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Abstract

Wherever anisotropic behaviour in physical measurements or mod-
els is encountered matrices provide adequate means to describe this
anisotropy. Prominent examples are the di�usion tensor magnetic res-
onance imaging in medical imaging or the stress tensor in civil engi-
neering. As most measured data these matrix-valued data are also
polluted by noise and require restoration.
The restoration of scalar images corrupted by noise via minimization
of an energy functional is a well-established technique that o�ers many
advantages. A convenient way to achieve this minimization is second
order cone programming (SOCP). The goal of this article is to transfer
this method to the matrix-valued setting. It is shown how SOCP can
be extended to minimize energy functionals de�ned for matrix �elds.
Furthermore, new functionals for the regularization of matrix data are
proposed and the corresponding Euler-Lagrange equations derived by
means of matrix di�erential calculus. Numerous experiments substan-
tiate the usefulness of the proposed methods for the restoration of
matrix �elds.

1 Introduction

Matrix-valued data, so-called matrix �elds have gained signi�cant impor-
tance in recent years:

• Firstly, di�usion tensor magnetic resonance imaging (DT-MRI) [3] is a
modern but commonly used medical imaging technique that measures
a 3 × 3 positive semide�nite matrix-�eld: A so-called di�usion tensor
is assigned to each voxel. This di�usion tensor describes the di�usive
property of water molecules. Since water di�uses preferably along or-
dered tissue such as nerve �bers this matrix gives valuable information
about the geometry and organization of the tissue under examination.
Hence this matrix �eld plays a very important role for the diagnosis of
multiple sclerosis and strokes. For detailed information about the ac-
quisition of this data type the reader is referred to [2] and the literature
cited there.
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• Secondly, in the �eld of technical sciences such as civil engineering and
solid mechanics or geology anisotropic behaviour is often described
satisfactorily by inertia, di�usion, stress, and permittivity tensors.

• Thirdly, matrices/tensors has been recognized as a lucrative concept in
image analysis itself [13]: The structure tensor [11], for instance, (also
called Förstner interest operator, or scatter matrix) has been employed
not only for corner detection [14], but also for texture analysis [21] and
motion estimation [5]. Tensor voting, an interesting recent tool for
segmentation and grouping, also makes use of the tensor concept.

This variety of applications make it worthwhile to develop appropriate tools
for the restoration and processing of tensor respectively matrix data, since,
just as scalar images, they are degraded and polluted by noise. However,
when designing �lters for matrix �elds, treating the channels independently
is a simple though not advisable strategy. Any relation between the di�erent
matrix channels is ignored which leads to similarly serious shortcomings as
in the case of vector-valued �ltering.

Unlike vectors, matrices can be multiplied making, in e�ect, matrix-
valued polynomials and even functions of matrices a very useful notion that
decisively rely on the strong interplay between the di�erent matrix entries.
Roughly speaking, we are taking an operator-algebraic point of view here
concentrating on symmetric matrices as �nite-dimensional instances of self-
adjoint operators. Unfortunately in the case of those symmetric matrices,
extra care has to be taken since the product of two symmetric matrices is
usually not symmetric: The Jordan product is used as an symmetric multi-
plication. In fact this product makes its natural appearance in the derivation
of energy functionals used in this paper for matrix �eld restoration.

This paper is organized as follows: Since we want to convert restora-
tion methods which were successfully applied in the scalar valued case to
the matrix�valued setting we start by considering the related scalar�valued
techniques in Section 2. Section 3 provides preliminaries on matrix-valued
functions and introduces to second order cone programming (SOCP). In
Section 4 we examine properties of a functional suggested by Deriche and
Tschumperlé for the root function in the penalizing term and show how
SOCP can be applied to �nd the minimizer of this functional. Section 5
proposes two new functional which better correspond to the matrix struc-
ture of our objects. The corresponding Euler-Lagrange equation includes the
Jordan product of matrices. We apply SOCP and a steepest decent method
to compute minimizers of these functionals. Finally, Section 6 compares the
di�erent methods by various numerical examples.
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2 Motivation: restoration of scalar-valued functions

