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Abstract

Diffusion tensor magnetic resonance imaging (DT-MRI), is a image
acquisition method, that provides matrix-valued data, so-called matrix
fields. Hence image processing tools for the filtering and analysis of these
data types are in demand. In this artricle we propose a generic framework
that allows us to find the matrix-valued counterparts of the Perona-Malik
PDEs with various diffusivity functions. To this end we extend the notion
of derivatives and associated differential operators to matrix fields of sym-
metric matrices by adopting an operator-algebraic point of view. In order
to solve these novel matrix-valued PDEs successfully we develop truly
matrix-valued analogs to numerical solution schemes of the scalar setting.
Numerical experiments performed on both synthetic and real world data
substantiate the effectiveness of our novel matrix-valued Perona-Malik
diffusion filters.

Keywords: Diffusion tensor magnetic resonance imaging, DT-MRI, Jordan
product, Perona-Malik diffusion, matrix fields

1 Introduction

Matrix-fields are used, for instance, in civil engineering to describe anisotropic
behaviour of physical quantities. Stress and diffusion tensors are prominent ex-
amples. The output of diffusion tensor magnetic resonance imaging (DT-MRI)
[22] are symmetric 3×3-matrix fields as well. In medical sciences this image ac-
quisition technique has become an indispensable diagnostic tool in recent years.
There is an increasing demand to develop image processing tools for the filtering
and analysis of such matrix-valued data.
In modern image processing d-dimensional scalar images f : Ω ⊂ IRd → IR have
been denoised, segmented and/or enhanced successfully with various filters de-
scribed by nonlinear parabolic PDEs. In this article we focus on one of the
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most prominent example of PDEs used in image processing, the Perona-Malik
equation [21]. The corresponding initial boundary value problem is given by

∂tu− div
(
gλ(|∇u|2) · ∇u

)
= 0 in I × Ω,

∂nu = 0 in I × ∂Ω, (1)
u(x, 0) = f(x) in Ω,

where Ω ⊂ IRd is the image domain and I = [0, T [ a potentially unbounded time
interval.

The diffusivity function gλ with parameter λ > 0 is positive, decreasing on
the interval [0,+∞[ with gλ(0) = 1 and lim

x→+∞
gλ(x) = 0. Practically relevant

are diffusivities such as the Perona-Malik diffusivity [20]:

gλ(s2) =
1

1 + ( s
λ )2

(2)

or the family of Weickert diffusivities [29]

gλ,p(s2) = 1− exp
(
− cp

( s
λ )2p

)
, (3)

where cp is a normalising constant such that

d

ds
(s · gλ(s2)) |s=λ = 1− 1 + 2pcp

exp(cp)
= 0.

For p = 4 one obtains c4 = 3.31488. Noticing that cp depends logarithmicly on
p > 0 it is not hard to see that in the limit we get a 0-1-diffusivity

gλ,∞(s) := lim
p→+∞

gλ,p(s) =
{

1 for 0 ≤ s ≤ λ
0 for λ < s .

(4)

In effect the diffusivities (2,3) entail a forward diffusion in the image at
locations where |∇u| < λ and a backward diffusion where |∇u| > λ. This
accounts for the well-known edge-preserving or even edge-enhancing properties
of this nonuniform process, since edges are locii of high grey value variations.
Hence the visually impressive denoising results when these filter type is applied
do not come as a surprise. However, backward diffusion is an ill-posed process
and hence some unwanted effects appear such as the creation of artificial edges
known as staircaising. Theory has not yet progressed so far to be able to predict
where these discontinuities appear during Perona-Malik diffusion in dimension
d ≥ 2. Investigations even in the case of the continuous Perona-Malik diffusion
in one (spatial) dimension proved to be extremely difficult [9, 18, 28, 31, 16, 23,
12, 2, 19, 4, 34]. Nevertheless, in practice Perona-Malik-type diffusion provides
a successful method to smooth noisy images while preserving important contour
information [17, 31, 25]. Extensions of nonlinear PDEs from scalar grey value to
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vectorial color images have been proposed in [14, 27, 10, 30]. There, in essence,
the summation over the structure tensors stemming from the vector components
ensure an appropriate channel coupling.

The goal of this article is to extend the important Perona-Malik diffusion
process to matrix-valued images or matrix fields, for short. Here a matrix field
is considered as a mapping

F : Ω ⊂ IRd −→Mn(IR),

from a d-dimensional image domain into the set of n × n-matrices with real
entries, F (x) = (fp,q(x))p,q=1,...,n . Of particular importance for us is the subset
of symmetric matrices Symn(IR). The set of positive (semi-)definite matrices,
denoted by Sym++

n (IR) (Sym+
n (IR), resp.), consists of all symmetric matrices A

with
〈v,Av〉 := v>Av > 0 (≥ 0, resp.,) for v ∈ IRn \ {0} .

