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Preface

Variational methods have become more and more important in image processing
during the last years. They offer an intuitive way to understand the noise removal
and image restoration process as minimisation of an energy functional. This energy
functional provides the opportunity to compare the quality of two filtered versions
of the same input image and thus can be seen as a quality measure.

Variational image restoration methods in general yield high quality results. Non-
linear approaches are known to suffer from the effect of turning smooth grey value
changes in piecewise constant regions. This effect is called stair-casing.

One can interpret stair-casing as the result of energy functionals that reward
piecewise vanishing first derivatives which yields piecewise constant signals and im-
ages. A way to circumvent this would be to use higher derivatives in the penaliser
terms: Piecewise vanishing second derivatives would lead to piecewise linear re-
sults that could better fit to smooth grey value changes. Higher derivatives could
analogously yield piecewise polynomials of higher degree.

There is a growing interest in higher order variational methods in the literature.
Nielsen, Florack and Deriche (see [18]) have studied linear energy functionals of
arbitrary order. They derive basic scale-space properties and give efficient filtering
algorithms for the linear case. Greer and Bertozzi further investigate some theoret-
ical properties of special fourth order evolution equations used in image restoration
(see [10]). Other authors rather concentrate on the goal of showing the use of
higher order methods for practical purposes. Chan, Marquina and Mulet (see [5])
study nonlinear energy functionals of second order and the related diffusion filter-
ing with derivative orders up to four. Total variation methods with the second
derivative leading to fourth order partial differential equations are used in [17] by
Lysaker, Lundervold and Tai. Besides images they consider one-dimensional signal
processing. You and Kaveh [34] also use fourth order PDEs for filtering. Numerical
examples are presented which show that higher order methods can in practise be
useful for image denoising.

The goal of the present thesis is to investigate some theoretical and practical
aspects of higher order variational methods. We use different penaliser functions
and compare them in practical applications. To introduce variational methods some
facts about first order methods are summarised in Chapter 1.

In Chapter 2 we start with a continuous higher order energy functional and
deduce necessary and sufficient conditions for a function to be a minimiser of this
functional. The main result are the so-called Euler-Lagrange equations in one and
two dimensions. A closer look is also taken at the natural boundary conditions
which come with this partial differential equation if we impose no boundary condi-
tions at our set of possible solutions. In the first order context the natural boundary
conditions are of Neumann type. This coincides with the usage of Neumann bound-
ary conditions in image processing since they usually yield good visual results. We
will see that for higher order functionals the boundary conditions may be a bit
more complicated. Signal processing results show that both natural and Neumann
boundary conditions may lead to acceptable results, while in image processing Neu-
mann boundary conditions are preferred. With the trace, the Frobenius norm, and
the determinant of the Hessian, equivalents for the second derivative in 2D energy
functionals are discussed.

Chapter 3 discusses several approaches how to deduce continuous filtering meth-
ods from energy functionals or corresponding Euler-Lagrange equations. In the case
of linear penalisers one can give direct minimisation methods in the Fourier domain
as investigated in [18]. These methods are not applicable in the nonlinear context.
Thus one considers the Euler-Lagrange equation and the corresponding diffusion
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equations. Generalised higher order linear diffusion leads to convolution kernels
axiomatically derived in [16]. We try to give an explanation for the behaviour of
simple nonlinear filters in terms of forward and backward diffusion.

To use the methods presented in Chapter 3 in practice we need to discretise
them. With finite differences and spectral methods, two different ways for derivative
approximation are presented in Chapter 4. We are especially interested in matrix
representations for discretisations. For finite differences we discuss possibilities to
implement both natural and Neumann boundary conditions.

With these discretisation matrices we give discrete versions of the minimisa-
tion approaches in Chapter 5. We see that one can either start with a continuous
energy functional and discretise the corresponding Euler-Lagrange equations or dis-
cretise the energy functional itself. Discretisations for nonlinear diffusion equations
obtained from the Euler-Lagrange equations are also investigated. A key point
are stability criterions for explicit methods we use to obtain most of the numeri-
cal results presented in Chapter 6. These should give a visual impression of the
possibilities of nonlinear higher order filtering.

The last Chapter 7 concludes the thesis with a short summary including inter-
esting questions arising in the thesis that invite to be further investigated.

At this place I would like to take the opportunity to thank the people that
made this thesis possible. First I like to thank Prof. Joachim Weickert for the
interesting topic and for his constant support. Besides many theoretical conceptions
he provided me with an implementation of 2D higher order linear filtering with
spectral methods. I also thank the members of the Mathematical Image Analysis
Group at Saarland University – especially Dr. Bernhard Burgeth – for many hints
and discussions on image processing including higher order methods. I thank Natalie
Marx – not only for her help on the correction of this thesis. My thank goes to my
brother Michael for arousing my interest in mathematical questions. In particular I
would like to thank my parents for their permanent support that made my studies
possible.

4



Contents

1 First Order Variational Methods 7

2 Continuous Energy Functionals 11
2.1 The One-Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 The Euler-Lagrange Equation . . . . . . . . . . . . . . . . . . 13
2.1.3 Natural Boundary Conditions . . . . . . . . . . . . . . . . . . 15
2.1.4 Sufficient Conditions . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 The Two-Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 The Euler-Lagrange Equation . . . . . . . . . . . . . . . . . . 19
2.2.3 Natural Boundary Conditions . . . . . . . . . . . . . . . . . . 20
2.2.4 Sufficient Conditions . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Continuous Filtering 29
3.1 Filtering Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Direct Minimisation of the Energy Functional . . . . . . . . . 29
3.1.2 Parabolic Differential Equations . . . . . . . . . . . . . . . . 31
3.1.3 Generalised Linear Diffusion . . . . . . . . . . . . . . . . . . . 32

3.2 Nonlinear Diffusion of Second Order . . . . . . . . . . . . . . . . . . 37
3.3 Application to Penalty Functions . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Linear Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Charbonnier . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 Perona-Malik . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Total Variation Approximations . . . . . . . . . . . . . . . . 40
3.3.5 Total Variation . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Discretisation 43
4.1 General Remarks and Notations . . . . . . . . . . . . . . . . . . . . 43
4.2 Finite Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Matrix Notation . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 Finite Differences and Polynomial Data Fitting . . . . . . . . 52
4.2.3 Neumann Boundary Conditions . . . . . . . . . . . . . . . . . 53
4.2.4 The Two-Dimensional Case . . . . . . . . . . . . . . . . . . . 54

4.3 Spectral Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1 Matrix Notation . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.3 Higher Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 62

5



5 Discrete Filtering 65
5.1 Discrete Energy Functionals . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Discretisation of the Euler-Lagrange Equation . . . . . . . . . . . . . 68
5.3 Methods with Parabolic Equations . . . . . . . . . . . . . . . . . . . 69

5.3.1 The Semi-Discrete Case . . . . . . . . . . . . . . . . . . . . . 69
5.3.2 The Discrete Case . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Experimental Results 79
6.1 Filtering Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 Filtering in 1D . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.1.2 Special Case: TV Approximation . . . . . . . . . . . . . . . . 81
6.1.3 Different Penalisers in 2D . . . . . . . . . . . . . . . . . . . . 87

6.2 Different Discretisation Methods . . . . . . . . . . . . . . . . . . . . 90
6.3 Combinations of Different Orders . . . . . . . . . . . . . . . . . . . . 92

7 Summary and Outlook 95

6



Chapter 1

First Order Variational
Methods

This chapter gives a short overview of first order variational methods in signal
and image processing. First we mention how the notions signal and image are
used during this thesis: In a continuous framework a signal is usually a real-valued
function f : Ω −→ R with Ω ⊆ R open. For our purposes it is normally sufficient
to assume that Ω is an open interval. Sometimes we use Ω = R in considerations
in the continuous setting and then usually assume that f has compact support. An
image is also a real-valued function where Ω ⊆ R2 is an open two-dimensional set.
We sometimes use the notion image as generic term including also signals. We often
denote the initial image of a filtering or restoration process with f and the filtered
version with u.

Variational methods in image processing usually start with an energy functional
of the form

E(u) =
∫
Ω

(
(u− f)2 + α ϕ

(
u2

x

))
dx (1.1)

for one-dimensional examples or

E(u) =
∫
Ω

(
(u− f)2 + α ϕ

(
|∇u|2

))
dx (1.2)

in two dimensions. These methods are also called regularisation. The typical
energy functionals consist of two terms:

1. The data term (also called similarity term) (u− f)2: This term rewards
similarity to the initial image.

2. The smoothness term (also called regulariser or penaliser) ϕ
(
u2

x

)
: This

term rewards some kind of smoothness by involving the first derivative of the
image u. Different examples for the penaliser function ϕ are discussed below.

During this thesis we classify the methods with respect to the derivative order
that appears in the smoothness term of the energy functional. Thus the methods
considered in this chapter are first order methods. The parameter α > 0 is called
regularisation parameter and serves as a weight between similarity to the initial
data and smoothness.

Variational methods in the above form can be related to (in general nonlinear)
diffusion filtering. A detailed investigation of this relation is presented in [22]. With
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8 CHAPTER 1. FIRST ORDER VARIATIONAL METHODS

an additional artificial time variable for u and the assumption that the initial image
is u(·, 0) = f we get the diffusion equation

ut =
d

dx

(
ϕ′
(
u2

x

)
ux

)
(1.3)

for the functional (1.1). In two dimensions the corresponding diffusion equation
reads as

ut = div
(
ϕ′
(
|∇u|2

)
∇u
)

with initial condition u(·, 0) = f . In both cases Neumann boundary conditions

∂nu = 0 for all x ∈ ∂Ω

are assumed. We will further explain how to obtain this relation in Chapter 3. We
note that the regulariser ϕ(x2) corresponds to the diffusivity ϕ′(x2). We should also
mention that first order variational methods lead to diffusion equation with highest
derivative order two.

The first example of variational methods in literature can be found in a paper by
Tikhonov (see [28]). Here the general regularisation method with linear penaliser

ϕ(x) = x

is proposed in the context of giving approximative solutions to ill-posed problems.
First applications in the field of image processing are presented in [3] and [19].
There are different classical penaliser functions used for image processing.

Besides the Tikhonov regulariser we also consider the function

ϕ(x) = 2λ2

(√
1 +

x

λ2
− 1
)

for λ > 0

which was first suggested by Charbonnier et al. (see [6]) in 1994.
Rudin, Osher and Fatemi (see [21]) proposed regularisation approaches based

on minimisation of the total variation∫
Ω

|∇u|dx

of u. To stay in the framework sketched above one can approximate total variation
based filtering with the penaliser family

ϕ(x) = 2
√

ε2 + x− 2ε for ε > 0.

These functions are C∞ and for ε −→ 0 they approximate the absolute value of the
argument x. These approximations are discussed by Acar and Vogel in [1].

Perona and Malik suggested another penaliser in the context of nonlinear diffu-
sion equations (see [20]) which reads as

ϕ(x) = λ2 ln
(
1 +

x

λ2

)
for λ > 0.

Usually several assumptions on the penaliser are made:

1. ϕ is differentiable and increasing (ϕ′ > 0).

2. ϕ(x2) is convex in x. This is used to prove the existence of a minimiser. We
note that this assumption is not satisfied for the Perona-Malik penaliser.

3. There are constants c1, c2 > 0 such that c1x
2 < ϕ(x2) < c2x

2 for all x2.
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Under these assumptions some scale-space properties for regularisation methods
can be shown: Schnörr (see [23]) has deduced well-posedness and regularity of
the solution, average grey value invariance and the minimum-maximum principle.
Scherzer and Weickert (see [22]) have further shown the Lyapunov property and
convergence to the average grey value for α −→ ∞. These scale-space properties
are very similar to the properties of nonlinear diffusion filtering as presented in [31].

One should mention that contrast enhancement is only possible for nonconvex
regularisers. In the diffusion filter framework one can motivate this with investiga-
tions of forward-backward diffusion:

Let us consider the one-dimensional nonlinear diffusion equation

ut =
d

dx

(
ϕ′
(
u2

x

)
ux

)
.

We then are interested in the flux function

Φ(ux) = ϕ′
(
u2

x

)
ux

which allows us to rewrite the diffusion equation to

ut = Φ′(ux)uxx.

If Φ′(ux) > 0 within a region the nonlinear diffusion equation behaves like a scaled
version of ut = uxx. In this regions the equation is well-posed, and we call the
behaviour forward diffusion. In regions where Φ′(ux) < 0 the equation behaves
like a scaled version of the ill-posed equation ut = −uxx. This so-called backward
diffusion acts edge-enhancing.

We should note that among the penalisers presented above only the Perona-
Malik penaliser allows backward diffusion. This can be an advantage in terms of
edge-enhancement though it introduces some degree of ill-posedness. More infor-
mation on this remarks can be found in [31], for example. In Chapter 3 we will
carry over these considerations to second order filtering.

Backward diffusion is useful to enhance blurred edges. In regions with smooth
grey value changes however it can reduce the quality of an image leading to the
stair-casing effect.

We have shortly introduced first order variational methods. In the next chapter
we start to carry over some essential parts of this theory to the higher order case.
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Chapter 2

Continuous Energy
Functionals

Variational methods for noise removal are based on the notion of minimisation of
energy functionals. We imagine that unwanted features of an image (such as noise)
result in high energy values. In this chapter we start with an energy functional

E(u) =
∫
Ω

E (z, u(z), Du(z), . . . , Dmu(z)) dz (2.1)

and search for necessary and sufficient conditions for a function to be optimal with
respect to this energy functional. We assume that Ω ⊂ Rn is open and E is an
integrable real-valued function.

First we summarise some results of calculus that are needed throughout this
chapter and explain the basic procedure. For the treatment of the energy functionals
we need some statements about parameter depending integrals and exchanging the
order of integration and differentiation. We cite the following lemma from [30]:

Lemma 2.1 (Parameter Depending Integrals) Let n, m ∈ N \ {0}, B ⊂ Rn

compact with boundary of measure 0, and C ⊂ Rm. Consider integrals of the form

F (y) =
∫
B

f(x, y)g(x)dx

depending on the parameter y ∈ C. If C is open and if f and ∂f
∂yj

are continuous in
B×C then ∂F

∂yj
is continuous and one can exchange integration and differentiation:

∂F

∂yj
(y) =

∫
B

∂f

∂yj
(x, y)g(x)dx.

Even if we integrate formally over an unbounded set we deal with signals and images
which typically have a bounded support. We usually have an interval or a rectangle
as integration domain B.

The following lemma will allow us to write the necessary condition for a min-
imiser as a partial differential equation.

Lemma 2.2 (Fundamental Lemma of the Calculus of Variations)
Let f be a contiuous, real-valued function on some open set Ω ⊂ Rn, and suppose
that ∫

Ω

f(x)η(x)dx = 0 for all η ∈ C∞
C (Ω)
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12 CHAPTER 2. CONTINUOUS ENERGY FUNCTIONALS

holds. Then we have
f(x) = 0 for all x ∈ Ω.

Remark 2.3 Variants of this lemma with different proofs can be found in [9], [2],
and [8]. Usually the lemma is proven by contradiction. The proof is primarly based
on the fact that for continuous f a single nonzero point leads to an open set where
the absolute value of f is greater than some positive bound. Then the space C∞

C

is rich enough to contain a suitable function η which also has positive values in the
open set, and the integral is not zero. The main difference between the different
proofs cited above is the actual choice for η.

To reach the minimum of E we study the behaviour of E if we disturb the
argument function u. Let η ∈ Cm([a, b]). Then we consider the function Ψ :
(−ε0, ε0) −→ R defined by

Ψ(ε) := E(u + εη). (2.2)

This function describes the growth of E in direction η. Ψ′(0) can be considered as
directional derivative of E in direction η: It describes the change of E at the point
u in direction η.

Definition 2.4 (Variation) We define the first variation of E at the point u
in direction η as

δE(u, η) := Ψ′(0). (2.3)

Higher variations are defined analogously as higher derivatives of Ψ evaluated at
ε = 0:

δkE(u, η) := Ψ(k)(0) for k ∈ N. (2.4)

For our purposes we will only use the first and the second variation. We should also
specify the notion of a minimiser:

Definition 2.5 (Minimiser) A function u ∈ Cm(Ω) is called a minimiser of
the energy functional E if for all η ∈ Cm(Ω) there is an ε0 > 0 such that for all
0 < ε < ε0 holds

E(u + εη) > E(u).

For fixed disturbance function η ∈ Cm([a, b]) the minimisation of E in direction η
can be performed with differential calculus. We obtain from Taylor’s formula that

Ψ(ε) = Ψ(0) + εΨ′(0) +
1
2
ε2Ψ′′(0) + O(ε3)

⇐⇒ E(u + εη) = E(u) + ε δE(u, η) +
1
2
ε2 δ2E(u, η) + O(ε3).

From differential calculus we immediately get the necessary conditions

Ψ′(0) = 0 and Ψ′′(0) ≥ 0

for Ψ to be minimal at the point 0. Sufficient conditions for a minimum are

Ψ′(0) = 0 and Ψ′′(0) > 0.

We can also write the necessary and sufficient conditions in terms of the first and
second variation as
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Lemma 2.6 For a minimiser u of the energy functional E the necessary conditions

δE(u, η) = 0 and δ2E(u, η) ≥ 0 for all η ∈ Cm(Ω)

hold. If a function u satisfies the conditions

δE(u, η) = 0 and δ2E(u, η) > 0 for all η ∈ Cm(Ω)

then it is a minimiser for E.

2.1 The One-Dimensional Case

This section treats the one-dimensional case where u depends on one real variable.
The signal processing methods introduced in later chapters will directly rely on
the results presented here. Furthermore the general procedure with minimisation
of functionals will be explained on the basis of this special case. The next section
gives some generalisations on higher dimensions which we need for image processing
algorithms.

2.1.1 The Problem

Let a, b ∈ R, a 6= b. We consider a one-dimensional variational problem of order
m ∈ N \ {0}. That means we are searching a function u ∈ Cm([a, b]) such that the
value of the integral

E(u) :=

b∫
a

E
(
x, u(x), u(1)(x), u(2)(x), . . . , u(m)(x)

)
dx (2.5)

is minimised. We assume that the integrand E ∈ Cm(Rm+2) depends on x, u(x)
and the first m derivatives of the argument u evaluated at the point x. We write
E(x, u0, u1, . . . , um) to denote the formal arguments of E so that Euk

stands for
the partial derivative of E with respect to the variable uk for k ∈ {0, . . . ,m}. The
actual arguments of E in the above expression are(

x, u(x), u(1)(x), . . . , u(m)(x)
)

.

We note that these arguments only depend on the evaluation point x ∈ R, the
function u ∈ Cm(R) and the maximal derivative order m ∈ N. To simplify the
notations we write

[x, u, m] :=
(
x, u(x), u(1)(x), . . . , u(m)(x)

)
for the arguments of E.

2.1.2 The Euler-Lagrange Equation

To obtain necessary conditions according to Lemma 2.6 we compute the first deriva-
tive of Ψ using Lemma 2.1:

Ψ′(ε) =
d

dε

b∫
a

E ([x, u + εη,m]) dx

=

b∫
a

d

dε
E ([x, u + εη,m]) dx
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=

b∫
a

m∑
k=0

Euk
([x, u + εη,m])

d

dε
(u + εη)(k)(x)dx. (2.6)

One can simply compute the inner derivatives in equation (2.6) for all k ∈
{0, . . . ,m} and all x ∈ R:

d

dε
(u + εη)(k)(x) =

d

dε

(
u(k)(x) + εη(k)(x)

)
=

d

dε
u(k)(x) +

d

dε
εη(k)(x)

= η(k)(x). (2.7)

We put this in equation (2.6) yielding

Ψ′(ε) =

b∫
a

m∑
k=0

Euk
([x, u + εη,m]) η(k)(x)dx. (2.8)

Then we evaluate the derivative of Ψ at the point ε = 0 to obtain the first variation
δE(u, η) according to definition (2.3):

Ψ′(0) =

b∫
a

m∑
k=0

Euk
([x, u, m]) η(k)(x)dx

=
m∑

k=0

b∫
a

Euk
([x, u, m ]) η(k)(x)dx. (2.9)

At this point we want to use the Fundamental Lemma 2.2 of the calculus of varia-
tions. For each of the summands we need to integrate by parts k times so that the
factor η(x) is present in all of the summands. This yields

b∫
a

Euk
([x, u, m]) η(k)(x)dx = (−1)k

b∫
a

dk

dxk
Euk

([x, u, m]) η(x)dx

+
k−1∑
l=0

(−1)l

[
dl

dxl
Euk

([x, u, m]) η(k−1−l)(x)
]b

a

.

We should keep in mind that in the case k = 0 we consider the sum as empty and
evaluate it to zero. Further we use the notation

[f(x)]ba := f(b)− f(a)

for the boundary terms in the partial integrations. Replacing each of the summands
in (2.9) according to this partial integration formula leads to

δE(u, η) =
m∑

k=0

(
k−1∑
l=0

(−1)l

[
dl

dxl
Euk

([x, u, m]) η(k−1−l)(x)
]b

a

+(−1)k

b∫
a

dk

dxk
Euk

([x, u, m]) η(x)dx


=

m∑
k=0

(
k−1∑
l=0

(−1)l

[
dl

dxl
Euk

([x, u, m]) η(k−1−l)(x)
]b

a

)

+

b∫
a

(
m∑

k=0

(−1)k dk

dxk
Euk

([x, u, m])

)
η(x)dx. (2.10)
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We remember that we search u such that δE(u, η) = 0 for all η ∈ Cm([a, b]).
Since Cm

C (a, b) ⊂ Cm([a, b]) it is necessary for a minimiser u that the condition
δE(u, η) = 0 is satisfied for all η ∈ Cm

C (a, b). For these testing functions with
compact support in (a, b) all derivatives up to order m vanish at the boundary
points a and b. So we may omit the boundary terms in equation (2.10). We see
that for a minimiser u of E it holds necessarily for all η ∈ Cm

C (a, b) that

0 = δE(u, η) =

b∫
a

(
m∑

k=0

(−1)k dk

dxk
Euk

([x, u, m])

)
η(x)dx. (2.11)

As an application of the Fundamental Lemma 2.2 of the calculus of variations we
note that the integral may only vanish for all testing functions η ∈ Cm

C (a, b) if the
equation

m∑
k=0

(−1)k dk

dxk
Euk

(
x, u(x), u(1)(x), . . . , u(m)(x)

)
= 0 (2.12)

holds for all x ∈ (a, b). Equation (2.12) is called the Euler-Lagrange equation be-
longing to the energy functional (2.5). Since the Euler-Lagrange equation does not
involve the testing function η we have found a necessary condition for a minimiser
u. We formulate this result as

Proposition 2.7 (Euler-Lagrange Equation) Each minimiser u of the energy
functional (2.5) necessarily satisfies the Euler-Lagrange equation

m∑
k=0

(−1)k dk

dxk
Euk

(
x, u(x), u(1)(x), . . . , u(m)(x)

)
= 0 for all x ∈ (a, b).

