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Abstract. The output of modern imaging techniques such as diffusion
tensor MRI or the physical measurement of anisotropic behaviour in
materials such as the stress-tensor consists of tensor-valued data. Hence
adequate image processing methods for shape analysis, skeletonisation,
denoising and segmentation are in demand. The goal of this paper is
to extend the morphological operations of dilation, erosion, opening and
closing to the matrix-valued setting. We show that naive approaches
such as componentwise application of scalar morphological operations
are unsatisfactory, since they violate elementary requirements such as
invariance under rotation. This lead us to study an analytic and a geo-
metric alternative which are rotation invariant. Both methods introduce
novel non-component-wise definitions of a supremum and an infimum of
a finite set of matrices. The resulting morphological operations incorpo-
rate information from all matrix channels simultaneously and preserve
positive definiteness of the matrix field. Their properties and their per-
formance are illustrated by experiments on diffusion tensor MRI data.
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1 Introduction

Modern data and image processing encompasses more and more the analysis and
processing of matrix-valued data. For instance, diffusion tensor magnetic reso-
nance imaging (DT-MRI), a novel medical image acquisition technique, measures
the diffusion properties of water molecules in tissue. It assigns a positive definite
matrix to each voxel, and the resulting matrix field is a valuable source of infor-
mation for the diagnosis of multiple sclerosis and strokes [13]. Matrix fields also
make their natural appearance in civil engineering and solid mechanics. In these
areas inertia, diffusion and permittivity tensors and stress-strain relationships
are an important tool in describing anisotropic behaviour. In the form of the so-
called structure tensor (also called Förstner interest operator, second moment
matrix or scatter matrix) [7] the tensor concept turned out to be of great value



in image analysis, segmentation and grouping [9].
So there is definitely a need to develop tools for the analysis of such data since
anybody who attempts to do so, is confronted with the same basic tasks as in
the scalar-valued case: How to remove noise, how to detect edges and shapes,
for example.

Image processing of tensor fields is a very recent research area, and a number
of methods consists of applying scalar- and vector-valued filters to the compo-
nents, eigenvalues or eigenvectors of the matrix field. Genuine matrix-valued con-
cepts with channel interaction are available for nonlinear regularisation methods
and related diffusion filters [17, 18], for level set methods [6], median filtering [19]
and homomorphic filters [4]. To our knowledge, however, extensions of classical
morphology to the matrix setting have not been considered so far.

Our paper aims at closing this gap by offering extensions of the fundamental
morphological operations dilation and erosion to matrix-valued images. Mathe-
matical morphology has been proven to be useful for the processing and analysis
of binary and greyscale images: Morphological operators and filters perform noise
suppression, edge detection, shape analysis, and skeletonisation in medical and
geological imaging, for instance [15]. Even the extension of concepts of scalar-
valued morphology to vector-valued data such as colour images, is by no means
straightforward. The application of standard scalar-valued techniques to each
channel of the image independently, that means component-wise performance
of morphological operations, might lead to information corruption in the image,
because, in general, these components are strongly correlated [1, 8]. Numerous
attempts have been made to develop satisfying concepts of operators for colour
morphology. The difficulty lies in the fact that the morphological operators rely
on the notion of infimum and supremum which in turn requires an appropriate
ordering of the colours, i.e. vectors in the selected vector space. However, there
is no generally accepted definition of such an ordering [2, 16, 12]. Different types
of orderings such as marginal or reduced ordering [2] are reported to result in an
unacceptable alteration of colour balance and object boundaries in the image [5],
or in the existence of more than one supremum (infimum) creating ambiguities
in the output image [12]. These are clear disadvantages for many applications.
In connection with noise suppression morphological filters based on vector rank-
ing concepts [2] have been developed [11, 5]. In [3] known connections between
median filters, inf-sup operations and geometrical partial differential equations
[10] have been extended from the scalar to the vectorial case.

In any case, the lack of a generally suitable ordering on vector spaces is a
very severe hindrance in the development of morphological operators for vector-
valued images. Surprisingly the situation in the matrix-valued setting is more
encouraging since we have additional analytic-algebraic or geometric properties
of the image values at our disposal: (a) Unlike in the vectorial setting one can
multiply matrices, define polynomials and even can take roots of matrices. (b)
Real symmetric, positive definite matrices can be graphically represented by
ellipses (2× 2-matrices) or ellipsoids (3× 3-matrices) in a unique way. However,
there is also the burden of additional conditions that have to be fulfilled by the



morphological operations to be defined: They have to be rotationally invariant
and they must preserve the positive definiteness of the matrix field as well,
since applications such as DT-MRI create such data sets. In this paper we will
exploit the analytic-algebraic property (a) and the geometric property (b) by
introducing novel notions for the supremum/infimum of a finite set of matrices.
These notions are rotationally invariant and preserve positive definiteness.