This set is interesting for applications since DT-MRI acquisition technique pro-
duces data with this property. Note that at each point the matrix F (x) of a
field of symmetric matrices can be diagonalised respectively decomposed into
its spectral components yielding

F (x) = V (x)>D(x)V (x) =
n∑

i=1

λi(x) vi(x)v>i (x) .

Here x 7→ V (x) ∈ O(n) is a matrix field of orthogonal matrices V (x) with
column vectors vi(x), i = 1, . . . , n while x 7→ D(x) is a matrix field of diagonal
matrices with entries λi(x), i = 1, . . . , n. In the sequel we will denote n × n
- diagonal matrices with entries λ1, . . . , λn ∈ IR from left to right simply by
diag(λi), and O(n) stands for the matrix group of orthogonal n× n-matrices.

Nonlinear partial differential equations have been employed to process ma-
trix fields in [13] and more recently in [24]. Some extensions of scalar PDEs to
matrices proposed in these works rely on generalisations of the so-called struc-
ture tensor. The considerations in [32, 6] spearheaded these generalisations of
structure-tensor concepts.

Other approaches to positive definite matrix field filtering with a differen-
tial geometric background have been suggested in [26, 11]. In their setting the
set of positive definite matrices is endowed with a structure of a manifold and
the methodology is geared towards application to DT-MRI data. Comprehen-
sive survey articles on the analysis of matrix fields using wide range of different
techniques can be found in [33] and the literature cited therein.

The path we take in this article is a different one. We will develop a general
generic framework for deriving matrix-valued counterparts for scalar PDEs by
adopting an operator-algebraic point of view. This means that we are not just
deriving systems of PDEs which can be written in matrix form. Instead we will
exploit the operator-algebraic properties of (symmetric) matrices to establish
truly matrix-valued PDEs. We consider the symmetric matrices as a natural
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generalisation of real numbers with a rich algebraic structure. For this work
we concentrate on the matrix-valued analogs of the Perona-Malik PDE for a
proof-of-concept. It is also worth mentioning that in contrast to [13, 24, 5] our
framework does not rely on a notion of a structure tensor. Nevertheless, the
proposed concept ensures an appropriate and desirable coupling of channels.
The methodology to be developed will also enable us to transfer numerical
schemes from the scalar to the matrix-valued setting.

The article is organised as follows: Section 2 provides the basic definitions
necessary for our framework, such as functions of a matrix, partial derivatives,
and generalised gradient of a matrix field. In Section 3 we turn first to the
simple linear diffusion for matrix fields for the sake of later comparison. The
Perona-Malik PDE requires the definition of a symmetrised multiplication for
symmetric matrices. We will focus on two possibilities and study their influence
on the evolution process later on. Within this framework we then formulate the
matrix-valued counterparts of the Perona-Malik diffusion equation. By consid-
ering the already rather complicated one-dimensional case, first properties of
the matrix-valued Perona-Malik diffusion processes are inferred.
The transition from scalar numerical solution schemes to matrix-valued algo-
rithms for the solutions of the new diffusion equations is made in Section 4.
Exemplary applications of the proposed framework to synthetic data as well as
real DT-MRI data are presented in Section 5. We conclude with a summary in
Section 6. Some results related to this work are presented at a conference [8].
However, the investigations presented here encompass a more detailed analysis
of the suitable symmetric matrix products, the enhancement properties of non-
linear diffusion processes, and a signifantly extended experimental validation.

2 Generic Framework for Matrix-Valued PDEs

In this section we provide the key definitions for the formulation of matrix-
valued PDEs. The basic idea is that to a certain extend symmetric matrices can
be regarded as a generalisation of real numbers. Hence we transfer notions from
scalar calculus to the the matrix-valued setting: As instigated in [7] we define
functions of matrices and especially derivatives and gradients of such functions.

We juxtapose the corresponding basic definitions in Table 2, and comment on
them in the remarks below. We assume the matrix field U(x) to be diagonisable
with U = (uij)ij = V >diag(λ1, . . . , λn)V , where V ∈ O(n) and λ1, . . . , λn ∈ IR .