A well-established method for restoring a scalar-valued image u from a given
degraded image f consists in calculating the minimizer of the functional

J (u) :=
1
2

∫
Ω
(f − u)2 + α Φ(|∇u|2) dxdy (1)

with regularization parameter α > 0 and an increasing function Φ : [0,∞] →
R in the penalizing term. The �rst summand encourages similarity be-
tween the restored image and the original one, while the second one rewards
smoothness. The appropriate choice of the function Φ ensures that impor-
tant image structures such as edges are preserved while areas with small
gradients are smoothed. A standard way for solving (1) uses the fact that
the minimizer has to ful�ll the Euler�Lagrange equation

0 = f − u + α div(Φ′(|∇u|2)∇u).

Then a steepest descent method can be applied which is equivalent to com-
puting the steady state of the reaction-di�usion equation

∂tu = f − u + α div(Φ′(|∇u|2)∇u)

with initial image u(·, 0) = f and homogeneous Neumann boundary condi-
tions. On the other hand, the Euler�Lagrange equation can be rewritten
as

u− f

α
= div(Φ′(|∇u|2)∇u)

This elliptic PDE can be interpreted as a fully implicit time discretization
of the di�usion equation

∂tu = div(Φ′(|∇u|2)∇u) (2)

with initial image u(·, 0) = f and homogeneous Neumann boundary condi-
tions. The solution of this di�usion equation is a good approximation of the
minimizer of (1). For details see [23, 27].

The steepest descent method requires that the function Φ is di�eren-
tiable. In this paper, we are interested in the function

Φ(s2) := |s| (3)

which is not di�erentiable at zero. Then the convex functional (1) is the
frequently applied ROF�model introduced by Rudin, Osher and Fatemi [22].
If we want to apply a steepest descent method we have to introduce a small
additional parameter ε and to deal with

Φ(s2) =
√

s2 + ε2, (4)
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instead of the original function, cf. [26]. However, for the function (3), the
penalizing functional in (1) has very useful properties, in particular it is posi-
tive one-homogeneous. Based on these properties various numerical methods
can be applied to �nd the minimizer without introducing the additional pa-
rameter, e.g.,

• second order cone programming (SOCP) [12],

• Chambolle's descent algorithms for the dual functional [9],

• a four pixel method for the corresponding di�usion equation [24].

In this paper, we will see how in particular SOCP can also be applied to
tensor-valued images.

In addition to the functional (1), the functional

J (u) :=
1
2

∫
Ω
(f − u)2 + α (Φ(u2

x) + Φ(u2
y)) dxdy (5)

was applied for image restoration also with higher order derivatives in liter-
ature [?, 15, 17]. For the absolute value function Φ, this functional can be
more e�ciently handled than (1). However, it is not rotationally invariant
but may be useful for images whose edges are straight lines in connection
with other techniques [4].

3 Preliminaries

Matrix-valued functions. To deal with matrix �elds we have to provide
some notation. Let Symn(R) be the vector space of symmetric n×n matrices.
This can be treated as a Euclidian vector space relative to the trace inner
product

〈A,B〉 := tr AB.

Then
〈A,A〉 = tr A2 = ‖A‖2

F

is the squared Frobenius norm of A. In Symn(R), the positive semi-de�nite
matrices Sym+

n (R) form a closed convex set whose interior consists of the
positive de�nite matrices. More precisely, Sym+

n (R) is a cone with base B
[1, 7, 8], i.e.

Sym+
n (R) = R≥0 B

and
B := {B ∈ Sym+

n (R) : trB = 1}.
Since B is a convex compact set in a �nite dimensional space it is, by the
Krein-Milman theorem, the convex hull of its extreme points which are given
by the rank 1 matrices vvT with ‖v‖2 = 1. Thus,

B = convexhull{vvT : v ∈ Sn−1}.
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For n = 2, this can be illustrated as follows: we embed Sym2(R) into R3

by

A 7→ a :=
1√
2
(2a12, a11 − a22, a11 + a22)T. (6)

This mapping is an isometry from Sym2(R) with the Frobenius norm onto
R3 with the Euclidian norm. For A ∈ Sym+

2 (R) with eigenvalues λ1, λ2 ≥ 0,
we have that

λ1 + λ2 = trA = a11 + a22 =
√

2 a3 ≥ 0,

λ1λ2 = detA =
1
4
(
(a11 + a22)2 − (a11 − a22)2 − 4a2

12

)
≥ 0.

