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Abstract. In the standard scale space approach one obtains a scale
space representation u : R

d
� R

+ → R of an image f ∈ L2(Rd) by means
of an evolution equation on the additive group (Rd, +). However, it is
common to apply a wavelet transform (constructed via a representation
U of a Lie-group G and admissible wavelet ψ) to an image which provides
a detailed overview of the group structure in an image. The result of such
a wavelet transform provides a function g �→ (Ugψ, f)L2(R2) on a group G

(rather than (Rd, +)), which we call a score. Since the wavelet transform
is unitary we have stable reconstruction by its adjoint. This allows us to
link operators on images to operators on scores in a robust way. To ensure
U-invariance of the corresponding operator on the image the operator on
the wavelet transform must be left-invariant. Therefore we focus on left-
invariant evolution equations (and their resolvents) on the Lie-group G
generated by a quadratic form Q on left invariant vector fields. These
evolution equations correspond to stochastic processes on G and their
solution is given by a group convolution with the corresponding Green’s
function, for which we present an explicit derivation in two particular
image analysis applications. In this article we describe a general approach
how the concept of scale space can be extended by replacing the additive
group R

d by a Lie-group with more structure.1

1 Introduction

In the standard scale space approach one obtains a scale space representation
u : R

d
� R

+ → R of a square integrable image f : R
d → R by means of an

evolution equation on the additive group (Rd, +). It follows by the scale space
axioms that the only allowable linear scale space representations are the so-called
α-scale space representations determined by the following linear system

⎧
⎨

⎩

∂su = −(−Δ)αu, 0 < α ≤ 1
u(·, s) ∈ L2(Rd) for all s > 0 and u(·, s) → 0 uniformly as s → ∞
u(·, 0) = f

(1)

� The Dutch Organization for Scientific Research is gratefully acknowledged for finan-
cial support

1 This article provides the theory and general framework we applied in [9],[5],[8].

F. Sgallari, A. Murli, and N. Paragios (Eds.): SSVM 2007, LNCS 4485, pp. 300–312, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Scale Spaces on Lie Groups 301

including both Gaussian α = 1 and Poisson scale space α = 1
2 , [6]. By the

translation invariance axiom these scale space representations are obtained via a
convolution on the additive group R

d. For example if d = 2, α = 1 the evolution
system (1) is a diffusion system and the scale space representation is obtained

by u(x, s) = (Gs ∗ f)(x) where Gs(x) = 1
4πse−

‖x‖2

4s denotes the Gaussian kernel.
Its resolvent equation (obtained by Laplace transform with respect to scale) is

(−Δ + γI)u = f ⇔ u = (−Δ + γI)−1f (2)

the solution of which is given by u(x, γ) = (Rγ ∗ f)(x), where the kernel

Rγ(x) = − 1
2πγ2 k0(γ−1‖x‖), x ∈ R

2, (3)

equals the Laplace transform of the Gaussian kernel s 	→ Gs(x) expressed in the
well-known BesselK-function k0. To this end we note that

∫ ∞
0 esΔf e−γs ds =

−γ(Δ − γI)−1f . Although this explicit convolution kernel is not common in
image analysis it plays an important mostly implicit role as it occurs in the
minimization of a first order Sobolev norm

E(u) = ‖u‖2
H1(Rd) = ‖u − f‖2

L2(R2) + ‖∇u‖2
L2(R2).

Indeed by some elementary variational calculus and partial integration one gets
E ′(u)v=((γI−Δ)u−γf, v) and E ′(u)v=0 for all v ∈ L2(R2) iff u=γ(γI − Δ)−1f ,
where Rγ = γ(γI − Δ)−1δ = γ

∫ ∞
0 e−γsesΔδ ds = γ

∫ ∞
0 e−γsGs ds. The con-

nection between a linear scale space and its resolvent equation is also relevant
for stochastic interpretation. Consider f as a probability density distribution of
photons. Then its scale space representation evaluated at a point (x, s) in scale
space, u(x, s), corresponds to the probability density of finding a random walker
in a Wiener process at position x at time/scale s > 0. In such a process travel-
ing time is negatively exponentially distributed.Now the probability density of
finding a random walker at position b given the initial distribution f equals

p(b) =
∫ ∞

0
p(b|T = t)p(T = t) dt = γ

∫ ∞

0
e−γt(Gt ∗ f) = γ(γI − Δ)−1f.

