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Summary. The restoration of scalar-valued images via minimization of an energy
functional is a well-established technique in image processing. Recently also higher-
order methods have proved their advantages in edge preserving image denoising. In
this paper, we transfer successful techniques like the minimization of the Rudin-
Osher-Fatemi functional and the infimal convolution to matrix fields, where our
functionals couple the different matrix channels. For the numerical computation
we use second-order cone programming. Moreover, taking the operator structure of
matrices into account, we consider a new operator-based regularization term. Using
matrix differential calculus, we deduce the corresponding Euler-Lagrange equation
and apply it for the numerical solution by a steepest decent method.

1 Introduction

Matrix-valued data have gained significant importance in recent years, e.g. in
diffusion tensor magnetic resonance imaging (DT-MRI) and technical sciences
(inertia, diffusion, stress, and permittivity tensors). As most measured data
these matrix-valued data are also polluted by noise and require restoration.
Regularization methods have been applied very successfully for denoising of
scalar-valued images where recently higher-order methods, e.g. in connection
with the infimal convolution [9] have provided impressive results. In this pa-
per, we want to transfer these techniques to matrix fields. However, unlike
vectors, matrices can be multiplied providing matrix-valued polynomials and
also functions of matrices. These useful notions rely decisively on the strong
interplay between the different matrix entries. Thus the corresponding regu-
larization terms should take the relation between the different matrix channels
into account.

Filtering methods for matrix fields based on matrix-valued nonlinear par-
tial differential equations (PDEs) have been proposed in [6] for singular and
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in [7] for Perona-Malik-type diffusivity functions. These approaches rely on an
operator-algebraic point of view on symmetric matrices as instances of self-
adjoint Hilbert space operators, and are based on a basic differential calculus
for matrix fields. Since the proposed techniques exploit the greater algebraic
potential of matrices, if compared to vectors, they ensure appropriate matrix
channel coupling, and more important, are also applicable to indefinite matrix
fields.

Approaches to positive definite matrix field filtering with a differential
geometric background have been suggested in [21, 10]. In their setting the set
of positive definite matrices is endowed with a structure of a manifold, and the
methodology is geared towards application to DT-MRI data. Comprehensive
survey articles on the analysis of matrix fields utilizing a wide range of different
techniques can be found in [25] and the literature cited therein.

This paper is organized as follows: In Section 2, we start by considering var-
ious variational methods for denoising scalar-valued images, in particular we
adapt the infimal convolution technique to our discrete setting and introduce
a corresponding simplified version. In Section 3, we turn to the matrix-valued
setting. After giving the necessary preliminaries in Subsection 3.1, we consider
component-based regularization terms related to the Rudin-Osher-Fatemi ap-
proach and to infimal convolution in Subsection 3.2. These functionals couple
the different matrix channels as originally proposed by [22]. In Subsection 3.3
we introduce a new operator-based functional and derive the corresponding
Euler-Lagrange equation which contains the Jordan product of matrices. In
contrast to the ordinary matrix product the Jordan product two symmet-
ric matrices is again a symmetric matrix. Finally, in Section 4, we present
numerical examples comparing the component-based and the operator-based
approach as well as first-order and infimal convolution methods.

2 Variational methods for scalar-valued images

First-order methods.

A well-established method for restoring a scalar-valued image u from a given
degraded image f consists in calculating

arg min
u

∫

Ω

(f − u)2 + α Φ(|∇u|2) dxdy (1)

with a regularization parameter α > 0 and an increasing function Φ : [0,∞] →
R in the penalizing term. The first summand encourages similarity between the
restored image and the original one, while the second term rewards smooth-
ness. The appropriate choice of the function Φ ensures that important image
structures such as edges are preserved while areas with small gradients are
smoothed.

The Euler-Lagrange equation of (1) is given by
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0 = f − u + α div(Φ′(|∇u|2)∇u). (2)

Thus, the minimizer u can be considered as the steady state (t → ∞) of the
reaction-diffusion equation

∂tu = f − u + α div(Φ′(|∇u|2)∇u) (3)

with initial image u(·, 0) = f and homogeneous Neumann boundary condi-
tions. For an interpretation of (2) as a fully implicit time discretization of a
diffusion equation see [19, 23].