Hence, A ∈ Sym+
2 (R) if and only if a3 ≥ 0 and ‖(a1, a2)T‖2 ≤ a3, i.e., the

symmetric positive semi-de�nite matrices form the cone C3 := {a ∈ R3 :
‖(a1, a2)T‖2 ≤ a3} depicted in Fig. 1. Its base B is just the closed disc at
the hight 1/

√
2 and the extreme points are the boundary of this disc. For

our numerical examples we will further use that the positive de�nite matrices
A ∈ Sym+

2 (R) can be visualized as ellipses

{x ∈ R2 : xTA−2x = 1}

whose axes have just the length of the eigenvalues of A.

Figure 1: Cone of symmetric, positive semi-de�nite matrices via (6).

By A◦B we denote the Hadamard product (componentwise product) and
by A⊗B the Kronecker product (tensor product) of A and B ([16]). Further
we consider the so-called Jordan�product of matrices A,B ∈ Symn(R) de�ned
by

A •B :=
1
2
(AB + BA) ∈ Symn(R).

In contrast to the ordinary matrix multiplication the Jordan�product pre-
serves the symmetry of the matrices. This does not hold for positive semi-
de�niteness. Finally, we set

vecA :=

 a1
...

an


for an n× n matrix A with j-th column aj .

Second order cone programming. SOCP [18] amounts to minimize a
linear objective function subject to the constraints that several a�ne func-
tions of the variables have to lie in a second order cone Cn+1 ⊂ Rn+1 de�ned

5



by the convex set

Cn+1 =
{(

x
x̄n+1

)
= (x1, . . . , xn, t)T : ‖x‖2 ≤ x̄n+1

}
. (7)

With this notation, the general form of a SOCP is given by

inf
x∈Rn

fTx , s.t.

(
Aix + bi

cTi x + di

)
∈ Cn+1 , i = 1, . . . , r. (8)

Alternatively, one can also use the rotated version of the standard cone:

Kn+2 :=
{(

x, x̄n+1, x̄n+2

)
T ∈ Rn+2 : ‖x‖2

2 ≤ 2 x̄n+1x̄n+2

}
.

This allows to incorporate quadratic constraints. Problem (8) is a convex
program for which e�cient, large scale solvers are available [20].

4 SOCP for the Deriche-Tschumperlé functional

Let F : R2 → Sym+
n (R) be a matrix �eld polluted with white Gaussian

noise. In analogy to (1), Deriche and Tschumperlé [25] proposed to �nd the
restored function U by minimizing the functional

J (U) :=
∫

Ω
‖F − U‖2

F dxdy + α J(U), (9)

where

J(U) :=
∫

Ω
Φ

(
tr(U2

x + U2
y )

)
dxdy =

∫
Ω

Φ
( n∑

j,k=1

∇uTjk∇ujk

)
dxdy. (10)

The penalizing term J(U) contains a coupling between the matrix coe�-
cients.

For di�erentiable Φ, the corresponding Euler�Lagrange equation reads

0 = F − U + α
(
∂x(Φ′(tr(U2

x + U2
y ))Ux + ∂y(Φ′(tr(U2

x + U2
y ))Uy

)
.

In [6] this system was considered similarly as in the scalar-valued case (2) as
explicit time discretization of an isotropic matrix�valued di�usion process.
Based on the extremum principle ful�lled by the solution of this PDE the
authors showed that the solution of the matrix�valued equation preserves
for appropriate Φ the positive de�niteness of the initial matrix �eld.