2.1.3 Natural Boundary Conditions

We have deduced the Euler-Lagrange equation by using testing functions η ∈
Cm

C (a, b). Now we can also consider some η ∈ Cm(a, b) for which the first m deriva-
tives do not simultaneously vanish at the boundaries. Since the Euler-Lagrange
equation (2.12) holds independent of η, the condition δE(u, η) = 0 breaks down to

m∑
k=0

(
k−1∑
l=0

(−1)l

[
dl

dxl
Euk

([x, u, m]) η(k−1−l)(x)
]b

a

)
= 0.

We introduce a new index variable j which stands for the derivative order of η and
reorder the sum to get

m−1∑
j=0

m−1∑
k=j+1

(−1)k−1−j

[(
d

dx

)k−1−j

Euk
([x, u, m]) η(j)(x)

]b

a

= 0. (2.13)

With Hermite interpolation we can generate for each l ∈ {0, . . . ,m − 1} a testing
function η which suffices the conditions η(j)(a) = δjl and η(j)(b) = 0 for all j ∈
{0, . . . ,m}. The same can be done exchanging the roles of a and b. The sum in
equation (2.13) simplifies to

m∑
k=j+1

(
− d

dx

)k−1−j

Euk
([x, u, m]) = 0 (2.14)

for all j ∈ {0, . . . ,m− 1} and for x ∈ {a, b}. This gives
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Proposition 2.8 (Natural Boundary Conditions) If no additional boundary
conditions are imposed then the minimiser u necessarily satisfies

m∑
k=j

(
− d

dx

)k−j

Euk
([x, u, m]) = 0 (2.15)

for all j ∈ {1, . . . ,m} and for x ∈ {a, b}.

2.1.4 Sufficient Conditions

Until now we have only found necessary conditions for minimisers of energy func-
tionals. We have found these necessary conditions by investigating zero points of
the first variation. Let us now in analogy to the differential calculus consider the
second variation and the condition

δ2E(u, η) := Ψ′′(0) > 0 for all η ∈ Cm(a, b).

We compute the second derivative of Ψ at the point ε using the previous results for
the first derivative in equation (2.8) as follows:

Ψ′′(ε) =
d

dε

b∫
a

m∑
k=0

Euk
([x, u + εη,m]) η(k)(x)dx

=

b∫
a

m∑
k=0

d

dε
Euk

([x, u + εη,m]) η(k)(x)dx

=

b∫
a

m∑
l,k=0

Eukul
([x, u + εη,m]) η(k)(x)η(l)(x)dx. (2.16)

We evaluate this second derivative at the point ε = 0 and get the second variation
δ2E(u, η) = Ψ′′(0). Searching for a sufficient condition for this to be positive we
note that the integrand is a quadratic form. To make this clearer we introduce
the matrix H̃E(x, u) ∈ R(m+1)×(m+1) of all second derivatives of E to all variables
except the space variable x,

H̃E(x, u) := (Eukul
([x, u, m])) k=0,...,m

l=0,...,m

=

 Eu0u0 ([x, u, m]) . . . Eu0um
([x, u, m])

...
. . .

...
Eumu0 ([x, u, m]) . . . Eumum

([x, u, m])

 ,

and the vector η̃(x) ∈ Rm+1 of all derivatives of η at the point x:

η̃(x) :=
(
η(x), η(1)(x), . . . , η(m)(x)

)T

.

We see that H̃E(x, u) can be seen as a submatrix of the Hessian of E: It is obtained
by neglecting the first row and column in the Hessian which are related to derivatives
according to the variable x. With these notations equation (2.16) can be written as

δ2E(u, η) =

b∫
a

η̃T (x)H̃E(x)η̃(x)dx.

With this formulation a sufficient condition for the positivity of δ2E(u, η) is obvi-
ously the pointwise positive definiteness of H̃E(x, u) for all x ∈ (a, b).
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Proposition 2.9 (Sufficient Conditions) If the function u solves the Euler-
Lagrange equation (2.12) with natural boundary conditions (2.15) and H̃E(x, u) is
positive definite for all x ∈ (a, b) then u is a minimiser for the energy functional E.

2.1.5 Applications

For our practical purposes we will only take energy functionals into account which
can be separated with respect to different derivative orders. We will write a func-
tional of order m ∈ N. With the functions ϕk ∈ Cm([a, b]) for all k ∈ {1, . . . ,m} we
write our functional as

E(u) =

b∫
a

(
(u− f)2 + α

m∑
k=1

ϕk

((
u(k)(x)

)2
))

dx. (2.17)

We would like to deduce the Euler-Lagrange equations and sufficient conditions.
The first partial derivative of the integrand E with respect to the variable uk is

Euk
= 2ϕ′k

(
u2

k

)
uk for all k ∈ {1, . . . ,m}.

Together with Eu = 2(u − f) we can put this in equation (2.12) to get the Euler-
Lagrange equation

0 = u(x)− f(x) + α
m∑

k=1

(−1)k dk

dxk

[
ϕ′k

((
u(k)(x)

)2
)

u(k)(x)
]

(2.18)

for all x ∈ (a, b). The corresponding natural boundary conditions according to
Proposition 2.8 read as

m∑
k=j

(−1)k−j dk−j

dxk−j

[
ϕ′k

((
u(k)(x)

)2
)

u(k)(x)
]

= 0

for x ∈ {a, b} and all j ∈ {1, . . . ,m}. We also compute the second derivatives of E
to check the conditions of Proposition 2.9; they are

Eukuk
= 4ϕ′′k

(
u2

k

)
u2

k + 2ϕ′k
(
u2

k

)
Eukuj = 0

for all j, k ∈ {1, . . . ,m}, j 6= k. The matrix H̃E(x) is therefore a diagonal matrix
which is positive definite if all diagonal entries are positive. This is equivalent to
the conditions

2ϕ′′k

((
u(k)(x)

)2
)

u(k)(x) + ϕ′k

(
u(k)(x)

)
> 0

for all k ∈ {1, . . . ,m}. If all penaliser functions ϕk satisfy the conditions

2ϕ′′k
(
x2
)
x2 + ϕ′k

(
x2
)

> 0

for all x ∈ R each solution of the Euler-Lagrange equation is a minimiser of the
energy functional E .

To conclude the section on one-dimensional variational problems we would like
to give two examples that are used for signal processing in later chapters. These
examples are special cases of the functional (2.17).
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Example 2.10 Let us choose a derivative order m ∈ N \ {0} and consider the
nonlinear energy functional which only depends on the mth derivative of u:

E(u) =

b∫
a

(
(u− f)2 + αϕ

((
u(m)

)2
))

dx. (2.19)

If u is a minimiser of E it satisfies the Euler-Lagrange equation

0 = u− f + α(−1)m dm

dxm

(
ϕ′
((

u(m)
)2
)

u(m)

)
(2.20)

with the natural boundary conditions

dk

dxk

(
ϕ′
((

u(m)
)2
)

u(m)

)
= 0 for k ∈ {0, . . . ,m− 1}.

For m > 1 we have Eu1 = 0 and thus H̃E is not positive definite (since it has one
row and column filled with zero entries). In this case Proposition 2.9 is to weak to
obtain sufficient conditions.

Example 2.11 Let us consider a nonlinear energy functional which only depends
on the first two derivatives:

E(u) =

b∫
a

(
(u− f)2 + α

[
ϕ1

((
u(1)

)2
)

+ ϕ2

((
u(2)

)2
)])

dx.

The Euler-Lagrange equation for this functional is

0 = u− f + α

[
− d

dx

(
ϕ′1

((
u(1)

)2
)

u(1)

)
+

d2

dx2

(
ϕ′2

((
u(2)

)2
)

u(2)

)]
for x ∈ (a, b) with the natural boundary conditions

ϕ′1

((
u(1)

)2

u(1)

)
− d

dx
ϕ′2

((
u(2)

)2
)

= 0,

ϕ′2

((
u(2)

)2

u(2)

)
= 0

for x ∈ {a, b}. In this case we have the sufficient conditions

ϕ′′1(x2)x2 + ϕ′1(x
2) > 0,

ϕ′′2(x2)x2 + ϕ′2(x
2) > 0.

2.2 The Two-Dimensional Case

2.2.1 The Problem

Let Ω ⊆ R2 be an open subset of R2 with piecewise smooth boundary ∂Ω and
m ∈ N. We consider the minimisation of the functional

E(u) =
∫
Ω

E
(
z, u(z), Du(z), D2u(z), . . . , Dmu(z)

)
dz
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where Dku(z) denotes the k-th differential of the function u at the point x. Our
energy functional may depend on all partial derivatives of u up to order m. Again
we simplify the notations by introducing the abbreviation

[z, u,m]p :=
(
z, u(z), Du(z), D2u(z), . . . , Dmu(z)

)
to express that E may depend on all partial derivatives up to order m of u evaluated
at the point z. We should add that we restrict ourselves to the case Ω ⊂ R2

mainly for simplicity reasons with treating the natural boundary conditions. The
computations in general also work in higher dimensions. Numerical tests will be
performed up to dimension 2.

2.2.2 The Euler-Lagrange Equation

Again we start with the condition δE(u, η) = 0 given in Lemma 2.6 and compute
the first variation δE(u, η) = Ψ′(0) using Lemma 2.1:

Ψ′(ε) =
∫
Ω

d

dε
E
(
[z, u + εη,m]p

)
dz

=
∫
Ω

m∑
k=0

∑
|α|=k

k!
α!

Euα

(
[z, u + εη,m]p

)
Dαη(z)dz

=
m∑

k=0

∑
|α|=k

k!
α!

∫
Ω

Euα

(
[z, u + εη,m]p

)
Dαη(z)dz. (2.21)

We evaluate the derivative Ψ′ at the point ε = 0 and we write down the first
variation as

δE(u, η) =
m∑

k=0

∑
|α|=k

k!
α!

∫
Ω

Euα

(
[z, u,m]p

)
Dαη(z)dz. (2.22)

To derive the Euler-Lagrange equation we assume that η ∈ CC(Ω). In this case
we can integrate by parts each summand of equation (2.22) without introducing
integrals over the boundary of Ω. For one summand this integration yields∫

Ω

Euα

(
[z, u,m]p

)
Dαη(z)dz

= (−1)|α|
∫
Ω

DαEuα

(
[z, u,m]p

)
η(z)dz. (2.23)

We rewrite equation (2.22) using (2.23) for each summand and exchange the order
of sums and integration to get the formula

δE(u, η) =
∫
Ω

 m∑
k=0

(−1)k
∑
|α|=k

k!
α!

DαEuα

(
[z, u,m]p

) η(z)dz. (2.24)

The Fundamental Lemma 2.2 of the calculus of variations assures the following
proposition:

Proposition 2.12 (Euler-Lagrange Equation) For a minimiser u of the energy
functional E the Euler-Lagrange equation

m∑
k=0

(−1)k
∑
|α|=k

k!
α!

DαEuα
(z, u(z), Du(z), . . . , Dmu(z)) = 0 (2.25)

holds for all z ∈ Ω.
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2.2.3 Natural Boundary Conditions

As it is the most important case for our applications we consider the open set
Ω ⊂ R2 and the highest derivative order m = 2. In the 2D-case we will see in
the numerical tests that using Neumann boundary conditions may lead to better
results than the natural boundary conditions. We will deduce natural boundary
conditions only for the special case given above since it is the most relevant case
for our numerical examples. With these assumptions our energy functional has the
form

E(u) =
∫
Ω

E(z, u(z),∇u(z),Hu(z))dz (2.26)

where z denotes the point z = (x, y) ∈ Ω and

∇u(z) := (ux(z), uy(z))T and Hu(z) :=

(
uxx(z) uxy(z)

uyx(z) uyy(z)

)
.

In this special case we can rewrite equation (2.22) with respect to the particular
partial derivatives as

δE(u, η) =
2∑

k=0

∑
|α|=k

k!
α!

∫
Ω

Euα (z, u(z),∇u(z),Hu(z))Dαη(z)dz

=
∫
Ω

Eu

(
η + Eux

ηx + Euy
ηy + Euxx

ηxx + Euxy
ηxy

+Euyx
ηyx + Euyy

ηyy

)
dz (2.27)

We have omitted the arguments (z, u(z), ux(z), . . . , uyy(z)) from all derivatives of
E and (z) from all derivatives of η to simplify the notation. In opposite to the last
section boundary integrals appear when we integrate formula (2.27) by parts:

δE(u, η) =
∫
Ω

Euηdz

−
∫
Ω

∂xEuxηdz +
∫

∂Ω

Euxηνxdz

−
∫
Ω

∂yEuyηdz +
∫

∂Ω

Euyηνydz

−
∫
Ω

∂xEuxxηxdz +
∫

∂Ω

Euxxηxνxdz

−
∫
Ω

∂yEuxy
ηxdz +

∫
∂Ω

Euxy
ηxνydz

−
∫
Ω

∂xEuyx
ηxdz +

∫
∂Ω

Euyx
ηyνxdz

−
∫
Ω

∂yEuyy
ηydz +

∫
∂Ω

Euyy
ηyνydz.

(2.28)

For z ∈ ∂Ω the outer normal is denoted with ν(z). A second partial integration
removes all derivatives of η in integrals over the whole set Ω:
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δE(u, η) =
∫
Ω

(
Eu − ∂xEux

− ∂yEuy
+ ∂xxEuxx

+∂xyEuyx + ∂yxEuxy + ∂yyEuyy

)
ηdz

+
∫

∂Ω

(
Eux − ∂xEuxx − ∂yEuxy

)
νxηdz

+
∫

∂Ω

(
Euy − ∂xEuyx − ∂yEuyy

)
νyηdz

+
∫

∂Ω

(
Euxx

νx + Euxy
νy

)
ηxdz

+
∫

∂Ω

(
Euyx

νx + Euyy
νy

)
ηydz.

(2.29)

As we have already seen in the last section, together with the Fundamental Lemma
2.2, equation (2.29) can be used to deduce the Euler-Lagrange equation which in
the general 2D second order setting reads as

0 = Eu − ∂xEux − ∂yEuy + ∂xxEuxx + ∂xyEuyx + ∂yxEuxy + ∂yyEuyy . (2.30)

This result coincides with the formula derived in the last section.
One can surely choose test functions η ∈ C2(Ω) with the properties η|∂Ω 6= 0

and ∇η|∂Ω = 0 since each nonzero constant function satisfies this. We claim that
δE(u, η) = 0 for such η. We start with equation (2.29) and remind that equation
(2.30) holds. Together with ∇η|∂Ω = 0 we see that in this case

δE(u, η) =
∫

∂Ω

(
Eux − ∂xEuxx − ∂yEuxy

)
νxηdz

+
∫

∂Ω

(
Euy − ∂xEuyx − ∂yEuyy

)
νyηdz. (2.31)

The Fundamental Lemma 2.2 of the calculus of variations tells us that(
Eux − ∂xEuxx − ∂yEuxy

)
νx +

(
Euy − ∂xEuyx − ∂yEuyy

)
νy = 0 (2.32)

holds for all z ∈ ∂Ω.
Now we consider the special case when Ω = (a, b)× (c, d) is a rectangular subset

of R2. This seems to be a severe restriction at first sight. For our main purpose,
the analysis of 2D images this assumption is realistic. For rectangular Ω we can
surely find a function η ∈ C2(Ω) with η|∂Ω = ηy |∂Ω

= 0 and ηx|∂Ω
6= 0. The same

reasoning as above yields

Euxxνx + Euxyνy = 0 for all z ∈ ∂Ω. (2.33)

Again we can exchange the roles of x and y in our assumptions about the function
η: If we are choosing η ∈ C2(Ω) with η|∂Ω = ηx|∂Ω

= 0 and ηy |∂Ω
6= 0 we see that

Euyxνx + Euyyνy = 0 for all z ∈ ∂Ω. (2.34)

We summarise these conditions in the following

Proposition 2.13 (Natural Boundary Conditions) Let Ω = (a, b)×(c, d), and
assume that u is a minimiser of the functional (2.26). Then u satisfies the equation
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(2.30) with the natural boundary conditions(
Eux

− ∂xEuxx
− ∂yEuxy

)
νx +

(
Euy

− ∂xEuyx
− ∂yEuyy

)
νy = 0

Euxx
νx + Euxy

νy = 0
Euyx

νx + Euyy
νy = 0

for all z ∈ ∂Ω.

2.2.4 Sufficient Conditions

For the sufficient conditions we again allow derivatives up to order m. Starting with
equation (2.21) for Ψ′(ε) we can simply compute

Ψ′′(ε) =
d

dε

m∑
k=0

∑
|α|=k

k!
α!

∫
Ω

Euα

(
[z, u + εη,m]p

)
Dαη(z)dz

=
m∑

k,l=0

∑
|α|=k

∑
|β|=l

k!
α!

l!
β!

∫
Ω

Euαuβ

(
[z, u + εη,m]p

)
Dαη(z)Dβη(z)dz

=
∫
Ω

m∑
k,l=0

∑
|α|=k

∑
|β|=l

k!
α!

l!
β!

Euαuβ

(
[z, u + εη,m]p

)
Dαη(z)Dβη(z)dz.

Again we observe that the integrand can be written as a quadratic form. We define
the matrix Ẽ analogue to the one-dimensional case. In the higher dimensional case
the matrix entries are weighted second derivatives of E due to the multiplicity of
the multiindices. We have

Ẽ(z) :=
(

k!
α!

l!
β!

Euαuβ

(
[z, u,m]p

))
k,l=1,...,m
|α|=k,|β|=l

.

The pointwise positive definiteness of Ẽ is a sufficient condition for u satisfying the
Euler-Lagrange equation to be a minimiser of E . In the next section we will see
that our functionals usually do not depend on all partial derivatives up to the given
order. The conditions derived here are normally to weak to obtain a statement in
this case.

2.2.5 Applications

In the one-dimensional case we could simply use the square of the second derivative
of u as argument of the regulariser to write an energy functional of the form

E(u) =

b∫
a

(
(u− f)2 + αϕ

(
u2

xx

))
dx.

In a higher dimensional setting it is not clear what to choose as an appropriate
expression for the square of the second derivative. Since the equivalent to the second
derivative is the Hessian matrix in this case there are several terms which can be
taken into consideration.

If we require rotational invariance we can reduce the number of reasonable
choices. Interesting rotational invariant expressions are for example the trace of
the Hessian, which is the Laplacian of u, the Frobenius norm or the determinant
of the Hessian. We are going to consider general nonlinear energy functionals de-
pending on these three expressions and deduce the corresponding Euler-Lagrange
equations.
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Example 2.14 (Laplacian) At first let us consider a regulariser depending on

(∆u)2 = (uxx + uyy)2

= u2
xx + 2uxxuyy + u2

yy

given by

E(u) =
∫
Ω

(
(u− f)2 + α ϕ

(
(∆u)2

))
dz. (2.35)

The integrand E does not depend on ux, uy and the mixed second derivatives of u,
that means Eux = Euy = Euxy = Euyx = 0. The remaining partial derivatives of E
are

Eu = 2(u− f)
Euxx = 2α ϕ′

(
(∆u)2

)
∆u

Euyy
= 2α ϕ′

(
(∆u)2

)
∆u.

With these we can write down the Euler-Lagrange equation

0 = 2(u− f) +α ∂xx

(
2ϕ′

(
(∆u)2

)
∆u
)

+α ∂yy

(
2ϕ′

(
(∆u)2

)
∆u
)

⇐⇒ 0 = u− f + α ∆
(
ϕ′
(
(∆u)2

)
∆u
)
. (2.36)

We note that in the linear case ϕ(x) = cx this equation reads as

0 = u− f + αc ∆2u.

We would like to derive the boundary conditions also for the linear case. Similar to
Section 2.2.3 we assume that Ω = (0, 1)2 ⊂ R2. Equation (2.32) yields in this case
for all z ∈ ∂Ω

0 = −αc ((∂x∆u)νx + (∂y∆u)νy)
⇐⇒ 0 = (uxxx + uxyy) νx + (uxxy + uyyy) νy.

With our special choice of Ω we get the conditions

uxxx + uxyy = 0 for all z ∈ {(0, y)|y ∈ (0, 1)} ∪ {(1, y)|y ∈ (0, 1)}
uxxy + uyyy = 0 for all z ∈ {(x, 0)|x ∈ (0, 1)} ∪ {(x, 1)|x ∈ (0, 1)}.

Equation (2.33) is ∆uνx = 0 for all z ∈ ∂Ω. This can be formulated as the condition

∆u = 0 for all z ∈ {(x, 0)|x ∈ (0, 1)} ∪ {(x, 1)|x ∈ (0, 1)}.

Similarly we can derive

∆u = 0 for all z ∈ {(0, y)|y ∈ (0, 1)} ∪ {(1, y)|y ∈ (0, 1)}

from equation (2.34). We conclude that

∆u = 0 in the set ∂Ω \ {(0, 0), (0, 1), (1, 0), (1, 1)}.

Example 2.15 (Frobenius Norm of the Hessian) We do the same computa-
tions as above for the squared Frobenius norm of the Hessian

‖Hu‖2F = u2
xx + u2

xy + u2
yx + u2

yy.