In this paper, we are mainly interested in the frequently applied ROF–
model introduced by Rudin, Osher and Fatemi [18] which uses the function

Φ(s2) :=
√

s2 = |s|. (4)

For this function, the functional (1) is strictly convex and the penalizing

functional J(u) =
∫

Ω

√

u2
x + u2

y dxdy is positively homogeneous, i.e. J(αu) =

αJ(u) for α > 0. Since Φ in (4) is not differentiable at zero, we have to use
its modified version

Φ(s2) =
√

s2 + ε2, (5)

with a small additional parameter ε if we want to apply (3).
For digital image processing, we consider a discrete version of (1). Let us

introduce this discrete version in matrix-vector notation. For the sake of sim-
plicity, we restrict our attention to quadratic images f ∈ R

n,n. We transform
f into a vector f ∈ R

N with N = n2 in the following way

vec f :=







f0

...
fn−1






,

where fj denotes the j-th column f . The partial derivatives in (1) are dis-
cretized by forward differences. More precisely, we introduce the difference

matrix D1 :=

(

Dx

Dy

)

with Dx := In ⊗ D, Dy := D ⊗ In and

D :=







−1 1 0 . . . 0 0 0

0 −1 1 . . . 0 0 0

.
.
.

.
.
.

.
.
.

0 0 0 . . . −1 1 0

0 0 0 . . . 0 −1 1

0 0 0 . . . 0 0 0






. (6)

Here A ⊗ B is the Kronecker product (tensor product) of A and B. Now our
discrete version of (1) reads

arg min
u∈RN

1

2
||f − u‖2

ℓ2 + α|| |D1u| ‖ℓ1, (7)
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where |D1u| ∈ R
N is defined componentwise by |D1u| =

(

(Dxu)2 + (Dyu)2
)1/2

.
For computations it is useful to consider the dual formulation of (7). Since
we will need the dual form of various similar functionals later, let us consider
more generally

arg min
u∈RN

1

2
||f − u‖2

ℓ2 + α || |Lu| ‖ℓ1, (8)

with L ∈ R
pN,N and |w|(j) =

(

∑p−1
k=0 w(j + kN)2

)1/2

, j = 1, . . . , N . For

L := D1 the functional (8) coincides with (7). Since the penalizing functional
J(u) = || |Lu| ‖ℓ1 is positively homogeneous, its Legendre–Fenchel dual J∗ is
the indicator function of the convex set

C := {v : 〈v, w〉 ≤ J(w), ∀w ∈ R
N}

and the minimizer û of (8) is given by û = f − ΠαCf , where ΠC denotes the
orthogonal projection of f onto C. It can be proved, see, e.g. [], that

C := {LTV : ‖ |V | ‖∞ ≤ 1} (9)

and consequently û = f − LTV , where V is a solution of

‖f − LTV ‖2
2 → min s.t. ‖ |V | ‖ℓ∞ ≤ α. (10)

This minimisation problem can be solved by second-order cone programming
(SOCP) [13], or alternatively by Chambolle’s descent algorithm [8, 12].

Higher order methods.

For various denoising problems higher-order methods with functionals includ-
ing higher-order derivatives have proved useful. In particular the drawback of
so-called staircasing known from the ROF–model can be avoided in this way.
An example is shown in Fig. 1.

Here we focus only on the infimal convolution method introduced by
Chambolle and Lions [9]. We consider

arg min
u∈RN

1

2
||f − u‖2

ℓ2 + (J1�J2)(u), (11)

where

(J1�J2)(u) := inf
u1,u2∈RN

{J1(u1) + J2(u2) : u1 + u2 = u}

denotes the so–called infimal convolution of J1 and J2. Note that the infimal
convolution is closely related to the dilation operation in morphological image
processing. In this paper, we will only deal with

J1(u) := α1 ‖ |D1u| ‖ℓ1, and J2(u) := α2 ‖ |D2u| ‖ℓ1 , (12)
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where D2 :=

(

Dxx

Dyy

)

=

(

In ⊗ DTD
DTD ⊗ In

)

is a discrete second-order derivative

operator. Alternatively, we can also use |(DT

xx, DT

yy, DT

xy, D
T

yx)T u| which is
related to the Frobenius norm of the Hessian of u. It is easy to check that for
(12) the infimum in (11) is attained, so that (11) can be rewritten as

arg min
u1,u2∈RN

1

2
||f − u1 − u2‖2

ℓ2 + α1‖ |D1u1| ‖ℓ1 + α2‖ |D2u2| ‖ℓ1 . (13)

Using that (J1�J2)
∗(u) = J∗

1 (u) + J∗
2 (u) for proper convex functionals, the

minimizer û of (11) is given by û = f −Πα1C1∩α2C2
f , where J∗

i are the indica-
tor functions of the convex sets Ci associated with Ji, i = 1, 2. Consequently,
by (9), we obtain that û = f − v, where v is the solution of

‖f − v‖2
2 → min s.t. v = DT

1 V1 = DT

2 V2, (14)

‖ |V1| ‖∞ ≤ α1, ‖ |V2| ‖∞ ≤ α2.

