in Section 2.2.4 and give reasons for similar
behaviour as in the continuous setting. Some numerical results are displayed in
Subsection 2.2.5 showing the properties of fourth order filtering and comparing
the denoising quality with second order filters.

2.2.1 Calculus of Variations

First we determine necessary conditions for general variational problems involving
higher derivatives. Of special importance for us will be the natural boundary
conditions, since they will allow to prove some important properties of image
filtering methods later on.

Let Ω ⊂ Rn be an open set such that the boundary ∂Ω is piecewise smooth
and x = (x1, . . . , xn)

T ∈ Ω. We start with a general variational functional

E (u) :=

∫
Ω

E(x, u,Du, . . . ,Dpu) dx (2.25)
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which depends on a function u : Ω −→ Rm and its partial derivatives up to the
order p ∈ N. In the following, we will shortly write [x, u, p] := (x, u,Du, . . . ,Dpu)
for the arguments of the integrand E. Further, ui : Ω −→ R for i ∈ {1, . . . ,m}
stands for the i-th component of u. Let V := {x1, . . . , xn} be the set of variables
and β = (β1, . . . , βp) ∈ V p a vector of p components in this set. For a function u
the partial derivative will be denoted by

Dβu := ∂βm · . . . · ∂β1u .

The derivative order is then |β| := p. We explicitly do not use multiindices
here, since we have to take care of the order of the derivatives for the boundary
conditions. The revearsal of β will be denoted by β̃ := (βp, . . . , β1).

Having these notations at hand, we can formulate necessary conditions for a
minimiser of E :

Proposition 2.15 (Euler-Lagrange Equations)
A minimiser of the energy functional (2.25) necessarily satisfies the so-called
Euler-Lagrange equations∑

|β|≤p

(−1)|β|Dβ̃EDβui([x, u, p]) = 0 for i = {1, . . . ,m} . (2.26)

Proof: To determine a minimiser of the function E , we are interested in the
behaviour of E under perturbations of its argument. This is done by choosing
an arbitrary perturbation function η : Ω −→ Rm and considering the function
Ψ(ε) := E (u+ εη). It is a classical procedure in the calculus of variations [88, 86]
to use the necessary condition Ψ′(0) = 0 to characterise minimising functions u.
The derivative of Ψ is

Ψ′(ε) =
∑
|β|≤p

m∑
i=1

∫
Ω

EDβui([x, u+ εη, p])Dβηi dx . (2.27)

At the point zero, we obtain

Ψ′(0) =
∑
|β|≤p

m∑
i=1

∫
Ω

EDβui([x, u, p])Dβηi dx

=
∑
|β|≤p

(−1)|β|
m∑
i=1

∫
Ω

(
Dβ̃EDβu([x, u, p])

)
ηi dx (2.28)

+
∑
|β|≤p

|β|∑
k=1

(−1)|β|−k
m∑
i=1

∫
∂Ω

(
∂βk+1

. . . ∂β|β|EDβui

) (
∂βk−1

. . . ∂β1η
i
)
νβk

dx.

The outer normal of the boundary ∂Ω is denoted with ν here. We have omit-
ted the set of arguments [x, u, p] in the last integral for simplicity. Under the
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assumption that η ∈ CC(Ω) has compact support the boundary terms vanish:∫
Ω

( ∑
|β|≤m

(−1)|β|
m∑
i=1

Dβ̃EDβui([x, u, p])
)
ηi dx = 0 (2.29)

for i ∈ {1, . . . ,m}. Since this holds for all η ∈ CC(Ω), the fundamental lemma
of the calculus of variations [88] can be applied. We obtain the set of m Euler-
Lagrange equations∑

|β|≤p

(−1)|β|Dβ̃EDβui([x, u, p]) = 0 for i = {1, . . . ,m} (2.30)

as a necessary condition for a minimiser u of E . �

In this proof we have restricted the test functions η to the interior of Ω.
Without this restriction, the boundary terms in (2.28) do not vanish. In our
applications, Ω is usually a rectangular domain. That means we can find test
functions where the partial derivatives vanish independently at the boundary.
This gives us the following conditions on u:

Proposition 2.16 (Natural Boundary Conditions)
If we do not impose other restrictions at the boundary, the minimiser u naturally
satisfies the following property: For all i ∈ {1, . . . ,m}, all k ∈ {1, . . . , p}, and all
γ ∈ V k−1 ∑

k≤|β|≤p
(β1,...,βk−1)=γ

(−1)|β|−k
(
∂βk+1

. . . ∂β|β|EDβui

)
νβk

= 0 (2.31)

on ∂Ω.

With these results we are able to consider variational methods with higher
derivative orders for multi-channel images in n spatial dimensions. In the next
section, we will turn our attention to a very special class of representatives of
these methods which comprises many classical approaches.

2.2.2 Higher Order Regularisation and Diffusion

For higher order nonlinear regularisation we are searching for a minimiser of the
energy functional

E (u) =

∫
Ω

( m∑
i=1

(ui − f i)2 + αΨ
( m∑
i=1

∑
|β|=p

|Dβui|2
))

dx (2.32)

for α > 0. The regulariser depends here on the sum of the squared derivatives of
order p. This can be motivated by the fact that the smoothness term vanishes if
u is a polynomial of degree p − 1. Special cases of this functional for p = 2 are
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considered by Lysaker et al. [122], for example. With Proposition 2.15 we obtain
the following Euler-Lagrange equations:

ui − f i

α
= (−1)p+1

∑
|β|=p

Dβ̃
(
Ψ′
( m∑
j=1

∑
|γ|=p

|Dγuj|2
)
Dβui

)
(2.33)

for all i ∈ {1, . . . ,m} as necessary condition for this minimiser. The corre-
sponding natural boundary conditions are given by Proposition 2.16: For all
i ∈ {1, . . . ,m}, all k ∈ {1, . . . , p}, and all γ ∈ V k−1 we have∑

|β|=p
(β1,...,βk−1)=γ

(−1)p−k
(
∂βk+1

. . . ∂βpEDβui

)
νβk

= 0 . (2.34)

It is possible to use these Euler-Lagrange equations directly to determine pos-
sible minimisers for the energy functional. Let us now turn our attention to some
properties of these minimisers. Preservation of the average grey value is a basic
property of classical regularisation techniques as discussed in Subsection 1.2.2.
We will see that there is even a more general property for higher regularisation
orders:

Proposition 2.17 (Moment Preservation of Regularisation)
All moments up to the order p−1 of all channels ui of the regularisation solution
do not change with α > 0.

Proof: Choose a monomial m(z) := xl11 · . . . · xlnn of degree smaller than p, i. e.∑n
k=1 lk < p. Then we have Dβm = 0 for all |β| = p. We multiply the Euler-

Lagrange equation (2.33) and integrate to obtain∫
Ω

m(z)ui(z) dx =

∫
Ω

m(z)f i(z) dx

+α

∫
Ω

m(z)(−1)p+1
∑
|β|=p

Dβ̃
(
Ψ′
( m∑
j=1

∑
|γ|=p

|Dγuj|2
)
Dβui

)
dx .

We can calculate the second integral on the right-hand side and use to natural
boundary conditions (2.34) to see that∫

Ω

m(z)(−1)p+1
∑
|β|=p

Dβ̃
(
Ψ′
( m∑
j=1

∑
|γ|=p

|Dγuj|2
)
Dβui

)
dx

= (−1)p+1
∑
|β|=p

(Dβm)︸ ︷︷ ︸
=0

Ψ′
( m∑
j=1

∑
|γ|=p

|Dγuj|2
)
Dβui dx

+(−1)p+1
∑
|β|=p

p∑
k=1

(−1)p−k
∫
∂Ω

((
∂βk+1

. . . ∂βpm
)
·

·
(
∂βk−1

. . . ∂β1Ψ
′ (. . .)Dβui

)
νβk

)
dx

= 0 .
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We have abbreviated the last term by omitting the argument of Ψ′. Together,
this means that the moments up to order p− 1 remain constant. �

In the following, we will not directly use Euler-Lagrange equations for data
filtering, but we rather prefer to follow the reasoning already described in Sub-
section 1.2.2 to relate it to generalised diffusion equations. Again, one can un-
derstand the left-hand side of (2.33) as finite difference. Introducing an artificial
time variable t in our function u and setting u(·, 0) := f makes it possible to
see the left-hand side as discretisation of a time-derivative of u with step size α.
The whole equation (2.33) is then an implicit time discretisation of a nonlinear
diffusion equation.

This motivates to use nonlinear higher order diffusion equations of the form

ui(·, 0) = f i

∂tu
i = (−1)p+1

∑
|β|=p

Dβ̃
(
Ψ′
( m∑
j=1

∑
|γ|=p

|Dγuj|2
)
Dβui

)
(2.35)

for i ∈ {1, . . . ,m} with the boundary conditions given in (2.34) for data filtering.
If we are not interested in the variational function and tend to consider the

diffusion equation on its own, we will often write g = Ψ′ for the diffusivity
function. Let us consider some special cases for (2.35) which will be relevant for
us later on. In all of the following examples, we set the initial condition u(·, 0) = f
without explicitly stating it:

Example 2.18 (General Filter of Order 2p in One Dimension)
In one spatial dimension we consider filtering on an interval (a, b) ⊂ R. Nonlinear
diffusion of order 2p then denotes the equation

∂tu = (−1)p+1 ∂px

(
g
(
(∂pxu)

2) ∂pxu) . (2.36)

The corresponding natural boundary conditions are in this case

∂kx

(
g
(
(∂pxu)

2) ∂pxu) = 0 for k ∈ {0, . . . , p− 1} (2.37)

for x ∈ {a, b}. There are p constraints at each boundary pixel as generalisation
of the homogeneous Neumann boundary conditions which are well-known from
the case p = 1.

Example 2.19 (Classical Perona-Malik Filter)
In the case p = 1 and in two dimensions, we obtain the classical Perona-Malik
equation [154]:

∂tu = div
(
g(|∇u|2)∇u

)
(2.38)

with homogeneous Neumann boundary conditions ∂νu = 0 and its multi-channel
representatives [87], respectively.
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Example 2.20 (Fourth Order Filter in 2-D)
The corresponding filter for p = 2 and TV diffusivity has been considered by
Lysaker et al. [122]. Here we allow for a more general diffusivity function g, and
the corresponding filter looks like

∂tu = − ∂xx

(
g(‖H(u)‖2

F )uxx

)
− ∂yx

(
g(‖H(u)‖2

F )uxy

)
(2.39)

− ∂xy

(
g(‖H(u)‖2

F )uyx

)
− ∂yy

(
g(‖H(u)‖2

F )uyy

)
.

The natural boundary conditions are in this case three equations:

g uxxνx + guxyνy = 0 ,

g uyxνx + guyyνy = 0 ,

(∂x(g uxx) + ∂y(g uxy)) νx + (∂x(g uxy) + ∂y(g uyy)) νy = 0

on ∂Ω. We have omitted the argument ‖H(u)‖2
F of g for better readability.

Remark 2.21 (Presmoothing and Well-Posedness)
For the classical Perona-Malik filter, Catté et al. [32] have shown that introducing
a mollifier in the argument of the diffusivity makes it possible to prove well-
posedness. Similar methods have been applied by Greer and Bertozzi [92] to
show existence and regularity of solutions for the models by Tumblin, Turk [189]
and Wei [195]. Applied to our general model, the modified diffusion equation
reads as

∂tu
i = (−1)p+1

∑
|β|=p

Dβ̃
(
Ψ′
( m∑
j=1

∑
|γ|=p

|Dγujσ|2
)
Dβui

)
(2.40)

where ujσ := Gσ ∗ uj with an n-dimensional Gaussian kernel Gσ of standard
deviation σ.

Later on we will see from the numerical examples that discretisations of (2.35)
also work without such a regularisation. This indicates that discretisation has
a regularising effect itself, as it has been proven for the classical Perona-Malik
case by Weickert and Benhamouda [202]. We have seen in the previous section
that instead of presmoothing with a Gaussian kernel, one could also use more
general fractional diffusion equations. They all have the property to yield arbi-
trary smooth results and thus are suited for regularising the nonlinear diffusion
equations.

After these remarks concerning well-posedness we consider some scale-space
properties of nonlinear diffusion.

Proposition 2.22 (L 2-Stability)
If a classical solution u of higher order nonlinear diffusion (2.35) exists which
is continuously differentiable in the time variable t and 2p times continuously
differentiable in the space variable, the L 2-norm of all channels ui(·, t) for all
i ∈ {1, . . . ,m} is monotonically decreasing with t ≥ 0.
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Figure 2.10: Stability of diffusion filtering and importance of boundary condi-
tions. Left: Original signal, 128 pixels. Middle: Steady state of fourth order
linear diffusion filtering with natural boundary conditions. Right: Same with
periodic boundary conditions.

Proof: We calculate the time derivative of the L 2-norm for one channel ui of
the image using partial integration and the boundary conditions (2.34):

∂t

(
1

2

∫
Ω

|ui|2 dx
)

=

∫
Ω

ui(∂tu
i)dx

= (−1)p+1
∑
|β|=p

∫
Ω

uiDβ̃
(
Ψ′
( m∑
j=1

∑
|γ|=p

|Dγuj|2
)
Dβui

)
dx

= (−1)p+1
∑
|β|=p

(−1)p
∫

Ω

(Dβui)2 Ψ′
( m∑
j=1

∑
|γ|=p

|Dγuj|2
)
dx

+(−1)p+1
∑
|β|=p

p∑
k=1

(−1)p−k
∫
∂Ω

((
∂βk+1

. . . ∂βpu
)
·

·
(
∂βk−1

. . . ∂β1Ψ
′ (. . .)Dβui

)
νβk

)
dx

= −
∑
|β|=p

∫
Ω

(Dβui)2︸ ︷︷ ︸
≥0

· Ψ′
( m∑
j=1

∑
|γ|=p

|Dγuj|2
)

︸ ︷︷ ︸
≥0

dx

≤ 0 .

We see that for this property, it is essential that Ψ′ is larger or equal to zero.
Since Ψ is a penaliser function, this assumption is reasonable. Since we assumed
that the solution is continuously differentiable in time, this shows that the L 2-
norm is monotonically decreasing. �

To illustrate this stability property, we show an example in Figure 2.10. It is
visible that linear fourth order diffusion does not satisfy a maximum-minimum
principle and thus is not stable in the L∞-sense. This example also gives an
additional motivation why the boundary conditions are so important for our
considerations: Using periodic boundary conditions changes the behaviour of the
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process significantly.
Besides the stability of the process, we are interested in characterisations of

the simplification behaviour. For Perona-Malik filtering, it is well-known that
the average grey value is left unchanged during the filtering process. Filtering
with periodic boundary conditions has also led to the average grey value in the
example shown in Figure 2.10. The filter with natural boundary conditions in
this case yields a linear approximation to the initial signal and thus preserves
more characteristic properties of the initial signal. The next proposition makes
this precise for the continuous setting:

Proposition 2.23 (Moment Preservation for Diffusion)
Under the assumptions of Proposition 2.22, all moments up to the order p− 1 of
all channels ui of the solution are constant in time t ≥ 0.

Proof: Choose a monomial m(z) := xl11 · . . . · xlnn such that its degree is smaller
than p, i. e.

∑n
k=1 lk < p. Then we have Dβm = 0 for all |β| = p. We use this to

calculate the time-derivative of the corresponding moment:

∂t

(∫
Ω

m(z)uidx

)
=

∫
Ω

m(z)∂tu
idx

= (−1)p+1
∑
|β|=p

∫
Ω

m(z)Dβ̃
(
Ψ′
( m∑
j=1

∑
|γ|=p

|Dγuj|2
)
Dβui

)
dx

= 0

as we have already calculated in the proof of Proposition 2.17. �

In the discrete setting, we are going to give an analogue to this statement
in Proposition 2.25. Before turning our attention to the discrete setting, we are
going to describe some aspects of nonlinear higher order filters that are crucial
for the quality of the results: the possibility of not only preserving, but also
enhancing features of the data like edges.

2.2.3 Local Feature Enhancement

Though classical nonlinear diffusion simplifies signals or images, it may also en-
hance important local features such as edges. This section discusses higher order
diffusion from this point of view. We are going to work only with equations in
the one-dimensional case in this subsection. As it can be seen with the numerical
experiments later on, this does not mean that the results are restricted to 1-D.
Even in higher dimensions, an image locally can be decomposed in 1-D feature
directions: Let an edge in a 2-D image serve as example. Locally one can decom-
pose the image in the two directions along the edge where the grey value does
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not change, and across the edge where the change it maximal. This clearly also
works with other low-dimensional features such as ridges. It is the same concept
which we also meet in the filters respecting local feature directions considered in
Chapter 4. In that sense one can use the reasoning given in this subsection to
explain the behaviour of filters in multiple dimensions, too.

Second Order Filtering and Edge Enhancement

We have already shortly sketched this case in Subsection 1.2.2. To determine the
possibility of edge enhancement for special diffusivities g one usually considers the
the flux function Φ(s) := g(s2)s. One can rewrite the one-dimensional second-
order nonlinear diffusion equation (2.36) for p = 1 yielding

∂tu = ∂x

(
Φ(∂xu)

)
= Φ′ (∂xu) ∂

2
xu

=
(
2g′
(
(∂xu)

2) (∂xu)
2 + g

(
(∂xu)

2)) ∂2
xu .

In regions where Φ′(∂xu) > 0 this equation behaves like a forward diffusion equa-
tion while in regions with Φ′(∂xu) < 0 there is backward diffusion possible. In
these regions with backward diffusion, an edge enhancing behaviour is plausible
and can also be observed in practice [154].

Fourth Order Filtering

Now we take a closer look at the fourth order diffusion equation, i. e. we set p = 2
in (2.36) yielding

∂tu = −∂2
x

(
g
((
∂2
xu
)2)

∂2
xu
)
.

We expand the right-hand side of this equation and rewrite it as

∂tu = −
(
2
(
∂3
xu
)2

Φ1

(
∂2
xu
))
∂2
xu− Φ2

(
∂2
xu
)
∂4
xu (2.41)

using

Φ1(s) := 2g′′(s2)s2 + 3g′(s2) and Φ2(s) := 2g′(s2)s2 + g(s2) .

Analogue to the second order case our argumentation is that (2.41) locally be-
haves similar to the linear equation

∂tu = −a ∂2
xu− b ∂4

xu

if the signs of the factors a and b are equal to the signs of Φ1 and Φ2. For
Φ1(∂

2
xu) < 0 we expect some second order forward diffusion influence on the

solution, whereas Φ1(∂
2
xu) > 0 leads to second order backward diffusion. Vice



2.2. NONLINEAR FILTERING WITH HIGHER DERIVATIVES 57

versa, Φ2(∂
2
xu) > 0 ensures fourth order forward diffusion, and Φ2(∂

2
xu) < 0 fourth

order backward diffusion.
It should be mentioned that Φ2 always coincides with the function Φ in the

second order case presented in Subsection 2.2.3. Also for orders higher than four,
the sign of this function determines the diffusion property (forward or backward)
of the highest order term which implies a certain similarity in the behaviour of
several filtering orders. The main difference is the argument: Φ depends on the
p-th derivative for 2p-th order filtering.

Application to Commonly Used Diffusivities

After showing the general approach for fourth order diffusion in the last section
we now apply it to several diffusivities commonly used in practice to describe their
characteristic behaviour. In the following the diffusivities are ordered according
to their forward-backward diffusion properties:

• Forward Diffusion:
The diffusivity related to the regularisation approach by Charbonnier et

al. [39] is given by g(s2) = (1 + s2/λ2)
− 1

2 and is known to perform forward
diffusion in the second order case. By computing

Φ1(s) = − 3
2λ2

(
1 + s2

λ2

)− 5
2
< 0 and Φ2(s) =

(
1 + s2

λ2

)− 3
2
> 0

we see that also the fourth order Charbonnier diffusion always performs
forward diffusion. With the observation(

λ2 + s2
)− 1

2 = λ

(
1 +

s2

λ2

)− 1
2

it is clear that regularised TV flow [79] using g(s2) = (λ2 + s2)−
1
2 behaves

in the same way.

• Boundary Case:
TV flow [4] comes from the diffusivity g(s2) = 1

|s| . At all points where

the argument s is nonzero we have Φ1(s) = Φ2(s) = 0 which legitimates
to consider TV flow as the boundary case between forward and backward
diffusion.

• Forward and Backward Diffusion:
The diffusivity function g(s2) = (1 + s2/λ2)

−1
proposed by Perona and

Malik [154] leads to the conditions

Φ1(s) =
1

λ4

(
1 +

s2

λ2

)−3 (
s2 − 3λ2

)
< 0 ⇐⇒ |s| <

√
3λ

Φ2(s) =

(
1 +

s2

λ2

)−2(
1− s2

λ2

)
> 0 ⇐⇒ |s| < λ .
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This really displays the adaptive nature of this diffusivity: Depending on
the parameter λ > 0, the absolute value of the curvature |∂2

xu| leads to
forward or backward diffusion. New to the fourth order case is the presence
of two conditions and the possibility that only one of them holds, namely in
regions where λ < |∂2

xu| <
√

3λ. Similar conditions hold for the diffusivity
g(s2) = exp (−s2/(2λ2)) also proposed by Perona and Malik [154].

• Backward Diffusion:
The balanced forward-backward diffusivity [109] defined by g(s2) = 1/s2

leads to Φ1(s
2) = s−4 > 0 and Φ2(s

2) = −s−2 < 0 which implies that it
always performs backward diffusion. As for total variation diffusivity we
also suppose that the argument is nonzero here.

We conclude that even in the fourth order case there are diffusivities covering
the whole spectrum from pure forward to pure backward diffusion. Of special
interest are the two diffusivities by Perona and Malik since they allow for adaptive
forward and backward diffusion depending on the local absolute value of the
second derivative.

Generalisation to Higher Derivative Orders

After the generalisation of this considerations from order two to four, the natural
question is if this also works for orders higher than four. Performing the same
calculations as above for the sixth order equation

∂tu = ∂3
x

(
g
(
(∂3
xu)

2
)
∂3
xu
)

(2.42)

one obtains the equivalent equation

∂tu =
(
2g(1)(∂3

xu)
2 + g(0)

)
∂6
xu (2.43)

+2
(
4g(3)(∂3

xu)
4(∂4

xu)
2 + 12g(2)(∂3

xu)
2(∂4

xu)
2 + 3g(1)(∂4

xu)
2

+6g(2)(∂3
xu)

3(∂5
xu) + 9g(1)(∂3

xu)(∂
5
xu)
)
∂4
xu .

Since all derivatives of the diffusivity depend on the same argument (∂3
xu)

2 this
has been omitted here, and we write g(j) := g(j)((∂3

xu)
2) for better readability.

The problem now arises from the terms in the last line, since the derivatives ∂3
xu

and ∂5
xu appear here with odd exponents. Thus these summands might have

arbitrary sign. This makes it impossible to distinguish several cases as one could
do for second and fourth order equations. Even though we have explicitly shown
here only the case of the sixth order equation for illustration, we have checked the
equations up to a derivative order of twelve: They all comprehend terms where
the sign can not be determined.

This does not meen that there the numerical behaviour of higher order filters
would be not plausible. We have already mentioned above that the nonlinear
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factor in front of the highest derivative order is always the same as in the second
order case. This means for all p ∈ N, it is possible to write

∂tu = (−1)p+1∂px

(
g
(
(∂ppu)

2
)
∂pxu
)

(2.44)

= (−1)m+1Φ′ ((∂2p
x u)

2
)
∂2p
x u+R(u,Ψ, p) (2.45)

with Φ(s2) = 2g′(s2)s2 + g(s2). The term R(u,Ψ, p) involves only derivatives of
u with orders smaller than the maximal order 2p. Even if it is not possible to
transfer the complete reasoning to the higher order equation, one can see that at
least the factor in front of the largest diffusivity order term behaves in the same
way than the one for the second order.

2.2.4 Discrete Nonlinear Filtering

Let us now turn our attention to discretisation approaches for the continuous
models we have seen so far. To this end, we consider the vectors f, u ∈ RN with
N ∈ N pixels. There are R ∈ N matrices Dr ∈ RM×N , r = 1, . . . , R which extract
the relevant features for penalisation of our discrete image u. For discretising the
filters described so far, the matrices Dr approximate all partial derivatives of u.
We consider energy functions of the form

E(u) :=
N∑
i=1

(ui − fi)
2 + α

M∑
i=1

Ψ
( R∑
r=1

((Dru)i)
2
)
. (2.46)

Note that at this stage we did not specify the arrangement of pixels, and also the
matrices Dr are just assumed to have real entries. We notice that by doing so,
the energy function (2.46) can handle an image domain with several dimensions
as well as multi-channel images. After showing the general procedure, we will
give some examples where all the details are specified explicitly.