In the remainder of this article we are going to repeat the above results for
other Lie-groups than (Rd, +). Just like ordinary convolutions on R

d are the
only translation invariant kernel operators, it is easy to show that the only left
invariant operators on a Lie-group G are G-convolutions, which are given by

(K ∗G f)(g) =
∫

G

K(h−1g)f(h) dμG(g), (4)

where μG is the left invariant haar measure of the group G. However, if the Lie
group G is not commutative it is challenging to compute the analogues of the
Gaussian and corresponding resolvent kernel.
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Definition 1. Let H be a Hilbert space and let G be a group with unit element e.
Let B(H) denote the space of bounded operators on H. Then a mapping R : G →
B(H) given by g 	→ Rg, where Rg is bounded for all g ∈ G, is a representation if
RgRh = Rgh for all g, h ∈ G, with Re = I . If for every g ∈ G the operator Rg

is unitary (so ‖Rgf‖ = ‖f‖ for all f ∈ H) the representation is called unitary.

Definition 2. An operator on L2(G) is left invariant if it commutes with the left
regular representation given by (LgU)(h) = U(g−1h), U ∈ L2(G), h, g ∈ G.
So an operator Φ on L2(G) is left invariant if Lg ◦ Φ = Φ ◦ Lg for all g ∈ G.

The motivation for our generalization of scale space theory to arbitrary Lie-
groups comes from wavelet-theory applications where one applies a wavelet trans-
form Wψ : L2(Rd) → L2(G) to the original image f ∈ L2(Rd) to provide more
insight in the group structure of an image. Such a transform is usually given by

(Wψf)(g) = (Ugψ, f)L2(Rd) (5)

where the wavelet ψ is admissible2 and a unitary representation U : G →
B(L2(Rd)) of a certain Lie-group G. Provided that ψ is admissible such wavelet
transform is an isometry from L2(Rd) into L2(G) and thereby we have perfectly
stable reconstruction by the adjoint wavelet transformation; f = W∗

ψ(Wψf), al-
lowing us to link scale operators on images and their scores Uf := Wψf in a
stable manner. We must consider left invariant operators on Uf , see figure 1.

2 Scale Spaces on Lie-Groups: The General Recipe

In this section we provide a general recipe for scale spaces on Lie-groups. In con-
trast to other work on scale spaces via Lie-groups we consider the left-invariant
vector fields on the Lie-group itself, rather than infinitesimal generators3 of the
representation U on L2(Rd), [15]. The main advantage over the infinitesimal gen-
erators is that these vector fields are defined on the group manifold G rather
than R

d. Moreover, they give rise to left-invariant evolution equations on L2(G).
First we compute the left-invariant vector-fields on a Lie-group. By definition

those are vector fields on G, with unit element e, such that

Xgf = Xe(f ◦ Lg), (6)

for all f ∈ C∞(Ωg) defined on some open neighborhood Ωg of g ∈ G, where we
note that Lgh = gh denotes the left multiplication on the Lie-group. Note that
by (6) the restriction Xg of a left invariant vector field X is always connected by
its restriction to the unity element Xe. Consequently such left invariant vector

2 this is a condition on ψ to ensure that ‖Wψf‖L2(G) = ‖f‖L2(Rd) for all f ∈ L2(Rd).
3 The left invariant vector fields are obtained via the Lie-algebra Te(G) = {A1, . . . An}

by means of the derivative of the right-regular representation on L2(G) by
{dR(Ai)}n

i=1, whereas the infinitesimal generators are obtained by the derivative
of some representation U on L2(Rd) by {dU(Ai)}n

i=1.
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f ∈ L2(R2) Uf ∈ C
G
K ⊂ L2(G)

Υ[f ] = W∗
ψ[Φ[Uf ]] Φ[Uf ] ∈ L2(G)

Wψ

Φ

(W∗
ψ)ext

Υ

Image

Processed Image Processed Score

Score

Fig. 1. The complete scheme; for admissible vectors ψ the linear map Wψ is unitary
from L2(R2) onto a closed subspace V of L2(G). So we can uniquely link a transfor-
mation Φ : V → V on the wavelet domain to a transformation in the image domain
Υ = (W∗

