PART III

Efficient Numerics

Contents

1. Successive Overrelaxation (SOR)
2. Nested Fixed Point Iteration
3. Basic Linear Multigrid
4. Basic Nonlinear Multigrid
5. Advanced Multigrid Strategies
6. Implementations on Parallel Hardware
© 2009 Andrés Bruhn, Thomas Brox

Successive Overrelaxation (1)

Successive Overrelaxation

- Known: So far we have used the Jacobi method or its improved variant the Gauß-Seidel method to solve the linear system of equation $A \mathbf{x}=\mathbf{b}$.
- Jacobi Method: The iteration step for the Jacobi method is given by

$$
\mathbf{x}^{k+1}=D^{-1}\left(\mathbf{b}+(L+U) \mathbf{x}^{k}\right) \quad \Leftrightarrow \quad x_{i}^{k+1}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j<i} a_{i j} x_{j}^{k}-\sum_{j>i} a_{i j} x_{j}^{k}\right) .
$$

- Gauß-Seidel Method: The iteration step for the Gauß-Seidel method reads

$$
\mathbf{x}^{k+1}=(D-L)^{-1}\left(\mathbf{b}+U \mathbf{x}^{k}\right) \quad \Leftrightarrow \quad x_{i}^{k+1}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j<i} a_{i j} x_{j}^{k+1}-\sum_{j>i} a_{i j} x_{j}^{k}\right) .
$$

Here, D is the diagonal part, L is the lower triangular part and U ist the upper triangular part of the system matrix A.

Successive Overrelaxation (3)

How Does the SOR Method looks like for the Horn and Schunck Method?

- Equation System: For the method of Horn and Schunck the associated linear system of equations is given by (cf. PART I)

$$
\begin{aligned}
& 0=\left[J_{11}\right]_{i, j} u_{i, j}+\left[J_{12}\right]_{i, j} v_{i, j}+\left[J_{13}\right]_{i, j}-\alpha \sum_{l \in x, y} \sum_{(\tilde{i}, \tilde{j}) \in \mathcal{N}_{l}(i, j)} \frac{u_{\tilde{i}, \tilde{j}}-u_{i, j}}{h_{l}^{2}} \\
& 0=\left[J_{12}\right]_{i, j} u_{i, j}+\left[J_{22}\right]_{i, j} v_{i, j}+\left[J_{23}\right]_{i, j}-\alpha \sum_{l \in x, y} \sum_{(\tilde{i}, \tilde{j}) \in \mathcal{N}_{l}(i, j)} \frac{v_{\tilde{i}, \tilde{j}}-v_{i, j}}{h_{l}^{2}}
\end{aligned}
$$

$$
\text { for } i=1, \ldots, N \text { and } j=1, \ldots, M \text {. }
$$

- Example: The corresponding SOR iteration step then reads

Successive Overrelaxation (4)

Convergence Comparisons for Different Iterative Methods

- Qualitative Comparison: Horn and Schunck method after 100 Iterations

Solver	AAE
Jacobi method	29.58°
Gauß-Seidel method	22.63°
Successive Overrelaxation $(\omega=1.96)$	7.18°

- Visual Comparison: Horn and Schunck method after 100 Iterations

Results for the Yosemite Sequence with clouds (L. Quam) using 100 solver iterations. (a) Left: Jacobi method. (b) Center: Gauß-Seidel method. (c) Right: Successive Overrelaxation method ($\omega=1.96$).

Nested Fixed Point Iteration (2)

Nested Iterations

- Nonlinear Case: Each linear problem requires a solver $\rightarrow 2$ nested iterations
- outer loop: lagged nonlinearity FP iteration (remove nonlinearity)
- solver loop: solver FP iteration (solve linear system)
- Nonlinear Case with Warping: Multiple nonlinear problems $\rightarrow 3$ nested iterations
- outer loop: warping FP iteration (remove implicit nonlinearity)
- inner loop: lagged nonlinearity FP iteration (remove nonlinearity)
- solver loop: solver FP iteration (solve linear system)
- Attention: Very inexact solution of solver loop sufficient (Vogel/Oman 1996)
- fast update of nonlinear expressions essential for performance
- applying only a few solver iterations yields fastest convergence

Nested Fixed Point Iteration (1)

Nested Fixed Point Iteration

How to Apply Linear Solvers to Nonlinear Systems?