To determine a minimum of E, we are interested in critical points u with
∇E(u) = 0. Calculating the gradient yields the necessary condition for a min-
imiser

u− f

α
= −

R∑
r=1

DT
r ΦD(u)Dru (2.47)

where ΦD(u) is defined as diagonal matrix

ΦD(u) := diag

(
Ψ′
( R∑
r=1

((Dru)j)
2
))

j=1,...,M

. (2.48)

We are going to write g(s) = Ψ′(s) in the following, since Ψ′ plays the role of a
diffusivity. Analogue as in the continuous case, we can again see the left-hand side
as forward difference approximating a first derivative in an artificial time variable
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with a time step size t = α. Equation (2.47) is then an implicit discretisation for
the nonlinear ordinary differential equation

∂tu = −
R∑
r=1

DT
r ΦD(u)Dru . (2.49)

Let us choose a time step size τ > 0. We describe three common ways to discretise
(2.49) in time:

Explicit Euler Forward Discretisation: The simplest scheme is given as

u0 = f

uk+1 = uk − τ

R∑
r=1

DT
r ΦD(uk)Dru

k (2.50)

where k ∈ N denotes the iteration index. It is called explicit since we can calculate
the variable at the new time step as matrix-vector multiplication.

Semi-Implicit Discretisation: In the semi-implicit scheme, we calculate
the matrix with the help of the known vector uk:

uk+1 =

(
I + τ

R∑
r=1

DT
r ΦD(uk)Dr

)−1

uk . (2.51)

One has to solve a linear system of equations in order to obtain the next iterand.
Implicit Discretisation: For completeness, we also mention the fully im-

plicit discretisation

uk =

(
I + τ

R∑
r=1

DT
r ΦD(uk+1)Dr

)−1

uk+1 (2.52)

where also the matrix is determined from the new values uk+1. This scheme
requires in each iteration the solution of a nonlinear system of equations and is
thus computationally most expensive.

Properties of the Discrete Filters

In the following, we are going to investigate the basic properties of the discrete
filtering methods. For a matrix A ∈ RM×N , let ‖A‖ denote the spectral norm

‖A‖ = max
{√

|λ| | λ eigenvalue of ATA
}

.

We are going to use the fact that the spectral norm is the corresponding matrix
norm to the `2 vector norm (see [100, 177], for example). We will see that in
order to achieve `2-stability with an explicit scheme, we have to choose the time
step size τ relatively small while the semi-implicit scheme and the implicit scheme
allow arbitrary large time step sizes:
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Proposition 2.24 (`2-Stability Condition)
The explicit discretisation scheme (2.50) is stable in the `2-norm if the time step
size τ satisfies the condition

τ ≤ 2

(
sup
s∈R

g(s)
R∑
r=1

‖Dr‖2

)−1

. (2.53)

The semi-implicit discretisation (2.51) and the implicit discretisation (2.52) are
stable in the `2-norm for arbitrary time step sizes τ > 0.

Proof: From definition (2.48) and the property g(s) = Ψ′(s) ≥ 0 for all s ∈ R
we see that ΦD(u) is positive semi-definite for arbitrary u ∈ RN . The symmetric
multiplication with Dr does not change this property, and so DT

r ΦD(uk)Dr is
positive semi-definite and symmetric for all r. Since the set of all positive semi-
definite matrices is closed under addition, the whole sum

∑R
r=1D

T
r ΦD(uk)Dr has

eigenvalues in the interval [
0, sup

s∈R
g(s)

R∑
r=1

‖Dr‖2

]
.

The complete matrix of the explicit scheme

I − τ
R∑
r=1

DT
r ΦD(uk)Dr

then has eigenvalues in the interval[
1− τ sup

s∈R
g(s)

R∑
r=1

‖Dr‖2, 1

]
.

If the condition

1− τ sup
s∈R

g(s)
R∑
r=1

‖Dr‖2 ≥ −1 ⇐⇒ τ ≤ 2

(
sup
s∈R

g(s)
R∑
r=1

‖Dr‖2

)−1

(2.54)
is satisfied, the scheme is `2-stable.

There is no such restriction for the corresponding semi-implicit and implicit
schemes: The matrix

I + τ

R∑
r=1

DT
r ΦD(u)Dr

has eigenvalues larger or equal to one for all vectors u ∈ RN . The eigenvalues of
its inverse thus lie in the interval (0, 1], and the `2-norm of the image uk can not
increase. �

Besides these different restrictions due to numerical stability, the following
property is common to all three discretisation methods: We now give the discrete
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analogon to Proposition 2.23 concerning moment preservation. In the discrete
case, the statement is formulated slightly more general, since we have used general
matrices in our discrete regularisation and diffusion approaches.

Proposition 2.25 (Invariant Subspace)
The discrete necessary condition (2.47) for a minimiser, the corresponding semi-
discrete equation (2.49) as well as the fully discrete schemes (2.50), (2.51) and

(2.52) leave the subspace
R⋂
r=1

ker(Dr) of RN invariant.

Proof: It is well-known from linear algebra that ran AT = (kerA)⊥ for all real
matrices A ∈ RM×N . For our matrices Dr, it follows that

ran
R∑
r=1

DT
r ΦD(u)Dr ⊆

R⋃
r=1

ran DT
r =

R⋃
r=1

(kerDr)
⊥ ⊆

(
R⋂
r=1

kerDr

)⊥
.

For the above mentioned schemes and equations this means that the changes can
only affect the subspace orthogonal to the intersection of all kernels. �

When our matrices implement appropriate finite difference approximations of
derivatives, the point evaluations of polynomials are in the kernels of all Dr. In
this case, this proposition ensures the preservation of discrete moments up to a
certain order. In that sense, it is a discrete analogue to the Propositions 2.17 and
2.23. The boundary conditions in the discrete setting also have a strong influence
with respect to the question whether the polynomials are in the kernel or not,
see Figure 2.10 for an example and [56] for details in the one-dimensional case.

In the following, we give some examples how the matrices Dr can be chosen
to implement filtering methods in practice, for example with (2.50) or (2.51).
We have restricted ourselves here to finite difference derivative approximations
since they are acting locally. An alternative would have been to use spectral
methods ([186, 56], for example) that obtain a global estimate for the derivative.
Nevertheless, they are often not so suitable for non-smooth signals. Since our
goal is edge preservation and enhancement, we use finite differences here.

Example 2.26 (General Filter of Order 2p in One Dimension)
We consider discretisations for the filter class introduced in Example 2.18:

Natural boundary conditions: For natural boundary conditions, the strat-
egy is only to approximate the derivatives in the smoothness term at those points
of the pixel grid where the whole approximation stencil still fits in. This does
not impose any conditions at the boundary, and in this sense the necessary con-
ditions as described above then lead to natural boundary conditions. Let h > 0
denote the spatial step size. In the one-dimensional case, the multiplication of



2.2. NONLINEAR FILTERING WITH HIGHER DERIVATIVES 63

the matrix

DN
1,N :=

1

h


−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0
0 . . . 0 −1 1

 ∈ R(N−1)×N (2.55)

with a vector yields an approximation of the first derivative. The superscript
N stands for natural boundary conditions here while the subscripts denote the
derivative order and the number of pixels. For higher derivatives, we can simply
use the corresponding products

DN
p,N = DN

1,N−p+1 · . . . ·DN
1,N . (2.56)

We note that DN
p,N ∈ R(N−p)×N is not a quadratic matrix. The kernel of DN

p,N is
given by point evaluations of polynomials of degree p− 1. An explicit scheme for
one-dimensional nonlinear diffusion of order 2p reads as

uk+1 = uk − τ
(
DN
p,N

)T
ΦDNp,N

(uk)DN
p,Nu

k k ∈ N (2.57)

with u0 = f . It realises a discretisation with natural boundary conditions; details
can be found in [56]. Since ‖DN

p,N‖ ≤ 2p/hp, we see with Proposition 2.24 that
the scheme is `2-stable for time step sizes

τ ≤ h2p

sups∈R g(s) 22p−1
.

As a typical example, let us assume a spatial step size h = 1 and choose the
Perona-Malik diffusivity g with |g| ≤ 1. For an explicit discretisation, one has to
choose τ ≤ 1/2 for order p = 1, τ ≤ 1/8 for p = 2, and τ ≤ 1/32 for p = 3 in this
case.

Periodic boundary conditions: Since it will be useful in the next chap-
ter, we also write down the discretisation for diffusion with periodic boundary
conditions. We use the circulant matrix

DP
1,N :=

1

h


−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0

0
. . . 0 −1 1

1 0 . . . 0 −1

 ∈ RN×N (2.58)

to approximate the first derivative and its p-th power

DP
p,N :=

(
DP

1,N

)p
(2.59)
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for higher derivative orders. Here, P denotes periodic boundary conditions. We
notice that for larger values of p the higher derivative approximations are obtained
at shifted positions by half of the derivative order. This does not influence the
correctness of the result since for the outer derivative in the diffusion equation,
we use the transposed matrix which shifts in the other direction by exactly the
same amount.

The limits for the time step size are the same as for natural boundary con-
ditions. We would like to mention that independent of the order p, the matrix
DP
p,N always has the kernel span{(1, . . . 1)T} of constant signals.

The effect of these different boundary conditions and the resulting different
kernels of the matrices has already become visible with the filtering example in
Figure 2.10.

Example 2.27 (Fourth-Order Filtering in 2-D)
An approach how to discretise the fourth order PDE in 2-D shown in Example
2.20 has been given by Lysaker et al. [122, 123]. They have used small one-sided
stencils with only four pixels for the approximation of the mixed derivatives. We
use another way here by using symmetric stencils since it has shown visually good
results in practice. In 2-D, we do not write down the discretisations in matrix
form, but in stencil notation. For the second-order derivatives with respect to one
variable we use the standard second differences with spatial step sizes hx, hy > 0
in x- and y-direction:

uxx ≈ 1

h2
x

1 −2 1 · u , uyy ≈
1

h2
y

1
−2
1

· u . (2.60)

It is well-known that the corresponding matricesDxx andDyy satisfy the property
‖Dxx‖ ≤ 2

h2
x

and ‖Dyy‖ ≤ 2
h2

y
, respectively. For the mixed differences, there

are several possibilities of discretisation. For the mixed derivatives, we use the
following stencils:

uxy ≈
1

2hxhy

0 −1 1
−1 2 −1
1 −1 0

·u , uyx ≈ 1

2hxhy

−1 1 0
1 −2 1
0 1 −1

·u . (2.61)

At the example of the first stencil for uxy we show how to obtain limits for the
norm of the matrix with Gershgorin’s theorem (see [100], for example): Let us
denote the matrix corresponding to the approximation of uxy with Dxy. Applying
the stencil twice gives

1

4h2
xh

2
y

1 −2 1
2 −6 6 −2

1 −6 10 −6 1
−2 6 −6 2
1 −2 1

· u . (2.62)
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In this stencil notation, we see the entries of one row of the corresponding matrix
DT
xyDxy. The sum of all absolute values of these entries without the diagonal

entry is 54. Gershgorin’s theorem shows that the corresponding eigenvalues are

in the interval
[
− 54

4h2
xh

2
y
, 64

4h2
xh

2
y

]
. This means the spectral norm of Dxy is less than

or equal to 4
hxhy

.

Together, for such a discretisation, we obtain a limit for the time step size

τ ≤
(

sup
s∈R

g(s)

(
2

h2
x

+
2

h2
y

+ 2 · 16

hxhy

))−1

(2.63)

in order that the explicit scheme is stable. For the case hx = hy = 1, we obtain

τ ≤
(

36 · sup
s∈R

g(s)

)−1

. (2.64)

This means that we have to choose the time step size τ ≤ 1
36

if we want to use
the Perona-Malik diffusivity. For regularised total variation with typical values
of λ = 0.01, one has the even smaller limit τ ≤ λ

3600
.

For practical purposes, this limitation for the maximal time step size is severe,
and we show how to derive semi-implicit discretisations to overcome this draw-
back. In Table 2.1 we display the corresponding stencil for fourth order nonlinear
diffusion filtering. In the stencil, gij approximates g(‖H(u)‖2

F ) where the partial
derivatives in the Hessian are approximated as described above. To implement
natural boundary conditions, we have to set gij = 0 for all (i, j) at the boundary
of the discrete grid Ωh, since here we do not have enough data to approximate
‖H(u)‖F . This principle has already been described in the 1-D setting. If A
denotes the matrix corresponding to the stencil in Table 2.1, we have to solve the
linear system of equations

(I + τA)uk+1 = uk . (2.65)

As solver we use successive over-relaxation (SOR). We do not give a full descrip-
tion of this method here, since it can be found in many textbooks on numerical
methods, for example [177, 167, 160]. In the proof of Proposition 2.24, we have
seen that I+τA is positive definite. This guarantees the convergence of the SOR
method with the theorem of Ostrowski and Reich (see [177, p. 631], for example).
In practice, time step sizes τ in the order from 1 to 5 give visually good results.
SOR introduces two further numerical parameters: the number of iterations and
the relaxation factor ω. Usually we have worked with a relaxation factor ω = 1.5
and with 25 to 50 iterations. In practice this choice of parameters was sufficient
for small residues and visually good results.
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Total Variation Regularisation and Splines

With the examples given above we have a formal description for discrete regular-
isation and diffusion filters. The properties of leaving higher moments unchanged
already indicate that the filtering results are closely connected to polynomials.
In the special case of discrete regularisation with the `1-norm as penalising func-
tion, one can even formalise these connections [174, 175, 173]: It can be shown
that the results are discrete splines as described by Mangasarian and Schumaker
[130, 131]. In that sense, `1-regularisation yields discrete spline approximations
of the given data where the number and position of spline knots are determined
adaptively by the given data and the regularisation weight.

One can see that the knots can be found as contact points of a taut string
with fixed end points within a tube of width α around the discrete p-th integrand
of the initial data. For the minimisation procedure, one can use the very efficient
taut-string algorithm as introduced by Mammen and van de Geer [129]. Further
information about these so-called tube methods can be found in [54, 98].

There is no proof for similar properties in the case of the Perona-Malik diffu-
sivity: This case is more complicated to describe since the corresponding penaliser
is not convex and has an additional contrast parameter. However, the numer-
ical experiments in the next section indicate that with a suitable choice of the
scale parameter, one can also obtain results that can be segmented in – at least
approximately – polynomial regions.

2.2.5 Numerical Experiments

In this subsection we show results of higher order nonlinear diffusion filtering in
one and two dimensions with different orders.

In our first experiment, we consider a one-dimensional Gaussian signal and
filtering results for the orders two, four and six as displayed in Figure 2.11. For
2p-th order filtering with g(s2) = (1 + s2/λ2)

−1
the parameter λ is chosen such

that there are regions with |∂pxu| >
√

3λ. We have seen in Subsection 2.2.3 that
this is expected to yield backward diffusion, at least for the orders two and four.
While second order filtering yields enhancement of edges, the fourth order filtering
result tends to be piecewise linear with enhanced curvature at corner points. This
observation for fourth order filtering is further affirmed by the almost piecewise
constant derivative approximation of the filtering result also shown in Figure 2.11.
The sixth order filter behaves analogously yielding a piecewise quadratic signal
which can also be seen by its piecewise constant approximation of the second
derivative.

Together, this experiment corroborates the belief that Perona-Malik diffusion
with order 2p yields for an appropriate choice of the parameter λ a filtered sig-
nal which is polynomial of degree p − 1 on disjoint intervals. Experimentally
high values of the first or second order derivative of the initial signal determine
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Figure 2.11: Top left: Gaussian signal. Top right: Second order Perona-Malik
filtering. Second row: Left: Fourth order Perona-Malik filtering. Right: First
derivative of fourth order filtering result. Bottom left: Sixth order Perona-Malik
filtering. Bottom right: Second derivative of sixth order filtering result.
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Figure 2.12: Second order Perona-Malik filtering and edge enhancement. Top
left: Original image, 128 × 128 pixels. Top right: Second order Perona-Malik
filtering. Bottom: Corresponding gradient norms.

the location of the interval boundaries where the filtered signal is p − 2 times
continuously differentiable.

Our second experiment shows that a similar adaptive behaviour is also possible
in two dimensions. The Figures 2.12 and 2.13 show some plots where an image is
seen as surface in the three-dimensional space, and the grey values determine the
z component. In Figure 2.12 we see the original image and the result for edge-
enhancing Perona-Malik filtering. To better visualise the edge-enhancement, the
norm of the gradient is displayed for both the original and filtered image.

Similar results can be seen for fourth order filtering, too: Figure 2.13 displays
the same original image and a filtered version with fourth order Perona-Malik
filtering. Here the relevant feature is not the gradient norm, but the Frobenius
norm of the Hessian. We see that this norm becomes zero almost everywhere.
There are only some lines in the image where the Hessian norm even is increased.
At these lines the curvature is enhanced strongly.

Let us now show the results of some denoising experiments. For the first
experiment, we use the test image already used in Figure 1.1. For better visibil-
ity, we only display a section of size 128 × 128 pixels, but all calculations have
been performed with the whole images. We compare the results for second and
fourth order nonlinear diffusion to see if higher order filters are in fact helpful to
avoid staircasing. We have used semi-implicit schemes for all filters. Figure 2.14
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Figure 2.13: Fourth order Perona-Malik filtering and piecewise linearity. Top left:
Original image, 128× 128 pixels. Top right: Fourth order Perona-Malik filtering.
Bottom: Corresponding Frobenius norms of the Hessian.

shows the corresponding results for the regularised total variation diffusivity. As
regularisation parameter we have used λ = 0.01, and experiments with smaller
values have shown that the results show no visible or measurable changes. The
results have been optimised in order to minimise the `1- and `2-error. The re-
sulting error norms and parameters can be found in Table 2.2. The second-order
filtering results show staircasing artifacts. In the fourth-order case, minimising
the `1-error leads to unsharp edges, while the smooth grey value transitions are
preserved well. With the gradient norm approximations, the staircasing for the
second order filtering is clearly visible, while the fourth order filter reconstructs
the linear grey value transition better. Using the Perona-Malik diffusivity, we
obtain the results shown in Figure 2.15. In general, we see that the edges are
much better preserved with this diffusivity. This is also reflected by smaller error
measures. It is interesting to see that for the Perona-Malik filter of second order,
comparably large values for λ are preferred: This indicates that the staircasing
is so strong for smaller values that it increases the error significantly. With the
larger values of λ we hardly see any staircasing here even for the second order
filter. Nevertheless, the linear grey value transitions are still better recovered
with the fourth order method.

The second denoising experiment deals with the real-world test image shown
in Figure 2.16. The optimal results in terms of the `1- and `2-error for second and
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Figure 2.14: Denoising results for regularised total variation diffusivity g(s2) =
(s2 +λ2)−1/2 with λ = 0.01. Parameters optimised for minimal `1-error. Top row:
Second order nonlinear diffusion. Bottom row: Fourth order nonlinear diffusion.
Left column: Sections of size 128 × 128 pixels of the results. Right column:
Corresponding approximation of the gradient norm.
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Figure 2.15: Denoising results for Perona-Malik diffusivity g(s2) = (1+ s2/λ2)−1.
Parameters optimised for minimal `1-error. Top row: Second order nonlinear
diffusion. Bottom row: Fourth order nonlinear diffusion. Left column: Sections of
the filtering results. Right column: Corresponding approximation of the gradient
norm.



2.3. HIGHER ORDER DATA TERMS 73

method Error in `1-norm Error in `2-norm
error λ t error λ t

original image 1047936 – – 5132.04 – –
reg. TV 2 139950 0.01 15.75 937.94 0.01 20.75
reg. TV 4 144715 0.01 43.00 1329.45 0.01 16.00

PM 2 115503 7.76 12.50 749.31 7.34 12.50
PM 4 75944.4 0.20 9274.00 682.63 0.20 10483.00

Table 2.2: Error measures for artificial denoising example with regularised total
variation (reg. TV) and Perona-Malik (PM) diffusivities with orders two and
four.

Figure 2.16: Real-world test image. Left: Original image, 256×256 pixels. Right:
With additive Gaussian noise, standard deviation σ = 10.

fourth order Perona-Malik diffusion can be found in Figure 2.17. Again we only
display sections of size 128×128 pixels for better visibility of the differences. For
this real-world image, we see that the visible differences are mostly concentrated
on the edges: With fourth order diffusion, the edges contain less noise and seem
a bit smoother and more natural. This is also reflected by smaller error norms,
as it can be seen in Table 2.3.

2.3 Higher Order Data Terms

So far, we have only considered the use of derivatives in the smoothness term of
the energy function.

In variational optic flow computation, it is very helpful to use higher deriva-
tives not only in the smoothness term, but also in the data term [151]. In that
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Figure 2.17: Denoising of for real-world data with Perona-Malik diffusivity
g(s2) = (1 + s2/λ2)−1. Top row: Second order nonlinear diffusion. Bottom row:
Fourth order nonlinear diffusion. Left column: Results with optimal `1-error.
Right column: Results with optimal `2-error.

method Error in `1-norm Error in `2-norm
error λ t error λ t

original image 523968 – – 2566.02 – –
PM 2 197919 3.90 8.00 1143.16 3.90 8.25
PM 4 195667 1.36 47.00 1112.91 1.79 28.50

Table 2.3: Error measures for real-world denoising example with Perona-Malik
(PM) diffusivities and diffusion orders two and four.
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context, this models the assumption that not only the grey values of the cor-
responding pixel itself, but also their first or second derivative stay constant in
time during the motion. As experimental results show, this can be very helpful
to cope with changes in illumination from frame to frame.

2.3.1 Modelling

The idea to use derivatives in the data term can also be adapted to image pro-
cessing: For example, one can penalise not only the quadratic difference between
the restored and the initial image, but also the difference of their gradient or of
higher derivatives. In [59] discrete analoga to the energy functional

E (u) =

∫
Ω

(
(u− f)2 + α |∇u−∇f |2 + β

(∑
|γ|=2

wγ|Dγu|2
) 1

2
)
dx (2.66)

are investigated. Similar to TV regularisation [174, 175], one obtains a spline
character of the solutions also in this case. The difference is that here we have
discrete splines with defect. The numerical examples shown in [59] clearly indi-
cate that this procedure can yield qualitatively better results than standard TV
methods. This can be made plausible by the fact that the defects give the splines
more freedom to adapt to non-smooth features of the data which can be especially
helpful for edge preservation, for example. A modified version of Chambolle’s al-
gorithm [33] is introduced in [59] to solve the minimisation problems.

Here, we will present a slightly more general model involving a combination
of several higher order data terms. Two possibilities for the numerical imple-
mentation will be described in the context of the methods shown in the previous
section.

Let us first describe the general idea: We demand similarity in all derivatives
up to a certain order p − 1 and smoothness or order p. In 1-D, a corresponding
energy functional looks like:

E (u) =

∫
Ω

( p−1∑
k=0

wk(u
(k) − f (k))2 + wp Ψ((u(p))2)

)
dx . (2.67)

Let us assume that our initial data f and the solution u are sufficiently smooth,
and let the integrand of the energy functional be small at one pixel x0. This
means that the function itself and its partial derivatives up to order p − 1 are
similar to the given data at the position x0. For all points in a neighbourhood of
x0, this can be interpreted as similarity in terms of the Taylor expansion around
x0:

u(x) =

p−1∑
k=0

1

k!
u(k)(x0)(x− x0)

k +
1

p!
u(p)(θ)(x− x0)

p
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≈
p−1∑
k=0

1

k!
f (k)(x0)(x− x0)

k +
1

p!
u(p)(θ)(x− x0)

p +
1

p!
f (p)(θ2)(x− x0)

p

≈ f(x)

with θ, θ2 between x0 and x. The smoothness term penalises high values of
the derivative u(p) and thus helps to make one of the error terms in the above
calculation smaller. With this reasoning, such an approach uses the derivatives in
the data term to favour a higher degree of similarity in a whole neighbourhood.
This explains why it can better adapt to characteristic features of the data.

The higher order data terms were mentioned here to sketch a promising direc-
tion how to design more general filters within the variational and PDE framework.
In the following subsection, we are going to describe two ways how to discretise
and implement such methods and show some numerical examples.

