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Abstract. Total variation (TV) and balanced forward-backward (BFB)
diffusion are prominent examples of singular diffusion equations: Finite
extinction time, the experimentally observed tendency to create piece-
wise constant regions, and being free of parameters makes them very
interesting. However, their appropriate numerical treatment is still a
challenge. In this paper a minimally stochastic approach to these sin-
gular equations is presented. It is based on analytical solutions of two-
pixel signals and stochastic rounding. This introduces regularisation via
integer arithmetic and does not require any limits on the diffusivity.
Experiments demonstrate the favourable performance of the proposed
probabilistic method.
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1 Introduction

1.1 The Setting

Initiated with the work of Perona and Malik [11] nonlinear diffusion filters have
become an important tool for image processing. The basic setting of diffusion
filtering is as follows. An initial image f : Ω −→ IR given on an two-dimensional
domain Ω ⊂ IR2 is subjected to an evolutionary process governed by the follow-
ing partial differential equation (PDE) with Neumann boundary conditions:

∂tu = div (g(|∇u|) · ∇u) on Ω × (0,∞)

u(x, 0) = f(x) for all x ∈ Ω , (1)

∂nu(x, t) = 0 for all x ∈ ∂Ω × (0,∞) ,
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with outward normal derivative ∂n on the image domain boundary ∂Ω. This
evolution process creates more simplified versions u(·, t) of f the larger the time
parameter t is. One can steer this process to achieve edge preservation and
intraregional smoothing by specifying the diffusivity g as a nonnegative and de-
creasing function of |∇u|.
Many nonlinear diffusion filters rely on bounded diffusivities [6, 11]. However,
in recent years unbounded diffusivities that became singular at zero have re-
ceived special attention [8, 2, 10, 7]. In numerical experiments these filters cre-
ate cartoon-like, piecewise constant images. In this paper we will focus on two
choices for the diffusivity g, both rendering the corresponding PDE singular:
The specification

g(|∇u|) =
1

|∇u| (2)

gives rise to the total variation (TV) diffusion [2, 9]. The TV diffusion filter
is associated with TV regularisation if a penaliser Ψ(|∇u|2) = 2|∇u| is used
[14]. Among the most interesting properties of TV diffusion are finite extinction
time [3], certain shape-preserving qualities [4], and equivalence results to TV
regularisation for one-dimensional signals [5, 12].

The specification

g(|∇u|) =
1

|∇u|2 (3)

generates the so-called balanced forward-backward diffusion (BFB), [10]. For
this type of diffusion actual edge enhancement occurs. Note that neither TV
nor BFB diffusion require any filter parameter tuning. Generalisations of this
diffusion filters replacing the square by a positive exponent p also have been
considered in [1, 16].

Numerical difficulties are the price to be paid for the appealing properties of
TV or BFB diffusion: In order to apply classical finite difference schemes, one
needs bounded diffusivities. This is achieved by replacing |∇u| by

√

|∇u|2 + ε2

in the denominators of (2) and (3). However, the time step size in explicit finite
difference schemes is reciprocal to bounds on the diffusivity function to ensure
stability, and the condition numbers of system matrices emerging from absolutely
stable semi-implicit or implicit schemes are increasing functions of such bounds.
This entails high computational complexity and/or potential amplification of nu-
merical errors. Moreover the bounded diffusivity introduces the unpleasant side
effect that blurring artefacts occur and theoretical considerations for singular
diffusion filters are no longer applicable.

An alternative that does not require a regularised diffusivity is described in
[15]: In a two-pixel setting analytic solutions of systems of ordinary differen-
tial equations associated with a spatial discretisation of the singular PDE are
employed for numerical evaluation. In [18] the same idea of utilising analytical
solutions of ODE-systems has been put to work successfully in the more compli-
cated framework of four pixels. Both approaches lead to absolutely stable explicit
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scheme at the expense of having conditional consistency only: When the product
of the time step size and the diffusivity becomes large, a linear diffusion process
is approximated. This means that for increasing time step sizes, mor and more
blurring artifacts arise.

