Introduction (2)

What is Optical Flow Good for?

- Extraction of Motion Information

- robot navigation/driver assistance
- surveillance/tracking
- action recognition
- Processing of Image Sequences
- video compression
- ego motion compensation

Thomas Brox
Computer Vision Group U.C. Berkeley

Berkeley, US
brox@eecs.berkeley.edu

What is the Optical Flow Problem?

- Given
- two or more frames of an image sequence
- Wanted
- displacement field between two consecutive frames \rightarrow optical flow

Introduction (1)
)

號

PART I

Variational Basics

Contents

1. Continuous Modeling and Aperture Problem
2. The Method of Horn and Schunck
3. Minimization of and Discretization
4. Solving Linear Systems of Equations
© 2009 Andrés Bruhn, Thomas Brox

Continuous Modeling (4)

The Aperture Problem

- The BCCE provides only one equation for determining two unknowns
- III-posed problem with infinitely many solutions
- Only the flow component in direction of the image gradient can be computed, the so-called normal flow:

$$
(u, v)_{\mathrm{n}}^{\top}=\frac{-I_{t}}{|\nabla f||\nabla I|}
$$

- This problem is referred to as the aperture problem. It can be illustrated as

Case I
$|\nabla I| \neq 0 \rightarrow$ Aperture problem
$|\nabla I|=0 \rightarrow$ No estimation possible

Continuous Modeling (6)

Intermezzo II - How to Measure the Quality of Optical Flow Fields?

- Given: estimated flow field \mathbf{w}^{e} and ground truth flow field \mathbf{w}^{t}
- Spatiotemporal Average Angular Error (AAE):
- Consider angle and magnitude by using the spatiotemporal angle

$$
A A E=\frac{1}{N M} \sum_{i=1}^{N} \sum_{j=1}^{M} \arccos \left(\frac{\mathbf{w}_{i, j}^{\mathrm{t}}}{\left|\mathbf{w}_{i, j}^{\mathrm{t}}\right|} \frac{\mathbf{w}_{i, j}^{\mathrm{e}}}{\left|\mathbf{w}_{i, j}^{\mathrm{e}}\right|}\right)
$$

- Average Endpoint Error (AEE):
- Consider the Euclidean distance between the vectors

$$
A E E=\frac{1}{N M} \sum_{i=1}^{N} \sum_{j=1}^{M}\left|\mathbf{w}_{i, j}^{\mathrm{t}}-\mathbf{w}_{i, j}^{\mathrm{e}}\right|
$$

Continuous Modeling (7)

How Accurate is the Normal Flow?

Results for the Yosemite Sequence with clouds (L. Quam). (a) Upper Left: Frame 8. (b) Upper Right: Frame 9. (c) Lower Left: Ground truth. (d) Lower Right: Normal flow.

Variational Optical Flow Computation

What is a Functional?

- Known: A function maps an input value to an output value, e.g.

$$
f(x, y)=x^{2}+y^{2} .
$$

- New: A functional maps an input function to an output value, e.g.

$$
E(f(x, y))=\frac{1}{|\Omega|} \int_{\Omega} f(x, y) d x d y
$$

- Remarks: Functionals
- can be used to rate the quality of a function w.r.t. certain assumptions
- form the basis of variational optical flow methods

The Method of Horn and Schunck (1)

The Method of Horn and Schunck

- Idea: Assume overall smoothness of the resulting flow field
- The method of Horn and Schunck computes the optical flow as minimizer of (Horn/Schunck Al 1981)

$$
E(\mathbf{w})=\int_{\Omega} \underbrace{\left(I_{x} u+I_{y} v+I_{t}\right)^{2}}_{\text {data term }}+\alpha \underbrace{\left(|\nabla u|^{2}+|\nabla v|^{2}\right)}_{\text {smoothness term }} d x d y
$$

- data term penalizes deviations from the linearized brightness constancy assumption (BCCE)
- smoothness term penalizes deviations from smoothness of the flow field i.e. from variations of the functions u and v given by their first derivatives

Why variational methods can compute a solution everywhere?