Interestingly, already the requirement of rotational invariance rules out the
straightforward component-wise approach: Consider for example

A1 :=

(

3 2
2 3

)

, A2 :=

(

2 −1
−1 2

)

, S :=

(

3 2
2 3

)

.

Here, S is the componentwise supremum of A1, A2. Rotating A1 and A2 by 90
degrees and taking again the componentwise supremum yields

A′

1 =

(

3 −2
−2 3

)

, A′

2 =

(

2 1
1 2

)

, S′ =

(

3 1
1 3

)

where S′ is clearly not obtained by rotating S. This counterexample shows that
it is not obvious how to design reasonable extensions of morphological operations
to the matrix-valued setting.

The structure of our paper is as follows: In the next section we give a very
brief review of the basic greyscale morphological operations. Then we establish
novel definitions of the crucial sup- and inf-operations in the vector valued case
via the analytic-algebraic approach and investigate some of their properties in
Section 3. Alternatively, in Section 4 we develop new definitions for the sup- and
inf-operations starting from a geometric point of view. Section 5 is devoted to
experiments where the two methodologies are applied to real DT-MRI images.
Concluding remarks are presented in Section 6.

2 Mathematical Morphology in the Scalar Case

In greyscale morphology an image is represented by a scalar function f(x, y)
with (x, y) ∈ IR2. The so-called structuring element is a set B in IR2 that deter-
mines the neighbourhood relation of pixels with respect to a shape analysis task.
Greyscale dilation ⊕ replaces the greyvalue of the image f(x, y) by its supremum
within a mask defined by B:

(f ⊕ B) (x, y) := sup {f(x−x′, y−y′) | (x′, y′)∈B},
while erosion 	 is determined by

(f 	 B) (x, y) := inf {f(x+x′, y+y′) | (x′, y′)∈B}.
The opening operation, denoted by ◦, as well as the closing operation, indicated
by the symbol •, are defined via concatenation of erosion and dilation:

f ◦ B := (f 	 B) ⊕ B and f • B := (f ⊕ B) 	 B .

These operations form the basis of many other processes in mathematical mor-
phology [14, 15].



3 Model 1: An Analytic Definition of Dilation and

Erosion for Matrix-Valued Images

The decisive step in defining morphological dilation and erosion operations for
matrix-valued data is to find a suitable notion of supremum and infimum of
a finite set of positive definite matrices. For positive real numbers a1, . . . , ak,
k ∈ IN, there is a well-known connection between their modified p-mean and
their supremum:

lim
p→+∞

(

k
∑

i=1

a
p
i

)
1

p

= sup{a1, . . . , ak} . (1)

A completely analogous relation holds also for the infimum with the difference
that p now tends to −∞:

lim
p→−∞

(

k
∑

i=1

a
p
i

)
1

p

= inf{a1, . . . , ak} . (2)

That means, the p-means can serve as a substitute for the supremum (infimum) if
p is large. The idea is now to replace the positive numbers in the above relation by
their matrix generalisations, the positive definite matrices A1, . . . , Ak . However,
to this end we have to define the p-th root of a positive definite (n × n)-matrix
A . We know from linear algebra that there exists an orthogonal (n× n)-matrix
V (which means V >V = V V > = I , with unit matrix I) such that

A = V · diag(α1, . . . , αn) · V > , (3)

where the expression in the center on the right denotes the diagonal matrix with
the positive eigenvalues α1, . . . , αn of A as entries on the diagonal. Now taking
the p-th root of a matrix is achieved by taking the p-th root of the eigenvalues
in decomposition (3):

A
1

p := V diag(α
1

p

1 , . . . , α
1

p
n )V > .

