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Abstract

A shock filter is a morphological filter that applies dilation and erosion,
depending on a guidance term. This class of filters forms an interesting
phenomenon that has not been understood very well. Moreover, the filters
are very noise sensitive. Therefore, shock filters are not used often.
To improve the understanding of shock filters, we first simplify them by
using a fixed guidance term. We prove that in that case all shock filters must
behave equally in strictly convex and concave regions. These findings help
to explain the behavior of shock filters with a non-fixed guidance term. We
also use this property to explain why shock filters are well suited to deblur
cartoon-like images.

The noise sensitivity of shock filters has been addressed by combining
smoothing and shock filtering in two different ways: the usage of smoothing
in the guidance term and the linear combination of smoothing and shock
filtering. We show that presmoothing inside of the guidance term does not
actually lead to a regularized shock filter, but to the creation of different
structures. As a linear combination of shock filtering and smoothing, we
propose the shock-diffusion filter, which is a weighted sum of shock filtering
and homogeneous diffusion. Using a classical diffusivity as the weighting
function leads to a behavior that is similar to nonlinear isotropic diffusion or
even anisotropic diffusion, depending on the shock term. We also propose a
way to modify diffusivities, such that the shock-diffusion can converge to a
non-flat steady state.

The similarity of shock-diffusion and anisotropic diffusion motivates us
to apply shock-diffusion to inpainting problems. We found that the best
performance is achieved by using the shock term that Weickert uses in his
Coherence Enhancing Shock Filter [32]. The comparison of the inpainting
results of the shock-diffusion operator and results produced by EED implies
that shock-diffusion can achieve similar quality to EED and it can create
even sharper edges than EED.
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Chapter 1

Introduction

Image processing based on partial differential equations (PDEs) has been
successful in numerous different fields including denoising, image compres-
sion and image segmentation. One morphological class of PDE-based filters
is given by shock filters. Like many morphological methods, shock filters are
based on the operations dilation and erosion. Based on a second derivative
operator, a guidance term determines whether dilation or erosion is applied.
This combination of dilation and erosion leads to sharpening the edges de-
fined by the guidance term and eventually to a segmented and, potentially,
non-flat steady state.

With the goal of deblurring images, Kramer et al. gave the first dis-
crete definition of a shock filter in 1975 [16]. 15 years later, the first PDE-
formulation was given by Osher and Rudin in 1990 [21]. To further ad-
vance shock filtering, it was combined with smoothing operators in different
ways. Weickert [32] and Alavarez and Mazorra [2] embedded the smooth-
ing operation into the definition of the shock filter. Another popular ap-
proach is coupling the PDEs of the shock-filter and the smoothing operator
[2, 15, 12, 11, 3, 38].

In this thesis, we contribute to the class of shock filters in three ways.
First, we investigate the role of the guidance term and show that shock filters
with different guidance terms often behave similar. We show that, for a fixed
guidance term, all shock filter behave equally in strictly convex and strictly
concave regions, independently of the second derivative operator that guides
the evolution.
Secondly, we investigate the combination of homogeneous diffusion and shock
filtering. Diffusion is often embedded into the shock filter definition as
Gaussian-smoothing of the second derivative operator. Using different exper-
iments, we evaluate the behavior of such a shock filter with presmoothing.
By using a weighted sum of shock and diffusion term, we create a shock-

1



2 CHAPTER 1. INTRODUCTION

diffusion filter than behaves similar to methods from diffusion, like nonlinear
isotropic diffusion or Edge Enhancing Diffusion (EED). We show that the
shock-diffusion filter can perform denoising and segmentation in a quality
similar to well-proven methods like EED. Moreover, we propose a weight-
ing function that even yields non-flat steady states for the aforementioned
shock-diffusion filter.
Finally, we investigate some applications of the different shock filter variants
in this thesis. We show that pure shock filters perform well for deblurring,
especially, cartoon-like images. Since our shock-diffusion filter yields results
that are comparable to some diffusion methods, we also evaluate its perfor-
mance in inpainting.

1.1 Structure of this Thesis

In the remainder of this Chapter, we briefly recap basic information that is
used throughout this thesis. In Chapter 2, we explain the basic ideas behind
shock filters and introduce the shock filtering framework that we are working
with. Our shock filter definition is purposely relatively open, which allows us
to look into different derivative operators and guidance terms that determine
the behavior of the shock filter. In Chapter 3, we introduce the derivative
operators that are relevant for the remaining chapters. In Chapter 4 and
5, we look into different options for the guidance term of shock filters and
explain the resulting behavior. As shock filters were originally created for
the purpose of deblurring images, we look into deblurring with shock filters
in Chapter 6. The shock filter definitions of Alvarez and Mazorra [2] and
Weickert [32] use a Gaussian-smoothing in the computation of the guidance
term. We investigate the effect of this smoothing operation in Chapter 7.
In Chapter 8, we propose a shock-diffusion filter that combines diffusion and
shock filtering. We explain its behavior and compare its performance to some
pure diffusion methods. In Chapter 9.1, we evaluate the performance of the
mentioned shock-diffusion filter in several inpainting tasks. We compare the
produced results to the performance of Edge Enhancing Diffusion.