2.3.2 Discretisation and Numerical Experiments

A discrete version of the one-dimensional energy functional (2.67) with higher
order data terms can be formulated as

E(u) =

p−1∑
r=0

Mk∑
i=1

wr(Dru−Drf)2
i + wp

Mp∑
i=1

Ψ((Dpu)
2
i ) . (2.68)

Here, the matrices Dr implement derivative approximations of order k as de-
scribed in the last section. Since these matrices usually are not quadratic, Mr

denotes the dimension of the range of Dr. In particular, we set D0 := I, M0 = N ,
and w0 = 1. A necessary condition for a minimiser of E is given by

0 =

p−1∑
r=0

DT
r Dr(u− f) + wpD

T
p ΦDp(u)Dpu (2.69)

where we use the notations for ΦDp(u) as in the previous section. Let us now
sketch two ways how to solve this equation:

First, one can understand it as the steady state of the partial differential
equation

∂tu = −
p−1∑
r=0

DT
r Dr(u− f)− wpD

T
p ΦDp(u)Dpu (2.70)

for t tending to ∞. In the continuous framework, the equivalent to this equations
would be a generalised diffusion-reaction equation. A simple explicit discretisa-
tion for (2.70) is given by

uk+1 = uk − τ

p−1∑
r=0

DT
r Dr(u

k − f)− τwpD
T
p ΦDp(u

k)Dpu
k . (2.71)
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The disadvantage of this discretisation is that we need to calculate the steady
state, and thus we need very large stopping times t.

We can rewrite (2.69) as

p−1∑
r=0

wrD
T
r Dr(u− f) = −wpDT

p ΦDp(u)Dpu . (2.72)

Under the assumption that all our weights wr are positive, this is equivalent to

u− f

wp
= −

(
p−1∑
r=0

wrD
T
r Dr

)−1

DT
p ΦDp(u

k)Dpu
k (2.73)

For this equivalence, note that D0 = I and that DT
r Dr is positive semidefinite

for all r. Thus the matrix
∑p−1

r=0 wrD
T
r Dr is positive definite and invertible. With

the approaches discussed in the previous section this equation is related to the
iterative scheme

uk+1 = uk − τ

(
p−1∑
r=0

wrD
T
r Dr

)−1

DT
p ΦDp(u

r)Dpu
k . (2.74)

Since we have set w0 = 1, we know that the eigenvalues of
∑p−1

r=0 wrD
T
r Dr are real

and larger or equal to 1. This means that the eigenvalues of its inverse are in the
interval [0, 1]. This means that the scheme is stable with respect to the `2-norm
with the same limits for the time step size τ as calculated in Proposition 2.24 for
nonlinear diffusion of order 2p. With Example 2.26, we have to choose

τ ≤ h2p∑
s∈R g(s)2

2p−1
.

The scheme (2.74) can be seen as an explicit discretisation of higher order
nonlinear diffusion where the right-hand side is smoothed by an implicit diffusion
step of all lower orders. In other words, the difference between two iteration
steps of higher order nonlinear diffusion is smoothed by linear diffusion of lower
orders. Besides one way of implementing higher order data terms, this also offers
an alternative interpretation for them.

To conclude this section, we display a denoising example with higher order
data terms. We have used a two-dimensional analogon to the second discretisation
method (2.74) described above. Figure 2.18 displays the resulting images and the
corresponding gradient norms. The parameters and error measures are shown
in Table 2.4. The case w1 = 0 is the fourth order regularised total variation
diffusion described in the previous section. In practical experiments it turned
out that Perona-Malik filtering usually could hardly be improved by the higher
order data terms: The edges are preserved well with this penaliser without adding
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Figure 2.18: Filtering with fourth order regularised total variation and higher or-
der data terms. Top left: Without higher order data term. Top middle: Weight
w1 = 5. Top right: w1 = 10. Bottom row: Corresponding gradient norm approx-
imations.

further constraints to the data term. Thus we focus on regularised total variation
examples since they have shown quite blurred edges in Figure 2.14. We see that
the higher order data terms can be helpful to sharpen the edges in this case. This
is in accordance with the results presented in [59]. The error measures also reflect
the quality enhancement in comparison with regularised total variation filtering.

2.4 Summary

In this chapter, we have discussed variational techniques and corresponding PDE
methods for simplification and denoising with a special emphasis on the use of
higher and fractional order derivatives.

For linear filtering, we have used linear combinations of fractional powers of
the Laplacian in the smoothness term. This choice was made because the corre-
sponding pseudodifferential equations are closely connected to semi-groups and
thus satisfy an important property of linear scale-spaces. In fact, we have con-
sidered an extension of the classical α-scale-spaces [69] for orders α > 1 and for
combinations of several orders. Usually the restriction 0 < α ≤ 1 was made in
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method `1-error `2-error λ t
original image 523968 2566.02 – –

w1 = 0 144715 1625.33 0.01 9274.00
w1 = 5 146557 1234.98 0.10 199.86
w1 = 10 138842 1229.22 0.01 534.65

Table 2.4: Error measures for artificial denoising example with regularised total
variation and higher order data term.

the literature to obtain a maximum-minimum principle. Experimentally we could
show that this desirable property can also be achieved by considering a combi-
nation of two orders instead of one single order. Necessary for these experiments
was a discrete description of the regularisation and diffusion methods. We have
further performed experiments to quantify the variance-diminishing properties of
our regularisation and diffusion framework.

In the second section, we have turned our attention from linear filtering meth-
ods to nonlinear ones to have useful properties such as edge preservation and en-
hancement. To obtain necessary conditions for the variational problems arising
here, we have first applied some methods from the calculus of variations. We
have defined a general framework for higher order nonlinear regularisation where
all partial derivatives of a given order p are involved in the smoothness term. A
motivation for this is the fact that for an `1-penaliser, one obtains spline approx-
imations as solution [175]. Here, we have focused rather on the corresponding
higher order diffusion equations: In terms of forward-backward diffusion, one can
see that also higher order filters can not only lead to feature preservation, but also
feature enhancement. We have derived stability properties and the preservation
of higher moments in the continuous and discrete setting. Numerical experiments
have shown that also for the Perona-Malik case solutions can be split in regions
where they are approximately of polynomial character. For denoising examples,
we have seen that higher order filters can improve the quality of the results.
Compared to the regularised total variation diffusivity, using diffusivities with
forward-backward behaviour as the Perona-Malik diffusivity has the advantage
of better edge preservation with higher order filters, too.

As generalisation of this methods, we have taken a look at variational methods
whose data terms involve the function and its derivatives. These methods seem
to be promising by leading to a better adaptation of the solution to important
image features. They can improve the denoising quality compared to fourth order
regularised total variation filtering.
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Chapter 3

Wavelet Shrinkage and
Integrodifferential Equations

In the last chapter, the focus was on derivative-based regularisation methods
and general diffusion-type evolution equations. This chapter now gives relations
between similar derivative-based approaches and wavelet shrinkage.

So far, the relations between wavelet shrinkage and nonlinear diffusion equa-
tions have been fairly well-understood in the single-scale case. We are going to
extend these results to the practically relevant multiscale setting here. Multiscale
wavelet shrinkage is related to novel integrodifferential equations which differ from
nonlinear diffusion by the fact that all appearing derivatives are smoothed with
convolution kernels. An integration over all scales makes sure that there is no
preferred scale during filtering. Furthermore, the convolution-based smoothed
derivative operators can be expressed as pseudodifferential operators by power
series of differential operators. This makes a formulation without convolutions
possible.

In the first section, we consider wavelet shrinkage on one-dimensional func-
tions. This allows us to consider arbitrary translations and dilations of the
wavelets. The discrete variant working on signals and two-dimensional images
is discussed in Section 3.2. Most of the results in the first section can be re-
formulated in the discrete setting. However, the scaling operations on kernels
require a slightly more technical background here. Section 3.3 gives a summary
and concludes this chapter.

3.1 Relations in the Continuous Setting

In this section, we consider wavelet shrinkage in the practically relevant multiscale
setting. For the sake of simplicity, we focus on one-dimensional signals and we
analyse the continuous shrinkage framework first. The key observation exploited
here is the fact that, for wavelets with a finite number of vanishing moments, the

81
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wavelet transform can be understood as applying a smoothed derivative operator
[128, p. 167]. Thus, wavelet shrinkage on a single scale is closely related to a
diffusion type equation where all appearing spatial derivatives are regularised
with a convolution kernel. Going from a single scale to multiple scales introduces
a further integration, yielding a novel integrodifferential equation derived from
wavelet shrinkage. Moreover, we express convolution with a smoothing kernel by a
power series of differential operators. This allows us to regard multiscale wavelet
shrinkage as an averaging of pseudodifferential equations over a continuum of
scales. These results make the analytical reasons for the differences between
continuous multiscale wavelet shrinkage on one side and nonlinear diffusion and
its corresponding variational regularisation on the other side explicit: They are
caused by the presence of additional integration scales, smoothing operators and
differential operators of higher order.

This section is organised as follows: Subsection 3.1.1 introduces some useful
notations and summarises the classical continuous wavelet shrinkage approach as
we will need it here. The idea of understanding wavelets as smoothed derivative
operators, which is crucial for the remainder of this whole chapter, is explained
in Subsection 3.1.2. With this knowledge, Subsection 3.1.3 describes how wavelet
shrinkage can be interpreted as approximation to a novel integrodifferential evolu-
tion equation. In Subsection 3.1.4 we are going to present a corresponding energy
functional that uses both smoothed derivative operators within the penaliser and
integration over all scales. The link to pseudodifferential operators is discussed
in Subsection 3.1.5.

3.1.1 Wavelet Shrinkage

This subsection makes the ideas behind wavelet shrinkage already sketched in
Section 1.3 precise in a suitable way for our further considerations.

Before we formulate continuous wavelet shrinkage, let us give an introduction
to the formal notions related to wavelets which will be used here. In this and
the following three sections, we consider signals as real functions f, u ∈ L 1(R).
We choose a real function ψ ∈ L 1(R) ∩L 2(R), the mother wavelet, which has
to satisfy the admissibility condition [52, p. 27]

cψ := 2π

∫ ∞

0

|ψ̂(ξ)|2

ξ
dξ < ∞ . (3.1)

Here, the Fourier transform is defined as

ψ̂(ξ) = Fψ(ξ) :=
1√
2π

∫ ∞

−∞
ψ(x) exp(−ixξ) dx .

To simplify the notation let ψσ and ψ̃ be scaled and mirrored versions of ψ,
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respectively, i. e.

ψσ(x) :=
1

√
cψσ

ψ
(x
σ

)
and ψ̃(x) := ψ(−x) (3.2)

for σ > 0. By f ∗ g we denote the convolution of two functions f, g ∈ L 1(R):

(f ∗ g)(x) =

∫ ∞

−∞
f(x− τ)g(τ) dτ for all x ∈ R . (3.3)

If a function f(x, y) depends on more than one variable we replace the variable
in which the convolution is performed with a dot, for example

(f(·, y) ∗ g) (x) =

∫ ∞

−∞
f(x− τ, y)g(τ) dτ for all x, y ∈ R . (3.4)

This notations help us to write down wavelet shrinkage [194, 65] in an easy
way. Wavelet shrinkage transforms the data in a suitable representation and
performs simple nonlinear operations. The back-transform finally yields the de-
noising result. Let us now formulate these three steps in detail:

1. Analysis: First the given function f is transformed into the wavelet do-
main. With the notations introduced above we can write the wavelet trans-
form as

Wψf(x, σ) :=
1
√
cψ

∫ ∞

−∞
f(τ)

1√
σ
ψ

(
τ − x

σ

)
dτ =

(
ψ̃σ ∗ f

)
(x) . (3.5)

Thus this step can be seen as convolution with scaled and mirrored versions
of the mother wavelet.

2. Shrinkage: A – typically nonlinear – shrinkage function S : R −→ R is
applied to the wavelet transform Wψf . Usually it is assumed that this
shrinkage function diminishes the absolute value of the wavelet coefficients
without changing their sign. Reasonable assumptions on S are thus

x > 0 =⇒ S(x) ≥ 0 , S(−x) = −S(x) , and |S(x)| ≤ |x| (3.6)

for all x ∈ R. Usually S depends on a parameter λ which determines
the amount of shrinkage. This parameter is omitted here to simplify the
notations. Examples of typical shrinkage functions can be found in Table
3.1.

3. Synthesis: As final step, the shrunken wavelet transform S ◦ Wψf has to
be transformed back into the spatial domain to yield the resulting function
u of the shrinkage. It should be mentioned that the wavelet transform W
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is an isometric mapping from L 2(R) to L 2(R × R+
0 ), equipped with the

inner product

〈f, g〉 :=

∫ ∞

−∞

∫ ∞

0

f(x, σ) ḡ(x, σ)
dσ

σ2
dx (3.7)

where ḡ is the complex conjugate of g. Thus, on the subspace given by
the image of Wψ, the adjoint operator W∗

ψ is the inverse of Wψ. We show
several ways to formulate the back-transform at the example of the shrunken
coefficients:

u = W∗
ψ(S ◦Wψf) (3.8)

=

∫ ∞

0

(
ψσ ∗ S(Wψf(·, σ))

) dσ

σ2

=
1
√
cψ

∫ ∞

−∞

∫ ∞

0

S(Wψf(τ, σ))
1√
σ
ψ

(
· − τ

σ

)
dσ

σ2
dτ .

The convergence of these integrals should be understood in the weak sense,
see [52, p. 25]. In the following sections we will mostly refer to the following
formulation:

u =

∫ ∞

0

(
ψσ ∗ S(ψ̃σ ∗ f)

) dσ

σ2
. (3.9)

Note that besides the convolution with ψσ, the back-transform also intro-
duces an integration over all scales σ.

This formulation for wavelet shrinkage will be the starting point for our con-
siderations in the following.

3.1.2 Wavelet Transforms as Smoothed Derivative Oper-
ators

In Section 3.1.1 we have introduced the wavelet shrinkage technique with an
arbitrary mother wavelet ψ. Now we restrict our choice to a certain class of
wavelets in order to relate the corresponding wavelet transform to smoothed
derivative operators.

First we assume that the mother wavelet ψ has fast decay, i. e. for any expo-
nent m ∈ N there exists a constant cm such that

|ψ(x)| ≤ cm
1 + |x|m

for all x ∈ R . (3.10)

For the rest of this section, we focus on wavelets with a finite number p ∈ N\{0}
of vanishing moments:∫ ∞

−∞
xkψ(x) dx = 0 for 0 ≤ k < p . (3.11)
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It is well-known [128, p. 167] that these assumptions are equivalent to the exis-
tence of a function θ with fast decay such that

ψ(x) = (−1)p
dp

dxp
θ(x) . (3.12)

Moreover, ψ has no more than p vanishing moments if and only if θ has nonzero
mean value, i. e.

∫∞
−∞ θ(x) dx 6= 0. In our further considerations, this function θ

will play the role of a smoothing kernel. Keeping this in mind it makes sense to
consider the maximal number of vanishing moments for a certain wavelet which
gives a natural choice of the corresponding derivative order.

Example 3.1 (Wavelets and Smoothing Kernels)
Figure 3.1 gives two examples of wavelets that are often used in image processing
together with their corresponding derivative orders and smoothing kernels. It
can be seen that the Haar wavelet is the first derivative of a hat-shaped function.
We see that this hat function has a negative sign which is not typical for a
convolution kernel. Since we only use the absolute value of the convolution result
or use the convolution and its adjoint operator after each other, this negative
sign does not change the results in our applications. The above cited theorem
does not make a statement about the sign of the kernels, and so we can not
expect it to be positive. The second classical example is the Mexican hat wavelet
which is defined as the second derivative of a negative Gaussian kernel. Examples
of wavelets with a higher number of vanishing moments include the Daubechies
wavelets [52]. All the wavelet classes mentioned here are also of fast decay, the
Mexican hat wavelet because of its exponential decreasing velocity, and the others
because of their compact support. We are going to see more examples for wavelets
and their corresponding smoothing kernels in the next section.

So far, we have seen the relation (3.12) between the mother wavelet and the
smoothing kernel. It is not difficult to verify the following equations for scaled
and mirrored versions of the wavelet:

ψ̃σ ∗ f = σp ∂px

(
θ̃σ ∗ f

)
= σp (θ̃σ)

(p) ∗ f (3.13)

and
ψσ ∗ f = (−σ)p ∂px (θσ ∗ f) = (−σ)p (θσ)

(p) ∗ f . (3.14)

As an elementary property of the convolution, one can also put the derivative in
front of the function f , if the regularity of f allows for this. If this is not the case
one can motivate the smoothing with the kernel θ as regularisation of the p-th
derivative of f .

Equation (3.13) shows that the wavelet transform is equivalent to taking a
smoothed derivative with an additional weight factor σp:

Wψf =
(
ψ̃σ ∗ f

)
= σp ∂px

(
θ̃σ ∗ f

)
. (3.15)
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Figure 3.1: Examples of wavelets as derivatives of smoothing kernels.

For the back-transform, an additional integration over all scales σ is introduced:

W∗
ψf =

∫ ∞

0

(ψσ ∗ f)
dσ

σ2
=

∫ ∞

0

(−σ)p ∂px (θσ ∗ f)
dσ

σ2
. (3.16)

These two equations will form the basis for relating wavelet techniques to deri-
vative-based methods.

3.1.3 Wavelet Shrinkage and Evolution Equations

In this section, we are going to relate wavelet shrinkage as given in Subsection
3.1.1 to novel integrodifferential evolution equations involving the data on a con-
tinuous spectrum of scales.

We remember the prototype (1.17) of an evolution equation:

∂tu = L∗
(
g
(
|Lu|2

)
Lu
)
. (3.17)

In principle we will study this in the case that L = Wψ is the wavelet transform.
Additionally we are going to argue that the time-discrete shrinkage steps can
be seen just as an approximation to a time-continuous evolution. The ideas we
follow here are adapted from [140] where similar relations have been considered
in the discrete setting on the finest scale.

We start with writing down one step of wavelet shrinkage as given in Section
3.1.1:

u =

∫ ∞

0

(
ψσ ∗ S(ψ̃σ ∗ f)

) dσ

σ2
. (3.18)
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Now we choose a function g such that

S(x) = x− τg(|x|2)x , (3.19)

where τ > 0 has the meaning of a time step size. During the further steps we are
going to see immediately why this choice makes sense. The function g is going to
play the role of a diffusivity function in the following considerations. Under the
assumptions (3.6) it follows that 0 ≤ g(|x|2) ≤ 1/τ . This range is in accordance
with stability requirements that do not allow negative diffusivities. We have seen
in the last chapter that limiting the product of diffusivity and time step size from
above by 1 is a very helpful normalisation in image analysis.

Plugging (3.19) into the wavelet shrinkage formula (3.18) yields

u =

∫ ∞

0

(
ψσ ∗ ψ̃σ ∗ f

) dσ

σ2
(3.20)

− τ

∫ ∞

0

(
ψσ ∗

(
g(|ψ̃σ ∗ f |2)(ψ̃σ ∗ f)

)) dσ

σ2
.

The first integral is simply the wavelet reconstruction formula which results in
the initial data f . Therefore this expression is equivalent to

u− f

τ
= −

∫ ∞

0

(
ψσ ∗

(
g(|ψ̃σ ∗ f |2) (ψ̃σ ∗ f)

)) dσ

σ2
. (3.21)

Now the next step is to involve the ideas from Subsection 3.1.2 to regard
wavelets as smoothed derivative operators. Using (3.15) and (3.16) we obtain
the following equivalent formulation of wavelet shrinkage as integrodifferential
equation:

u− f

τ
= (−1)p+1

∫ ∞

0

σ2p ∂px θσ ∗
(
g(|σp ∂px θ̃σ ∗ f |2)(∂px θ̃σ ∗ f)

) dσ

σ2
. (3.22)

Let us now relate this process to nonlinear diffusion filtering. Similar to
the approach already sketched in Subsection 1.2.2 we now introduce an artificial
time variable t for the function u such that the initial data is given at time t = 0:
u(·, 0) = f . It is possible to write the left-hand side as u(x)−f(x)

τ
= u(x,τ)−u(x,0)

τ

with time step size τ . Keeping this in mind, (3.22) can be understood as a single
step time-explicit approximation to the evolution equation

∂tu = (−1)p+1

∫ ∞

0

σ2p ∂px θσ ∗
(
g(|σp ∂px θ̃σ ∗ u|2)(∂px θ̃σ ∗ u)

) dσ

σ2
. (3.23)

Interpretation. If we compare (3.23) to the higher order nonlinear diffusion
equation (2.36) introduced as Example 2.18

∂tu = (−1)p+1 ∂px

(
g
(
|∂pxu|2

)
∂pxu
)
,

we notice two differences:
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1. All appearing derivative operators in the equation are presmoothed by con-
volution with scaled and mirrored versions of a kernel θ.

2. The right-hand side is not only considered at one single scale, but there is
an integration over all scales with additional weight factors.

We are going to see in the next section that these two steps can also be used to
turn classical variational methods into wavelet-based ones.

Let us now take a closer look at the relation between shrinkage functions and
diffusivities introduced by (3.19):

Remark 3.2 (Shrinkage Functions and Diffusivities)
Table 3.1 shows some corresponding pairs of shrinkage functions S and diffu-
sivities g. We observe that several practically used shrinkage functions lead to
well-known diffusivities. An interesting case is for example soft wavelet shrinkage
[194] that corresponds via (3.19) to a total variation (TV) diffusivity [4] which
is regularised for small parameters where it would become unbounded. A simi-
lar regularisation for small parameters appears in the balanced-forward-backward
(BFB) diffusivity [109] corresponding to garrote shrinkage [85]. With the Perona-
Malik diffusivity [154] and the diffusivity related to the regularisation approach
of Charbonnier et al. [39] we also give two examples where we start with classical
diffusivities and calculate corresponding shrinkage functions.

We have seen how wavelet shrinkage can be related to integrodifferential equa-
tions. In the next section we consider regularisation approaches and investigate
how these can be related to variational formulations for wavelet shrinkage.

3.1.4 Variational Methods and Correspondences

Instead of starting with the classical wavelet shrinkage approach, we now adapt
the variational formulation to extend our understanding of the similarities. Such
variational formulations using wavelets have been studied in [34, 35, 14], for
example. Usually they work with orthogonal wavelet representations which has
the advantage that the wavelet coefficients are independent: The minimisation
problems come down to minimisation of real functions.

Let us formulate an approach for wavelet shrinkage using the prototype for
variational image simplification methods (1.14). Here we consider the case that
L is the wavelet transform as introduced in Subsection 3.1.1, so we have Γ =
R × R+

0 and integrate with the corresponding weight. Thus we formulate an
energy functional for wavelet shrinkage as

E (u) =

∫ ∞

−∞
(u− f)2 dx + α

∫ ∞

−∞

∫ ∞

0

Ψ
(
|Wψu(x, σ)|2

) dσ

σ2
dx . (3.24)
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shrinkage S(x) g(|x|2) diffusivity

linear λx
1− λ

τ
Linear [102]

hard [128]
0, |x| ≤ λ
x, |x| > λ

1
τ
, |x| ≤ λ

0, |x| > λ

soft [194]
0, |x| ≤ λ
x− λ sgn(x), |x| > λ

1
τ
, |x| ≤ λ

λ
τ |x| , |x| > λ

≈ TV [4, 158]

garrote [85]
0, |x| ≤ λ

x− λ2

x
, |x| > λ

1
τ
, |x| ≤ λ

λ2

τ x2 , |x| > λ
≈ BFB [109]

x3

λ2 + x2

1

τ

(
1 +

x2

λ2

)−1

Perona-Malik
[154](

1−
√

λ2

λ2 + x2

)
x

1

τ

(
1 +

x2

λ2

)− 1
2

Charbonnier [39]

Table 3.1: Shrinkage functions and corresponding diffusivities. Adapted from
[140].

Replacing the wavelet transform operator by its convolution formulation, this
functional reads as

E (u) =

∫ ∞

−∞
(u− f)2 dx + α

∫ ∞

−∞

∫ ∞

0

Ψ
(
|ψ̃σ ∗ u|2

) dσ

σ2
dx . (3.25)

The difference to the variational formulations presented in [34, 35, 14] is that we
have not sampled the scales and translations in the wavelet domain, but stay in
the continuous setting.

With (3.13) we can directly rewrite this energy functional as

E (u) =

∫ ∞

−∞
(u− f)2 dx + α

∫ ∞

−∞

∫ ∞

0

Ψ
(
|σp ∂px(θ̃σ ∗ u)|2

) dσ

σ2
dx (3.26)

which shows that we are indeed penalising a presmoothed derivative of our image
u. Again we see that the same two steps as in the last section lead to classical
regularisation approaches (1.3). First we leave out the integration over all scales
and obtain a variational functional

E (u) =

∫ ∞

−∞
(u− f)2 dx + α

∫ ∞

−∞
Ψ
(
|∂px (θ̃σ ∗ u)|2

)
dx . (3.27)
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A special case (n = 1) of this functional is given by (1.4) which has been consid-
ered by Scherzer and Weickert [165]. In our case a richer choice of convolution
kernels and higher derivative orders is allowed. The second step is to omit also
the convolution. This leads us directly to the classical regularisation functionals
(1.3).

