
Relativistic Scale-Spaces

Bernhard Burgeth, Stephan Didas, and Joachim Weickert

Mathematical Image Analysis Group,
Faculty of Mathematics and Computer Science, Bldg. 27,

Saarland University, 66041 Saarbrücken, Germany
{burgeth, didas, weickert}@mia.uni-saarland.de

http://www.mia.uni-saarland.de

Abstract. In this paper we extend the notion of Poisson scale-space. We
propose a generalisation inspired by the linear parabolic pseudodifferen-
tial operator

√−∆ + m2 −m, 0 ≤ m, connected with models of relativis-
tic kinetic energy from quantum mechanics. This leads to a new family
of operators {Qm

t | 0 ≤ m, t} which we call relativistic scale-spaces. They
provide us with a continuous transition from the Poisson scale-space
{Pt | t ≥ 0} (for m = 0) to the identity operator I (for m −→ +∞).
For any fixed t0 > 0 the family {Qm

t0 | m ≥ 0} constitutes a scale-space
connecting I and Pt0 . In contrast to the α-scale-spaces the integral ker-
nels for Qm

t can be given in explicit form for any m, t ≥ 0 enabling us to
make precise statements about smoothness and boundary behaviour of
the solutions. Numerical experiments on 1D and 2D data demonstrate
the potential of the new scale-space setting.

Keywords: Kinetic energy, Poisson scale-space, semigroup, pseudodif-
ferential operator.

1 Introduction

The pioneering work of Taizo Iijima [16] in the late fifties, though unrecognised
in the western scientific world for decades, marks the actual beginning of modern
scale-space theory. Since then the vivid research on scale-space methodologies
has brought forward many valuable techniques in image processing and com-
puter vision, as it is documented in numerous articles and books, see [24, 11, 31,
21, 28, 33] and the literature cited there. The Gaussian scale-space is the pro-
totype of a linear scale-space. Its connection to linear diffusion processes was
first pointed out by Iijima [17]. However, the field of non-linear diffusion, insti-
gated by the influential work of Perona and Malik [25] also exhibits scale-space
properties. These non-linear theories encompass anisotropic diffusion processes
[33, 26], morphological operations [32, 6, 18] as well as the evolution of level curves
[2, 23, 27, 19]. Non-linear differential equations are the mathematical language to
describe these theories [31, 33, 14, 3, 12, 7].

Nevertheless, the exploration of the axiomatic principles of the various scale-
space approaches [4, 33, 11, 22, 24, 34] usually emanates from the assumption of
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linearity, that is to say, the validity of the superposition principle. In this linear
setting the Gaussian scale-space basically had played the leading role in a one
man show until the Poisson scale-space from potential theory has been made
popular in image processing by Felsberg and Sommer [10].

Soon after the so-called α-scale-spaces with α ∈ [ 12 , 1] have been advocated
to bridge the gap between those two prominent representatives since they are
ruled by the pseudodifferential equations ∂tu = (−∆)αu with initial condition
u(x, 0) = f(x) , (for more details and a histortic overview consult the very com-
prehensive article [8] by Duits et. al. and the literature cited therein). In this
setting α = 0 produces the family of identity operators I, α = 1

2 corresponds
to the Poissonian, while α = 1 delivers the Gaussian version of a linear scale-
space. For the later two cases explicit integral representation formulas are known
utilising the Poisson and the Gaussian kernel.

The primary tool for the investigation of the α-scale-spaces are Fourier meth-
ods since, unfortunately, no explicit integral kernel can be determined. In our
paper, however, we propose a counterpart to α-scale-spaces that admits explicit
kernel representations. We generalise the Poisson scale-space to a novel scale-
space by exploiting the properties of a pseudodifferential operator known from
Schrödinger operators in relativistic quantum mechanics [20]. The pseudodiffer-
ential operators in question read√

−∆ + m2 − m,

and represent the kinetic energy operators in relativistic systems with m > 0
denoting mass. Therefore we will refer to these novel scale-spaces as relativistic
scale-spaces in the sequel. Though heavily taking advantage of spectral methods
during the theoretical investigation of this family of operators (indexed by m)
we emphasise that the associated integral kernels can be computed explicitly.
The knowledge of these kernels enables us to employ techniques from analysis
to prove regularity and a maximum-minimum-principle for the solutions of the
associated evolution equation.