In this paper, we restrict our attention to the absolute value function Φ
in (3) and SOCP. For computations, we consider the discrete counterpart of
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(9), where we replace the derivative operators by simple forward di�erence
operators

Jd(U) :=
N−1∑
i,j=0

‖F (i, j)− U(i, j)‖2
F + α Jd(U), (11)

Jd(U) :=
N−1∑
i,j=0

(
‖U(i, j)− U(i− 1, j)‖2

F + ‖U(i, j)− U(i− 1, j)‖2
F

)1/2

with U(−1, j) = U(i,−1) = 0. Other discretizations of the �rst order deriva-
tives are possible, too. The functional (11) is strictly convex so that it has
a unique minimizer.

For su�ciently large α, we see that Û minimizes Jd i� Jd(Û) = 0, i.e.
Û(i, j) = Û(0, 0) for all i, j = 0, . . . , N − 1. Then the data �tting term
becomes minimal i�

Û(0, 0) =
1

N2

N−1∑
j,k=0

F (i, j). (12)

We say that the discrete matrix �eld F : Z2
N → Sym+

n (R) has all eigen-
values in an interval I if every matrix F (i, j) of the �eld has all eigenvalues
in I. By the following proposition the minimizer of (11) preserves positive
de�niteness.

Proposition 4.1. Let all eigenvalues of F : Z2
N → Sym+

n (R) be contained in
the interval [λmin, λmax]. Then the minimizer Û of (11) has all eigenvalues
in [λmin, λmax].

Proof. Using that the minimal and maximal eigenvalues λmin(A), λmax(A)
of a symmetric matrix A ful�ll

λmin(A) = min
‖v‖=1

vTA v, λmax(A) = max
‖v‖=1

vTA v,

it is easy to check that the set C of matrices having all eigenvalues in
[λmin, λmax] is convex and closed.

Assume that some matrices Û(i, j) are not contained in C. Let PÛ(i, j)
denote the orthogonal projection (w.r.t. the Frobenius norm) of Û(i, j) onto
C. Then we obtain by the projection theorem [10, p. 269] that

‖F (i, j)− PÛ(i, j)‖F ≤ ‖F (i, j)− Û(i, j)‖F ,

‖PÛ(i, j)− PÛ(k, l)‖F ≤ ‖Û(i, j)− Û(k, l)‖F .

Consequently, Jd(PÛ) ≤ Jd(Û) which contradicts our assumption since the
minimizer is unique. This completes the proof. �
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Remark 4.2. For intuition, let us just compute the minimizer of (11) for
two given matrices F (i), i = 0, 1 in one dimension. Via the embedding (6)
we obtain F (i) 7→ f := (f1(i), f2(i), f3(i))T. Then, (11) reads

Jd(u) =
1∑

i=0

(
‖f(i)− u(i)‖2

2 + + α ‖u(1)− u(0)‖2

)
and, in case d := ‖û(1)−û(0)‖2 6= 0, the (sub)gradient of Jd at the minimizer

û has to be zero. After some reordering this leads to

û(0) = f(0) +
α

2d
(û(1)− û(0)),

û(1) = f(1)− α

2d
(û(1)− û(0)).

By subtracting these equations and taking the norm of the resulting equation

we obtain

d =
d

d + α
‖f(1)− f(0)‖2

and thus d = ‖f(1)− f(0)‖2 − α if the right-hand side is nonnegative. Con-

sequently, the minimizer of Jd is given by

û(0) = f(0) +
α

2
f(1)− f(0)

‖f(1)− f(0)‖2
, (13)

û(1) = f(1)− α

2
f(1)− f(0)

‖f̃(1)− f(0)‖2

for α ≤ ‖f(1)−f(0)‖2 and in agreement with (12) by û(0) = û(1) = (f(0)+
f(1))/2 for larger α.

We want to compute the minimizer of (11) by SOCP. In this paper, we
are only interested in Sym2(R). The generalization to Symn(R), n ≥ 3 is
straightforward. We reorder a matrix �eld U : Z2

N → Sym2(R) into a vector
u ∈ R3N2

by applying the vec-operation

u =

 vec U11

vec U12

vec U22

 , Ukl :=
(
ukl(i, j)

)N−1

i,j=0
, k, l ∈ {1, 2}. (14)

The (partial) forward di�erence matrix is de�ned by D =
(

Dx

Dy

)
with

Dx = IN ⊗D, Dy = D ⊗ IN and

D :=



−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0

. . .
. . .

