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Successive Overrelaxation

PART IlI
Efficient Numerics

@ Known: So far we have used the Jacobi method or its improved variant the
GauB-Seidel method to solve the linear system of equation Ax = b.

® Jacobi Method: The iteration step for the Jacobi method is given by
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How Can We Accelerate the GauB-Seidel Method? How Does the SOR Method looks like for the Horn and Schunck Method?

® FEquation System: For the method of Horn and Schunck the associated linear
system of equations is given by (cf. PART 1)

@ /dea: Pointwise extrapolate the result of the GauB-Seidel method

@ Successive Overrelaxation Method (SOR): Given the GauB-Seidel result 5"
at pixel ¢ and iteration k41, the SOR method proceeds (Young 1971)
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with overrelaxation parameter w € (0,2). In matrix notation this reads
® Example: The corresponding SOR iteration step then reads
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® Properties: For symmetric and positive definite system matrices the SOR method

e converges if the overrelaxation parameter w is chosen in the interval (0, 2)
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e is 1-2 orders of magnitude more efficient than the GauB-Seidel method
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Convergence Comparisons for Different Iterative Methods

€ Qualitative Comparison: Horn and Schunck method after 100 lterations

Solver AAE
Jacobi method 29.58°
GauB-Seidel method 22.63°

Successive Overrelaxation (w = 1.96) | 7.18°

® Visual Comparison: Horn and Schunck method after 100 lterations

Results for the Yosemite Sequence with clouds (L. Quam) using 100 solver iterations. (a) Left: Jacobi
method. (b) Center: GauB-Seidel method. (c) Right: Successive Overrelaxation method (w = 1.96).

Nested Fixed Point Iteration (2)

Nested lterations

@ Nonlinear Case: Each linear problem requires a solver — 2 nested iterations
e outer loop: lagged nonlinearity FP iteration (remove nonlinearity)

e solver loop: solver FP iteration (solve linear system)

@ Nonlinear Case with Warping: Multiple nonlinear problems — 3 nested iterations
e outer loop: warping FP iteration (remove implicit nonlinearity)
e inner loop: lagged nonlinearity FP iteration (remove nonlinearity)

e solver loop: solver FP iteration (solve linear system)

@ Attention: Very inexact solution of solver loop sufficient (Vogel/Oman 1996)
e fast update of nonlinear expressions essential for performance

e applying only a few solver iterations yields fastest convergence

Nested Fixed Point Iteration (1)

Nested Fixed Point lteration

How to Apply Linear Solvers to Nonlinear Systems?

¢ |dea: Derive a Quasi-Newton scheme for A (x) = b by approximating the
Jacobian B (x) of the nonlinear operator A (x) via the linear decomposition

A(x) = B(x)x + c(x)

with matrix B (x) being symmetric and positive definite for any values of x.

® (Consequence: Original nonlinear problem solved by determining the fixed point
of the series of linear problems (Fucik et al. 1973, Vogel/Oman 1996, Axelson 1997)

B(x"x"l=b-c(x") & x""'=x"-B7'(xF)(Ax")-Db)
AF b*

Terms involving nonlinear expressions, i.e. A* and b* are computed using the
solution x* from the old iteration k& — lagged nonlinearity method.

Basic Linear Multigrid (1)

Basic Linear Multigrid

How Can We Solve Linear Systems of Equations Even More Efficiently?