The goal of the present paper is to address this problem. By introducing an
approximation that allows only integers as grey values, we bound the gradient
away from zero: The employed one-sided discretisation |∇u|i,j of |∇u| in (15)
entails that either |∇u|i,j = 0, which can be treated separately, or |∇u|i,j ≥

1√
2h

with grid size h. This implies that the discrete approximations gi,j for the

diffusivity are bounded by
√

2h in the case of TV-diffusion and by 2 h2 for
BFB-diffusion. Hence we are allowed to use larger time step sizes without visual
deterioration than in the conventional 2- or 4-pixel schemes.

Since diffusion is an inherently continuous process that should also be allowed
to proceed in infinitesimally small steps, it is not possible to design a satisfying
diffusion scheme that uses integer arithmetic in a deterministic framework by
conventional rounding. As a remedy, we introduce a minimal amount of ran-
domisation in the spirit of [13]. It is realised by a stochastic rounding procedure
which introduces fluctuations that are small enough to be invisible, but large
enough to have a beneficial regularising effect.

The paper is structured as follows: The two-pixel scheme based on an ana-
lytic solution of a system of ODEs is introduced in the first part of the next sec-
tion. In its second part the analytic two-pixel scheme is randomised by stochastic
rounding leading to the proposed minimally stochastic method. Numerical exper-
iments in section 3 show the favourable performance of the minimally stochastic
approach when compared to the purely deterministic method. Section 4 with a
short summary and remarks about ongoing work completes the paper.

2 Schemes Based on Two Pixel Interaction

2.1 Deterministic Approach

We will start our investigation with the simplest possible case. We are consider-
ing a one-dimensional version of (1) discretised by two pixels with homogenous
Neumann boundary conditions:

f = (f1, f2), resp., u = (u1, u2) .

A space-discrete, but time-continuous scheme for (1) is then given by

u̇1 =
g1+ 1

2

h2
(u2 − u1)

u̇2 =
−g1+ 1

2

h2
(u2 − u1)

with initial conditions ui(0) = fi, i = 1, 2 . Here the discrete approximants g1

and g2 of the diffusivity g at pixel 1 and 2 are calculated using dummy pixels
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u0 := u1 and u3 := u2 yielding g1+ 1

2

by

g1+ 1

2

:=
g1 + g2

2
.

In general, first order differences are approximated by standard central differ-
ences 1

2h
(ui−1 − ui+1) with grid size h.

We assume that g1+ 1

2

is independent of time, that is, constant with respect to
t in this coupled system of ordinary differential equations. In order to de-couple
this system of ODEs we introduce w1(t) = u2(t)−u1(t) and v1(t) = u2(t)+u1(t),
in fact

(

w1(t)
v1(t)

)

=

(

−1 1
1 1

)

·
(

u1(t)
u2(t)

)

. (4)

Then the function w1 satisfies the linear first order ODE

ẇ1 =
2

h2
g1+ 1

2

w1 ,

which is readily solved to give

w1(t) = exp

(

− 2

h2
g1+ 1

2

· t
)

w1(0) .

For the sum v1(t) we obtain the ODE

v̇1(t) = 0 ,

yielding v1(t) = v1(0) = u2(0) + u1(0) for all t ≥ 0 . With this at our disposal
solving the equation system (4) gives
(

u1(t)
u2(t)

)

=

(

−1 1
1 1

)−1

·
(

w1(t)
v1(t)

)

(5)

=

(

u1(0)
u2(0)

)

+
1

2

(

1 − exp

(

− 2t

h2
g1+ 1

2

))

(u2(0) − u1(0))

(

1
−1

)

Considering now n-pixel signals we may apply this reasoning to any pair of pixels
ui and ui+1. Thus we obtain

ui(t) = ui(0) +
1

2

(

1 − exp

(

− 2t

h2
gi+ 1

2

))

(ui+1(0) − ui(0))

ui+1(t) = ui+1(0) − 1

2

(

1 − exp

(

− 2t

h2
gi+ 1

2

))

(ui+1(0) − ui(0)) ,

or in its time discrete variant after k iterations with time step size τ

uk+1

i = uk
i +

1

2

(

1 − exp

(

−2τ

h2
gk

i+ 1

2

))

(uk
i+1 − uk

i )

uk+1

i+1 = uk
i+1 −

1

2

(

1 − exp

(

−2τ

h2
gk

i+ 1

2

))

(uk
i+1 − uk

i ) .