ψ)ext ◦ Φ ◦ Wψ ∈ B(L2(Rd)), where (W∗
ψ)ext is the extension of the adjoint

to L2(G) given by (W∗
ψ)extU =

�
G

Ugψ U(g) dμG(g), U ∈ L2(G). It is easily verified
that Wψ ◦ Ug = Lg ◦ Wψ for all g ∈ G. As a result the net operator on the image
domain Υ is invariant under U (which is highly desirable) if and only if the opera-
tor in the wavelet domain is left invariant, i.e. Υ ◦ Ug = Ug ◦ Υ for all g ∈ G if and
only if Φ ◦ Lg = Lg ◦ Φ for all g ∈ G. For more details see [4]Thm. 21 p.153. In our
applications [8],[5], [4] we usually take Φ as a concatenation of non-linear invertible
grey-value transformations and linear left invariant (anisotropic) scale space opera-
tors, for example Φ(Uf ) = γ2/p((Q(A)−γI)−1(Uf )p (Q(A)−γI)−1(Uf )p)1/p, for some
sign-preserving power with exponent p > 0. A nice alternative, however, are non-linear
adaptive scale spaces on Lie-groups as explored for the special case G = R

2
� T in [9].

fields are isomorphic to the tangent space Te(G) at the unity element e ∈ G, also
known as the Lie-Algebra of G. The isomorphism between Te(G) and the space
of left invariant vector fields L(G) on G (considered as differential operators) is

Te(G) � A ↔ A ∈ L(G) ⇔ Agφ = A(h 	→ φ(gh)), for all φ ∈ C∞(Ωg). (7)

The Lie-product on Te(G) is given by [A, B] = lim
t↓0

a(t)b(t)(a(t))−1(b(t))−1−e
t2 , where

t 	→ a(t) resp. t 	→ b(t) are any smooth curves in G with a(0) = b(0) = e
and a′(0) = A and b′(0) = B, whereas the Lie-product on L(G) is given by
[A, B] = AB − BA. The mapping (7) is an isomorphism between Te(G) and
L(G), so A ↔ A and B ↔ B imply [A, B] ↔ [A, B].

Consider a Lie-group G of finite dimension, with Lie-algebra Te(G). Let
{A1, . . . , An} be a basis within this Lie-algebra. Then we would like to con-
struct the corresponding left invariant vector fields {A1, . . . , An} in a direct
way. This is done by computing the derivative dR of the right-regular represen-
tation R : G 	→ B(L2(G)). The right regular representation R : G → B(L2(G))
is given by (RgΦ)(h) = Φ(hg), for all Φ ∈ L2(G) and almost every h ∈ G. It is
left-invariant and its derivative dR, which maps Te(G) onto L(G), is given by

(dR(A)Φ)(g) = lim
t→0

(Rexp(tA)Φ)(g) − Φ(g)
t

, A ∈ Te(G), Φ ∈ L2(G), g ∈ G. (8)

So a basis for L(G) is given by

{A1, A2, . . . , An} := {dR(A1), dR(A2), . . . , dR(An)}. (9)
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Now let Q = QD,a be some bilinear/quadratic form on L(G), i.e.

QD,a(A1, A2, . . . , An) =
n∑

i=1

aiAi +
n∑

j=1

DijAiAj , ai, Dij ∈ R, (10)

where we will assume that the matrix D = [Dij ] is symmetric and positive
semi-definite, and consider the following evolution equations

{
∂sW = Q(A1, A2, . . . , An) W ,
lim
s↓0

W (·, s) = Uf (·) , (11)

the solutions of which we call the G-scale space representation of initial condition
Uf (which is the score obtained from image f by Wψ[f ]). The corresponding G-
Tikhonov regularization due to minimization of

E(u) = ‖u‖2
H1(G) = ‖u − f‖2

L2(G) +
d∑

i=1
Dii‖Aiu‖2

L2(G) is again obtained by

Laplace transform with respect to scale yielding the following resolvent equations

(−Q(A1, A2, . . . , An) + γI) Pγ = γ Uf , (12)

with Pγ = γL(s 	→ W (·, s))(γ) and where traveling timeof a random walker in
G is assumed to be negatively exponentially distributed with s ∼ NE(γ).