¢ Observation: Slow convergence of iterative solvers (Jacobi, GauB Seidel, SOR)
already after a few iterations. What is the reason of this behavior?

e logarithmic error spectrum reveals slow decrease of lower frequency parts
(— only efficient damping of higher error frequency parts)

high
low

® Sophisticated Idea: Transfer and compute error(!) on coarser grids
(Brand 1977, Hackbusch 1985)

10 100 1000

e low frequencies reappear as higher frequencies
(— also efficient damping of lower error frequency parts)
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Basic Linear Multigrid — The Two—Grid Cycle
[
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@ Step 1: Presmoothing Relaxation

e smoothing of higher error frequencies
— application of n; solver iterations to A"x" = b”

e logarithmic error spectrum shows decrease of higher frequency parts

>
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Basic Linear Multigrid — The Two—Grid Cycle
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@ Step 2: Restriction

e transfer residual equation A"e™ = r” to coarser grid — A7x" = b"

e decision 1: choice of coarse cell/grid size H

e.g. halving the pixel number yields doubling of the cell/grid size

e decision 2: choice of restriction operator R*—
e.g. area-based averaging over h X h pixels

[
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e coarse grid RHS is then obtained by restriction : b = RhF—=Hyh

Basic Linear Multigrid (3)

Basic Linear Multigrid — The Two—Grid Cycle
[
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€ Question: How shall we proceed?

h h

e error eh = x" — %

cannot be computed directly

e residual r* = b” — A"%" can be computed directly

linearity of matrix A" yields the residual equation
Aheh _ Ah(xh _ ih)
Ahxh o Ahih

= bh— AlkP =rh.

solving this linear system of equations A”e" = r” allows the desired
correction of the approximate solution X" by its error e”

Basic Linear Multigrid (5)

Basic Linear Multigrid — The Two—Grid Cycle
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@ Step 2: Restriction (continued)

e transfer residual equation A"e” = r” to coarser grid — A" x!" = b"
e decision 3: choice of coarse grid matrix AY of operator A"
e.g. by Discretisation Coarse Grid Approximation (DCA)
@ Discretisation Coarse Grid Approximation (DCA)
e rediscretisation of Euler—Lagrange equations (restriction of motion tensors)
[T = RMH[ Tt for n,m e {1,2,3}
e substitution of fine grid size h by coarse grid size H (smoothness term)
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Basic Linear Multigrid — The Two—Grid Cycle
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@ Step 3: Coarse Grid Computation
e solve the restricted linear system of equations A#x" = b¥ given by
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fori=1,...,N" and j =1,..., M on the coarse grid.

o if pixel number is small, direct computation via Gaussian elimination

e else iterative computation, e.g. by using the SOR method

Basic Linear Multigrid (8)

Basic Linear Multigrid — The Two—Grid Cycle

@ Step 5: Correction From Coarse Grid

<

e correction of approximation from presmoothing relaxation : X", =

e logarithmic error spectrum shows decrease of lower frequency parts

e however, prolongation of error introduces new high frequency parts

\ g

Basic Linear Multigrid (7)

e decision 4: choice of prolongation operator PH—"
e.g. area-based interpolation over h x h pixels

Basic Linear Multigrid — The Two—Grid Cycle

h
H

® Step 4: Prolongation
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e transfer result from coarse grid to fine grid : e® = PH—~hx!

Basic Linear Multigrid (9)

Basic Linear Multigrid — The Two—Grid Cycle
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® Step 6: Postsmoothing Relaxation

e smoothing of higher error frequencies introduced by interpolation
— Application of n, solver iterations to A"x" = b"

e logarithmic error spectrum shows decrease of higher frequency parts

after
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Efficient Error Reduction Through Three Cycles

Start Presmoothing  Correction Postsmoothing

-

M
1st Cycle \
-

2nd Cycle \ “

3rd Cycle

Basic Nonlinear Multigrid (2)

Basic Nonlinear Multigrid — The Two—Grid Cycle
h e-------
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@ Question: How shall we proceed?

h h

e error el = x" — %M

cannot be computed directly
e residual r" = b — A"(x") can be computed directly
e nonlinearity of A" does not yield residual equation

Ah(eh) — Ah(xh o ih) # Ah(xh) o Ah(f(h) _ bh o Ah(ih) _ I_h

¢ New Idea: Full approximation scheme (FAS)
e but implicit relation is given by

Al(xh) — AP =[AME! 1 ) — AMEN| = bt - ANEY) =

e this yields the full approximation : A"(e + x"") = r" + A (x")

e solving this nonlinear equation system allows desired correction of X" by e”