The Filling-In-Effect

- Observation: If no information is available, i.e. $|\nabla f| \approx 0$, the flow functions u and v have hardly any influence on the contribution of the data term

$$
\left(f_{x} u+f_{y} v+f_{t}\right)^{2} \approx f_{t}^{2}
$$

- Consequence: The flow functions u and v adapt to the local solution(s) of the neighborhood to fulfill at least the smoothness term \rightarrow filling-in-effect.

filling-in

The Motion Tensor Notation

- Idea: Rewrite a linearized quadratic data term in a more compact way (e.g. Bigün et al. TPAMI 1991, Farnebäck ICCV 2001, Bruhn et al. IJCV 2005)
- Example: Linearized gray value constancy assumption (BCCE)

$$
\left(I_{x} u+I_{y} v+I_{t}\right)^{2}=\left(\mathbf{w}^{\top} \nabla_{3} I\right)^{2}=\mathbf{w}^{\top} \nabla_{3} I \nabla_{3} I^{\top} \mathbf{w}=\mathbf{w}^{\top} J \mathbf{w}
$$

yields a single quadratic form with the 3×3 motion tensor

$$
J=\left(\begin{array}{ccc}
J_{11} & J_{12} & J_{13} \\
J_{12} & J_{22} & J_{23} \\
J_{13} & J_{23} & J_{33}
\end{array}\right)=\left(\begin{array}{ccc}
I_{x}^{2} & I_{x} I_{y} & I_{x} I_{t} \\
I_{x} I_{y} & I_{y}^{2} & I_{y} I_{t} \\
I_{x} I_{t} & I_{y} I_{t} & I_{t}^{2}
\end{array}\right)=\nabla_{3} I \nabla_{3} I^{\top} .
$$

- Application: In motion tensor notation the Horn and Schunck method reads

$$
E(\mathbf{w})=\int_{\Omega} \underbrace{\mathbf{w}^{\top} J \mathbf{w}}_{\text {data term }}+\alpha \underbrace{\left(|\nabla u|^{2}+|\nabla v|^{2}\right)}_{\text {smoothness term }} d x d y
$$

Minimization and Discretization (1)

Minimization of Continuous Energy Functionals

- Idea: Similar strategy as for ordinary functions \rightarrow derive necessary conditions
- These necessary conditions are called Euler-Lagrange equations. They state that the first variation of the energy functional must vanish (\approx first derivative). (e.g. Elsgolc 1961, Gelfand/Fomin 2000)
- For a typical optical flow energy functional of type

$$
E(u, v)=\int_{\Omega} F\left(x, y, u, v, u_{x}, u_{y}, v_{x}, v_{y}\right) d x d y
$$

the Euler-Lagrange equations are given by the following system of PDEs

$$
\begin{aligned}
& 0 \stackrel{!}{=} F_{u}-\frac{\partial}{\partial x} F_{u_{x}}-\frac{\partial}{\partial y} F_{u_{y}}, \\
& 0 \stackrel{!}{=} F_{v}-\frac{\partial}{\partial x} F_{v_{x}}-\frac{\partial}{\partial y} F_{v_{y}}
\end{aligned}
$$

with the associated boundary conditions $\mathbf{n}^{\top}\binom{F_{u_{x}}}{F_{u_{y}}}=0$ and $\mathbf{n}^{\top}\binom{F_{v_{x}}}{F_{v_{y}}}=0$.

Minimization and Discretization (2)

How Do These Equations Look Like for the Method of Horn and Schunck?

- For the Method of Horn and Schunck $F\left(x, y, u, v, u_{x}, u_{y}, v_{x}, v_{y}\right)$ is given by

$$
\begin{aligned}
F & =\mathbf{w}^{\top} J \mathbf{w}+\alpha\left(|\nabla u|^{2}+|\nabla v|^{2}\right) \\
& =J_{11} u^{2}+J_{22} v^{2}+J_{33}+2 J_{12} u v+2 J_{13} u+2 J_{23} v+\alpha\left(u_{x}^{2}+u_{y}^{2}+v_{x}^{2}+v_{y}^{2}\right)
\end{aligned}
$$

- The required partial derivatives can then be computed as

$$
\begin{array}{lll}
F_{u}=2 J_{11} u+2 J_{12} v+2 J_{13}, & F_{u_{x}}=\alpha 2 u_{x}, & F_{u_{y}}=\alpha 2 u_{y} \\
F_{v}=2 J_{12} u+2 J_{22} v+2 J_{23}, & F_{v_{x}}=\alpha 2 v_{x}, & F_{v_{y}}=\alpha 2 v_{y}
\end{array}
$$