We distinguish between two types of scale space representations, the cases
where Q is non-degenerate and the cases where Q is degenerate. If Q is non-
degenerate the principal directions in the diffusion span the whole tangent space
in which case it follows that (11) gives rise to a strongly continuous semi-group,
generated by a hypo-elliptic operator A, [12], such that the left-invariant op-
erators Uf 	→ W (·, s) and Uf 	→ Pγ are bounded operators on L∞(G) for all
γ, s > 0 and by means of the Dunford-Pettis theorem [2] if follows that the
solutions of (11) and (12) are given by G-convolutions with the corresponding
smooth Green’s functions

W (g, s) = (Ks ∗G Uf )(g), Ks ∈ C∞(G), s > 0
Pγ(g) = (Rγ ∗G Uf )(g), Rγ ∈ C∞(G\{e}), (13)

where Ks and Rγ are connected by Laplace transform Rγ = γL(s 	→ Ks)(γ).
The most interesting cases, however, arise if Q is degenerate. If Q is degenerate

it follows by the general result by [11] the solutions of (11) and (13) are still given
by group convolutions (13). The question though is whether the convolution
kernels are to be considered in distributional sense only or if they are smooth
functions. If D = 0 the convolution kernels are highly singular and concentrated
at the exponential curves within the Lie-group. If D �= 0 is degenerate diffusion

takes place only in certain direction(s) and we can write Q(A) =
d∑

j=1
Ã2

j +

Ã0, d = rank(Q) where A0 is the convection part of Q(A) and where Ãj are
d-independent directions along which Q is not degenerate. Now it is the question
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whether the non-commutativity of the vector fields results in a smoothing along
the other directions. By employing the results of Hörmander[12] and Hebisch[11]
we obtain the following necessary and sufficient conditions for smooth scale space
representations of the type (13): Among the vector fields

Ãj1 , [Ãj1 , Ãj2 ], . . . [Ãj1 , [Ãj2 , [Ãj3 , . . . , Ãjk
]]] . . . , ji = 0, 1, . . . d (14)

there exist n which are linearly independent.

3 Examples

Spatial-Frequency Enhancement via left invariant scale spaces on
Gabor Transforms: G = H3, Q(A) = D11(A1)2 + D22(A2)2

Consider the Heisenberg group H2d+1 = C
d

� R with group product:

g g′ = (z, t)(z′, t′) = (z + z′, t + t′ + 2 Im{
d�

j=1
zjz′

j}), where zj = xj + i ωj ∈ C

and consider its representations Uλ
(x,ω,t) on L2(Rd):

(Uλ
(z,t)ψ)(ξ) = eiλ((ξ,ω)+ t

4− 1
2 (x,ω))ψ(ξ − x), ψ ∈ L2(Rd),x, ω ∈ R

d, λ ∈ R.

The corresponding wavelet transform is the windowed Fourier/Gabor transform:

(Wψ [f ])(g) = (Ugψ, f)L2(Rd) = e−iλ( t
4− (x,ω)

2 )
∫

Rd

ψ(ξ − x)f(ξ)e−iλ(ξ,ω) dξ

This is useful in practice as it provides a score of localized frequencies in signal
f . Denote the phase subgroup of H2d+1 by Θ = {(0,0, t) | t ∈ R}.

Now Uλ is a unitary, irreducible and square integrable representation with
respect to H2d+1/Θ with invariant measure dμH2d+1/Θ(g) = dωdx. Therefore
by the theory of vector coherent states, [1], we employ that 4

∫

Rd

∫

Rd

|Wψ[f ](x, ω, 0)|2 dxdω = Cψ

∫

Rd

|f(x)|2 dx,

for all f ∈ L2(Rd) and for all ψ ∈ L2(Rd). As a result we obtain a perfectly
stable reconstruction by means of the adjoint wavelet transform

f = 1
Cψ

W∗
ψWψf = 1

Cψ

∫

H2d+1/Θ Wψ[f ](g)Ugψ dμH2d+1/Θ(g), i.e.

f(ξ) = 1
Cψ

∫

Rd

∫

Rd(Wψf)(x, ω, t) eiλ[(ξ,ω)+(t/4)−(1/2)(x,ω)]ψ(ξ − x) dxdω,

for almost every ξ ∈ R
d and all f ∈ L2(Rd).