Now we have that

DT

2 = DT

1

(

Dx 0
0 Dy

)

.

Consequently, assuming that V1 =

(

Dx 0
0 Dy

)

V2, we may rewrite (14) as

‖f − DT

2 V ‖2
2 → min s.t. ‖ |

(

DxV 1

DyV
2

)

| ‖∞ ≤ α1, (15)

‖ |V | ‖∞ ≤ α2.

Note that this minimisation problem is similar but not equivalent to (14).
The solution of (14), (15) or of the primal problem (13) can be computed
by SOCP. In our numerical experiments we prefer the dual setting since it
allows for a much faster computation with standard software for SOCP than
the primal problem.

3 Variational methods for matrix-valued images

In this section, we want to transfer the regularization methods for scalar–
valued images reviewed in the previous section to matrix–valued images. While
it seem to be straightforward to replace the square of scalar values in the
data fitting term by the squared Frobenius norm, the penalizing term may
be established in different ways as we will see in the Subsections 3.2 and 3.3.
First we need some notation.
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Fig. 1. Top: Original image (left), noisy image (right). Bottom: Denoised image
by the ROF method (7) with α = 50 and by the modified infimal convolution
approach (15) with α1 = 50, α2 = 180 (right). The ROF based image shows the
typical staircasing effect. The performance of the inf-conv method is remarkable.

3.1 Preliminaries.

Let Symm(R) be the vector space of symmetric m × m matrices. This space
can be treated as a Euclidian vector space with respect to the trace inner
product

〈A, B〉 := tr AB = (vecA, vecB),

where (·, ·) on the right-hand side denotes the Euclidian inner vector product.
Then

〈A, A〉 = trA2 = ‖A‖2
F = ‖vecA‖ℓ2

2

is the squared Frobenius norm of A. In addition to this vector structure matri-
ces are (realizations of) linear operators and carry the corresponding features.
In particular they can be applied successively. Unfortunately, the original
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matrix multiplication does not preserve the symmetry of the matrices. The
Jordan–product of matrices A, B ∈ Symm(R) defined by

A • B :=
1

2
(AB + BA)

preserves the symmetry of the matrices but not the positive semi-definiteness.
In Symm(R), the positive semi-definite matrices Sym+

m(R) form a closed
convex set whose interior consists of the positive definite matrices. More pre-
cisely, Sym+

m(R) is a cone with base [1, 4, 5]. In our numerical examples we
will only consider the cases m = 2 and m = 3 where the positive definite
matrices can be visualized as ellipses, resp. ellipsoids, i.e. A ∈ Sym+

3 (R) can
be visualized as the ellipsoid

{x ∈ R
3 : xTA−2x = 1}

whose axis lengths are given by the eigenvalues of A.

3.2 Component-based regularization

In the following, let F : R
2 ⊃ Ω → Symm(R) be a matrix field. In this

subsection, we transfer (1) to matrix-valued images in a way that emphasizes
the individual matrix components. We will see that for this approach the
denoising methods from the previous section can be translated in a direct
way. However, the specific question arises whether these methods preserve
positive definiteness.

Instead of (1) we are dealing with

argmin
U

∫

Ω

‖F − U‖2
F + α Φ

(

tr (U2
x + U2

y )
)

dxdy, (16)

where the partial derivatives are taken componentwise. The penalizing term
J(U) in (16) was first mentioned by Deriche and Tschumperlé [22]. Rewriting
this term as

J(U) =

∫

Ω

Φ
(

‖Ux‖2
F + ‖Uy‖2

F

)

dxdy =

∫

Ω

Φ
(

n
∑

j,k=1

∇uT

jk∇ujk

)

dxdy (17)

we see its component-based structure implied by the Frobenius norm. How-
ever, due to the sum on the right–hand side, Φ is applied to coupled matrix
coefficients and we should be careful here. By [3], the Euler–Lagrange equation
of (17) is given by