- As necessary condition for a minimizer this yields the Euler-Lagrange equations

$$
\begin{aligned}
& 0=F_{u}-\frac{\partial}{\partial x} F_{u_{x}}-\frac{\partial}{\partial y} F_{u_{y}}=\nsim(J_{11} u+J_{12} v+J_{13}-\alpha(\overbrace{\left(u_{x x}+u_{y y}\right)}^{\Delta u}) \\
& 0=F_{v}-\frac{\partial}{\partial x} F_{v_{x}}-\frac{\partial}{\partial y} F_{v_{y}}=\nsim(J_{12} u+J_{22} v+J_{23}-\alpha \underbrace{\left(v_{x x}+v_{y y}\right)}_{\Delta v})
\end{aligned}
$$

with (reflecting) Neumann boundary conditions $\mathbf{n}^{\top} \nabla u=0$ and $\mathbf{n}^{\top} \nabla v=0$.

How Can We Solve The Euler-Lagrange-Equations Numerically?

- Idea: Discretize the Euler-Lagrange equations of the Horn and Schunck method

$$
\begin{aligned}
& 0=J_{11} u+J_{12} v+J_{13}-\alpha \Delta u \\
& 0=J_{12} u+J_{22} v+J_{23}-\alpha \Delta v
\end{aligned}
$$

on a rectangular grid with spacing h_{x} in x -direction and spacing h_{y} in y-direction.

- Solution: Approximate occurring derivatives via finite differences (e.g. Sobel, Scharr, Prewitt, Kumar operators)
- image derivatives f_{x}, f_{y}, f_{t} required for motion tensor entries $J_{n m}$
- flow derivatives $\Delta=u_{x x}+u_{y y}, \Delta v=v_{x x}+v_{y y}$, here discretized via

$$
\Delta u=\frac{u_{i+1, j}-u_{i, j}}{h_{x}^{2}}+\frac{u_{i-1, j}-u_{i, j}}{h_{x}^{2}}+\frac{u_{i, j+1}-u_{i, j}}{h_{y}^{2}}+\frac{u_{i, j-1}-u_{i, j}}{h_{y}^{2}}
$$

- Consistency: for $h_{x} \rightarrow 0$ and $h_{y} \rightarrow 0$ one obtains the continuous derivatives

Minimization and Discretization (5)

Discrete Euler-Lagrange Equations

- The discrete Euler-Lagrange equations for the method of Horn and Schunck can finally be written as

$$
\begin{aligned}
0 & =\left[J_{11}\right]_{i, j} u_{i, j}+\left[J_{12}\right]_{i, j} v_{i, j}+\left[J_{13}\right]_{i, j}-\alpha \sum_{l \in x, y} \sum_{(\tilde{i}, \tilde{j}) \in \mathcal{N}_{l}(i, j)} \frac{u_{\tilde{i}, \tilde{j}}-u_{i, j}}{h_{l}^{2}} \\
0 & =\left[J_{12}\right]_{i, j} u_{i, j}+\left[J_{22}\right]_{i, j} v_{i, j}+\left[J_{23}\right]_{i, j}-\alpha \sum_{l \in x, y} \sum_{(\tilde{i}, \tilde{j}) \in \mathcal{N}_{l}(i, j)} \frac{v_{\tilde{i}, \tilde{j}}-v_{i, j}}{h_{l}^{2}} \\
\text { for } i & =1, \ldots, N \text { and } j=1, \ldots, M
\end{aligned}
$$

- here, $\mathcal{N}_{l}(i, j)$ denotes the set of neighbors of pixel i, j in direction of axis l (assuming four direct neighbors, i.e. two in each direction)
- these equations constitute a linear system of equations w.r.t. the $2 N \times M$ unknowns $u_{i, j}$ and $v_{i, j}$ for $i=1, \ldots, N$ and $j=1, \ldots, M$

Minimization and Discretization (6)

Structure of the Linear System

- This linear system of equations $A \mathbf{x}=\mathbf{b}$ has the following block structure

- smoothness term only contributes to block main diagonals
- data term also contributes to block off-diagonals
- For non-constant input images the matrix A is positive definite
- For an image with 1 M pixels, the matrix A has $4 \cdot 10^{12}$ entries. Assuming 32-bit float precision this requires 16 Terabyte memory (\rightarrow store only non-zero entries). Direct Gauss-Elimination with complexity $O\left(n^{3}\right)$ is not practicable.