Note that the p-th power Ap can be calculated in this manner as well. Hence we

can give meaning to the expression
(

∑k
i=1

A
p
i

)
1

p

and can define new matrices

sup{A1, . . . , Ak} and inf{A1, . . . , Ak} via the limits of their modified p-mean for
p → ±∞ :

Definition 1. The supremum and infimum of a set of positive definite matrices

A1,...,Ak are defined as

sup{A1, . . . , Ak} := lim
p→+∞

(

k
∑

i=1

A
p
i

)
1

p

, (4)

inf{A1, . . . , Ak} := lim
p→−∞

(

k
∑

i=1

A
p
i

)
1

p

. (5)



With this definition, taking the supremum is a rotationally invariant operation,
i.e. sup{UA1U

>, . . . , UAkU>} = U · sup{A1, . . . , Ak} · U> for any orthogonal

(n×n)-matrix U . This may be seen as follows. Since
∑k

i=1
A

p
i is positive definite,

there exist an orthogonal matrix V and a diagonal matrix D with
∑k

i=1
A

p
i =

V DV >. As a consequence we obtain

(

k
∑

i=1

(UAiU
>)p

)
1

p

=
(

k
∑

i=1

UA
p
i U

>

)
1

p

=
(

U
(

k
∑

i=1

A
p
i

)

U>

)
1

p

=
(

UV DV >U>

)
1

p

= UV D
1

p V >U> = U
(

k
∑

i=1

A
p
i

)
1

p

U> ,

where we have used the facts that U>U = I and UV is also orthogonal. Therefore
the p-th mean is rotationally invariant for all values of p, and hence also in the
limits p → ±∞.

Furthermore the p-th mean (and in the limit also supremum and infimum)
inherits the positive definiteness of its arguments: Positive definiteness is a prop-
erty stable under addition, and is also characterised by the positivity of the

eigenvalues. By construction the p-th power Ap and the p-th root A
1

p have pos-
itive eigenvalues whenever A has. Hence taking the p-th mean for any p ∈ IN
preserves positive definiteness.

For practical computations we will put p to a sufficiently large number, say
10 or 20, such that the resulting matrices can be considered as reasonable ap-
proximations to the supremum resp. infimum of A1, . . . , Ak.

Alternatively, the limiting matrix M := sup{A1, . . . , Ak} can also be ob-
tained directly from the eigenvalues and eigenvectors of the given set of matrices
A1, . . . , Ak. The largest eigenvalue and corresponding eigenvector are directly
adopted for M . In the 2× 2 case, the eigenvector system of M is already deter-
mined by this condition. The remaining eigenvalue of M is exactly the largest
eigenvalue from the given set of matrices that corresponds to an eigenvector
different from that of the largest eigenvalue – in general, the second largest
eigenvalue from the given set. A similar statement holds in higher dimensions.
Moreover, replacing largest by smallest eigenvalues, a characterisation of infima
is obtained. We sketch the proof for suprema of 2×2 matrices. Note first that the
sum

∑

A
p
i does not change if every matrix Ai is replaced by the two rank-one

matrices λ1v1v
>
1 and λ2v2v

>
2 corresponding to the eigenvalue-eigenvector pairs

(λ1, v1) and (λ2, v2) of Ai. Let now Λ be the largest eigenvalue from the given set
of matrices, and λ the second-largest one in the sense described above. Without
loss of generality, assume that the eigenvector of Λ is (1, 0)>; the normalised
eigenvector for λ is some (c, s)>, c2 + s2 = 1. Since the contributions of all
smaller eigenvalues and corresponding eigenvectors vanish in the limit p → +∞,
all we have to prove is that the p-mean

Mp :=

(

Λp

(

1
0

)

(1, 0) + λp

(

c

s

)

(c, s)

)
1

p

=

(

Λp + λps2 λpcs
λpcs λpc2

)
1

p



tends to diag(Λ, λ) for p → +∞. We introduce the abbreviations Dp := Λ2p −
2Λpλp(c2−s2)+λ2p and Ep := Λp−λp(c2−s2). Then we can express the eigenval-

ues of Mp by
(

1

2

(

Λp + λp ±
√

Dp

))1/p
which tend to Λ and λ for p → +∞. An

eigenvector for the larger eigenvalue is given by
(
√

√

Dp + Ep,

√

√

Dp − Ep

)>

,

which encloses with (1, 0)> the angle ϕp that satisfies tan2 ϕp =

√
Dp+Ep√
Dp−Ep

. Since

the latter expression tends to 0 for p → +∞ if λ < Λ, we have that the limiting
matrix is diagonal as claimed. In case λ = Λ we have already that lim

p→+∞
Mp is

diagonal because of the eigenvalues. This completes the proof.

With the supremum and infimum operations at our disposal we can apply
the definitions of the basic morphological operations dilation, erosion, opening
and closing to matrix-valued images essentially verbatim.