0 = F − U + α
(

∂x(Φ′(tr(U2
x + U2

y ))Ux + ∂y(Φ′(tr(U2
x + U2

y ))Uy

)

. (18)

Again, we are only interested in the function Φ given by (4).
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For computations we consider the discrete counterpart of (16), where we
once more replace the derivative operators by simple forward difference oper-
ators

argmin
U

N−1
∑

i,j=0

1

2
‖F (i, j) − U(i, j)‖2

F + α J(U), (19)

J(U) :=

N−1
∑

i,j=0

(

‖U(i, j)− U(i − 1, j)‖2
F + ‖U(i, j) − U(i, j − 1)‖2

F

)1/2

with U(−1, j) = U(i,−1) = 0. The functional in (19) is strictly convex and
thus has a unique minimizer.

We say that the discrete matrix field F : Z
2
n → Sym+

m(R) has all eigenval-
ues in an interval I if all the eigenvalues of every matrix F (i, j) of the field
lie in I. By the following proposition, the minimizer of (19) preserves positive
definiteness.

Proposition 1. Let all eigenvalues of F : Z
2
n → Sym+

m(R) be contained in

the interval [λmin, λmax]. Then the minimizer Û of (19) has all eigenvalues in

[λmin, λmax].

The proof in the appendix is based on Courant’s Min-Max principle and
the projection theorem for convex sets.

To see how the methods from Section 2 carry over to matrix fields, we
rewrite (19) in matrix-vector form. To this end, let N = n2 and M := m(m+
1)/2. We reshape F : Z

2
n → Symm(R) into the vector

f :=





























ε1,1 vec (F1,1)
...
ε1,m vec (F1,m)
ε2,2 vec (F2,2)
...
ε2,m vec (F2,m)
...
εm,m vec (Fm,m)





























∈ R
MN ,

where Fk,l := (Fk,l(i, j))
n−1
i,j=0 and εk,l :=

{√
2 for k 6= l

1 otherwise
.

Then (19) becomes

arg min
u∈RMN

1

2
‖f − u‖2

ℓ2 + α‖ | (IM ⊗ D1)u| ‖ℓ1. (20)

This problem has just the structure of (8) with L := IM ⊗ D1 ∈ R
2MN,MN

and p = 2M . Thus it can be solved by applying SOCP to its dual given by
(10).
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Similarly, we can transfer the infimal convolution approach to the matrix-
valued setting. Obviously, we have to find

arg min
u1,u2∈RMN

1

2
‖f−u1−u2‖2

ℓ2 + α1‖ | (IM ⊗ D1) u1| ‖ℓ1 + α2‖ | (IM ⊗ D2)u1| ‖ℓ1 .

In our numerical examples we solve the corresponding modified dual problem

‖f − (IM ⊗ DT

2 )V ‖2
2 → min s.t. ‖ |

(

IM ⊗
(

Dx 0
0 Dy

))

V | ‖∞ ≤ α1,

‖ |V | ‖∞ ≤ α2. (21)

by SOCP.

3.3 Operator-based regularization

In this subsection, we introduce a regularizing term that emphasises the
operator structure of matrices. For A ∈ Symm(R) with eigenvalue decom-
position A = QΛQT, let Φ(A) = QΦ(Λ)QT, where Λ := diag (λ1, . . . , λn)
and Φ(Λ) := diag (Φ(λ1), . . . , Φ(λn)). We consider the following minimisation
problem

argmin
U

∫

Ω

‖F − U‖2
F + α tr

(

Φ(U2
x + U2

y )
)

dxdy. (22)

In contrast to (16) the trace is taken after applying Φ to the matrix U2
x + U2

y .
By the next proposition we have that the functional in (22) with Φ definied
by (4) is strictly convex:

Proposition 2. For given F : R
2 ⊃ Ω → Symm(R) and Φ(s2) =

√
s2, the

functional in (22) is strictly convex.

The proof is given in the appendix.
An example in [20] shows that the solution of (22) does in general not

preserve positive definiteness. The next proposition shows that the functional
(22) has an interesting Gâteaux derivative.