Frequent Approach

- Use matrix decomposition of type

$$
A=D-L-U
$$

- D is the diagonal part of A
- L is the strictly lower triangular part of A
- U is the strictly upper triangular part of A
- For the method of Horn and Schunck this yields

$$
\begin{aligned}
0= & {\left[J_{11}\right]_{i, j} u_{i, j}+\left[J_{12}\right]_{i, j} v_{i, j}+\left[J_{13}\right]_{i, j} } \\
& +\alpha \sum_{l \in x, y} \sum_{(\tilde{i}, \tilde{j}) \in \mathcal{N}_{l}(i, j)} \frac{1}{h_{l}^{2}} u_{i, j}-\alpha \sum_{l \in x, y} \sum_{(\tilde{i} \tilde{j}) \in \mathcal{N}_{l}^{-}(i, j)} \frac{1}{h_{l}^{2}} u_{\tilde{i}, \tilde{j}}-\alpha \sum_{l \in x, y} \sum_{(\tilde{i}, \tilde{j}) \in \mathcal{N}_{l}^{+}(i, j)} \frac{1}{h_{l}^{2}} u_{\tilde{i}, \tilde{j}} \\
0= & {\left[J_{12}\right]_{i, j} u_{i, j}+\left[J_{22}\right]_{i, j} v_{i, j}+\left[J_{23}\right]_{i, j} } \\
& +\alpha \sum_{l \in x, y} \sum_{(\tilde{i}, \tilde{j}) \in \mathcal{N}_{l}(i, j)} \frac{1}{h_{l}^{2}} v_{i, j}-\alpha \sum_{l \in x, y} \sum_{(\tilde{i}, \tilde{j}) \in \mathcal{N}_{l}^{-}(i, j)} \frac{1}{h_{l}^{2}} v_{\tilde{i}, \tilde{j}}-\alpha \sum_{l \in x, y} \sum_{(\tilde{i}, \tilde{j}) \in \mathcal{N}_{l}^{+}(i, j)} \frac{1}{h_{l}^{2}} v_{\tilde{i}, \tilde{j}}
\end{aligned}
$$

The Jacobi Method

Set $A_{1}=D$, since diagonal matrices are simple to invert. $A_{2}=-L-U$.

- Yields the fixed point iteration

$$
\mathbf{x}^{k+1}=D^{-1}\left(\mathbf{b}+(L+U) \mathbf{x}^{k}\right) \quad \Leftrightarrow \quad x_{i}^{k+1}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j<i} a_{i j} x_{j}^{k}-\sum_{j>i} a_{i j} x_{j}^{k}\right)
$$

- For the Horn and Schunck method the Jacobi iteration for the pixel i, j reads

The Gauß-Seidel Method

- Set $A_{1}=D-L$, since this triangular matrix is a better approximation to A than the diagonal D alone. Triangular matrices are still simple to invert. $A_{2}=-U$.
- Yields the fixed point iteration

$$
\mathbf{x}^{k+1}=(D-L)^{-1}\left(\mathbf{b}+U \mathbf{x}^{k}\right) \Leftrightarrow x_{i}^{k+1}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j<i} a_{i j} x_{j}^{\boxed{k+1}}-\sum_{j>i} a_{i j} x_{j}^{k}\right)
$$

- The corresponding Gauß-Seidel iteration for the pixel i, j reads

Iterative Solvers (6)

Remarks to the Gauß-Seidel Method

- Advantages
- positive definiteness of the matrix A sufficient for convergence
- about twice as fast as the Jacobi technique
- does not require to store values from the previous iteration k (less memory consumption, easier to implement)
- Drawbacks
- more difficult to parallelize than the Jacobi method (see PART III)
- performance depends on the order in which the unknowns are traversed (symmetric variants exist that partly account for that problem)
- still far from being real-time capable for small images sizes
- Outlook
- in PART III we will discuss much more advanced numerical schemes based on the Gauß-Seidel method that even allow for real-time performance

Results (2)

Results for the Horn and Schunck Method

Results for the Yosemite Sequence with clouds (L. Quam). (a) Upper Left: Frame 8. (b) Upper Center: Ground truth. (c) Upper Right: Bigün et al. (d) Lower Left: Lucas/Kanade. (d) Lower Center: Horn and Schunck w/o presmoothing. (d) Lower Right: Horn and Schunck with presmoothing.