1.2 Fundamental Information

In this thesis, a number of different methods from image processing are used.
This section provides the basic definitions and the notation used throughout
this thesis.
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1.2.1 Signals and Images

In general, we treat signals and images as mappings from a coordinate to
a value. A n-dimensional continuous signal is a function that maps a real-
valued, n-dimensional vector to a real number:

f : Γ ⊂ Rn → R (1.1)

As a special case of a continuous signal, a continuous image maps a coordi-
nate from the rectangular image domain Γ to a real number:

f : Γ ⊂ Rn → R, where Γ = [a, b]× [c, d] (1.2)

Signals, as well as images often originate from the real world and are then
digitized using measurement devices, such as light sensors. During this pro-
cess, such an originally continuous function is measured at several positions.
This procedure is often referred to as sampling. For images, the positions
are typically defined by a rectangular grid with the resolution nx × ny. The
distance between measuring positions is determined by the grid sizes hx and
hy.
Sampling a continuous signal results in its discretization. An n-dimensional
discrete signal is defined by

f : Ω ⊂ Nn → N (1.3)

Similarly, we define discrete or digital image as a mapping from a coordinate
to a grey value as

f : Ω ⊂ N2 → N where Ω = {1 . . . nx} × {1 . . . ny} (1.4)

We will refer to such a coordinate as pixel. The grey value of an image f in
a pixel (i, j) is denoted ui,j.
The values of the images in this thesis are typically grey values within the
range of [0 . . . 255].

Since our filters use several iterations, we also need a discretization in the
time domain. The sampling distance τ in the time domain is called time step
size. The image u in a pixel (i, j) at the time k is denoted uki,j.

Rescaling

In some examples, we use two dimensional functions that originally have
values outside the range of [0 . . . 255]. In order to make these values visible,
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we apply affine rescaling. For the original image f the rescaled version u is
given by

ui,j = 255
fi,j − fmin
fmax − fmin

(1.5)

where fmin is the minimal value of f and fmax the maximal value.

1.2.2 Derivatives

The topics covered in this thesis are heavily dependent on various derivative
operators and modeling of image filter as partial differential equations (PDE).
So naturally, derivatives will appear often.

In general, derivatives of a function measure the change of the function’s
values. Directional derivatives measure the change in a certain direction. We
denote the directional derivative of f : Rn → R in a direction v ∈ Rn, |v| = 1
at a point x as:

fv = ∂vf = lim
h→0

f(x+ hv)− f(x)

h
(1.6)

The i-th partial derivative of a function computes the derivative of f with
respect to the i-th argument of the function. One can view it as a directional
derivative in direction of the i-th coordinate axis of the function. We denote
the i-th partial derivative as

fxi
= ∂xi

f = lim
h→0

f(x1, x2, . . . , xi + h, xi+1, . . . , xn)− f(x)

h
(1.7)

If this limit exists and is continuous for all arguments of f , then the function
is one time differentiable. For the sake of readability, we assume that all used
functions are sufficiently often differentiable in the remainder of this thesis.
The gradient ∇ of a function f is the vector that points in the direction of
the steepest ascent of f . It is denoted by

∇f =


fx1

fx2

...
fxn

 (1.8)

The gradient magnitude corresponds to the rate of the increase in direction
of the gradient. It is defined by

|∇f | =
√
f 2
x1

+ f 2
x2

+ · · ·+ f 2
xn

(1.9)
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The gradient can be used to express the first directional derivative in a nor-
malized direction v:

fv = vT∇f(x) (1.10)

The Hessian H(f) is the matrix with the second order partial derivatives
of a function f as entries. For a two dimensional function it looks as follows:

H(f) = (hi,j)

hi,j = (f(x))xi,xj (1.11)

The Hessian can be used to express second directional derivatives in a nor-
malized direction v as follows:

∂vvf = vTHv (1.12)

The definiteness of the Hessian is used to determine if a point x, for which
∇u = 0 holds, is a maximum, minimum or neither. The Hessian is

• positive definite, if vTHv > 0 ∀v ∈ Rn,v 6= 0,

• positive semi- definite, if vTHv ≥ 0 ∀v ∈ Rn,

• negative definite, if vTHv < 0 ∀v ∈ Rn,v 6= 0 ,

• negative semi-definite, if vTHv ≤ 0 ∀v ∈ Rn.

A point x is a local minimum, if ∇u = 0 and if the H(f) is positive definite
in x. It is a local maximum, if the Hessian is negative definite.
The Hessian can also be used for the characterization of the convexity and
concavity of functions. Let R ⊂ Rn be a a open and convex set and the
function f ∈ C2(R) be at least two times differentiable. f is convex on R, if
the Hessian is positive semi-definite on R and strictly convex if the Hessian
is positive definite on R. Analogously, the function f is concave on R, if the
Hessian is negative semi-definite on R and strictly concave if it is negative
definite on R.