. . .

0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1
0 0 0 . . . 0 0 0


. (15)
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Let 1N denote the vector consisting of N components 1. Then it is straight-
forward that minimizing (11) is equivalent to the following SOCP:

t + α1TN2v → min

s.t.

 (
(1,

√
2, 1)⊗ IN2

)
(f − u)

t
1/2

 ∈ K3N2+2,

(
u11x, u11y, u12x, u12y, u22x, u22y

)
T =

(
13 ⊗D

)
u,((

u11x(i, j)
u11y(i, j)

)
T

,
√

2
(

u12x(i, j)
u12y(i, j)

)
T

,

(
u22x(i, j)
u22y(i, j)

)
T

, v(i, j)
)T

∈ C7,

i, j = 0, . . . , N − 1,

where uTklx = vec
(
uklx(i, j)

)N−1

i,j=0
.

Remark 4.3. For completeness, we mention that there also exists an anisotropic

approach [28] given by

J (U) :=
∫

Ω
‖F − U‖2

F + α trΦ
( n∑

j,k=1

∇ujk∇uTjk
)
dxdy. (16)

In contrast to (10), the function Φ is applied to a matrix now, i.e. to its

eigenvalues, and the trace is taken afterwards. This provides the mo-

tivation for a novel functional to be introduced in the next

section.

5 New functionals for matrix-�elds

Instead of (9) we propose to use the functional

J (U) :=
∫

Ω
‖F − U‖2

F + α tr
(
Φ(U2

x + U2
y )

)
dxdy (17)

In contrast to (9), the trace is taken after applying the function Φ to the
matrix U2

x + U2
y . Inspired by (5), we also consider

J (U) :=
∫

Ω
‖F − U‖2

F + α tr
(
Φ(U2

x) + Φ(U2
y )

)
dxdy. (18)

Again we are only interested in the absolute value function Φ(s2) = |s|.
The next proposition shows that the functional (17) has an interesting

Gateáux derivative.
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Theorem 5.1. Let Φ be a di�erentiable function. Then the Euler-Lagrange

equations for minimizing the functional (17) are given by

U − F

α
= ∂x

(
Φ′(U2

x + U2
y ) • Ux

)
+ ∂y

(
Φ′(U2

x + U2
y ) • Uy

)
. (19)

Proof. Let ϕ(Ux, Uy) := tr
(
Φ(U2

x + U2
y )

)
. The Euler-Lagrange equations

of (17) are given, for i, j = 1, ..., n; i ≥ j, by

0 =
∂

∂uij
‖F − U‖2

F − α

(
∂

∂x

(
∂ϕ

∂uijx

)
+

∂

∂y

(
∂ϕ

∂uijy

))
.

For a scalar-valued function f and an n × n matrix X, we set ∂f(X)
∂X :=(

∂f(X)
∂xij

)n

i,j=1
. Then, by the symmetry of F and U , the Euler-Lagrange equa-

tions can be rewritten in matrix-vector form as

Wn ◦
U − F

α
=

1
2

(
∂

∂x

(
∂ϕ

∂Ux

)
+

∂

∂y

(
∂ϕ

∂Uy

))
, (20)

where Wn denotes the n× n matrix with diagonal entries 1 and other coef-
�cients 2.
We consider f(X) := trΦ(X2). Then we obtain by [19, p. 178] and via

tr (ATB) = (vecA)TvecB that

vec
∂f(X)

∂X
= vec

(
tr (Φ′(X2)

∂(X2)
∂xij

)
)n

i,j=1

= vec
(

(vecΨ)Tvec
∂(X2)
∂xij

)n

i,j=1

where Ψ := Φ′(X2). By [19, p. 182] and since Ψ is symmetric this can be
rewritten as

vec
∂f(X)

∂X
= vecWn ◦ ((In ⊗X) + (X ⊗ In)) vecΨ

and using that vec(ABC) = (CT ⊗A)vecB we infer that

vec
∂f(X)

∂X
= vecWn ◦ vec(XΨ + ΨX).