Comments:

1. The proposed notions for a calculus on symmetric matrix fields are exten-
sions of the calculus of scalar multivariate functions. As such it must be
possible to regain the scalar calculus from the newly introduced matrix-
valued framework by specification. There are two ways to view scalar cal-
culus as a special case of the matrix calculus: Clearly, setting n = 1 turns
the matrix field into a scalar function. However, one can also embed the
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Setting scalar valued matrix-valued

function h :
{

IR −→ IR
x 7→ h(x) h :

{
Symn(IR) −→ Symn(IR)
U 7→ V >diag(h(λ1), . . . , h(λn))V

partial ∂ωu, ∂ωU := (∂ωuij)ij ,
derivatives ω ∈ {t, x1, . . . , xd} ω ∈ {t, x1, . . . , xd}

higher ∂k
ωu, ∂

k

ωU :=
(
∂k

ωuij

)
ij

,
derivatives ω ∈ {t, x1, . . . , xd} ω ∈ {t, x1, . . . , xd}

Laplacian ∆u :=
d∑

i=1

∂2
xi

u ∆U :=
d∑

i=1

∂
2

xi
U

H u(x) :=
(
∂xi

∂xj
u(x)

)
i,j=1,...,d

, HU(x) :=
(
∂xi

∂xj
U(x)

)
i,j=1,...,d

,
Hessian

H u(x) ∈ Symd(IR) HU(x) ∈ Symd(Symn(IR))

∇u(x) := (∂x1 u(x), . . . , ∂xd
u(x))>, ∇U(x) := (∂x1 U(x), . . . , ∂xd

U(x))>,
gradient

∇u(x) ∈ IRd ∇U(x) ∈ (Symn(IR))d

div (a(x))> :=
d∑

i=1

∂xiai(x), div (A(x))> :=
d∑

i=1

∂xiAi(x),
divergence

a(x) := (a1(x), . . . , ad(x)) A(x) := (A1(x), . . . , Ad(x))

|w|p := p
√
|w1|p + · · ·+ |wd|p, |W |p := p

√
|W1|p + · · ·+ |Wd|p,

length
|w|p ∈ [0,+∞[ |W |p ∈ Sym+

n (IR)

A •P B := A
1
2 BA

1
2 ,

product a · b
A •J B := 1

2 (AB + BA)

Table 1: Extensions of elements of scalar valued calculus (middle) to the
matrix-valued setting (right).

set of real numbers IR into the set of symmetric matrices Symn(IR) by the
identification IR 3 r ←→ r · In with the n× n identity matrix In. Hence,
asides from having a certain simplicity, it is mandatory that the proposed
extensions collapse to the scalar calculus when making the transition from
scalar functions to matrix fields in one way or the other.

2. Functions of matrices. The definition of a function h on Symn(IR)
is standard [15]. As an important example, we emphasise that |U | de-
notes the matrix-valued equivalent of the absolute value of a real number,
|U | = V >diag(|λ1|, . . . , |λn|)V ∈ Sym+

n (IR), not to be confused with the
determinant det(U) of U . Note that |U | =

√
U2 is in complete accordance

with the scalar case.

3. Partial derivatives. The componentwise definition of the partial deriva-
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tive for matrix fields is a natural extension of the scalar case:

∂ωU(ω0) = lim
h→0

1
h

(
U(ω0 + h)− U(ω0)

)
=

(
lim
h→0

uij(ω0 + h)− uij(ω0)
h

)
i,j

= (∂ωuij(ω0))i,j

In this way higher order partial differential operators, such as the Lapla-
cian, or other more sophisticated operators, find their natural counterparts
in the matrix-valued framework. It is worth mentioning that for the oper-
ators ∂ω a product rule holds:

∂ω(A(x) ·B(x)) = (∂ωA(x)) ·B(x)) + A(x) · (∂ωB(x)) .

4. Generalised gradient of a matrix field. The definition of a gener-
alised gradient is somewhat different from one that might be expected
when viewing a matrix as a tensor (of second order). The rules of differ-
ential geometry would tell us that derivatives are tensors of third order.
Instead, we adopt a more operator-algebraic point of view: The matrices
are self-adjoint operators that can be added, multiplied with a scalar, and
concatenated. Thus, they form an algebra, and we aim at consequently
replacing the field IR by the algebra Symn(IR) in the scalar, that is, IR-
based formulation of PDEs used in image processing. Hence, the gener-
alised gradient ∇U(x) at a voxel x is regarded as an element of the module
(Symn(IR))d over Symn(IR) in close analogy to the scalar setting where
∇u(x) ∈ IRd.
In the sequel we will call a mapping from Rd into (Symn(IR))d a module
field rather than a vector field.

5. Generalised Hessian The generalised Hessian of a field of symmetric
matrices is a nd × nd block matrix with blocks of size n × n. If the en-
tries of each of the matrices of the matrix field are twice continuously
differentiable then the Hessian is a symmetric matrix, just as its smaller
counterpart derived from a multivariate scalar function.