Basic Nonlinear Multigrid (1)

Basic Nonlinear Multigrid — The Two—Grid Cycle
[
[T I,

® Step 1: Presmoothing Relaxation

e smoothing of higher error frequencies
— application of n, nonlinear solver iterations to A"(x") = b"

e logarithmic error spectrum shows decrease of higher frequency parts

before after

Basic Nonlinear Multigrid (3)

Basic Nonlinear Multigrid — The Two—Grid Cycle
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@ Step 2: Restriction

e transfer A"(e" + x"") = v + A"(X") to coarser grid — A (x/) = bl

e decision 1: choice of coarse cell/grid size H
e.g. halving the pixel number yields doubling of the cell/grid size

e decision 2: choice of restriction operator R* 1
e.g. area-based averaging over h X h pixels

e decision 3: choice of coarse grid version A of operator A"
e.g. by Discretisation Coarse Grid Approximation (DCA)

How is the actual coarse grid right hand side obtained ?
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Basic Nonlinear Multigrid — The Two—Grid Cycle
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¢ Step 2: Restriction (continued)

Basic Nonlinear Multigrid — The Two—Grid Cycle
h -@-c-cnn-

@ Step 3: Coarse Grid Computation

e transfer A"(e + x") = r" + A"(x") to coarser grid — A (x) = bl e solve the restricted nonlinear system of equations A (x#) = b#

! N e due to AH(xH) = AH(efl + %) = bH extract the coarse grid error
bH _ Rh—)Hrh + AH(Rh*}Hih) eH _ XH _ )~(H
_ Rh‘?H(bh _ Ah(ih)) 4 AH(Rh*}H}N(h) _ XH o Rh,—»Hih .

_ Rh—»th _ (Rh_)HAh()NCh) _ AH(R}L—>H)~(}L)) .

modification of right hand side b¥

e thus one actually solves a coarse grid variant of the fine grid problem with
modified right hand side: A"(x") = b" — AY(x') = RF=Hp — b,

Basic Nonlinear Multigrid (6)

e decision 4: choice of prolongation operator PH—"
e.g. area-based interpolation over h x h pixels

Basic Nonlinear Multigrid (7)

Basic Nonlinear Multigrid — The Two—Grid Cycle

h
H

@ Step 4: Prolongation

Basic Nonlinear Multigrid — The Two—Grid Cycle

@ Step 5: Correction From Coarse Grid

e correction of approximation from presmoothing relaxation : X", = %" + e”

5

e logarithmic error spectrum shows decrease of lower frequency parts
e transfer result from coarse grid to fine grid : e = PH—hel

e however, prolongation of error introduces new high frequency parts

before after
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Basic Nonlinear Multigrid — The Two—Grid Cycle
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® Step 6: Postsmoothing Relaxation

e smoothing of higher error frequencies introduced by interpolation
— application of n, nonlinear solver iterations to A"(x") = b"

e logarithmic error spectrum shows decrease of higher frequency parts

before after
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Advanced Multigrid Strategies

How Can We Improve the Convergence of Multigrid Methods Even Further?

@ |dea 1: Hierarchical application of the two—grid correction cycle

@ Example: one or two recursive calls per level (— V—cycle, W—cycle)

V-CYCLES W-CYCLES

COARSE COARSE

® |dea 2: Additionally start with better initialisation

® Example: embed V—/W—cycles in hierarchical initialisation (— Full Multigrid)

Basic Nonlinear Multigrid (9)

Efficient Error Reduction Through Three Cycles

Start Presmoothing  Correction Postsmoothing

1st Cycle

2nd Cycle

3rd Cycle

Advanced Multigrid Strategies (2)