The energy functional is then

E(u) =
∫
Ω

(
(u− f)2 + αϕ

(
‖Hu‖2F

))
dz. (2.37)
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In this case the integrand E does not depend on the first-order partial derivatives
of u, that means Eux = Euy = 0. We compute the other partial derivatives of the
integrand

Eu = 2(u− f)
Euxx

= ϕ′
(
‖Hu‖2F

)
2uxx

Euxy = ϕ′
(
‖Hu‖2F

)
2uxy

Euyx = ϕ′
(
‖Hu‖2F

)
2uyx

Euyy = ϕ′
(
‖Hu‖2F

)
2uyy

and write down the Euler-Lagrange equation (in the case α 6= 0) as

u− f

α
= −∂xx

(
ϕ′
(
‖Hu‖2F

)
uxx

)
− ∂xy

(
ϕ′
(
‖Hu‖2F

)
uxy

)
−∂yx

(
ϕ′
(
‖Hu‖2F

)
uyx

)
− ∂yy

(
ϕ′
(
‖Hu‖2F

)
uyy

)
.

Again we consider the linear case ϕ(x) = cx and the according Euler-Lagrange
equation

0 = u− f + αc (∂xxuxx + ∂xyuxy + ∂yxuyx + ∂yyuyy)
= u− f + αc (uxxxx + 2uxxyy + uyyyy)
= u− f + αc∆2u.

We note that in the linear case the Euler-Lagrange equations of Example 2.14
and Example 2.15 coincide. We derive the boundary conditions for Ω = (0, 1)2.
Equation (2.32) yields

0 = −αc ((uxxx + uxyy)νx + (uxxy + uyyy)νy)

which in our case leads to the conditions

uxxx + uxyy = 0 for all z ∈ {(0, y)|y ∈ (0, 1)} ∪ {(1, y)|y ∈ (0, 1)}
uxxy + uyyy = 0 for all z ∈ {(x, 0)|x ∈ (0, 1)} ∪ {(x, 1)|x ∈ (0, 1)}.

Equation (2.33) yields

uxx = 0 for all z ∈ {(0, y)|y ∈ (0, 1)} ∪ {(1, y)|y ∈ (0, 1)}
uxy = 0 for all z ∈ {(x, 0)|x ∈ (0, 1)} ∪ {(x, 1)|x ∈ (0, 1)}.

Equation (2.34) yields

uxy = 0 for all z ∈ {(0, y)|y ∈ (0, 1)} ∪ {(1, y)|y ∈ (0, 1)}
uyy = 0 for all z ∈ {(x, 0)|x ∈ (0, 1)} ∪ {(x, 1)|x ∈ (0, 1)}.

We see that the boundary conditions are not the same as in the last example.
For linear ϕ and if we only consider functions vanishing at the boundary we get

the same minimisers. This result is also mentioned in [18] where a simple proof in
the Fourier domain is given. They also note that partial integration leads to the
same result.

Lemma 2.16 In the linear case ϕ(x) = cx and if u ∈ C3(Ω) is assumed the energy
functionals (2.35) and (2.37) yield the same minimisers.

Proof: First we note that for this proof we need further smoothness assump-
tions: It should be u ∈ C3(Ω) since we need a third derivative during the compu-
tation. We compute by partial integration∫

Ω

u2
xydz =

∫
Ω

uxyuyxdz
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= −
∫
Ω

uxxyuydz +
∫

∂Ω

uxyuyνxdz

=
∫
Ω

uxxuyydz −
∫

∂Ω

uxxuyνydz +
∫

∂Ω

uxyuyνxdz.

For u ∈ C3
C(Ω) it holds that uxx = uxy = uy = u = 0 on the boundary ∂Ω. We can

leave the boundary integrals out and get∫
Ω

u2
xydz =

∫
Ω

uxxuyydz

which leads us to the equation∫
Ω

‖Hu(z)‖2F dz =
∫
Ω

(
u2

xx + 2u2
xy + u2

yy

)
dz

=
∫
Ω

(
u2

xx + 2uxxuyy + u2
yy

)
dz

=
∫
Ω

(∆u)2dz.

This shows that the functionals have the same value and thus have the same min-
imisers. �

Example 2.17 (Determinant of the Hessian) As a last example of second or-
der in 2D we will consider energy functionals depending on the squared determinant
of the Hessian:

det 2(Hu) = (uxxuyy − uxyuyx)2

= u2
xxu2

yy − 2uxxuyyuxyuyx + u2
xyu2

yx.

These can be written in the form

E(u) =
∫
Ω

(
(u− f)2 + αϕ

(
det 2(Hu(z))

))
dz.

We get the partial derivatives of the integrand as

Eu = 2(u− f)
Eux = 0
Euy

= 0
Euxx = 2α ϕ′

(
det 2(Hu(z))

)
det(Hu(z))uyy

Euxy = −2α ϕ′
(
det 2(Hu(z))

)
det(Hu(z))uyx

Euyx = −2α ϕ′
(
det 2(Hu(z))

)
det(Hu(z))uxy

Euyy
= 2α ϕ′

(
det 2(Hu(z))

)
det(Hu(z))uxx.

With these we can write down the Euler-Lagrange equation

0 = u− f + α [ ∂xx

(
ϕ′
(
det 2(Hu(z))

)
det(Hu(z))uyy

)
− ∂xy

(
ϕ′
(
det 2(Hu(z))

)
det(Hu(z))uyx

)
− ∂yx

(
ϕ′
(
det 2(Hu(z))

)
det(Hu(z))uxy

)
+ ∂yy

(
ϕ′
(
det 2(Hu(z))

)
det(Hu(z))uxx

)
].
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Figure 2.1: Top left: Original image u, Top right: (∆u)2, Bottom left: ‖Hu‖2F ,
Bottom right: det2(Hu). The derivatives were approximated with finite differences.
The logarithm of the grey values was taken and rescaled to the range 0 to 255 for
better visualisation.
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We have seen three general types of nonlinear energy functionals in two dimen-
sions which can be used as starting point to derive image processing methods. To
conclude this chapter figure 2.1 gives a visual impression of the behaviour of this
three expressions in a real image. It seems that Laplacian and Frobenius norm of
the Hessian yield similar results penalising mainly near edges. The determinant
of the Hessian seems to emphasise rather corners and junctions. Thus for most of
the applications the Laplacian and the Hessian will be more interesting. We will
prefer to use the Laplacian for our image restoration methods for simplicity reasons.
Nevertheless it would be interesting to investigate how filtering methods based on
the other two rotationally invariant expressions behave in practice. It should also
be mentioned that the Frobenius norm of the Hessian could be easily generalised to
higher derivative orders as the sum of the squares of all partial derivatives with a
certain order.
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Chapter 3

Continuous Filtering

After giving conditions for a minimiser this section will introduce methods that use
these conditions to find one. In our applications a minimiser of an energy functional
is a signal or an image which should be in some way better than the initial one.
Thus we consider the resulting image as a filtered version of the initial one and we
will use the notion filtering for the process of minimising the energy functional. We
are interested in the continuous framework in this chapter. Discretisations of these
methods and the application to concrete problem instances will be described in the
next two chapters.

3.1 Filtering Approaches

As a starting point we discuss different approaches at the example of an energy
functional that depends on the weighted squares of the derivatives of u. We consider
a one-dimensional linear energy functional of higher order of the form

E(u) =
∫
R

(
(u− f)2 + α

m∑
k=1

λk

(
dk

dxk
u

)2
)

dx (3.1)

with m ∈ N, λk ∈ R for all k ∈ {1, . . . ,m} and α > 0. We integrate over the whole
set R in this case to avoid the influence of boundary conditions.

3.1.1 Direct Minimisation of the Energy Functional

The first approach reformulates the energy functional in the Fourier domain. This
strategy is discussed in [18]. Since we use the Fourier transform to simplify the
energy functional this is only applicable for linear penalisers. We can rewrite the
functional (3.1) using the norm in L2(R) and the linearity of the integral and get

E(u) = ‖u− f‖22 + α

m∑
k=1

λk

∥∥∥∥ dk

dxk
u

∥∥∥∥2

2

. (3.2)

We then apply the Fourier transform to the energy functional. In the following
f̂ denotes the Fourier-Plancherel transform of the function f . For details on this
transform we refer to [33]. With the Plancherel equation the functional can be
written as

E(û) =
∥∥∥û− f̂

∥∥∥2

2
+ α

m∑
k=1

λk

∥∥(iξ)kû
∥∥2

2

29
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=
∥∥∥û− f̂

∥∥∥2

2
+ α

m∑
k=1

λk

∥∥ξkû
∥∥2

2

=
∫
R

(∣∣∣û− f̂
∣∣∣2 + α

m∑
k=1

λk

∣∣ξkû
∣∣2) dx.

We note that the energy functional in the Fourier domain only depends on |û|2
since the derivative operation is transformed into multiplication via the Fourier
transform. From Chapter 2 we see with a decomposition in the real and imaginary
part that the corresponding Euler-Lagrange equation to this functional is given by

0 = Eû = 2
(
û− f̂

)
+ 2α

m∑
k=1

λkξ2kû.

It immediately follows that

f̂ = û + α
m∑

k=1

λkξ2kû

which gives us the analytical solution in the Fourier domain

û =

(
1 + α

m∑
k=1

λkξ2k

)−1

f̂ .

Remark 3.1 It is also possible to compute the Euler-Lagrange equation and then
solve it in the Fourier domain. As a special case of (2.18) we see that the corre-
sponding Euler-Lagrange equation to the functional (3.1) is given by

0 = u− f + α
m∑

k=1

λk(−1)k dk

dxk
u(k)

= u− f + α

m∑
k=1

(−1)kλku(2k). (3.3)

Applying the Fourier transform then yields:

0 = û− f̂ + α
m∑

k=1

λk(−1)kξ2kû

= û− f̂ + α

m∑
k=1

λkξ2kû.

It immediately follows that

f̂ = û + α
m∑

k=1

λkξ2kû

which gives us the analytical solution in the Fourier domain

û =

(
1 + α

m∑
k=1

λkξ2k

)−1

f̂ .

In the case of linear filtering we can give analytical solutions with the help of the
Fourier transform.
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3.1.2 Parabolic Differential Equations

Instead of solving the Euler-Lagrange equation directly as in the last section one can
also use iterative methods to approximate a solution. This may seem to be unneces-
sary for the linear case since analytical solutions can easily be found. Nevertheless
we will draw our attention on this point to get results which can be generalised to
nonlinear filtering.

Diffusion Equations

We start with the Euler-Lagrange equation (3.3) and exclude the trivial case α = 0
in which the only solution is u = f . With positive α we can write the equation as

u− f

α
=

m∑
k=1

(−1)k+1λku(2k). (3.4)

In the energy functional the parameter α determines the weight between the sim-
ilarity and the smoothness term. Higher values of α lead to smoother solutions
with respect to the actual penalty function. One could also think of filtering as
an evolution process and interpret α as a time parameter. Let u(x, t) denote the
minimiser of the energy functional with t = α. In this framework the initial signal
f is the signal u(·, 0) at time t = 0. This corresponds with the observation that the
left-hand side of equation (3.4) can be interpreted as implicit discretisation of the
time derivative.

We can consider equation (3.4) as fully implicit discretisation of the parabolic
differential equation

ut =
m∑

k=1

(−1)k+1λku(2k)

with initial condition u(x, 0) = f(x) for all x ∈ R and stopping time t = α. We note
that these interpretations are also possible in a nonlinear setting. So the Euler-
Lagrange equation from Example 2.10 leads to the nonlinear diffusion equation

ut = (−1)m+1 dm

dxm

(
ϕ′
((

u(m)
)2
)

u(m)

)
. (3.5)

Since the quadratic data term (u−f)2 appears in all energy functionals we consider
for signal and image processing, the corresponding Euler-Lagrange equations always
contain the linear term u− f . So for every energy functional with a quadratic data
term we can give a corresponding diffusion equation where the right-hand side
comes from the smoothness term. This can be immediately carried over to higher
dimensional examples.

Diffusion-Reaction Equations

One can also interpret the solution of the Euler-Lagrange equation (3.3) as the
steady state of the diffusion-reaction equation

ut = u− f + α
m∑

k=1

(−1)kλku(2k)

with the artificial time variable t and initial condition u(·, 0) = f .
In this case one would get the equation

ut = u− f + (−1)mα
dm

dxm

(
ϕ′
((

u(m)
)2
)

u(m)

)
. (3.6)
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belonging to the Euler-Lagrange equation from example (2.10). To solve the prob-
lem with the diffusion-reaction approach one has to reach the steady state efficiently.
This can be seen as the main disadvantage compared with the pure diffusion equa-
tion: In the diffusion setting the scale parameter α is interpreted as stopping time.
In the diffusion-reaction case one has to try to compute the limit for t −→ ∞
independent of the value of α.

3.1.3 Generalised Linear Diffusion

In this section we turn our attention to higher order diffusion equations. The
proceeding is similar to the treatment of the diffusion equation in [27].

We have seen in the last section how the functional (3.1) leads to the parabolic
differential equation

ut =
m∑

k=1

(−1)k+1λk
d2k

dx2k
u (3.7)

with initial condition u(x, 0) = f(x) for all x ∈ R and stopping time t = α. Applying
the Fourier transform with respect to the x-variable to both sides of this equation
yields

ût =
m∑

k=1

(−1)k+1λk(−1)kξ2kû

=
m∑

k=1

(−1)2k+1λkξ2kû

= −
m∑

k=1

λkξ2kû (3.8)

with initial condition û(ξ, 0) = f̂(ξ) for all ξ ∈ R.
We have used the Fourier transform to turn the x-derivatives into algebraic

multiplications. Only the derivative with respect to t is preserved and we obtain
an ordinary differential equation with one parameter ξ. The unique solution for
equation (3.8) is

û(ξ, t) = exp

(
−t

m∑
k=1

λkξ2k

)
f̂(ξ) (3.9)

for all t ≥ 0 and all ξ ∈ R.
We rewrite equation (3.9) to get some more properties of the solution of equation

(3.8):

û(ξ, t) = exp

(
−t

m∑
k=1

λkξ2k

)
f̂(ξ)

=

(
m∏

k=1

exp
(
−tλkξ2k

))
f̂(ξ)

= exp
(
−tλmξ2m

)
· . . . · exp

(
−tλ1ξ

2
)
f̂(ξ). (3.10)

We see that the solution of equation (3.8) can be represented by multiplying the
initial values with exponential functions in the Fourier domain.

Definition 3.2 (Multiplicators) We define the multiplicator functions

Gλ
k(ξ, t) := exp

(
−tλξ2k

)
with k ∈ N, λ ∈ R

that appear in the Fourier domain for generalised linear filtering.
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If we restrict λ to nonnegative values these functions are bounded:

0 ≤ Gλ
k(ξ, t) = exp

(
−tλξ2k

)
≤ 1

for all k ∈ N, t ∈ R+
0 and ξ ∈ R.

Remark 3.3 (Stability) Together with equation (3.9) we get an upper bound for
the L2-norm of û(·, t):

‖û(·, t)‖22 =
∫
R

|û(ξ, t)|2dξ

=
∫
R

∣∣∣exp
(
−tλmξ2m

)
· . . . · exp

(
−tλ1ξ

2
)
f̂(ξ)

∣∣∣2 dξ

=
∫
R

∣∣exp
(
−tλmξ2m

)∣∣2 · . . . · ∣∣exp
(
−tλ1ξ

2
)∣∣2 |f̂(ξ)|2dξ

≤
∫
R

|f̂(ξ)|2dξ

= ‖f̂‖22. (3.11)

This shows not only that û(·, t) is in L2 again for initial data in L2: Since the
mapping T̂t : L2 −→ L2, f̂ 7−→ û(·, t) is linear, we have also shown the continuity
of T̂t.

Together with the Fourier-Plancherel transform F : L2 −→ L2 (see [33, Section
V.2], linear filtering with fixed nonnegative coefficients λ1, . . . , λm and stopping time
t can be written as linear continuous operator Tt : L2 −→ L2, f 7−→ F−1T̂tFf .
The Plancherel identity assures that the equivalent inequation to (3.11) holds for
the norm of Ttf = u(·, t) for all t ∈ R+

0 :

‖u(·, t)‖2 = ‖û(·, t)‖2 ≤ ‖f̂‖2 = ‖f‖2.

We conclude that linear diffusion filtering of higher order is L2-continuous with
norm not greater than 1. That means stability with respect to the L2-norm.

Remark 3.4 (Negative Values for λ) We want to note that these properties
only hold for nonnegative coefficients λ1, . . . , λm. The functions

Gλ
k(ξ, t) = exp

(
−tλξ2k

)
are unbounded for negative λ. Especially the high frequency components of our
signal f are amplified by multiplying them with exponentially growing functions.
Filtering with negative λ1, . . . , λm leads to a rapidly growing L2-norm of the result
u(·, t). Thus the problem is ill-posed for negative filter parameters. For the rest of
this section we assume the λ1, . . . , λm to be nonnegative.

For t ≥ 0, the functions Gλ
k(·, t) are in the Schwartz space (see [33]). So their

Fourier backtransform pλ
k(·, t) exists and is in the Schwartz space, too (see [33,

Lemma V.2.5]). Together with the convolution theorem the solution of equation
(3.8) can also be considered as convolution in the spatial domain

u(x, t) =
(
pλm

m (·, t) ∗ p
λm−1
m−1 (·, t) ∗ . . . ∗ pλ1

1 (·, t) ∗ f
)

(x). (3.12)
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Figure 3.1: Gλ
k(·, t) and corresponding convolution kernels pλ

k(·, t) for k ∈
{1, 2, 3, 4, 32}. The values for λ and t are chosen to visualise the main charac-
teristics of the functions.

Definition 3.5 (Convolution Kernels) We define the convolution kernels ap-
pearing in generalised linear filtering as

pλ
k(·, t) := F−1Gλ

k(·, t) for k ∈ N, λ > 0

=
∫
R

exp
(
−tλξ2k

)
exp (ixξ) dξ.

Figure 3.1 shows some discrete approximations of the functions Gλ
k(·, t) and the

resulting convolution kernels pλ
k(·, t) visualised via discrete Fourier transform. We

have used a signal size of 256 pixels. In the case k = 1, we have the well-known
Gaussian kernel which has a Gaussian as Fourier transform again. We note that the
nonnegativity of the Gaussian corresponds with the minimum-maximum property of
the corresponding diffusion process. Since higher order kernels pλ

k(·, t) always reach
negative values, the corresponding higher order diffusion will in general violate a
minimum-maximum property.
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Remark 3.6 From the signals shown in Figure 3.1 one could suppose that the
number of intervals where pλ

k has negative values is 2(k − 1). It could also be
possible to choose the λk such that the convolution of multiple kernels is positive.
This would be the counterpart in the diffusion framework to the positivity results
from [18] for direct minimisation of linear energy functionals. One can also see that
the discrete versions of the functions Gλ

k get similar to a box function for k −→∞
and the functions pλ

k get similar to a sinc function. Perhaps it is possible to prove
convergence in the sense of the L2-norm in the continuous case, too (with the L2-
continuity of the Fourier transform, it would suffice to show the convergence for
either Gλ

k or pλ
k).

We note some scale-space properties of generalised linear filtering. The first one
we have already used in the above remarks:

Proposition 3.7 (Linearity) Generalised linear filtering is a linear operator.

From the convolution representation (3.12) with kernels pλ
k ∈ C∞ we can derive

that the filtering result is C∞ for L2 initial data:

Proposition 3.8 (Smoothness of the Solution) We consider generalised lin-
ear filtering with initial data f ∈ L2(R). Then the solution u is in C∞(R).

Proof: We start with (3.12) and compute the convolution kernel

p = pλm
m (·, t) ∗ p

λm−1
m−1 (·, t) ∗ . . . ∗ pλ1

1 (·, t).

Then p is in C∞(R), and we can write

d

dx
u(x, t) =

∫
R

(
d

dx
p(y − x)

)
f(y)dy

which can be iterated and shows the existence of the derivatives of u. �

From equation (3.9), the properties of the exponential function and the linearity
of the Fourier-Plancherel transform F we can also derive:

Proposition 3.9 (Semigroup-Property of Linear Filtering) The set of gen-
eralised linear filtering operators Tt satisfies the semigroup-property

Ts+tf = TsTtf

T0f = f

for all f ∈ L2.

Proposition 3.10 (Invariance of the Average Grey Value) For all t > 0 it
is ∫

R

u(x, t)dx =
∫
R

f(x)dx.

Proof: We keep in mind that the average grey value can be expressed as Fourier
coefficient ∫

R

f(x)dx =
∫
R

f(x) exp(0ix)dx = f̂(0).
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Thus we have for all t > 0∫
R

u(x, t)dx = û(0, t)

= exp(−tλm0) · . . . · exp(−tλ10)f̂(0)

= f̂(0)

=
∫
R

f(x)dx

which completes the proof. �

Proposition 3.11 (Translational Invariance) Generalised linear diffusion fil-
tering is translational invariant.

Proof: This statement follows directly from the fact that generalised linear
diffusion can be written as spatial convolution with a kernel p(x, t). Then a substi-
tution shows for all a ∈ R

u(x + a, t) =
∫
R

p (x + a− y, t) f(y)dy

=
∫
R

p (x− (y − a), t) f(y)dy

=
∫
R

p (x− ỹ) f (ỹ + a) dỹ,

which is the claimed translational invariance. �

If we restrict ourselves to only one derivative order we have also scale invariance.

Proposition 3.12 (Scale Invariance) If the function f is scaled with σ > 0 then
there is a t̃ > 0 such that (

Ttf
( ·

σ

))
(x) = (Tt̃f(·))

(x

σ

)
holds.