- Idea: Derive a Quasi-Newton scheme for $A(\mathbf{x})=\mathbf{b}$ by approximating the Jacobian $B(\mathbf{x})$ of the nonlinear operator $A(\mathbf{x})$ via the linear decomposition

$$
A(\mathbf{x})=B(\mathbf{x}) \mathbf{x}+\mathbf{c}(\mathbf{x})
$$

with matrix $B(\mathbf{x})$ being symmetric and positive definite for any values of \mathbf{x}.

- Consequence: Original nonlinear problem solved by determining the fixed point of the series of linear problems (Fučik et al. 1973, Vogel/Oman 1996, Axelson 1997)

$$
\underbrace{B\left(\mathbf{x}^{k}\right)}_{A^{k}} \mathbf{x}^{k+1}=\underbrace{\mathbf{b}-\mathbf{c}\left(\mathbf{x}^{k}\right)}_{\mathbf{b}^{k}} \Leftrightarrow \mathbf{x}^{k+1}=\mathbf{x}^{k}-B^{-1}\left(\mathbf{x}^{k}\right)\left(A\left(\mathbf{x}^{k}\right)-\mathbf{b}\right)
$$

Terms involving nonlinear expressions, i.e. A^{k} and \mathbf{b}^{k} are computed using the solution \mathbf{x}^{k} from the old iteration $k \rightarrow$ lagged nonlinearity method.

Basic Linear Multigrid (1)

Basic Linear Multigrid

How Can We Solve Linear Systems of Equations Even More Efficiently?

- Observation: Slow convergence of iterative solvers (Jacobi, Gauß Seidel, SOR) already after a few iterations. What is the reason of this behavior?
- logarithmic error spectrum reveals slow decrease of lower frequency parts (\rightarrow only efficient damping of higher error frequency parts)

10
100
1000

- Sophisticated Idea: Transfer and compute error(!) on coarser grids (Brand 1977, Hackbusch 1985)
- low frequencies reappear as higher frequencies (\rightarrow also efficient damping of lower error frequency parts)

Basic Linear Multigrid (2)

Basic Linear Multigrid - The Two-Grid Cycle

- Step 1: Presmoothing Relaxation
- smoothing of higher error frequencies
\rightarrow application of n_{1} solver iterations to $A^{h} \mathbf{x}^{h}=\mathbf{b}^{h}$
- logarithmic error spectrum shows decrease of higher frequency parts

Basic Linear Multigrid - The Two-Grid Cycle

- Question: How shall we proceed?
- error $\mathbf{e}^{h}=\mathbf{x}^{h}-\tilde{\mathbf{x}}^{h}$ cannot be computed directly
- residual $\mathbf{r}^{h}=\mathbf{b}^{h}-A^{h} \tilde{\mathbf{x}}^{h}$ can be computed directly
- linearity of matrix A^{h} yields the residual equation

$$
\begin{aligned}
A^{h} \mathbf{e}^{h} & =A^{h}\left(\mathbf{x}^{h}-\tilde{\mathbf{x}}^{h}\right) \\
& =A^{h} \mathbf{x}^{h}-A^{h} \tilde{\mathbf{x}}^{h} \\
& =\mathbf{b}^{h}-A^{h} \tilde{\mathbf{x}}^{h} \quad=\mathbf{r}^{h} .
\end{aligned}
$$

- solving this linear system of equations $A^{h} \mathbf{e}^{h}=\mathbf{r}^{h}$ allows the desired correction of the approximate solution $\tilde{\mathbf{x}}^{h}$ by its error \mathbf{e}^{h}

Basic Linear Multigrid (5)

Basic Linear Multigrid - The Two-Grid Cycle

- Step 2: Restriction (continued)
- transfer residual equation $A^{h} \mathbf{e}^{h}=\mathbf{r}^{h}$ to coarser grid $\rightarrow A^{H} \mathbf{x}^{H}=\mathbf{b}^{H}$
- decision 3: choice of coarse grid matrix A^{H} of operator A^{h} e.g. by Discretisation Coarse Grid Approximation (DCA)
- Discretisation Coarse Grid Approximation (DCA)
- rediscretisation of Euler-Lagrange equations (restriction of motion tensors)

$$
\left[J_{n m}\right]^{H}=R^{h \rightarrow H}\left[J_{n m}\right]^{h} \quad \text { for } \quad n, m \in\{1,2,3\}
$$