In the sequel F(f) will denote the Fourier transform of a function f ∈ L2(IRn)
given by

F(f)(k) =
∫

IRn

e−2πik·x f(x) dx .

The structure of our paper is as follows: After a very brief motivating account
of some basic facts about Poisson and Gaussian scale-space we introduce and
study the relativistic scale-spaces. Section 3 reports on experiments displaying
the potential and limitations of the novel scale-spaces while a summary and an
outlook for future research in Section 4 conclude the paper.

2 Relativistic Scale-Spaces

We recall [9, 20] that the action of the Laplace operator ∆ =
∑n

i=1
∂2

∂x2
i

on
functions in the Fourier domain is multiplication by −4π2|k|2, i.e.
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F(∆f) = −4π2|k|2F(f)

while the convolution with the heat or Gaussian kernel G(x, t, y) means multi-
plication with e−t 4π2|k|2 , F(G ∗ f) = e−t 4π2|k|2F(f) providing solutions of the
heat equation ∂tu = ∆u .

Furthermore, the action of the pseudodifferential operator
√−∆ is multi-

plication by −2π|k|, while convolution with the Poisson kernel P (·, t) means
multiplication with e−t 2π|k| in the Fourier domain. The Poisson kernel appears
as the inverse Fourier transform F−1 of e−t 2π|k|:

P (x − y, t) = F−1(e−t 2π|·|) =
∫

IRn

e−t 2π|k|+2πik·(x−y) dk .

This integral can be evaluated in every dimension n yielding the well-known
explicit formula for the Poisson kernel [29]

P (x − y, t) = Γ

(
n + 1

2

)
1

π
n+1

2

t

(t2 + |x − y|2)n+1
2

. (1)

The kernel itself and all convolutions P (·, t) ∗ f with suitable functions f solve
in a certain sense the pseudodifferential equation ∂tu =

√−∆u . The heat and
the Poisson kernel generate the Gaussian, resp., the Poisson scale-space.

This can be generalised as follows: In quantum mechanics the pseudodif-
ferential operator L :=

√−∆ + m2 − m describes the relativistic kinetic en-
ergy of a particle with mass m ≥ 0 [20] seemingly extending the Poisson op-
erator. In Fourier space this operator acts on function by multiplication with√|2πk|2 + m2 − m as a straightforward computation shows. According to stan-
dard spectral methods the corresponding integral operator in Fourier space reads

e−t (
√

|2πk|2+m2−m) .

The inverse Fourier transform of this exponential

Tm(x − y, t) := F−1
(
e−t (

√
4π2|·|2+m2−m)

)
(x, y)

can be calculated explicitly yielding the expression

Tm(x − y, t) := 2
( m

2π

)n+1
2

etm t(
t2 + |x − y|2)n+1

4

Kn+1
2

(m
√

t2 + |x − y|2) (2)

for (x − y, t) ∈ Rn×]0, +∞[ . Here Kν stands for the modified Bessel function of
the third kind [1, 13]. We briefly sketch the computational steps by pointing out
the formulas ∫

Sn−1

ei〈ω,x〉 dω = (2π)
n
2 |x|1− n

2 Jn
2 −1(|x|)

and∫
[0,+∞[

xν+1Jν(xs) e−α
√

x2+β2
dx =

√
2
π

αβν+ 3
2 (s2 +α2)− α

2 − 3
4 sνKν+ 3

2
(β

√
s2+α2) ,
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Fig. 1. Left: Comparison between different kernels including Poisson, eqn. (1) and
relativistic kernel, eqn. (2) in 1D for y = 0 and t = 1. Right: Examples of the relativistic
kernel (2) with m = 3, 1, , 0.05 in comparison with the Poisson kernel (1) for y = 0
and t = 1.5

where Jν denotes the ν-th order Bessel function. For later use we define the
operator Qm

t on L2(IRn) via the convolution

Qm
t f(x) := Tm(·, t) ∗ f (x) =

∫
IRn

Tm(x − y, t)f(y) dy . (3)