Approximating Derivatives

Since we actually work with discrete images, we need to use approximations
for the derivatives. Such approximations are given by Finite Differences.

For u : D ⊂ R → R and sampling points xi ∈ D, that are sampled with
the grid size h ≥ 0, typical operators that approximate the first derivative
are forward, backward and central difference:

forward difference: (ux)i ≈
ui+1 − ui

h
(1.13)
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backward difference: (ux)i ≈
ui − ui−1

h
(1.14)

central difference: (ux)i ≈
ui+1 − ui−1

2h
(1.15)

The second derivative is often approximated by a central difference:

(uxx)i ≈
ui+1 − 2ui + ui−1

h2
(1.16)

The approximation order of the forward and backward difference is O(h).
The central differences give a higher accuracy with the approximation order
of O(h2).

1.2.3 Structure Tensor

1987, Förstner and Gülch introduced the structure tensor [10]. It can be
used to analyze the local structure of an image. In general, it averages
information on the first derivatives in x and y direction within a certain
region, determined by Gaussian convolution. It can be defined as follows:

Jρ(∇u) = Kρ ∗ (∇u∇uT ) = Kρ ∗
(
u2
x uxuy

uxuy u2
y

)
=

(
j1,1 j1,2

j1,2 j2,2

)
(1.17)

where Kρ is a Gaussian. Its standard deviation that is called integration
scale. The integration scale determines the locality of the structure tensor
[33].

The eigenvectors of the structure tensor are the directions of the smallest
and largest local contrast. The corresponding eigenvalues specify the size of
the local contrast in these two directions. They are defined as

λ1 = j1,1 − j2,2 +
√

(j1,1 − j2,2)2 + 4j2
1,2

λ2 = j1,1 − j2,2 −
√

(j1,1 − j2,2)2 + 4j2
1,2 (1.18)

1.2.4 Diffusion

In several parts of this thesis, we use diffusion filters or compare the proposed
filters to diffusion. Diffusion in image processing is inspired by the physical
diffusion process. In physics, diffusion is a movement that equalizes concen-
tration differences between substances. Once the concentration difference is
equalized, the movement stops and the steady state is reached.
Mathematically, the process can be described by the following PDE:

ut = div(D∇u) (1.19)
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where u is the function that describes the concentrations. The diffusion
tensor D steers the diffusion.
There are two important properties of diffusion. A diffusion process is linear,
if it acts equally strong at all locations. It is isotropic, if it is equally strong
in all directions.

In image processing, the concentration difference corresponds to the dif-
ference between the grey values of an image. We mainly use three diffusion
filters, that are described briefly in the following paragraphs. For a more
detailed explanaition on diffusion filters, we refer to [30].

Homogeneous Diffusion

Homogeneous diffusion acts linear and isotropic. Therefore it is also referred
to as isotropic linear diffusion. The following initial value problem describes
the filter mathematically for the initial image f :

ut = div(I∇u) = ∆u, on Γ

u(0) = f, on Γ

∂nu = 0, on ∂Γ× (0,∞) (1.20)

I is the identity matrix. At the image boundary, reflecting boundary condi-
tions are used.
It can be shown [35], that this PDE has the unique solution

u(x, t) =

{
f(x), t = 0

(K√2t ∗ f)(x), t > 0
(1.21)

for the Gaussian K√2t of standard deviation
√

2t. Thus, the result of homo-
geneous diffusion filtering at a stopping time t is related to convolution with
a Gaussian of the standard deviation σ =

√
2t.

Nonlinear Isotropic Diffusion

Perona and Malik proposed the concept of nonlinear isotropic diffusion in
[22]. The strength of the diffusion is scaled by a function called diffusivity.
Diffusivities are positive, infinitely often differentiable functions. Typically,
they are used to scale down the strength of the diffusion at edges of objects.
To achieve that effect, the diffusivity is chosen as a function that is decreas-
ing in the squared gradient magnitude.
Nonlinear isotropic diffusion of the initial image f is described by the follow-
ing initial value problem:

ut = div(g(|∇u|2)∇u), on Γ
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u(0) = f, on Γ

∂nu = 0, on ∂Γ× (0,∞) (1.22)

where g is the diffusivity.
Catté et al. [7] introduced the concept of regularized nonlinear isotropic

diffusion by applying Gaussian-smoothing to the image before computing the
squared gradient magnitude:

ut = div(g(|∇uσ|2)∇u) (1.23)

where uσ = u ∗Kσ for the Gaussian Kσ with standard deviation σ.

Edge Enhancing Diffusion

Edge Enhancing Diffusion (EED) was proposed by Weickert in [29]. This type
of diffusion acts anisotropic and nonlinear. Its mathematical description is
given by

ut = div(D∇u), on Γ

u(0) = f, on Γ

∂nu = 0, on ∂Γ× (0,∞) (1.24)

where D is the diffusion tensor. The diffusion tensor is constructed using
eigenvectors v1||∇uσ and v2⊥∇uσ and the eigenvalues λ1 = g(|∇uσ|2) and
λ2 = 1. This choice leads to the process smoothing along edges and in
regions, while only little diffusion happens across edges.