Proof: First we note that with the substitution ỹ = y
σ(

Ttf
( ·

σ

))
(x) =

∫
R

pλ
k(x− y, t)f

( y

σ

)
dy

= σ

∫
R

pλ
k(x− σỹ, t)f(ỹ)dỹ. (3.13)

We observe that with Definition 3.5 and a second substitution

pλ
k(x− σỹ, t) =

∫
R

exp
(
−tλξ2k

)
exp (i(x− σỹ)ξ) dξ

=
1
σ

∫
R

exp
(
− t

σ2k
λξ̃2k

)
exp

(
i
(x

σ
− ỹ
)

ξ̃
)

dξ̃

=
1
σ

pλ
k

(
x

σ
− ỹ,

t

σ2k

)
.
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Using this in equation (3.13) yields(
Ttf

( ·
σ

))
(x) =

∫
R

pλ
k

(
x

σ
− y,

t

σ2k

)
f(y)dy

=
(
T t

σ2k
f
)(x

σ

)
which proves the claimed scale-invariance. �

We note that the convolution with pλ
k(·, t) has been axiomatically derived by

Iijima in [16]. He starts with demanding linearity, translational and scale invariance
and the semigroup property and obtains the convolution with pλ

k(·, t). More on these
scale-space axiomatics can be found in [32].

3.2 Nonlinear Diffusion of Second Order

Let us now turn our attention to nonlinear energy functionals of derivative order 2
in one dimension. Such functionals can be written in the following form:

E(u) =
∫
R

(
(u− f)2 + αϕ

(
u2

xx

))
dx. (3.14)

We assume that ϕ ∈ C3(R), that means it is three times continuous differentiable.
Further we demand that it satisfies the condition ϕ(0) = 0 to ensure that the integral
converges at least for constant or linear argument functions u. The corresponding
Euler-Lagrange equation to (3.14) is the elliptic equation

u− f

α
= − d2

dx2

(
ϕ′
(
u2

xx

)
uxx

)
.

As we have discussed in Section 3.1.2 this can be interpreted as a fully implicit
discretisation of the parabolic partial differential equation

ut = − d2

dx2

(
ϕ′
(
u2

xx

)
uxx

)
(3.15)

with initial condition u(0, x) = f(x) and stopping time t = α. We now expand the
right-hand side of this equation. Using

d

dx

(
ϕ′
(
u2

xx

)
uxx

)
=

[
d

dx
ϕ′
(
u2

xx

)]
uxx + ϕ′

(
u2

xx

) [ d

dx
uxx

]
= 2ϕ′′

(
u2

xx

)
u2

xxuxxx + ϕ′
(
u2

xx

)
uxxx

=
(
2ϕ′′

(
u2

xx

)
u2

xx + ϕ′
(
u2

xx

))
uxxx

we obtain

d2

dx2

(
ϕ′
(
u2

xx

)
uxx

)
=

[
d

dx

(
2ϕ′′

(
u2

xx

)
u2

xx + ϕ′
(
u2

xx

))]
uxxx

+
[
2ϕ′′

(
u2

xx

)
u2

xx + ϕ′
(
u2

xx

)]
uxxxx

= 2
[(

d

dx
ϕ′′
(
u2

xx

))
u2

xx + ϕ′′
(
u2

xx

)( d

dx
u2

xx

)
+ϕ′′

(
u2

xx

)
uxxuxxx

]
uxxx

+
[
2ϕ′′

(
u2

xx

)
u2

xx + ϕ′
(
u2

xx

)]
uxxxx
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=
[
ϕ′′′
(
u2

xx

)
2u3

xxuxxx + ϕ′′
(
u2

xx

)
2uxxuxxx

+ϕ′′
(
u2

xx

)
uxxuxxx

]
2uxxx

+
[
2ϕ′′

(
u2

xx

)
u2

xx + ϕ′
(
u2

xx

)]
uxxxx

=
[
2u2

xxx

(
2ϕ′′′

(
u2

xx

)
u2

xx + 3ϕ′′
(
u2

xx

))]
uxx

+
[
2ϕ′′

(
u2

xx

)
u2

xx + ϕ′
(
u2

xx

)]
uxxxx.

Introducing the abbreviations

Φ1(x2) := 2ϕ′′′(x2)x2 + 3ϕ′′(x2)
Φ2(x2) := 2ϕ′′(x2)x2 + ϕ′(x2) (3.16)

allows us to rewrite equation (3.15) as follows:

ut = − d2

dx2

(
ϕ′
(
u2

xx

)
uxx

)
= −

(
2u2

xxxΦ1

(
u2

xx

))
uxx − Φ2

(
u2

xx

)
uxxxx. (3.17)

As we have seen in Section 3.1.3 the well-posedness of diffusion processes depends
on the signs of the factors in front of uxx and uxxxx. We now consider the nonlinear
terms −2u2

xxxΦ1

(
u2

xx

)
and Φ2

(
u2

xx

)
as coefficients of uxx and uxxxx and we are

therefore interested in the signs of these terms.
In regions where u2

xxx 6= 0 the signs only depend on the functions Φ1 and Φ2

which involve the first three derivatives of the penalty function ϕ. Note that the
expression Φ2(x2) as defined in (3.16) also appears in the consideration of first order
filtering to distinguish between forward and backward diffusion. So the highest
diffusion order will behave like the first order diffusion in a standard first order
setting. The third derivative uxxx appears only quadratic and therefore cannot
change the sign. It can be seen as a weight parameter on the first order diffusion
process. We keep in mind that we only obtain necessary conditions for first order
forward or backward diffusion.

The conditions on Φ1 and Φ2 can be summarised as follows:

Φ1

(
u2

xx

)
< 0 first order forward diffusion (well-posed)

Φ1

(
u2

xx

)
> 0 first order backward diffusion (ill-posed)

Φ2

(
u2

xx

)
> 0 second order forward diffusion (well-posed)

Φ2

(
u2

xx

)
< 0 second order backward diffusion (ill-posed).

3.3 Application to Penalty Functions

Let us now investigate some commonly used penalisers ϕ and study their effect
on corresponding second order diffusions. The investigated penalisers are already
mentioned in the first chapter. More references can be found there.

3.3.1 Linear Filtering

A linear filter is obtained with ϕ(x) := cx for some c ∈ R and all x ∈ R.
With ϕ′(x) = c and ϕ′′(x) = ϕ′′′(x) = 0 it immediately follows that Φ1(x) = 0 and
Φ2(x) = c hold for all x ∈ R. Only the highest diffusion order is kept in this case.
The corresponding parabolic differential equation is

ut = −c uxxxx.

For c > 0, linear filtering leads to a well-posed second-order forward diffusion.
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3.3.2 Charbonnier

The Charbonnier filter with

ϕ(x) := 2λ2

(√
1 +

x

λ2
− 1
)

with λ ∈ R+, x ∈ R+
0

leads to forward diffusion in the first order filtering framework. Note that the
argument x will be always nonnegative in energy functionals of the form (3.14)
since the penalty depends on the square of the second derivative of our data u. We
will now derive that its behaviour is exactly the same in a second order filter.

The first three derivatives of ϕ are:

ϕ′(x) =
(
1 +

x

λ2

)− 1
2

ϕ′′(x) =
−1
2λ2

(
1 +

x

λ2

)− 3
2

ϕ′′′(x) =
3

4λ4

(
1 +

x

λ2

)− 5
2

.

We then derive our sign functions as defined in (3.16):

Φ1(x2) =
3x2

2λ4

(
1 +

x2

λ2

)− 5
2

+
−3
2λ2

(
1 +

x2

λ2

)− 3
2

=
−3
2λ2

(
1 +

x2

λ2

)− 5
2

< 0 for all x ∈ R and

Φ2(x2) =
−2x2

2λ2

(
1 +

x2

λ2

)− 3
2

+
(

1 +
x2

λ2

)− 1
2

=
(

1 +
x2

λ2

)− 3
2

> 0 for all x ∈ R.

The Charbonnier filter of second order always performs forward diffusion.

3.3.3 Perona-Malik

Let us consider the classical Perona-Malik penalty function

ϕ(x) := λ2 ln
(
1 +

x

λ2

)
with x ∈ R+

0 , λ ∈ R+.

The Perona-Malik function has the property to lead to forward-backward diffusion
in first order filtering methods. The parameter λ is the limit to distinguish between
forward diffusion (for |ux| < λ) and backward diffusion (for |ux| > λ). Thus λ plays
the role of a contrast parameter. Choosing a suitable value for λ allows to smooth
in the interior of a region (where |ux| < λ), while enhancing edges (with |ux| < λ)
by means of backward diffusion. We will see that the behaviour in the second-order
case is not that easy to describe.

Computation of the first three derivatives of our penalty function yields

ϕ′(x) =
(
1 +

x

λ2

)−1

ϕ′′(x) =
−1
λ2

(
1 +

x

λ2

)−2

ϕ′′′(x) =
2
λ4

(
1 +

x

λ2

)−3

.
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Then we consider the sign determining functions Φ1 and Φ2.

Φ1(x2) = 2ϕ′′′(x2)x2 + 3ϕ′′(x2)

=
4x2

λ4

(
1 +

x2

λ2

)−3

+
−3
λ2

(
1 +

x2

λ2

)−2

=
x2 − 3λ2

λ4
(
1 + x2

λ2

)3
Φ2(x2) = 2ϕ′′(x2)x2 + ϕ′(x2)

=
−2x2

λ2

(
1 +

x2

λ2

)−2

+
(

1 +
x2

λ2

)−1

=
λ2 − x2

λ2

(
1 +

x2

λ2

)−2

We see that the term Φ2 for the fourth derivative order leads to the well-known
condition from first order filtering (with the difference that this function depends
on the square of the second and not of the first derivative.)

Φ2(x2) > 0 ⇐⇒ x2 < λ2 ⇐⇒ |x| < λ

We have second order forward diffusion in regions where |uxx| < λ and second order
backward diffusion if |u2

xx| > λ.
The first order diffusion depends on Φ1:

Φ1(x2) < 0 ⇐⇒ x2 − 3λ2 < 0 ⇐⇒ x2 < 3λ2 ⇐⇒ |x| <
√

3λ.

So this term may lead to forward first order diffusion in the case that |u2
xx| <

√
3λ

and to backward first order diffusion if it is greater. We conclude that the behaviour
of second-order Perona-Malik filtering can be divided into three cases:

|uxx| < λ forward diffusion of first and second order
(well-posed)

λ < |uxx| <
√

3λ forward diffusion of first order and
backward diffusion of second order

|uxx| >
√

3λ backward diffusion of first and second order
(ill-posed).

3.3.4 Total Variation Approximations

As next example we consider approximations of the total variation function. We fix
ε > 0 and consider the regularised total variation penaliser

ϕ(x) := 2
√

(ε2 + x)− 2ε for x ∈ R+
0 .

We need to subtract the constant term 2ε to get ϕ(0) = 0. As in the above examples
we need the derivatives of ϕ at first; these are

ϕ′(x) =
(
ε2 + x

)− 1
2

ϕ′′(x) =
−1
2
(
ε2 + x

)− 3
2

ϕ′′′(x) =
3
4
(
ε2 + x

)− 5
2 .
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According to formula (3.16) we compute the coefficient functions

Φ1(x2) =
3x2

2
(
ε2 + x2

)− 5
2 +

−3
2
(
ε2 + x2

)− 3
2

=
−3ε2

2
(
ε2 + x2

)− 5
2 < 0 for all x ∈ R and

Φ2(x2) =
−2x2

2
(
ε2 + x2

)− 3
2 +

(
ε2 + x2

)− 1
2

= ε2
(
ε2 + x2

)− 3
2 > 0 for all x ∈ R.

We deduce that regularised total variation approximations always perform for-
ward diffusion. In the case the second derivative |uxx| is small the value of ε plays
an important role: The limits of our two functions are

lim
x−→0

Φ1(x2) = lim
x−→0

−3
2
· ε2

√
ε2 + x2

5 = −3
2
ε−3

and

lim
x−→0

Φ2(x2) = lim
x−→0

ε2

√
ε2 + x2

3 =
1
ε
.

We see that the value of ε for the TV-approximation is very important for the speed
of the diffusion in regions with small second derivative.

3.3.5 Total Variation

Instead of the approximation we now consider the TV functional itself. We use the
penaliser ϕ(x) = 2

√
x for x ∈ R+

0 . The derivatives of ϕ

ϕ′(x) = x−
1
2

ϕ′′(x) = −1
2
x−

3
2

ϕ′′′(x) =
3
4
x−

5
2

are only defined for x ∈ R+. Our coefficient functions then are

Φ1(x2) =
3
2
(x2)−

5
2 x2 − 3

2
(x2)−

3
2

=
3
2
x−3 − 3

2
x−3

= 0 for all x ∈ R+ and

Φ2(x2) = −(x2)−
3
2 x2 + (x2)−

1
2

= −x−1 + x−1

= 0 for all x ∈ R+.

We see that the total variation method is exactly the border case between forward
and backward diffusion. Since the derivatives are not defined for x = 0 the method
is usually approximated as mentioned above for practical implementations.
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Chapter 4

Discretisation

After studying methods for minimisation in the continuous setting we want to carry
over these to the discrete domain. At first we will take a look at two ways to
approximate the derivative only involving the function’s values at discrete points:
the finite differences and spectral methods. Both of them will be used in the noise
removal methods described in this thesis.

4.1 General Remarks and Notations

First we like to introduce some general notations that will be used throughout this
chapter.

In the one-dimensional continuous case we usually consider energy functionals
with an interval Ω = (a, b) with a, b ∈ R, b > a as integration domain. Our data
and results are functions f : [a, b] −→ R. For discrete methods we choose a signal
length n ∈ N and replace the interval by equidistant grid points

Ωh := {xi | i = 0, . . . , n− 1} with
xi := a + ih for i ∈ {0, . . . , n− 1},

where h := b−a
n−1 is our spatial step size. We substitute the function f by a vector

f ∈ Rn containing the values of f at these grid points

f := (f(x0), . . . , f(xn−1))T .

This vector will always be denoted with the letter of the corresponding function in
bold print. Extending this vector at both sides with zeros, one can represent it also
as an infinite sequence. It is clear that this sequence belongs to the spaces

`p(Z) :=

{
(ξk)k∈Z ⊂ R;

∑
k∈Z

|ξk|p < ∞

}

for all p ∈ N since it is bounded and only a finite number of entries is nonzero.
This extension can be useful to write finite differences as linear operators or as
convolution. We are especially interested in the space `2(Z) since is is a Hilbert
space with the scalar product

〈f ,g〉 =
∑
k∈Z

fkgk.

We introduce some common operators on this space that will be useful to express
finite difference methods.

43
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Definition 4.1 (Left and Right Shift) We define the left shift operator

L : `2(Z) −→ `2(Z), (Lf)k = fk+1 for all k ∈ Z,

and the right shift operator

R : `2(Z) −→ `2(Z), (Rf)k = fk−1 for all k ∈ Z.

The following lemma summarises some useful and simple properties of the shifts
that we will use later on:

Lemma 4.2 (Properties of Shifts) For L and R defined as above the following
properties hold:

1. The left and the right shift are adjoint operators, i. e. for all f ,g ∈ `2(Z) the
identity 〈Lf ,g〉 = 〈f , Rg〉 holds.

2. The left and the right shift are inverse to each other, i. e. LR = RL = I. In
particular the operators L and R commute.

We also define a subspace of `2(Z) isomorphic to Rn such that we can use the theory
in our practical examples with finite Ωh.

Definition 4.3 (Mn and Orthogonal Projections) Let n ∈ N. We define

Mn :=
{
(ξk)k∈Z ∈ `2(Z) | ξk = 0 for all k 6∈ {0, . . . , n− 1}

}
as the subspace of `2(Z) of all sequences for which only the entries with indices
0, . . . , n − 1 may be nonzero. With PMn : `2(Z) −→ Mn we denote the orthogonal
projection onto Mn.

It is clear that Mn is isomorphic to Rn. We would also note that as orthogonal
projection the operator PMn is self-adjoint. These notions will be useful to obtain
matrix representations for the results in `2(Z).

With `∞(Z) we denote the space of all bounded real sequences over Z. The
extension of f can also be regarded as a sequence in `∞. For details on this sequence
spaces we refer to introductions on functional analysis like [13] or [33]. We will see
that in the case of spectral methods a periodic extension of the vector to a sequence
in `∞(Z) is the natural proceeding.

In this work we also consider two-dimensional examples with integration domain
Ω = (a, b)×(c, d) ⊂ R2 with a, b, c, d ∈ R, b > a, d > c. This domain will be replaced
by an equidistant rectangular grid of the form

Ωh := {(xi, yj) | i = 0, . . . , nx − 1 and j = 0, . . . , ny − 1} with
xi := a + ihx for i ∈ {0, . . . , nx − 1}
yj := b + jhy for j ∈ {0, . . . , ny − 1},

where hx := b−a
nx−1 and hy := d−c

ny−1 are the spatial step sizes in the coordinate axis
directions. The values of a function f : Ω −→ R on the set Ωh could be written as
a matrix f̃ ∈ Rnx×ny with entries f̃ij = f(xi, yj). Instead we prefer to embed the
values in the vector f ∈ Rnxny with

fi+jnx
= f(xi, yj), i = 0, . . . , nx − 1, j = 0, . . . , ny − 1.

So we are able to write noise removal methods as matrix-vector multiplications.
Before we are able to talk about discrete noise removal methods we need some

background on the approximation of derivatives. We will summarise the main
results concerning two different ways to approximate a derivative.
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4.2 Finite Differences

Finite differences are the commonly used way to approximate derivatives. The main
idea is to approximate differential quotients f ′(x) = lim

h−→∞
f(x+h)−f(x)

h by suitable

difference quotients.

Definition 4.4 (Forward, Backward and Central Difference) Let h > 0 be
an arbitrary step size, x ∈ R, and f : [x− h, x + h] −→ R. We define the forward
difference (

D+
h f
)
(x) :=

f(x + h)− f(x)
h

,

the backward difference

(
D−

h f
)
(x) :=

f(x)− f(x− h)
h

and the symmetric or central difference

(
D0

hf
)
(x) :=

f(x + h)− f(x− h)
2h

.

If f is sufficient smooth (in this case C2) the Taylor formula

f(x + h) = f(x) + hf ′(x) +
1
2
h2f ′′(ξ) for ξ ∈ (x, x + h)

yields the error estimate (
D+

h f
)
(x) = f ′(x) + O(h)

expressed with the Landau symbol. The error is linear in h. The backward difference
has the same accuracy order as the forward difference. The central difference even
yields a quadratic convergence behaviour for h −→ 0. We note that

(
D+

h f
)
(x) =

f(x + h)− f(x)
h

=
(
D0

h/2f
)(

x +
h

2

)
and so the forward difference of f at the point x with step size h can also be
considered as an approximation for f ′

(
x + h

2

)
of second order.

Iterating the forward difference yields approximations for higher derivatives:

(
D+

h D+
h f
)
(x) =

(
D+

h f
)
(x + h)−

(
D+

h

)
(x)

h

=
f(x + 2h)− 2f(x + h) + f(x)

h2

≈ f ′′(x + h).

It is useful to write the forward difference as linear operator to generalise the
iteration and to get some statements concerning boundary conditions. The idea
of this can be found in [4] and [14], for example, where calculations with operator
symbols for differences are performed. We use the vector notation for the values
of f at the grid points Ωh = {x, x + h, . . . , x + mh} as indicated in the preceeding
section and set f = (f(x), . . . , f(x + mh)). Extending f to both sides with zero
entries makes a sequence in `2(Z) out of it. The pointwise forward and backward
differences now can be written as linear operator on `2:
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Definition 4.5 (Difference Operators) We consider the pointwise forward dif-
ference operator D+

h : `2(Z) −→ `2(Z) defined by

(
D+

h f
)
k

=
fk+1 − fk

h
for all k ∈ Z.

The pointwise backward difference operator D−
h : `2(Z) −→ `2(Z) is analogously

defined by (
D−

h f
)
k

=
fk − fk−1

h
for all k ∈ Z.

Alternatively we can write the pointwise forward and backward difference in terms
of shift operators and the identity operator:

Lemma 4.6 (Differences with Shift Operators) The forward difference oper-
ator can be written as the difference of a left shift operator and the identity I scaled
with 1

h :

D+
h =

1
h

(L− I). (4.1)

The backward difference operator is

D−
h =

1
h

(I −R) = RD+
h . (4.2)

We now calculate powers of D+
h and D−

h to get higher differences and approxi-
mations of higher derivatives.

Lemma 4.7 (Higher Differences) The higher differences can be calculated as

(
D+

h

)m
=

1
hm

m∑
l=0

(−1)m−l
(m

l

)
Ll and(

D−
h

)m
= Rm

(
D+

h

)m
.

Proof: With the observation that L and I commute, we get by taking powers
of equation (4.1) with the binomial formula(

D+
h

)m
=

1
hm

(L− I)m

=
1

hm

m∑
l=0

(m

l

)
Ll(−I)m−l

=
1

hm

m∑
l=0

(−1)m−l
(m

l

)
Ll.

The second statement follows from equation (4.2). With Lemma 4.2 it is clear that
the shifts and the difference operators commute and therefore(

D−
h

)m
=
(
RD+

h

)m
= Rm

(
D+

h

)m
which is our second statement. �

From Lemma 4.7 we obtain the coefficients for the values of f that are needed to
compute an approximation of the mth derivative at the point x:

((
D+

h

)m
f
)
0

=
m∑

l=0

(−1)m−l

hm

(m

l

)
fl.
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We see that the mth finite difference is a linear combination of the values of f at the
m + 1 points x, x + h, . . . , x + mh. The coefficients of these values are the binomial
coefficients divided by hm and with alternating signs such that the last summand
1

hm f(x + mh) has positive sign.

Remark 4.8 (Approximation of Higher Derivatives) The property that this
expression

((
D+

h

)m
f
)
(x) computed of the values of f at the m+1 equidistant points

x, . . . , x + mh yields an approximation for f (m) at the central point
(
x + mh

2

)
is

mentioned in [14] and [24], for example. A proof based on polynomial interpolation
can be found in [24].

The next remark yields an interpretation of finite differences in terms of local poly-
nomial interpolation. It should point out the approach behind finite differences in
comparison to the spectral methods presented in the next section.

Remark 4.9 (Differences and Local Interpolation) The first forward differ-
ence can also be seen as the exact derivative of the local interpolation of f with a
polynomial of degree 1 at an arbitrary point between x and x + h. Analogously to
get the mth forward difference a local interpolation polynomial p of degree m with
the m + 1 equidistant grid points x, x + h, . . . , x + mh is build. The mth derivative
of p at the point x + mh

2 is the mth difference. We refer to [24] for details.

