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Introduction (1) M I
A

What is the Optical Flow Problem?

� Given

• two or more frames of an image sequence

� Wanted

• displacement field between two consecutive frames → optical flow
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Introduction (2) M I
A

What is Optical Flow Good for?

� Extraction of Motion Information

• robot navigation/driver assistance

• surveillance/tracking

• action recognition

� Processing of Image Sequences

• video compression

• ego motion compensation

� Related Correspondence Problems

• stereo reconstruction

• structure-from-motion

• medical image registration
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Introduction (3) M I
A

Why Variational Methods?

� Advantages w.r.t. Modeling

• transparent modeling

• formulation as optimization problem

� Advantages w.r.t. Computation

• unique minimizer and well-posedness

• real-time capable numerical schemes

� Advantages w.r.t. Quality

• dense flow fields with sub-pixel precision

• most accurate results in the literature

X

X

X
These are the reasons why variational methods are so successful !
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Introduction (4) M I
A

Outline of this Tutorial

� Part I: Variational Basics (Andrés Bruhn)

• Continuous modeling

• Method of Horn and Schunck

� Part II: Modeling Aspects (Thomas Brox)

• Motion discontinuities

• Robust data terms

• Large displacements

� Part III: Efficient Numerics (Andrés Bruhn)

• Improved non-hierarchical solvers

• Linear and nonlinear multigrid

• Implementations on parallel hardware
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ICCV 2009 Tutorial
Andrés Bruhn, Thomas Brox: Variational Optical Flow Computation

M I
A

PART I
Variational Basics

Contents

1. Continuous Modeling and Aperture Problem

2. The Method of Horn and Schunck

3. Minimization of and Discretization

4. Solving Linear Systems of Equations

c© 2009 Andrés Bruhn, Thomas Brox
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Continuous Modeling (1) M I
A

Continuous Modeling

� Given

• continuous image sequence I0(x, y, t) location (x, y) ∈ Ω
time t ∈ [0, T ]

� Wanted

• interframe displacement field w(x, y, t) =

u(x, y, t)
v(x, y, t)

1

 → optical flow

I0(x, y, t) w(x, y, t) I0(x, y, t + 1)
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Continuous Modeling (2) M I
A

Standard Preprocessing

� Idea: In order to reduce the influence of noise and outliers, we convolve I0 with a
Gaussian Kσ of mean µ = 0 and standard deviation σ

I(x, y, t) = Kσ ∗ I0(x, y, t)

• image sequence becomes infinitely many times differentiable, i.e. I ∈ C∞

• allows to estimate larger displacements due to the blurring of objects

Kσ∗

→I

Important for methods that rely on the computation of image derivatives!
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Continuous Modeling (3) M I
A

The Gray Value Constancy Assumption

� Idea: In order to retrieve corresponding pixels in subsequent frames, we assume
that their gray value does not change over time:

I(x + u, y + v, t + 1)− I(x, y, t) = 0 .

The Linearized Gray Value Constancy Assumption

� Idea: If u and v are small and I is sufficiently smooth, one may linearize this
constancy assumption via a first-order Taylor expansion around the point (x, y, t):

I(x + u, y + v, t + 1) ≈ I(x, y, t) + Ix(x, y, t)u + Iy(x, y, t)v + It(x, y, t)1

→ Ixu + Iyv + It = 0 .

This constraint is the brightness constancy constraint equation (BCCE). In
general such constraints on the flow are called optical flow constraints (OFCs).
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Continuous Modeling (4) M I
A

The Aperture Problem

� The BCCE provides only one equation for determining two unknowns

� Ill-posed problem with infinitely many solutions

� Only the flow component in direction of the image gradient can be computed,
the so-called normal flow:

(u, v)>n =
−It

|∇f |
∇I

|∇I|
.

� This problem is referred to as the aperture problem. It can be illustrated as

Case I Case II

|∇I| 6= 0 → Aperture problem |∇I| = 0 → No estimation possible
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Continuous Modeling (5) M I
A

Intermezzo I - How to Visualize Optical Flow Fields?

� Vector Plot: Subsample vector field and use arrows for visualization

� Color Plot: Visualize direction as color and magnitude as brightness
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Continuous Modeling (6) M I
A

Intermezzo II - How to Measure the Quality of Optical Flow Fields?