(6)
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However, this ensures interaction between the two neighbouring pixels uk
i and

uk
i+1 only, pixel uk

i−1, say, is not involved. In order to overcome this problem
we consider also a shifted version of the signal, follow the procedure indicated
above and average the two signal versions in an additive operator splitting (AOS)
approach [17]: We allow for diffusion between uk

i and uk
i+1 with time step size

2τ yielding

ũk+1

i = uk
i +

1

2

(

1 − exp

(

−4τ

h2
gk

i+ 1

2

))

(uk
i+1 − uk

i ) , (7)

and we enable diffusion between uk
i and uk

i−1 with time step size 2τ by setting

˜̃uk+1

i = uk
i − 1

2

(

1 − exp

(

−4τ

h2
gk

i− 1

2

))

(uk
i − uk

i−1) . (8)

Then averaging uk+1

i = 1

2
(ũk+1

i + ˜̃uk+1

i ) results in

uk+1

i = uk
i +

1

4

(

1 − exp

(

−4τ

h2
gk

i+ 1

2

))

(uk
i+1 − uk

i )

− 1

4

(

1 − exp

(

−4τ

h2
gk

i− 1

2

))

(uk
i − uk

i−1) .

(9)

The combination of these two steps according to the AOS-framework permits
the transport of information throughout the image domain, since it provides a
coupling between all pixels. Only this ensures the usefulness of the two-pixel
module described in (6), res., in (7) and (8).
Note that a formal first order Taylor expansion w.r.t. τ of the exponential ex-
pressions yields the explicit scheme

uk+1

i = uk
i +

τ

h2
gk

i+ 1

2

(uk
i+1 − uk

i )

− τ

h2
gk

i− 1

2

(uk
i − uk

i−1) .
(10)

The stability of scheme (10) will be destroyed by large diffusivity values. In
contrast to that the exponential scheme (9) remains stable, However, as all un-
conditionally stable explicit schemes, it is only conditionally consistent: If the
product of the time step size and the diffusivity becomes large the algorithm
turns into simple averaging, and therefore approximates linear diffusion.
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In the two-dimensional case of images an analog derivation leads to the
scheme

uk+1

i,j = uk
i,j +

1

8

(

1 − exp

(

−8τ

h2
gk

i+ 1

2
,j

))

(uk
i+1,j − uk

i,j)

+
1

8

(

1 − exp

(

−8τ

h2
gk

i− 1

2
,j

))

(uk
i−1,j − uk

i,j)

+
1

8

(

1 − exp

(

−8τ

h2
gk

i,j+ 1

2

))

(uk
i,j+1 − uk

i,j)

+
1

8

(

1 − exp

(

−8τ

h2
gk

i,j− 1

2

))

(uk
i,j−1 − uk

i,j)

Since we are averaging over twice as many neighbours as in the 1-D case, the
weight 4 had been replaced by 8. This scheme is also well-suited for singular
diffusivities, it is unconditionally stable and conditionally consistent.

2.2 Minimally Stochastic Approach

We want to construct an integer-valued analog to the process (6), that is, a
system

uk+1
m = uk

m + ω

uk+1
n = uk

n − ω
(11)

where ω can only assume integer values. This warrants that the integer grey
values of the initial image remain integer valued during the whole evolution
process. As already mentioned conventional rounding is not an feasible option,
hence we introduce a form of randomised rounding. This amounts to the design
of a randomising module that requires the data of only two pixels as input.
Instead of rounding by [x] = integer part of x, this module utilizes a stochastic
rounding function SR : IR −→ ZZ defined by

SR(x) :=

{

[x] with probability 1 − |x − [x]|
[x] + 1 with probability |x − [x]|.