Lemma 4.10 (Adjoint Operator) For the mth forward difference
(
D+

h

)m
we get

the adjoint operator
(
−D−

h

)m
.

Proof: For all f ,g ∈ `2 Lemma 4.2 and Lemma 4.6 show that

〈
(
D+

h

)m
f ,g〉 =

1
hm

〈(L− I)mf ,g〉

=
1

hm
〈f , (R− I)mg〉

= 〈f ,
(
−D−

h

)m
g〉,

and so we get the adjoint operator as given above. �

Remark 4.11 (Finite Differences as Convolution) The iterated finite differ-
ence operator

(
D+

h

)m
: `2(Z) −→ `2(Z) from the proof of Lemma 4.7 is linear and

shift invariant. Thus can also be expressed as a discrete convolution

(dm ∗ f)k =
∑
l∈Z

dm
k−lfl

with the convolution kernel

dm
l =

{
(−1)m−l

hm

(
l
m

)
if − l ∈ {−m, . . . , 0}

0 else.

This notation can also be used to deduce implementations of different boundary
conditions with discrete methods.

We will give two examples for these notation. The component with index 0 is
bold printed.

d+
h =

1
h

(. . . , 0, 1, -1, 0, . . .) .
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We see that the convolution with d+
h yields a sequence consisting of the forward

differences of f at the points xl for all l ∈ Z:

(
d+

h ∗ f
)
l
=
∑
k∈Z

(
d+

h

)
l−k

fk =
fl+1 − fl

h
=
(
D+

h f
)
(xl).

The approximation for the second derivative written as convolution stencil looks
like this:

d2
h =

1
h2

(. . . , 0, 1,−2,1, 0, . . .) .

When we consider finite differences as exact derivatives of polynomials it is clear
how they should behave if the considered function f is a polynomial. The following
proposition and remark will confirm this assumption.

Proposition 4.12 (First Difference of Polynomials) Let p be a real polyno-

mial of degree m ∈ N, i. e. p(x) =
m∑

k=0

akxk with ak ∈ R for all k ∈ {0, . . . ,m} and

am 6= 0. Let h > 0 be an arbitrary step size and x ∈ R. The forward difference of p
with step size h is a polynomial of degree m− 1.

Proof: We compute the forward difference with step size h of p at point x

(
D+

h p
)
(x) =

p(x + h)− p(x)
h

=
1
h

m∑
k=0

ak

(
(x + h)k − xk

)
=

1
h

m∑
k=0

ak

((
k∑

l=0

(
k

l

)
xk−lhl

)
− xk

)

=
1
h

m∑
k=0

ak

(
k∑

l=1

(
k

l

)
xk−lhl +

(
k

0

)
xkh0 − xk

)

=
1
h

m∑
k=0

k−1∑
l=0

ak

(
k

l + 1

)
xk−1−lhl

The exponent of x gets maximal for l = 0 and k = m. The summand with the
highest exponent of x is

am

(m

1

)
xm−1h0 = m am xm−1

and does not vanish since we assumed that am 6= 0. This computation does not
make any use of the particular point x. We conclude that the forward difference of
a polynomial of degree m is a polynomial of degree m− 1. �

Remark 4.13 (Higher Differences of Polynomials) One can also get a state-
ment about higher differences of polynomials: Iterating the argumentation from the
preceeding lemma shows that the mth forward difference of a polynomial of degree
m is constant (or a polynomial of degree 0). The above computations even allow
us to give the exact value of this difference which is m! am. It is clear that the
(m + 1)th difference will vanish.
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4.2.1 Matrix Notation

As already indicated above we also introduce a matrix notation for finite difference
derivative approximation. By multiplying the matrix DF

1,n ∈ R(n−1)×n defined by

DF
1,n :=

1
h


−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 −1 1


with a vector f , the product

DF
1,nf =

(
f(x2)− f(x1)

h
, . . . ,

f(xn)− f(xn−1)
h

)
yields an approximation of the derivative f ′ at the equidistant grid points

x1 + x2

2
, . . . ,

xn−1 + xn

2
.

The F in DF
1,n stands for derivative approximation with Finite differences. For a

second derivative approximation we iterate the first derivative taking care of the
right matrix dimensions and get

DF
1,n−1D

F
1,nf =

(
f(x3)− 2f(x2) + f(x1)

h2
, . . . ,

f(xn)− 2f(xn−1) + f(xn−2)
h2

)
.

This approximates the second derivative f ′′ at the grid points x2, . . . , xn−1. We
define the matrix DF

2,n ∈ R(n−2)×n as

DF
2,n = DF

1,n−1D
F
1,n =

1
h2


1 −2 1 0 . . . 0

0 1 −2 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . 0 1 −2 1

 .

This can be extended to higher orders with the

Definition 4.14 (Finite Differences as Matrix) For n ∈ N \ {0} we define the
finite difference derivative approximation of order m ∈ {1, . . . , n − 1} as the (n −
m)× n - matrix

DF
m,n = DF

1,n−m+1 · . . . ·DF
1,n.

Remembering Remark 4.8 we note that multiplying the matrix DF
m,n with a vector

f ∈ Rn

DF
m,n

 f0
...

fn−1

 =


((

D+
h

)m
f
)
0

...((
D+

h

)m
f
)
n−1−m

 ≈

 f (m)
(
x0 + mh

2

)
...

f (m)
(
xn−1−m + mh

2

)


yields an approximation of the mth derivative of f at the points

x0 +
mh

2
, x1 +

mh

2
, . . . , xn−1−m +

mh

2
.

To deduce an upper bound for the spectral norm we use the theorem of Gershgorin
(see [26], theorem 6.9.4).
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Theorem 4.15 (Gershgorin) The union of all discs

Ki :=

µ ∈ C; |µ− aii| ≤
n∑

k=1
k 6=i

|aik|

 for i = 1, 2, . . . , n

contains all eigenvalues of the n× n matrix A = (aik).

We use this to prove the following

Lemma 4.16 (Spectral Norm Estimate) For the spectral norm of the matrix
DF

m,n the inequality ∥∥DF
m,n

∥∥
2
≤ 2m

hm

holds.

Proof: First we consider the spectral norm of DF
1,n. We see that

(
DF

1,n

)T
DF

1,n =
1
h2



1 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 . . . 0 −1 1


,

and with the Theorem 4.15 of Gershgorin we state that

σ
((

DF
1,n

)T
DF

1,n

)
⊆
{

µ ∈ C;
∣∣∣∣µ− 2

h2

∣∣∣∣ ≤ 2
h2

∨
∣∣∣∣µ− 1

h2

∣∣∣∣ ≤ 1
h2

}
where σ denotes the set of all eigenvalues (the spectrum). As a product of the form
AT A the matrix is also symmetric and therefore all eigenvalues are real, and we get

σ
((

DF
1,n

)T
DF

1,n

)
⊆
[
0,

4
h2

]
.

For the spectral radius of DF
1,n this means

∥∥DF
1,n

∥∥
2
≤ 2

h
.

We state that this estimate is independent of the dimension n. Since the spectral
norm is submultiplicative we state that∥∥DF

m,n

∥∥
2

≤
∥∥DF

1,n−m+1

∥∥
2
· . . . ·

∥∥DF
1,n

∥∥
2

≤ 2m

hm
,

and the estimate is proven. �

Remark 4.17 (Restriction of the Operator) We can also understand the ma-
trix DF

m,n as a restriction of the pointwise forward difference operator
(
D+

h

)m
onto

the space Mn−m from Definition 4.3. Identifying Rn with Mn we can write the
matrix as the operator

PMn−m

(
D+

h

)m
.
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Remark 4.18 (Transposed Matrix and Boundary Conditions) We will use
the matrix DF

m,n in discrete energy functionals in Section 5.1. In the gradient of

such a functional the transposed matrix
(
DF

m,n

)T occurs in a natural way. We
would like to understand some more properties of this matrix. Since it is a matrix
with real entries it can be expressed as adjoint operator of the matrix DF

m,n. Thus
we consider with Lemma 4.10 and Lemma 4.7 the adjoint operator(

PMn−m

(
D+

h

)m)∗
= (−1)m

(
D−

h

)m
PMn−m

= (−1)mRm
(
D+

h

)m
PMn−m .

Basically this is a shifted version of the mth difference multiplied with (−1)m. We
would like to investigate in detail how this operator acts on a sequence f : The
projection PMn−m maps all entries fk of f with indices k 6∈ {0, . . . , n − m − 1} to
zero. Using the formula from Lemma 4.7 it follows that((

D+
h

)m
PMn−mf

)
k

=
m∑

l=0

(−1)m−l

hm

(m

l

)
(PMn−mf)k+l

=
m∑

l=0

(−1)m−l

hm

(m

l

)
fk+l

=
((

D+
h

)m
f
)
k

for all k ∈ {0, . . . , n− 2m− 1}.

For k ≤ −m− 1 or k ≥ n−m we can also state that((
D+

h

)m
PMn−mf

)
k

= 0,

since only zero entries of PMn−mf are taken into consideration to compute the mth
difference. The interesting regions are now −m ≤ k ≤ −1 and n−m + 1 ≤ k ≤ n.
Here nonzero entries of f may occur, and also zeros generated by the projection are
involved. One could consider the values calculated there as approximation of the
mth derivative of f under the assumption of further conditions. For example it is((

D+
h

)m
PMn−mf

)
−1

=
((

D+
h

)m
f
)
−1
− (−1)m

hm
f−1.

Since (−1)m

hm is nonzero, the value
((

D+
h

)m
PMn−mf

)
−1

can be considered as the
approximation of f (m)

(
x0 + mh

2

)
under the assumption that f(x−1) = 0.

More generally for k ∈ {1, . . . ,m} it is

((
D+

h

)m
PMn−mf

)
−k

=
((

D+
h

)m
f
)
−k
−

k−1∑
l=0

(−1)m−l

hm

(m

l

)
fl−k.

We can state that
((

D+
h

)m
PMn−mf

)
−k

can be considered as the approximation of
f (m)

(
x−k + mh

2

)
under the assumption that

k−1∑
l=0

(−1)m−1

hm

(m

l

)
fl−k = 0.

We interpret this assumption as a discretisation of the condition

f (k−1)(ξ) = 0 for ξ ∈
(

x0, x0 −
mh

2

)
what can be understood as the discrete version of the boundary condition

f (k−1)(a) = 0

for the left boundary a of our interval. These considerations can be made for the
right boundary in the same way.
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4.2.2 Finite Differences and Polynomial Data Fitting

We would like to further investigate the connection between polynomials and finite
differences. Assume that the coefficients a0, . . . am−1 of a polynomial

p(x) =
m−1∑
i=0

aix
i

of degree m−1 are given. The evaluation of p at a given point x ∈ R can be written
as the scalar product of the two vectors a, x ∈ Rm defined as

a := (a0, a1, . . . , am−1)
x :=

(
x0, x1, . . . , xm−1

)
.

Taking the scalar product of a with different x means evaluating the polynomial
at different points. For n ≥ m we define the submatrices V m

n ∈ Rn×m of the
Vandermonde matrix as

V m
n :=


1 x0 x2

0 . . . xm−1
0

1 x1 x2
1 . . . xm−1

1
...

...
...

...
1 xn−1 x2

n−1 . . . xm−1
n−1

 .

The matrix-vector product V m
n a yields the evaluation of the polynomial p repre-

sented by its coefficients in a evaluated at the points x0, . . . , xn−1.
Conversely, one can start with grid points x0, . . . , xn−1 and given values y :=

(y0, . . . , yn−1)
T . If there exists a polynomial p of degree less than m with p(xi) = yi

for all i ∈ {0, . . . , n−1} it can be found as the solution of the linear equation system

V m
n a = y.

If the points x0, . . . , xn−1 are pairwise different the matrix V k
n has full rank m and if

a solution exists it is unique. For details on matrices of Vandermonde type refer to
[15] and [35]. If no solution exists we can solve the according least square problem

min
a∈Rn

‖V m
n a− y‖2

to get the best possible solution in the sense of least squares. It is well-known that
this least-square approximation can be expressed as the orthogonal projection of y
onto the range of V k

n , i. e.
a∗ = Pran(V m

n )y.

We refer to [26] for more information on the topic least-square data fitting and
generalised inverse.

The following proposition builds up the link between finite differences and least
square polynomial data fitting:

Proposition 4.19 (Kernel of DF
n,m) The kernel of the finite difference approxi-

mation matrix DF
m,n is the subspace of Rn consisting of all equidistant polynomial

evaluations for polynomials with degree less than m, i. e.

ker
(
DF

m,n

)
= ran (V m

n ) .

Proof: First we show that ran (V m
n ) ⊆ ker

(
DF

m,n

)
. We start with y ∈

ran (V m
n ). There exists a polynomial p of degree less than m with p(xi) = yi.
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It follows from Proposition 4.12 that applying the forward difference k times yields
zero, and y is in the kernel of DF

m,n.
Now we show the opposite direction ker

(
DF

m,n

)
⊆ ran (V m

n ). Assume y ∈
ker
(
DF

m,n

)
and y is a function with the interpolation property

y(xi) = yi for all i ∈ {0, . . . , n− 1}.

From the definition of DF
m,n we know that this is equivalent to((

D+
h

)m
y
)
(x) = 0 for all x ∈ {x1, . . . , xn−m}

and for any function y with the interpolation property

y(xi) = yi for all i ∈ {0, . . . , n− 1}.

Since the higher differences
((

D+
h

)k
y
)

(x0) with k ∈ {m + 1, . . . , n − 1} can be
expressed as linear combinations of the differences with order m, we see that((

D+
h

)k
y
)

(x0) = 0 for all k ∈ {m + 1, . . . , n− 1}.

It is well-known that there exists a polynomial p(x) =
n−1∑
k=0

akxk of degree less than

n with the interpolation property

p(xi) = yi for all i ∈ {1, . . . , n}.

This polynomial is uniquely determined. Applying the forward difference n − 1
times yields a constant (

D+
h

)n−1
p = (n− 1)! an−1.

Since the difference is zero, the leading coefficient also vanishes, and the degree of p

is less than n−1. We can iterate this argumentation as long as the difference
(
D+

h

)l
is zero. It follows that p has degree less than or equal m− 1. This is equivalent to
our claim that y ∈ ran (V m

n ). �

4.2.3 Neumann Boundary Conditions

In image processing problems often Neumann boundary conditions are assumed.
We have already seen a derivative approximation of second order with Neumann
boundary conditions in the proof of Lemma 4.16. The matrix

DFN
2,n := −

(
DF

1,n

)T
DF

1,n =
1
h2



−1 1 0 . . . 0

1 −2 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 −2 1

0 . . . 0 1 −1


gives a pointwise approximation of the second derivative. At the boundary pixels
the second derivative is approximated under the assumption that f−1 = f0 and
fn−1 = fn respectively. This is a finite difference discretisation for the conditions
f ′(a) = f ′(b) = 0. Instead of the matrices considered above, here we really have
an n × n matrix, that means we obtain as much derivative approximations as we
have function values. This attempt does only work for the approximation of second
derivatives, in general we use the
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Definition 4.20 (Matrix Notation) For n ∈ N \ {0} we define the matrix for
derivative approximation of order m ∈ {1, . . . , n− 1} with Neumann boundary con-
ditions as

DFN
m,n :=

{ (
DFN

2,n

)l if m = 2l

DF
1,n

(
DFN

2,n

)l if m = 2l + 1.

We see that DFN
m,n is an n×n-matrix for even derivative order m and an (n−1)×n-

matrix for odd m.

Remark 4.21 (Transposed Matrix) For even m the matrix DFN
m,n is symmetric,

and therefore the transposed matrix also approximates the mth derivative. For odd
m we get an approximation of the negated mth derivative. Altogether one can write
that multiplication with the transposed matrix

(
DFN

m,n

)
approximates (−1)m times

the mth derivative similar to the matrix for natural boundary conditions.

An estimate for the spectral norm can be obtained directly from the proof of lemma
(4.16):

Lemma 4.22 (Spectral Norm) For the matrices defined above we have the spec-
tral norm estimate ∥∥DFN

m,n

∥∥
2
≤ 2m

hm
.

From linear algebra we know that for a real matrix A the identity

ran A =
(
ker AT

)⊥
holds. It follows that kerAT A = kerA and this proves the following

Lemma 4.23 (Kernel of DFN
m,n) The kernel of the finite difference approximation

with Neumann boundary conditions DFN
m,n consists of all constant vectors.

Proof: DFN
m,n is defined as product of DF

1,n followed by the transposed matrix
and vice versa. We see that

ker
(
DFN

m,n

)
= ker

(
DF

1,n

)
= 〈(1, 1, . . . , 1)〉 .

Here 〈x〉 denotes the subspace spanned from the vector x ∈ Rn. In this case the
subspace consists of all constant vectors. �

4.2.4 The Two-Dimensional Case

So far we have only considered the one-dimensional case. For image restoration
algorithms we also need approximations for partial derivatives of functions depend-
ing on two spatial variables. In Example 2.14 we have considered a class of energy
functionals depending on the Laplacian of our image f . We will shortly present the
methods we use to approximate the Laplacian with finite differences. Details can
be found in [11] and [25], for example. In most of the cases we use the classical and
simplest way to approximate a Laplacian with finite differences which is given in
stencil notation by

∆f(xi, yj) ≈
1
h2

1
1 −4 1

1
· fi,j .

At all inner points we can approximate the Laplacian with this stencil. This can also
be written in matrix form. For natural boundary conditions we use the transposed
matrix as indicated in the one-dimensional case.
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For Neumann boundary conditions we have to distinguish between inner pixels,
boundary pixels and corner pixels. The boundary pixels use a different stencil which
is noted for an upper boundary pixel:

∆f(xi, y0) ≈
1
h2

1 −3 1
1

· fi,0

under the assumption that ∂f
∂y (y0) = 0. We also note a corner pixel stencil

∆f(x0, y0) ≈
1
h2

−2 1
1

· f0,0

so we have given an example for each of the three pixel classes. If we write down the
corresponding matrix L for Neumann boundary conditions we see that the values in
a stencil appear in the row that corresponds to the actual pixel. The bold printed
entry stands in the diagonal of the matrix. With Gershgorin’s Theorem 4.15 we
deduce that the eigenvalues of L are contained in the set{

µ ∈ C;
∣∣∣∣µ +

4
h2

∣∣∣∣ ≤ 4
h2

∨
∣∣∣∣µ +

3
h2

∣∣∣∣ ≤ 3
h2

∨
∣∣∣∣µ +

2
h2

∣∣∣∣ ≤ 2
h2

}
.

From the stencils one can also deduce that L is symmetric, and thus all eigenvalues
are real. We see that

σ(L) ⊆
[
− 8

h2
, 0
]

. (4.3)

We note that the entries of each row of L have sum 0, that means the constant
image is in the kernel of L.

We also consider a second commonly used approximation of the Laplacian for
which the leading error term is rotationally invariant:

∆f(xi, yj) ≈
1

6h2

1 4 1
4 -20 4
1 4 1

· fi,j .

Again we give an example how to treat an upper boundary pixel for Neumann
boundary conditions:

∆f(xi, y0) ≈
1

6h2

5 −16 5
1 4 1

· fi,0

under the assumption that ∂f
∂y (y0) = 0. For the upper left corner the following

stencil is used:

∆f(x0, y0) ≈
1

6h2

−11 5
5 1

· f0,0.

Again we consider the corresponding matrix L̃. Using Gershgorin’s Theorem 4.15
we obtain that

σ
(
L̃
)

⊆
{

µ ∈ C ;
∣∣∣∣µ +

20
6h2

∣∣∣∣ ≤ 20
6h2

∨
∣∣∣∣µ +

16
6h2

∣∣∣∣ ≤ 16
6h2

∨
∣∣∣∣µ +

11
6h2

∣∣∣∣ ≤ 11
6h2

}
.

Again the matrix L̃ is symmetric and has real eigenvalues contained in the interval

σ
(
L̃
)
⊆
[
− 20

3h2
, 0
]

. (4.4)

We also have row sum 0 for L̃, and thus the constant image is in the kernel of L̃,
too.
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4.3 Spectral Methods

Finite differences are a local method to approximate the derivative of a function.
Spectral methods can be seen as the global counterpart of them. The basic idea
behind spectral methods is to find a global interpolating function for the function
f and take the derivative of this approximation as an estimate for the derivative of
f . This approach can be made with approximations in different function spaces.

Here we focus on the so-called Fourier spectral methods which use a trigono-
metric rational function

p(x) =
n/2−1∑

k=−n/2

f̂k exp
(

2πik

n
x

)
(4.5)

with coefficients f̂k as approximation. We assume that our pixel number n is even in
this case. The exact derivative of this function is a trigonometric rational function

p′(x) =
n/2−1∑

k=−n/2

f̂k
2πik

n
exp

(
2πik

n
x

)
.

with coefficients f̂k
2πik

n . We see that the model algorithm for calculating a spectral
derivative approximation consists of three steps:

1. Calculate the Fourier coefficients f̂k of p out of the given values f at the grid
points.

2. Multiply these coefficients with 2πik
n to obtain the coefficients of the derivative

p′.

3. Evaluate p′ at the grid points.

It should also be mentioned that this approach also works for higher derivatives
with powers of the coefficients in step (2.) since

p(m)(x) =
n/2−1∑

k=−n/2

f̂k

(
2πik

n

)m

exp
(

2πik

n
x

)
.

A description of these method can be found in [29]. We would like to explain this
general approach, point out some shortcomings and further investigate a commonly
used way to circumvent them.

It is well-known that trigonometric interpolation and evaluation of phase poly-
nomials can be performed with the discrete Fourier transform. Usually the discrete
Fourier transform is written as

f̂j :=
1√
n

n−1∑
k=0

fk exp
(
−2πijk

n

)
for j ∈ {0, . . . , n− 1}. (4.6)

Then the f̂j are the coefficients of the unique phase polynomial p that satisfies the
interpolation property

p(k) =
1√
n

n−1∑
j=0

f̂j exp
(

2πijk

n

)
= fk for k ∈ {0, . . . , n− 1}.
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Remark 4.24 (Periodicity) We note that the approximation with trigonometric
polynomials inherently introduces periodicity:

1. The trigonometric monomials exp
(

2πij
n x

)
with j ∈ Z are n-periodic in x since

exp
(

2πij

n
(x + n)

)
= exp

(
2πij

n
x

)
exp (2πij) = exp

(
2πij

n
x

)
.