� Given: estimated flow field we and ground truth flow field wt

� Spatiotemporal Average Angular Error (AAE):

• Consider angle and magnitude by using the spatiotemporal angle

AAE =
1

NM

N∑
i=1

M∑
j=1

arccos

(
wt

i,j

|wt
i,j|

> we
i,j

|we
i,j|

)
.

� Average Endpoint Error (AEE):

• Consider the Euclidean distance between the vectors

AEE =
1

NM

N∑
i=1

M∑
j=1

|wt
i,j −we

i,j| .
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Continuous Modeling (7) M I
A

How Accurate is the Normal Flow?

Results for the Yosemite Sequence with clouds (L. Quam). (a) Upper Left: Frame 8. (b) Upper Right:

Frame 9. (c) Lower Left: Ground truth. (d) Lower Right: Normal flow.

AAE=55.56◦AAE=55.56◦
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Variational Optical Flow Computation (1) M I
A

Variational Optical Flow Computation

What is a Functional?

� Known: A function maps an input value to an output value, e.g.

f(x, y) = x2 + y2 .

� New: A functional maps an input function to an output value, e.g.

E(f(x, y)) =
1
|Ω|

∫
Ω

f(x, y) dx dy .

� Remarks: Functionals

• can be used to rate the quality of a function w.r.t. certain assumptions

• form the basis of variational optical flow methods
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Variational Optical Flow Computation (2) M I
A

Principle of Variational Optical Flow Methods

� Idea: Compute displacement field as minimizer of a suitable energy functional:

E(u, v) =
∫
Ω

D(u, v)︸ ︷︷ ︸
data term

+ α S(u, v)︸ ︷︷ ︸
smoothness term

dx dy .

• data term D(u, v) penalizes deviations from constancy assumptions

• smoothness term S(u, v) penalizes dev. from smoothness of the solution

• regularization parameter α > 0 determines the degree of smoothness

� Remarks: The minimising functions u and v

• fit best to all model assumptions (smallest value for the energy functional)

• can be seen as a compromise between all (partly contradictive) assumptions
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The Method of Horn and Schunck (1) M I
A

The Method of Horn and Schunck

� Idea: Assume overall smoothness of the resulting flow field

� The method of Horn and Schunck computes the optical flow as minimizer of
(Horn/Schunck AI 1981)

E(w) =
∫
Ω

(Ixu + Iyv + It)2︸ ︷︷ ︸
data term

+ α (|∇u|2 + |∇v|2)︸ ︷︷ ︸
smoothness term

dx dy .

• data term penalizes deviations from the linearized brightness constancy
assumption (BCCE)

• smoothness term penalizes deviations from smoothness of the flow field,
i.e. from variations of the functions u and v given by their first derivatives

Why variational methods can compute a solution everywhere?
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The Method of Horn and Schunck (2) M I
A

The Filling-In-Effect

� Observation: If no information is available, i.e. |∇f | ≈ 0, the flow functions u
and v have hardly any influence on the contribution of the data term

(fxu + fyv + ft)2 ≈ f2
t .

� Consequence: The flow functions u and v adapt to the local solution(s) of the
neighborhood to fulfill at least the smoothness term → filling-in-effect.

edge information filling-in
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The Method of Horn and Schunck (3) M I
A

The Motion Tensor Notation

� Idea: Rewrite a linearized quadratic data term in a more compact way
(e.g. Bigün et al. TPAMI 1991, Farnebäck ICCV 2001, Bruhn et al. IJCV 2005)

� Example: Linearized gray value constancy assumption (BCCE)

(Ixu + Iyv + It)2 = (w>∇3I)2 = w>∇3I ∇3I
>w = w>J w

yields a single quadratic form with the 3 × 3 motion tensor

J =

J11 J12 J13

J12 J22 J23

J13 J23 J33

 =

 I2
x IxIy IxIt

IxIy I2
y IyIt

IxIt IyIt I2
t

 = ∇3I ∇3I
> .

