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Abstract. Since the introduction of the slope transform by Dorst/van
den Boomgaard and Maragos as the morphological equivalent of the
Fourier transform, people have been surprised about the almost loga-
rithmic relation between linear and morphological system theory.

This article gives an explanation by revealing that morphology in essence
is linear system theory in a specific algebra. While classical linear sys-
tem theory uses the standard (+, x)-algebra, the morphological system
theory is based on the idempotent (max,+)-algebra and the (min, +)-
algebra. We identify the nonlinear operations of erosion and dilation as
linear convolutions *. and *4 induced by these idempotent algebras. The
slope transform in the (max,+)-algebra, however, corresponds to the
logarithmic multivariate Laplace transform in the (4, x)-algebra. We
study relevant properties of this transform and its links to convex anal-
ysis. This leads to the definition of the so-called Cramer transform as
the Legendre-Fenchel transform of the logarithmic Laplace transform.
Originally known from the theory of large deviations in stochastics, the
Cramer transform maps standard convolution to *.-convolution, and it
maps Gaussians to quadratic functions.

The article is a step towards the unification of linear and morphologi-
cal system theories on the basis of a general linear system theory in an
appropriate algebra.

Keywords: linear system theory, morphology, convex analysis, MAXPLUS al-
gebra, MINPLUS algebra, slope transform, Cramer transform.

1 Introduction

Linear system theory is a successful and well established field in signal and image
processing [6,14,15,29]. In the n-dimensional case, shift invariant linear filters
can be described as convolutions of some signal f : R® — IR with a kernel
function b: R" — IR:

fxb(z):= | [z —y)bly)dy.
..



By means of the Fourier transform
~ . T
fu) == F[fl(u) = . flz)e™?m™ *dg

and its backtransformation

Fgle) = [ gl e du

n

one may conveniently compute a convolution in the spatial domain via a simple
product in the Fourier domain:

FIf #b] = F[f] - F[b].
In this context, Gaussians
1 2Ta
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play an important role as convolution kernels: They are the only separable and
rotationally invariant function that preserve their shape under the Fourier trans-
form. Convolutions of a signal f with the family {K,, | o > 0} of Gaussians create
the Gaussian scale-space [20, 37, 38], a multiscale representation that is useful in
pattern recognition, image processing and computer vision [11,21,24, 35]. Figure
1(a) shows an example.

Mathematical morphology is an interesting nonlinear alternative to linear sys-
tems theory [16,27,32-34]. It has been applied successfully to a large number of
fields including cell biology, computer-aided quality control, mineralogy, remote
sensing and medical imaging. Morphology is based on two fundamental pro-
cesses: dilation and erosion. In the case of nonflat morphology, the dilation resp.
erosion of some function f : IR® — IR with a structuring function b : R — IR
can be defined as follows (see e.g. [25,36]):

(f ®b) (z) :==sup {f(y) + blz—y) |yeR"},

(fob)(z) =inf {f(y) —bly—2z) |yeR"}.
Dorst and van den Boomgaard [9] and Maragos [25] developed independently
and simultaneously a morphological system theory that closely resembles linear

system theory. Following [9], one may generalise the dilation to the tangential
dilation via

(fOB)@) = stat (£(u) + bz — 1))

with stat f(y) := {f(2) | Vf(z) = 0}. Then the morphological equivalent to the
y

Fourier transform is given by the slope transform

S[f)(u) := stat(f(z) —u"a),



a transformation that is closely related to the Legendre transform and the
Young—Fenchel conjugate in convex analysis. Its backtransformation is given
by

S Hgl(z) = stjlt(g(u) +u'x).

The slope transform allows to replace the tangential dilation by simple addition
in the slope domain:

S[f &b = S[f]+S[.
Paraboloids

ba,t) = -2 (t>0)

are those structuring functions in morphological system theory that play a com-
parable role as Gaussians in linear system theory [36]: They are the only rotation-
ally invariant and separable structuring functions that maintain their shape un-
der the slope transformation. The corresponding dilation and erosion scale-spaces
are depicted in Figure 1(b) and (c). For a detailed analysis of their scale-space
properties, we refer to Jackway and Deriche [23]. Morphological scale-spaces
with paraboloids as structuring functions are useful for computing Euclidean
distance transformations [36], for image enhancement [31] and for multiscale
segmentation [22].