Now that a stable connection between an image f and its Gabor-transform
Wψ[f ] is set we can think of left invariant scale spaces on the space of Gabor
transforms which is embedded in L2(H2d+1/Θ). Following the general recipe

4 Note that Cψ=
�

Rd

�
Rd |(Uλ

(x+iω,0)ψ, ψ)|2dxdω=(2π)d

λ
‖ψ‖4

L2(Rd)< ∞ for all ψ∈L2(R2).
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as described in Section 2 we compute the left invariant vector fields from the
2d + 1-dimensional Lie-algebra Te(G) spanned by

Te(G)= 〈{(ei,0, 0), (0, ej , 0), (0, 0, 1)}i,j=1,...d〉=: 〈{A1, . . . , Ad, Ad+1, . . . , A2d, A2d+1}〉

by means of Aiψ = dR(Ai)ψ = lim
t→0

1
t

(
R(etAi) − I

)
ψ. A straightforward calcu-

lation yields the following basis for L(H2d+1):

Ai = ∂xi + 2ωi∂t, Ad+i = ∂ωi − 2xi∂t, for i = 1, . . . , d, and A2d+1 = ∂t,

the commutators of which are given by

[Ai, Aj ] = −4 δj,i+d A2d+1, i, j = 1, . . . , 2d, [A2d+1, Aj ] = 0, j = 1, . . . , 2d + 1. (15)

Here we only consider (11) for the case where the quadratic form equals

Q(A) =
d�

j=1

Djj (Aj)2 + Dd+j,d+j (Ad+j)2. (16)

Condition (14) is satisfied. In this case the scale space solutions KD
s , PD

γ (13)
initial condition W (·, ·, ·, 0) = Uf ∈ L2(H2d+1) of (11) are group convolutions
(4) with the corresponding Green’s functions KD

s and Rγ . For d = 1 we get:

WD(x, ω, t, s) = (KD
s ∗H3 Uf )(x, ω, t)

=
∫

R

∫

R

∫

R+

KD
s (x−x′, ω−ω′,t−t′−2(xω′−x′ω))Uf (x′, ω′, t′) dtdω′dx′

PD
γ (x, ω, t) = (RD

γ ∗H3 Uf )(x, ω, t)
=

∫

R

∫

R

∫

R+

RD
γ (x−x′, ω−ω′,t−t′−2(xω′−x′ω))Uf (x′, ω′, t′) dt′dω′dx′.

(17)

Next we derive the Green’s functions KD
s and Rγ . First we note that in case

Djj = Dd+j,d+j = 1
2 operator (16) coincides with Kohn’s Laplacian, the funda-

mental solution of which is well-known [10]. As there exist several contradicting
formulas for this Green’s function, we summarize (for d = 1) the correct deriva-
tion by Gaveau [10] which, together with the work of Lévy [13], provides impor-
tant insight in the non-commutativity and the underlying stochastic process.

For d = 1 the kernel KD
s can be obtained by the Kohn Green’s function

Ks := K
D11= 1

2 ,D22= 1
2

s by means of a simple rescaling

KD
s (x, y, t) = Ks(

√
2

D11
x,

√
2

D22
y, 2√

D11D22
t)

Ks(x, ω, t) = s−2K1

(
x√
s
, ω√

s
, t

s

)
.

(18)

Next we rewrite Kohn’s d-dimensional Laplacian ΔK in its fundamental form:

ΔK =
d∑

i=1
(∂xi)2 + (∂ωi)2 + 4ωi ∂xi∂t − 4xi ∂ωi∂t + 4|zi|2(∂t)2

=
2d+1∑

i=1

2d+1∑

j=1
Aig

ijAj =
2d+1∑

i=1

2d+1∑

j=1
Ai(σT σ)ijAj =

2d∑

k=1

(
2d+1∑

j=1
σkjAj

)2

,

(19)
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with G = σT σ ∈ R
(2d+1)×(2d+1), G = [gij ], σ = [σkj ], σ ∈ R

2d×(2d+1) given by

σij =

⎧
⎨

⎩

δij if i ≤ 2d, j ≤ 2d,
2wp if i = 2p − 1 and j = 2d + 1, p = 1, . . . , d
−2xp if i = 2p and j = 2d + 1, p = 1, . . . , d

where we recall that zj = xj + i ωj. By (19) the diffusion increments satisfy

(dx1, . . . , dxd, dω1, . . . , dωd, dt) = (dx1, . . . , dxd, dω1, . . . , dωd)σ,

so that dt = 2
∑d

j=1 ωjdxj − xjdωj . So in case G = H2d+1 the diffusion system
(11) is the stochastic differential equation of the following stochastic process