Therefore the trigonometric interpolation polynomial is n-periodic. Any func-
tion given at n discrete points will be periodically extended by trigonometric
interpolation. Thus the periodic extension of the function values given by the
vector f ∈ Rn to a series f ∈ `∞ which was already noted in Section 4.1 makes
sense in this framework.

2. The expressions exp
(

2πijk
n

)
for j, k ∈ Z are n-periodic in j and k. If we

consider the periodic extension of f we also get n-periodic Fourier coefficients
f̂j+n = f̂j for all j ∈ Z. We note that the coefficients of the polynomial
(4.5) can be obtained by a shift from the coefficients calculated in (4.6) with
a standard algorithm for discrete Fourier transform such as the Fast Fourier
Transform.

Remark 4.25 (Choice of Indices) The periodicity obtained in the last remark
imposes the question why a special reminder system modulo n is preferred in our
considerations. With respect to the interpolation property it would not make any
difference to consider a trigonometric polynomial

p(x) =
n−1∑
j=0

f̂k exp
(

2πij

n
x

)
instead of (4.5). One could even use the same Fourier coefficients for this polynomial.
The reason is that the index sets{

−n

2
, . . . ,

n

2
− 1
}

or
{
−n

2
+ 1, . . . ,

n

2

}
lead to the interpolations with least oscillations. The interpolation property is not
violated by oscillations in between the considered points, but the derivative. This
can be seen in terms of the total variation of the participating monomials

n∫
0

∣∣∣∣2πik

n
exp

(
2πik

n
x

)∣∣∣∣ dx =
2π

n
|k|.

These values are minimal for the index sets given above.

4.3.1 Matrix Notation

First we write the discrete Fourier transform as matrix-vector multiplication. Let
us consider the vector space Cn with the canonical scalar product

〈f ,g〉 :=
n−1∑
k=0

fkgk.

The vectors

vk :=
1√
n

(
exp

(
2πi0k

n

)
, exp

(
2πi1k

n

)
, . . . , exp

(
2πi(n− 1)k

n

))T
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for k ∈ {0, . . . , n− 1} then build an orthonormal basis. The matrix F with the vk

as row vectors

F :=


vT
0

vT
1
...

vT
n−1


is therefore unitary and can be considered as a change of the basis. The discrete
Fourier transform of a vector f can be expressed as matrix-vector product

F f =
(
f̂0, . . . , f̂n−1

)T

.

Since F is unitary the inverse of F is F
T
, and it is

‖F‖2 =
∥∥∥FT

∥∥∥
2

= 1.

After calculating the coefficients we shift them as indicated above: We use a periodic
shift

S :
(
f̂0, . . . , f̂n−1

)
7−→

(
f̂n

2
, . . . , f̂n−1, f̂0, . . . , f̂n

2−1

)
=

(
f̂−n

2
, . . . , f̂n

2−1

)
to get the coefficients from our trigonometric interpolation function (4.5). This shift
can be expressed with a permutation matrix S with ‖S‖2 = 1. This completes the
first step from our model algorithm.

The second step is to obtain the coefficients of the derivative. This can be
written as a diagonal matrix D ∈ Cn×n defined as

D :=
2πi

n
diag

(
−n

2
, . . . ,

n

2
− 1
)

.

We note that the spectral norm of D is the maximum of the absolute values of its
eigenvalues which are simply the diagonal entries:

‖D‖2 =
∣∣∣∣2πi

n

n

2

∣∣∣∣ · ∣∣∣−n

2

∣∣∣ = π.

We should also note that the kernel of D has dimension 1 since exactly one diagonal
entry is zero.

The third step then consists of the periodic shift S and the Fourier backtransform
which implements the evaluation of the trigonometric polynomial.

We summarise this procedure to the first attempt for a spectral derivative ap-
proximation matrix:

Definition 4.26 (Spectral Derivative Approximation) For m,n ∈ N \ {0}
one can write the spectral approximation of the mth derivative as matrix DS

m,n ∈
Cn×n defined with

DS
m,n = F

T
SDmSF .

We summarise the properties of these matrices.

Lemma 4.27 (Properties of DS
m,n) For all m,n ∈ N \ {0} the following proper-

ties hold:
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Figure 4.1: Spectral methods for derivative approximation and boundary conditions.

1. The spectral norm is the same as for Dm:∥∥DS
m,n

∥∥
2

= πm.

2. The kernel consists of all constant vectors

ker DS
m,n =

〈
(1, 1, . . . , 1)T

〉
.

Proof: The first statement follows from the fact that F and S are unitary
matrices. For the second statement we note that the entries in D are the eigenvalues
of DS

m,n, and the kernel is the eigenspace belonging to the eigenvalue zero. Only
one entry in D (the one with index 0) is zero. The corresponding eigenvector to
this eigenvalue is

(exp(0), . . . , exp(0))T = (1, . . . , 1)T

and so the second statement has been shown. �

4.3.2 Problems

There are two problems for the derivative approximation defined above:

Boundary Conditions

As already mentioned in Remark 4.24 the approximation of our signal introduces
periodic boundary conditions. These are usually not adequate for our signal and
image processing problems. Figure 4.1 shows an example to visualise the difference
between periodic and Neumann boundary conditions.
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The Highest Frequency and Imaginary Derivatives

The indices in the sum (4.5) are not symmetric around zero. The summand with
index −n/2 has no counterpart with positive index. The corresponding vector in
our matrix F is

v−n/2 =
(

exp
(
−2πi

n

(
−n

2

)(
−n

2

))
, . . . , exp

(
−2πi

n

(
−n

2

)(n

2
− 1
)))T

=
(

exp
(

πi

(
−n

2

))
, . . . , exp

(
πi
(n

2
− 1
)))T

= (−1)
n
2 · (1,−1, . . . , 1,−1)T .

This corresponds to the values of the monomial p(x) = exp(πix) at the evalu-
ation points −n/2, . . . , n/2 − 1. We see that this monomial has the derivative
p′(x) = πi exp(πix) which is imaginary at these evaluation points. Since there is no
counterpart with positive index n/2 the derivative approximation would be imagi-
nary. One could simply avoid this problem by setting the Fourier coefficient to zero,
but one should be aware of the fact that an alternating signal gets a zero derivative
approximation this way.

We circumvent both of these problems by extending our signal to the double
size, calculate the derivative approximation as defined above and restrict the signal
to its original size again. This technique is commonly used in image processing to
circumvent unwanted boundary artifacts caused by filters in the Fourier domain.
We investigate how this works for derivative approximation.

Definition 4.28 (Extension and Restriction) Let

E :=



1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
... 0 1
... 0 1
... . .

.
. .

.
0

0 . .
.

. .
. ...

1 0 . . . 0


and R :=


1 0 . . . 0 0 . . . 0

0
. . .

. . .
...

...
...

. . .
. . . 0

...
...

0 . . . 0 1 0 . . . 0



be the extension of a signal and the corresponding restriction (or the projection of
the first n components).

Lemma 4.29 (Spectral Norms) Let T ⊂ C2n be the subspace of all vectors f ∈
C2n with the property

‖g2n−1−k‖ = ‖gk‖ for all k ∈ {0, . . . , n− 1}.

We note that ran E ⊂ T . For E : Cn −→ C2n and R : T −→ Cn we obtain the
spectral norms

‖E‖2 =
√

2 and ‖R‖2 =
1√
2
.

Proof: Since the spectral norm is compatible with the Euclidean vector norm
we calculate that

‖Ef‖ =

(
2n−1∑
k=0

|(Ef)k|2
) 1

2

=

(
2

n−1∑
k=0

|fk|2
) 1

2

=
√

2‖f‖
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for all f ∈ Cn. For all f ∈ T we have

‖Rf‖ =

(
n−1∑
k=0

|Rfk|2
) 1

2

=

(
1
2

2n−1∑
k=0

|fk|2
) 1

2

=
1√
2
‖f‖.

So we have proven the matrix norms as given above. �

Now we need to show that ran
(
DS

m,nE
)
⊂ T . With this result we can conclude

that the spectral norm for derivative approximation with extension of the signal is
not greater than without extension:

‖RDS
m,nE‖2 ≤

1√
2
‖DS

m,n‖2
√

2 = ‖DS
m,n‖.

We now show the claim from above by first computing the Fourier coefficients of
the extended signal:

f̂k =
1√
2n

2n−1∑
j=0

fj exp
(
−2πijk

2n

)

=
1√
2n

n−1∑
j=0

fj exp
(
−πijk

n

)
+

1√
2n

2n−1∑
j=n

f2n−1−j exp
(
−πijk

n

)
.

We perform an index transformation in the second sum introducing the new index
l = 2n− j − 1 yielding

2n−1∑
j=n

f2n−1−j exp
(
−πijk

n

)
=

n−1∑
l=0

fl exp
(
−πi(2n− 1− l)k

n

)

=
n−1∑
l=0

fl exp
(

πi(l + 1)k
n

)
exp (−2πik) .

We remember that k ∈ Z and thus exp(−2πik) = 1 and use this to recombine both
sums in the above computation:

f̂k =
1√
2n

n−1∑
j=0

fj exp
(
−πijk

n

)
+

1√
2n

n−1∑
l=0

fl exp
(

πilk

n

)
exp

(
πik

n

)

=
1√
2n

n−1∑
j=0

fj

[
exp

(
−πijk

n

)
+ exp

(
πijk

n

)
exp

(
πik

n

)]

=
1√
2n

exp
(

πik

2n

) n−1∑
j=0

fj

[
exp

(
−πi

(
j + 1

2

)
k

n

)
+ exp

(
πi
(
j + 1

2

)
k

n

)]

=
1√
2n

exp
(

πik

2n

) n−1∑
j=0

fj2 cos

(
π
(
j + 1

2

)
k

n

)
.

Now we consider the associated interpolating function

p(x) =
1√
2n

n−1∑
k=−n

f̂k exp
(

2πik

2n
x

)

=
1√
2n

n−1∑
k=−n

f̂k exp
(

πik

n
x

)
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=
1
2n

n−1∑
k=−n

exp
(

πik

2n

) n−1∑
j=0

fj2 cos

(
π
(
j + 1

2

)
k

n

) exp
(

πik

n
x

)

=
1
n

n−1∑
k=−n

n−1∑
j=0

fj cos

(
π
(
j + 1

2

)
k

n

)
exp

(
πik

n

(
x +

1
2

))
.

We would like to show that this interpolating function is symmetric to the axis
x = n − 1

2 . We compute p
(
n− 1

2 + x
)

and p
(
n− 1

2 − x
)

to show equality up to
complex conjugation.

p

(
n− 1

2
+ x

)
=

1
n

n−1∑
k=−n

n−1∑
j=0

fj cos

(
π
(
j + 1

2

)
k

n

)
exp

(
πik

n

(
n− 1

2
+ x +

1
2

))

=
1
n

n−1∑
k=−n

n−1∑
j=0

fj cos

(
π
(
j + 1

2

)
k

n

)
(−1)k exp

(
πik

n
x

)

=
1
n

n−1∑
k=−n

n−1∑
j=0

fj cos

(
π
(
j + 1

2

)
k

n

)
(−1)kexp

(
−πik

n
x

)

=
1
n

n−1∑
k=−n

n−1∑
j=0

fj cos

(
π
(
j − 1

2

)
k

n

)
exp

(
πik

n

(
n− 1

2
− x +

1
2

))

= p

(
n− 1

2
− x

)
.

It follows that

p(k)

(
n− 1

2
+ x

)
= (−1)kp(k)

(
n− 1

2
− x

)
which implies the important fact that∣∣∣∣p(k)

(
n− 1

2
+ x

)∣∣∣∣ = ∣∣∣∣p(k)

(
n− 1

2
− x

)∣∣∣∣ .
We note that the derivatives have the property needed to apply Lemma 4.29, and
we can make our spectral norm estimate from above. Since the vector

(−1, 1, . . . ,−1, 1) ∈ C2n

is orthogonal to the range of E, we see that the according Fourier coefficient is zero.
Thus we do not have the problem with the unsymmetric treatment of the highest
frequency mentioned above.

4.3.3 Higher Dimensions

Spectral approximation of derivatives works analogously in higher dimensions, too.
Here we use multivariate trigonometric polynomials to interpolate our data. In 2D
such a polynomial looks like this:

p(x, y) =
nx/2−1∑

j=−nx/2

ny/2−1∑
k=−ny/2

f̂j,k exp
(

2πij

nx
x

)
exp

(
2πik

ny
y

)
.
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The Laplacian of such a polynomial then is

∆p(x, y) =
nx/2−1∑

j=−nx/2

ny/2−1∑
k=−ny/2

f̂j,k

(
−
(

2πj

nx

)2

−
(

2πk

ny

)2
)

exp
(

2πij

nx
x

)
exp

(
2πik

ny
y

)
. (4.7)

It is well-known that the discrete Fourier transform can be generalised to higher
dimensions and the main properties remain true. Therefore one can also write the
derivative approximation as a matrix of the form

DS = F
T
SDSF

with the higher dimensional analogues of the matrices defined above. We note that
the shift operators S in this case shift along each space direction. We should note
that the matrix D has different entries in this case which cause a higher spectral
norm. For the Laplacian in 2D we get this entries out of equation (4.7) as

−
(

2πj

nx

)2

−
(

2πk

ny

)2

with j = −nx

2 , . . . , nx

2 − 1 and k = −ny

2 , . . . ,
ny

2 − 1. Since F and S are unitary
matrices these values are already the eigenvalues of DS . We see that

∥∥DS
∥∥

2
≤

∣∣∣∣∣∣−
(

2π
(
−nx

2

)
nx

)2

−

(
2π
(
−ny

2

)
ny

)2
∣∣∣∣∣∣

≤ 4π2n2
x

4n2
x

+
4π2n2

y

4n2
y

≤ 2π2.

Analogously one could approximate the Laplacian in Rn which would lead to the
upper bound nπ2 for the spectral norm of our derivative approximation matrix. As
described for the one-dimensional case it is also possible to avoid artifacts caused
by periodic boundary conditions by mirroring the image in all space directions
before calculating the derivative approximation. With separability of the higher
dimensional discrete Fourier transform one can obtain the same result as above:
The product of the spectral norms of the extension and the restriction operation is
1.



64 CHAPTER 4. DISCRETISATION



Chapter 5

Discrete Filtering

In the last chapter we have discussed different ways to approximate derivatives
including different discrete versions for the operators dm

dxm and ∆. We now apply
these to obtain discrete methods for signal and image restoration.

For one-dimensional signal restoration we start with the energy functional (2.19)

E(u) =

b∫
a

(
(u− f)2 + α ϕ

((
u(m)

)2
))

dx

which was presented in Example 2.10. The corresponding Euler-Lagrange equation
(2.20) is

0 = u− f + α(−1)m dm

dxm

(
ϕ′
((

u(m)
)2
)

u(m)

)
.

In the two-dimensional case we will use the functional (2.35)

E(u) =
∫
Ω

(
(u− f)2 + α ϕ

(
(∆u)2

))
dz

already discussed in Example 2.14. In this case we have the corresponding Euler-
Lagrange equation (2.36)

0 = u− f + α ∆
(
ϕ′
(
(∆u)2

)
∆u
)
.

First one can directly discretise the energy functional. We will have a closer look
at this approach in Section 5.1. With the Euler-Lagrange equations we can also treat
the minimisation problem as solving a partial differential equation. Analogously to
Section 3.1 we can discretise the Euler-Lagrange equation. This is especially useful
for linear penalisers and will be carried out in detail in Section 5.2. We have already
seen in Section 3.1 that it is also possible to consider parabolic equations from
diffusion and diffusion-reaction type corresponding to the Euler-Lagrange equations.
Discretisations for the diffusion equations will be the topic of Section 5.3.

5.1 Discrete Energy Functionals

Let n, p ∈ N\{0} be positive numbers, u, f ∈ Rn and A ∈ Rp×n a real (p×n)-matrix
with entries A = (aik) i=1,...,p

k=1,...,n
. Let us denote the ith component of the matrix-vector

product Au with

(Au)i :=
n∑

k=1

aikuk (i = 1, . . . , p).

65
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Consider the function Ed : Rn −→ R defined by

Ed(u) :=
n∑

k=1

(uk − fk)2 + α

p∑
k=1

ϕ
(
(Au)2k

)
(5.1)

with α ≥ 0 and ϕ ∈ C2(R+
0 ). We are interested in minimising the value of Ed which

is considered as a discrete energy functional.

Remark 5.1 (Choices of A) For the matrix A we can insert the derivative ap-
proximations from Chapter 4, for example. For one-dimensional purposes we could
use A = DF

m,n from Definition 4.14 or A = DFN
m,n (see Definition 4.20). Embedding

an image in a vector as discussed in Section 4.1 the function (5.1) can also be a
discrete version for the two-dimensional functional (2.35). In this case we can use
the matrices L or L̃ given in Section 4.2.4 instead of A.

To minimise the function Ed we have to compute the gradient of Ed at first. We
compute the partial derivative of Ed with respect to every real variable ui:

∂Ed

∂ui
=

(
∂

∂ui

n∑
k=1

(uk − fk)2
)

+

(
α

∂

∂ui

p∑
k=1

ϕ
(
(Au)2k

))

= 2(ui − fi) + α

 ∂

∂ui

p∑
k=1

ϕ

( n∑
l=1

aklul

)2


= 2(ui − fi) + α

p∑
k=1

ϕ′
(
(Au)2k

)
2

(
n∑

l=1

aklul

)
aki

= 2

(
ui − fi + α

p∑
k=1

akiϕ
′ ((Au)2k

)
(Au)k

)
.

We define a diagonal matrix that contains the nonlinear terms so that we are able
to write the gradient as matrix product.

Definition 5.2 (Nonlinearity Matrix) Let ΦA(u) denote the (p × p)-diagonal
matrix

ΦA(u) := diag
(
ϕ′
(
(Au)2k

))
k=1,...,p

∈ Rp×p. (5.2)

With this definition the gradient ∇Ed can be written as matrix product

∇Ed = 2
(
u− f + αAT ΦA(u)Au

)
. (5.3)

A necessary condition for a minimum of Ed then is ∇Ed = 0 or equivalently(
I + αAT ΦA(u)A

)
u = f (5.4)

which can be seen as a discrete analogon to the Euler-Lagrange equations (2.20)
or (2.36), respectively. In the next section we will discuss different discretisations
of the Euler-Lagrange equations which in general lead to the same result. Here we
see the natural appearance of the transposed matrix that was already mentioned in
Remark 4.18. This can be seen as a motivation to consider the transposed matrices
to all derivative approximations in the last chapter and to use it in discretisations
in the next sections.

We also compute the entries of the Hessian of Ed. Here we use the Kronecker
symbol

δij =
{

1 if i = j
0 else.
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The entries of the Hessian then are

∂2Ed

∂uj∂ui
= 2

(
δij + α

∂

∂uj

(
p∑

k=1

akiϕ
′ ((Au)2k

)
(Au)k

))

= 2

(
δij + α

p∑
k=1

aki
∂

∂uj

(
ϕ′
(
(Au)2k

)
(Au)k

))

= 2

(
δij + α

p∑
k=1

aki

[(
∂

∂uj
ϕ′
(
(Au)2k

))
(Au)k

+ ϕ′
(
(Au)2k

)( ∂

∂uj
(Au)k

)])
= 2

(
δij + α

p∑
k=1

aki

(
2ϕ′′

(
(Au)2k

)
(Au)2kakj + ϕ′

(
(Au)2k

)
akj

))

= 2

(
δij + α

p∑
k=1

akiakj

(
2ϕ′′

(
(Au)2k

)
(Au)2k + ϕ′

(
(Au)2k

)))
.

To write the Hessian as a matrix product we define the (p× p)-diagonal matrix

GA(u) := diag
(
2ϕ′′

(
(Au)2k

)
(Au)2k + ϕ′

(
(Au)2k

))
k=1,...,p

. (5.5)

With this definition the Hessian can be written as

HEd
(u) = 2

(
I + αAT GA(u)A

)
. (5.6)

Since we try to minimise the function Ed we are interested in conditions for the
Hessian HEd

to be positive definite. Equation (5.6) leads us directly to necessary
conditions for positive definiteness of HEd

: Let us assume that all entries of the
diagonal matrix GA(u) are nonnegative, i. e. GA(u) is positive semidefinite. It
follows immediately that AT GA(u)A is positive semidefinite, too. Since α > 0 it
is clear that the Hessian is positive definite in this case. A sufficient condition for
global positive definiteness of the Hessian is therefore given by

2ϕ′′(x2)x2 + ϕ′(x2) > 0 for all x ∈ R. (5.7)

In this case the energy functional Ed is globally convex, and all points where the
gradient vanishes are local minima.

Remark 5.3 (Linear Penaliser) In the case of a linear penaliser ϕ(x) = cx with
c ≥ 0 we have ΦA(u) = cI for all u ∈ Rn, and the system of equations (5.4) is
linear: (

I + αcAT A
)
u = f .

Since AT A is positive semidefinite and symmetric and c ≥ 0, the whole system
matrix is positive definite and symmetric. That means we have a unique solution
which can be efficiently found with the Conjugate-Gradient method, for example.

For a nonlinear penaliser we have to apply nonlinear optimisation strategies. As
an example we consider a gradient descent approach.

Gradient Descent Approach

We formulate a gradient descent minimisation approach for discrete energy func-
tionals of the type (5.1). In each step of the iterative algorithm we start with the
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vector uk and go a distance τk in direction pk so that the energy gets lower. Since
−∇Ed(x) points to the direction of the steepest descent of Ed in the point x, one
can choose pk := −∇Ed(uk). For this choice the special gradient descent method is
called steepest descent method:

u0 := f

uk+1 := uk − τk∇Ed(uk) k ∈ N.