From these discussions we observe that there seems to be an almost logarith-
mic connection between linear and morphological system theory. The structural
similarities between linear and morphological processes have triggered Florack
et al. [12,13] to construct a one-parameter process that incorporates Gaussian
scale-space, and both types of morphological scale-spaces as limiting processes.
Heijmans and van den Boomgaard [17,18] have investigated unifying algebraic
definitions of scale-space concepts that include a number of linear and morpho-
logical approaches (cf. also [2]).

However, in spite of these very interesting contributions, the reason for the al-
most logarithmic connection between linear and morphological systems has not
been discovered so far. To address this problem is the topic of the present paper.

We provide an explanation for the structural analogies between linear and
morphological systems by revealing that morphology in essence is linear sys-
tem theory in a specific algebra. While classical linear system theory uses the
standard (+, x)-algebra, the morphological system theory is based on the idem-
potent (max, +)-algebra and the (min, +)-algebra. This allows us to identify the
nonlinear operations of erosion and dilation as linear convolutions %, and %4 in-
duced by these idempotent algebras. In this sense, morphology may be regarded
as linear system theory in disguise.

These algebraic structures have already numerous interesting applications
[4]: so-called discrete event dynamic systems (DEDS) can be modeled as linear
systems with respect to these algebras. Discrete event dynamic systems in this
algebraic formulation are used to find shortest paths in networks or to solve



Fig. 1. Linear and morphological scale-spaces. Top: Mona Lisa painting by Leonardo
da Vinci, 256 x 256 pixels. (a) Left Column: Gaussian scale-space, top to bottom:
o =0, 5,10, 15. (b) Middle Column: Dilation scale-space with quadratic structuring
function, ¢ = 0, 0.25, 1, 4. (c¢) Right Column: Erosion scale-space with quadratic
structuring function, t = 0, 0.25, 1, 4.



scheduling and communication problems in abstract project management, for
instance. They are also employed to analyse queuing systems, traffic flow and the
performance of special array processors. To the best of our knowledge, however,
no attempt has been made so far to tackle problems from image analysis with
this special algebraic approach.

A large part of our paper is devoted to the analysis of the role of the canon-
ical integral transformations in the before mentioned algebras. First we show
that the slope transform in the (max, +)-algebra corresponds to the logarithmic
multivariate Laplace transform in the (4, x)-algebra. We study relevant prop-
erties of this transform and point out links to convex analysis. This leads to the
definition of the so-called Cramer transform as the Legendre-Fenchel transform
of the logarithmic Laplace transform. The Cramer transform is well-known in
the theory of large deviations in stochastics. In image analysis, it maps standard
convolution to *.-convolution, and Gaussians to quadratic functions. This ex-
plains why quadratic structuring functions are the morphological equivalent of
Gaussian convolution kernels.

Our paper is organised as follows. In Section 2 we introduce the (max, +) and
(min, +) algebras that will play a fundamental role for the analysis of morpho-
logical systems. In Section 3 we show that dilation and erosion are convolutions
in these algebras. Connections to convex analysis are explained in Section 4, and
the relations between the logarithmic Laplace transform and the Young-Fenchel
conjugate are investigated in Section 5. Section 6 is devoted to the Cramer trans-
form which constitutes the explanation for the logarithmic connection between
linear and morphological systems. Finally we conclude our paper with a sum-
mary in Section 7.

2 The (max,+)- and the (min, +)-Algebra

In the theory of linear systems two algebraic structures play an important
role: the (max, +)-algebra IR, and the (min, +)-algebra IR,,;,,. Formally they
emerge from the standard (+, -)-algebra (IR, +, -) first by an extension of the real
line with either the element —oo or 400, second by replacing the addition by
a max- or min-operation, and the multiplication by +. We have the following
table:

name set addition|multiplication
standard algebra IR R + X
(max, +)-algebra IRypep|R U {—00}| max +
(min, +)-algebra Rypipn {R U {+00}| min +

The algebraic structures IR,,,,, and IR,,;, are examples of idempotent semi-
fields. The idempotency has to serve as a substitute for the non-existing inverse
w.r.t. the max- or min- operations. For a rather exhaustive amount of details,
see [4]. The structural importance of these algebraic structures will become clear
in the next section.