6. Generalised divergence of the module field. The generalisation of
the divergence operator div acting on a vector field to an operator div
acting on a module field A is straightforward, and is in accordance with
the formal relation

∆U = div∇U = ∇.∇U

known in its scalar form from standard vector analysis.

7. Generalised length in (Symn(IR))d. Considering the formal definition
in the table the length of a element of a module field A is close at hand.
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Moreover, it results in a positive semidefinite matrix as the direct coun-
terpart of a nonnegative real number as the length of a vector in IRd.
However, one cannot assume that this generalised length fulfils a triangle
inequality with respect to the Loewner ordering.

8. Symmetrised product of symmetric matrices. The product of two
symmetric matrices A,B ∈ Symn(IR) is not symmetric unless the matrices
commute. Among the numerous options to define a symmetrised matrix
product we focus on two specific ones: The first is inspired from pre-
conditioning of symmetric linear equation systems.

A •P B = A
1
2 BA

1
2 for A ∈ Sym+

n (IR), B ∈ Symn(IR) . (5)

The following short list of properties is easily verified: It is neither asso-
ciative, nor commutative, and distributive only in the second argument.
However, if A is non-singular, the so-called signature s = (s+, s−, s0) of
B is preserved, where s+, s−, and s0, stand for the number of positive,
negative, and vanishing eigenvalues of B, respectively. This implies in par-
ticular that the positive definiteness of B is preserved. A multiplication
rule for the determinant holds,

det(A •P B) = det(A) · det(B) .

Furthermore, for commuting matrices A,B we have A •P B = A ·B. Note
that the first argument has to be positive semidefinite.

The second choice is well-known from algebra and called Jordan product:

A •J B =
1
2
(AB + BA) for A,B ∈ Symn(IR) . (6)

This product is commutative but neither associative nor distributive. It
is one half of the anti-commutator of A and B, but due to its additive
structure no determinant product rule holds. Most important, it does not
preserve the positive semidefinitness of its arguments. Again, for commut-
ing A and B we have A •J B = A ·B.

It should be mentioned that the logarithmic multiplication introduced in [1] and
given by A •L B := exp(log(A) + log(B)) is defined only for positive definite
matrices. However, the matrix-valued Perona-Malik diffusion proposed here re-
quires the multiplication to be able to cope with at least one factor matrix being
indefinite. Furthermore matrix fields that are not necessarily positive semidef-
inite should also be within the reach of our PDE-based filtering. Hence the
logarithmic multiplication is not suitable for our purpose.

For a better comparison of the products we represent symmetric 2 × 2-
matrices by points in IR3 via the mapping [7](

α β
β γ

)
←→ 1√

2
(2β, γ − α, γ + α) .
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The set Sym+
2 (IR) of positive semidefinite matrices then appears as a cone in

IR3, the cone corresponding to the Loewner ordering, see Figure 1, where a com-
parison of the products is displayed: a set of matrices {Ai : i ∈ I} with constant
trace is multiplied by a single matrix utilising the Jordan-, the preconditioning,
and, as long as the matrices are positive definite, the logarithmic product.

Figure 1: The cone of all positive semidefinite 2 × 2-matrices is displayed in
all three pictures. Each matrix of a set of positive semidefinite-matrices {Ai}
(ring of black diamonds) is multiplied by a fixed matrix B (single black diamond)
utilising the Jordan product Ai•J B (line of boxes), the preconditioning product
Ai •P B (line of crosses) and, if applicable, the logarithmic product (line of
circles). (a) Left: The matrices Ai, B are positive definite but have one small
eigenvalue. The boxes indicate the matrices produced by the Jordan-product,
they lie outside the cone. Hence •J does not preserve positive semidefiniteness.
As expected the preconditioning product (crosses) and the logarithmic product
(circles) preserve positive semidefiniteness. (b) Middle: If the two eigenvalues
of each matrix Ai, B are positive and comparable in magnitude (corresponding
points are in the vicinity of the center axis of the cone), the three types of
products are very similar to each other. (c) Right: The products •J and •P are
produce quite different results if the one of the matrices multiplied is indefinite.
Note that the logarithmic product is not defined in this case.