In our special case the method to the function Ed is given by

u0 := f

uk+1 := uk − τk

(
uk − f + αAT ΦA(uk)Auk

)
. (5.8)

5.2 Discretisation of the Euler-Lagrange Equation

In Chapter 2 we deduced that the linear energy functional of the type

E(u) =
∫
Ω

(u− f)2 + α
(
u(m)

)2

dx (5.9)

for m ∈ N \ {0} and α > 0 leads to the corresponding Euler-Lagrange equation

0 = u− f + (−1)mαu(2m). (5.10)

We now discretise our interval Ω as indicated in Section 4.1 and choose a matrix A
to approximate the 2mth derivative. We then get a system of linear equations

0 = u− f + (−1)mαAu

which can also be written as

(I + (−1)mαA)u = f . (5.11)

The invertibility of I + (−1)mαA is equivalent to the existence of a unique solution
of this problem. This depends on how we choose the matrix A. From the last
chapter we have obtained three different ways to choose it:

Finite Differences with Natural Boundary Conditions

With the matrix DF
m,n from Definition 4.14 we have seen that

A = (−1)m
(
DF

m,n

)T
DF

m,n

yields an approximation for u(2m) assuming natural boundary conditions. Our
system of linear equations then reads as(

I + α
(
DF

m,n

)T
DF

m,n

)
u = f .

Since
(
DF

m,n

)T
DF

m,n is positive semidefinite, it is clear that our system matrix is
invertible and there is a unique solution. With Proposition 4.19 we know that

ker
(
DF

m,n

)T
DF

m,n = kerDF
m,n = ran V m

n .

So with this discretisation linear filtering only operates on the orthogonal space of
ran V m

n . That means for all α > 0 the orthogonal projection of our initial signal f
onto the space of all polynomial evaluations with degree less than m is preserved.
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Finite Differences with Neumann Boundary Conditions

Instead of DF
m,n for natural boundary conditions one can also use DFN

m,n (see Defi-
nition 4.20) to implement Neumann boundary conditions. We then use the linear
system of equations (

I + α
(
DFN

m,n

)T
DFN

m,n

)
u = f .

The existence of a solution follows analogously to the preceeding paragraph from the
positive definiteness of our system matrix. The main difference to natural boundary
conditions is that in this case only the mean grey value is preserved. This follows
from the statement of Lemma 4.23 which is

ker DFN
m,n = 〈(1, . . . , 1)〉 .

Spectral Methods

In the case of spectral methods the linear system of equations can be solved in the
Fourier domain. If we use the matrix A = DS

2m,n from Definition 4.26 we can write
the linear system as(

I + (−1)mαDS
2m,n

)
u =

(
I + (−1)mαF

T
DF

)
u = f

We use the fact that F is unitary to solve this system:

F
T

(I + (−1)mαD) Fu = f

⇐⇒ u =
(
F

T
(I + (−1)mαD) F

)−1

f

⇐⇒ u = F
T

(I + (−1)mαD)−1
F f .

We also note that I + (−1)mαD is a diagonal matrix which can be simply inverted
by taking the reciprocal diagonal entries. We can also apply the extension and
restriction matrices described in the last chapter in this framework.

5.3 Methods with Parabolic Equations

Besides the energy functional and the corresponding Euler-Lagrange equation we
can also take the equations of diffusion or diffusion-reaction type presented in Sec-
tion 3.1.2 to obtain image processing methods. In these equations a temporal and
one or more spatial partial derivatives are involved. First we consider the semi-
discrete case if only the spatial derivatives are discretised. Here we obtain some
convergence results for linear filtering. Then we will take a look at fully discrete
methods also suitable for nonlinear filtering. These are used for filtering examples
in the next chapter.

5.3.1 The Semi-Discrete Case

As we have discussed in Section 3.1.2 the Euler-Lagrange equation (5.10) can be
transferred into the parabolic partial differential equation

ut = (−1)m+1 d2m

dx2m
u (5.12)

with initial condition u(t, x) = f(x) for all x ∈ Ω. Spatial discretisation of (5.12)
yields a system of ordinary differential equations given in matrix notation as

ut = (−1)m+1Au. (5.13)
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Here ut stands for the componentwise differentiation of u. This system can be
solved exactly in time t > 0 with

u(t) = exp
(
(−1)m+1tA

)
u(0) = exp

(
(−1)m+1tA

)
f (5.14)

as it is shown in [12], for example. We remember that the matrix exponential
function for quadratic matrices A ∈ Cn×n is defined via the power series

exp(A) =
∞∑

k=0

Ak

k!
.

If A can be written in diagonal form

A = U
T
DU with D = diag(d1, . . . , dn)

with the eigenvalues d1, . . . , dn and a unitary matrix U , the exponential of A is

exp(A) = U
T

exp(D)U with exp(D) = diag(ed1 , . . . , edn).

The matrix exponential function also satisfies the functional equation

exp(A) exp(B) = exp(A + B)

known from the real and complex exponential functions (see [12] or [7] for details).
Thus we can immediately deduce a scale-space property for semi-discrete filtering
independent of the discretisation matrix A.

Lemma 5.4 (Semigroup Property) The set of semi-discrete filtering operators
Tt defined by

Ttf = u(f) = exp ((−1)mtA) f

satisfies the semigroup property

T0f = f

T(s+t)f = Ts (Ttf)

for all f ∈ Rn and s, t ≥ 0.

We now consider three different cases for the approximation of derivatives:

Finite Difference Approximations

For finite difference approximations of the derivative we will get a statement for
t −→∞.

Natural Boundary Conditions As already described in the last section we can
choose A =

(
DF

m,n

)T
DF

m,n as a discrete equivalent to (−1)m d2m

dx2m with natural
boundary conditions. The system of ordinary differential equations then is given by

ut = −
(
DF

m,n

)T
DF

m,nu

u(0) = f .

It has the solution
u(t) = exp

(
−t
(
DF

m,n

)T
DF

m,n

)
f .
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Since
(
DF

m,n

)T
DF

m,n is real and symmetric, it is positive semidefinite and can be
diagonalised: (

DF
m,n

)T
DF

m,n = UT DF U

where U is a unitary matrix and

DF = diag (λ1, . . . , λn)

is a diagonal matrix containing the eigenvalues. The exact solution then is

u(t) = UT diag (exp(−tλ1), . . . , exp(−tλn))U f .

From Lemma 4.19 we know that ker
(
DF

m,n

)
= ran V m

n . In particular the kernel
has dimension m, and together with the positive semi-definiteness we have

λ1 = . . . = λm < λm+1 ≤ λn.

Since λj > 0 for j ∈ {m + 1, . . . , n}, it follows that lim
t−→∞

exp(−tλj) = 0 and thus

lim
t−→∞

u(t) = UT diag (1, . . . , 1, 0, . . . , 0) U f .

The eigenvectors belonging to the nonzero eigenvalues span the kernel of DF
m,n, and

thus the limit for t −→∞ is the projection onto the kernel. From Section 4.2.2 we
know that this projection yields the least-square polynomial data fitting of degree
less than m.

Neumann Boundary Conditions In the case of Neumann boundary conditions
we can use the matrix

A =
(
DFN

m,n

)T
DFN

m,n

as discrete version of (−1)m d2m

dx2m . The above argumentation works in exactly the
same way. The only difference is that the kernel is only one-dimensional. It follows
from Lemma 4.23 that

ker
(
DFN

m,n

)T
DFN

m,n =
〈
(1, . . . , 1)T

〉
.

Thus the limit for t −→∞ of our solution is the mean value of our initial data:

lim
t−→∞

u(t) =
1
n

n−1∑
k=0

fk.

This can be considered as the least-square polynomial data fitting of degree 0.

Spectral Methods

For spectral methods we have already a matrix in diagonal form so that we can
compute the exponential of this matrix exactly. We can use DS

m,n from Definition
4.26 as a discretisation for dm

dxm . So we get the solution

u(t) = exp
(
(−1)m+1tDS

2m,n

)
f

= F
T

exp
(
(−1)m+1t diag (λ1, . . . , λn)

)
F f .
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From section 4.3 we know that

λk =

(
2πi

(
k − 1− n

2

)
n

)2m

= (−1)m

(
2π
(
k − 1− n

2

)
n

)2m

for k ∈ {1, . . . , n}.

The exact solution is
u(t) = F

T
diag (µ1, . . . , µn)F f

with diagonal entries

µk = −t exp

(2π
(
k − 1− n

2

)
n

)2m
 for k ∈ {1, . . . , n}.

We note that with spectral methods it is possible to calculate the exact solution
for t > 0 in O(n log n) with the Fast Fourier transform. Since the eigenvalue 0 only
appears one time and the corresponding eigenvector is the constant vector, we have
preservation of the average grey value. For t −→∞ we obtain convergence towards
the average grey value. To avoid artifacts due to boundary conditions we may use
the extension and restriction (see Definition 4.28), and the filtering process reads
as

u(t) = RF
T

diag(µ1, . . . , µ2n)FEf

with analogously defined µk with respect to double signal size. With the notes
of Section 4.3.3 these results immediately carry over to higher dimensions and the
Laplacian.

5.3.2 The Discrete Case

We note that the semi-discrete results discussed in the last section are only suitable
for linear filtering. The next step is to discretise also the temporal derivative ut. We
discuss an implicit or an explicit discretisation taking the forward or the backward
difference instead of ut. Linear combinations of both methods which are called
θ-schemes are also commonly used; they will not be considered here.

We start with the nonlinear diffusion equation (3.5):

ut = (−1)m+1 dm

dxm

(
ϕ′
((

u(m)
)2
)

u(m)

)
.

We discretise the equation in the space variable using an approximation matrix A
for the mth derivative and the matrix ΦA from definition 5.2. (We note that the
dimensions of the quadratic matrix ΦA is equal to the row number of A which in
general must not be quadratic. The finite difference approximation with natural
boundary conditions DF

m,n is an example of a non-quadratic matrix A.) We use the
transposed matrix AT also as approximation of the mth derivative since it appeared
in Section 5.1. This yields the system of ordinary differential equations

ut = (−1)m+1AT ΦA(u)Au. (5.15)

Later on we insert matrices from the last chapter for A. The next step will be the
discretisation in time. Here we have several possibilities which will only be sketched
here. Most principles from first order filtering will also be useful in higher order
filters.

The two border cases for discretisation in time are fully implicit and fully explicit
schemes. Let us choose a temporal step size τ > 0. With uk we denote the vector
u(kτ) for k ∈ N. Our process always starts with the initial image u(0) = f .
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Implicit Discretisation

A fully implicit scheme evaluates the right-hand side at the time (k + 1)τ yielding
the system of nonlinear equations

uk+1 − uk

τ
= (−1)m+1AT ΦA

(
uk+1

)
Auk+1

⇐⇒ uk = uk+1 − τ
(
(−1)m+1AT ΦA

(
uk+1

)
A
)
uk+1

⇐⇒ uk =
(
I + τ(−1)mAT ΦA

(
uk+1

)
A
)
uk+1. (5.16)

To obtain uk+1 and to perform one step of this scheme we have to solve a nonlinear
system of equations.

Remark 5.5 (Implicit Discretisation and Euler-Lagrange equation)
An implicit scheme for linear filtering reads as(

I + τ(−1)mAT A
)
uk+1 = uk.

If we start with k = 0 and perform only one step with step size τ = α we see
the similarity to equation (5.11) which we obtained from the discretisation of the
elliptic Euler-Lagrange equation. (We must take care on the different meanings of
the matrices A in both equations.) This works analogously for the nonlinear case.

For our implementations we use explicit discretisation. This will be further
explained in the next section.

Explicit Discretisation

In contrast to the implicit discretisation given above, explicit methods evaluate the
right-hand side at the time kτ . We get the iteration scheme

uk+1 − uk

τ
= (−1)m+1AT ΦA

(
uk
)
Auk

⇐⇒ uk+1 =
(
I + τ(−1)m+1AT ΦA

(
uk
)
A
)
uk. (5.17)

This explicit method has the advantage that the entries of uk+1 can be computed
from the known vector uk as evaluation of the nonlinearity and matrix-vector multi-
plication. In contrast to methods with an implicit component no linear or nonlinear
system of equations has to be solved. Thus these methods are relatively easy to
implement.

Remark 5.6 (Gradient Descent Methods) The explicit scheme (5.17) may re-
mind us at the gradient descent approach (5.8). One can understand the scheme
(5.17) as a gradient descent method with fixed step size τk = τ for a discrete energy
functional

Ed (u) = α

p∑
k=1

ϕ
(
(Au)2k

)
.

Vice versa the scheme (5.8) can be considered as an explicit discretisation for the
corresponding diffusion-reaction equation mentioned in Section 3.1.2.

All matrices we have seen for higher order derivative approximation have non-
negative off-diagonal entries, and therefore a maximum-minimum property will not
hold in general for such methods. Instead of this useful property we claim that our
method should be stable with respect to the Euclidean norm, that means

‖uk‖2 ≤ ‖f‖2 for all k ∈ N.
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Since the spectral norm is a compatible matrix norm to the Euclidean vector norm
we get an upper bound for ‖uk+1‖2 from the scheme (5.17):

‖uk+1‖2 ≤
∥∥I + τ(−1)m+1AT ΦA(uk)A

∥∥
2
‖uk‖2.

Since ΦA is a diagonal matrix, I + τ(−1)m+1AT ΦA

(
uk
)
A is symmetric for all

k ∈ N. It follows that all eigenvalues are real. Thus the method is 2-stable under
the condition that

σ
(
I + τ(−1)mAT ΦA

(
uk
)
A
)
⊆ [−1, 1]. (5.18)

Remark 5.7 (Nonlinearity Matrix) First we remember that ΦA(u) (cf. Defi-
nition 5.2) is defined as

ΦA(u) = diag
(
ϕ′
(
(Au)2k

))
k=1,...,n−m

.

The eigenvalues of ΦA therefore are in the range of the first derivative ϕ′ of the
penaliser. For linear filtering, Perona-Malik and Charbonnier filtering we have

0 ≤ ϕ′(x) ≤ 1 for all x ∈ R.

The total variation approximation satisfies

0 ≤ ϕ′(x) ≤ 1
ε

for all x ∈ R.

Since these values are all nonnegative it follows immediately that ΦA

(
uk
)

is always
positive semi-definite. We also obtain an upper bound for the spectral norm of
ΦA

(
uk
)

independent of the derivative approximation A, the current vector uk and
the size of ΦA. That means we have ‖ΦA(u)‖2 ≤ 1 for linear filtering, Perona-Malik
and Charbonnier penalisers and ‖ΦA(u)‖2 ≤ 1

ε for total variation approximation.

We will now have a closer look at the stability condition (5.18) depending on
the derivative approximation we choose.

Finite Differences

We consider a one-dimensional method with natural boundary conditions and use
the finite difference matrix DF

m,n from Definition 4.14. In Remark 4.18 we have

seen that
(
DF

m,n

)T then approximates (−1)m times the mth derivative. Therefore
we have to modify our scheme from above to

uk+1 =
(
I − τ

(
DF

m,n

)T
ΦDF

m,n

(
uk
)
DF

m,n

)
uk

in this case. Here we have DF
m,n ∈ Rn−m×n and therefore ΦDF

m,n

(
uk
)
∈ Rn−m×n−m

for all k ∈ N. Concerning Remark 5.7 we assume that there is an upper bound c ∈ R
for the derivative of the penaliser such that

0 ≤ ϕ′(x) ≤ c for all x ∈ R

holds. We know that ΦDF
m,n

(
uk
)

is then positive semidefinite, and it follows that

the matrix
(
DF

m,n

)T ΦDF
m,n

(
uk
)
DF

m,n is also positive semidefinite. For the spectral
norm we have ∥∥∥ΦDF

m,n

(
uk
)∥∥∥

2
≤ c.
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Together with Lemma 4.16 we conclude that

σ
((

DF
m,n

)T
ΦDF

m,n

(
uk
)
DF

m,n

)
⊆

[
0,
∥∥DF

m,n

∥∥2

2

∥∥∥ΦDF
m,n

(uk)
∥∥∥

2

]
⊆

[
0,

(
2
h

)2m

c

]
.

We now are able to consider the spectrum of our system matrix:

σ
(
I − τ

(
DF

m,n

)T
ΦDF

m,n

(
uk
)
DF

m,n

)
⊆

[
1− τ

(
2
h

)2m

c, 1

]
.

Stability in the Euclidean norm is satisfied if

1− τ

(
2
h

)2m

c ≥ −1

which can be formulated as a restriction on the time step size

τ ≤ h2m

22m−1c
.

We formulate this result as

Proposition 5.8 (Stability Limits in 1D) Assume that the first derivative of
the penaliser function ϕ is bounded such that

0 ≤ ϕ′(x) ≤ c for all x ∈ R.

The one-dimensional explicit scheme for mth order nonlinear filtering with natural
boundary conditions

uk+1 =
(
I − τ

(
DF

m,n

)T
ΦDF

m,n

(
uk
)
DF

m,n

)
uk (5.19)

is stable with respect to the Euclidean norm for time step size τ satisfying

τ ≤ h2m

22m−1c
.

The same stability limit holds for the one-dimensional explicit scheme with Neu-
mann boundary conditions

uk+1 =
(
I − τ

(
DFN

m,n

)T
ΦDF N

m,n

(
uk
)
DFN

m,n

)
uk. (5.20)

Proof: The scheme for natural boundary conditions has been considered above.
The only facts from the matrix DF

m,n that are important for these considerations
are that it is real-valued, the transposed matrix approximates (−1)m times the mth
derivative, and the spectral norm bound from Lemma 4.16. With Remark 4.21 and
Lemma 4.22 we can use the same reasoning also for Neumann boundary conditions
with the matrix DFN

m,n. �

For two-dimensional schemes derived from equation (2.36) we use the matrices
L and L̃, respectively, which were described in Section 4.2.4. We get the explicit
scheme

uk+1 =
(
I − α LΦL

(
uk
)
L
)
uk, (5.21)

and the same formula with L̃ instead of L. Our reasoning of the one-dimensional
case immediately carries over to two dimensions, and we get
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Proposition 5.9 (Stability Limits in 2D) Again assume that c > 0 is an upper
bound for the first derivative of the penaliser ϕ such that

0 ≤ ϕ′(x) ≤ c for all x ∈ R.

The explicit scheme for second order nonlinear filtering in 2D given in formula
(5.21) is stable with respect to the Euclidean norm for time step sizes τ satisfying

τ ≤ h2

32c
.

For the alternative approximation of the Laplacian with matrix L̃ instead of L in
formula (5.21) we get the stability condition

τ ≤ 9h2

200c
.

We should note that the discrete Laplacian with better rotation invariance even
allows us to take larger time step sizes τ .

Spectral Methods

For spectral methods we first consider the one-dimensional case. We use the matrix
DS

m,n (see Definition 4.26) to approximate the mth derivative. This yields the
explicit scheme

uk+1 =
(
I + τ(−1)m+1

(
DS

m,n

)
ΦDS

m,n

(
uk
)
DS

m,n

)
uk.

We rewrite this scheme with (−1)m = i2m and Definition 4.26 to

uk+1 =
(
I − τ

(
imDS

m,n

)
ΦDS

m,n

(
uk
) (

imDS
m,n

))
uk

=
(
I − τF

T
(iD)m

FΦDS
m,n

(
uk
)
F

T
(iD)m

F
)
uk. (5.22)

From Section 4.3 we know that iD
T

= iD is Hermitean and thus

F
T

(iD)F
T

= F
T

(iD) F .

With this property and since ΦDS
m,n

is a real positive semidefinite diagonal matrix,
we know that the scheme matrix

I + τ(−1)m
(
DS

m,n

)T
ΦDS

m,n

(
uk
)
DS

m,n = I − τF
T

(iD)m
FΦDS

m,n

(
uk
)
F

T
(iD)m

F

is positive semidefinite, too. We conclude that the eigenvalues of this matrix are in
the interval [

0, τ
∥∥DS

m,n

∥∥2

2

∥∥∥ΦDS
m,n

∥∥∥
2

]
and with Lemma 4.27 we have proven

Proposition 5.10 (Stability Limits in 1D) With the assumptions from Propo-
sition 5.8 at the penaliser ϕ, the explicit scheme for mth order one-dimensional
nonlinear diffusion with spectral methods

uk+1 =
(
I + τ(−1)m+1

(
DS

m,n

)
ΦDS

m,n

(
uk
)
DS

m,n

)
uk

is stable with respect to the Euclidean norm for time step sizes

τ ≤ 2
π2mc

.
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For two-dimensional image processing we use the matrix DS defined in Section 4.3.3
to approximate the Laplace operator. Analogously to the above considerations we
get

Proposition 5.11 (Stability limits in 2D) Under the assumptions from Propo-
sition 5.8 at the penaliser ϕ, the explicit scheme for nonlinear filtering derived from
equation (2.36)

uk+1 =
(
I − τDSΦDS

(
uk
)
DS
)
uk

is stable with respect to the Euclidean norm for time step sizes

τ ≤ 1
2π4c

.

We may also add the extension and restriction operators from Definition 4.28 in 1D
or their 2D equivalents. Lemma 4.29 and the considerations in Section 4.3.3 assure
that the same stability limits stay true even in this case.

Now we consider the effect of this stability limits in practice. We assume that
c = 1 (for example for a Charbonnier or Perona-Malik penaliser) and use the spatial
step size h = 1. The following table then shows the maximal step sizes for different
derivative orders and discretisations:

Dimension Order Discretisation τmax

1 1 FD 0.5
Spectral 0.2026424

2 FD 0.125
Spectral 0.0205320

3 FD 0.03125
Spectral 0.0020803

4 FD 0.0078125
Spectral 0.0002108

2 2 (Laplacian) FD matrix (L) 0.03125
FD matrix (L̃) 0.045

Spectral 0.0051330

We see that finite difference approximations usually allow larger time step sizes.
Additionally the complexity of one explicit step is at least O(n log n) for spectral
methods since the Fourier transform has to be performed. For one step with finite
differences one has complexity O(n). This shows that nonlinear finite difference
explicit methods are faster than spectral methods.