3 Convolution Induced by an Algebra

We equip the range of a scalar-valued function with the algebraic structure
introduced above, that is, we consider functions

f R — Ry, or f:IR"— Ry

This gives rise to two analogs to the well-known convolution * stemming from
the standard-algebra (IR, +, %),

(fxg)(2) == e flz—y)-9(y) dy,
for all z € R™. The transition from the standard algebra to the other algebras
(R,+,%x) = (RU{4+oc},min,+) or (RU{—oc},max,+)
amounts to the replacement of integration (=summation) by taking the infimum

or the supremum, and the replacement of multiplication by addition. This leads
to the definitions

(f*ag) ()= sup (flz—y)+9))=sup (f) +g(z—1y)),

yeR™ yeR™
(f *e 9) (z) == yiergn (flz—y)+9@)) = yiergn (fly) +9(z—y)).

Hence the morphological operations of dilation @ and erosion © as given in [9]
or [26] appear as convolutions w.r.t. these algebras:

(F@9) (@) = sup (fy) +9(z—y)) = frag(), (1)
y
(feg)(z)= inf (f(y) —9(y—2) = f*79(z), (2)
y€R
with g(x) := —g(—=z) . This explains the notations *, and *4. Furthermore, the

operation %, coincides exactly with the so-called inf-convolution or epigraphic

addition in convex analysis [19,30], denoted sometimes by V or O. Of vital
importance in this field is the Legendre—Fenchel transform, which is intimately
connected to the slope transform known from morphology. In order to explore
this connection, it is worthwhile to pursue a short excursion into convex analysis.

4 Elements of Convex Analysis

Let ConvIR™ be the set of functions f : R" — IR U {400} which are closed
convex, that is, convex, lower semicontinuous and finite in at least one point.
Let (-, -) denote the standard scalar product in IR™. f has an affine minorant iff
f>{,-)—cfor some (,c) € R™ x R. The convolution f *, g of two convex



functions f, ¢ that have a common affine minorant is again convex. The inf-
convolution is an asociative, commutative, order-preserving binary operation.
Defining for any subset A € IR"

0 =ze€A,
400 otherwise,

ia(z) == { (3)
ifo} is recognised as the neutral element. This corresponds to the structural
element in [9, 23]. In general, closedness is not preserved under inf-convolution.

Definition 1. The Legendre-Fenchel transform or conjugacy operation asso-
ciates with each f with an affine minorant the function f* defined by

f*(z) :== sup [{t,z) — f()].

teIR™

Remarkably, f* € ConvIR" as soon as f is affinely minorised, regardless of
its convexity or closedness [19]. In morphology this operation is a variant of the
slope transform [9, 25].

The next theorem states that the function cone Conv IR™ is indeed very suit-
able for this transform: the Legendre-Fenchel transform leaves ConvIR" invari-
ant and is even an involution on this cone. Also of importance are the algebraic
properties of this transform with respect to *:

Theorem 1. (Properties of the Legendre-Fenchel Transform)
If f,g € ConoIR™ then

1. f* e ConvR"™ .

2. The Legendre-Fenchel transform is its own inverse: (f)*=f.
3. It maps sums into erosions: (f+9)* = [**eg*.
4. It also maps erosions into sums: (f*e9)* = f*+g".

For proofs of these assertions and more detailed results on the properties of
conjugation, the reader is referred to [19]. Item 4 deserves a little remark: the
conjugacy operation transforms convolution *, into the sum of the conjugates.
It is not an incident that property 4 resembles very much the behaviour of the
Laplace transform with respect to the standard convolution * in the (IR, +, X)-
algebra. For any function f : R™ — [0, +00], we define the multivariate Laplace
transform by

L[f] : ¢ — L[f](=) :=/ 2V fly)dy with z € R"™.

n

Indeed, *-convolution of functions is transformed into a multiplication of the
Laplace transforms:

/ o f(y—z)g(z)dzdF/ / eV f(y — 2)e g () dz dy
n R ™ JIR™
=/ e<”’t>f(t)dt-/ e g(z)dz.



To avoid confusion it should be mentioned that usually the (one-sided) Laplace
transform is defined by

Ldﬂ@%=£ﬁmﬂﬂf”dt

with ¢ € IR and a complex number p. Hence the multivariate integral trans-
form above is an n-dimensional generalisation of the so-called two-sided Laplace

transform
oo

Lulflw)= [ f®e at

—00

More details and the close connection between the last two variants of the trans-
form are discussed in [8].