1.2.5 Morphology

Morphology is a successful class of image processing methods that mainly
uses shape analysis. It was founded by Serra and Matheron around 1965
[28].

Most morphological operators use the operations dilation and erosion.
For a function f : Rn → R and a structuring element S ⊂ Rn, the dilation
of f with S results in the supremum, and the erosion in the infimum, of f
within S. Dilation is denoted

(f ⊕ S)(x) = sup{f(x− y)|y ∈ S} (1.25)

and erosion

(f 	 S)(x) = inf{f(x+ y)|y ∈ S} (1.26)
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Dilation and erosion can be formulated as PDEs. Dilation and erosion of
an initial image f can be described using the following initial value problem
[24, 35]

ut = ±β|∇u|, on Γ

u(0) = f, on Γ

∂nu = 0, on ∂Γ× (0,∞) (1.27)

where the speed function β describes the structuring element. If β is constant
then the structuring element is a disk [24]. For dilation the + sign s used
and for erosion the − sign.

To apply dilation and erosion to a digital image, we use the Rouy–Tourin
upwind scheme [23] that discretizes the PDEs of dilation and erosion. Dila-
tion with a disk-shaped structuring element is discretized as follows:

uk+1
i,j − ui,j

τ
=

(
max

{
0,
uki+1,j − uki,j

hx
,
uki−1,j − uki,j

hx

}2

+ max
{

0,
uki,j+1 − uki,j

hy
,
uki,j−1 − uki,j

hy

}2
) 1

2

(1.28)

Erosion is discretized as follows:

uk+1
i,j − ui,j

τ
= −

(
max

{
0,
uki,j − uki+1,j

hx
,
uki,j − uki−1,j

hx

}2

+ max
{

0,
uki,j − uki,j+1

hy
,
uki,j − uki,j−1

hy

}2
) 1

2

(1.29)
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Chapter 2

Shock Filtering Framework

In 1975, the first discrete formulation of a shock filter was given by Kramer
and Bruckner in [16]. The goal of the original filter was sharpening blurred
edges. To achieve that effect, pixels on the bright side of the edge need to
become brighter and pixels on the darker side darker. Applying dilation on
the brighter side and erosion on the darker side leads to such a sharpening
effect. So the basic idea behind shock filtering is to locally apply dilation or
erosion depending on the image structure.
In this chapter, we explain how the adaptation to the image structure can
be realized and introduce the general PDE formulation of shock filtering
that is used in this thesis. First, we give an intuition to shock filtering by
explaining the one dimensional case. Afterwards, we explain how these ideas
are translated to higher dimensional signals. Based on that, we define our
shock filter model.

2.1 1D Case

Whether the value in a point should increase or decrease can be determined
by inspecting the environment of the point. If the point lies within the
influence zone of a local maximum, then it should be increased. Values in
the influence zone of a minimum should be decreased. The idea becomes clear
by looking at the example in Figure 2.1, which depicts the sin function. To
sharpen the ”edge” in the point x = π, values left of π need to be increased
and values on the right need to be decreased. After the application of the
shock filter, the signal is divided into two sections with the values −1 and 1.

For a one dimensional continuous signal u, a point x0 is located within
the influence zone of a maximum if uxx(x0) < 0 and it is located within the
influence zone of a minimum if uxx(x0) > 0. In the first case, x0 is located

11
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(a) u(x) = sin(x) (b) Result of shock filter

Figure 2.1: Shock filtering a one dimensional sinus function.

within a strictly concave region and in the latter in a strictly convex region.
So in a strictly concave region, the shock filter should perform dilation and in
a strictly convex region it should apply erosion. Using the PDE formulations
of dilation and erosion, this can be embedded in a PDE as follows:

ut = −sgn(uxx)|ux| =


|ux| uxx < 0

−|ux| uxx > 0

0 else

, on Γ

u(0) = f, on Γ

ux = 0, on ∂Γ× (0,∞) (2.1)

2.1.1 Discrete Models and Properties

Semidiscrete Case

Equation 2.1 can be discretized with the Rouy-Tourin upwind scheme. Welk
et al. use this space-discretization in [37] in their semidiscrete model. The
second derivative is discretized using the central difference for second order
derivative:

u̇i =


max

(
ui+1−ui

h
, ui−1−ui

h
, 0
)
, 0 > ui+1−2ui+ui−1

h2

−max
(
ui−ui+1

h
, ui−ui−1

h
, 0
)
, 0 < ui+1−2ui+ui−1

h2

0, else

(2.2)

ui(0) = fi (2.3)
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They show that this model satisfies the following properties:

1. Existence of a unique solution: There is a unique solution for the
problem described in Eq. 2.2. The solution preserves convexity and
concavity, as well as maxima and minima.