3 Diffusion Equations for Matrix Fields

3.1 Matrix-Valued Linear Diffusion

The linear diffusion equation ∂tu =
d∑

i=1

∂xi∂xiu =
d∑

i=1

∂xixiu = ∆u on IRd×[0,∞[

is directly extended to the matrix-valued setting:

∂tU =
d∑

i=1

∂xi∂xiU =
d∑

i=1

∂xixiU = ∆U (7)
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with initial condition U(x, 0) = F (x). The diffusion process described by this
equation acts on each of the components of the matrix independently. It is not
immediately clear that positive (semi-)definiteness of the initial matrix field F
is indeed bequeathed to U for all times. Let us denote the i-th real eigenvalue
of U , resp., F , as λi, resp., λF

i , numbered according to decreasing value.
Proposition: The following inequality holds for all (x, t) ∈ IRd × [0,∞[:

sup
x

λF
1 (x) ≥ λi(x, t) ≥ inf

x
λF

n (x) .

Especially the positive (semi)definiteness of the initial field F is preserved in U .
Proof: We infer from the linearity of the differential operators ∂t and ∆

that for any fixed unit vector w ∈ IRn the scalar diffusion equation

∂t〈w,Uw〉 = ∆〈w,Uw〉

holds, with initial condition 〈w,U(x, 0)w〉 = 〈w,F (x)w〉. Hence, the Rayleigh
coefficient 〈w,U(x, t)w〉 is a scalar function obeying a max-min-principle leading
to the estimates

sup
x

λF
1 (x) ≥ sup

x
〈w,F (x)w〉 ≥ 〈w,U(x, t)w〉 ≥ inf

x
〈w,F (x)w〉 ≥ inf

x
λF

n (x)

valid for all (x, t) ∈ IR×[0,∞[ and unit vectors w. Choosing w as the eigenvector
corresponding to the eigenvalue λi(x, t) we can ensure the equality

〈w,U(x, t)w〉 = λi(x, t)

which proves the claim.

3.2 Matrix-Valued Perona-Malik Diffusion Equations

The scalar Perona-Malik diffusion equation (1) requires the multiplication of
the components of a vector (namely ∇u) with a scalar (namely g(|∇u|2)). In
the matrix-valued setting the components of ∇U , that is, ∂xiU , i = 1, . . . , d, its
generalised length |∇U |2 =: |∇U | and hence g(|∇U |2) are symmetric matrices.
We opted for two possibilities: The Jordan •J and the preconditioning A •P B
as defined in (6) and (5), respectively.

With these definitions we are now in the position to state the matrix-valued
counterpart of the Perona-Malik PDE (1). It is given by

∂tU = div
(
g((∇U)2) • ∇U

)
(8)

which becomes manifest in the following two versions:

∂tU =
d∑

i=1

∂xi

(√
g((∇U)2) · (∂xi

U) ·
√

g(|∇U |2)
)

, (9)

∂tU =
d∑

i=1

∂xi

(
g((∇U)2) · (∂xiU) + (∂xiU) · g(|∇U |2)

)
, (10)

depending on the usage of the preconditioning (9) or the Jordan (10) product.
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3.3 Enhancement Properties / Diffusion Properties

In this section we will show that the matrix-valued Perona-Malik diffusion pro-
cess can be expected to have the same properties as their scalar counterparts.
This is an important confirmation of the validity of the proposed generic ap-
proach to matrix-valued PDEs. We restrict ourselves for the moment to the case
of one spatial dimension (d = 1): U : IR −→ Symn(IR), that is, to matrix-valued
signals since then simplifications occur. Only one spatial derivative appears and
the expressions containing the matrix ∂x commute. Hence, in those expressions
the symmetric multiplication “•“ collapses to ”·”, facilitating the analysis. The
equation for the matrix-valued Perona-Malik diffusion in one space dimension
simplifies to

|∂tU | = ∂x

(
g((∂xU)2) · ∂xU

)
.

However, even in this simplified setting matrix-valued exhibit directional (through
eigenvectors) as well as shape information (through eigenvalues) which allows
for the appearance of new phenomena.

The partial derivative ∂x of a signal U of symmetric matrices results again
in symmetric matrices, ∂xU(x) ∈ Symn(IR). Hence

∂xU(x) = Ṽ >(x)diag(λ̃i(x))Ṽ (x)

with Ṽ (x) ∈ O(n) for all x ∈ Ω. We observe that g((∂xU)2) is also diagonalised
by Ṽ , and it follows that

g((∂xU)2) · ∂xU = Ṽ >diag
(
g(λ̃i

2
) · λ̃i

)
Ṽ .

