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What is the Optical Flow Problem?

¢ Given
Variational Optical Flow Estimation

e two or more frames of an image sequence

¢ Wanted
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e displacement field between two consecutive frames — optical flow
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What is Optical Flow Good for? Why Variational Methods?

@ Extraction of Motion Information ¢ Advantages w.r.t. Modeling

e transparent modeling /

e formulation as optimization problem

e robot navigation/driver assistance

e surveillance/tracking

e action recognition
- ¢ Advantages w.r.t. Computation

e unique minimizer and well-posedness /

e real-time capable numerical schemes

@ Processing of Image Sequences
e video compression

e ego motion compensation

¢ Advantages w.r.t. Quality
e dense flow fields with sub-pixel precision J

e most accurate results in the literature

¢ Related Correspondence Problems
e stereo reconstruction

e structure-from-motion

. . . These are the reasons why variational methods are so successful !
e medical image registration
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Outline of this Tutorial

PART |
Variational Basics

¢ Part I: Variational Basics (Andrés Bruhn)
e Continuous modeling

e Method of Horn and Schunck

¢ Part Il: Modeling Aspects ( Thomas Brox)

. . L Contents
e Motion discontinuities

e Robust data terms 1. Continuous Modeling and Aperture Problem

. 2. The Method of Horn and Schunck
e |arge displacements

3. Minimization of and Discretization

¢ Part IlI: Efficient Numerics (Andrés Bruhn) 4. Solving Linear Systems of Equations
e Improved non-hierarchical solvers
e Linear and nonlinear multigrid

e Implementations on parallel hardware
(© 2009 Andrés Bruhn, Thomas Brox
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Continuous Modeling Standard Preprocessing

® |dea: In order to reduce the influence of noise and outliers, we convolve I with a

¢ Given
. Gaussian K, of mean y = 0 and standard deviation o
e continuous image sequence Io(z,y, t) location (z,y) € Q
time t € [0,7]
I((L‘,y, t) = Ko * Io(l',y, t)
¢ Wanted
u(z,y,t) e image sequence becomes infinitely many times differentiable, i.e. I € C*°
interf displ t field t) = t tical fl . . . .
o interframe displacement field w(z,y,1) v(w,ly, ) | — optical flow e allows to estimate larger displacements due to the blurring of objects

&
Z

Io(w,y,t +1) Important for methods that rely on the computation of image derivatives!




Continuous Modeling (3)

The Gray Value Constancy Assumption

@ |dea: In order to retrieve corresponding pixels in subsequent frames, we assume
that their gray value does not change over time:

Iz +u,y+ov,t+1) = I(x,y,t) = 0.

The Linearized Gray Value Constancy Assumption

® Jdea: If u and v are small and I is sufficiently smooth, one may linearize this
constancy assumption via a first-order Taylor expansion around the point (z,y, t):

Iz +u,y+ov,t+1) = I(x,y,t) + L(z,y, t)u+ Lz, y, t)v + L(z,y,t)1
—Lu+Iov+1;=0.

This constraint is the brightness constancy constraint equation (BCCE). In
general such constraints on the flow are called optical flow constraints (OFCs).

Continuous Modeling (5)

Intermezzo | - How to Visualize Optical Flow Fields?

@ Vector Plot: Subsample vector field and use arrows for visualization

Continuous Modeling (4)

The Aperture Problem

@ The BCCE provides only one equation for determining two unknowns
@ |ll-posed problem with infinitely many solutions

® Only the flow component in direction of the image gradient can be computed,
the so-called normal flow:

I, VI
(u, U)T = ——.
b VIV
@ This problem is referred to as the aperture problem. It can be illustrated as
_ ¥ _~”
= -
TN Ta
Case | Case Il

|[VI|# 0 — Aperture problem |VI| =0 — No estimation possible

Continuous Modeling (6)

Intermezzo Il - How to Measure the Quality of Optical Flow Fields?

® Given: estimated flow field w® and ground truth flow field w®

® Spatiotemporal Average Angular Error (AAE):

e Consider angle and magnitude by using the spatiotemporal angle

1 LM wt T we.
_ i, i,
AAFE = NI E E arccos (wt | Twe ) .

i=1 j=1 i, i,J

® Average Endpoint Error (AEE):

e Consider the Euclidean distance between the vectors

1 N M
_ t




Continuous Modeling (7)

How Accurate is the Normal Flow?

Results for the Yosemite Sequence with clouds (L. Quam). (a) Upper Left: Frame 8. (b) Upper Right:
Frame 9. (c) Lower Left: Ground truth. (d) Lower Right: Normal flow.