2. Maximum-minimum principle: For all t ≥ 0 and points i, min
j

(fj) ≤
ui(t) ≤ max

j
(fj) holds.

3. l∞-stability: The solution of the system depends l∞-continuously on
a neighborhood of the initial signal f .

4. Total variation: The total variation is preserved, if the total variation
of the initital signal f is finite.

5. Steady State: The steady state is given by piecewise constant signal
with discontinuities (or shocks) at maxima of the first derivative of the
original signal. If the first derivative has maxima, the steady state is
not flat.

Fully discrete Case

Using forward differences in time, the scheme from Eq. 2.2 can be converted
to a fully discrete scheme:

uk+1
i − uki
τ

=


max

{
uki+1−uki

h
,
uki−1−uki

h
, 0
}
, 0 >

uki+1−2uki +uki−1

h2

−max
{
uki−uki+1

h
,
uki−uki−1

h
, 0
}
, 0 <

uki+1−2uki +uki−1

h2

0, else

(2.4)

u0
i = fi (2.5)

where f is the initial signal. Welk et al. show in [37] that for τ < 1
2

the fully
discrete scheme satisfies the same properties as the semidiscrete scheme.

2.2 Higher Dimensional Case

For higher dimensional signals such as images, the construction and proper-
ties of shock filters are more complex as in the one dimensional case. The
general idea remains: Te filter should perform dilation around maxima and
erosion around minima and thus segment the initial image into different re-
gions. In the higher dimensional case, there are several derivative operators
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that can be used for determining if a pixel is in the influence zone of a max-
imum/minimum. We cover some of the possible operators in Chapter 3.

For an initial image f , the PDE that describes shock filtering for images
can be defined as follows:

ut = −s(Lv)|∇u|, on Γ

u(0) = f, on Γ

∂nu = 0, on ∂Γ× (0,∞) (2.6)

Lv is a second derivative of the image v, which is not necessarily equal to
the evolving image u. The function s : R → R acts as the speed function
for dilation and erosion, while also behaving like the sign function. For s,
sgn(x) = sgn(s(x)) must hold. Furthermore, we require −1 ≤ s(x) ≤ 1.
We mostly use s = sgn throughout the thesis. Since the sign of the second
derivative Lv guides the operations of the shock filter, we refer to Lv as the
guidance term and to v as the guidance image.

2.2.1 Discretization

To apply the proposed shock filtering framework to discrete images, a discrete
formulation of the filter class is needed. For this purpose, we first present a
space-discrete scheme. Afterwards, we introduce the the fully discrete case.

Space-discrete Case

Aside from the derivative term, the shock filter essentially consists of the
morphological operations dilation and erosion. This can also be seen by
rewriting Equation (2.6):

ut = −s(Lv)|∇u| =


|∇u||s(Lu)|, Lv < 0

−|∇u||s(Lu)|, Lv > 0

0, else

(2.7)

Like for the one dimensional case, the space discretization can be constructed
using the Roy-Tourin upwind scheme [23] for dilation and erosion. Using this
scheme leads to the following discrete cases. For (Lv)i,j < 0:

ut = −si,j
(

max
{

0,
ui+1,j − ui,j

hx
,
ui−1,j − ui,j

hx

}2

+ max
{

0,
ui,j+1 − ui,j

hy
,
ui,j−1 − ui,j

hy

}2
) 1

2

(2.8)
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and for (Lv)i,j > 0:

ut = −si,j
(

max
{

0,
ui,j − ui+1,j

hx
,
ui,j − ui−1,j

hx

}2

+ max
{

0,
ui,j − ui,j+1

hy
,
ui,j − ui,j−1

hy

}2
) 1

2

(2.9)

For (Lv)i,j = 0:

ut = 0 (2.10)

Fully discrete case

The time discretization is performed using forward difference. Similar to the
sampling distances hx and hy, we use the time step size τ to express the
distance between to points in time k and k + 1. The fully discrete scheme is
then given by the following cases. For (Lv)ki,j < 0:

uk+1
i,j − ui,j

τ
= −si,j

(
max

{
0,
uki+1,j − uki,j

hx
,
uki−1,j − uki,j

hx

}2

+ max
{

0,
uki,j+1 − uki,j

hy
,
uki,j−1 − uki,j

hy

}2
) 1

2

(2.11)

for (Lv)ki,j > 0:

uk+1
i,j − ui,j

τ
= −si,j

(
max

{
0,
uki,j − uki+1,j

hx
,
uki,j − uki−1,j

hx

}2

+ max
{

0,
uki,j − uki,j+1

hy
,
uki,j − uki,j−1

hy

}2
) 1

2

(2.12)

and for (Lv)ki,j = 0

uk+1
i,j − ui,j

τ
= 0 (2.13)

The Rouy-Tourin scheme fulfills a discrete minimum-maximum principle

if the time step size τ satisfies

√(
τ
hx

)2

+
(
τ
hy

)2

≤ 1 Since |s| ≤ 1 holds, the

minimum-maximum principle from the Rouy-Tourin scheme applies to the
given fully discrete shock filter definition under the same conditions.
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2.3 Related Work