By comparing these results with the last section, we see that the two ma-
jor differences between multiscale wavelet shrinkage and regularisation are the
same as between multiscale wavelet shrinkage and nonlinear diffusion: smoothed
derivative operators instead of derivatives, and weighted integration over all scales
instead of working at the finest scale.

3.1.5 Smoothing Kernels and Pseudodifferential Opera-
tors

So far, we have related wavelet shrinkage to integrodifferential equations which
involve convolutions with scaled and mirrored versions of the mother wavelet. In
this section, we express these convolutions as pseudodifferential operators. This
allows us to eliminate all integrals from (3.23) except the integration over all
scales. Instead of the convolutions, the equations then contain power series of
differential operators.

After introducing some notations and technical details, we are going to de-
scribe the general procedure. Then we apply this to examples for convolution
kernels, namely to a box function and a Gaussian kernel. As we have seen in
Subection 3.1.1, also the wavelet transform is a convolution and thus considered
after the first two examples. Since the Haar and the Mexican hat wavelet can
be written as derivatives of a hat function and a Gaussian, we can conclude the
section with these two popular examples of wavelets.

Let S (R) be the Schwartz space of rapidly decreasing functions [181, 182].
We consider the convolution θ ∗ f of a function f ∈ S (R) with a kernel θ ∈
L 1(R) ∩ L 2(R). It is well-known that convolution in the spatial domain is
equivalent to multiplication in the Fourier domain:

F(h ∗ f) =
√

2π ĥ · f̂ . (3.28)

Besides convolutions, also derivative operators are multiplications in the Fourier
domain, namely

F
(
d

dx
f

)
= iξf̂ . (3.29)

Let us assume that the Fourier transform of our convolution kernel θ is analytic,
i. e. there is a power series representation

θ̂(ξ) =
∞∑
k=0

ak ξ
k . (3.30)
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For f ∈ S (R) we can understand the product θ̂ · f̂ as a sum of derivatives of f
up to arbitrary orders in the Fourier domain:

1√
2π

θ ∗ f = F−1(θ̂ · f̂) = F−1

(
∞∑
k=0

ak ξ
k f̂

)
. (3.31)

Under the assumption of sufficient convergence conditions of the power series,
we may interchange the sum and the Fourier back-transform which allows us to
write

F−1

(
∞∑
k=0

ak ξ
k f̂

)
=

∞∑
k=0

ak F−1(ξkf̂) =
∞∑
k=0

ak

(
1

i

d

dx

)k
f . (3.32)

In this context the symbol θ̂
(

1
i
d
dx

)
is used to denote this power series of differential

operators (see [182], for example):

θ̂

(
1

i

d

dx

)
f :=

∞∑
k=0

ak

(
1

i

d

dx

)k
f =

1√
2π

θ ∗ f . (3.33)

We reformulate this as the central equation

θ ∗ f =
√

2π θ̂

(
1

i

d

dx

)
f (3.34)

relating convolution to power series of derivatives. It is also well-known that
such a reasoning can be generalised from analytic functions to richer classes of
functions θ̂, for example continuous or measurable functions [181, 209].

After describing the general idea, let us now apply this to two examples of
convolution kernels:

Example 3.3 (Convolution with a Box Function)
A basic operation in image processing is to take the arithmetic mean inside a
symmetric neighbourhood of pixels. This can be understood as convolution with
the characteristic function of an interval

χ(x) := χ[− 1
2
, 1
2
](x) =

{
1, x ∈ [−1

2
, 1

2
]

0, else .
(3.35)

This function has the Fourier transform

χ̂(ξ) =
1√
2π

sinc

(
1

2
ξ

)
=

1√
2π

sin
(

1
2
ξ
)

1
2
ξ

=
1√
2π

∞∑
k=0

(−1)kξ2k

4k(2k + 1)!
. (3.36)

Thus we write the convolution with the box function χ as pseudodifferential
operator

χ ∗ f = sinc

(
1

2i

d

dx

)
f =

∞∑
k=0

1

4k(2k + 1)!

d2k

dx2k
f . (3.37)
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Example 3.4 (Convolution with a Gaussian Kernel)
As our second example, we take a look at the convolution with a Gaussian kernel,
since this operation is fundamental in image processing. It is well-known [182]

that the Fourier transform of a Gaussian kernel θ(x) = exp
(
−x2

2

)
is again a

Gaussian function θ̂(ξ) = exp
(
− ξ2

2

)
. With the above reasoning we then write

θ ∗ f =
√

2π exp

(
1

2

d2

dx2

)
f =

√
2π

∞∑
k=0

1

2kk!

d2k

dx2k
f . (3.38)

Writing down the first summands of this power series explicitly gives

θ ∗ f =
√

2π

(
f +

1

2

d2f

dx2
+

1

8

d4f

dx4
+

1

48

d6f

dx6
+ . . .

)
(3.39)

Similar formulations often appear in the context of linear scale-spaces and the
heat equation (see [143, 69, 182]). For example, Nielsen et al. [143] proposed to
express the Gaussian scale-space via minimisation of an energy functional with a
power series of derivatives in the smoothness term.

After these two examples, we now apply the idea to the convolution coming
from the wavelet transform.

General Wavelet Transform: We have seen in Subsection 3.1.1 how the
wavelet transform can be understood as convolution operator. Given a mother
wavelet ψ, the Riemann-Lebesgue theorem assures that its Fourier transform is
integrable, i. e. ψ̂ ∈ L 1(R). This allows us to use (3.34) and write

ψ ∗ f =
√

2π ψ̂

(
1

i

d

dx

)
f . (3.40)

For a wavelet transform we now need convolutions with translated and scaled
versions of the mother wavelet ψ which can be obtained in a general way. The
translation is simply the evaluation of ψ ∗ f at another point. For the scaled and
mirrored version a substitution shows that

(F ψ̃σ)(ξ) = −
√

σ

cψ
ψ̂(−σξ) . (3.41)

Together this means that we can write the wavelet transform as

Wψf(x, σ) = ψ̃σ ∗ f(x) = −

√
2πσ

cψ

(
ψ̂

(
−σ
i

d

dx

)
f

)
(x) (3.42)

and thus express it as pseudodifferential operator.
We will make this more explicit with the two examples of Haar and Mexican

hat wavelets:
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Example 3.5 (Haar Wavelet)
Here, we consider a shifted version of the Haar wavelet defined as

ψ(x) =


1 , −1

2
≤ x ≤ 0

−1 , 0 < x ≤ 1
2

0 , else .
(3.43)

This shift is not important since we only consider convolutions with this function,
and convolutions are shift invariant. The Haar wavelet is the first derivative of a
hat function

h(x) =

{
1
2
− |x| , |x| ≤ 1

2

0 , else .
(3.44)

A simple calculation shows that h can be written in terms of the box function χ
considered above, namely h = χ(2·) ∗ χ(2·). Together we have

ψ =
d

dx
(χ(2·) ∗ χ(2·)) . (3.45)

With (3.36) this implies in the Fourier domain

ψ̂(ξ) =
iξ

4
√

2π
sinc2

(
ξ

4

)
. (3.46)

Written as pseudodifferential operator the basic convolution of a Haar wavelet
transform looks as follows:

ψ ∗ f =
1

4

d

dx
sinc2

(
1

4i

d

dx

)
f . (3.47)

For the scaled version of ψ we can use (3.42). The power series looks as follows:

ψ̃σ ∗ f = −1

4

√
σ

cψ

d

dx
sinc2

(
−σ
4i

d

dx

)
f . (3.48)

With this equation we have expressed the wavelet transform with a Haar wavelet
at scale σ. The convolutions appearing in the back-transform are the same except
for the mirroring of the kernel.

Example 3.6 (Mexican Hat Wavelet)
The Mexican hat mother wavelet is given by the second derivative of a Gaussian
function with negative sign

ψ(x) = − d2

dx2
exp

(
−x

2

2

)
.

The Gaussian has already been considered in (3.38), so that we can directly give
the corresponding derivative operator

ψ ∗ f = −
√

2π
d2

dx2
exp

(
1

2

d2

dx2

)
f = −

√
2π

∞∑
k=0

1

2kk!

d2k+2

dx2k+2
f . (3.49)
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Again we consider scaled and mirrored versions since they appear as convolution
kernels in the wavelet transform:

ψ̃σ ∗ f =

√
2πσ

cψ

d2

dx2
exp

(
σ2

2

d2

dx2

)
f =

√
2πσ

∞∑
k=0

σ2k

2kk!

d2k+2

dx2k+2
f . (3.50)

We have used here that cψ = 1 for the mexican hat (see [120], for example). To
get an intuition of what happens here, we write the first summands of this sum
out and obtain:

ψ̃σ ∗ f =
√

2πσ

(
d2f

dx2
+
σ2

2

d4f

dx4
+
σ4

8

d6f

dx6
+
σ6

48

d8f

dx8
+ . . .

)
. (3.51)

These examples show that it is possible to reformulate the convolutions in
the integrodifferential evolution equation (3.23) as power series of differential
operators. This eliminates all integrations in this equation except for one: The
outer integral over all scales σ still remains.

From this point of view, the PDE methods described in Chapter 2 use very
crude approximations of these power series by taking only the first summand
and considering only one scale. In the previous example, this would lead to a
fourth order diffusion equation, since the first summand in (3.51) is the second
derivative of f .

3.2 Relations in the Discrete Setting

So far, we have studied wavelet shrinkage and corresponding integrodifferential
equations in the continuous one-dimensional setting. Let us now transfer the
results from the last section from the continuous to the discrete setting. Since
the dilation operation on the wavelets can only be approximated on a discrete
pixel grid, the formulation is a bit more technical here. Moreover, we will not
restrict ourselves to orthogonal wavelets, but also take a look at biorthogonal ones
allowing for more general integrodifferential equations. We are going to transfer
the one-dimensional case to two dimensions using tensor product wavelets and
special shrinkage rules to increase rotational invariance. Numerical experiments
will be shown to compare the resulting methods in terms of denoising quality.

3.2.1 Description of the Classical Methods

In this section, we define some necessary notations and review the classical meth-
ods of wavelet shrinkage and higher order nonlinear diffusion in the case of one-
dimensional discrete signals.
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Preliminaries and Notations

Definition 3.7 Let f ∈ `2(Z) := {(fn)n∈Z |
∑∞

n=−∞ f 2
n <∞} be a signal. Then

f̂(ω) :=
∞∑

n=−∞

fn exp(−inξ) and F (z) :=
∞∑

n=−∞

fnz
−n (3.52)

denote the Fourier- and the z-transform of f .

The importance of both transforms in this context mainly results from the fact
that they allow for an easy way to express convolutions as multiplications of
formal (trigonometric) Laurent series. Since we work with signals and filters of
finite length in practice, these series are in fact just finite sums or polynomials
(up to a shift by multiplication with a monomial exp(ijω) or zj). In the case of
signals with finite length, we are going to assume periodic boundary conditions
or periodic extension of the signals. For the z-transforms, we have to consider
the exponents modulo the number N of pixels in this case. In this setting,
convolutions are equivalent to circulant matrices (see [100], for example).

Definition 3.8 (Circulant Matrix)
Given a vector a ∈ RN , the corresponding circulant matrix is defined as

A :=


a0 a1 a2 . . . aN−1

aN−1 a0 a1 . . . aN−2

aN−2 aN−1 a0 . . . aN−3
...

...
...

. . .
...

a1 a2 a3 . . . a0

 ∈ RN×N .

Multiplying such a matrix with a vector f implements the discrete convolution
a ∗ f with periodic boundary conditions. Each circulant matrix can be written
as

A =
N−1∑
j=0

ajC
j where C :=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0


is the so-called basic circulant permutation matrix. Multiplication with C per-
forms a periodic left-shift of a vector.

In the following we will often use some vector a ∈ RN in connection with
its corresponding N -dimensional circulant matrix A =

∑N−1
j=0 ajC

j and its z-

transform A(z) =
∑N−1

j=0 ajz
−j.
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H1(z
−1) ↓ 2 ��

��
S ↑ 2 G1(z)

��
��

+

H0(z
−1) ↓ 2 ↑ 2 G0(z)

Figure 3.2: Filter bank for wavelet shrinkage on the finest scale.

Discrete Wavelet Shrinkage

Let us review the three steps of wavelet shrinkage in the discrete setting: Figure
3.2 shows the corresponding filter bank for wavelet shrinkage on the finest scale.

1. Analysis: In the analysis step, the initial signal is transferred to a wavelet
coefficient representation. This decomposition is done with the help of the
analysis filters h0 and h1 which can be obtained as scaling coefficients of
the corresponding scaling function. The filter h0 plays the role of a low-
pass filter, and h1 plays the role of the corresponding high-pass filter in this
context. In addition, both channels are sampled down by leaving out all
components with odd index. This is indicated in the filter bank with the
symbol ↓ 2.

2. Shrinkage: The wavelet coefficients of the signal are shrunken towards
zero in this step while the low-frequency components are kept. This is
modelled as applying a nonlinear shrinkage function S : R → R to each of
the wavelet coefficients.

3. Synthesis: In this step, the resulting signal is synthesised out of the
wavelet coefficients. First an upsampling is used by introducing zeros be-
tween each pair of neighbouring signal components. This is written as ↑ 2
here. For the synthesis, the filter pair g0 and g1 is used.

We note that the analysis filters h0 and h1 are mirrored in our notation. In
this figure, also up- and downsampling are included as it is used in classical
filter banks. It is well-known [192, 179, 128] that in order to make a perfect
reconstruction of the signal possible, the analysis and the synthesis filters have
to satisfy the following properties:

G0(z)H0(z
−1) +G1(z)H1(z

−1) = 2 and (3.53)

G0(z)H0(−z−1) +G1(z)H1(−z−1) = 0 . (3.54)

For filters with a finite length, one can further show (see [192, p. 120] or [128,
Theorem 7.9], for example) that there are numbers α 6= 0 and k ∈ Z such that

G0(z) =
2

α
z2k+1H1(−z−1) and G1(z) = − 2

α
z2k+1H0(−z−1) . (3.55)
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Figure 3.3: Filter bank for translational invariant wavelet shrinkage with multiple
scales using the algorithme à trous.

For simplicity, we assume without loss of generality that α = 2 and k = 0. This
gives us the simple relations between analysis and synthesis filters:

G0(z) = zH1(−z−1) and G1(z) = −zH0(−z−1) . (3.56)

It immediately follows that

H0(z) = zG1(−z−1) . (3.57)

These equations hold for the general biorthogonal case with filters of finite length.
In order to have orthonormal filters, we have the further requirement that

Gi(z) = Hi(z) for i ∈ {0, 1} (3.58)

which allows us to determine all four filters with one prototype.
In addition to the filter bank shown in Figure 3.2 we want to achieve trans-

lational invariance. This can be done by the algorithme à trous by Holschneider
et al. [99, 128] for which the corresponding filter bank is displayed in Figure 3.3.
Here, the up- and downsampling is left out, and for the synthesis, the result has
to be multiplied with 1/2 at each scale. We see that the analysis and synthesis
filters are made wider by inserting zeros in this algorithm. The algorithm as
shown in Figure 3.3 will be the basis for our considerations later on.

Let us first take a look at the discretisations of nonlinear diffusion which we
will need in this section.

Discrete Higher Order Nonlinear Diffusion

Here we use a discretisation of the nonlinear diffusion equation (2.36) as it has
been described in Example 2.26.

The domain Ω will be either the real axis or an interval Ω = [0, N − 1] for
N ∈ N here. In the case of an interval, we use periodic boundary conditions
u(x+N) = u(x) for all x ∈ R. To discretise the equations, we regard u ∈ RN as
a discrete sample on an equidistant grid Ωh with N pixels and spatial step size
1. As usual, the index set of the pixels is given by J = {0, . . . , N − 1}.
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To approximate the spatial derivatives in (2.36), we use a simple forward
difference as finite difference approximation of the first derivative which can be
expressed in matrix form as

D :=


−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . . . . . . . .
...

0 . . . 0 −1 1
1 0 . . . 0 −1

 (3.59)

We have already seen this matrix in (2.58) for h > 0 in the previous chapter.
Its z-transform is D(z) = z−1 − 1. The transposed matrix DT then has the
z-transform DT (z) = z − 1 and yields an approximation of the negated first
derivative with a backward difference.

For time discretisation we use a simple Euler forward scheme. The discrete
iterative scheme thus can be written as

u0 = f

uk+1 = uk − τ(DT )pΦDp(uk)Dpuk, k ∈ N . (3.60)

The diagonal matrix ΦDp(uk) := diag
(
g(|(Dpuk)j|)

)
j=0,...,N−1

stands for the mul-

tiplication with the nonlinear diffusivity function and follows the notation in the
last chapter.

3.2.2 Discrete Wavelets and Convolution Kernels

This subsection formulates the discrete counterparts to the ideas presented in
Subsection 3.1.2. We make the assumption that the wavelet has p vanishing mo-
ments io relate the wavelet transform to an approximation of the p-th derivative.
In the discrete setting, this condition reads as:

Definition 3.9 (Vanishing Moments)
A signal f ∈ `2(Z) is said to have p ∈ N vanishing moments iff

∞∑
n=−∞

nj fn = 0 for j ∈ {0, . . . , p− 1} and
∞∑

n=−∞

np fn 6= 0 . (3.61)

In the following, we will factorise the z-transform of a wavelet with p vanishing
moments such that we obtain a derivative approximation filter and a convolution
or smoothing kernel. Since the number of vanishing moments is directly connected
with regularity properties, such factorisations are often used in the design of
wavelets (see [52, 179, 128, 120], for example). It should also be noticed that the
number of vanishing moments of the filter coefficients is the same as the number
of (continuous) vanishing moments of the continuous wavelet function, see [128,
Theorem 7.4].
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Proposition 3.10 (Wavelet Filter Factorisation)
Let f ∈ `2(Z) be a filter with finite length and p vanishing moments. Then its
z-transform can be decomposed as

F (z) = (z − 1)pK(z) ,

where K is the z-transform of the corresponding filter k which will be understood
as smoothing kernel.

Proof: Since f has finite length, the Fourier transform f̂ ∈ C∞ is infinitely many
times differentiable. The j-th derivative of f̂ at the point 0 is then

f̂ (j)(0) = (−i)j
∞∑

n=−∞

nj fn (3.62)

which is the j-th moment of f times the nonzero constant (−i)j. Our assumption
about f then reads as f̂ (j) = 0 for j ∈ {0, . . . , p − 1}. This means the Fourier
transform of f is a trigonometric polynomial which has a zero of order p in 0.
Thus it can be factorised as

f̂(ξ) = (exp(iξ)− 1)pK(exp(iξ)) (3.63)

with a suitable (Laurent-) polynomial K. Replacing exp(iξ) by z directly yields
the desired factorisation F (z) = (z − 1)pK(z) of the z-transform. �

With the help of this proposition, we can understand the convolution with
a wavelet as derivative approximation of a presmoothed signal. We remember
that z − 1 is the z-transform of the finite difference matrix DT approximating
the negated first derivative. Thus (z − 1)p can be used as approximation of
(−1)p times the p-th derivative. This reasoning of understanding the wavelet
as derivative of a smoothing kernel is in accordance with the approach in the
last section and in [62]. For details on such factorisations, see [128, Section 7.2]
for orthogonal wavelets and [128, Section 7.4.2] for the biorthogonal case, for
example. Let p and q be the number of vanishing moments of our analysis and
synthesis highpass filters H1 and G1. Then Proposition 3.10 allows us to write
the filters as

H1(z) = (z − 1)pKH(z) and G1(z) = (z − 1)qKG(z) (3.64)

where KH and KG are the z-transforms of two smoothing kernels kH and kG

of the synthesis and analysis wavelet. For orthogonal wavelets, we simply have
KH(z) = KG(z) and p = q. With the two relations (3.56) and (3.57) between
low- and highpass we see that for the lowpass filters H0 and G0, the following
relations hold:

H0(z) = (−1)q z(z−1 + 1)qKG(−z−1) (3.65)

G0(z) = (−1)p z(z−1 + 1)pKH(−z−1) (3.66)
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To make these formulae a bit more intuitive, let us now give some examples of
how the kernels KH and KG look like for commonly used wavelets on the finest
scale:

Example 3.11 (Discrete Wavelets and Convolution Kernels)
Haar Wavelet: For the discrete Haar wavelet, we have H1(z) = 1√

2
(z− 1). The

kernel on the finest scale is in this case just a scalar factor KH(z) = 1√
2
.

Daubechies Wavelets: The Daubechies wavelet [52] with p = 2 is represented
by the filter

H1(z) =
1

4
√

2

(√
3− 1 + (3−

√
3)z − (3 +

√
3)z2 + (1 +

√
3)z3

)
(3.67)

which can be factorised as H1(z) = (z − 1)2KH(z) leading to

KH(z) =
1

4
√

2

(√
3− 1 + (

√
3 + 1)z

)
. (3.68)

Let us shortly say a few words about the differences between this idea and
previously sketched approaches for the relation between shrinkage on the finest
scale and nonlinear diffusion:

Remark 3.12 (Differences to Previous Approaches)
In contrast to this idea, Weickert et al. [205] have directly considered the wavelet
filter H1 as stencil for a derivative approximation. With a Taylor expansion, one
can directly prove that any filter with p vanishing moments yields an approxi-
mation of the p-th derivative up to a constant factor. This works well as long as
one only considers shrinkage on the finest scale, but it does not help to explain
what happens on coarser scales.

Here, we try to model that by separating the derivative approximation from
the smoothing kernel which yields a coarse scale approximation of our signal.
The complete analogy with the continuous case in the previous section ends at
the point where we take a look at the scaled versions of the smoothing kernel.
In the continuous setting, the smoothing kernel is a function for that the scaling
operation is invertible without loss of information.

In contrast to this, discrete wavelets on coarser scales can change their ap-
pearance due to discrete effects. Following [192, Section 3.3], we define:

Definition 3.13 (Wavelets on Larger Scales)
Starting from the filters G0 and G1 on the finest scale, we define the wavelet filters
G

(σ)
0 and G

(σ)
1 on coarser scales σ ∈ N as

G
(σ)
0 (z) =

σ−1∏
r=0

G0(z
(2r)) and G

(σ)
1 (z) = G1(z

(2σ−1))G
(σ−1)
0 (z) . (3.69)

Analogously, we use the same formulae for H0 and H1.
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Figure 3.4: Filter bank for translation invariant wavelet shrinkage, written with
multiple channels.

The exponents 2r come from the fact that the algorithme à trous inserts the
corresponding number of zeros between two samples of the filter at scale r. In
addition, we have to multiply the z-transforms of all filters lying on the path
from the input to the middle of the filter bank for H in Figure 3.3, or from the
middle to the output for G.

Having these formulae at hand we can rewrite the filter bank in Figure 3.3
with m+ 1 different paths as shown in Figure 3.4. Now we are interested in how
the shape of the convolution kernels corresponding to the wavelets in this filter
bank changes when the scale increases. Our starting point are the relations (3.69),
and we firstly consider the scaling coefficients using the factorisation (3.66):

G
(σ)
0 (z) =

σ−1∏
r=0

G0(z
(2r))

=
σ−1∏
r=0

(
(−1)pz(2r)(z−(2r) + 1)pKH(−z−(2r))

)
= (−1)σp z(2σ)−1

(2σ)−1∑
r=0

z−r

p
σ−1∏
r=0

KH(−z−(2r)) . (3.70)

We see that the scaling filter on larger scales can be decomposed into four parts:
The sign is given by (−1)σp, and there is a pure shift z(2σ)−1. These two parts
do not change the shape of the convolution kernel. This shape is determined by
the rightmost two factors: The second one is a product of the kernels kH with
alternating signs and with inserted zeros. This is actually the wavelet-dependent
part. The first factor is independent of the wavelet: It is the p times convolution
of a box filter of width 2σ with itself. This can be understood as a B-spline kernel.
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Let us see how this decomposition can be made for the wavelet coefficients:

G
(σ)
1 (z) = G1(z

(2σ−1))G
(σ−1)
0 (z)

= (z(2σ−1) − 1)qKG(z(2σ−1))G
(σ−1)
0 (z)

= (z − 1)q

(
2σ−1−1∑
r=0

zr

)q

KG(z(2σ−1))G
(σ−1)
0 (z)

= (z − 1)q (−1)(σ−1)p
(
z−(2σ−1)+1

)p−1
(

2σ−1−1∑
r=0

zr

)p+q

·

·KG(z(2σ−1))
σ−2∏
r=0

KH(−z−2r

) .