This implies that
∂f(X)

∂X
= 2Wn ◦ (Ψ •X). (21)

Applying (21) with f(Ux) := ϕ(Ux, Uy) and f(Uy) := ϕ(Ux, Uy), respec-
tively, in (20) we obtain the assertion. �

10



Univariate matrix�valued functions. We start by considering matrix-
valued functions F and U in one spatial variable. In this case, the func-
tionals (17) and (18) coincide and can be written as

J (U) :=
∫

Ω
‖F − U‖2

F + α tr |Ux| dx (22)

with some interval Ω.

Proposition 5.2. i) The functional (22) is strictly convex.

ii) For matrices in Sym2(R) and Ux := (ujkx)2j,k=1, the functional (22) can
be rewritten as

J (U) =
∫

Ω
‖F −U‖2

F +α max{
(
4u2

12x +(u11x−u22x)2
)1/2

, |u11x +u22x|} dx.

(23)

Proof. i) Let λ : Symn(R) → Rn denote the the mapping of a matrix to the
vector of its eigenvalues in nonincreasing order and let f(x) := |x1|+. . .+|xn|.
Obviously, f is a symmetric function, i.e., permuting components does not
change the function value. Moreover, f is lower semicontinuous and convex.
Then, by [?, p.105], the function f ◦λ is also convex. Since the �rst summand
in (22) is strictly convex and the penalizing term coincides with f ◦ λ(Ux)
the whole functional is strictly convex.
ii) Let λ1 and λ2 be the eigenvalues of Ux. Then straightforward computation
yields

tr |Ux| = |λ1|+ |λ2| =
(
trU2

x + 2 |det Ux|
)1/2

. (24)

If det Ux = u11xu22x − u2
12x ≥ 0, then we obtain by (24) that

|λ1|+ |λ2| = |u11x + u22x| ≥
(
(u11x − u22x)2 + 4u2

12x

)1/2
.

For det Ux < 0, we get

|λ1|+ |λ2| =
(
(u11x − u22x)2 + 4u2

12x

)1/2 ≥ |u11x + u22x|.

This implies (23). �

For computations, we consider the discrete counterpart of (23), where
we replace the derivative operator by a simple forward di�erence operator

Jd(U) =
N−1∑
i=0

(
‖F (i)− U(i)‖2

F + α tr |U(i)− U(i− 1)|
)

(25)

with U(−1) := 0. Unfortunately, the minimizer of (25) does in general not
preserve positive de�niteness. To this end, we include the example in the
following remark.
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Remark 5.3. We consider the following intuitive example with only two ma-

trices F (0), F (1) ∈ Sym+
2 (R). Via the embedding (6) we obtain F (i) 7→ f :=

(f1(i), f2(i), f3(i))T. Further, we set f̃(i) := (f1(i), f2(i))T and similarly for

U . Then, (25) reads

Jd(U) =
1∑

i=0

(
‖f̃(i)− ũ(i)‖2

2 + (f3(i)− u3(i))2

+ α max{‖ũ(1)− ũ(0)‖2, |u3(1)− u3(0)|
)
.

Let
(
u∗1(i), u

∗
2(i)

)
T

, i = 0, 1, be the minimizer of

Jd,1(ũ) =
1∑

i=0

(
‖f̃(i)− ũ(i)‖2

2 + + α ‖ũ(1)− ũ(0)‖2

)
.

Set u∗3(i) := f3(i), i = 0, 1. Then it is easy to check that in case of

‖ũ∗(1)− ũ∗(0)‖2 ≥ |u∗3(1)− u∗3(0)| (26)

the vector �eld (u∗1(i), u
∗
2(i), u

∗
3(i))

T, i = 0, 1, minimizes Jd. Now the mini-

mizer of Jd,1(ũ) can be computed for α ≤ ‖f̃(1)− f̃(0)‖2 as shown in Remark

4.2. Let f(0) := (3, 4, 5)T, f(1) := (7, 1, 8)T ∈ C3 so that f(1) − f(0) =
(4,−3, 1)T 6∈ C3 and α := 1. Then, by (13) and (26) the minimizer of Jd is

given by

u(0) = f(0) +
1
10

(4,−3, 0)T, u(1) = f(1)− 1
10

(4,−3, 0)T

and u(0) 6∈ C3.