One finds, for example,

SR(2.7) =

{

2 with probability 0.3

3 with probability 0.7.

We employ this random variable to turn (11) with

ω := SR

[

1

2

(

1 − exp

(

− 2τ

h2

gk
n + gk

m

2

))

(uk
n − uk

m)

]

. (12)

into a randomised and integer-valued variant of a 2-pixel scheme
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The regularising effect of the proposed stochastic rounding allows for larger
time steps. A standard deterministic rounding would not be appropriate if the
image is piecewise almost flat. In this case deterministic rounding would not
permit to diffuse small quantities which would entail unphysical results. Instead
we allow for fluctuations of one grey level in magnitude and hereby exploit the
insensitivity of the visual system to small changes in greyvalues.

So far the exchange of information between two pixels is ensured. Now the
task that remains is to transport the information to other pixels. The idea close at
hand would be to use an additive operator splitting like in the deterministic case.
However, this would come down to averaging four integer solutions in each pixel,
such that there is no guarantee that the result is an integer number again. This
is the reason why we use a multiplicative operator splitting for our randomised
approach. Since it leads to a sequential application of the randomised two-pixel
interactions, integer results are ensured. In the 2-D setting there are 8 different
ways of passing through all pixels in a regular order, as is indicated in Fig. 1.
Selecting one of these cases, however, would introduce a directional bias for a

Fig. 1. Extension of the two-pixel-scheme to a 2D-image by applying it to overlapping
pairs of pixels. Selection of the starting point and marching directions indicated by
black and grey arrows.

nonlinear PDE such as TV flow. In order to avoid this problem, we introduce
a second randomisation in our algorithm: We randomly choose one of the eight
cases which are considered to be equally likely, namely of having probability 1

8

each. From the numerical point of view the following issues have turned out to
be beneficial:

– If the initial data (fi) are integer valued the scheme in (11) produces integer
values only.
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– Since the diffusivities considered are unbounded the case that gk
m = ∞ or

gk
n = ∞ must be accounted for by setting

ω := SR

(

uk
n − uk

m

2

)

. (13)

– From the numerical point of view it is advantageous to compute reciprocal
diffusivities 1

gk
m

and use the harmonic mean for averaging:

ω =











SR
{(

1 − exp
(

− 4τ
h2

(

1

gk
n

+ 1

gk
m

)−1
))

uk
m−uk

n

2

}

for 1

gk
m

, 1

gk
n

> 0 ,

SR
(

uk
m−uk

n

2

)

for 1

gk
m

or 1

gk
n

= 0 .

(14)

It is important to remark that the proposed minimally stochastic scheme pro-
duces filtered data consisting of integer values as soon as the initial data are
integer valued making it suitable for simple hardware. The scheme also obeys
a minimum-maximum-principle since the two-pixel process does. This is an im-
portant stability issue.

3 Numerical Experiments

In this section we display some results of numerical experiments to visualise
the properties of the deterministic exponential and the minimally stochastic
approach. We consider a 256×256 greyvalue medical image and a 128×128 image
where in 70% of its pixels the grey value is replaced by an value randomly chosen
according to a uniform distribution on {0, 1, . . . , 255}. For the discretisation of
|∇u| we used one sided differences:

|∇ui,j | =

{

1

2

(

(

ui+1,j − ui,j

h

)2

+

(

ui,j − ui−1,j

h

)2
)

+
1

2

(

(

ui,j+1 − ui,j

h

)2

+

(

ui,j − ui−1,j−1

h

)2
)}

1

2

(15)

We subject the images to TV-diffusion based on both the deterministic and
minimally stochastic two-pixel-scheme. The total diffusion time of 100 is achieved
with time step sizes τ = 0.01, 0.1, 1, that is, with 10000, 1000, 100 iterations.
The sequence of filtered images indicates clearly the stabilising effect of the
randomisation: The minimally stochastic computation allows for about 10 times
larger time steps when compared with a deterministic counterpart of the same
visual quality. While with a time step size of τ = 1 the deterministic scheme
produces an output degraded by fluctuations and blurring effects, the minimally
stochastic approach still yields a satisfactory result.