- substitution of fine grid size h by coarse grid size H (smoothness term)

$$
\sum_{l \in x, y} \sum_{(\tilde{i}, \tilde{j}) \in \mathcal{N}_{l}(i, j)} \frac{u_{i, j}^{h}-u_{i, j}^{h}}{h_{l}^{2}} \rightarrow \sum_{l \in x, y} \sum_{(i, j, j) \in \mathcal{N}_{l}(i, j)} \frac{u^{H_{\tilde{i}}}{ }_{\tilde{i}, j}-u^{H}{ }_{i, j}}{H_{l}^{2}}
$$

Basic Linear Multigrid (6)

Basic Linear Multigrid - The Two-Grid Cycle

- Step 3: Coarse Grid Computation
- solve the restricted linear system of equations $A^{H} \mathbf{x}^{H}=\mathbf{b}^{H}$ given by

$$
\begin{aligned}
0 & =\left[J_{11}\right]^{H}{ }_{i, j} u^{H}{ }_{i, j}+\left[J_{12}\right]^{H}{ }_{i, j} v^{H}{ }_{i, j}+\left[b_{1}\right]_{i, j}^{H}-\alpha \sum_{l \in x, y} \sum_{(\tilde{i}, j) \in \mathcal{N}_{l}(i, j)} \frac{u^{H} H_{i, j}-u^{H}{ }_{i, j}}{H_{l}^{2}} \\
0 & =\left[J_{12}\right]^{H}{ }_{i, j} u^{H}{ }_{i, j}+\left[J_{22}\right]^{H}{ }_{i, j} v^{H}{ }_{i, j}+\left[b_{2}\right]_{i, j}^{H}-\alpha \sum_{l \in x, y} \sum_{(\tilde{i}, j) \in \mathcal{N}_{l}(i, j)} \frac{v^{H_{i, j}}-v^{H}}{H_{i, j}{ }_{l}} \\
\text { for } i & =1, \ldots, N^{H} \text { and } j=1, \ldots, M^{H} \text { on the coarse grid. }
\end{aligned}
$$

- if pixel number is small, direct computation via Gaussian elimination
- else iterative computation, e.g. by using the SOR method

Basic Linear Multigrid - The Two-Grid Cycle
 Basic Linear Multigrid (7)

- Step 4: Prolongation
- decision 4: choice of prolongation operator $P^{H \rightarrow h}$ e.g. area-based interpolation over $h \times h$ pixels

- transfer result from coarse grid to fine grid : $\mathbf{e}^{h}=P^{H \rightarrow h} \mathbf{x}^{H}$

Basic Linear Multigrid (10)

Efficient Error Reduction Through Three Cycles

Basic Nonlinear Multigrid (2)

Basic Nonlinear Multigrid - The Two-Grid Cycle

- Question: How shall we proceed?
- error $\mathbf{e}^{h}=\mathbf{x}^{h}-\tilde{\mathbf{x}}^{h}$ cannot be computed directly
- residual $\mathbf{r}^{h}=\mathbf{b}^{h}-A^{h}\left(\tilde{\mathbf{x}}^{h}\right)$ can be computed directly
- nonlinearity of A^{h} does not yield residual equation

$$
A^{h}\left(\mathbf{e}^{h}\right)=A^{h}\left(\mathbf{x}^{h}-\tilde{\mathbf{x}}^{h}\right) \neq A^{h}\left(\mathbf{x}^{h}\right)-A^{h}\left(\tilde{\mathbf{x}}^{h}\right)=\mathbf{b}^{h}-A^{h}\left(\tilde{\mathbf{x}}^{h}\right)=\mathbf{r}^{h}
$$

- New Idea: Full approximation scheme (FAS)
- but implicit relation is given by

$$
A^{h}\left(\mathbf{x}^{h}\right)-A^{h}\left(\tilde{\mathbf{x}}^{h}\right)=A^{h}\left(\tilde{\mathbf{x}}^{h}+\mathbf{e}^{h}\right)-A^{h}\left(\tilde{\mathbf{x}}^{h}\right)=\mathbf{b}^{h}-A^{h}\left(\tilde{\mathbf{x}}^{h}\right)=\mathbf{r}^{h}
$$

- this yields the full approximation : $A^{h}\left(\mathbf{e}^{h}+\tilde{\mathbf{x}}^{h}\right)=\mathbf{r}^{h}+A^{h}\left(\tilde{\mathbf{x}}^{h}\right)$
- solving this nonlinear equation system allows desired correction of $\tilde{\mathbf{x}}^{h}$ by \mathbf{e}^{h}