� Application: In motion tensor notation the Horn and Schunck method reads

E(w) =
∫
Ω

w>J w︸ ︷︷ ︸
data term

+ α (|∇u|2 + |∇v|2)︸ ︷︷ ︸
smoothness term

dx dy .
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Minimization and Discretization (1) M I
A

Minimization of Continuous Energy Functionals

� Idea: Similar strategy as for ordinary functions → derive necessary conditions

� These necessary conditions are called Euler-Lagrange equations. They state
that the first variation of the energy functional must vanish (≈ first derivative).
(e.g. Elsgolc 1961, Gelfand/Fomin 2000)

� For a typical optical flow energy functional of type

E(u, v) =
∫
Ω

F (x, y, u, v, ux, uy, vx, vy) dx dy

the Euler-Lagrange equations are given by the following system of PDEs

0 != Fu −
∂

∂x
Fux −

∂

∂y
Fuy ,

0 != Fv −
∂

∂x
Fvx −

∂

∂y
Fvy

with the associated boundary conditions n>
(

Fux

Fuy

)
= 0 and n>

(
Fvx

Fvy

)
= 0.
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Minimization and Discretization (2) M I
A

How Do These Equations Look Like for the Method of Horn and Schunck?

� For the Method of Horn and Schunck F (x, y, u, v, ux, uy, vx, vy) is given by

F = w>J w + α (|∇u|2 + |∇v|2)
= J11u

2 + J22v
2 + J33 + 2J12uv + 2J13u + 2J23v + α (u2

x + u2
y + v2

x + v2
y) .

� The required partial derivatives can then be computed as

Fu = 2J11u + 2J12v + 2J13 , Fux = α 2ux , Fuy = α 2uy ,

Fv = 2J12u + 2J22v + 2J23 , Fvx = α 2vx , Fvy = α 2vy .

� As necessary condition for a minimizer this yields the Euler–Lagrange equations

0 = Fu − ∂
∂xFux − ∂

∂yFuy = �
��2
(
J11u + J12v + J13 − α

∆u︷ ︸︸ ︷
(uxx + uyy)

)
0 = Fv − ∂

∂xFvx − ∂
∂yFvy = �

��2
(
J12u + J22v + J23 − α (vxx + vyy)︸ ︷︷ ︸

∆v

)
with (reflecting) Neumann boundary conditions n>∇u = 0 and n>∇v = 0.
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Minimization and Discretization (3) M I
A

Existence and Uniqueness of the Minimizer

� Strictly convex energy functionals

• fulfill for all α ∈ [0, ..., 1] the inequality:

E(αu1+(1−α)u2) < αE(u1)+(1−α)E(u2) .

• have at most one solution which is unique
if it exists (global minimizer)

� Further properties of strictly convex variational optical flow methods
(Schnörr JMIV 1994, Weickert/Schnörr IJCV 2001)

• existence of a solution

• solution depends continuously on the input data

Well-posedness (in the sense of Hadamard)
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Minimization and Discretization (4) M I
A

How Can We Solve The Euler-Lagrange-Equations Numerically?

� Idea: Discretize the Euler-Lagrange equations of the Horn and Schunck method

0 = J11u + J12v + J13 − α∆u

0 = J12u + J22v + J23 − α∆v

on a rectangular grid with spacing hx in x-direction and spacing hy in y-direction.

� Solution: Approximate occurring derivatives via finite differences
(e.g. Sobel, Scharr, Prewitt, Kumar operators)

• image derivatives fx, fy, ft required for motion tensor entries Jnm

• flow derivatives ∆ = uxx + uyy, ∆v = vxx + vyy, here discretized via

∆u =
ui+1,j − ui,j

h2
x

+
ui−1,j − ui,j

h2
x

+
ui,j+1 − ui,j

h2
y

+
ui,j−1 − ui,j

h2
y

.

� Consistency: for hx → 0 and hy → 0 one obtains the continuous derivatives
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Minimization and Discretization (5) M I
A

Discrete Euler-Lagrange Equations

� The discrete Euler-Lagrange equations for the method of Horn and Schunck can
finally be written as

0 = [J11]i,j ui,j + [J12]i,j vi,j + [J13]i,j − α
∑

l∈x,y

∑
(̃i,j̃)∈Nl(i,j)

uĩ,j̃ − ui,j

h2
l

0 = [J12]i,j ui,j + [J22]i,j vi,j + [J23]i,j − α
∑

l∈x,y

∑
(̃i,j̃)∈Nl(i,j)

vĩ,j̃ − vi,j

h2
l

for i = 1, ..., N and j = 1, ...,M .