4 Model 2: A Geometric Definition of Dilation and

Erosion for Matrix-Valued Images

We present now an alternative framework of dilation and erosion for positive
definite symmetric matrices. To this end we remark that a positive definite sym-
metric n×n matrix A corresponds to a quadratic form Q(x) = x>A−2x, x ∈ IRn.
The ellipsoid x>A−2x = 1 centered around 0 is an isohypersurface of Q. This el-
lipsoid has a natural interpretation in the context of diffusion tensors: Assuming
that a particle is initially located in the origin and is subject to the diffusivity A,
then the ellipsoid encloses the smallest volume within which this particle will be
found with some required probability after a short time interval. The directions
and lengths of the principal axes of the ellipsoid are given by the eigenvectors and
corresponding eigenvalues of A, respectively. By including degenerate ellipsoids
this description is easily extended to all positive definite symmetric matrices.
Then each positive definite matrix A is represented by the image AB of the unit
ball B ⊆ IRn under multiplication with A.

Geometric inclusion constitutes a natural semi-order for ellipsoids which leads
directly to a semi-order for positive definite matrices.

Definition 2. Let A, B be positive definite matrices. We define that A ⊆ B if

and only if AB ⊆ BB where B is the unit ball in IRn.

In the language of diffusion tensors A ⊆ B means that for particles evolving
under diffusivities A and B, the ellipsoid in which the first one is most probably
found is completely contained in the corresponding ellipsoid for the second.

In the light of this semi-order, it makes sense to define the supremum of a
set of positive definite matrices as a minimal element (in some sense) among
all matrices that are greater or equal to all given matrices. Since, however, the
⊆ semi-order itself is not sufficient to determine such a minimal element, we
need an additional criterion. Therefore we introduce a second relation 4 which
is compatible to the first one in the sense that A ⊆ B always implies A 4 B.



Definition 3. Let A, B be as above. We define that A 4 B if the ordered

sequence λ1(A) ≥ . . . ≥ λn(A) ≥ 0 of the eigenvalues of A is lexicographically

smaller or equal to the corresponding sequence λ1(B) ≥ . . . ≥ λn(B) ≥ 0 of B,

i.e. if there exists an index j, 1 ≤ j ≤ n + 1 such that λi(A) = λi(B) for all

i < j, and λj(A) < λj(B) if j ≤ n.

Note that 4 is not a semi-order in strict sense because it does not allow to
distinguish between a matrix and rotated versions of it. We can now define the
supremum of a set of positive definite matrices.

Definition 4. Let A1, . . . , Ak be positive definite symmetric matrices. We define

sup{A1, . . . , Ak} := S

where S is chosen such that Ai ⊆ S for i = 1, . . . , k, and S 4 Y for each Y

satisfying Ai ⊆ Y for i = 1, . . . , k.

By reverting all occurrences of ⊆ and 4 we obtain an analog definition that
introduces the infimum as a 4-maximal element in the set of all matrices which
are inferior to all given matrices w.r.t. ⊆. The positive definiteness of the so
defined supremum and infimum is obvious from the definition, as is the rotational
invariance. A closer look shows that if all Ai are positive definite, one has also
that the supremum of the inverses A−1

i is the inverse of the infimum of the Ai

and vice versa. This is in analogy to the definitions based on the p-mean.
Since it is not obvious how to compute the supremum of a given set {A1, . . . , Ak}
of tensors, we shall now briefly derive the necessary formulae in the case of 2×2
matrices. Assume that Λ is the largest eigenvalue of all given matrices, and that
(1, 0)> is the corresponding eigenvector. Then this eigenvalue–eigenvector pair is
also one for the desired supremum matrix S. We have therefore S = diag(Λ, λ)
where λ ≤ Λ is still to be determined. The decisive constraint for λ is that for all
given matrices Ai, the images of the unit disk under S−1Ai must be contained
in the unit disk. For a single matrix Ai =

(

a c

c b

)

this condition comes down to

√

(aΛ−1 + bλ−1)2 + (cΛ−1 − cλ−1)2 +
√

(aΛ−1 − bλ−1)2 + (cΛ−1 + cλ−1)2 ≤ 2

(note that it is insufficient to consider only the largest eigenvalue of S−1A since
this matrix is in general asymmetric!). From this inequality we obtain by squaring
twice, re-arranging terms and finally taking the root again that

λ ≥
√

(b2 + c2)Λ2 − (ab − c2)2

Λ2 − a2 − c2
. (6)

Iterating over all Ai one finds the smallest λ which satisfies all the conditions
simultaneously. Dismissing the condition that the eigenvector corresponding to Λ

is (1, 0)>, the eigenvector system of S is still determined by this eigenvector. One
only has to rotate all matrices Ai using this eigenvector system before computing
the bounds for λ. This completes the algorithm in the 2 × 2 case.