In allusion to the analysis of the Perona-Malik equation in [29] we introduce a
flux function Φ by

Φ(s) := s · g(s2)

which gives d Φ
d s (s) = Φ′(s) = 2s2g′(s2) + g(s2) at least for s > 0. The product

rule for matrix-valued functions then yields, if we suppress the explicit depen-
dence of Ṽ and λ̃i on x notationally:

∂x

(
g((∂xU)2) · ∂xU

)
=

= ∂xṼ diag(g(λ̃i
2
) · λ̃i) Ṽ > + Ṽ diag(g(λ̃i

2
) · λ̃i) ∂xṼ > + Ṽ diag(∂x[g(λ̃i

2
) · λ̃i]) Ṽ >

=
(
∂Ṽ >, Ṽ >, Ṽ >

)
diag

(
g(λ̃i

2
) λ̃i

)
0 0

0 diag
(
g(λ̃i

2
) λ̃i

)
0

0 0 diag
(
Φ′(λ̃i) ∂xλ̃i

)


︸ ︷︷ ︸
=:M

 Ṽ

∂Ṽ

Ṽ



=
(
∂Ṽ >, Ṽ >, Ṽ >

)
diag

(
g(λ̃i

2
); g(λ̃i

2
); Φ′(λ̃i)

)
diag

(
λ̃i; λ̃i; ∂xλ̃i

)  Ṽ

∂Ṽ

Ṽ

 , (11)

where the 3 × 3-block-matrix M has been decomposed into a product of the
block-matrices
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diag
(
h(λ̃i

2
);h(λ̃i

2
); Φ′(λ̃i)

)
:=


diag

(
h(λ̃i

2
)
)

0 0

0 diag
(
h(λ̃i

2
)
)

0

0 0 diag
(
Φ′(λ̃i)

)
 ,

diag
(
λ̃i; λ̃i; ∂xλ̃i

)
:=


diag

(
λ̃i

)
0 0

0 diag
(
λ̃i

)
0

0 0 diag
(
∂xλ̃i

)
 .

Hence, the matrix-valued version of the Perona-Malik diffusion equation
takes on the form

∂tU =
(
∂xṼ >, Ṽ >, Ṽ >

)
diag

(
g(λ̃i

2
); g(λ̃i

2
); Φ′(λ̃i)

)
diag

(
λ̃i; λ̃i; ∂xλ̃i

) Ṽ

∂xṼ

Ṽ

, (12)

while the matrix-valued linear diffusion equation can be cast into the form

∂tU =
(
∂xṼ >, Ṽ >, Ṽ >

)
diag

(
λ̃i; λ̃i; ∂xλ̃i

)  Ṽ

∂xṼ

Ṽ

 . (13)

Juxtaposing this pairing with their scalar versions rewritten in this fashion, the
Perona-Malik equation turns out to be

∂tu = Φ′(∂xu) · ∂xxu

= (∂x1, 1, 1) diag
(
g((∂xu)2), g((∂xu)2),Φ′(∂xu)

)
diag (∂xu, ∂xu, ∂x∂xu)

 1
∂x1
1

 ,

whereas the standard scalar linear diffusion equation in 1D reads

∂tu = ∂xxu = (∂x1, 1, 1) diag (∂xu, ∂xu, ∂x∂xu)

 1
∂x1
1

 .

What distinguishes Perona-Malik diffusion from the linear one is the multiplica-
tive factor diag

(
g((∂xu)2), g((∂xu)2),Φ′(∂xu)

)
in the scalar case as opposed to

diag
(
g(λ̃i

2
); g(λ̃i

2
); Φ′(λ̃i)

)
in the matrix-valued case.

This comparison brings to light the complete analogy between the scalar
setting and the matrix-valued framework as outlined above, down to the corre-
spondence(

∂xṼ >, Ṽ >, Ṽ >
) (

Ṽ , ∂xṼ , Ṽ
)>

= ∂x(Ṽ >Ṽ ) + Ṽ >Ṽ = 0 + I

and its scalar counterpart (∂x1, 1, 1) (1, ∂x1, 1) = 0 + 1 , with ±1 being the
only two orthogonal 1 × 1 matrices. In the scalar setting the sign of Φ′(∂xu)
decides on the direction of the diffusion: a negative sign if |∂xu| > λ results
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in a backward diffusion whereas small gradients |∂xu| < λ entail a positive
sign and hence a forward diffusion. The role of Φ′(|∂xu|) in the scalar setting
is played in the matrix case by the n × n-matrix diag(Φ′(λ̃i)) and we infer
that forward diffusion occurs in those eigen-directions where the corresponding
eigenvalue λi satisfies λi < λ, and backward diffusion in those eigen-directions
where λj > λ. It is remarkable that the difference between linear and Perona-
Malik diffusion for both data types is made by multiplicative factors which
correspond to each other perfectly: diag

(
g((∂xu)2), g((∂xu)2),Φ′(∂xu)

)
in the

scalar case, and diag
(
g(λ̃i

2
); g(λ̃i

2
); Φ′(λ̃i)

)
in the matrix-valued setting.