By Proposition 5.2 ii), problem (25) can be reformulated as SOCP. Since
this is completely analogous to (28) in the bivariate case, we formulate
the SOCP for the bivariate setting. Positive de�niteness of the solution
can be ensured by adding the cone condition in the SOCP. For the example
in Remark 5.3 this results in the solution

u(0) = f(0)+
1
10

(3.919,−3.086, 0.131), u(1) = f(1)− 1
10

(4.008,−2.990, 0).

Bivariate matrix�valued functions. The functional (18) can be rewrit-
ten as

J (U) =
∫

Ω
‖F − U‖2

F + α tr (|Ux|+ |Uy|) dxdy. (27)

This functional can be handled similarly as in the univariate case. By Propo-
sition 5.2 and using (14), the corresponding minimization problem can be
reformulated as SOCP as follows:

t + α1TN2(vx + vy) → min

12



s.t.

 (
(1,

√
2, 1)⊗ IN2

)
(f − u)

t
1/2

 ∈ K3N2+2,

(
u11x, u11y, u12x, u12y, u22x, u22y

)
T =

(
13 ⊗D

)
u, (28)

(2u12x(i, j), u11x(i, j)− u22x(i, j), vx(i, j))T ∈ C3,

(2u12y(i, j), u11y(i, j)− u22y(i, j), vy(i, j))
T ∈ C3,

(u11x(i, j) + u22x(i, j), vx(i, j))T ∈ C2,

(u11y(i, j) + u22y(i, j), vy(i, j))
T ∈ C2, i, j = 0, . . . , N − 1.

To ensure positive semi-de�niteness of the solution we can simply add the
cone condition (2u12(i, j), u11(i, j)− u22(i, j), u11(i, j) + u22(i, j))

T ∈ C3 to
(28).

The functional (17) can be rewritten as

J (U) =
∫

Ω
‖F − U‖2

F + α tr
√

U2
x + U2

y dxdy (29)

and in particular in case Sym2(R) as

J (U) =
∫

Ω
‖F − U‖2

F + α
√

η dxdy,

where η = η(u11x, u12x, u22x, u11y, u12y, u22y) is given by

η = u2
11x + 2u2

12x + u2
22x + u2

11y + 2u2
12y + u2

22y

+ 2
(
(u11xu22x − u2

12x)2 + (u11yu22y − u2
12y)

2 + (u11xu22y − u12xu12y)2

+(u11yu22x−u12xu12y)2+ (u11xu12y−u12xu11y)2+(u12yu22x−u12xu22y)2
)1/2

.

To compute a minimizer of (29) we apply Theorem 5.2 and solve the
corresponding reaction�di�usion equation for t →∞

Ut = F − U + α
(
∂x

(
Φ′(U2

x + U2
y ) • Ux

)
+ ∂y

(
Φ′(U2

x + U2
y ) • Uy

))
with Φ as in (4), homogeneous Neumann boundary conditions and initial
value F by a di�erence method. More precisely, we use the iteration scheme

U (k+1) = (1− τ)U (k) + τF + τα
(
∂x

(
G(k) • U (k)

x

)
+ ∂y

(
G(k) • U (k)

y

))
with su�ciently small time step size τ and G(k) := Φ′((U (k)

x )2 + (U (k)
y )2).

The inner derivatives including those in G were approximated by forward

13



di�erences and the outer derivatives by backward di�erences so that the
penalizing term becomes

1
h1

(
G(i, j) • U(i + 1, j)− U(i, j)

h1
−G(i− 1, j) • U(i, j)− U(i− 1, j)

h1

)
+

1
h2

(
G(i, j) • U(i, j + 1)− U(i, j)

h2
−G(i, j − 1) • U(i, j)− U(i, j − 1)

h2

)
,

where hi, i = 1, 2 denote the pixel distances in x and y�direction. Alterna-
tively, we have also worked with symmetric di�erences for the derivatives.
Then we have to replace e.g. G(i, j) in the �rst summand by G̃(i + 1, j) +
G̃(i, j))/2 and G̃ is now computed with symmetric di�erences.