2.1 Comparison with the Poisson Kernel

For m ↓ 0 we regain the Poisson kernel which follows from

F(Qm
t )(k) = e−t (

√
|2πk|2+m2−m) −→ e−t 2π|k| if m ↓ 0 (4)

for any complex number k together with the continuity of the (inverse) Fourier
transform (according to a theorem of P. Levy) [5]. Furthermore, since

F(Qm
t )(k) = e−t (

√
|2πk|2+m2−m) −→ 1 if m → +∞ ,

a similar reasoning proves that Qm
t approximates therefor the identity operator

I if m is large. Remarkably, despite the approximation property (4), we learn
from the theory of Bessel functions [1, 13] that Kν(x) for any ν ≥ 0, and hence
Tm as a function of x (or of y) decreases exponentially to 0 for x tending to
infinity, |x| → +∞ . Figure 1 displays the relativistic kernel for various values of
m and also its comparison with a Poisson and a Gaussian kernel.

The relation between Poisson scale-
space and the relativistic scale-spaces is
sketched in the diagram to the right.
{Qm

t | 0 ≤ t, m} is positioned between
The Poisson scale-space {Pt | 0 ≤ t}
and {I | 0 ≤ t} including them as lim-
iting cases.

+∞ I0 −−−−−−−→ I0
↑ ↑ ↑
m Qm

0 = I0 −−−−−−−→ Qm
t

↑ ↑ ↑
0 P0 = I0 −−−−−−−→ Pt

0 −→ t
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2.2 Further Properties of the Relativistic Scale-Spaces

From the theory of contraction semigroups [15] we learn that the operator Qm
t

determines a contraction semigroup on L2(IRn) . Indeed, in view of Plancherel’s
theorem, it is enough to verify that the Fourier transforms F(Qm

t ) =
e−t(

√
|2πk|2+m2−m) of the family {Qm

t } satisfy the conditions

1. F(Qm
s+t)F(f) = F(Q)m

s F(Qm
t )F(f) = F(Qm

t )F(Qm
s )F(f) for all s, t ≥ 0 .

2. ‖F(Qm
t )F(f) − F(Qm

s )F(f)‖2 −→ 0 for t −→ s .

3. F(Qm
0 ) = 1, expressing the fact that Qm

0 = I, the identity .

4. ‖F(Q)F(f)‖2 ≤ ‖F(f)‖, the contraction property.

Due to the properties of the exponentials e−ct with c > 0 it is not difficult to
check that the operator Qm

t indeed meets these conditions. The associated gen-
erator is the pseudodifferential operator L =

√−∆ + m2 − m with the Sobolev
space H1(IRn) as its domain D(L). Here we followed [30] in the definition of the
Sobolev spaces

Hs(IRn) :=
{

u ∈ L2(IRn) | (
1 + |k|2) s

2 F(u) ∈ L2(IRn)
}

(5)

of all functions in L2(IRn) and s ∈ IR.
Next we are going to study in some detail the properties of the function

Fm(x, t) defined for f ∈ L2(IRn) by

Fm(x, t) := Qm
t f(x) =

∫
IRn

Tm(x − y, t)f(y) dy

with x ∈ IRn and t > 0. Since the Bessel functions Kν(x) are analytic for 0 < x,
the following result is not surprising.

Proposition 2.1. Fm is analytic in IRn×]0,∞[ for any function f ∈ L2(IRn).

Proof: Thanks to the analyticity of Kν the function T can be expanded locally
in a multivariate power series to the effect that the exchange of integration and
summation yields a corresponding expansion for Fm.

Having the explicit integral kernel at our disposal will enable us to study the
boundary behaviour of Fm(x, t) as t ↓ 0. To this end we need the next lemma.