Variational Optical Flow Computation (2)

Principle of Variational Optical Flow Methods

® |dea: Compute displacement field as minimizer of a suitable energy functional:

E(u,v) :/ D(u,v) + «a S(u,v) dx dy .
Q data term smoothness term

e data term D(u,v) penalizes deviations from constancy assumptions
e smoothness term S(u,v) penalizes dev. from smoothness of the solution

e regularization parameter « > 0 determines the degree of smoothness

® Remarks: The minimising functions u and v
o fit best to all model assumptions (smallest value for the energy functional)

e can be seen as a compromise between all (partly contradictive) assumptions

Variational Optical Flow Computation (1)
Variational Optical Flow Computation

What is a Functional?
® Known: A function maps an input value to an output value, e.g.
flxy) =2 +9°.

@ New: A functional maps an input function to an output value, e.g.

E(f(z,y)) = ﬁ / fla,y) dedy .
Q

® Remarks: Functionals
e can be used to rate the quality of a function w.r.t. certain assumptions

e form the basis of variational optical flow methods

The Method of Horn and Schunck (1)

The Method of Horn and Schunck

® |dea: Assume overall smoothness of the resulting flow field
€ The method of Horn and Schunck computes the optical flow as minimizer of

(Horn/Schunck Al 1981)

E(w)= [ (Lu+Iw+L)*+a (|[Vul®+ Vo) dzdy.

smoothness term

Q data term

e data term penalizes deviations from the linearized brightness constancy
assumption (BCCE)

e smoothness term penalizes deviations from smoothness of the flow field,
i.e. from variations of the functions u and v given by their first derivatives

Why variational methods can compute a solution everywhere?




The Method of Horn and Schunck (2)

The Filling-In-Effect

¢ Observation: If no information is available, i.e. [V f| & 0, the flow functions u
and v have hardly any influence on the contribution of the data term

(fzu + fyv + ft)2 ~ ft2 .

® Consequence: The flow functions u and v adapt to the local solution(s) of the
neighborhood to fulfill at least the smoothness term — filling-in-effect.

edge information filling-in

Minimization and Discretization (1)

Minimization of Continuous Energy Functionals

@ |dea: Similar strategy as for ordinary functions — derive necessary conditions

@ These necessary conditions are called Euler-Lagrange equations. They state
that the first variation of the energy functional must vanish (& first derivative).
(e.g. Elsgolc 1961, Gelfand/Fomin 2000)

@ For a typical optical flow energy functional of type

E(u,v) :/F(x,y,u,v,uw,uy,vx,vy) dz dy
Q

the Euler-Lagrange equations are given by the following system of PDEs

! 0 0

= Fu_iFu _7Fu )
0 oxr ° Oy

! 0 0

= Fv_iFv _7Fv
0 or ° oy ¢

F, F,

uy vy

with the associated boundary conditions n" <F“x> =0andn’ <F””C) =0.

The Method of Horn and Schunck (3)

The Motion Tensor Notation

® |dea: Rewrite a linearized quadratic data term in a more compact way
(e.g. Bigiin et al. TPAMI 1991, Farnebick ICCV 2001, Bruhn et al. 1JCV 2005)

® Example: Linearized gray value constancy assumption (BCCE)
(Lu+ T+ 1) = (W' Val)2=w' Vsl Vil 'w=w'Jw

yields a single quadratic form with the 3 x 3 motion tensor

Jun Jiz Ji3 2 LI, L1
J=|Jiz Joo Jos| = (LI, I I,0,|=VsIVsl'.
Jiz Jag  Js3 LI, I, I?

® Application: In motion tensor notation the Horn and Schunck method reads

E(w)= wiJw +a ([Vul®>+|Vo?) dady.
N—— —_—
@ data term smoothness term

Minimization and Discretization (2)

How Do These Equations Look Like for the Method of Horn and Schunck?

¢ For the Method of Horn and Schunck F'(z,y, u, v, ug, uy, vg, vy) is given by

F = w'Jw+a(|Vu*+ Vo)
= J11U2 + J22U2 + J33 + 2J12U/U + 2J13u + 2J23’U + (ui + u32/ + 1)22: + U;) .

® The required partial derivatives can then be computed as

Fy, =2J11u+ 2J12v 4+ 2J13 , Fy, =a2u,, Fuy = 2uy ,
Fy, = 2J192u + 2J29v + 2J03 sz =a2v,, F'uy =« 2’Uy .

@ As necessary condition for a minimizer this yields the Euler-Lagrange equations
Au

_9p _0 = —
0 Fu 61Fu' 6yFuy = /2/(J11U+J121)+J13 Oz(um-i-uyy) )
9 9
0 = Fv_%Fv _FyFUy = Z(JIQU+J22U+J23_a(vzz+vyy))
Av
with (reflecting) Neumann boundary conditions n" Vu =0 and n' Vv = 0.