• here, Nl(i, j) denotes the set of neighbors of pixel i, j in direction of axis l
(assuming four direct neighbors, i.e. two in each direction)

• these equations constitute a linear system of equations w.r.t. the 2N×M
unknowns ui,j and vi,j for i = 1, ..., N and j = 1, ...,M
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Minimization and Discretization (6) M I
A

Structure of the Linear System

� This linear system of equations Ax = b has the following block structure





J11 J12
J11 J12

J11 J12
J11 J12

J11 J12
J11 J12

J12 J22
J12 J22

J12 J22
J12 J22

J12 J22
J12 J22



−α



−2 1 1
1−3 1 1

1−2 1
1 −2 1

1 1−3 1
1 1−2

−2 1 1
1−3 1 1

1−2 1
1 −2 1

1 1−3 1
1 1−2




︸ ︷︷ ︸

A



u
u
u
u
u
u

v
v
v
v
v
v


︸ ︷︷ ︸

x

=



−J13
−J13
−J13
−J13
−J13
−J13
−J23
−J23
−J23
−J23
−J23
−J23


︸ ︷︷ ︸

b

• smoothness term only contributes to block main diagonals

• data term also contributes to block off-diagonals

� For non-constant input images the matrix A is positive definite

� For an image with 1M pixels, the matrix A has 4 · 1012 entries. Assuming 32-bit
float precision this requires 16 Terabyte memory (→ store only non-zero entries).
Direct Gauss-Elimination with complexity O(n3) is not practicable.

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33



Iterative Solvers (1) M I
A

Solving Linear Systems of Equations

How Can We Solve The Linear System of Equation Ax = b?

� Idea: Find a cheap but accurate approximation of A−1 via the decomposition
(e.g. Young 1971, Saad 1996)

A = A1 + A2

� Introduce fixed point iteration of type

A1 xk+1 = b−A2 xk

⇔ xk+1 = A−1
1 (b−A2 xk)

� In each iteration a linear system of equations with matrix A1 has to be solved

• A−1
1 should be a reasonable approximation of A−1

• A−1
1 should be cheap to compute, i.e. the system should be simple to solve
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Iterative Solvers (2) M I
A

Frequent Approach

� Use matrix decomposition of type

A = D − L− U .

• D is the diagonal part of A

• L is the strictly lower triangular part of A

• U is the strictly upper triangular part of A

� For the method of Horn and Schunck this yields

A =



J11 J12
J11 J12

J11 J12
J11 J12

J11 J12
J11 J12

J12 J22
J12 J22

J12 J22
J12 J22

J12 J22
J12 J22


−α



−2 1 1
1−3 1 1

1−2 1
1 −2 1

1 1−3 1
1 1−2

−2 1 1
1−3 1 1

1−2 1
1 −2 1

1 1−3 1
1 1−2


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Iterative Solvers (3) M I
A

Frequent Approach

� In terms of the discretized Euler-Lagrange equations we obtain

0 = [J11]i,j ui,j + [J12]i,j vi,j + [J13]i,j

+ α
∑

l∈x,y

∑
(̃i,j̃)∈Nl(i,j)

1
h2

l

ui,j − α
∑

l∈x,y

∑
(̃i,j̃)∈N−

l
(i,j)

1
h2

l

uĩ,j̃ − α
∑

l∈x,y

∑
(̃i,j̃)∈N+

l
(i,j)

1
h2

l

uĩ,j̃

0 = [J12]i,j ui,j + [J22]i,j vi,j + [J23]i,j

+ α
∑

l∈x,y

∑
(̃i,j̃)∈Nl(i,j)

1
h2

l

vi,j − α
∑

l∈x,y

∑
(̃i,j̃)∈N−

l
(i,j)

1
h2

l

vĩ,j̃ − α
∑

l∈x,y

∑
(̃i,j̃)∈N+

l
(i,j)

1
h2

l

vĩ,j̃

for i = 1, ..., N and j = 1, ...,M .

� Notation for the neighborhood

• N−
l (i, j) denotes the set of neighbors of pixel i, j in direction of axis l

that have a smaller index (will be updated before the central pixel)

• N+
l (i, j) denotes the set of neighbors of pixel i, j in direction of axis l

that have a larger index (will be updated after the central pixel)
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Iterative Solvers (4) M I
A

The Jacobi Method

� Set A1 = D, since diagonal matrices are simple to invert. A2 = −L− U .

� Yields the fixed point iteration

xk+1 = D−1( b+(L+U) xk ) ⇔ xk+1
i =

1
aii

bi −
∑
j<i

aijx
k
j −

∑
j>i

aijx
k
j

 .