Lemma 2.2. For any z ≥ 0 and ν ≥ − 1
2 the following estimate holds:

Kν(z) ≤ Γ (ν)
2

(
2
z

)ν

. (6)
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Proof: Taking advantage of an integral representation in [13], page 958, and using
the well-known definition of the Γ -function we obtain

Kν(z) =
√

π
(z

2

)ν 1
Γ (ν + 1

2 )

∫ ∞

1
e−tz(t2 − 1)ν− 1

2 dt

≤ √
π

(z

2

)ν 1
Γ (ν + 1

2 )

∫ ∞

0
e−tzt2ν−1 dt

=
√

π
(z

2

)ν 1
Γ (ν + 1

2 )
· 2√

π

(
2
z

)2ν

Γ (ν)Γ
(

ν +
1
2

)
=

Γ (ν)
2

(
2
z

)ν

.

This inequality is asymptotically (∼) sharp since for z −→ 0 ,[1], page 375:
Kν(z) ∼ Γ (ν)

2

( 2
z

)ν
. With this at our disposal we can proceed to the result

stating that Fm(·, t) = Qm
t f has exactly the same boundary behaviour as the

corresponding functions stemming from the Gaussian or Poisson scale-space.

Theorem 2.3. Suppose that f is a continuous and bounded on IRn, f ∈ C(IRn)∩
L∞(IRn), then the function Fm(x, t) = Qm

t f(x) satisfies the pseudodifferential
equation

∂tFm = (
√

−∆ + m2 − m)Fm (7)

for any t > 0 with the initial condition lim
t↓0

Fm(·, t) = f.

Proof: That Fm(x, t) satisfies (7) follows from the analysis above remembering
that the Fourier transform of

√−∆ + m2 − m is given by
√

4π2|k|2 + m2 − m.
Also, as stated above, the corresponding solution operator is given by Qm

t . In
order to prove the claimed boundary behaviour we observe that

∫
IRn

Tm(x − y, t) dy = e−t(
√

0+m2−m) = 1 (8)

for all x ∈ IRn and t > 0, since the integral at the left side can be considered as
the Fourier transform F(Tm(·, t)) of Tm(·, t) evaluated at k = 0.

Next we fix a x0 ∈ IRn, ε > 0, and choose δ > 0 so small that if

|y − x0| < δ for y ∈ IRn then |f(y) − f(x0)| < ε . (9)

For (x, t) ∈ IRn×]0, +∞[ with |(x, t) − (x0, 0)| < δ
2 we obtain the estimate

|Ft(x, t) − f(x0)| =
∣∣∣∣
∫

IRn

Tm(x − y, t)f(y) dy − f(x0) ·
∫

IRn

Tm(x − y, t) dy

∣∣∣∣
≤

∫
B(x0,δ)

Tm(x − y, t)|f(y) − f(x0)| dy

+
∫

IRn\B(x0,δ)
Tm(x − y, t)|f(y) − f(x0)| dy

=: I1 + I2 .
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The equality (8) and the restriction on y in (9) yield

I1 ≤
∫

IRn

Tm(x − y, t)ε dy = ε .

If additionally |y − x0| ≥ δ we find

|y − x0| ≤ |(y, 0) − (x, t)| + |(x, t) − (x0, 0)|
≤ |(y, 0) − (x, t)| +

δ

2
≤ |(y, 0) − (x, t)| +

1
2
|y − x0|

which yields |(y, 0) − (x, t)| ≥ 1
2 |y − x0| . This gives way to the estimates

I2 ≤ 2‖f‖∞
∫

IRn\B(x0,δ)

Tm(x − y, t) dy

= 4‖f‖∞
( m

2π

)n+1
2

e−tm

∫
IRn\B(x0,δ)

t

|(x, t) − (y, 0)|n+1
2

Kn+1
2

(m|(x, t) − (y, 0)|) dy

≤ 4‖f‖∞
( m

2π

)n+1
2

e−tm

∫
IRn\B(x0,δ)

t( 1
2 |x0 − y|)n+1

2

Kn+1
2

(m

2
|x0 − y|

)
dy

≤ 2‖f‖∞
(m

π

)n+1
2

Γ (ν) e−tm · t

∫
IRn\B(x0,δ)

1
|x0 − y|n+1 dy −→ 0, as t ↓ 0 .