Here, we also analyse the ingredients of this product: The first factor (z−1)q tells
us that the wavelet can be understood as approximation of the q-th derivative
(with sign (−1)q). It is the z-transform of the finite difference matrix (DT )q

defined above. Again, the sign and the shift do not change the shape of the
convolution kernel. As for the scaling function, we also find a spline kernel and
a wavelet-dependent part here. The spline kernel has the order p+ q.

Let us now give some examples of commonly used wavelets to see how the
related convolution kernels look like:

Example 3.14 (Haar Wavelet on Larger Scales)
We have already seen that for a Haar wavelet, the kernels KG(z) = KH(z) = 1√

2
are just constants. Thus the wavelet on scale σ can be seen as

G
(σ)
1 (z) = (−1)(σ−1) (z − 1)

1

2
σ
2

(
2σ−1−1∑
r=0

zr

)2

. (3.71)

This means that in complete analogy to the continuous case, the discrete Haar
wavelet is the derivative approximation of a hat function. This hat is created by
multiplying a box filter with itself. An example for the scale 8 is shown in Figure
3.5.

Example 3.15 (Daubechies Wavelets on Larger Scales)
For some representatives of the family of Daubechies wavelets [52], we display the
corresponding kernels obtained by numerical calculations in Figure 3.6. One can
see that the smoothing kernels have a shape similar to a Gaussian kernel with a
perturbation at the right side where they even change the sign. Daubechies has
proven that the Haar wavelets are the only symmetric or antisymmetric orthonor-
mal wavelets with compact support [52], and so it is clear that the corresponding
kernels of Daubechies wavelets of higher order can not be symmetric.
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Figure 3.5: Convolution kernel corresponding to the Haar wavelet. Left column:
Haar wavelet on scale 8. Right column: Corresponding smoothing kernel: a hat
function.

The following two examples consider the convolution kernels corresponding to
biorthogonal filter pairs. For these, it is possible to be symmetric or antisym-
metric with compact support, and so the convolution kernels can be symmetric.

Example 3.16 (Compactly Supported Spline Wavelets)
This is our first example of a biorthogonal filter pair. Details on these filters can
be found in [128, p. 271], for example. They are displyed in Figure 3.7 have 3 and
7 vanishing moments. We see that the corresponding kernel to h has negative
pieces while the kernel derived from h̃ is positive and has the shape of a Gaussian.

Example 3.17 (Perfect Reconstruction Filters of Most Similar Length)
The second example for biorthogonal filters can be found in [128, p. 273], for
example. Here we have 4 vanishing moments for both filters that are displayed
in Figure 3.8. The filter corresponding to h̃ has some small negative parts.

Regardless the shape of the convolution kernels, it will be important for our
considerations in the next subsection that we can write the analysis and the
synthesis wavelet as

G
(σ)
1 (z) = (1− z)qKG,(σ)(z) and H

(σ)
1 (z) = (1− z)pKH,(σ)(z) . (3.72)

We use the notions KG,(σ) and KH,(σ) to denote the corresponding convolution
kernels on scale σ we have derived above. With the finite difference matrices
introduced in (3.59), we can rewrite this in matrix notation:

G
(σ)
1 = (Dq)T KG,(σ) and H

(σ)
1 = (Dp)T KH,(σ) . (3.73)

We are going to use these equations in the next section to rewrite iterated wavelet
shrinkage as discretisation of an integrodifferential equation.
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Figure 3.6: Convolution kernels corresponding to Daubechies wavelets on larger
scales. Left column: Daubechies wavelets of orders 4 and 6 on scales 2 and 8.
Right column: Corresponding smoothing kernels. The scaling comes from the
fact that wavelets are normalised with respect to the `2-norm.
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Figure 3.7: Convolution kernels corresponding to compactly supported spline
wavelets on scale 8. Top left: Filter h with 3 vanishing moments. Top right:
Filter h̃ with 7 vanishing moments. Right column: Corresponding smoothing
kernels.

3.2.3 Relations Between Both Methods

As already indicated by Figure 3.4 let us rewrite wavelet shrinkage in the following
way:

u =
m∑
σ=1

1

2σ
G

(σ)
1 S

((
H

(σ)
1

)T
f

)
+

1

2m
G

(m)
0

(
H

(m)
0

)T
f . (3.74)

In this section, f, u ∈ RN are vectors, and H
(σ)
0 denotes the N -dimensional cir-

culant matrix corresponding to the filter H
(σ)
0 (z). The analysis matrices are

transposed to reflect the fact that we have used Hi(z
−1) for i = 0, 1 on the analy-

sis part of our filter banks in Figures 3.2, 3.3, and 3.4. The function S is meant
to act componentwise on the vector entries here.

Without shrinking the coefficients, the filter bank will allow for a perfect
reconstruction: We have

f =
m∑
σ=1

1

2σ
G

(σ)
1

(
H

(σ)
1

)T
f +

1

2m
G

(m)
0

(
H

(m)
0

)T
f (3.75)

for all f ∈ RN . As already done in the last section and similar to [140, 62] we
use (3.19) to rewrite our shrinkage function as S(x) = (1 − τg(|x|))x. Plugging
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Figure 3.8: Convolution kernels corresponding to perfect reconstruction filters of
most similar length on scale 8. Left column: Analysis and synthesis filter. Right
column: Corresponding smoothing kernels.

this into (3.74) we obtain

u =
m∑
σ=1

1

2σ
G

(σ)
1

(
H

(σ)
1

)T
f +

1

2m
G

(m)
0

(
H

(m)
0

)T
f (3.76)

− τ
m∑
σ=1

1

2σ
G

(σ)
1 Φ

((
H

(σ)
1

)T
f

) (
H

(σ)
1

)T
f .

The matrix Φ is a diagonal matrix such that Φ(v) := diag
(
g(|vj|2)

)
j∈J

. Property

(3.75) shows that the first part gives a reconstruction of the initial signal f , and
we obtain

u = f − τ

m∑
σ=1

1

2σ
G

(σ)
1 Φ

((
H

(σ)
1

)T
f

) (
H

(σ)
1

)T
f (3.77)

for one single shrinkage step. Performing several steps of shrinkage gives an
iterative scheme

u0 = f

uk+1 = uk − τ
m∑
σ=1

1

2σ
G

(σ)
1 Φ

((
H

(σ)
1

)T
uk
) (

H
(σ)
1

)T
uk , k ∈ N (3.78)
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which has a very similar structure than the discretisation of the nonlinear diffusion
equation (3.60). Using (3.73), the iteration rule can be written as

uk+1 = uk − τ
m∑
σ=1

1

2σ
(Dq)T KG,(σ) Φ

(
Dp
(
KH,(σ)

)T
uk
)
Dp
(
KH,(σ)

)T
uk .

(3.79)
This equation is the discrete equivalent to (3.23) and describes how iterated
discrete wavelet shrinkage can be seen as discretisation of an integrodifferential
equation.

Interpretation. As in the continuous case, we see that the two differences
between discrete wavelet shrinkage and nonlinear diffusion is that all derivatives
are presmoothed and that we sum over all scales σ. In contrast to the continuous
considerations in the last section, we have worked with two different kernels here
to allow for biorthogonal wavelets. This can lead to equations where the inner
and the outer derivative order differ. In the PDE-based image processing context,
we have seen similar ideas, but without presmoothing, in the filters of Tumblin
and Turk [189] and Wei [195] described in Subsection 1.2.2. These approaches
even go one step further: They do not only allow the derivative orders in front
of the nonlinear function and behind to be different, but also the argument can
be a third one. By the construction of (3.23) and (3.79) this is not included in
the framework shown here.

Remark 3.18 (Orthogonal Wavelets)
In the case of orthogonal wavelets, (3.79) simplifies to

uk+1 = uk−τ
m∑
σ=1

1

2σ
(Dp)T KH,(σ) Φ

(
Dp
(
KH,(σ)

)T
uk
)
Dp
(
KH,(σ)

)T
uk (3.80)

since we have p = q, and also the kernels are identical. Besides the smoothing
kernels and the sum over all scales, this is identical to the explicit discretisation
of a higher order nonlinear diffusion equation (2.50). Since the outer matrices are
the adjoints of the inner ones, this approach can be understood as coming from
an energy function of the form

E(u) =
∑
i∈J

(ui − fi)
2 + α

m∑
σ=1

1

2σ

∑
i∈J

Ψ
( (
DpKH,(σ)u

)2
i

)
. (3.81)

This is the discrete analogon to (3.24). For biorthogonal wavelets, this is not
possible.

3.2.4 Generalisation to Higher Dimensions

So far, the ideas in this chapter have been considered in one spatial dimension
only. Let us now say a few words to the two-dimensional case. For one single
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scale of Haar wavelet shrinkage, relations to nonlinear diffusion equations have
been discussed by Mrázek and Weickert [137, 138], for example. The description
in [138] already indicates that a direct transfer of the ideas presented here can
be more technical, but yields very good results for a the example of the Haar
wavelet. Here we follow the easier strategy sketched in [137] and apply it not
only to one scale of Haar wavelet shrinkage, but to multiple scales with general
biorthogonal filters.

It is common practice to use tensor product wavelets for the processing of
two-dimensional images, see [128, Subsections 7.7.2 and 7.7.3] or [89, Section
7.5], for example. At the example of one-dimensional analysis scaling coefficients
h0 and wavelet coefficients h1, the tensor product analysis filters hs, hh, hv, and
hd in 2-D read as

hs(i, j) := h0(i)h0(j) , hh(i, j) := h1(i)h0(j) ,

hv(i, j) := h0(i)h1(j) , hd(i, j) := h1(i)h1(j) .

Here, the subscript s stands for scaling function, h for the horizontal, v for the
vertical, and d for the diagonal wavelet. The same definition applies for the
synthesis coefficients with g instead of h. It is a classical result that these filters
on multiple scales yield a biorthogonal family in 2-D (see the references given
above). In analogy to (3.75), the perfect reconstruction property for m scales in
2-D can be formulated as

f =
m∑
σ=1

1

4σ

( ∑
δ∈{h,v,d}

G
(σ)
δ

(
H

(σ)
δ

)T
f
)

+
1

4m
G(m)
s

(
H(m)
s

)T
f (3.82)

with the help of the corresponding matrices to the filters defined above. One step
of shrinkage then reads as

u =
m∑
σ=1

1

4σ

( ∑
δ∈{h,v,d}

G
(σ)
δ Sδ

((
H

(σ)
δ

)T
f
))

+
1

4m
G(m)
s

(
H(m)
s

)T
f (3.83)

with the shrinkage functions Sh, Sv, and Sd applied to the corresponding wavelet
coefficients.

To give a motivation for using different shrinkage functions in the three direc-
tions, we take a look at the approximation properties of the wavelet coefficients in
2-D. Convolution of an image with the filters given above can also be understood
as derivative approximation with presmoothing while the derivative order and
the smoothing kernel depend on h1 and h0. For example, let p be the number
of vanishing moments of h1. Convolution of a discrete image u with hh and hv
approximates presmoothed p-th derivatives of u in x- and y-direction. The filter
hd yields the approximation of the derivative ∂px∂

p
yu with additional smoothing.

That means this derivative in diagonal direction has twice the order than the
other ones.
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This fact suggests to follow a shrinkage rule as described in [137] to improve
rotational invariance. Inspired by nonlinear diffusion filtering, it is suggested
there to couple the horizontal and vertical coefficients in the argument of the
shrinkage function and not to shrink the diagonal ones at all. Let wh, wv, and wd
stand for the wavelet coefficients in horizontal, vertical and diagonal direction at
a given scale and position. The corresponding shrinkage functions applied to the
horizontal, vertical and diagonal coefficients can be written down as:

Sh(wh, wv) := wh(1− τg(w2
h + w2

v)) , (3.84)

Sv(wh, wv) := wd(1− τg(w2
h + w2

v)) , (3.85)

Sd(wd) := wd . (3.86)

In opposition to [137] we avoid the additional factor 4 in front of the function g
here. This factor can be explained as compensation of the factor 1

4
appearing in

(3.82) and (3.83) together with the fact that only the finest scale is considered
in [137]. We avoid using the factor here since we work on multiple scales and
would need different factors for each scale. We prefer to use the same shrinkage
function on all scales instead.

With these shrinkage functions and the perfect reconstruction property (3.82),
wavelet shrinkage (3.83) can be transformed into

u = f − τ
m∑
σ=1

1

4σ

(
G

(σ)
h Φ

(σ)
h

(
H

(σ)
h

)T
f +G(σ)

v Φ(σ)
v

(
H(σ)
v

)T
f

)
. (3.87)

Here, Φ
(σ)
h and Φ

(σ)
v represent the pointwise multiplication of the wavelet coeffi-

cients in horizontal and vertical direction on scale σ with diffusivity g. As defined
in (3.84), this diffusivity depends on the squared sum of the horizontal and ver-
tical wavelet coefficients at the corresponding position and scale. Understood
as discretisation of an integrodifferential equation, one would use it iteratively
yielding

uk+1 = uk − τ

m∑
σ=1

1

4σ

(
G

(σ)
h Φ

(σ)
h

(
H

(σ)
h

)T
uk +G(σ)

v Φ(σ)
v

(
H(σ)
v

)T
uk
)

. (3.88)

This is the 2-D analogue of (3.79).

Example 3.19 (Orthogonal Wavelets in 2-D)
Let us consider the case of orthogonal wavelets, i. e. Gh = Hh and Gv = Hv,
with p vanishing moments. If we neglect the presmoothing introduced by the
wavelets, such a shrinkage process is connected via the reasoning given above to
a continuous equation of the form

∂tu = (−1)p+1
(
∂px

(
g(|∂pxu|2 + |∂pyu|2) ∂pxu

)
+ ∂py

(
g(|∂pxu|2 + |∂pyu|2) ∂pyu

))
(3.89)
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Figure 3.9: Test signals. Left: Piecewise polynomials signal with 1024 pixels.
Right: With additive Gaussian noise, standard deviation 20.

which only considers the derivatives with respect to the coordinate axes. For p =
1, this is the classical Perona-Malik equation. Nevertheless, for higher derivative
orders p > 1, it does not correspond to the higher order nonlinear diffusion
equations (2.35) described in Chapter 2: The mixed derivatives of order p are
not represented by the wavelets.

3.2.5 Numerical Experiments

In this subsection we want to investigate experimentally the differences between
classical nonlinear diffusion filtering and the integrodifferential equations related
to wavelet shrinkage described in this chapter. In 1-D, we perform detailed qual-
itative comparisons for the denoising of a signal with additive Gaussian noise.
Experiments for image simplification in 2-D show that the same effects appear in
this case, too.

Let us first describe our experiments in 1-D: Figure 3.9 shows the test signal
we are going to use and a noisy version of it with Gaussian noise of standard
deviation 20. The test signal has been published as piecepoly in the Wavelab

software package 1. The implementations used here are not based on Wavelab,
but have been written in C.

In our first experiment, we perform a qualitative comparison for denoising
between diffusion and presmoothed versions. These correspond to the equation

uk+1 = uk − τ (Dp)T KH Φ
(
Dp
(
KH
)T
uk
)
Dp
(
KH
)T
uk (3.90)

where we have set the order p = 1 and use a hat function as kernel in the matrices
KH . As we have seen in Subsection 3.2.2, this corresponds to Haar wavelets. The
kernel length is chosen as l = 2σ here. We have used one single scale for pres-
moothing, and thus in contrast to (3.80), there is no sum and no weight factor

1Wavelab is available under the address http://www-stat.stanford.edu/˜wavelab/.
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Scale σ Error in `1-norm Error in `2-norm
error λ iterations error λ iterations

1 2806.16 1.02 4593 143.91 1.67 1265
2 5208.78 0.10 247000 232.74 0.10 233000
3 6671.34 0.10 351000 292.34 0.10 263000

Table 3.2: Error norms for denoising results with presmoothed diffusion and one
single scale.

Largest scale Error in `1-norm Error in `2-norm
σ = 2k error λ iterations error λ iterations
k = 0 2805.57 1.02 9197 143.62 1.67 2604
k = 1 2891.98 1.47 1904 145.59 2.11 677
k = 2 2782.59 2.39 495 145.03 3.57 200
k = 3 2857.78 4.02 153 146.65 4.95 95
k = 4 3072.26 6.36 53 149.52 5.84 61
k = 5 3260.64 8.95 27 153.52 6.47 48

Table 3.3: Error norms for denoising results using presmoothed diffusion on
dyadic scales.

on the right-hand side. The parameters have been optimised in order to obtain
minimal errors in both the `1- and `2-norms. The optimal parameters and the
corresponding mimimal error measures can be found in Table 3.2. We see that
the minimal errors are obtained for classical nonlinear diffusion filters without
presmoothing. To visualise the differences and find an explanation for this effect,
the corresponding signals are displayed in Figure 3.10. It is clearly visible that
using one signal presmoothing kernel for all derivatives leads to artefacts: The
process is not able to remove the noise on the small scales which leads to oscil-
lations. Only the general shape of the signal is restored for larger scales. This is
in accordance with the results reported by Scherzer and Weickert [165].

In our second experiment, we do not only filter with one larger scale, but
involve all dyadic scales σ = 2l for l = 0, . . . , k and use (3.80) for filtering. The
corresponding optimal error measures are shown in Table 3.3. We have used a
time step size τ = 1/2 for all experiments in 1-D. In this case we see that using
larger scales does not influence the minimal error as strong as for one single scale.
For the `1-error, it is even possible to obtain better values by using k = 2 in this
example. We notice that using only the finest scale requires half the number of
iterations than in the first experiment: This comes from the additional factor 1

2

in (3.80) on the finest scale which was not present in the last experiment. The
necessary number of iterations reduces by two orders of magnitude by involving
larger scales. This can be understood as approximative numerical methods for
speeding up the process. The corresponding signals are shown in Figure 3.11. We
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Figure 3.10: Denoising results with presmoothed diffusion and one single scale σ.
Left column: Results with optimal `1-error. Right column: Results with optimal
`2-error. Top row: σ = 1. Middle row: σ = 2. Bottom row: σ = 3.
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see that for larger scales, some smaller artefacts appear. Nevertheless, it seems
that the presence of smaller scales in the right-hand side can help to suppress
most of them.

In our 2-D experiment, we also display results for smoothing on one larger
scale and on all dyadic scales. With one larger scale, we use the filter

uk+1 = uk − τ

(
K

(σ)
h Φ

(σ)
h

(
K

(σ)
h

)T
uk +K(σ)

v Φ(σ)
v

(
K(σ)
v

)T
uk
)

. (3.91)

This corresponds to (3.88) where the factor and the sum on the right-hand side
are left out. We use p = 1 and hat functions in the directions of the derivative and
box filters in the other direction which implements tensor product Haar wavelets.
Figure 3.12 shows the resulting images if we fix all parameters and only vary
the scale. We see that using larger scales only introduces artefacts in the image
which can be compared to those appearing in the 1-D case also.

For involving all scales we directly use (3.88). Some results for involving all
dyadic scales up to a certain order are displayed in Figure 3.13. Here we see that
more and more small details are removed by using the larger scales while the
artefacts are suppressed.

3.3 Summary

The goal of this chapter was to investigate the relation between continuous mul-
tiscale wavelet shrinkage on the one hand and nonlinear diffusion filters of arbi-
trary order and their variational counterparts on the other hand. This has been
achieved by deriving novel integrodifferential equations from multiscale wavelet
shrinkage. To this end we exploited the fact that wavelets with a finite number of
vanishing moments represent smoothed derivative operators. The resulting inte-
grodifferential equations differ from their nonlinear diffusion counterparts by the
additional presmoothing of derivatives and integration over a continuum of scales.
Moreover, they can be rewritten as a weighted average of pseudodifferential equa-
tions. In the discrete setting, we have studied the shape of the corresponding
convolution kernels for larger scales. We have extended the considerations to
biorthogonal wavelets: Here, the corresponding integrodifferential equations are
no longer related to diffusion equations, but to more general PDE models like the
methods by Tumblin and Turk [189]. Using tensor product wavelets and special
shrinkage rules for rotational invariance, the relations have been carried over to
the 2-D case. Numerical experiments have shown that presmoothed nonlinear
diffusion on one single larger scale gives worse results than classical nonlinear
diffusion. On the other hand, involving all dyadic scales up to a certain order, as
it is done in wavelet shrinkage, almost keeps the good quality and significantly
reduces the number of iterations needed. In that sense, it can be understood as
numerical method for multiscale approximation of a nonlinear diffusion equation.
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Figure 3.11: Denoising results with presmoothed diffusion and dyadic scale up to
σ = 2k. Left column: Results with optimal `1-error. Right column: Results with
optimal `2-error. Top row: k = 0. Second row: k = 1. Third row: k = 2. Bottom
row: k = 5.
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Figure 3.12: Image simplification results with presmoothed diffusion and one
single scale σ, Perona-Malik diffusivity g(s2) = 1/(1 + s2/λ2) with λ = 10, and
stopping time t = 10. Top left: Original image, 256 × 256 pixels. Top right:
σ = 1. Bottom left: σ = 2. Bottom right: σ = 3.
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Figure 3.13: Image simplification results with presmoothed diffusion, g(s2) =
(1 + s2/λ2)−1 for λ = 10, stopping time t = 10, and dyadic scales up to σ = 2k.
Top left: Original image, 256× 256 pixels. Top right: k = 0. Bottom left: k = 1.
Bottom right: k = 5.



Chapter 4

Adaptive Averaging and PDEs

After discussing the connections between wavelet shrinkage and PDE-based fil-
ters, we are now interested in weighted averaging schemes and their relation to
nonlinear diffusion equations.

We have already sketched some previous work in this direction in Subsection
1.4.1. Especially we would like to mention the ideas of Buades et al. [20, 19].
They have related many neighbourhood filters in a continuous representation to
their corresponding PDE methods. In contrast to their approach, we are going
to start with discrete neighbourhood filters as they are implemented in practice.
This chapter is based on [60, 61].

In Section 4.1 we start with a fully discrete averaging filter and describe how
a scaling limit of it can be related to an accelerated variant of the Perona-Malik
filter (1.8). These ideas are extended to the two-dimensional case in Section 4.2
in several ways: The averaging filter with very small neighbourhood considered
in Subsection 4.2.1 leads to a scaling limit which is not rotationally invariant.
Nevertheless, it can be seen as crude approximation of an anisotropic filter similar
to the integration model for anisotropic diffusion [197]. The same process can
be obtained as scaling limit of an iterated bilateral filter as shown in Section
4.2.2. An alternative way to transfer the 1-D scaling limit to 2-D is presented
in Section 4.3 and leads to a family of PDEs which will be called generalised
mean curvature motion (GMCM) here. This family of filters is part of the very
general framework of Carmona and Zhong [30] for filters depending on feature
directions. We display practical properties of all presented methods in Section
4.4 with several numerical examples and compare them to classical models. The
chapter is concluded with a summary in Section 4.5.

4.1 Averaging Filters and Scaling Limits in 1-D

In this section, we start with a simple discrete averaging filter and derive the
corresponding scaling limit. The differences of this PDE model to the Perona-

117
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Malik equation will be described as well as properties of a possible discretisation.
To gain a first intuition, we start with the one-dimensional case. After deriving

the scaling limit, we discuss its properties and consider the stability of suitable
discretisations.

4.1.1 Derivation of the Scaling Limit

In contrast to the averaging processes considered by Saint-Marc et al. [161] and
Barash [11] that we have seen in Subsection 1.4.1, we include the normalisation
of the averaging weights in each position explicitly here. Further we specify the
arguments of the nonlinear function g in the discrete setting. We will see that
due to the normalisation, we will not obtain exactly the Perona-Malik equation
as scaling limit later on.

We start with the consideration of an iterative weighted averaging filter of the
form

u0
i = fi ,

uk+1
i =

g

(∣∣∣uk
i+1−uk

i

h

∣∣∣2)uki+1 + g

(∣∣∣uk
i−1−uk

i

h

∣∣∣2)uki−1

g

(∣∣∣uk
i+1−uk

i

h

∣∣∣2)+ g

(∣∣∣uk
i−1−uk

i

h

∣∣∣2) (4.1)

where f ∈ RN is an initial signal and uk ∈ RN denotes the processed signal at
iteration k ∈ N. For each pixel uk+1

i , the filter takes the direct neighbours uki−1

and uki+1 into account for averaging. At the boundaries, we assume mirroring
boundary conditions, that means we introduce two artificial pixels u−10

k and ukN
with uk−1 := uk0 and ukN := ukN−1. Typically one chooses a decreasing positive
function g such that the denominator can not be zero. This also implies that
we always have convex combinations which guarantees a maximum-minimum
principle for the filter. One may use e.g. the same function g as the diffusivities
in nonlinear diffusion filtering [154], for instance g(s2) = (1 + s2/λ2)

−1
. We

observe that the weights depend on the grey value distance between the pixel
and its direct neighbours divided by the spatial distance h > 0 between the two
pixels.