Basic Nonlinear Multigrid - The Two-Grid Cycle

- Step 1: Presmoothing Relaxation
- smoothing of higher error frequencies
\rightarrow application of n_{1} nonlinear solver iterations to $A^{h}\left(\mathbf{x}^{h}\right)=\mathbf{b}^{h}$
- logarithmic error spectrum shows decrease of higher frequency parts

Basic Nonlinear Multigrid (3)

Basic Nonlinear Multigrid - The Two-Grid Cycle

- Step 2: Restriction
- transfer $A^{h}\left(\mathbf{e}^{h}+\tilde{\mathbf{x}}^{h}\right)=\mathbf{r}^{h}+A^{h}\left(\tilde{\mathbf{x}}^{h}\right)$ to coarser grid $\rightarrow A^{H}\left(\mathbf{x}^{H}\right)=\mathbf{b}^{H}$
- decision 1: choice of coarse cell/grid size H
e.g. halving the pixel number yields doubling of the cell/grid size
- decision 2: choice of restriction operator $R^{h \rightarrow H}$
e.g. area-based averaging over $h \times h$ pixels
- decision 3: choice of coarse grid version A^{H} of operator A^{h}
e.g. by Discretisation Coarse Grid Approximation (DCA)

How is the actual coarse grid right hand side obtained ?

Basic Nonlinear Multigrid - The Two-Grid Cycle

- Step 2: Restriction (continued)
- transfer $A^{h}\left(\mathbf{e}^{h}+\tilde{\mathbf{x}}^{h}\right)=\mathbf{r}^{h}+A^{h}\left(\tilde{\mathbf{x}}^{h}\right)$ to coarser grid $\rightarrow A^{H}\left(\mathbf{x}^{H}\right)=\mathbf{b}^{H}$

$$
\begin{aligned}
\mathbf{b}^{H} & =R^{h \rightarrow H} \mathbf{r}^{h}+A^{H}\left(R^{h \rightarrow H} \tilde{\mathbf{x}}^{h}\right) \\
& =R^{h \rightarrow H}\left(\mathbf{b}^{h}-A^{h}\left(\tilde{\mathbf{x}}^{h}\right)\right)+A^{H}\left(R^{h \rightarrow H} \tilde{\mathbf{x}}^{h}\right) \\
& =R^{h \rightarrow H} \mathbf{b}^{h}-\underbrace{\left(R^{h \rightarrow H} A^{h}\left(\tilde{\mathbf{x}}^{h}\right)-A^{H}\left(R^{h \rightarrow H} \tilde{\mathbf{x}}^{h}\right)\right)}_{\text {modification of right hand side } \tilde{\mathbf{b}}^{H}}
\end{aligned}
$$

- thus one actually solves a coarse grid variant of the fine grid problem with modified right hand side: $A^{h}\left(\mathbf{x}^{h}\right)=\mathbf{b}^{h} \rightarrow A^{H}\left(\mathbf{x}^{H}\right)=R^{h \rightarrow H} \mathbf{b}^{h}-\tilde{\mathbf{b}}^{H}$.

Basic Nonlinear Multigrid (6)

Basic Nonlinear Multigrid - The Two-Grid Cycle

- Step 4: Prolongation
- decision 4: choice of prolongation operator $P^{H \rightarrow h}$ e.g. area-based interpolation over $h \times h$ pixels
- transfer result from coarse grid to fine grid : $\mathbf{e}^{h}=P^{H \rightarrow h} \mathbf{e}^{H}$

Basic Nonlinear Multigrid (5)

Basic Nonlinear Multigrid - The Two-Grid Cycle

- Step 3: Coarse Grid Computation
- solve the restricted nonlinear system of equations $A^{H}\left(\mathbf{x}^{H}\right)=\mathbf{b}^{H}$
- due to $A^{H}\left(\mathbf{x}^{H}\right)=A^{H}\left(\mathbf{e}^{H}+\tilde{\mathbf{x}}^{H}\right)=\mathbf{b}^{H}$ extract the coarse grid error

$$
\begin{aligned}
\mathbf{e}^{H} & =\mathbf{x}^{H}-\tilde{\mathbf{x}}^{H} \\
& =\mathbf{x}^{H}-R^{h \rightarrow H} \tilde{\mathbf{x}}^{h} .
\end{aligned}
$$

Basic Nonlinear Multigrid - The Two-Grid Cycle

- Step 6: Postsmoothing Relaxation
- smoothing of higher error frequencies introduced by interpolation \rightarrow application of n_{2} nonlinear solver iterations to $A^{h}\left(\mathbf{x}^{h}\right)=\mathbf{b}^{h}$
- logarithmic error spectrum shows decrease of higher frequency parts

Advanced Multigrid Strategies (1)

Advanced Multigrid Strategies

How Can We Improve the Convergence of Multigrid Methods Even Further?