⎧
⎨

⎩

Z(s) = X(s) + iW(s) = Z0 + ξ
√

s, ξ = (ξ1, . . . , ξd), ξj ∼ N (0, 1)

T (s) = 2
d∑

j=1

s∫

0
WjdXj − XjdWj , s > 0 (20)

so the random variable Z = (Z1, . . . , Zd) consists of d-independent Brownian
motions in the complex plane The random variable T (s) measures the deviation
from a sample path with respect to a straight path Z(s) = Z0 + s(Z(s)−Z0) by

means of the stochastic integral T (s) = 2
d∑

j=1

s∫

0
WjdXj − XjdWj .

To this end we note that for5 s 	→ (x(s), ω(s)) ∈ C∞(R+, R2) such that the
straight-line from X0 to X(s) followed by the inverse path encloses an oriented
surface Ω ∈ R

2, we have by Stokes’ theorem that

2μ(Ω) = −
∫ s

0
(−X ′(t)W (t) + X(t)W ′(t)) dt + 0 =

∫ s

0
WdX − XdW.

Now we compute the Fourier transform F3K1 of K1 (with respect to (x, ω, t)):

(F3K1)(ξ, η, τ) = 1
(2π)

3
2

∫

R3 e−i(ξx+ηω+τt)K1(x, ω, t) dxdωdt

= 1√
2π

F2

(
(x, ω) 	→ e−

ω2+x2
2 E(e−iτT (1) | X(1)=x, W (1)=ω)

)
,

where E(e−iτT (1) | X(1) = x, W (1) = ω) expresses the expectation of random
variable T (1), recall (20), given the fact that X(1) = x, W (1) = ω. Now by the
result of [13](formula 1.3.4) we have for d = 1

(F3K1)(ξ, η, τ) = 1√
2π

F2

(
(x, ω) 	→ e−

x2+ω2
2 e+x2+ω2

2 2τ
sinh(2τ)e

−|z|2τ coth(2τ)
)
(ξ, η)

= 1

(2π)
3
2

1
cosh(2τ)e

− ξ2+η2

2
tanh(2τ)

2τ .

Now since Ks > 0 we have by (18) that ‖Ks‖L1(H3) =(2π)
3
2 lim

τ→0
(F3K1)(0, τ) = 1.

Application of inverse Fourier transform gives

K1(x, ω, t) =
1

(2π)2

∫

R

2τ

sinh(2τ)
cos(τt)e−

|z|2τ
tanh(2τ) dτ.

5 A Brownian motion is a.e. not differentiable in the classical sense, nor does the
integral in (20) make sense in classical integration theory.
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Finally identities in (18) provide the general scale space kernel on H3:

KD
s (x, ω, t) =

1
(2πs)2

∫

R

2τ

sinh(2τ)
cos

(
2 τ t

s
√

D11D22

)

e−
�

x2
D11s

+ ω2
D22s

�
τ

2 tanh(2τ) dτ, (21)

which can be approximated with a one dimensional discrete cosine transform.
The corresponding resolvent kernel Rγ(x,ω, τ )=γ

�
R+ KD

s (x, ω, τ ) e−γs ds which
is again a probability kernel, i.e. Rγ > 0 and ‖Rγ‖L1(H3) = 1, is given by

Rγ(x,ω, z) = 2γ
√

γ

π2

∞�
0

τ

sinh 2τ
Re

�
�����

k1

�
2

√
γ

�
2τ

tanh 2τ

�
x2

D11
+ ω2

D22

�
− 2i τt	

D11D22



�

2τ
tanh 2τ

�
x2

D11
+ ω2

D22

�
− 2i τt	

D11D22

�
����
 dτ (22)

with k1 the 1st order BesselK-function.Formulae (22) and (21) are nasty for
computation. The resolvent kernel with infinite lifetime is much simpler:

lim
γ→0

γ−1Rγ(x, ω, t) =
�

R+

KD
s (x,ω, t) ds =

1
2π

1��
x2

D11
+ ω2

D22

�2
+ t2

D11D22

, (23)

which follows by taking the limit γ → 0 in (22) and substitution v = cosh(2τ).
It provides us the following left invariant metric dD : H3 × H3 → R

+ given by

dD(g, h) =
�	

D−1
11 (x−x′)2 + D−1

22 (ω−ω′)2

2 + (D11D22)−1(t−t′−2(xω′−x′ω)2)2,

with g = (x, ω, t), h = (x′, ω′, t′). Since (22) is not suitable for practical purposes
if γ < ∞ and since R̃D

γ=∞ decays slowly at infinity we propose to use

R̃D
γ (x,ω, t) =

4γ

π
3
2 D11D22

exp
�

−
	
γ dD( (x,ω, t), e)


2�
dD((x,ω, t), e)

, e = (0, 0, 0), (24)

instead. Note that lim
γ→0

γR̃γ ≡ lim
γ→0

γRγ , R̃γ > 0, ‖R̃γ‖L2(H3) = 1 for all γ > 0.