We introduce the abbreviations gk
i+ 1

2

:= g

(∣∣∣uk
i+1−uk

i

h

∣∣∣2) and rewrite (4.1) as

uk+1
i =

gk
i+ 1

2

uki+1 + gk
i− 1

2

uki−1

gk
i+ 1

2

+ gk
i− 1

2

(4.2)

= uki +
gk
i+ 1

2

(uki+1 − uki )− gi− 1
2
(uki − uki−1)

gk
i+ 1

2

+ gk
i− 1

2

(4.3)
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= uki +

1
h

(
gk
i+ 1

2

uk
i+1−uk

i

h
− gk

i− 1
2

uk
i−uk

i−1

h

)
1
h2

(
gk
i+ 1

2

+ gk
i− 1

2

) (4.4)

We assume that the vector uk contains samples of a corresponding function, i. e.
uki = uk(xi) on an equidistant grid Ωh := {xi = ih}i=0,...,N−1 for all k ∈ N. The
domain of the functions is then the interval Ω = [0, (N − 1)h]. In (4.4) we notice
that the iterative scheme contains finite differences which can be understood as
approximations of spatial derivatives of uk. Now we assume that uk and g are
sufficiently smooth to perform a Taylor expansion. For example, we have the
term

uki+1 − uki
h

= ∂xu
k

(
xi +

h

2

)
+O(h2) (4.5)

in the scheme. Together with the abbreviations introduced above this yields

gk
i+ 1

2
+ gk

i− 1
2

= g

(∣∣∣∣uki+1 − uki
h

∣∣∣∣2
)

+ g

(∣∣∣∣uki − uki−1

h

∣∣∣∣2
)

= 2g
(
|∂xuk(xi)|2

)
+O(h2)

(4.6)
and thus we can write

uk+1
i = uki +

∂x
(
g(|∂xuk(xi)|2)∂xuk(xi)

)
+O(h2)

1
h2 (2g(|∂xuk(xi)|2) +O(h2))

. (4.7)

To understand the iteration indices k+1 and k as discrete samples of a continuous
time variable t we introduce a temporal step size τ > 0. Division of both sides
by τ leads to the equation

uk+1
i − uki
τ

=
∂x
(
g(|∂xuk(xi)|2)∂xuk(xi)

)
+O(h2)

τ
h2 (2g(|∂xuk(xi)|2) +O(h2))

(4.8)

where the left-hand side is an approximation for the temporal derivative ∂tu at
time t = kτ with an error in the order O(τ). We set the ratio between h and τ
such that τ

h2 = 1
2

and let h tend to zero. Then (4.8) approximates

∂tu =
1

g(|∂xu|2)
∂x

(
g(|∂xu|2) ∂xu

)
(4.9)

with an error in the order of O(τ + h2). The mirroring boundary conditions are
the classical homogeneous Neumann boundary conditions ∂xu(x) = 0.

Interpretation as Accelerated Perona-Malik Filter

Equation (4.9) is similar to the nonlinear diffusion equation presented by Perona
and Malik [154]:

∂tu = ∂x

(
g(|∂xu|2) ∂xu

)
. (4.10)
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The only difference is the factor 1
g(|∂xu|2)

on the right-hand side which acts as an
acceleration of the Perona-Malik filtering process at edges. To understand this,
assume that |∂xu| is relatively small within a region. A classical Perona-Malik
diffusivity is close to 1 in this case, and the factor has only a small effect. More
interesting is the situation near an edge where ∂xu has large absolute value, and
backward diffusion can occur for the diffusivities presented by Perona and Malik.
In this case, g(|∂xu|2) is close to zero, and thus 1

g(|∂xu|2)
leads to an amplification

of the backward diffusion behaviour. We can expect such equations to yield
sharper results than classical Perona-Malik PDEs. One the other hand, they do
not necessarily preserve the average grey value, since they can not be written in
divergence form.

4.1.2 Discretisation and Properties

First we take a look at possible discretisations of the scaling limit (4.9) and its
stability properties. Then we discuss some problems with leaving the central
pixel away in the average and how to overcome these.

Explicit Discretisation

Since classical diffusivities g may be arbitrary close to zero, the fraction 1
g(|∂xu|2)

in (4.9) is not bounded. This might give rise to concerns regarding stability.
However, the weighted averging scheme (4.1) inspires also ways how to obtain
stable discretisations: An explicit Euler scheme for (4.9) can be written as

uk+1
i = uki + τ

2

gk
i+ 1

2

+ gk
i− 1

2

1

h

(
gk
i+ 1

2

uki+1 − uki
h

− gk
i− 1

2

uki − uki−1

h

)
. (4.11)

To discuss some properties of this scheme we rewrite the equation as matrix-
vector multiplication

uk+1 = Q(uk)uk (4.12)

following the notation in [198]. The matrix Q(uk) is tridiagonal with the entries

Qij(u
k) =



2τ
h2

gk

i+1
2

gk

i+1
2

+gk

i− 1
2

if j = i+ 1

1− 2τ
h2 if j = i

2τ
h2

gk

i− 1
2

gk

i+1
2

+gk

i− 1
2

if j = i− 1

0 else

(4.13)

for inner pixels i, j ∈ {1, . . . , N − 2}. At the boundary, we have to be aware of
the above mentionned mirroring boundary conditions.
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Lemma 4.1 (Stability)
The scheme (4.11) satisfies a maximum-minimum principle if τ ≤ h2

2
.

Proof: We see that the matrix Q(uk) has row sum 1. For τ ≤ h2

2
all three factors

are nonnegative, and thus uk+1
i is a convex combination of the three pixels: the

scheme is maximum-minimum-stable. �

Further we see that for the limit τ = h2

2
we obtain exactly the averaging filter

(4.1). It should be noted that the stability of our scheme is a consequence of the
arithmetic mean used in the fraction in (4.11) to approximate the diffusivity at
the position of the pixel xi.

Remark 4.2 (Matrix Properties)
We have already mentioned above that (4.9) in general does not preserve the
average grey value. This is also reflected in the discretisation (4.11). The division
by values of g leads to the facts that the matrix is not doubly stochastic [100] as
we know it from classical discrete nonlinear diffusion. In fact, it does not have
column sum 1 which means that there is in general no redistribution property
[198]. Thus it can not be guaranteed for such filters that the average grey value
does not change during filtering. However, experiments show that the changes of
the average grey value are usually not visible at all.

Involving the Central Pixel in the Averaging Process

The filter (4.1) does not involve the central pixel ui itself in the average. This
might cause problems for certain initial signals: If we choose f to be an alternating
signal with two different values, then applying the filter will simply exchange the
grey values. To avoid this problem one can give the central pixel a nonnegative
weight and involve it in the averaging process. For example, such a modified
scheme looks like

uk+1
i =

g

(∣∣∣uk
i+1−uk

i

h

∣∣∣2)uki+1 + αuki + g

(∣∣∣uk
i−1−uk

i

h

∣∣∣2)uki−1

g

(∣∣∣uk
i+1−uk

i

h

∣∣∣2)+ α+ g

(∣∣∣uk
i−1−uk

i

h

∣∣∣2) (4.14)

where we have given the central pixel a fixed weight α > 0. The same reasoning
as presented above relates this averaging filter to the PDE

∂tu =
1

α
2

+ g(|∂xu|2)
∂x

(
g(|∂xu|2) ∂xu

)
. (4.15)

Here we see that there is still some factor influencing the velocity of the diffusion
process, but this factor now is bounded from above to 2

α
. Compared to (4.9), this

slows down the evolution in regions with small derivatives of u.
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4.2 Averaging Filters and Scaling Limits in 2-D

In this section we describe two possible approaches to carry over the one-dimen-
sional results obtained so far to the two-dimensional setting.

4.2.1 Local Averaging and Anisotropic Diffusion

As direct two-dimensional analogue to (4.1), we start with weighted averaging
over the direct neighbouring pixels. Let N (i) be the set of indices of the maximal
four direct neighbours of the pixel with index i. Then an equivalent of the
weighted averaging filter (4.1) in two dimensions can be written as

uk+1
i =

∑
j∈N (i)

g

(∣∣∣uk
j−uk

i

h

∣∣∣2)ukj
∑

j∈N (i)

g

(∣∣∣uk
j−uk

i

h

∣∣∣2) . (4.16)

Numerator and denominator of this scheme can be understood as the sum of nu-
merators and denominators of two one-dimensional schemes in x- and y-direction.
Thus the reasoning described in the last section shows that (4.16) is a consistent
approximation for

∂tu =
∂x (g(|∂xu|2)∂xu) + ∂y (g(|∂yu|2)∂yu)

g(|∂xu|2) + g(|∂yu|2)
. (4.17)

This equation is not rotationally invariant, and thus will lead to artefacts in
images with rotational invariant objects. This indicates that also the weighted
averaging method (4.16) leads to such artefacts which is shown with a practical
example in Figure 4.2.

To circumvent this shortcoming, we understand (4.17) as a crude approxima-
tion of the rotationally invariant equation

∂tu =
1

π∫
0

g(|∂eϕu|2) dϕ
·

π∫
0

∂eϕ

(
g(|∂eϕu|2)∂eϕu

)
dϕ (4.18)

where we write eϕ = (cos(ϕ), sin(ϕ))T for the unit vector in direction ϕ. In (4.17)
the integrals are approximated as trapez sums where only two evaluation points
of the integrands are used. Similar to Catté et al. [32] we introduce a smoothing
of the argument of the diffusivity by the convolution of u with a Gaussian kernel
of standard deviation σ, and we write uσ := Gσ ∗ u. This convolution can also
simply be introduced in the arguments of the weights used in the averaging pro-
cess (4.16). It does not affect the reasoning leading to the PDE (4.18).
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An equation similar to (4.18) has been studied in [196] in the context of aniso-
tropic diffusion filtering:

∂tu =
2

π

π∫
0

∂eϕ

(
g(|∂eϕuσ|2)∂eϕu

)
dϕ. (4.19)

This equation has been called the integration model for anisotropic diffusion [197].
The proofs in [196] can be applied to show that (4.18) can be transformed into

∂tu =
1

trace(D(∇uσ))
div
(
D(∇uσ) · ∇u

)
(4.20)

with the diffusion tensor

D(∇uσ) =

∫ π

0

eϕe
>
ϕ g(|∂eϕuσ|2) dϕ. (4.21)

In [196] the eigenvectors of this diffusion tensor D(∇uσ) are calculated as

v1(ψ) =

(
− sin(ψ)

cos(ψ)

)
and v2(ψ) =

(
cos(ψ)
sin(ψ)

)
(4.22)

where ∇uσ 6= 0 and (r, ψ) are the polar coordinates of ∇uσ. That means v1 is the
direction of the isophote of uσ (along an edge), while v2 is the direction across
the edge. The corresponding eigenvalues are given by

λ1(∇uσ) =

∫ π

0

sin2(ϕ) g(|∂eϕuσ|2) dϕ and (4.23)

λ2(∇uσ) =

∫ π

0

cos2(ϕ) g(|∂eϕuσ|2) dϕ . (4.24)

Equation (4.20) is the relevant formulation for practical implementations. This
equation is rotationally invariant, since the eigenvectors follow a rotation of the
input image, and the eigenvalues are invariant under image rotations. Since

trace(D(∇uσ)) =

∫ π

0

g(|∂eϕuσ|2) dϕ

is always significantly larger than zero, the sharpening of the edges will be less
pronounced in this anisotropic case than in the one-dimensional case (4.9). This
effect is similar to the one described at the example of (4.15). Nevertheless, we
are going to see with numerical examples that not only preservation of edges, but
also sharpening is possible with this filter.
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4.2.2 Rotational Invariance with the Bilateral Filter

In the last subsection we have derived an anisotropic PDE filter from a weighted
averaging of the direct neighbouring pixels. To circumvent the lack of rotational
invariance in (4.17) we have understood it as a very crude approximation of the
rotational invariant approach (4.18). Nevertheless, there are discrete filters which
address the problem of lacking rotational invariance by involving information from
pixels in a larger neighborhood.

We consider here the prominent example of the bilateral filter [185, 11, 72].
Even though this filter is proposed as a noniterative method, it can make sense
to perform several filtering steps; thus we understand it as an iterative averaging
filter. In one filtering step, not only the direct neighbouring pixels are involved
in the averaging, but an extended neighbourhood i+ BR. Here

BR = {j ∈ R2 : |j| ≤ R} ∩ Ωh (4.25)

denotes the intersection of the disc of radius R in R2 with the pixel grid Ωh. A
variant of the bilateral filter then looks like this:

uk+1
i =

∑
j∈BR

g
(
|uk

i+j−uk
i |2

|j|2

)
w(|j|)
|j|2 u

k
i+j∑

j∈BR

g
(
|uk

i+j−uk
i |2

|j|2

)
w(|j|)
|j|2

. (4.26)

The spatial distance between xi and xi+j results in a usually smaller weight
w(|j|)/|j|2, where an example for w is w(h) = h2 exp(−h2). In this special exam-
ple, w leads to a Gaussian weight depending on the distance of the two pixels.

We now want to imitate the approach presented in Section 4.1. To this end
we only consider one half of the disc B+

R = {(x, y) ∈ BR|x ≥ 0} and rewrite the
sums in (4.26) as

uk+1
i =

∑
j∈B+

R

w(|j|)
|j|2

(
g
(
|uk

i+j−uk
i |2

|j|2

)
uki+j + g

(
|uk

i−uk
i−j |2

|j|2

)
uki−j

)
∑
j∈B+

R

w(|j|)
|j|2

(
g
(
|uk

i+j−uk
i |2

|j|2

)
+ g

(
|uk

i−uk
i−j |2

|j|2

)) . (4.27)

The novelty in this two-dimensional case is that we have to consider several
directional derivatives. We see that there appear directional finite differences in
(4.27). Let eϕ = j

|j| be the unit vector pointing in the direction of j 6= 0, and

h = |j| be the length of the vector j. A Taylor expansion of u around the pixel i
yields

u(xi+j) = u(xi) + 〈∇u, j〉+O(h2) = ui + (∂eϕu) · h+O(h2)

which will be useful in the form

ui+j − ui
h

= ∂eϕu+O(h) . (4.28)
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Applying the Taylor formula (4.28) to (4.27) allows us to write

uk+1(xi)− uk(xi) =

∑
j∈B+

R

w(h)
(
∂eϕ

(
g(|∂eϕu|2)∂eϕu

)
+O(h2)

)
∑
j∈B+

R

2w(h)
h2

(
g(|∂eϕu|2) +O(h2)

) (4.29)

At this point we investigate the scaling limit if we let the spatial step sizes in
x- and y-direction tend to zero while we keep the size R of the neighbourhood
fixed. This means that the number of grid points in our neighbourhood BR is
tending to infinity. Thus we can consider the sums in (4.29) as Riemann sums
which approximate integrals over the set B+

R . We notice that the arguments in
(4.29) are the length of j and its angle which immediately suggests to write the
integrals in polar coordinates:

uk+1 − uk =
1

R∫
0

2w(h)
h2

π∫
0

g(|∂eϕu
k|2) dϕ dh

·
R∫

0

w(h)

π∫
0

∂eϕ

(
g(|∂eϕu

k|2)∂eϕu
k
)
dϕdh

(4.30)
Since the inner integrals do not depend on the radius r, the outer ones are just
a scaling factor, that means (4.30) is corresponding up to a constant factor to

uk+1 − uk =
1

π∫
0

g(|∂eϕu
k|2) dϕ

·
π∫

0

∂eϕ

(
g(|∂eϕu

k|2)∂eϕu
k
)
dϕ . (4.31)

If we understand the right-hand side as temporal forward difference we can see
(4.31) as an approximation to (4.18). This provides an interpretation of bilateral
filtering as an anisotropic PDE.

Remark 4.3 (Redundant Derivative Approximation)
Involving different points at the same direction ϕ with different radius r is not
necessary in the continuous setting, but makes sense for a discrete formulation:
For example, with the help of the grey value ui+j we obtain one approximation
for the directional derivative ∂eϕu, and ui+2j yields another one. The larger
neighbourhood now allows to incorporate both of them while the scaling with
w(2r) results in a smaller weight for the approximation with higher error.

Finally we want to point out that the underlying ideas in this section are
not restricted to the two-dimensional case, but can also be carried over to higher
dimensions.
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4.3 Generalised Mean Curvature Motion

There is no unique way to generalise (4.9) to two or more dimensions. As de-
scribed in the last section, considering a 2-D weighted averaging scheme as start-
ing point and taking the scaling limit leads to an anisotropic diffusion equation
including a diffusion tensor.

In this section, we generalise (4.9) in a different way to 2-D: We replace
the first derivative of u in (4.9) by a gradient and the outer derivative by the
divergence. This directly leads to the PDE

∂tu =
1

g(|∇u|2)
div
(
g(|∇u|2)∇u

)
, (4.32)

which will be called generalised mean curvature motion (GMCM) here. To justify
this name, consider the special case g(s2) = 1/s to obtain the standard mean
curvature motion equation (1.31). This already indicates that the additional
factor on the right-hand side changes the behaviour compared to the Perona-
Malik model more than in the 1-D case (4.9).

4.3.1 Interpretation

From the decomposition of the Perona-Malik filter in (1.28), we immediately
derive that generalised mean curvature motion (4.32) can be decomposed as

∂tu = uξξ +

(
1 + 2

g′(|∇u|2)|∇u|2

g(|∇u|2)

)
uηη (4.33)

= uξξ + a(|∇u|2)uηη . (4.34)

That means we have a mean curvature motion equation with an additional dif-
fusive component in orthogonal direction η which is steered by the factor

a(s2) := 1 + 2
g′(s2)s2

g(s2)
. (4.35)

As argument s2, the factor depends on the squared norm of the gradient |∇u|2.
We will discuss later how the choice of g influences the behaviour of this factor
a(s2). The basic idea is that the filter performs shrinkage of level lines in the
sense of mean curvature motion while the second term keeps edges sharp during
the evolution.

There is also another way of understanding the process: Having the equation
∆u = uξξ + uηη in mind, we can rewrite this as

∂tu = ∆u+ 2
g′(|∇u|2)|∇u|2

g(|∇u|2)
uηη . (4.36)
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In this form, we see that the generalised mean curvature motion can be under-
stood as linear diffusion with an additional shock term for edge enhancement. For
more information on shock filters, see [149, 94, 201]. While classical Perona-Malik
filtering slows down the linear diffusion part near edges by the factor g(|∇u|),
the velocity of this part is constant for generalised mean curvature motion.

4.3.2 Choices for the Nonlinearity

After specifying the general framework, we now focus on several choices of the
function g and give some first insight in the expected behaviour of the corre-
sponding methods in terms of forward and backward diffusion (similar to Section
2.2.3).

Example 4.4 (Perona-Malik Diffusivity)
Let us choose the classical diffusivity function g(s2) = (1 + s2/λ2)

−1
proposed

by Perona and Malik [154]. This diffusivity is especially interesting because it is
capable of switching between forward and backward diffusion adaptively. In this
case we have

a(s2) = 1 +
g′(s2)s2

g(s2)
= 1− 2

s2

s2 + λ2
(4.37)

which immediately shows that −1 ≤ a(s2) ≤ 1 for all s ∈ R. In a region where
|∇u| < λ, we have forward diffusion. That means the whole process (4.33) acts
like linear diffusion there. Close to an edge, we have forward diffusion along the
edge and backward diffusion across the edge. This explains the edge-preserving
behaviour which can be observed at the practical results in Section 4.4.

Example 4.5 (Unbounded Backward Diffusion)
Another frequently used diffusivity function is g(s2) = exp (−s2/(2λ2)) which
has also been proposed by Perona and Malik [154]. In the classical nonlinear
diffusion approach, it has the same properties as the function discussed above.
In our case we obtain a(s2) = 1 − s2

λ2 . We have a(s2) ≤ 1 for all s ∈ R, but a is
not bounded from below. That means in theory there would be no limit for the
amount of backward diffusion in a pixel where |∇u| is very large. We see that
similar diffusion properties do not imply a similar behaviour in the correspond-
ing GMCM model. Nevertheless, this special example is of rather theoretical
interest, since for realistic values of |∇u| and λ, the values exp (|∇u|2/(2λ2))
and exp (−|∇u|2/(2λ2)) differ by so many orders of magnitude that even a rep-
resentation in double precision on a standard PC is not precise enough for an
implementation.

Example 4.6 (Constant Diffusion Velocity in Both Directions)
So far, we have chosen the amount of diffusion in direction η adaptively depending
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on the gradient magnitude of the evolving image |∇u|. Now we consider the case
that the diffusion in direction η has a constant velocity. This is equivalent to

a(s2) = 1 +
g′(s2)s2

g(s2)
= c ∈ R . (4.38)

We see that this condition is satisfied for the family of functions g(s2) = 1
|s|p for

p > 0 where we have a(s2) = 1− p. The corresponding equation is given by

∂tu = |∇u|p div

(
∇u
|∇u|p

)
= uξξ + (1− p)uηη . (4.39)

For p = 1, we obtain mean curvature motion (1.31) as special case of this equation
while p = 0 yields the linear diffusion equation.

The filter (4.39) has some similarities with an evolution equation using the
p-Laplacian [115, 12]:

∂tu = ∆pu (4.40)

= div
(
|∇u|p−2∇u

)
= |∇u|p−2 (uξξ + (p− 1)uηη) .

This equation can be motivated as gradient descent equation for the energy

E (u) =
1

p

∫
Ω

|∇u|pdx . (4.41)

In the field of image processing, it has first been proposed for image interpolation
by Caselles et al. [31]. It has also been used for the evolution of shapes [47].
Recently, it has been proposed to use it for image smoothing by Kuijper [113].
For this equation, p = 2 yields linear diffusion, and p = 1 gives us the total
variation flow.

In the experimental section, we are going to take a closer look at the behaviour
of the filter family (4.39) for several values of p.

Remark 4.7 (Historical Background)
A certain special case of this family of methods has been proposed already in
1965 by Gabor in the context of electron microscopy [82]. Later on, his approach
has been reviewed and brought into the context of contemporary image analysis
by Lindenbaum et al. [119]. Rewriting his approach in our notation gives the
equation

u = f − µ2

2

(
fηη −

1

3
fξξ

)
(4.42)

for an initial image f and a filtered version u. The quantity µ is derived from
the application. We rewrite this equation as

6

µ2
(u− f) = fξξ − 3fηη . (4.43)
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The left-hand side of (4.43) can be interpreted as finite difference approximation
of a time-derivative. That means, Gabor’s approach (4.42) can be seen as one
step in an Euler forward time-discretisation of (4.39) with p = 4 and time step size

τ = µ2

6
. Due to limited computational tools, the approach was rather theoretically

motivated than used in practice at that time.

4.3.3 Discretisation

So far, we have not addressed the problem of discretising generalised mean curva-
ture motion (4.33). In our first practical examples, it turns out that the question
of finding a suitable discretisation is very important for this kind of equations.

Let h1, h2 > 0 be the pixel distance in x- and y-direction and Nd(i) the indices
of the direct neighbouring pixels in direction d to the pixel with index i. Let uki
denote the grey value of pixel i at the time step k. We start with the grey values
of the given initial image u0

i := fi. Let further gki ≈ g(|∇u(xi)|2) denote an
approximation to the weighting function evaluated at pixel i. We have used the
approximation

|∇u(xi)|2 ≈
2∑
d=1

∑
j∈Nd(i)

(uj − ui)
2

2h2
d

. (4.44)

This approximation yields better results for (4.33) than standard central differ-
ences. Similar to [200] we use a finite difference scheme with harmonic averaging
of the diffusivity approximations:

uk+1
i =


uki , if gki = 0

uki +
τ

gki

2∑
d=1

∑
j∈Nd(i)

2
1
gk

j
+ 1

gk
i

ukj − uki
h2
d

, else .
(4.45)

Why this scheme is very stable in practice can be seen by a simple equivalent
reformulation of the scheme for gki 6= 0:

uk+1
i = uki + τ

2∑
d=1

∑
j∈Nd(i)

2gkj
gkj + gki

ukj − uki
h2
d

. (4.46)

Under the assumption that g is a non-negative function, we have 0 ≤ gk
j

gk
j +gk

i
≤ 1.

It follows that
2∑
d=1

∑
j∈Nd(i)

2gkj
(gkj + gki )h

2
d

≤
2∑
d=1

|Nd(i)|
2

h2
d

.