Ever since their first appearence in 1975, several different shock filter defini-
tions have been proposed. The first discrete definition given by Kramer and
Bruckner [16] can be written as follows:

uk+1 =

{
uk ⊕N(x), NLL(x) ≤ 0

uk 	N(x), else
(2.14)

where N(x) denotes the structuring element. In their experiments, they used
a disk shaped structuring element of radius 1. For the derivative operator,
they use the Morphological Laplacian NLL. A discrete formulation was first
proposed by van Vliet et al. [17] in 1989 and later a continous definition was
given by Maragos in 2005 [19]. The Morphological Laplacian is a morpho-
logical second derivative operator that approximates the second derivative in
gradient direction if a disk shaped structuring element is used [25].

In 1990, Osher and Rudin gave the first PDE formulation of shock filters
[21]. In their definition, they use the second derivative in direction of the
image gradient as the second derivative operator and v = u as the guidance
image. Using the sgn function as the speed function yields the following
definition

ut = −sgn(uηη)|∇u| (2.15)

where η = ∇u
|∇u| .

Alvarez and Mazorra modified the scheme of Osher and Rudin by Gaussian-
smoothing the guidance image [2] in 1994. The corresponding PDE can be
written as follows:

ut = −sgn
(
(u ∗Kσ)ηη

)
|∇u| (2.16)

where Kσ is a Gaussian with standard deviation σ. In Chapter 7, we inves-
tigate the Gaussian-smoothing of the guidance image further.
In 2003, Weickert proposed the Coherence Enhancing Shock Filter [32]. It
uses the guidance image v = (u∗Kσ)ww where w is the dominant eigenvector
of the structure tensor. The speed function is the sgn function:

ut = −sgn
(
(u ∗Kσ)ww

)
|∇u| (2.17)

The behavior of this filter is explained in Chapter 7 in more detail.
In 2000, Schavemaker et al. [26] proposed a shock filter definition that

uses non-flat morphology with paraboloids as structuring functions instead
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of the flat dilation and erosion operators. They use the second derivative
in gradient direction in the guidance term. The corresponding evolution is
given by

ut = −sgn(uηη)|∇u|2 (2.18)
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Chapter 3

Second Derivative Operators

In the last chapter, we introduced our general formulation of shock filtering.
One important part of that is the second order derivative operator Lv, that
steers the shock filter. For signals that are not just one dimensional, such as
digital images, there are unlimited possibilities to create derivative operators
if directional derivatives are used. We will analyze and compare shock filters
based on their guidance term in the following chapters. In this chapter, we
introduce the derivative operators that are used in the guidance term of the
shock filters.

3.1 Laplacian

The Laplacian is one very successful and well-known operator in image pro-
cessing. It is defined as the linear combination of second order directional
derivatives in orthogonal directions:

∆u = uxx + uyy = uηη + uξξ η⊥ξ (3.1)

An abrupt change of the intensity of image values can be seen as an edge.
Such a change of intensity corresponds to maxima of the first derivative and
with that to zero crossing of the second derivative. Thus, the zero crossings of
the Laplacian can be used to identify edge locations. For example, Marr and
Hildreth use the Laplacian in their edge detection operator, the Laplacian
of Gaussians (LoG) [20]. That means that the Laplacian carries important
structural information. The importance of the information given by the zero
crossings of the Laplacian has been examined by Elder in [9] and by Hummel
and Moniot in [14].

We discretize the Laplacian by means of the central difference approxi-

19
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mation of the second partial derivatives:

(∆u)i,j = (uxx)i,j + (uyy)i,j =
ui+1j − 2uij + ui−1j

h2
x

+
uij+1 − 2uij + uij−1

h2
y

(3.2)

3.2 Gradient Direction

Similar to the Laplacian, derivatives in direction of the spatial gradient are
often used as an edge indicator. The first derivative this direction equals the
gradient magnitude, which can be used as an edge indicator. If the gradient
magnitude is very large at a position, then it is a candidate for an edge. For
that reason it is used in many applications. For example, the Canny Edge
detector [6] uses the gradient magnitude for identifying edge candidates.

Since maximal values of the first derivative in gradient direction can corre-
spond to edge locations, the zero crossings of the second derivative in gradient
direction mark these potential maxima. So the second derivative in gradient
direction acts as an edge indicator as well. Its potential for edge detection
has been examined by Haralick in [13].

The second derivative in gradient direction can be defined by using the
Hessian:

uηη =
∇uTH(u)∇u

|∇u|2
=
u2
xuxx + 2uxyuxuy + u2

yuyy

|∇u|2
(3.3)

where η = ∇u
|∇u| . This definition is discretized by replacing all partial deriva-

tives by their central difference approximation.