� For the Horn and Schunck method the Jacobi iteration for the pixel i, j reads

u
k+1
i,j =

−[J13]i,j −

[J12]i,j v
k
i,j−α

∑
l∈x,y

∑
N−

l
(i,j)

1
h2

l
u
k

ĩ,j̃
−α

∑
l∈x,y

∑
N+

l
(i,j)

1
h2

l
u
k

ĩ,j̃


[J11]i,j + α

∑
l∈x,y

∑
(̃i,j̃)∈Nl(i,j)

1
h2

l

,

v
k+1
i,j =

−[J23]i,j −

[J12]i,j u
k
i,j−α

∑
l∈x,y

∑
N−

l
(i,j)

1
h2

l
v
k

ĩ,j̃
−α

∑
l∈x,y

∑
N+

l
(i,j)

1
h2

l
v
k

ĩ,j̃


[J22]i,j + α

∑
l∈x,y

∑
(̃i,j̃)∈Nl(i,j)

1
h2

l

.
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The Gauß-Seidel Method

� Set A1 = D−L, since this triangular matrix is a better approximation to A than
the diagonal D alone. Triangular matrices are still simple to invert. A2 = −U .

� Yields the fixed point iteration

xk+1 = (D−L)−1(b + U xk) ⇔ xk+1
i =

1
aii

bi −
∑
j<i

aijx
k+1
j −

∑
j>i

aijx
k
j

 .

� The corresponding Gauß-Seidel iteration for the pixel i, j reads

u
k+1
i,j =

−[J13]i,j −

[J12]i,j v
k
i,j−α

∑
l∈x,y

∑
N−

l
(i,j)

1
h2

l
u
k+1
ĩ,j̃

−α
∑

l∈x,y

∑
N+

l
(i,j)

1
h2

l
u
k

ĩ,j̃


[J11]i,j + α

∑
l∈x,y

∑
(̃i,j̃)∈Nl(i,j)

1
h2

l

,

v
k+1
i,j =

−[J23]i,j −

[J12]i,j u
k+1
i,j −α

∑
l∈x,y

∑
N−

l
(i,j)

1
h2

l
v
k+1
ĩ,j̃

−α
∑

l∈x,y

∑
N+

l
(i,j)

1
h2

l
v
k

ĩ,j̃


[J22]i,j + α

∑
l∈x,y

∑
(̃i,j̃)∈Nl(i,j)

1
h2

l

.
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Iterative Solvers (6) M I
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Remarks to the Gauß-Seidel Method

� Advantages

• positive definiteness of the matrix A sufficient for convergence

• about twice as fast as the Jacobi technique

• does not require to store values from the previous iteration k
(less memory consumption, easier to implement)

� Drawbacks

• more difficult to parallelize than the Jacobi method (see PART III)

• performance depends on the order in which the unknowns are traversed
(symmetric variants exist that partly account for that problem)

• still far from being real-time capable for small images sizes

� Outlook

• in PART III we will discuss much more advanced numerical schemes based
on the Gauß-Seidel method that even allow for real-time performance
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Results

Comparison to Classical Approaches w.r.t. the Average Angular Error (AAE)

� Qualitative Evaluation for the Yosemite Sequence with Clouds

Technique AAE

Normal Flow 55.56◦

Normalized Cross Correlation (NCC) 21.84◦

Block Matching + Subpixel (SSD) 21.46◦

Horn and Schunck (2-D) 13.29◦

Bigün et al. + Presmoothing (2-D) 10.60◦

Lucas/Kanade + Presmoothing (2-D) 8.79◦

Horn and Schunck + Presmoothing (2-D) 7.17◦
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Results (2) M I
A

Results for the Horn and Schunck Method

Results for the Yosemite Sequence with clouds (L. Quam). (a) Upper Left: Frame 8. (b) Upper

Center: Ground truth. (c) Upper Right: Bigün et al. (d) Lower Left: Lucas/Kanade. (d) Lower

Center: Horn and Schunck w/o presmoothing. (d) Lower Right: Horn and Schunck with presmoothing.

AAE=7.17◦AAE=7.17◦
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Summary

� Variational methods compute optical flow as minimizer of an energy functional

� They make use of global smoothness assumptions on the solution to overcome
the aperture problem (filling-in-effect by the smoothness term → dense results)

� They are minimized by solving their (discretized) Euler-Lagrange equations

� They offer many advantages such as

• transparent modeling

• dense flow fields

• well-posedness

• sub-pixel precision

� The method of Horn and Schunck is the simplest variational approach

� There are many adaptations/modifications of this basic method possible that
improve the quality and the performance even further (see PART II-III)
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