5 A Link between Laplace Transform and Conjugation

Starting from the definition of the conjugacy operation the transition (=) from
the (max, +)-algebra to the (+, x)-algebra entails

f*(@) = sup ((y,z) — f(y)) =log sup (eW=~I/W)
yeR™ yeR™

= log/ w1 gy = log/ W) e W dy = log Lle ¥)(x).
In other words: the conjugate of f interpreted in the context of the (max, +)-
algebra corresponds to this logarithmic Laplace transform of e~/ in the standard

algebra. A logarithmic relation between the two transforms becomes obvious:
essentially it traces back to the homomorphism provided by the logarithm:

log(a-b) =log a+logb.

When compared to Theorem 1 (items 1 and 4), the following proposition em-
phasises the correspondence between conjugation and logarithmic Laplace trans-
form.

Proposition 1. (Properties of the Logarithmic Laplace Transform)
For any functions f,g:IR"™ — [0, +00] with f,g #Z 0 one has:

1. The logarithmic Laplace transform is always convezr and lower semicontinu-
ous for non-negative functions:

log L[f] € ConoIR™ .
2. Convolutions are maped into sums:

log L[f  g] = log L[f] + log L{g] .



PROOF: 1. Suppose 0 < a < 1, then

n

_ / (el (e29) 1= £y) dy
< (L[f)(z1))* - (LIf)(z2)) "

by Holder’s Inequality with exponents p = L and p’ = 11— Taking the logarithm

1—a”
proves the claimed convexity. The lower-semicontinuity follows directly from

Fatou’s lemma [5], since

Lifl(asy + (1= a)es) = [ eleti=eienn) 1) ay

lim z, =2 implies L[f](z) < T%Hj)lilfo L{f](zn),

n—-+oo

for non-negative f and the fact that the logarithm is increasing and continuous.
Property 2 follows directly from the properties of the Laplace transform and the
logarithm. O

In this context it is also worth mentioning that there is a continuous tran-
sition from the standard x-convolution of two positive functions f,g to their
xe-convolution, and again the logarithm makes its natural appearance. With
reference to the usual Lebesgue norms || - ||, with 1 < p < 400, we define for
(strictly) positive functions f, g:

(f*p9)(@) = If - g(x =-)ll, for 1<p<+oo.

On the one hand, for p = 1 we regain the well-known convolution: * = ;.
On the other hand, we infer directly from the definitions of the operations x4
that

(Frpg)@) = [If-g9z ="l
P IS - 9z = )l

= exp [1og[s1;p(f(y) gz —y))]]
= exp((log f) *q (log g)(x)).

In a similar fashion we obtain for not necessarily positive functions f, g:

—1

log((e™ #, €79)(x)) == log((e™/ * e79)(x))
as well as

log((e™ *, ¢ (&) 25 log [sup(e ™) - 9]
Y
—inf(f(y)+g(z—y))
= loge v

= —(fre9)(@).



6 The Cramer Transform

The Cramer transform plays a key role in statistics, especially in the theory of
large deviations [7,10]. From a functional point of view, it will allow us to make
a connection between the usual convolution *, that appears in linear scale-space
theory, and the morphological operations @& and ©. This connection makes use
of the convolutions *4 and *. . According to its appearance in statistics we will
define the Cramer transform for non-negative functions only.

Definition 2. For functions f : R" — [0, +00], the transform
Clf] = (log L[f])"

18 called Cramer transform.

The reason why this transform is of importance in morphology is illuminated
by the following theorem which is a direct consequence of the properties of the
Laplace and Legendre-Fenchel transforms.

Theorem 2. (Convolution Theorem for the Cramer Transform)

If f and g are non-negative functions on R™, then

C[f * 9] = C[f] % Clg]-

In view of equations (1) and (2) this entails for nonnegative functions f,g Z 0
the relations

—Clf xg] = (=C[f]) @ (-Clg])
and

C[f 9] = C[f]© Cly]-

Let us now discuss some properties of the Cramer transform.
First we observe that, according to Proposition 1, the Cramer transform maps
any non-negative function into ConvIR" . Hence it follows from Theorem 1 (2)
that the conjugate of the Cramer transform is the logarithmic Laplace transform:

C*[f]=log L[f].