(uηη)i,j =
(ux)

2
i,j(uxx)i,j + 2(uxy)i,j(ux)i,j(uy)i,j + (uy)

2
i,j(uyy)i,j

(ux)2
i,j + (uy)2

i,j

(3.4)

We use this derivative in shock filtering later on. If only the sign of the
derivative is relevant and not its magnitude, we drop the normalization, to
avoid dividing by zero. To ease readablility, this operator will be abbreviated
with L∇.

3.3 Eigendirection of the Structure Tensor

The structure tensor is a matrix, that averages gradient information within
a neighborhood specified by convolution with a Gaussian kernel Kρ. Its
eigenvectors point to the directions of the largest and smallest local contrast.
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Like Weickert in [32], we refer to the eigenvector with the larger corresponding
eigenvalue as the dominant eigenvector.

Much like the gradient, the dominant eigenvector typically points across
edges, since this is usually the direction with the larger local contrast. There-
fore, the zero crossings of the second directional derivative in direction of the
dominant eigenvector of the structure tensor can be used as a fuzzy edge
detector.

We define the second derivative in direction of the normalized dominant
eigenvector w = (w1, w2)T by means of the Hessian:

uww = wTH(u)w = w2
1uxx + 2uxyw1w2 + w2

2uyy (3.5)

The second derivatives are approximated using central differences. For read-
ability, we will abbreviate this operator with Lwρ in the following chapters. We
use the implementation of the second derivative in direction of the dominant
eigenvector of the structure tensor, that Joachim Weickert provided.

3.4 Comparison

On important similarity of the three presented derivative operators is that
they can be used in edge detection. For all three operators a change of
the sign of the respective second derivative marks a possible edge location.
Figure 3.1 shows the edge detection properties of the derivatives. Bright grey
values correspond to a positive sign and dark ones to a negative sign. All
three operators show a change of sign at the edges of the shapes depicted in
the original image.

3.4.1 Differences between the Operators

Even though the different derivatives have similarities, they also have several
differences. The following paragraphs explain some of the differences between
the operators.

Conflicting Signs The Laplacian consists of two directional derivatives
in perpendicular directions. Thus, if the signs of the directional derivatives
are different, the Laplacian takes on the sign of the directional derivative
with the larger magnitude. That can lead to a significant difference between
the Laplacian an directional derivatives. For example, the Laplacian can be
expressed by means of the gradient:

∆u = uηη + uξξ η||∇u and ξ⊥η (3.6)
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(a) Initial Image (b) ∆u

(c) L∇u (d) Lwρ u, ρ = 5

Figure 3.1: Edge detection using second derivative operators. (a) Initial
image. (b)-(d) Result of applying the different derivative operators. The
result is shifted by 127.
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1 24 25 25 25
1 24 25 25 25
1 13 15 15 25
1 24 25 25 25
1 24 25 25 25

(a) u

+ - - 0 0
+ - - - 0
+ + + + -
+ - - - 0
+ - - 0 0

(b) sgn(∆u)

+ - - 0 0
+ - - - 0
+ - - + -
+ - - - 0
+ - - 0 0

(c) sgn(L∇)u

+ - - 0 0
+ - - - -
+ - - + -
+ - - - -
+ - - 0 0

(d) sgn(Lwρ )u, ρ = 1

Figure 3.2: Comparison of signs of the Laplacian and directional derivatives
for an image that leads to conflicting signs of the Laplacian. (a) Original
image u. (b) - (d) Signs of derivative operators.

Looking at this formulations shows, that the Laplacian can have a different
sign from the second derivative in gradient direction if |uξξ| > |uηη|. Of
course, the same holds also for the derivative in direction of the dominant
eigenvector of the structure tensor.
Figure 3.2 shows an example of this effect. In the original image, there
is a large and abrupt change of intensity between the first and the second
column, which could be interpreted as an edge. There is also a smaller
change of intensity between the third row and the fourth and second row.
While the derivatives in gradient direction and direction of the dominant
eigenvector of the structure tensor have zero crossings between the first and
second column, the Laplacian only shows a gap in this edge. This leads to a
different structural interpretation of the image. Both directional derivatives
seem to separate the image into two rectangular regions. The result produced
by the Laplacian can be interpreted as three regions or two regions with a
rather unclear edge.

There is one noteworthy problem that follows from conflicting signs of
the Laplacian. If the signs of the partial derivatives are not equal, but their
magnitudes are, then the derivatives cancel each other out and the Laplacian
is zero, while the directional derivative, for example in gradient direction, are
not.
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0 0 0 0 0
0 0 0 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0

(a) u

0 0 0 0 0
+ + + 0 0
- - - + 0
0 0 - + 0
0 0 - + 0

(b) sgn(L∇u)

0 0 0 0 0
+ + + + 0
- - - + 0
0 0 - + 0
0 0 - + 0

(c) sgn(Lwρ u), ρ = 0.5

Figure 3.3: Comparison of the signs of different derivative operators at cor-
ners. (a) Original image u. (b) - (d) Signs of derivative operators.