Remarks

1. Considering the PDEs (12) and (13) for matrix-valued Perona-Malik and
linear diffusion suggests that they inherit the smoothing and enhancing
properties of their scalar counterparts. So we may expect from Perona-
Malik-type matrix-valued diffusion good denoising qualities combined with
edge-preserving features.

2. However, the matrix-valued data allow for a new phenomenon: Unlike
in the scalar setting, a matrix carries directional information conveyed
through the eigenvectors as well as shape information mediated via eigen-
values. The evolution process described in equation (11) displays a cou-
pling between shape and directional information by virtue of the simulta-
neous occurrence of terms containing ∂xṼ (x) and ∂xλ̃(x). Clearly there is
no equivalent for this in the scalar setting.

4 Matrix-Valued Numerical Solution Schemes

In the previous sections the guideline to infer matrix-valued PDEs from scalar
ones was, roughly speaking, analogy by making a transition from the real field IR
to the vector space Symn(IR) endowed with some ‘symmetric‘ product ”•”. We
follow this very guideline also in the issue of numerical schemes for matrix-valued
PDEs. For the sake of brevity we restrict ourselves to the numerical scheme for
two space dimensions (d = 2). The necessary extensions to dimensions d ≥ 3
are immediate. A possible scheme for the scalar Perona-Malik diffusion can be
cast into the form

du(i, j)
dt

=

=
1
h1

(
g(i +

1
2
, j) · u(i + 1, j)− u(i, j)

h1
− g(i− 1

2
, j) · u(i, j)− u(i− 1, j)

h1

)
+

1
h2

(
g(i, j +

1
2
) · u(i, j + 1)− u(i, j)

h2
− g(i, j − 1

2
) · u(i, j)− u(i, j − 1)

h2

)
where g(i, j) and u(i, j) are samples of the diffusivity g and of u at pixel
(i h1, j h2) and, for example, g(i ± 1

2 , j) := g(i±1,j)+g(i,j)
2 . In the numerical im-

plementation we approximate the time drivative by one-sided finite difference
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and the set h1 = h2 = 1. According to our preparations in sections 2 and 3
its matrix-valued extension to solve the Perona-Malik diffusion equation in the
matrix setting reads

dU(i, j)
dt

=

=
1
h1

(
G(i +

1
2
, j) • U(i + 1, j)− U(i, j)

h1
− G(i− 1

2
, j) • U(i, j)− U(i− 1, j)

h1

)
+

1
h2

(
G(i, j +

1
2
) • U(i, j + 1)− U(i, j)

h2
− G(i, j − 1

2
) • U(i, j)− U(i, j − 1)

h2

)
.

The arithmetic mean G(i ± 1
2 , j) := G(i±1,j)+G(i,j)

2 ∈ Symn(IR) approximates
the diffusivity G(|∇U |2) between the pixels (i± 1, j) and (i, j).

5 Experiments

In our experiments we used both artificial and real-world data. Fig. 2 shows a
2-D artificial data set consisting of a 16×16 field of matrices. The data are rep-
resented as ellipsoids via the level sets of the quadratic form {x>A−2x = const. :
x ∈ IR3} associated with a matrix A ∈ Sym+(3). By using A−2 the length of the
semi-axes of the ellipsoid correspond directly with the three eigenvalues of the
matrix. To demonstrate the denoising capabilities, we have added random posi-
tive definite matrices to the data. The eigenvalues of this noise were obtained by
choosing Gaussian-distributed numbers with standard deviation σ = 1000.0 and
taking the absolute value for positive definiteness. The high standard deviation
can be explained by the fact that in real-world data the typical eigenvalues are
in the order of magnitude of 1000. The eigenvectors of the artificial noise result
in choosing three uniformly distributed angles and rotating the matrix by these
angles around the coordinate axes. The resulting data is shown in Fig. 2.

Besides the artificial data, we also use a real-world 3-D DT-MRI data set of
a human head consisting of a 128× 128× 30-field of positive definite matrices,
see Fig. 3. We compare the results Ũ and ˜̃U of the filtering processes differing
in the selection of product or diffusivity function by considering the matrix field
δ(x) of absolute differences in the matrix sense (Section 2, Comment 1)

δ(x) :=
∣∣Ũ(x)− ˜̃U(x)

∣∣ .