Examples of Cramer Transforms
1. Let §, denote the Dirac measure in a € IR”. Then
Cléa] = 1ia

with i, being defined in (3).



2. The Cramer transform is not additive:

1—z

Cl(1 = p)do + pdi)(z) = z - log (%) +(1-2)-log (ﬂ) +io(@)-

3. The Gauss distributions correlate to quadratic functions with reciprocal
“variance”: As mentioned in [1, 3] this means for the one dimensional Gaus-
sian with mean p and variance o that

V2mwo? 2 o

This can be extended to the nm-variate case of a Gaussian with diagonal

covariance matrix. We give a proof of both assertions by first calculating

the Laplace transform of a one-dimensional Gaussian with mean p = 0 and
2

o° > 0:

1 1(immy2 1|p—
C[ ea(,)](p):_‘p m

‘ 2

0 2
/ . e 2% et di

oo V2mo?

1 o0 t2 ¢
e 202 e Pt
V2702 /_oo

1 *© 2 oo 2
(/ e 2.7 e Pl gt +/ e 27 e~ (Pt dt>
20?2 \Jo 0

|

1 1 1
=3 27 P (Erfe( 3PV 202) + Erfc(— 3PV 202))
_ lo?p?

®

where the complementary error function

Erfe(z) := 2 = e~ dt
S VT,

is used according to formula 5.41 in [28].
For a Gaussian with mean y it follows immediately by a simple change of
variables that

e 1 (t=pm)? 1.2 2
/ e 22 ePldt =ePFe20 P,
—o0 V2102

An n-variate Gaussian distribution with mean vector u € IR™ and diagonal

covariance matrix D = diag(o%,...,02) has the separable density
1 -1 i (yi—gi)Z
9(y) = e T



Making use of the results above, Fubini’s theorem immediately gives

/ ( ) (o9) ﬁ 1 _%(yi—gi)2
9(y) eV dy = / e T dy
n R~ ;- V27mo?
_% €7} —gi)2
= 7 dy;

2 1
e
il;[l /IR V2ro?
n

i 1,2 2
.e2Pi%i

Il

[e]
3
=

— o(Pu)+ip  Dp

Hence we have

log Llg)(p) = (p.12) + 3" Dp.

Furthermore a straightforward calculation gives an optimal p = D~ !(s — )
in sup,cgr{(s,p) —log L[g](p)} which results in

(o8 LIg)"(s) = (p (i) + 357 D) @
= 25— D75~ p) 9

for 2 € IR™. This result is in complete accordance with the findings in [36].

. We conclude this set of examples with the numerical evaluation of Cramer
transforms of positive, piecewise consant one-dimensional signals f sampled
at equidistant points over the interval [0, 1. Defining the indicator function
14 as 14(z) =1if z € A, and 0 otherwise, these signals are of the form

flo) =) ailpz i

i=1

Their logarithmic Laplace transforms read as

log L[f](s) = log (% Zai (es% _ esizl))

but the corresponding conjugates, that means their Cramer transforms, can-
not be computed explicitly. Therefore we depict the graphs of some signals
together with their Cramer transforms in Figure 2 below. These results bring
to light the very strong smoothing property of the Cramer transform.
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Fig. 2. The smoothing property of the Cramer transform (CT). Top Row: A Gaussian
and its piecewise constant approximation on 33 subintervals (left) and their CTs (right).
2nd Row: A random signal, piecewise constant on 33 subintervals (left) and its CT.
3rd Row: 0-1 signal on the interval [0,1] (left) and its CT. 4th Row: 0-1 signal on
the interval [0,1] with 100% additive uniform noise (left) and its CT vs. the results of
the 3rd row.



7 Conclusions

In this paper we have given an explanation for the almost logarithmic connection
between linear and morphological systems. This has been achieved by regarding
morphological systems as linear systems in appropriate algebras. The link be-
tween these algebras and the standard algebra in linear system theory has been
established by means of the Cramer transform.

The present article can be regarded as a step towards the unification of linear
and morphological scale—space theory on the basis of a general linear system
theory in an appropriate algebra. Taking full advantage of this connection may
allow to translate results directly from one area to the other. This may trigger
a more fruitful interaction of both paradigms that have evolved independently
to powerful image processing tools. Finally, a unification within a more general
algebraic framework may also help to identify novel image processing approaches
that are based on other algebras. These points will be addressed in our future
publications.
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