Extension of the algorithm to 3×3 and larger matrices works by considering
suitable sets of 2-dimensional sections to which the above formulae can be ap-
plied. That it is sufficient to consider sections is a consequence of the following



observation: Given an ellipsoid centered at the origin and a point outside of it,
then the smallest ellipsoid centered at 0 that encloses both is tangent to the first
ellipsoid along an ellipse (or, in higher dimensions, an ellipsoid of next smaller
dimension). Repeating the above reasoning for the case of erosions, it becomes
clear that the smallest eigenvalue Λ of S and corresponding eigenvector are di-
rectly obtained as the smallest eigenvalue and corresponding eigenvector of one
of the Ai. By analog considerations as above one derives upper bounds for the
remaining eigenvalue λ (which is now the larger one). Surprisingly, the bounds
are the same as in (6), only the relation sign is reverted to ≤.

Revisiting the p-mean approach from the viewpoint of the current section, one
sees that the p-mean supremum M of a set {A1, . . . , Ak} satisfies Ai ⊆ M for all
i = 1, . . . , k, and has the same largest eigenvalue and corresponding eigenvector
as the supremum S defined here. However, in generic cases S ⊆ M and S 6= M

hold, and the eigenvalues of M except the largest one exceed the corresponding
ones of S. Thus, M is in general not a minimal element in the set of all Y with
Ai ⊆ Y for all i. Analog considerations apply to the p-mean infimum.

5 Experimental Results

In order to illustrate the differences between model 1 and 2, we have computed
their behaviour on two ellipses. This is depicted in Figure 1. We observe that
model 1 tends to reduce the eccentricity of the ellipses, whereas the more com-
plicated model 2 is constructed in such a way that it corresponds exactly with
our geometric intuition.

As a real-world test image we use a DT-MRI data set of a human brain. We
have extracted a 2-D section from the 3-D data. The 2-D image consists of four
quadrants which show the four tensor channels of a 2×2 matrix. Each channel has
a resolution of 128×128 pixels. The top right channel and bottom left channel are
identical since the matrix is symmetric. Model 1 is always shown on the left side,
model 2 always on the right side. All images are generated using a disk-shaped
stencil of radius

√
5. As mentioned in section 2 the simplified algorithm has been

used for model 1. Figure 2 shows the results of the erosion and dilation filter
on tensor-valued data for both models. Corresponding filters give very similar
results. The main difference, as mentioned before, is the tendency of model 1 to
reduce direction information faster than model 2 does (see also Figure 4).

This results in a slightly higher contrast in the images in model 2. A number of
dark spots that appear in the main diagonal parts of the eroded images indicate
violations of the positive definiteness condition. Due to measurement errors,
these are already present in the original data set but are widened by erosion.

The experiments for opening and closing can be seen in Figure 3. They
confirm the previous impression: There is a high similarity between the test
results from model 1 and model 2, the main difference being in the off diagonal
where the higher contrast of model 2 is noticeable again.

The main goal, to create a filter for tensor valued erosion and dilation (and
the derived opening and closing) which is similar to the scalar case, has been



Fig. 1. Left: Ellipses representing two positive definite matrices (thick lines), their
supremum and infimum (thin lines) according to model 1. Right: Same with model 2.

achieved by both models. Whereas model 2 shows somewhat better results in
the experiments, model 1 has the advantage of being simpler to implement by
using the method based on the two largest eigenvalues.

6 Conclusions

In this paper we have extended fundamental concepts of mathematical mor-
phology to the case of matrix-valued data. Based on two alternative approaches,
definitions for supremum and infimum of a set of positive definite symmetric ma-
trices were given. One set of definitions relies on the property of scalar-valued
p-means that they tend to the maximum and minimum of their argument sets
for p → ±∞; supremum and infimum of matrix sets are constructed by an
analogous limiting procedure. The second approach combines geometrical and
analytical tools to construct suprema and infima as minimal and maximal ele-
ments of sets of upper resp. lower bounds of the given matrix set. Each of the
two approaches enables the generalisation of morphological dilation, erosion and
the further operations composed from these, like opening and closing. In the
experimental part, we have implemented the different concepts and evaluated
them on diffusion tensor data. Our future investigation will include a more de-
tailed study of the morphological framework built on these operations.
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