In Fig. 4 below we compare the results of matrix-valued linear diffusion and
Perona-Malik diffusion. The edge preserving quality of the Perona-Malik filtering
is observable as can be expected following the discussion in Subsection 3.3. Fig.
4 also makes clear the importance of filtering the matrix data directly: The so
called fractional anisotropy (FA), a scalar quantity important in medical imaging
[3], is defined via the eigenvalues (λ1, λ2, λ3) of the matrix at a voxel x by

FA(x) :=

√
(λ1 − λ̃)2 + (λ2 − λ̃)2 + (λ3 − λ̃)2

λ2
1 + λ2

2 + λ2
3

,
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with the average λ̃ = 1
3 (λ1 +λ2 +λ3). Obtaining the FA image from the filtered

images gives a higher quality result than calculating the scalar FA image from
the original matrix field and then filtering this grey value image with the scalar
Perona-Malik process. It is clearly visible that for larger diffusion times, the FA
of the filtered image is getting smaller, while filtering the FA directly converges
towards the average FA in the initial data.

In Figure 5 the influence of the choice of multiplication, Jordan or precon-
ditioning product, on the denoising capabilities of Perona-Malik filtering with
classical diffusivity function gλ is accented. In both instances the noise is re-
moved while the edge is preserved, in very good agreement with the well-known
denoising properties of their scalar predecessors. The influence of the type of
multiplication is not very prominent as the high magnification factor (×15) in
the difference field confirms.

A more detailed experimental analysis of the effect of the diffusivity func-
tion during the evolution process is depicted in Fig. 6 where the Perona-Malik
and the exponentially decaying Weickert diffusivity functions gλ, gλ,4 are em-
ployed. The difference matrix field emphasises the influences of the choice of
the diffusivity function on the evolution process. These influences are magnified
for visualisation purposes. Nevertheless, if the PDE methods should be used as
pre-processing step in a larger application framework, it might be worthwhile
to quantify the differences more precisely.

Finally, we investigate the behaviour of our filtering methods for negative
definite or even indefinite matrices. For this purpose we have subtracted a factor
times the identity matrix from all matrices in the noisy artificial data set shown
in 2. To obtain indefinite data, we have chosen the factor as the mean between
largest and smallest eigenvalue in the data set. Negative definite data has been
obtained by subtracting the largest eigenvalues appearing in the whole data set.
After filtering, the same values have been added again to the results to visualise
them. Fig. 7 shows that the filters are invariant under the addition of scaled
identity matrices. They have exactly the same behaviour independent of the
definiteness properties of the initial data.

Figure 2: Artificial test data. (a) Left: Original data set, 16 × 16 pixels. (b)
Right: Data (a) with additive noise of average Frobenius norm 1430 per pixel.
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Figure 3: Real-world data set. (a) Left: Original data set, 128×128×30 voxels.
(b) Middle: 3D section of (a) with 45× 53× 5 voxels. (c) Right: 2D section
of (a) with 45× 53× 1 pixels.

6 Conclusion

In this article we have presented a novel and generic framework for the exten-
sion of the Perona-Malik PDE to not necessarily positive definite symmetric
matrix fields in any spatial dimension. The approach assumes an operator-
algebraic point of view by emphasising the fact that symmetric matrices are
finite-dimensonal instances of self-adjoint Hilbert space operators. Two reason-
able types of a symmetric multiplication for symmetric matrices have been made
ensuring appropriate channel interaction. The different products cause only a
slightly different evolution in the associated Perona-Malik process. Also different
types of diffusivities steering the diffusion have been considered, the classical one
with polynomial decay, one with exponential decay, and finally a 1-0-diffusivity.
The influence of the choice of the diffusivity on the evolution of the Perona-
Malik diffusion is clearly noticable as experiments confirm.
Experiments on positive semidefinite DT-MRI and on indefinite/negative defi-
nite artificial data also illustrate that the matrix-valued Perona-Malik diffusion
inherits desirable characteristic properties of their scalar valued predecessors,
e.g. very good denoising capabilities combined with feature preserving qualities.
In future work we will investigate how this framework can help to extend other
scalar PDEs and more sophisticated numerical solution concepts in image pro-
cessing to the matrix-valued setting.

Acknowledgement: DT-MRI data set is a courtesy of Anna Vilanova i
Bartoli, Eindhoven University of Technology.
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[9] F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll. Image selective smoothing
and edge detection by nonlinear diffusion. SIAM Journal on Numerical
Analysis, 32:1895–1909, 1992.

19



[10] A. Chambolle. Partial differential equations and image processing. In
Proc. 1994 IEEE International Conference on Image Processing, volume 1,
pages 16–20, Austin, TX, November 1994. IEEE Computer Society Press.
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