The Full Multigrid Strategy

® Hierarchical Initialisation: Coarse-to-Fine Approach
e start with coarse version of original problem
e refine problem step by step

e use coarse solution as initial guess on next finer grid

® At Each Level: Correcting Multigrid Solver

e coarse grid corrections — error ex-/implicitly computable via V-/W-cycles

COARSE
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Further Multigrid Developments in the Variational Optical Flow Literature Comparison of Numerical Solvers

® Testbed for Various Prototypes
e standard desktop PC with 3.06 GHz Pentium4 CPU

@ (oarse Grid Representation

e problem approximation (Terzopoulos TPAMI 1986) — cheap but inaccurate

e Galerkin approximation (E/ Kalmoun/Riide VMV 2003) — optimal but expensive
e graph-based approximation (Ghosal/Vangk TPAMI 1996) — algebraic multigrid
® Intergrid Transfer Operators
e matrix-dependent operators (Késtler et al. TR 2005) — discont. coefficients
® Basic Iterative Solvers

e point-/line-coupled solvers (Bruhn et al. SSVM 2005) — anisotropic problems

e C/C++ implementation

e image size 160 x 120

e stopping criterion : relative error eyer := ||Z — z||2/||z||2 of 1072

@ [inear Case: Horn and Schunck

(Bruhn et al. SSVM 2005)

e incomplete LU factorization (Késtler et al. TR 2005) — broad applicability Solver Iterations | Time [s] | FPS [s™'] | Speedup
Mod. Explicit Scheme 4425 3.509 0.285 1
e re-iterant recombination (Késtler et al. TR 2005) — improved convergence GauB-Seidel (CPR) 2193 1.152 0.868 3
. . SOR 82 0.052 19.233 67
* 3
Extensions to 3-D Multigrid Full Multigrid 1 0016 | 62790 220

e cardiac motion analysis (Zini et al. TIP 1997, EI Kamoun et al. IMAVIS 2007)

Advanced Multigrid Strategies (5)

Comparison of Numerical Solvers

® Linear Case: Nagel and Enkelmann (directional smoothness)
(Bruhn et al. SSVM 2005)

Advanced Multigrid Strategies (6)

Multigrid Speedups

® Overview For Different Model Prototypes

(Bruhn et al. 1JCV 2006)

— Solver e | Vs ]| R [ | Seedi Two to three orders of magnitude for different smoothness terms
Mod. Explicit Scheme 36433 47.087 0.021 1
GauB-Seidel (ALR) 607 3.608 0.277 13 Type Solver FPS | Speedup
SOR 202 0.212 4.417 204 Horn and Schunck Full Multigrid 62.7 220
Full Multigrid 1 0.171 5.882 275 Nagel and Enkelmann Full Multigrid 5.8 275
Nonquadratic (TV norm) FAS Full Multigrid 12.1 372
® Nonlinear Case: Nonquadratic Smoothness Term (TV norm) Three to four orders of magnitude for high accuracy methods
(Bruhn et al. SSVM 2005)
Type Solver FPS Speedup
Solver Iterations | Time [s] | FPS [s_'] | Speedup Nonquadratic (Ly + TV) FAS Full Multigr?d 11.5 2836
Mod. Explicit Scheme 10633 30,492 0033 1 Brox et al..ECCV 2004 FAS Full MuIt!gr!d 9.9 10588
GauB-Seidel (CPR) 2679 6.011 0145 2 Bruhn/Weickert ICCV 2005 Warp FAS Full Multigrid 2.9 5454
SOR 17/5 0.174 5.748 174
Full Multigrid L e L B Are further accelerations possible?
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Real-Time Live Demo Implementations on Parallel Hardware