Since we have at most 2 direct neighbours in each direction, we can write

2∑
d=1

∑
j∈Nd(i)

2gkj
(gkj + gki )h

2
d

≤ 4

h2
1

+
4

h2
2

.
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This gives

1 ≥ 1− τ
2∑
d=1

∑
j∈Nd(i)

2gkj
(gkj + gki )h

2
d

≥ 1− τ

(
4

h2
1

+
4

h2
2

)
,

and thus the scheme is a convex combination of grey values from the previous
step for

τ ≤
(

4

h2
1

+
4

h2
2

)−1

=
h2

1h
2
2

4h2
1 + 4h2

2

.

In practice we often have h1 = h2 = 1, and in this case we have to choose τ ≤ 1
8
.

We conclude that by a suitable choice of τ , we can achieve

min
j∈J

fj ≤ uki ≤ max
j∈J

fj (4.47)

for all k ∈ N and all i ∈ J , i. e. the process satisfies a maximum-minimum
principle.

4.4 Numerical Experiments

Now we show some numerical examples to illustrate the practical behaviour of
averaging methods and our novel PDE methods. As weight function or diffusivity
we use the classical diffusivity g(s) = (1 + s2/λ2)

−1
by Perona and Malik [154].

First we display an experiment in the one-dimensional case in Figure 4.1.
We see that the presence of the acceleration factor allows for sharper edges.
With the same evolution time we can achieve a stronger edge enhancement than
with a classical nonlinear diffusion equation of Perona-Malik type. Figure 4.2
visualises the lack of rotational invariance of local averaging filters and how it can
be improved with a larger neighbourhood in the bilateral filter. Even a better
effect than extending the neighbourhood can be achieved with the anisotropic
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Figure 4.1: Accelerated Perona-Malik diffusion in 1-D. Left: Original signal (64
point width section of a signal with 256 pixels). Middle: Perona-Malik diffusion
(λ = 0.005, t = 5000). Right: Perona-Malik diffusion with additional factor (4.9)
and the same parameters.
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Figure 4.2: Weighted averaging and accelerated diffusion. Top left: Original
image (size: 256 × 256 pixels). Top right: Weighted averaging (equation (4.16),
λ = 3.0, 15000 iterations). Bottom left: Iterated bilateral filtering (λ = 3.0,
window size 5× 5 pixels, w(h) = h2 exp (−h2/4), 5000 iterations). Bottom right:
Accelerated anisotropic diffusion (λ = 10, σ = 2, t = 1660).

nonlinear diffusion equation (4.18). Figure 4.3 shows the denoising capabilities
of the anisotropic diffusion equation (4.18) for real-world data. The anisotropic
behaviour is clearly visible.

Now we study the properties of generalised mean curvature motion with some
practical examples. In Figure 4.4 we compare the results of Perona-Malik filtering
with mean curvature motion and generalised mean curvature motion. It can be
seen that GMCM offers a combination of the properties of MCM with Perona-
Malik filtering: On the one hand, the contrast parameter λ gives us the opportu-
nity to distinguish between smoothed and preserved sharp edges as known from
Perona-Malik filtering. On the other hand, the objects are shrunken to points
and vanish at finite time as known from mean curvature motion.

In our second experiment with GMCM, we compare the behaviour of equation
(4.39) for different values of p. The corresponding test images can be seen in
Figure 4.5. Figure 4.6 shows the results of the application to the same test
image. The implementation for colour images has been done with joint diffusivity
following the ideas of Gerig et al. [87]. We see that p = 1 yields blurred results
while p ≥ 2 leads to sharp edges. We notice that some basic properties of mean
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Figure 4.3: Accelerated diffusion. Left: Original image (size: 256 × 256 pixels)
and additive Gaussian noise with standard deviation σ = 50. Middle: Accelerated
anisotropic diffusion (λ = 2, σ = 3, t = 2). Right: Same, but with t = 10.

curvature motion are also satisfied here even if we do not have a theoretical reason
for this so far: At this example we see that nonconvex objects are getting convex
and shrink in finite time. Further, for larger p it is possible that corners are
also kept longer in the iterations, the process of making objects circular is slowed
down. That means objects are getting smaller during evolution while the shape
is preserved longer than for mean curvature motion.

We have already mentioned that one important property of mean curvature
motion is the morphological invariance. We use a test image composed out of four
circles with different contrast to the background (see Figure 4.4) to determine the
contrast dependence of generalised mean curvature motion (4.39). We see that
for p = 2, 4, 6, 10 the four circles in one filtering result always have very similar
size. This means, for constant regions, the contrast in this example does hardly
influence the shrinkage time. We know from Figure 4.6 that these processes tend
to segment images into constant regions after a few steps. Further we notice
that the stopping times for shrinkage of the circles changes strongly with p. Our

Figure 4.4: Comparison of different filtering techniques. Left: Original image,
256 × 256 pixels. Second left: Perona-Malik filtering, λ = 10. Second right:
Mean curvature motion. Right: Generalised mean curvature motion (4.32) with
g(s) = (1 + s2/λ2)

−1
, λ = 10. Stopping time in all examples: t = 200.
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Figure 4.5: Real-world test image. Left: Original image, 512×340 pixels. Right:
With additive Gaussian noise, standard deviation σ = 20.

experience which is also confirmed by a larger number of experiments is that the
stopping time is smallest for p = 4 and increases rapidly for larger p. In Figure
4.8, we see how joint denoising and curve shrinking is possible with generalised
mean curvature motion. In this example, it is possible to obtain sharp edges even
for a highly noisy test image. At the same time, the process shrinks circles with
a comparable velocity to mean curvature motion. We see that self-snakes also
denoise the image, but do not shrink it even for a larger stopping time.

Our last experiment in this chapter presents a possible application for gener-
alised mean curvature motion: Depending on the contrast, one can distinguished
between objects two classes of objects in an image: The ones with high contrast
will be shrunken with an evolution similar to mean curvature motion, while the
ones with low contrast are smoothed similar to linear diffusion. The correspond-
ing example is displayed in Figure 4.9. We see that with increasing the contrast
parameter λ, more objects are smoothed. The evolution for the shrunken objects
is not visibly influenced by the larger parameter. For λ = 50, all objects are
smoothed. We have performed the same experiment for an artificial test image
and a noisy version of it. We see that the process is highly robust under noise.
Only for λ = 1 there appear some problems in recovering the exakt shape of two
of the objects.

4.5 Summary

In this chapter, we have investigated the close relationship between weighted av-
eraging processes and PDE-based filtering methods. Starting from a very simple
averaging filter using only the two direct neighbouring pixels in 1-D, we have
derived a modified Perona-Malik equation [154]. The modification consists of a
factor that can accelerate the sharpening of edges and thus may give an improved
edge enhancment. This does not impose problems with stability for suitable dis-
cretisations.
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Figure 4.6: Comparison of the evolution (4.39) for different values of p. Rows
from top to bottom: p = 1, 1.5, 2, 8. Left column: t = 100. Right column:
t = 1000.
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Figure 4.7: Contrast dependency of a discrete version for the constant gen-
eralised mean curvature motion (4.39). Left: p = 2, t = 375. Second left:
p = 4, t = 312.5. Second right: p = 6, t = 375. Right: p = 10, t = 625.

We have followed several ways to obtain related equations in the 2-D case:
Starting with a simple 2-D averaging filter using only the smallest possible neigh-
bourhood, the four direct neighbouring pixels, can lead to the lack of rotational
invariance. However, one can regard the corresponding PDE as a crude ap-
proximation of a rotationally invariant method closely related to an anisotropic
diffusion filter. The same PDE can also be derived starting from an iterated
bilateral filter using all neighbouring pixels inside a neighbourhood of extended
size, namely a circle, in the averaging process. This link to anisotropic diffusion
helps in the understanding of the widely-used bilateral filter.

Instead of starting with 2-D averaging schemes, it is also possible directly
to transfer the 1-D scaling limit to the two-dimensional setting. This leads to
a family of partial differential equations comprising mean curvature motion and
containing a nonlinearity. Numerical experiments show that the family somehow
inherits perperties from both mean curvature motion and Perona-Malik filtering:
On the one hand, objects are shrunken to ellipses and vanish after a finite time
like it is well-known for mean curvature motion. On the other hand, by choosing
the nonlinearity and the scale parameter suitably, it is possible to select edges
to be preserved and edges to be smoothed as we know it from Perona-Malik
diffusion. It is possible to choose the nonlinearity such that the obtained results
are much sharper than with classical mean curvature motion while the interesting
properties of this filter are kept.
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Mean curvature motion Generalised MCM Self-snakes

Figure 4.8: Joint denoising and curvature motion. Top left: Original image,
256× 256 pixels. Top right: Original image with Gaussian noise, standard devi-
ation σ = 200. First column: MCM, t = 12.5, 50. Second column: Generalised
mean curvature motion (4.32), g(s2) = (1 + s2/λ2)

−1
, t = 12.5, 50. Third column:

Self-snakes, λ = 10, t = 50, 100.
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Figure 4.9: Generalised mean curvature motion with g(s2) = (1 + s2/λ2)−1 and
stopping time t = 50. Top left: Original image, 256×256 pixels. Top right: With
additive Gaussian noise, standard deviation σ = 100. Middle row: Results for
the original image. Bottom row: Results for the noisy image. From left to right:
λ = 1, 10, 50.
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Chapter 5

Semilocal Methods, NDS

This chapter investigates the unifying image simplification approach with non-
local data and smoothness terms (NDS) which has been introduced by Mrázek
et al. in [139] and already been mentioned in Subsection 1.4.2. We focus on
characterisation of minimisers for the discrete energy function. Instead of using
gradient descent methods with adaptive time step sizes we prefer to formulate
the necessary conditions for minimisers as fixed point equations. This gives an
alternative motivation for the connection to some classical methods and allows
to prove the existence of minimisers. To speed up the convergence we also use
two approaches involving Newton’s method which is only applicable for strictly
convex penalisers. The running time in practice is studied with numerical exam-
ples in 1-D and 2-D. A preliminary version of this chapter has been published in
[58].

This chapter is organised as follows: Section 5.1 gives a closer description of
the energy functional we deal with and its relations to well-known filtering meth-
ods like M-smoothers and the bilateral filter. In Section 5.2 we discuss different
approaches to minimise the NDS functional including a fixed point scheme and
Newton’s method. Numerical experiments in 1-D and 2-D in Section 5.3 compare
the behaviour and running time of the presented approaches. A summary of the
results and an outlook in Section 5.4 conclude the chapter.

5.1 The NDS Model

We give a short sketch of the discrete NDS energy function and describe how it
can be related to a choice of classical image simplification methods.

5.1.1 The NDS Energy Function

Let us first review the NDS model: Let N ∈ N be the number of pixels in our
images and J := {1, . . . , N} the corresponding index set. Let f ∈ RN be the

139
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Table 5.1: Possible choices for tonal weights Ψ.

Ψ(s2) Ψ′(s2) known in the context of

s2 1
Tikhonov regularisation
[184]

2
(√

s2 + λ2 − λ
)

(s2 + λ2)
− 1

2
regularised total variation
[158, 1]

2λ2

(√
1 + s2

λ2 − 1

) (
1 + s2

λ2

)− 1
2 nonlinear regularisation,

Charbonnier et al. [39]

λ2 log
(
1 + s2

λ2

) (
1 + s2

λ2

)−1 nonlinear diffusion,
Perona and Malik [154]

2λ2
(
1− exp

(
− s2

2λ2

))
exp

(
− s2

2λ2

) nonlinear diffusion,
Perona and Malik [154]

min(s2, λ2)

{
1 |s| < λ
0 else

segmentation,
Mumford and Shah [142]

given image. In the following, u ∈ RN stands for a filtered version of f and for
the variable of the energy function E. The energy function E of the NDS filter
presented in [139] can be decomposed into two parts: the data and the smoothness
term.

The data term can be written as

ED(u) =
∑
i,j∈J

ΨD

(
|ui − fj|2

)
wD
(
|xi − xj|2

)
(5.1)

where ΨD : [0,∞) −→ [0,∞) is an increasing function which plays the role of
a penaliser for the difference between u and the initial image f , the so-called
tonal weight function. This weight function is important for the behaviour of
the filtering method with respect to image edges and the robustness against
outliers. In principle we can use here all the penalising functions we already know
from regularisation approaches. Six possibilities for such penalising functions are
shown in Table 5.1. They are essentially the same as the ones presented in the
first chapter. Here we have introduced some additional factors or constants in
order to assure that the derivatives are exactly the same as some commonly used
diffusivities. We notice that the data term not only compares the grey values of
u and f at the pixel xi, but it also takes a nonlocal neighbourhood into account.
This neighbourhood is defined by the spatial weight function wD : [0,∞) −→
[0,∞) depending on the Euclidean distance between the pixels xi and xj. We
have seen already in Table 1.4 how these functions can be chosen. By choosing
special cases and parameters of wD one can determine the amount of locality of
the filter from one pixel up to the whole image domain.
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The second ingredient of the NDS function is the smoothness term

ES(u) =
∑
i,j∈J

ΨS

(
|ui − uj|2

)
wS
(
|xi − xj|2

)
(5.2)

which differs from the data term by the fact that not the difference between
u and f is calculated as argument of the penaliser, but the difference between
grey values of u inside a larger neighbourhood. As penalising function ΨS and
as spatial window wS one can choose similar functions as described for ΨD and
wD, respectively. Since ES does not depend on the initial image f , each constant
image u ≡ c ∈ R would always yield a minimum: Thus we are rather interested
in intermediate solutions during the minimisation process.

The complete NDS energy function is then the convex combination of these
two parts:

E(u) = αED(u) + (1− α)ES(u) (5.3)

= α
∑
i,j∈J

ΨD

(
|ui − fj|2

)
wD
(
|xi − xj|2

)
+ (1− α)

∑
i,j∈J

ΨS

(
|ui − uj|2

)
wS
(
|xi − xj|2

)
(5.4)

for 0 ≤ α ≤ 1. This function combines two ways of smoothing: Besides the
smoothness term, also choosing a window with larger size in the data term intro-
duces some averaging over this neighbourhood. The presence of the initial image
f in the data term makes nonflat minima of E possible.

5.1.2 Included Classical Methods

In the following, we give a short list of special methods included in the NDS
framework:

• Local M-smoothers / W-estimators: Restricting the neighbourhood
size leads to the data term

ED(u) =
∑
i,j∈J

ΨD(|ui − fj|2)wD(|xi − xj|2) (5.5)

as shown in (5.1) where nonflat minimisers are possible. To search for a
minimiser, we consider critical points with ∇E(u) = 0 which is equivalent
to ∑

j∈J

Ψ′
D(|ui − fj|2)wD(|xi − xj|2)(ui − fj) = 0 (5.6)

for all i ∈ J . This can be understood as a fixed point equation u = F (u) if
we bring the vector u to the other side. The corresponding iterative scheme
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is

uk+1
i =

∑
j∈J Ψ′

D(|uki − fj|2)wD(|xi − xj|2)fj∑
j∈J Ψ′

D(|uki − fj|2)wD(|xi − xj|2)
(5.7)

which has been considered as local M-smoother [41] or as localised version
of the W-estimator [97, 210]. Doing only the first iteration leads to the
classical sigma filter [114] as shown in (1.37).

• Bilateral filter: Performing the same steps as above with a smoothness
term (5.2) as starting point, one can obtain the averaging filter

uk+1
i =

∑
j∈J Ψ′

S(|uki − ukj |2)wS(|xi − xj|2)ukj∑
j∈J Ψ′

S(|uki − ukj |2)wS(|xi − xj|2)
. (5.8)

This is an iterative version of the bilateral filter [185], SUSAN filter [169], or
nonlinear Gaussian filter [8] already described in the first chapter. Since we
start with a smoothness term, the initial image has to be taken as starting
vector for the iterative scheme, and we are interested not in the steady
state, but in intermediate solutions.

• Bayesian / regularisation approaches: Classical regularisation ap-
proaches can be expressed with the NDS function by using very small local
neighbourhoods. Typically, one will use only the central pixel in the data
term, and only the four direct neighbours N (i) of the pixel at position xi
in the smoothness term. This results in the energy function

E(u) = α
∑
i∈J

ΨD(|ui − fi|2) + (1− α)
∑
i∈J

∑
j∈N (i)

ΨS(|uj − ui|2) (5.9)

which is some kind of discrete anisotropic regularisation function since the
differences to all four neighbours are penalised independently. Exchanging
the sum and the penaliser in the smoothness term would yield the isotropic
variant with an approximation of |∇u|2 inside the penaliser.

We see that the NDS functional allows to incorporate many simplification
techniques in one model.

5.1.3 Parameter Selection

As we have seen in the last section, the NDS model is a very general model which
is capable of yielding various kinds of filtering results depending on the choice
of parameters. To obtain denoising results with good visual quality, one has to
determine an appropriate set of parameters and weights depending on the noise
and the properties of the desired result. For example, nonconvex tonal weights
tend to yield images which can be seen as compositions of regions with constant
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Figure 5.1: Example of the trade-off between different parameters. Left: Original
image, 256 × 256 pixels, with additive Gaussian noise with standard deviation
σ = 50. Middle: Denoising with ED, radius rD = 5. Right: Denoising with EC ,
α = 0.424.

grey value, while quadratic weights usually blur the image edges. In this context
the question arises if there is some redundancy in the set of parameters. We
will display one experiment concerning this question here – further experiments
and remarks addressing the problem of choosing the parameters can be found in
[155]. In our experiment we compare the influence of the neighbourhood size in
the data term with the weight α between data and smoothness term. To this end
we consider a pure data term

ED(u) =
∑
i,j∈J

(ui − fj)
2wD(|xi − xj|2) (5.10)

with a quadratic tonal penaliser and a disc-shaped hard window function wD
with radius rD. On the other hand, we have a function with a local data term,
and a smoothness term that involves only the direct neighbours:

EC(u) = α
∑
i∈J

(ui − fi)
2 + (1− α)

∑
i∈J

∑
j∈N (i)

(ui − uj)
2 (5.11)

The only parameter α determines how smooth the result is in this case.

We are looking for a quantification of the difference between the results ob-
tained by minimising these two functions. The connection between the param-
eters α and rD with most similar results is especially interesting. Figure 5.1
shows that the filtering results obtained by the two approaches are hardly distin-
guishable when the parameters are suitably chosen. Figure 5.2 shows the graph
relating the size of the window rD and the value for α such that the difference is
minimised.
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Figure 5.2: Trade-off between large kernels and small α. Optimal value of α
depending on the radial support rD.

5.2 Minimisation Methods

After discussing the derivation and the meaning of the NDS functional we now
study different methods to minimise it. All numerical minimisation methods
shown here based on conditions on the derivatives of E, so we now calculate the
first and second partial derivatives of E.

Taking the partial derivatives of the data term (5.1) yields

∂ED
∂uk

= 2
∑
j∈J

Ψ′
D

(
|uk − fj|2

)
(uk − fj)wD

(
|xk − xj|2

)
(5.12)

∂2ED
∂uk∂ur

=


2
∑
j∈J

[
2Ψ′′

D

(
|ur − fj|2

)
(ur − fj)

2

+Ψ′
D (|ur − fj|2)]wD (|xr − xj|2) r = k

0 r 6= k

(5.13)

In a similar way we calculate the derivatives of the smoothness term (5.2) which
leads to

∂ES
∂uk

= 4
∑
j∈J

Ψ′
S

(
|uk − uj|2

)
(uk − uj)wS

(
|xk − xj|2

)
(5.14)
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∂2ES
∂uk∂ur

=



4
∑
j∈J

[
2Ψ′′

S

(
|ur − uj|2

)
(ur − uj)

2

+(1− δrj)Ψ
′
S (|ur − uj|2)]ws (|xr − xj|2) r = k

−4 [2Ψ′′
S (|uk − ur|2) (uk − ur)

2

+Ψ′
S(|uk − ur|2)]wS (|xk − xr|2) r 6= k

(5.15)

In the second derivatives δrj denotes the Kronecker symbol δrj =

{
1 r = j
0 else

.

It is clear that the complete derivatives then have the form

∂E

∂ui
= α

∂ED
∂ui

+ (1− α)
∂ES
∂ui

, (5.16)

and the corresponding sum for the second derivatives, respectively. Having these
derivatives at hand we can now study the concrete minimisation algorithms.

5.2.1 Jacobi Method

For a critical point u of the energy functional E we have

∇E(u) = 0 ⇐⇒ ∂E

∂ui
= 0 for all i ∈ J . (5.17)

We define the abbreviations

di,j := Ψ′
D

(
|ui − fj|2

)
wD
(
|xi − xj|2

)
, (5.18)

si,j := Ψ′
S

(
|ui − uj|2

)
wS
(
|xi − xj|2

)
(5.19)

which help us to rewrite (5.17) as

0 = α
∑
j∈J

di,j(ui − fj) + 2(1− α)
∑
j∈J

si,j(ui − uj) (5.20)

where we use the partial derivatives shown in (5.12) and (5.14). This can be
transformed into fixed point form

ui =
α
∑

j∈J di,j fj + 2(1− α)
∑

j∈J si,j uj

α
∑

j∈J di,j + 2(1− α)
∑

j∈J si,j
. (5.21)

To have a positive denominator we assume that Ψ′
{D,S}(s

2) > 0, i. e., the penalisers

are monotonically increasing. Furthermore we assume that w{D,S}(s
2) ≥ 0 and

w{D,S}(0) > 0 for the spatial weights. We use this equation to build up a first
iterative method to minimise the value of E where the upper index k denotes
the iteration number. Note that di,j and si,j also depend on the evolving image
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uk and thus also get a superscript to denote the iteration level involved. The
corresponding fixed point iteration then reads as

u0
i := fi , (5.22)

uk+1
i :=

α
∑

j∈J d
k
i,j fj + 2(1− α)

∑
j∈J s

k
i,j u

k
j

α
∑

j∈J d
k
i,j + 2(1− α)

∑
j∈J s

k
i,j

. (5.23)

In the following we will write this scheme (5.23) in the form uk+1 = F (uk) with
F : RN −→ RN . We note that in (5.23) we calculate uk+1 using only components
of the vector uk of the old iteration level:

uk+1
i := F i(uk) for all i ∈ J, k ∈ N . (5.24)

Such a method can also be called a nonlinear Jacobi method.

Proposition 5.1 (Maximum-Minimum Principle)
With the assumptions on Ψ{D,S} and w{D,S} from above, the scheme (5.23) sta-
isfies a maximum-minimum principle.

Proof: With our assumptions on Ψ{D,S} and w{D,S} from above we know that
dki,j ≥ 0 and ski,j ≥ 0 for all i, j, k. That means in (5.23), uk+1

i is calculated as a
convex combination of grey values of the initial image f and of the last iteration
step uk. Thus we have

min
j∈J

{ukj , fj} ≤ uk+1
i ≤ max

j∈J
{ukj , fj} for all i ∈ J, k ∈ N . (5.25)

Induction shows that the fixed point scheme (5.23) satisfies a maximum-minimum
principle, i. e.

min
j∈J

{fj} ≤ uki ≤ max
j∈J

{fj} for all i ∈ J, k ∈ N . (5.26)

�

In the next proposition, we see that this property is not only useful from a
practical point of view: Together with continuity, it gives us the existence of a
fixed point.

Proposition 5.2 (Existence of a Fixed Point)
The fixed point equation (5.21) has a solution.

Proof: Let us consider the set M :=
{
u ∈ RN | ‖u‖∞ ≤ ‖f‖∞

}
with the norm

‖u‖∞ := maxj∈J |uj|. M is nonempty, compact and convex. Then the maximum-
minimum stability implies that F (M) ⊆ M . With our requirements on Ψ{D,S}
and w{D,S}, the denominator in (5.23) is always larger than zero. This means
that each component Fi : RN −→ R is continuous with respect to the norm
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‖ · ‖∞. Since this holds for all i, we know that F : (RN , ‖ · ‖∞) −→ (RN , ‖ · ‖∞) is
continuous. Then Brouwer’s fixed point theorem (see [15] or [214, page 51], for
example) shows that F has a fixed point in M . �

From the derivation it is clear that a fixed point corresponds to a critical point
of E. If we have chosen our penaliser functions such that the energy function is
strictly convex, this is equivalent to the unique minimum of E.

5.2.2 Gauß-Seidel Method

Instead of the nonlinear Jacobi method (5.24) one can also use a nonlinear Gauß-
Seidel method which involves pixels of the old and the new iteration level. For
each pixel ui =: x0, we perform m steps of a local fixed point iteration

xr+1 := F i(uk+1
1 , . . . , uk+1

i−1 , x
r, uki+1, . . . , u

k
N) r = 1, . . . ,m− 1 (5.27)

and set uk+1
i := xm afterwards. Since these inner steps satisfy a maximum-

minimum principle, the whole Gauß-Seidel method does. Thus one can apply the
same reasoning as above and gets the existence of fixed points for the equation.