Proposition 3. Let Φ be a differentiable function. Then the Euler-Lagrange

equations for minimizing the functional (22) are given by

0 = F − U + α
(

∂x

(

Φ′(U2
x + U2

y ) • Ux

)

+ ∂y

(

Φ′(U2
x + U2

y ) • Uy

))

. (23)

The proof of the proposition is provided in the appendix and makes use of
matrix differential calculus. In contrast to (18) the Jordan product of matrices
appears in (23) and the function Φ′ is applied to matrices.

We apply Proposition 3 to compute a minimizer of (22) by solving the
corresponding reaction–diffusion equation for t → ∞
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Ut = F − U + α
(

∂x

(

Φ′(U2
x + U2

y ) • Ux

)

+ ∂y

(

Φ′(U2
x + U2

y ) • Uy

))

(24)

with Φ as in (5), homogeneous Neumann boundary conditions and initial value
F by a difference method. More precisely, we use the iterative scheme

U (k+1) = (1− τ)U (k) + τF + τα
(

∂x

(

G(k) • U (k)
x

)

+ ∂y

(

G(k) • U (k)
y

))

(25)

with sufficiently small time step size τ and G(k) := Φ′((U
(k)
x )2 +(U

(k)
y )2). The

inner derivatives including those in G were approximated by forward differ-
ences and the outer derivatives by backward differences so that the penalizing
term becomes

1

h1

(

G(i, j) • U(i + 1, j) − U(i, j)

h1
− G(i − 1, j) • U(i, j) − U(i − 1, j)

h1

)

+
1

h2

(

G(i, j) • U(i, j + 1) − U(i, j)

h2
− G(i, j − 1) • U(i, j) − U(i, j − 1)

h2

)

,

where hi, i = 1, 2 denote the pixel distances in x and y–direction. Alter-
natively, we have also worked with symmetric differences for the deriva-
tives. In this case we have to replace e.g. G(i, j) in the first summand by
G̃(i + 1, j) + G̃(i, j))/2 and G̃ is now computed with symmetric differences.

Finally, we mention that a diffusion equation related to (24) was examined
in [6]. Moreover, in [24] an anisotropic diffusion concept for matrix fields was
presented where the function Φ was also applied to a matrix.

4 Numerical Results

Finally, we present numerical results demonstrating the performance of the
different methods. All algorithms were implemented in MATLAB. Moreover,
we have used the software package MOSEK for SOCP.

SOCP [15] amounts to minimize a linear objective function subject to
the constraints that several affine functions of the variables have to lie in a
second-order cone Cn+1 ⊂ R

n+1 defined by the convex set

Cn+1 =

{(

x
x̄n+1

)

= (x1, . . . , xn, x̄n+1)
T : ‖x‖2 ≤ x̄n+1

}

.

With this notation, the general form of a SOCP is given by

inf
x∈Rn

fTx s.t.

(

Aix + bi

cT

i x + di

)

∈ Cn+1 , i = 1, . . . , r. (26)

Alternatively, one can also use the rotated version of the standard cone:

Kn+2 :=
{

(

x, x̄n+1, x̄n+2

)

T ∈ R
n+2 : ‖x‖2

2 ≤ 2 x̄n+1x̄n+2

}

.
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This allows us to incorporate quadratic constraints. Problem (26) is a convex
program for which efficient, large scale solvers are available [17]. For rewriting
our minimisation problems as a SOCP see [20].

We start by comparing the component-based regularization with the
operator-based regularization. First we are interested in the 1D matrix–valued
function F : Z16 → Sym+

2 (R) in Fig. 2. We added white Gaussian noise with
standard deviation 0.1 to all components of the original data in [0, 1]. Then
we computed the minimizer of the component-based functional (19) (left) and
of the operator-based functional (??) (right) both by SOCP. The latter was
computed using the fact that

tr |U | = max{
(

4u2
12 + (u11 − u22)

2
)1/2

, |u11 + u22|}

for U ∈ Sym+
2 (R), cf. [20]. The middle of the figure shows the Frobenius norm

of the difference between the original and the denoised signal (
∑N

i=1 ‖F (i) −
Û(i)‖2

F )1/2 in dependence on the regularization parameter α. We remark that
the shape of the curve and its minimal point do not change if we use the error
measure

∑N
i=1 ‖F (i)−Û(i)‖F instead. The actual minima w.r.t. the Frobenius

norm are given by min = 0.2665 at α = 0.8 for (19) and by min = 0.2276 at
α = 0.8 for (??). The denoised signals corresponding to the smallest error in
the Frobenius–norm are shown at the bottom of Fig. 2. It appears that the
operator-based method performs slightly better w.r.t. these error norms. The
visual results confirm this impression. The larger ellipses obtained by the first
method (19) slightly overlap while there are gaps between the smaller ones.
We do not have this effect for the minimizer of (??) on the right-hand side.