- Idea 1: Hierarchical application of the two-grid correction cycle
- Example: one or two recursive calls per level ($\rightarrow \mathbf{V}$-cycle, W-cycle)

- Idea 2: Additionally start with better initialisation
- Example: embed V-/W-cycles in hierarchical initialisation (\rightarrow Full Multigrid)

Basic Nonlinear Multigrid (9)

Efficient Error Reduction Through Three Cycles

Advanced Multigrid Strategies (2)

The Full Multigrid Strategy

- Hierarchical Initialisation: Coarse-to-Fine Approach
- start with coarse version of original problem
- refine problem step by step
- use coarse solution as initial guess on next finer grid
- At Each Level: Correcting Multigrid Solver
- coarse grid corrections \rightarrow error ex-/implicitly computable via V-/W-cycles

Advanced Multigrid Strategies (3)

Further Multigrid Developments in the Variational Optical Flow Literature

- Coarse Grid Representation
- problem approximation (Terzopoulos TPAMI 1986) \rightarrow cheap but inaccurate
- Galerkin approximation (El Kalmoun/Rüde VMV 2003) \rightarrow optimal but expensive
- graph-based approximation (Ghosal/Vaněk TPAMI 1996) \rightarrow algebraic multigrid
- Intergrid Transfer Operators
- matrix-dependent operators (Köstler et al. TR 2005) \rightarrow discont. coefficients
- Basic Iterative Solvers
- point-/line-coupled solvers (Bruhn et al. SSVM 2005) \rightarrow anisotropic problems
- incomplete LU factorization (Köstler et al. TR 2005) \rightarrow broad applicability
- re-iterant recombination (Köstler et al. TR 2005) \rightarrow improved convergence
- Extensions to 3-D Multigrid
- cardiac motion analysis (Zini et al. TIP 1997, El Kamoun et al. IMAVIS 2007)

Advanced Multigrid Strategies (5)

Comparison of Numerical Solvers

- Linear Case: Nagel and Enkelmann (directional smoothness) (Bruhn et al. SSVM 2005)

Solver	Iterations	Time [s]	FPS $\left[\mathbf{s}^{\mathbf{- 1}}\right]$	Speedup
Mod. Explicit Scheme	36433	47.087	0.021	1
Gauß-Seidel (ALR)	607	3.608	0.277	13
SOR	202	0.212	4.417	224
Full Multigrid	$\mathbf{1}$	$\mathbf{0 . 1 7 1}$	$\mathbf{5 . 8 8 2}$	$\mathbf{2 7 5}$

- Nonlinear Case: Nonquadratic Smoothness Term (TV norm) (Bruhn et al. SSVM 2005)

Solver	Iterations	Time $[\mathbf{s}]$	FPS $\left[\mathbf{s}^{\mathbf{- 1}}\right]$	Speedup
Mod. Explicit Scheme	10633	30.492	0.033	1
Gauß-Seidel (CPR)	2679	6.911	0.145	4
SOR	$17 / 5$	0.174	5.748	174
Full Multigrid	$\mathbf{1}$	$\mathbf{0 . 0 8 2}$	$\mathbf{1 2 . 1 7 2}$	$\mathbf{3 7 2}$

Advanced Multigrid Strategies (4)

Comparison of Numerical Solvers

- Testbed for Various Prototypes
- standard desktop PC with 3.06 GHz Pentium4 CPU
- $C / C++$ implementation
- image size 160×120
- stopping criterion : relative error $e_{\text {rel }}:=\|\tilde{x}-x\|_{2} /\|x\|_{2}$ of 10^{-2}
- Linear Case: Horn and Schunck
(Bruhn et al. SSVM 2005)

Solver	Iterations	Time [s]	FPS [s $\mathbf{s}^{\boldsymbol{1}}$]	Speedup
Mod. Explicit Scheme	4425	3.509	0.285	1
Gauß-Seidel (CPR)	2193	1.152	0.868	3
SOR	82	0.052	19.233	67
Full Multigrid	$\mathbf{1}$	$\mathbf{0 . 0 1 6}$	$\mathbf{6 2 . 7 9 0}$	$\mathbf{2 2 0}$