Contour completion and enhancement via left invariant scale spaces
on Orientation Scores: G = SE(2).

Consider the Euclidean motion group G = SE(2) = R
2

� T with group product

(g, g′) = (Rθb′ + b, ei(θ+θ′)), g = (b, eiθ), g′ = (b, eiθ′
) ∈ G = R

2
� T,

which is (isomorphic to) the group of rotations and translations in R
2. Then the

tangent space at e=(0, 0, ei0) is spanned by {ex, ey , eθ}={(1, 0, 0), (0, 1, 0), (0, 0, 1)}
and again by the general recipe (9) we get the following basis for L(SE(2)):

{A1, A2, A3} = {∂θ, ∂ξ, ∂η} = {∂θ, cos θ ∂x +sin θ ∂y, − sin θ ∂x +cos θ ∂y}, (25)

with ξ = x cos θ + y sin θ, η = −x sin θ + y cos θ.
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The wavelet transform that maps an image f ∈ L2(R2) to a so-called orientation
score, [4], [5],[8] is given by

(Wψf)(g) = (Ugψ, f)L2(R2) =
∫

R2
ψ(R−1

θ (y − x)) f(y) dy, ψ ∈ L2(R2)∩L1(R2),

where ψ is a suitable line-detecting wavelet in L2(R2) and with representation
U : SE(2) → B(L2(R2)) given by

Ugψ(y) = TyRθψ(x) = ψ(R−1
θ (x − y)), with Rθ =



cos θ − sin θ
sin θ cos θ

�
∈ SO(2) ↔

eiθ ∈ T and Rθψ(x)=ψ(R−1
θ x), Tyψ(x)=ψ(x − y).

Now U is reducible and the standard wavelet reconstruction theorems do not
apply, nevertheless for proper choice of wavelets one can still obtain quadratic
norm preservation. For details, see [8], [4] p.107-146. Now the wavelet transform
maps f to a so-called invertible orientation score Uf , which provides the initial
condition Uf ∈ L2(SE(2)) for our left invariant scale space representations on
SE(2) given by (11), generated by (10), which are computed by G-convolutions

WD,a(x, y, θ, s)=
�

R2

� 2π

0 KD,a
s (ei(θ−θ′), R−1

θ′ (x − x′), ei(θ−θ′))Uf (x′, eiθ′
)dθ′dx′

PD,a
γ (x, y, θ) =

�
R2

� 2π

0 RD,a
γ (ei(θ−θ′), R−1

θ′ (x − x′), ei(θ−θ′))Uf (x′, eiθ′
)dθ′dx′.

(26)

For explicit formulae of our recently discovered exact convolution kernels
KD,a

s , RD,a
γ ∈ L1(SE(2)) we refer to our earlier work [7], with in particular

the cases:

1. Q(A) = D11(A1)2 + A2, where the corresponding scale space representation
is the Forward Kolmogorov equation of the direction process proposed by
Mumford, [14] as a stochastic model for contour completion.

2. Q(A) = D11(A1)2+D22(A2)2, where the corresponding scale space represen-
tation is the forward Kolmogorov equation of (up to scaling) the stochastic
model for perceptual completion (contour enhancement) by Citti et al. [3].

Condition (14) is satisfied, since span{∂θ, [∂θ, ∂ξ], [∂θ, [∂θ, ∂ξ]]} = span
{∂θ, ∂η, −∂ξ} = L(G). Although our exact solutions in [7], are simple, they
consist of Mathieu-functions with disadvantages concerning computation time.
Therefore it is worthwhile to replace the left invariant vector fields of SE(2) (25)
by the vector fields {Â1, Â2, Â3} = {∂θ, ∂x + θ∂y, −θ∂x + ∂y}. This leads to the
following approximations6 in case of contour completion, cf. [4]p.166-167 (for
alternatives see [7]):

K̂D11,a1=1
s (x, y, θ) = δ(x − t)

√
3

2 D11πx2 e
− 3(xθ−2y)2+x2(θ−κ0x)2

4x3D11

R̂D11,a1=1
γ (x, y, θ) = α

√
3

2 D11πx2 e−αxe
− 3(xθ−2y)2+x2(θ−κ0x)2

4x3D11 1
2 (1 + sign(x)).