=




Minimization and Discretization (3)

Existence and Uniqueness of the Minimizer

@ Strictly convex energy functionals

o fulfill for all @ € [0, ..., 1] the inequality:

E(u2)

E(au+(1—a)ug) < aE(up)+(1—a)E(ug) .

aE(u) + (1-a)E(u2)

E(aut + (1-a)u2)
e have at most one solution which is unique But) [ §
if it exists (global minimizer) W sz w2

@ Further properties of strictly convex variational optical flow methods
(Schnérr JIMIV 1994, Weickert/Schnérr 1JCV 2001)

e existence of a solution

e solution depends continuously on the input data

Well-posedness (in the sense of Hadamard)

Minimization and Discretization (5)

Discrete Euler-Lagrange Equations

@ The discrete Euler-Lagrange equations for the method of Horn and Schunck can
finally be written as

Uz = — Uq,

0 = [Julij i+ [Jaolij vij + [Jaslij — o Y > ]Tj
leny GeNitig)

V; s — U

0 = [Juolij i+ [Jaolij vij + [Jaslij — o Y > JTJ
i

lex.y (i,5)EN(i,5)

fori=1,..,Nandj=1,.... M.

e here, N(i,7) denotes the set of neighbors of pixel 7, in direction of axis [
(assuming four direct neighbors, i.e. two in each direction)

e these equations constitute a linear system of equations w.r.t. the 2N x M
unknowns w; ; and v; ; fori=1,...,Nand j=1,... M

Minimization and Discretization (4)

How Can We Solve The Euler-Lagrange-Equations Numerically?

® /dea: Discretize the Euler-Lagrange equations of the Horn and Schunck method

0 = Juu-+ Jiov+ Jis — aAu
0 = J12u + J221) + J23 — alAv

on a rectangular grid with spacing h; in x-direction and spacing h, in y-direction.
® Solution: Approximate occurring derivatives via finite differences
(e.g. Sobel, Scharr, Prewitt, Kumar operators)

e image derivatives f,, fy,, f: required for motion tensor entries J,,

o flow derivatives A = gy + Uyy, AV = Vg + vy, here discretized via

Au = S+l 2— Wij 4 Wizl 2— Ui | Wig+1 2— Wi 4 Wij—1 2— Ui,
h2 h h h

z Yy Yy

@ Consistency: for hy; — 0 and hy — 0 one obtains the continuous derivatives

Minimization and Discretization (6)

Structure of the Linear System

@ This linear system of equations Ax = b has the following block structure

1 u —J13
1 1 u —J13
—2 1 u —Ji3
1 12 T 21 u —Ji3
1-3 1 u —J13

Jy J1o — 1 1 —2| _ - 1: — —‘;13

L —J23

1 1 v —Jag
—2) 1 v —Jag
v —J23

1 v —Jog
-2 v —Jo3
—— ———

A b'q b

e smoothness term only contributes to block main diagonals

e data term also contributes to block off-diagonals

@ For non-constant input images the matrix A is positive definite

@ For an image with 1M pixels, the matrix A has 4 - 10'2 entries. Assuming 32-bit
float precision this requires 16 Terabyte memory (— store only non-zero entries).
Direct Gauss-Elimination with complexity O(n?) is not practicable.




Iterative Solvers (1) Iterative Solvers (2)

Solving Linear Systems of Equations Frequent Approach

How Can We Solve The Linear System of Equation Ax = b? @ Use matrix decomposition of type

@ |dea: Find a cheap but accurate approximation of A~! via the decomposition A=D-L-U.
(e.g. Young 1971, Saad 1996)

A=A+ Ay e D is the diagonal part of A

@ Introduce fixed point iteration of type e [ is the strictly lower triangular part of A

e U is the strictly upper triangular part of A
Al Xk+1 =b-— A2 Xk

@ For the method of Horn and Schunck this yields
& x"=A7 (b - Ay %)

11 1o -2 1 1
@ In each iteration a linear system of equations with matrix A; has to be solved L e e
11 J12 1 2 1
_ . . _ J J- 1 1-3 1
o A] ! should be a reasonable approximation of A~1 A- o P N =
| 2 Jo2 2 1 1
— . . J12 Joo 1-3 1 1
o A] ! should be cheap to compute, i.e. the system should be simple to solve 2 T2 B
]21]2 ,23]22 1 1 1
4t T2 1 1-2

Iterative Solvers (3) Iterative Solvers (4)