The second inequality follows from the fact that 1
|·|

n+1
2 and Kν are decreasing

functions on ]0,∞[ while the last inequality is due to estimate (6) in lemma (2.2).
Hence, we deduce |Fm(x, t) − f(x0)| ≤ I1 + I2 ≤ 2ε as soon as |(x, t) − (x0, 0)| is
sufficiently small proving the continuity of Fm on the closed set IRn × [0, +∞[.
Summarising the analysis above we state

Proposition 2.4. 1. The families of operators {Qm
t | t ≥ 0} form for any fixed

m ≥ 0 additive semigroups.
2. For every t ≥ 0 the average grey-value is preserved under the action of Qm

t .
3. The operators Qm

t are translational invariant.

For large values of m the relativistic scale-spaces apparently approximate the
trivial scale-space {It | t ≥ 0} with It = I0 for all t > 0 , while for small m they
are very close to the Poisson scale-space.

However, with a fixed t0 the family {Qm
t0 | m ≥ 0} is also a scale-space, but

it has no longer an additive semigroup property: Qm1
t Qm2

t 
= Qm1+m2
t .

We mention briefly that {Q
f(t)
t | t ≥ 0} with an arbitrary decreasing function

f : [0, +∞[−→ [0, +∞[ also describes a scale-space relying on a non-additive
semigroup.
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3 Numerical Experiments with Relativistic Scale-Spaces

In this section we present some numerical experiments to visualise the proper-
ties of relativistic scale-spaces. We have implemented the methods in the Fourier
domain using the Discrete Fourier Transform (DFT) or Fast Fourier Transform
(FFT) for suitable data dimensions. The filtering operation then can be per-
formed as a multiplication of the Fourier coefficients with F(Qm

t ). Figures 2 and
3 show the simplifying effect of the relativistic scale-space in 1D and 2D for
fixed stopping time t but varying parameter m. Vice versa, Fig. 4 shows a time
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Fig. 2. Relativistic scale-space in 1D. The stopping time t = 100 is fixed. Top left:
Initial signal. The mass m decreases from the top middle to the bottom right

evolution for fixed value of m and increasing time t. For m = 0 this we would
obtain the Poisson scale-space.

4 Conclusion

The goal of this paper is to propose the novel two-parameter family of rela-
tivistic scale-spaces as a generalisation of the well-known Poisson scale-space,
and as a counterpart to the α-scale-spaces. As such the relativistic scale-spaces
are generated by pseudodifferential operators and they provide a continuous in-
terpolation between the identity operator and the Poisson scale-space. Unlike
the α-scale-spaces these new scale-spaces admit integral representations with
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Initial image m = 100 m = 10

m = 5 m = 2 m = 1

m = 0.5 m = 0.2 m = 0

Fig. 3. Relativistic scale-space in 2D. The stopping time t = 100 is fixed. Top left:
Initial image. The mass m decreases from top middle to bottom right

explicit convolution kernels involving Bessel functions. This paves the way to
prove analyticity and continuous extendability of the solutions of the relativistic
pseudodifferential equations.

This work evidences once more that spectral methods for pseudodifferential
operators are very useful for the study and extension of scale-space concepts.
Further generalisations of the relativistic scale-spaces in the framework of pseu-
dodifferential operators are close at hand. For instance, the “α-variant“ gener-
ated by (−∆ + m

1
α )α − m is the subject of ongoing research. Future research

will also encompass the search for variational formulations hoping to discover
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Initial image t = 0.1 t = 1

t = 5 t = 10 t = 50

t = 100 t = 200 t = 1000

Fig. 4. Relativistic scale-space in 2D. The parameter m = 1.0 is fixed, and the time
increases from top left to bottom right

new valuable tools for image filtering, and to enhance insight into the structure
of scale-spaces.
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