Advanced Multigrid Strategies (6)

Multigrid Speedups

- Overview For Different Model Prototypes (Bruhn et al. IJCV 2006)

Two to three orders of magnitude for different smoothness terms

Type	Solver	FPS	Speedup
Horn and Schunck	Full Multigrid	62.7	220
Nagel and Enkelmann	Full Multigrid	5.8	275
Nonquadratic (TV norm)	FAS Full Multigrid	12.1	372

Three to four orders of magnitude for high accuracy methods

Type	Solver	FPS	Speedup
Nonquadratic $\left(\boldsymbol{L}_{\mathbf{1}}+\right.$ TV $)$	FAS Full Multigrid	11.5	$\mathbf{2 8 3 6}$
Brox et al. ECCV 2004	FAS Full Multigrid	9.9	$\mathbf{1 0 5 8 8}$
Bruhn/Weickert ICCV 2005	Warp FAS Full Multigrid	2.9	$\mathbf{5 4 5 4}$

Are further accelerations possible?

Implementations on Parallel Hardware (1)

Implementations on Parallel Hardware

Moderate Parallel Systems

- Example: Cell Processor - Sony Playstation 3
- two types of parallelism
- coarse grain: 6 SPUs on ringbus interface
- fine grain: SIMD with 4 instructions per SPU
- Parallelization Variant 1: Solver Parallelization (Gwosdek et al. VMV 2008, Gwosdek et al. JRTIP 2009)
- iterative solvers without local data dependency: red-black GS/SOR with data reshuffling
- difficult to combine with multigrid ideas

- performance loss due to synchronisation, communication and reordering

Implementations on Parallel Hardware (3)

Massively Parallel Systems

- Example: Graphics Cards (GPGPU) - Intel, NVIDIA
- two types of parallelism
- coarse grain: up to 30 multiprocessors
- fine grain: up to 8 cores per processor

- Parallelization Variant 1: Solver Parallelization (Grossauer/Thoman ICVS 2008)
- implementation of the Bruhn/Weickert ICCV 2005 multigrid method
- iterative solvers without local data dependency:
point-coupled damped Jacobi solver (does not require reshuffling)
- performance loss at coarser levels (no FMG, replace W- by V-cycles)
- NVIDIA GeForce 8800 GTX, implementation based on shader programs nonlinear case with warping: up to 17 FPS at $511 \times 511(4.5 \mathrm{M} \mathrm{pix} / \mathrm{s})$

Massively Parallel Systems

- Parallelization Variant 2: Dual Algorithms
(Zach et al. DAGM 2007, Steinbrücker et al. ICCV 2009, Wedel et al. ICCV 2009)
- decoupling of data and smoothness term via auxiliary variables

$$
E\left(\mathbf{w}_{1}, \mathbf{w}_{2}\right)=\int_{\Omega} \underbrace{\left|I_{x} u_{1}+I_{y} v_{1}+I_{t}\right|}_{\text {data term }}+\frac{1}{2 \theta} \underbrace{\left(\left(u_{1}-u_{2}\right)^{2}+\left(v_{1}-v_{2}\right)^{2}\right)}_{\text {coupling term }}+\alpha \underbrace{\left(\left|\nabla u_{2}\right|+\left|\nabla v_{2}\right|\right)}_{\text {smoothness term }} d x d y .
$$

- alternating optimization steps for data and smoothness term
- data term: pointwise thresholding
- smoothness term: Chambolle's algorithm (Chambolle et al. JMIV 2004)
- NVIDIA GeForce GTX 280, implementation based on CUDA nonlinear case with warping: up to 32 FPS at $512 \times 512(8.4 \mathrm{M} \mathrm{pix} / \mathrm{s})$

Main problem of parallel systems: Severe limitation of fast memory!

Summary (1)

Summary

- There exists a variety of efficient solvers
- SOR as extrapolation variant of Gauß-Seidel (simple to implement)
- Nested fixed point iterations allow to handle nonlinear problems
- Multigrid is optimal solver but requires problem-specific adaptations
- Parallel hardware allows further speedups (Cell, GPUs)
- High accuracy and real-time performance are not contradictive

General Summary for the Tutorial

- PART I: Insights into the concept behind variational methods
- PART II: Problem-specific modelling for high accuracy results
- PART III: Efficient numerical strategies for minimisation