Next we consider the 2D matrix–valued function F : Z
2
32 → Sym+

2 (R)
in Fig. 3. To all components of the original data in [0,2] we added white
Gaussian noise with standard deviation 0.6. As in the previous example, we
compare the minimizer of the component-based approach (16) resp. (19) with
those of the operator-based approach (22). For computing the minimizer of
the first functional we applied SOCP while the second one was computed via
the reaction–diffusion equation (25) with time step size τ = 0.00025. The
iterations were stopped when the relative error in the ℓ2-norm between two
consecutive iterations became smaller than 10−8 (approximately 20000 iter-
ations) although the result becomes visually static much earlier. The middle
row of the figure contains the error plots for both methods. The actual min-
ima w.r.t. the Frobenius norm are given by min = 12.19 at α = 1.75 for (19)
and by min = 10.79 at α = 1.2 for (22). Hence, with respect to the computed
errors the operator-based method outperforms the component-based one. The
corresponding denoised images are shown in the bottom row of the figure.

In the following two examples, we consider bivariate matrix-valued func-
tions which map to Sym3(R). We use ellipsoids to visualize this form of data as
described in Section 3.1. Furthermore, the color of the ellipsoid associated with
a matrix A is chosen with respect to the normalized eigenvector corresponding
to the largest eigenvalue of A. Fig. 4 shows a function F : Z

2
12 → Sym3(R). As
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Fig. 2. Denoising of a matrix–valued signal. Top: Original signal (left), noisy signal
(right). Middle: Error of the Frobenius norm in dependence on the regularization
parameter α for the minimizers of the component-based functional (19) (left) and the
operator-based functional (??) (right). Bottom: Denoised image for α correspond-
ing to the smallest error in the Frobenius norm for the component-based functional
(left) and the operator-based functional (right).
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Fig. 3. Denoising of a Sym
2
(R)–valued image. Top: Original image (left), noisy

image (right). Middle: Error of the Frobenius norm in dependence on the regu-
larization parameter α for the minimizers of the component-based functional (19)
(left) and the operator-based functional (22) (right). Bottom: Denoised image for α

corresponding to the smallest error in the Frobenius norm for the component-based
functional (left) and the operator-based functional (right).
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before, we added white Gaussian noise to all components. The matrix compo-
nents of the original data lie in the interval [−0.5, 0.5] and the standard devi-
ation of the Gaussian noise is 0.06. The denoising results are displayed in the
last two rows of Fig. 4. We computed the minimizers of the component-based
method (19) (top) by SOCP. The smallest error, measured in the Frobenius-
norm, is 1.102 and was obtained for the regularization parameter α = 0.11.
In addition, we considered the minimizer of the infimal convolution approach
(21) (bottom). Again we applied SOCP and found the optimal regularization
parameters to be α1 = 0.14 and α2 = 0.08 for this method. The corresponding
Frobenius-norm error is 0.918. We see that the infimal convolution approach
is also suited for matrix-valued data.

In our final experiment, we applied the two component-based methods (19)
and (21) to a larger data set. Fig. 5 shows the orginal data and the minimizers
of (19) and (21). The components of the original data lie in [−4000, 7000] and
we used the regularization parameters α = 600 for (19) and α1 = 500, α2 =
600 for (21), respectively.

A Proofs

Proof of Proposition 1. Using that the minimal and maximal eigenvalues
λmin(A), λmax(A) of a symmetric matrix A fulfill

λmin(A) = min
‖v‖=1

vTAv, λmax(A) = max
‖v‖=1

vTAv,

it is easy to check that the set C of matrices having all eigenvalues in
[λmin, λmax] is convex and closed. Let J be the functional in (19). Assume
that some matrices Û(i, j) are not contained in C. Let PÛ(i, j) denote the
orthogonal projection (w.r.t. the Frobenius norm) of Û(i, j) onto C. Then we
obtain by the projection theorem [11, p. 269] that

‖F (i, j)− PÛ(i, j)‖F ≤ ‖F (i, j) − Û(i, j)‖F ,

‖PÛ(i, j) − PÛ(k, l)‖F ≤ ‖Û(i, j) − Û(k, l)‖F .