® Live Computation with Webcam (160 x 120) Moderate Parallel Systems

® Example: Cell Processor - Sony Playstation 3
e two types of parallelism
e coarse grain: 6 SPUs on ringbus interface

e fine grain: SIMD with 4 instructions per SPU

@ Parallelization Variant 1: Solver Parallelization
(Gwosdek et al. VMV 2008, Gwosdek et al. JRTIP 2009)

e iterative solvers without local data dependency:

red-black GS/SOR with data reshuffling
Start

Flow fields are computed with a 1.7 GHz PentiumM CPU Stop

e difficult to combine with multigrid ideas e

e performance loss due to synchronisation, communication and reordering

Implementations on Parallel Hardware (2) Implementations on Parallel Hardware (3)

Moderately Parallel Systems Massively Parallel Systems

® Parallelization Variant 2: Frame Scheduling ® Example: Graphics Cards (GPGPU) - Intel, NVIDIA
(Gwosdek et al. VMV 2008, Gwosdek et al. JRTIP 2009)

e two types of parallelism
e distribution of different frames on different SPUs

e coarse grain: up to 30 multiprocessors
e minimal synchronisation and communication costs

e fine grain: up to 8 cores per processor
e high frame rate but latency of sequential algorithm

e Cell processor, implementation based on CPL @ Parallelization Variant 1: Solver Parallelization

- (Grossauer/Thoman ICVS 2008)

e implementation of the Bruhn/Weickert ICCV 2005 multigrid method

FPS

e iterative solvers without local data dependency:

oB8888

linear
nichtlinear
1 2 3 4 5 6
SPUs

point-coupled damped Jacobi solver (does not require reshuffling)

e performance loss at coarser levels (no FMG, replace W- by V-cycles)
e linear case: up to 210 FPS at 316 x 252 (16.7M pix/s)

e NVIDIA GeForce 8800 GTX, implementation based on shader programs
e nonlinear case: up to 65 FPS at 316 x 252 (5.2M pix/s)

nonlinear case with warping: up to 17 FPS at 511 x 511 (4.5M pix/s)




Implementations on Parallel Hardware (4)
Massively Parallel Systems

® Parallelization Variant 2: Dual Algorithms
(Zach et al. DAGM 2007, Steinbriicker et al. ICCV 2009, Wedel et al. ICCV 2009)
e decoupling of data and smoothness term via auxiliary variables

1 .
E(wi,wy) = / [Loui+ 11 +14 +% ((u1 7u2)2+(U17U2)2) + a (|Vus|+|Vuve|) drdy.

Q  data term coupling term smoothness term

alternating optimization steps for data and smoothness term

data term: pointwise thresholding

smoothness term: Chambolle's algorithm (Chambolle et al. IMIV 2004)

NVIDIA GeForce GTX 280, implementation based on CUDA

nonlinear case with warping: up to 32 FPS at 512 x 512 (8.4M pix/s)

Main problem of parallel systems: Severe limitation of fast memory!

Acknowledgements (1)

Acknowledgements

@ Joachim Weickert ¢ Henning Zimmer
@ Christoph Schnorr ® Levi Valgaerts
@ Daniel Cremers ¢ Nils Papenberg
¢ Jitendra Malik ¢ Timo Kohlberger
@ Christoph Bregler ¢ Yana Mileva

@ Bodo Rosenhahn ® Stephan Didas
@ Hans-Peter Seidel ¢ Agustin Salgado

Thank you very much!

further information: www.mia.uni-saarland.de
www.eecs.berkeley.edu /Research /Projects/CS /vision/

Summary (1)

Summary

® There exists a variety of efficient solvers

e SOR as extrapolation variant of GauB-Seidel (simple to implement)

Nested fixed point iterations allow to handle nonlinear problems

Multigrid is optimal solver but requires problem-specific adaptations

Parallel hardware allows further speedups (Cell, GPUs)

High accuracy and real-time performance are not contradictive
General Summary for the Tutorial

@ PART I: Insights into the concept behind variational methods
@ PART Il: Problem-specific modelling for high accuracy results

¢ PART IlI: Efficient numerical strategies for minimisation