The situation is similar but less pronounced in the case of BFB-diffusion.
Here the total diffusion time is 3000 tackled with time step sizes τ = 3, 10, 30
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Fig. 2. Test images. Left: A 128 × 128 image polluted with 70% uniform noise.
A 256 × 256 image without additional noise.

which entails 1000, 300, 100 iterations. Again the regularising effect of the min-
imally stochastic computation is clearly discernable, however, the gain is now
an about three times larger time step in comparison with a qualitatively similar
deterministic result.

The computational gain achieved by the minimally stochastic approach over
the deterministic method is documented for both TV- and BFB-diffusion in table
1. 10000 iterations each have been performed on a Athlon XP 2.4 Ghz CPU for
a grey value image of size 256× 256. One can say that the deterministic and the
minimally stochastic scheme are computationally equally costly.

deterministic minimally stochastic

TV 7 min 20.6 sec 7 min 28.3 sec

BFB 7 min 25.8 sec 7 min 26.1 sec

Tab. 1. CPU time necessary for 10000 iterations performed with the determin-
istic explicit or minimally stochastic sheme for TV- and BFB-diffusion.

4 Conclusion

The usage of singular diffusivities has advantages, like feature preserving qual-
ities and the absence of tuning parameters, for instance. However, numerical
intricacies turn the actual calculations into a challenging task. In this paper we
introduce a minimally stochastic approach that regularises the singular diffusion
filter. It is based on a time-continuous but space-discrete explicit two-pixel-
scheme for which an analytical solution can be derived. This two-pixel-scheme
receives a random component by employing stochastic rounding. The regularis-
ing effect of this randomisation allows for much larger time steps when compared
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Fig. 3. Comparing deterministic and minimally stochastic computations of TV diffu-
sion filtering with total diffusion time 100.
Left column: Deterministic calculation with explicit scheme.
Right column: Minimally stochastic calculation.
From top to bottom: Time step size τ = 0.01, 0.1, and 1 requiring 104, 103, and 102

iterations, respectively.
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Fig. 4. Comparing deterministic and minimally stochastic computations of BFB dif-
fusion filtering with total diffusion time 3000.
Left column: Deterministic calculation with explicit scheme.
Right column: Minimally stochastic calculation.
From top to bottom: Time step size τ = 3, 10, and 30 requiring 1000, 300, and 100
iterations, respectively.
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Fig. 5. Comparing deterministic and minimally stochastic computations of TV diffu-
sion filtering with total diffusion time 100.
Left column: Deterministic calculation with explicit scheme.
Right column: Minimally stochastic calculation.
From top to bottom: Time step size τ = 0.01, 0.1, and 1 requiring 104, 103, and 102

iterations, respectively.
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Fig. 6. Comparing deterministic and minimally stochastic computations of BFB dif-
fusion filtering with total diffusion time 3000.
Left column: Deterministic calculation with explicit scheme.
Right column: Minimally stochastic calculation.
From top to bottom: Time step size τ = 3, 10, and 30 requiring 1000, 300, and 100
iterations, respectively.
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with the deterministic two-pixel-scheme, and for integer valued initial data it can
be realised in such a way that only integer arithmetic is required. The numer-
ical experiments show the favourable performance of the minimally stochastic
scheme.
Ongoing research dedicated to the general class of diffusivities g(|∇u|) = 1

|∇u|p ,

p > 0, encompasses the usage of a more sophisticated four-pixel scheme and a
deeper investigation of the performance.
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