6 Note that the approximation K̂D11,a1
s , in contrast to the exact solu-

tion(s) in [7], has singular behavior because of the violation of (14) as:
span{∂θ[∂θ, ∂x + θ∂y], [∂θ , [∂θ, ∂x + θ∂y]]}=span{∂θ , ∂y} which has dimension 2< 3.
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The case of contour enhancement with Q̃(A) = D11(Â1)2 +D22(Â2)2 requires
a different approach. Here we apply a coordinates transformation

K̂D11,D22
s (x, y, θ)=K̃s(x′, ω′, t′)=K̃s

(
x√

2D11
, θ√

2D11
,

2(y−xθ
2 )√

D11D22

)
where we note

∂sK̂
D11,D22
s =

	
D11∂

2
θ + D22(∂x + θ∂y)2



K̂D11,D22

s ⇔

∂sK̃
D11,D22
s = 1

2

	
(∂ω′ − 2x′∂t′)2 + (∂x′ + 2ω′∂t′)2



K̃D11,D22

s = 1
2ΔKK̃D11,D22

s ,
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Fig. 2. A comparison between the exact Green’s function of the resolvent diffusion
process (D11A2

1 + D22A2
2 − γI)−1δe, γ = 1

30 , D11 = 0.1, D22 = 0.5 which we explicitly
derived in [7] and the approximate Green’s function of the resolvent process with
infinite lifetime limγ→0 γ−1(D11Â

2
1 + D22Â

2
2 − γI)−1δe, D11 = 0.1, D22 = 0.5 given by

(27). Top row: a 3D view on a stack of spacial iso-contours with a 3D-iso-contour
of the exact Green’s function (right) and the approximate Green’s function (left).
Bottom-left; a close up on the same stacks of iso-contours but now viewed along the
negative θ-axis, with the approximation on top and the exact Green’s function below.
Bottom-right; an iso-contour-plot of the xy-marginal (i.e. Green’s function integrated
over θ) of the exact Green’s function with on top the corresponding iso-contours of
the approximation in dashed lines. Note that the Green’s functions nicely reflect the
curvature of the Cartan-connection on SE(2). The stochastic process corresponding
to the approximation of the contour enhancement process is given by X(s) + i Θ(s) =
X(0) + i Θ(0) +

√
s(εx + i εθ), where εx ∼ N (0, 2D11), εθ ∼ N (0, 2D22) and, by (20),

Y (s) = X(s)Θ(s)
2 + 1

2

� s

0 ΘdX − XdΘ =
� s

0 Θ(t) − Θ(0)dt.
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which is exactly the evolution equation on H3 generated by Kohn’s Laplacian
considered in the previous example ! As a result we have7

K̂D11,D22
s (x, y, θ) = 1

2D11D22
K̃H3

s

�
x√

2D11
, θ√

2D11
,

2(y−xθ
2 )

√
D11D22

�

= 1
8D11D22π2s2

�
R

2τ
sinh(2τ) cos

�
2τ(y− xθ

2 )
s
√

D11D22

�
e
−

�
x2

s D22
+ θ2

s D11

�
τ

tanh(2τ) dτ

lim
γ→∞

γ−1R̂γ(x, y, θ) = 1
4πD11D22

1�
1
16

�
x2

D22
+ θ2

D11

�2
+

(y− 1
2 xθ)2

D11D22

.

(27)

See Figure 2.

4 Conclusion

We derived a unifying framework for scale spaces (related to stochastic processes)
on Lie-groups. These scale spaces are directly linked to operators on images by
means of unitary wavelet transforms. To obtain proper invariance of these op-
erators, the scale spaces must be left-invariant and thereby its solutions are
G-convolutions with Green’s functions. As this framework lead to fruitful ap-
plications on contour completion, contour enhancement and adaptive non-linear
diffusion, see [9], [8], [5], in the special case G = SE(2), this theory can be
further employed for other groups, such as the Heisenberg group, G = H2d+1.
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