6 Numerical Results

Finally, we present some numerical results demonstrating the performance
of the various methods. All algorithms were implemented in MATLAB.
Moreover, we have used MOSEK for SOCP. We restrict our attention to
Sym2(R).

We start with the 1D example in Fig. 2. To all components of the
original data we added white Gaussian noise with standard derivation 0.1.
We computed the minimizer of the Deriche-Tschumperlé functional (9) (left)
and of our new functional (23) (right) by SOCP. The bottom of the �gure
shows the l2�norm (of three matrix components) and the Frobenius norm of
the di�erence of the original and the denoised signal in dependence on the
regularization parameter α. The actual minima w.r.t. the Frobenius norm
are given by α = 0.8 and min = ? for (9) and α = 0.8 and min = ? for (23).
The denoised signals corresponding to the smallest error in the Frobenius�
norm are depicted in the middle of the �gure. It appears that the new
method performs slightly better w.r.t. these error norms. The visual results
con�rm this impression. The larger ellipses obtained by the �rst method (9)
slightly overlap while there are gaps between the smaller ones. We do not
have this e�ect for the minimizer of (23) at the left�hand side.

Next, we compare the minimizer of the Deriche-Tschumperlé functional
(9) (left) with those of our new functionals (27) (middle) and (29) (right)
in Fig. 3. For the �rst two functionals we applied SOCP while the third
one was computed via the reaction�di�usion equation with time step size
τ = 0.00025. The iterations were stopped when the relative error in the
Frobenius norm between two consecutive iterations became smaller than
10−8 (approximately 20000 iterations) although the result remains

visually static much earlier. To all components of the original data
we added white Gaussian noise with standard derivation 0.1. The bottom
of the �gure contains again the error plots. The actual minima w.r.t. the
Frobenius norm are given by α = 0.28 and min = 0.7128 for (9), α =

14



Figure 2: Denoising of a matrix�valued signal. Top: Original signal (left),
noisy signal (right). Middle: Denoised image for α corresponding to the
smallest error in the Frobenuis norm for (9) and (23) (left to right). Bottom:
l2�error and error of the Frobenius norm in dependence on the regularization
parameter α for the minimizer of (9) and (23) (left to right).

0.18 and min = 0.6489 for (27) and α = 0.18 and min = 0.7426 for (29).
Regarding these errors, method (27) performs best, however visually it is
hard to distinguish between the methods.

Figure 3: Denoising of a matrix�valued image. Top: Original signal (left),
noisy signal (right). Middle: Denoised image for α corresponding to the
smallest error in the Frobenius norm for (9), (27) and (29) (left to right).
Bottom: l2�error and error of the Frobenius norm in dependence on the
regularization parameter α for the minimizer of (9), (27) and (29) (left to
right).

Our third example for matrix�valued images in Fig 4 is similar to the
second one except that we have to apply another visualization based on
OpenGL. To all components of the original data we added white Gaussian
noise with standard derivation 0.6. We use the same parameters as in Fig.
3. The bottom of the �gure contains the error plots for the three methods.
The actual minima w.r.t. the Frobenius norm are given by α = 1.75 and
min = 12.19 for (9), α = 1.15 and min = 11.6 for (27) and α = 1.2 and
min = 10.79 for (29). With respect to the computed errors the new methods
outperform the one based on the Deriche-Tschumperlé functional, where the
third method performs best.

Finally, we remark that we have restricted our attention to small arti�cial
examples to see some di�erences between the various methods. In general it
is no problem to use SOCP for matrix�valued images of size e.g. 128× 128.
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Figure 4: Denoising of a matrix�valued image. Top: Original signal (left),
noisy signal (right). Middle: Denoised image for α corresponding to the
smallest error in the Frobenius norm for (9), (27) and (29) (left to right).
Bottom: l2�error and error of the Frobenius norm in dependence on the
regularization parameter α for the minimizer of (9), (27) and (29) (left to
right).
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