Consequently, J (PÛ) ≤ J (Û) which contradicts our assumption since the
minimizer is unique. This completes the proof. �

Proof of Proposition 2. Since ‖F − U‖2
F is strictly convex, it remains to

show that the functional

J(U) := tr
(√

U2
x + U2

y

)

is convex. Moreover, since J is positively homogeneous we only have to prove
that J is subadditive, cf. [2, p. 34], i.e.,

J(Ũ + U) ≤ J(Ũ) + J(U).
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Fig. 4. Denoising of a Sym
3
(R)-valued image. Top to Bottom: Original image,

noisy image, minimizer of the component-based method (19) for α = 0.11, minimizer
of the component-based infimal convolution approach (21) with parameters α1 =
0.14, α2 = 0.08. Visualization: ellipsoids (left), components of the matrix-valued
data (right).
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Fig. 5. Denoising of a real-world DT-MRI matrix field with values in Sym
3
(R).

Top: Original image. Middle: Minimizer of the component-based method (19) for
α = 600. Bottom: Minimizer of the infimal convolution approach (21) for α1 =
500, α2 = 600.
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This can be rewritten as

tr

(

√

(Ũx + Ux)2 + (Ũy + Uy)2
)

≤ tr

(

√

Ũ2
x + Ũ2

y

)

+ tr
(√

U2
x + U2

y

)

.

To prove this relation, we recall the definition of the trace norm, cf. [14, p.
197], which is defined as the sum of the singular values of a matrix A ∈ R

s,t:

‖A‖tr = tr(
√

A∗A).

Then we have for the symmetric matrices Ũx, Ũy, Ux, Uy that

‖
(

Ũx + Ux

Ũy + Uy

)

‖tr = tr

(

√

(Ũx + Ux)2 + (Ũy + Uy)2
)

Since ‖ · ‖tr is a norm it follows that

‖
(

Ũx + Ux

Ũy + Uy

)

‖tr ≤ ‖
(

Ũx

Ũy

)

‖tr + ‖
(

Ux

Uy

)

‖tr

= tr(
√

Ũ2
x + Ũ2

y ) + tr(
√

U2
x + U2

y )

and we are done. �

Proof of Proposition 3. Let ϕ(Ux, Uy) := tr
(

Φ(U2
x + U2

y )
)

. The Euler-
Lagrange equations of (22) are given, for i, j = 1, ..., n and i ≥ j, by

0 =
∂

∂uij
‖F − U‖2

F − α

(

∂

∂x

(

∂ϕ

∂uijx

)

+
∂

∂y

(

∂ϕ

∂uijy

))

.

For a scalar-valued function f and an n × n matrix X , we set ∂f(X)
∂X :=

(

∂f(X)
∂xij

)n

i,j=1
. Then, by symmetry of F and U , the Euler-Lagrange equations

can be rewritten in matrix-vector form as

Wn ◦ U − F

α
=

1

2

(

∂

∂x

(

∂ϕ

∂Ux

)

+
∂

∂y

(

∂ϕ

∂Uy

))

, (27)

where Wn denotes the n × n matrix with diagonal entries 1 and other coeffi-
cients 2, and A◦B stands for the Hadamard product (componentwise product)
of A and B.
We consider f(X) := tr Φ(X2). Then we obtain by [16, p. 178] and tr (ATB) =
(vecA)TvecB that

vec
∂f(X)

∂X
= vec

(

tr (Φ′(X2)
∂(X2)

∂xij
)

)n

i,j=1

= vec

(

(vecΨ)Tvec
∂(X2)

∂xij

)n

i,j=1
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where Ψ := Φ′(X2). By [16, p. 182] and since Ψ is symmetric this can be
rewritten as

vec
∂f(X)

∂X
= vec Wn ◦ ((In ⊗ X) + (X ⊗ In)) vec Ψ.

Using that vec(ABC) = (CT ⊗ A)vecB we infer that

vec
∂f(X)

∂X
= vecWn ◦ vec(XΨ + ΨX).

This implies that
∂f(X)

∂X
= 2 Wn ◦ (Ψ • X). (28)

Applying (28) with f(Ux) := ϕ(Ux, Uy) and f(Uy) := ϕ(Ux, Uy), respectively,
in (27) we obtain the assertion. �
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