In the next chapter we present some filtering results obtained with the filters
described here.
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Chapter 6

Experimental Results

After investigating theoretical results for continuous and discrete filtering this chap-
ter deals with numerical tests of higher order filters in practice. In the first section
we will present some filtering results which were obtained with finite difference
methods. We always use a spatial step size h = 1.0 in this case. The second section
compares finite differences and spectral methods on the basis of concrete examples.
Finally we present some results for combined filters of first and second order in
Section 6.3.

As a measure for the quality of a filtering result we use the Signal-Noise-Ratio
and the Peak-Signal-Noise-Ratio.

Definition 6.1 (Signal-Noise-Ratio) Let g ∈ Rn be the original signal and f ∈
Rn a noisy version of g. Then the signal-noise-ratio is defined as

SNR(f ,g) := 10 log10


n∑

i=1

g2
i

n∑
i=1

(gi − fi)
2

 .

The peak-signal-noise-ratio is defined as

PSNR(f ,g) := 10 log10

 n max
i=1,...,n

g2
i

n∑
i=1

(gi − fi)
2

 .

For images we define SNR and PSNR analogously. The sums and the maximum
are also taken over all pixels in this case. We should note that these measures are
not always ideal: For 2D images they do not specifically reward sharp edges that
are optically more pleasant then blurred ones.

6.1 Filtering Results

We start with one-dimensional filtering examples and first compare different penalis-
ers. Then we will present more detailed test results for higher order total variation
approximations. Filtering examples in 2D conclude the section. For all examples
shown in this section we use explicit discretisations of the diffusion equations corre-
sponding to the Euler-Lagrange equations. These methods are described in Section
5.3.2.

79
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Figure 6.1: Second order linear filtering in 1D. Left: Natural boundary conditions,
Right: Neumann boundary conditions.
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with Gaussian noise (std. dev. 10.0)

Figure 6.2: Original arc tangent signal and noisy version.

6.1.1 Filtering in 1D

First we perform linear filtering in 1D to show the behaviour of different bound-
ary conditions. We use finite difference discretisation with Neumann and natural
boundary conditions. Figure 6.1 visualises some results of Section 5.3. For natural
boundary conditions, the least square polynomial data fitting is preserved. (In this
case we use second order filtering and get a linear least square polynomial fitting.)
For Neumann boundary conditions, only the mean value is preserved.

We then compare different penalisers in 1D. For this purpose we try to achieve
the highest SNR/PSNR value that is reached for each filter type. For linear filtering
the only parameter is the evolution time. Perona-Malik and Charbonnier filtering
also depend on a second parameter λ. In this case we perform optimisation over
both parameters. For the total variation approximation we fix our value for ε and
only take the maximum over the iteration number.

Different Penalisers in 1D

As test signal for different nonlinear penalisers in 1D we use an arc tangent signal.
The starting point for our denoising tests is a noisy version of this signal with
additive Gaussian noise of standard deviation 10.0. This noisy version has SNR
22.02 and PSNR 25.72. Both signals are shown in Figure 6.2.

Figure 6.3 shows the filtering results for first order filtering and second order
filtering with natural boundary conditions. The examples with Neumann boundary
conditions can be found in Figure 6.4.
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Linear Filtering For linear filtering we have searched the iteration number for
which the SNR and PSNR values got maximal. Corresponding iteration numbers
are listed behind the SNR and PSNR values. We see from Table 6.1 that second
order linear filtering yields better results than first order filtering.

Perona-Malik For Perona-Malik filtering we have searched both the optimal it-
eration number and the optimal parameter λ to obtain high SNR values. We have
considered values between 0.1 and 10.0 in steps of 0.1 and taken the maximal SNR
value for each of this λ for this purpose to obtain the values in Table 6.2.

Charbonnier For Charbonnier filtering also the maximisation considers both the
iteration number and the parameter λ. Here smaller values for λ are needed, we
have used 0.01 up to 1.0 in steps of 0.01. The results can be found in Table 6.3.

Total Variation Approximation In this example we use the parameter ε =
10−2 in our approximation of the total variation penaliser. So the iteration number
is the only parameter we have to consider for the maximal SNR/PSNR in Table
6.4. To get an impression about the typical behaviour of the SNR and PSNR values
during the filtering process some examples can be found in Figure 6.5. These curves
come from filtering the arc tangent signal with total variation approximation, ε =
0.01. We see that the SNR and PSNR are increasing until they reach a maximum
in both cases. This fits to the imagination that the filters should first remove and
then smooth the information contained in the signal.

We summarise a few observations from these results: At first we see that the
parameters for corresponding maximal SNR and PSNR pairs are relatively close
together. For Perona-Malik and Charbonnier penalisers we reach the maximal SNR
always with the same λ as the maximal PSNR. The differences in the iteration
numbers are also rather small. Thus in the next tests we will only give one parameter
set where both SNR and PSNR are approximately maximal.

6.1.2 Special Case: TV Approximation

From Figure 6.3 one could get the impression that total variation approximation
filtering yields piecewise polynomial results. We would like to further investigate
especially this property and therefore choose a test signal that consists of polyno-
mials with degree from zero to three. Figure 6.6 shows the original signal and a
noisy version with SNR 6.94 and PSNR 10.72.

Numerical tests were done with both values ε = 10−2 and ε = 10−4. The
maximal SNR and PSNR values for the approximation with ε = 10−2 are listed
in Table 6.5 The same tests were done with ε = 10−4. The corresponding results
and parameters can be found in Table 6.6. We should add that the tests with
fourth order filtering with natural boundary conditions were stopped after 2.7 ·

Order Bound. Cond. τ Result Iterations
1 Neumann 0.5 SNR: 32.06 70

PSNR: 35.75 70
2 Neumann 0.125 SNR: 35.92 28131

PSNR: 39.61 28140
2 Natural 0.125 SNR: 35.45 21690

PSNR: 39.14 21754

Table 6.1: SNR/PSNR maximisation (linear penaliser) of the arc tangent signal.
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Order Bound. Cond. τ Result Iterations λ

1 Neumann 0.1 SNR: 34.62 344 4.6
PSNR: 38.31 343 4.6

2 Neumann 0.1 SNR: 36.12 97948 0.2
PSNR: 39.81 97949 0.2

2 Natural 0.1 SNR: 35.45 27409 9.9
PSNR: 39.14 27412 9.9

Table 6.2: SNR/PSNR maximisation (Perona-Malik penaliser) of the arc tangent
signal.

Order Bound. Cond. τ Result Iterations λ

1 Neumann 0.1 SNR: 35.07 782 0.77
PSNR: 38.76 782 0.77

2 Neumann 0.1 SNR: 36.29 108779 0.03
PSNR: 39.97 109067 0.03

2 Natural 0.1 SNR: 35.71 137336 0.02
PSNR: 39.40 137333 0.02

Table 6.3: SNR/PSNR maximisation (Charbonnier penaliser) of the arc tangent
signal.

Order Bound. Cond. τ Result Iterations
1 Neumann 10−4 SNR: 33.16 595902

PSNR: 36.85 595749
2 Neumann 10−4 SNR: 34.91 4000789

PSNR: 38.60 4000779
2 Natural 10−4 SNR: 34.37 4564197

PSNR: 38.06 4564162

Table 6.4: SNR/PSNR maximisation (Total variation approximation penaliser) of
the arc tangent signal.

Order Bound. Cond. τ SNR PSNR Iterations
1 Neumann 5 · 10−3 16.00 19.78 4.04 · 103

2 Neumann 1.25 · 10−3 18.30 22.08 5.55 · 104

2 Natural 1.25 · 10−3 18.41 22.18 4.62 · 104

3 Neumann 3.125 · 10−4 17.91 21.69 5.44 · 105

3 Natural 3.125 · 10−4 17.97 21.74 8.80 · 105

4 Neumann 7.812 · 10−5 17.91 21.68 1.53 · 107

4 Natural 7.812 · 10−5 17.22 20.99 1.86 · 107

Table 6.5: SNR/PSNR values for total variation approximation with ε = 10−2 and
the piecewise polynomial signal.
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Figure 6.3: Results of SNR/PSNR maximisation in 1D. Left column: First order
filtering, Right column: Second order filtering with natural boundary conditions.
Top row: Linear filtering, Second row: Charbonnier penaliser, Third row: Perona-
Malik penaliser, Bottom row: Total variation approximation with ε = 0.01.
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Figure 6.4: Results of SNR/PSNR maximisation in 1D. Second order filtering with
Neumann boundary conditions and different penalisers. Top left: Linear penaliser,
Top right: Charbonnier, Bottom left: Perona-Malik, Bottom right: TV approxima-
tion with ε = 0.01.
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Figure 6.5: SNR and PSNR values during total variation approximation filtering.
Left: First order filtering, Right: Second order filtering. The resolution of the x-axis
is 1000 iterations.
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Figure 6.6: Piecewise polynomial test signal. Left: Original signal. Right: Signal
with additive Gaussian noise, standard deviation 10.0.
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Figure 6.7: Results of SNR/PSNR maximisation with total variation approxima-
tions, ε = 10−2, and natural boundary conditions. Top left: Order 1, Top right:
Order 2, Bottom left: Order 3, Bottom right: Order 4.
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Order Bound. Cond. τ SNR PSNR Iterations
1 Neumann 5 · 10−5 15.92 19.70 3.93 · 105

2 Neumann 1.25 · 10−5 17.94 21.72 8.30 · 106

2 Natural 1.25 · 10−5 17.98 21.76 1.32 · 107

3 Neumann 3.125 · 10−6 17.97 21.75 6.59 · 107

3 Natural 3.125 · 10−6 18.11 21.89 1.08 · 108

4 Neumann 7.8125 · 10−7 17.79 21.57 7.62 · 108

4 Natural 7.8125 · 10−7 > 17.56 > 21.33 > 2.7 · 109

Table 6.6: SNR/PSNR values for total variation approximation with ε = 10−4 and
the piecewise polynomial signal.
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Figure 6.8: Derivative approximations for filtering results. Left: First derivative of
second order filtering result. Right: Second derivative of third order filtering result.

109 iterations due to the high running time (the SNR and PSNR values were still
increasing at that moment).

We see that in terms of SNR and PSNR, the differences between both filtering
methods for ε are not very big. The filtering results also look very similar, thus
we have only shown the results for ε = 10−2 in Figure 6.7. As a technical remark
we should add that the small time step sizes for filtering of third and fourth order
(especially with ε = 10−4) demand relatively high calculation precision. For the
implementations in C we had to use the floating point data type double instead of
float for the higher order examples.

For a further understanding of the differences between the two cases we have
a look at the derivative approximations of the filtering results. The conjecture
that mth order total variation approximation filtering yields results that piecewise
consist of polynomials of degree m − 1 has already been mentioned. The filtering
results in Figure 6.7 seem to confirm this hypothesis.

To obtain further indications we consider the finite difference approximation of
the (m − 1)th derivative for the results of mth order filtering. To corroborate our
belief this (m− 1)th derivative should be piecewise constant. Figure 6.8 shows that
the behaviour of the derivative strongly depends on the value of ε. For ε = 10−4

the derivative approximations really seem to be piecewise constant. Though they
are not shown here similar results can also be found for fourth order filtering and
the third derivative.
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Figure 6.9: Linear filtering with natural and Neumann boundary conditions in 2D.
Top: Original image, Bottom left: Natural boundary conditions, Bottom right:
Neumann boundary conditions.

6.1.3 Different Penalisers in 2D

First we show an example of 2D linear filtering with natural boundary conditions.
We start with the energy functional shown in Example 2.14 with a linear penaliser
and use the natural boundary conditions. An example for such a linear filtering
is shown in Figure 6.9 compared with Neumann boundary conditions. Since the
treatment of the boundary pixels seems not to be appropriate we use Neumann
boundary conditions in the following 2D examples.

For a comparison of different penalisers in 2D we use the test image shown in
Figure 6.10. Though the original image has the size 256x256 pixels we only show
a section of the size 128x128 pixels for a better visualisation of the filtering effects.
Figure 6.11 contains the filtering results for linear, Charbonnier and Perona-Malik
penalisers. Images filtered with total variation approximations with ε = 10−2 can
be seen in Figure 6.12. The corresponding parameters which yield the maximal SNR
and PSNR values are listed in Table 6.7. In opposite to the one-dimensional case
here we have stopped the computations when SNR and PSNR were decreasing due
to computational time. Again we have optimised over the number of iterations for
all filters and in addition over the parameter λ for Charbonnier and Perona-Malik
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Figure 6.10: Original and noisy version of the 2D example.

Method Order SNR PSNR Iterations τ Parameter
Linear 1 27.57 32.78 4 2.5 · 10−1 -

Charbonnier 1 30.65 35.87 45 2.5 · 10−1 λ = 0.7
Perona-Malik 1 30.25 35.46 10 3.125 · 10−2 λ = 8.4
TV approx. 1 30.51 35.72 2991 2.5 · 10−3 ε = 10−2

TV approx. 1 30.48 35.69 296650 2.5 · 10−5 ε = 10−4

Linear 2 28.74 33.95 22 3.125 · 10−2 -
Charbonnier 2 29.71 34.92 2795 3.125 · 10−2 λ = 0.1
Perona-Malik 2 29.47 34.68 1614 3.125 · 10−2 λ = 2.5
TV approx. 2 29.71 34.92 28530 3.125 · 10−4 ε = 10−2

TV approx. 2 28.53 33.74 2148300 3.125 · 10−6 ε = 10−4

Table 6.7: Parameters and results of SNR/PSNR maximisation in 2D.
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Figure 6.11: Results of SNR maximisation in 2D. Left column: First order filtering,
Right column: Second order filtering with Neumann boundary conditions. First
row: Linear penaliser, Second row: Charbonnier penaliser, Third row: Perona-
Malik penaliser.
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Figure 6.12: Results of SNR maximisation in 2D, Total variation approximation
with ε = 10−2. Left column: First order filtering, Right column: Second order
filtering with Neumann boundary conditions.

filters. We see that in this case the SNR and PSNR of second order filtering are a
bit smaller than the ones for first order filtering.

One can state that the second order filtering results seem to contain isolated
white or black pixels or speckle artifacts near edges. Similar observations are men-
tioned in [34] where an algorithm based on mean and variance in a neighbourhood
for the removal of these artifacts is proposed. This would require a postprocessing
step after the filtering to remove the speckle artifacts. In Section 6.3 we will give an
indication that it could be possible to avoid these artifacts within the higher order
filtering framework.

6.2 Different Discretisation Methods

In this section we give an example for the comparison of different filter implemen-
tations. We compare explicit schemes for Perona-Malik filtering of order 2 with
Neumann boundary conditions. To discretise the Laplacian we use the matrices
L (which will be called Laplacian 1) and L̃ (Laplacian 2) from Section 4.2.4 and
the matrix DS from Section 4.3.3. All three filters were started with the same
parameters (step size, number of iterations and λ) to get comparable conditions.
Figure 6.2 shows the filtering results for all three filters and the pairwise differences
between them. Here we take the complete 256x256 pixels of our test image. The
image values were rounded and truncated to values from 0 to 255 before taking
the differences. For better visualisation the grey values of the difference images
were linearly rescaled to the range 0 to 255. To give a quantitative impression the
following table contains the minimum, maximum, mean and standard deviation of
the difference images before they were rescaled.

Min Max Mean Standard deviation
L1 and L2 0.0 18.0 0.2 0.65
L1 and S 0.0 24.0 2.0 1.6
L2 and S 0.0 26.0 2.0 1.7

With a mean of up to 2.0 the differences can be considered as rather small. For prac-
tical purposes this could be interesting since spectral methods require two Fourier



6.2. DIFFERENT DISCRETISATION METHODS 91

Figure 6.13: Left column: Filtering results. Top left: Laplace 1, Middle left: Laplace
2, Bottom left: Spectral methods. Right column: Differences. Top right: Laplace 1
vs. Laplace 2, Middle right: Laplace 1 vs. Spectral methods, Bottom right: Laplace
2 vs. Spectral methods.
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transforms in each step. The complexity is then O(n log n) if the Fast Fourier Trans-
form can be used or O(n2) for the regular Discrete Fourier Transform. For finite
difference methods one step has complexity O(n) since for each pixel at most a
neighbourhood of fixed size has to be considered. If the qualitative differences are
not very large, one would prefer the finite difference implementations because they
are faster than the spectral methods when an explicit time discretisation is used
and the problem is nonlinear. The difference image on the right-hand side of Figure
6.2 shows where the greatest differences appear. We note that the influence of the
discretisation methods gets higher near edges of the image.

6.3 Combinations of Different Orders

To conclude this chapter we show some examples of filtering processes of combined
first and second order. A nonlinear energy functional in 1D for these filters was
presented in Example 2.11. For our filtering example we have used a convex com-
bination of the smoothness terms of first and second order in 2D:

E(u) =
∫
Ω

(
(u− f)2 + α

(
(1− β)ϕ1

(
|∇u|2

)
+ βϕ2

(
(∆u)2

)))
dz.

The corresponding diffusion equation in 2D is

ut = (1− β)div
(
ϕ′1
(
|∇u|2

)
∇u
)
− β∆

(
ϕ′2

(
(∆u)2

)
∆u
)

u(·, 0) = f

with stopping time α and β ∈ [0, 1].
Figure 6.14 shows some filtering tests with a combination of first and second

order Perona-Malik filtering. So we are using the diffusivities

ϕ′k(x) =
1

1 + x
λ2

k

k = 1, 2

in the above equation. The example was obtained using the paramters β = 0.5, λ1 =
5.0, and λ2 = 1.0. The images have size 256x256 pixels. We show here a section of
size 128x128 pixels.

The first order filter produces stair-casing in the background while in the second
order example the edges contain a lot of speckle artifacts. The combined method
reduces both shortcomings without a postprocessing step. We should add that
the above results are not optimised with respect to SNR or PSNR. With such an
optimisation each of the methods also could lead to better results. This exam-
ple indicates that the combination of different filter orders could possibly improve
filtering results.
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Figure 6.14: Top left: Noisy input image, Top right: First order Perona-Malik,
Bottom left: Second order Perona-Malik, Bottom right: Combined filter with first
and second order.
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Chapter 7

Summary and Outlook

In this thesis we have considered higher order methods for signal and image restora-
tion. We now summarise the main results and point out some open questions and
directions for further work.

In Chapter 2 we have discussed necessary and sufficient conditions for minimis-
ers of energy functionals. Here an image is represented by a real-valued function
depending on one or two real variables. That means we considered only grey value
images. We have developed the Euler-Lagrange equations with the natural bound-
ary conditions for one- and two-dimensional energy functionals.

After investigating energy functionals and corresponding necessary conditions
for a minimiser we have turned our attention to strategies how to use these condi-
tions to obtain such a minimiser. In Chapter 3 we considered this filtering process
in the framework of continuous functions. For higher order filtering with linear pe-
nalisers we oriented at [18]. We discussed also some scale-space properties of linear
filtering using higher order linear diffusion equations. Analogously to first order fil-
tering we introduced some well-posedness considerations for nonlinear second order
equations of diffusion type. As applications we studied the behaviour for different
penalisers. We found out that linear, Charbonnier and total variation approxima-
tions always perform forward diffusion. Total variation is the border case between
forward and backward diffusion while the Perona-Malik penaliser can perform both
forward and backward diffusion and can therefore be ill-posed.

The discrete part of the work started with giving different ways for derivative
approximation with finite differences and spectral methods. Our special interest
was on natural and Neumann boundary conditions. We derived matrix notations
for finite difference and spectral derivative approximations in one dimension with
arbitrary derivative order and both types of boundary conditions. We investigated
the properties of these matrices in terms of spectral norm and kernel.

We concluded the theoretical part with Chapter 5 by giving discretisations of
the approaches in Chapter 3 that were used in concrete algorithms. The semi-
discrete case for the corresponding diffusion equations was also investigated. We
have derived that one-dimensional finite difference methods with natural boundary
conditions yield least-square polynomial data fittings for t −→ ∞ while Neumann
boundary conditions lead to the average grey value. Then the main focus was on
explicit discretisations of the corresponding diffusion equations. Stability limits for
the time step size τ were derived for different derivative orders and approximations.
The results of our numerical tests were presented in Chapter 6.

We can conclude that the presented methods seem to produce really better
results for signal processing. Besides the optical impression also the SNR and
PSNR results are clearly better for higher order methods. Especially the total
variations approximations fit in the imagination of yielding piecewise polynomial

95
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signals. The second order seems to be a compromise between avoiding stair-casing
and too high adaption at the noise. The image processing examples with second
order filtering often suffer from artifacts around edges. Our numerical tests suggest
that combined methods with first and second order derivatives could reduce or even
completely avoid this shortcoming. It also seems to be possible to choose parameters
sets such that combined methods of first and second order satisfy a minimum-
maximum property. If this observation could be mathematically confirmed the
combined nonlinear methods of first and second order would yield a compromise
which avoids the stair-casing of first order methods and the edge artifacts of second
order methods.

After this short summary of the main results we consider some open questions
which invite us to further studies: In real world applications multi-channel images
with values in Rn appear in a natural way. An obvious generalisation for colour
images requires the theory for images with values in R3, for example. One may
also think of medical data like NMR images which are matrix-valued. The images
may also depend on more than two variables. For such applications the results
presented in Chapter 2 have to be extended. For functionals depending only on
the first derivatives these extensions are covered in [9]. For higher derivatives this
should also be possible without great changes in the reasoning.

For our numerical tests we only used explicit schemes. To make the methods
practically useful other algorithms have to be applied which reduce the running
time. With implicit schemes for example higher values for the temporal step size τ
could be chosen and the number of iterations would become smaller.

The properties of the combined filters of first and second order are another
interesting point. In particular the existence of conditions for a maximum-minimum
property of these filters seems to be possible.

We should also mention that all methods presented in this work are isotropic.
It would be interesting to investigate how higher order anisotropic filters would
behave. In the first order case a description of anisotropic filters can be found in
[31]. In the higher order framework one may think of second order diffusion along
the eigenvectors of the Hessian. Perhaps one could implement coherence-enhancing
or edge-enhancing filters similar to the first order case.
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