5.2.3 Newton’s Method

We search a zero of the gradient∇E(u) = 0. To this end we use Newton’s method
for the function ∇E:

uk+1 = uk −H(E, uk)−1∇E(uk) , (5.28)

where H(E, uk) is the Hessian of E at the point uk. In each step of (5.28)
we have to solve a linear system of equations. This system of equations can
only be solved if the Hessian is invertible which is the case for a strictly convex
function E. That means we can not use Newton’s method for all penalisers
shown in the last section. If both ΨD(s2) and ΨS(s

2) are strictly convex in s, i. e.
2Ψ′′(s2)s2 + Ψ′(s2) > 0, the Hessian H(E, uk) has positive diagonal entries and
is strictly diagonally dominant. This does not only allow us to solve the linear
system of equations, but it also gives us the possibility to use a whole variety of
iterative solution algorithms like the Gauß-Seidel, successive overrelaxation, or
conjugate gradient method (see [177, 160], for example). We have chosen to use
the Gauß-Seidel method here to solve the linear system of equations since it does
not introduce further numerical parameters besides the number of iterations.

A practical observation shows that the steps of Newton’s method are often
too long. Thus we have used a simple line-search strategy:

uk+1 = uk − σkH(E, uk)−1∇E(uk) (5.29)

with σk ∈ (0, 1]. We try σk = 1, 1
2
, 1

4
, . . . until the energy is decreasing in the step:

E(uk+1) < E(uk).
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Figure 5.3: Denoising experiment in 1-D. Left: Test signal with additive Gaus-
sian noise with zero mean, size 1024 pixels. Right: Denoised version of the signal.

It is clear that one step of Newton’s method is much more expensive than one
fixed point iteration step. Nevertheless, numerical examples will show that the
whole process can still converge faster.

5.2.4 Gauß-Seidel Newton Method

Here we solve the single component equations with Newton’s method. We start
with the pixel value x0 = uki of the last iteration level and set

xr+1 = xr − σl

(
∂2E

∂u2
i

(ũ)

)−1
∂E

∂ui
(ũ) (5.30)

with ũ = (uk+1
1 , . . . , uk+1

i−1 , x
r, uki+1, . . . , u

k
N). After m steps of this method we set

uk+1
i = xm and proceed with the next pixel. The only difference is that we use

the criterion Eloc(x
r+1) < Eloc(x

r) for the choice of the step size σr where the
local energy is defined as

Eloc(u) = α
∑
j∈J

ΨD

(
|xr − fj|2

)
wD
(
|xi − xj|2

)
+(1− α)

∑
j∈J

ΨS

(
|xr − ũj|2

)
wS
(
|xi − xj|2

)
. (5.31)

We should note that besides the number of (outer) iterations, all methods
except of the Jacobi method have the number of inner iterations as an additional
parameter for the numerics.

5.3 Numerical Experiments

Now we investigate the practical behaviour of the methods presented in the last
section. We use the two stopping criteria

‖uk+1 − uk‖2 < a and |E(uk+1)− E(uk)| < b .
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Figure 5.4: Denoising experiment in 2-D with Gaussian noise. Left: Test image
(256 × 256 pixels) with additive Gaussian noise of standard deviation σ = 20.
Right: Denoised version of the image.

That means we stop the algorithm if the changes of both the evolving image (in
terms of the Euclidean norm) and the energy value are smaller than prescribed
limits a and b. The results of the 1-D example are displayed in Figure 5.3
and Table 5.2. Here we have Gaussian noise, and we have chosen ΨD(s2) = s2,
ΨS(s

2) = 2
(√

s2 + λ2 − λ
)

with λ = 0.01, and wD(s2) = wS(s
2) = 1 inside a data

term window of size 7 and a smoothness term window of size 11 with α = 0.5.
The number of inner iterations was optimised to yield a fast convergence for each
method. We see that Newton’s method is the fastest one in this case while all of
the methods yield almost equal `1-errors.

We see that results of our first 2-D experiment in Figure 5.4 and Table 5.3.
Since we also have Gaussian noise here, we also use a quadratic data term and
a regularised total variation penaliser in the smoothnes term as in the previous
1-D experiment. The regularisation parameter for the smoothness term penaliser
is λ = 0.1 here. The data term is local in this case, and the smoothness term has

Table 5.2: Denoising experiment in 1-D with a = 10−2 and b = 10−6.
method iterations inner it. energy `1-error time [sec]
original signal – – 838.21660 163.994 –
Jacobi 1309 – 165.70820 23.167 3.301
Newton 25 60 165.70807 23.252 0.510
Gauß-Seidel 842 1 165.70815 23.200 2.354
G.-S. Newton 683 1 165.70813 23.229 5.739
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Table 5.3: Denoising experiment in 2-D with Gaussian noise and a = b = 500.
method iterations inner it. energy `1-error time [sec]
original image – – 4.194 · 107 90008.1 –
Jacobi 292 – 2.525 · 107 54304.9 77.189
Newton 31 5 2.542 · 107 51466.2 47.223
Gauß-Seidel 48 10 2.519 · 107 57677.9 73.335
G.-S. Newton 70 1 2.690 · 107 54296.9 287.133

Figure 5.5: Denoising experiment in 2-D with impulse noise. Left: Test image
(256 × 256 pixels) with salt-and-pepper noise. Right: Denoised version of the
image.

Table 5.4: Denoising experiment in 2-D with impulse noise and a = b = 100.
method iterations inner it. energy `1-error time [sec]
original image – – 2.753 · 107 61232.9 –
Jacobi 47 – 1.901 · 107 17964.3 9.32
Newton 409 2 1.917 · 107 18351.6 938.95
Gauß-Seidel 8 10 1.901 · 107 18033.8 8.75
G.-S. Newton 3 10 1.901 · 107 18047.7 76.77
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size 5. The regularisation weight is α = 0.5. We see that also in 2-D, Newton’s
method converges faster than the others.

This is not the case for all configurations: Figure 5.5 and Table 5.4 contain the
results of the second experiment in 2-D. For the removal of salt-and-pepper noise

we chose ΨD(s2) = 2
(√

s2 + λ2 − λ
)

with λ = 0.01, ΨS(s
2) = λ2

(√
1 + s2

λ2 − 1

)
with λ = 0.1. We set wD(s2) = wS(s

2) = 1.0 with both windows of size 3 and
α = 0.95. As the data term contains the regularised total variation penaliser,
this filter is related to a median filter with small smoothness term contribution.
Here we observe the opposite case than in the previous examples: The simple
Gauß-Seidel and Jacobi iterations are faster than Newton’s method.

5.4 Summary

In this chapter, we have investigated four different algorithmic approaches for the
image simplification NDS-model presented in [139]. We have given an overview
over the spectrum of methods that can be represented with this model and per-
formed experiments concerning the selection of parameters. For schemes based
on a nonlinear Jacobi method we have shown the existence of fixed points. New-
ton’s method is only applicable for a certain class of convex penalisers. We have
seen with practical examples that in terms of running time we can not prefer one
single method in general. It is an interesting question if coarse-to-fine strategies
could be applied in this context to further speed up the minimisation.
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Chapter 6

Conclusions and Outlook

In this chapter, we conclude the thesis by giving a short summary of the main
results connected with a glimpse at some open questions arising in the respective
context.

6.1 Conclusions

This thesis has dealt with several types of methods for image simplification,
smoothing and denoising. After introducing classical image processing methods
in Chapter 1, we have discussed derivative-based filtering approaches in Chapter
2. Firstly we have investigated linear scale-spaces arising from fractional order
regularisation and diffusion filters in Section 2.1. Special emphasis was on the
fact that we have considered combinations of several fractional orders here. We
have seen that such combinations in general contradict scale invariance. Never-
theless, the experiments in Subsection 2.1.5 have shown that higher order filters
need not to violate a maximum-minimum principle: It is possible to construct
linear combinations of different derivative orders which yield positive convolution
kernels and thus satisfy a maximum-minimum principle.

In the nonlinear case in Section 2.2, we have investigated nonquadratic reg-
ularisation and nonlinear evolution equations with penalisers and diffusivities
depending on all squared partial derivatives of a certain integer order. We have
seen that these filters are stable in the continuous or discrete 2-norm and pre-
serve higher moments of the data. To find the higher order analogue to the edge
enhancement of classical diffusion equations, a consideration of the behaviour in
terms of forward and backward diffusion has shown to be helpful. Experimentally,
nonlinear diffusion filtering of order 2p can leads to piecewise polynomial results
of degree p − 1. An important example is the fourth-order diffusion equation
which allows for the recovery of images consisting in linear regions. Experiments
show that it is possible with such a filter and the Perona-Malik diffusivity to
denoise an image in an edge-preserving manner without staircasing artefacts.
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Besides this regularisation and generalised diffusion approaches, we have dis-
cussed variational approaches involving higher order data terms. We have re-
viewed two ways of implementations for the corresponding filters. In case of the
total variation penaliser, they have shown to produce significantly less blurring
of image edges.

In Chapter 3 we have discussed the connection between multiscale wavelet
shrinkage and integrodifferential equations. The key for the understanding of
these connections has been to see the wavelets as derivatives of smoothing ker-
nels. This allows to consider the wavelet transform as presmoothed derivative
operator. The backtransform additionally integrates over all scales turning the
nonlinear diffusion equation into an integrodifferential equation. A similar for-
mulation than in the continuous setting has also been used in the discrete case.
Here, we have focused on the shape of the convolution kernels appearing in the
integrodifferential equations since there is no exact dilation operation, but only
an approximative one. Besides the 1-D case, we have also taken a look at two-
dimensional filtering methods. Numerical experiments have shown that only us-
ing larger scales makes it impossible to remove high-frequent components of the
noise. Involving multiple dyadic scales helps to speed up the denoising process
and can even help to enhance the quality in some examples.

Adaptive averaging filters and some related PDE models have been the sub-
ject of Chapter 4. We have seen that a simple 1-D adaptive averaging method
can be related to what we have called accelerated Perona-Malik diffusion. The
additional factor on the right-hand side leads to increased edge enhancement.
Nevertheless, there are several possibilities to transfer this idea to 2-D which
have been sketched here. We have seen that a filter closely connected to the
integration model for anisotropic diffusion can be obtained as scaling limit for
the bilateral filter. Motivated by the 1-D scaling limit, a straight-forward gener-
alisation to 2-D yields the generalised mean curvature motion. The GMCM filter
family has shown to yield interesting results from a practical point of view: The
filters behave similar to mean curvature motion, while the edges in the image
remain sharp. By using a diffusivity function with a contrast parameter like the
Perona-Malik diffusivity, one can select objects in the image to be shrunken in an
MCM-like manner and others to be blurred very fast similar to linear diffusion.

Chapter 5 has given an introduction to the NDS filtering framework and
its connections to classical image processing methods. We have focused on its
numerical implementation and properties of this methods. For example, an ap-
proach based on a fixed point iteration or nonlinear Jacobi method satisfies the
maximum-minimum property. Other approaches based on Newton’s method can
show faster convergence for several problem instances. We have also discussed
the choice of parameters with the help of numerical experiments. This helps to
understand the redundancy in the parameter set of NDS filtering.

In general, we have reviewed many different ways for filtering digital data while
preserving or even enhancing its important features. We have tried to describe
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the properties of these filters from a rather practical point of view together with
possible ways of implementation. It is the hope that some of the ideas presented
in this thesis can be useful for solving practical application problems in image
processing or as an ingredient in computer vision systems.

6.2 Outlook

In the previous section, we have summarised the main contributions of this thesis.
Let us now sketch some interesting questions for future research:

Concerning the research on linear scale-spaces, the fact that combinations
of a high and a low filter order are observed to satisfy a maximum-minimum
principle deserves a further investigation: To derive a theoretical background for
this effect and possibly also deduce limits for the weights depending on the scale-
space order is an open problem with practical relevance. This question is strongly
connected with Bochner’s theorem and the notion of positive functions which are
functions whose Fourier transform is nonnegative [132, 13]. Unfortunately, this
notion is usually used the other way round: Knowing that the Fourier transform is
nonnegative allows to determine that a function is positive. To solve our question
here, we would have to go in the other direction.

The connection between variational methods with higher order data terms
and the classical approaches has been investigated only for `1 regularisation so
far [59]. The connection of these methods to the ones described before still needs
further research in a more general framework. Besides derivatives, one can also
think of different of operators in the data term like convolution operators, for
example.

In recent years, other kinds of data than grey and color images, for example
matrix-valued data sets, become more and more important for practical pur-
poses. Examples for matrix-valued data include diffusion tensor magnetic res-
onance imaging in medicine or stress tensors to measure deformations in mate-
rial sciences. The higher order diffusion filters described in this thesis could be
carried over to matrix-valued data in a similar way as proposed by Burgeth et
al. [24, 23, 27] for the classical Perona-Malik filters. One of the most important
questions in this context is how suitable stability notions look like and how cor-
responding criteria, for example for explicit discretisations, can be formulated in
this framework. Faster implementations, for example semi-implicit schemes, are
also not available so far.

In our research on the connections between wavelets and diffusion filters in
Chapter 3, we have mainly worked in one dimension and only considered isotropic
filters so far. Further considerations in the 2-D case and involving anisotropy
would be interesting extensions. The natural candidate for such an extension on
the side of PDEs would be anisotropic nonlinear diffusion as described in Sub-
section 1.2.3. On the wavelet side we have already mentioned several approaches
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like curvelets or orientation scores in Section 1.3.
The description of the GMCM method in Chapter 4, we have shown that this

filter class has interesing properties in practice. The exact shrinkge velocity is
only one of the theoretical properties which are still open in this context. To
deduce precise extinction times for objects of certain diameter would make these
methods much more appealing for practical purposes.

Concerning the numerical minimisation of the NDS function in Chapter 5,
there are also other approaches which deserve a closer investigation. An inter-
esting question is the usefulness of multigrid methods in this context. At least
for small windows, this procedure can be expected to speed up the convergence.
Also for larger windows, coarse-to-fine strategies leading to better starting points
on the finer scales could be worth a closer investigation.



Appendix A

Contributions and Publications

A.1 Further Contributions

The main contributions of this thesis have already been sketched in Chapter 6.
Furthermore, as co-author of several publications, there have been some contri-
butions to different topics during my studies which have not been included in
detail in this thesis. In this section, a short sketch of these topics is given:

• Linear scale-spaces: With the so-called relativistic scale-spaces, a new
family of linear scale-spaces has been described [26]. The integral kernel
can be given in explicit form in this case.

For linear scale-spaces, usually the semigroup property is satisfied by using
kernels with Fourier transforms of exponential form. The Bessel scale-space
is the first example for a linear scale-space satisfying the semigroup property
with another structure of the kernels [25].

• TV regularisation: The connection between discrete higher order TV
regularisation, support vector regression and discrete splines have been in-
vestigated [174, 175]. In fact, there are different equivalent formulations for
the same application in terms of sparse representation, contact problems
and support vector regression. For higher order data terms, one obtains
discrete splines with a defect [59].

• Applications of higher order methods: Besides the problem of image
denoising, higher order regularisation and diffusion can also be useful for
other problems in image processing and computer vision. Concerning the
optic flow problem, one can think of both higher order data and smoothness
terms [151]. For the problem of shape from shading, a common model gives
equations involving the first derivatives of the depth information as desired
quantity. That means, the first derivative is already determined by the
constraints of the problem. In this context, it is a natural consequence to
use a higher order smoothness requirement [193].
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• Processing of matrix-valued data: For the processing of matrix-valued
data, one has often generalised PDE-based approaches in the same way as
for colour images. Nevertheless, this does not reflect the understanding
of matrices as operators and the meaning of the different matrix entries
in this context. Recently, it has been proposed to understand the equa-
tions and all functions involved there already as matrix-valued. This offers
a different approach for filtering and also for numerical treatment. Sev-
eral filter classes such as PDE-based morphology, Perona-Malik filtering
or coherence-enhancing anisotropic diffusion, have been transferred to this
setting [22, 24, 23, 27].

A.2 Publications

Journal Articles:

• N. Papenberg, A. Bruhn, T. Brox, S. Didas, J. Weickert: Highly accurate
optic flow computation with theoretically justified warping. International
Journal of Computer Vision, Vol. 67, No. 2, 141–158, April 2006. Invited
paper.

• G. Steidl, S. Didas, J. Neumann: Splines in higher order TV regularization.
International Journal of Computer Vision, Vol. 70, No. 3, 241–255, 2006.
Invited paper.

• B. Burgeth, A. Bruhn, S. Didas, J. Weickert, M. Welk: Morphology for ten-
sor data: Ordering versus PDE-based approach. Image and Vision Com-
puting, Vol. 25, No. 4, 496–511, April 2007.

• S. Didas, J. Weickert: Integrodifferential Equations for Continuous Multi-
scale Wavelet Shrinkage. Inverse Problems and Imaging, Vol. 1, No. 1,
47–62, 2007.

• S. Didas, S. Setzer, G. Steidl: Combined `2 data and gradient fitting in con-
junction with `1 regularization. Advances in Computational Mathematics,
2007, in print.

Conference Papers:

• S. Didas, B. Burgeth, A. Imiya, J. Weickert: Regularity and scale-space
properties of fractional high order linear filtering. In R. Kimmel, N. Sochen,
J. Weickert (Eds.): Scale-Space and PDE Methods in Computer Vision.
Lecture Notes in Computer Science, Vol. 3459, Springer, Berlin, 13–25,
2005.
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• B. Burgeth, S. Didas, J. Weickert: Relativistic scale-spaces. In R. Kimmel,
N. Sochen, J. Weickert (Eds.): Scale-Space and PDE Methods in Computer
Vision. Lecture Notes in Computer Science, Vol. 3459, Springer, Berlin,
1–12, 2005.

• G. Steidl, S. Didas, J. Neumann: Relations between higher order TV regu-
larization and support vector regression. In R. Kimmel, N. Sochen, J. We-
ickert (Eds.): Scale-Space and PDE Methods in Computer Vision. Lecture
Notes in Computer Science, Vol. 3459, Springer, Berlin, 515–527, 2005.

• S. Didas, J. Weickert, B. Burgeth: Stability and local feature enhancement
of higher order nonlinear diffusion filtering. In W. Kropatsch, R. Sablat-
nig, A. Hanbury (Eds.): Pattern Recognition. Lecture Notes in Computer
Science, Vol. 3663, Springer, Berlin, 251–258, 2005.

• B. Burgeth, S. Didas, J. Weickert: The Bessel scale-space. In O. F. Olsen,
L. Florack, A. Kuijper (Eds.): Deep Structure, Singularities, and Computer
Vision. Lecture Notes in Computer Science, Vol. 3753, Springer, Berlin,
84–95, 2005.

• S. Didas, P. Mrázek, J. Weickert: Energy-based image simplification with
nonlocal data and smoothness terms. In A. Iske, J. Levesley (Eds.): Algo-
rithms for Approximation, 50–60, Springer, Heidelberg, 2006.

• S. Didas, J. Weickert: From adaptive averaging to accelerated nonlinear
diffusion filtering. In K. Franke, K.-R. Müller, B. Nickolay, R. Schäfer
(Eds.): Pattern Recognition. Lecture Notes in Computer Science, Vol. 4174,
101–110, Springer, Berlin, 2006.

• L. Pizarro, S. Didas, F. Bauer, J. Weickert: Evaluating a general class of
filters for image denoising. In B. K. Ersbøll, K. S. Pedersen, S. I. Olsen
(Eds.): Image Analysis, Lecture Notes in Computer Science, Vol. 4522,
601–610, Springer, Berlin, 2007.

• B. Burgeth, S. Didas, L. Florack, J. Weickert: A generic approach for sin-
gular PDEs for the processing of matrix fields. In A. Murli, N. Paragios, F.
Sgallari (Eds.): Scale Space and Variational Methods in Computer Vision.
Lecture Notes in Computer Science, Vol. 4485, 556–567, Springer, Berlin,
2007.

• S. Didas, J. Weickert: Combining curvature motion and edge-preserving
denoising. In A. Murli, N. Paragios, F. Sgallari (Eds.): Scale Space and
Variational Methods in Computer Vision. Lecture Notes in Computer Sci-
ence, Vol. 4485, 568–579, Springer, Berlin, 2007.
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• O. Vogel, A. Bruhn, J. Weickert, S. Didas: Direct shape-from-shading with
adaptive higher order regularisation. In A. Murli, N. Paragios, F. Sgallari
(Eds.): Scale Space and Variational Methods in Computer Vision. Lecture
Notes in Computer Science, Vol. 4485, 871–882, Springer, Berlin, 2007.

Technical Reports:

• B. Burgeth, S. Didas, L. Florack, J. Weickert: A generic approach to dif-
fusion filtering of matrix-fields. Technical Report No. 191, Department of
Mathematics, Saarland University, Saarbrücken, Germany, March 2007.

• B. Burgeth, S. Didas, J. Weickert: A general structure tensor concept and
coherence-enhancing diffusion filtering for matrix fields. Technical Report
No. 197, Department of Mathematics, Saarland University, Saarbrücken,
Germany, July 2007.

Theses:

• S. Didas: Higher order variational methods for noise removal in signals and
images. Diplomarbeit, Fachrichtung Mathematik, Universität des Saarlan-
des, Saarbrücken, Germany, April 2004.

• S. Didas: Synchronisation in the Network-Multimedia Middleware (NMM).
Fortgeschrittenenpraktikum, Fachrichtung Informatik, Universität des
Saarlandes, Saarbrücken, Germany, Oktober 2002. Accepted as Bachelor’s
thesis, Oktober 2004.
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[137] P. Mrázek and J. Weickert. Rotationally invariant wavelet shrinkage. In
B. Michaelis and G. Krell, editors, Pattern Recognition, volume 2781 of
Lecture Notes in Computer Science, pages 156–163. Springer, Berlin, 2003.
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[192] M. Vetterli and J. Kovačevic. Wavelets and Subband Coding. Prentice-Hall,
Upper Saddle River, 1995.



BIBLIOGRAPHY 177

[193] O. Vogel, A. Bruhn, J. Weickert, and S. Didas. Direct shape-from-shading
with adaptive higher order regularisation. In F. Sgallari, A. Murli, and
N. Paragios, editors, Scale Space and Variational Methods in Computer
Vision, volume 4485 of Lecture Notes in Computer Science, pages 871–882.
Springer, Berlin, 2007.

[194] J. B. Weaver, Y. Xu, D. M. Healy, and L. D. Cromwell. Filtering noise
from images with wavelet transforms. Magnetic Resonance in Medicine,
21:288–295, 1991.

[195] G. W. Wei. Generalized Perona-Malik equation for image restoration. IEEE
Signal Processing Letters, 6(7):165–167, July 1999.

[196] J. Weickert. Anisotropic diffusion filters for image processing based quality
control. In A. Fasano and M. Primicerio, editors, Proc. Seventh European
Conf. on Mathematics in Industry, pages 355–362, Stuttgart, 1994. Teub-
ner.

[197] J. Weickert. Theoretical foundations of anisotropic diffusion in image pro-
cessing. Computing, Suppl. 11:221–236, 1996.

[198] J. Weickert. Anisotropic Diffusion in Image Processing. B. G. Teubner,
Stuttgart, 1998.

[199] J. Weickert. Coherence-enhancing diffusion filtering. International Journal
of Computer Vision, 31(2/3):111–127, 1999.

[200] J. Weickert. Applications of nonlinear diffusion in image processing and
computer vision. Acta Mathematica Universitatis Comenianae, LXX(1):33–
50, 2001.

[201] J. Weickert. Coherence-enhancing shock filters. In B. Michaelis and
G. Krell, editors, Pattern Recognition, volume 2781 of Lecture Notes in
Computer Science, pages 1–8. Springer, Berlin, 2003.

[202] J. Weickert and B. Benhamouda. A semidiscrete nonlinear scale-space the-
ory and its relation to the perona-malik paradox. In F. Solina, W. G.
Kropatsch, R. Klette, and R. Bajcsy, editors, Advances in Computer Vi-
sion, pages 1–10. Springer, Wien, 1997.

[203] J. Weickert, C. Feddern, M. Welk, B. Burgeth, and T. Brox. PDEs for
tensor image processing. In J. Weickert and H. Hagen, editors, Visualization
and Processing of Tensor Fields, Mathematics and Visualization, pages
399–414. Springer, Berlin, 2006.



178 BIBLIOGRAPHY

[204] J. Weickert, S. Ishikawa, and A. Imiya. Linear scale-space has first been
proposed in Japan. Journal of Mathematical Imaging and Vision, 10:237–
252, 1999.
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