Frequent Approach The Jacobi Method

@ In terms of the discretized Euler-Lagrange equations we obtain ® Set A; = D, since diagonal matrices are simple to invert. Ao = —L —U.
PR . . .
0 = [l iy + sl v + sl Yields the fixed point iteration
1 1 1
+ « Z Z h—zu” -« Z Z Eu;] -« Z Z ﬁum 1
L€z (i.§)EN(i-d) l€xy ([.H)EN] (i,9) €y 15)eN;t (i) k+1 -1 k k+1 k k
1(3,5) ©3)EN (i LI)EN (0] X+ =D (b+(L+U)X ) = xi+ :T bi_zaijx_j_zaijx_j
0 = [Jio]ij wij+ [Jaz]ij vij + [J2sli T j<i G>i
1 1 1
Coy (11)EN(ind) €Ty ())EN (i) E0Y (15N (.5) @ For the Horn and Schunck method the Jacobi iteration for the pixel 4,j reads

fori=1,..,Nandj=1,.... M.

k k
“[sliy = | Wedigviy—a X X puzme XY s
k+1 oy N gy T ey abag T

u ;=
7 [Ji1]ij +a > 7

lex,y (3,5)eN;(i,)

@ Notation for the neighborhood

)

&

1

e N, (i, ) denotes the set of neighbors of pixel 7, j in direction of axis
that have a smaller index (will be updated before the central pixel)

k k k
(‘[J%]i,j - ([‘]12]7-_7 Ui j— > > ,%z Ui > > # U;j))
k+1 7 S

) B l€xy N (3.5) lexy N (i)

“ [Jazlij + o 32 X

lez,y (i,5)eN; (i)

e N;(i, ) denotes the set of neighbors of pixel i, j in direction of axis
that have a larger index (will be updated after the central pixel)




Iterative Solvers (5)

The GauB-Seidel Method

® Set A; = D — L, since this triangular matrix is a better approximation to A than
the diagonal D alone. Triangular matrices are still simple to invert. Ay = —U.

@ Yields the fixed point iteration

1
k41 —1 k k41 L | ok
X" =(D-L)"(b+Ux") & z;7 = o b; E<‘ a;;T; E>. iy
j<i >t

@ The corresponding GauB-Seidel iteration for the pixel 7, j reads

k k
=lhsliy = | Phalijvi—a 35 20 hiz U5 T DIEEDY ﬁ Ui
k+1 lexy Ny (ig) L lexy NFGg)
[T P : B
“ [ulij+o 32 X
lexy (1,5)€N(i,5) !
k
*[-]23]1"1' - [~]12],,.7 U; 4 —a ) > ;%z v” —a ) > # U;;
k+1 lex,y Ny (i) Lo lex,y ‘N’I+(i‘j) o
v, . = .
I [Jozlij +a 3 > -
l€z,y (3,5)EN(1,§) °

Results (1)

Results

Comparison to Classical Approaches w.r.t. the Average Angular Error (AAE)

® Qualitative Evaluation for the Yosemite Sequence with Clouds

Technique AAE
Normal Flow 55.56°
Normalized Cross Correlation (NCC) 21.84°
Block Matching + Subpixel (SSD) 21.46°
Horn and Schunck (2-D) 13.29°
Bigiin et al. + Presmoothing (2-D) 10.60°
Lucas/Kanade + Presmoothing (2-D) 8.79°
Horn and Schunck + Presmoothing (2-D)| 7.17°

Iterative Solvers (6)

Remarks to the GauB-Seidel Method

¢ Advantages
e positive definiteness of the matrix A sufficient for convergence
e about twice as fast as the Jacobi technique

e does not require to store values from the previous iteration k
(less memory consumption, easier to implement)

¢ Drawbacks
e more difficult to parallelize than the Jacobi method (see PART Il1)

e performance depends on the order in which the unknowns are traversed
(symmetric variants exist that partly account for that problem)

e still far from being real-time capable for small images sizes
¢ Outlook

e in PART Ill we will discuss much more advanced numerical schemes based
on the GauB-Seidel method that even allow for real-time performance

Results (2)

Results for the Horn and Schunck Method

AAE=7.17°

Results for the Yosemite Sequence with clouds (L. Quam). (a) Upper Left: Frame 8. (b) Upper
Center: Ground truth. (c) Upper Right: Bigiin et al. (d) Lower Left: Lucas/Kanade. (d) Lower
Center: Horn and Schunck w/o presmoothing. (d) Lower Right: Horn and Schunck with presmoothing.




Summary (1)

Summary

@ Variational methods compute optical flow as minimizer of an energy functional

® They make use of global smoothness assumptions on the solution to overcome
the aperture problem (filling-in-effect by the smoothness term — dense results)

¢ They are minimized by solving their (discretized) Euler-Lagrange equations
@ They offer many advantages such as
e transparent modeling

dense flow fields

o well-posedness
e sub-pixel precision
@ The method of Horn and Schunck is the simplest variational approach

® There are many adaptations/modifications of this basic method possible that
improve the quality and the performance even further (see PART II-111)