Corners The dominant eigenvector of the structure tensor carries informa-
tion on the orientation of the local image structure. Therefore, for certain
structures, the directional derivative in that direction behaves differently
from the derivative in gradient direction. An example for these structures is
given by corners.
Figure 3.3 illustrates this difference at a corner. For almost all pixels, the
signs of the derivative operators are equal. However, the directional deriva-
tive in direction of the dominant eigenvector of the structure tensor has a
positive sign at the top right pixel at the corner. The other derivative does
not have that. This happens because in the discrete case the gradient only
takes the directly adjacent pixel values into account, while the structure ten-
sor considers the local image structure. The effect of that is that the zero
crossings of Lwρ u surround the object completely, while the zero crossings of
L∇u do not do that.



Chapter 4

Shock Filtering with a Fixed
Guidance Image

In Chapter 2, we purposely defined the class of shock filters relatively open.
This allows us to use a guidance image, that is not equal to the evolving
image or even connected to the initial image at all. In such a case, the
guidance image does not evolve along with the initial image. So if no other
evolution is applied to the guidance image, it is fixed. In this chapter, we
explain how such a shock filter with a fixed guidance image behaves. First,
we show some theoretical properties of the filter in the next section.

4.1 Properties

If we fix the guidance image and therefore also the guidance term, we can
simplify the definition of the shock filter (Eq. (2.6)). We split the image
domain Γ into three subsets by means of the sign of the guidance term:

Γ = Γ+ ∪ Γ− ∪ Γ0

Γ+ = {x|Lv(x) > 0}
Γ− = {x|Lv(x) < 0}
Γ0 = {x|Lv(x) = 0} (4.1)

Consider a connected region R ⊂ Γ+ in the original domain where Lv > 0.
In this region, the shock filter definition simplifies to the erosion equation:

ut = −|s(Lv)||∇u|, on R (4.2)

(4.3)

25
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At the boundary of R the original values neighboring R are used. For re-
gions in Γ− and Γ0 the reformulation is analogous. So if the guidance image
is fixed, shock filtering locally simplifies to dilation and erosion. Thus, the
shock filter also has many of the properties of dilation and erosion.
In 1993, Alvarez et al. [1] showed that dilation and erosion fulfill a minimum-
maximum principle. The shock filter with a fixed guidance image also sat-
isfies this minimum-maximum principle. If on all regions in Γ− and Γ+ the
following holds:

inf f ≤ u(x, t) ≤ sup f (4.4)

then it also holds on Γ, since the values in Γ0 are not changed.
In 1992, Jackway showed that dilation reduces the number of local maxima
and erosion the number local minima. Both operations preserve the location
of extrema. Likewise, shock filters preserve the location of extrema and
reduce their number.
For t→∞, the evolution reaches a steady state that can be non-flat. On a
connected region R ⊂ Γ+, u(x, t) converges to the minimum of the original
image f . On R ⊂ Γ− it converges to the maximal value of f in R. Values in
Γ0 are preserved.

4.2 Role of the Initialization

In a setting with a fixed guidance image, the guidance image can be chosen
independently from the initial image. In that case, the shock filter changes
the values of the evolving image u according to the structural information of
v. The shock filter basically colors in the regions of the guidance image with
the values of the initial image. The structure of the initial image does not
effect the behavior of the shock filter in any way.
Figure 4.1 compares the result of the shock filter for different initial images.
The guidance image is given by a cosine wave. Structurally, the resulting
images look similar. In regions, where the cosine function is convex, the
resulting image is dark and in concave regions, it is colored brighter. However,
the corresponding dark and bright values of the initializations are different.
For the resulting image that was initialized with the cosine wave, the bright
and dark values are black and white. The noise initialization yields different
grey values.
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(a) Initial image (b) Guidance image (c) Steady state

(d) Initial image (e) Guidance image (f) Steady state

Figure 4.1: Comparison of result using different initial images. Top row:
cosine wave as initial image and guidance image. Bottom row: noise initial-
ization and cosine wave as the guidance image. (a) and (d) Initial images
128× 128 pixels. (b) & (e) Guidance images. (c) and (f) Steady state of the
shock filter using the Laplacian as the derivative operator. Images (a)-(c)
and (e) are rescaled to the range of [0, 255] using affine rescaling.
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4.3 Comparing Derivative Operators

The result of the shock filter strongly depends on the structure of the guid-
ance image and therefore also on the second derivative operator that detects
the structure. As we explained in Chapter 3, we mainly use the Laplacian
and the second derivatives in direction of the gradient and the dominant
eigenvector of the structure tensor. In the remainder of this section, we in-
vestigate the similarities and differences of the derivative operators for a fixed
guidance term.

4.3.1 Equality in Strictly Convex/Concave Regions

We can relate the behavior of shock filters to influence zones of minima and
maxima, similar to the one dimensional case. In the influence zone of a local
maximum, the Hessian is negative definite and in the influence zone of a
local minimum it is positive definite. On an open and convex subsets of the
influence zone of a maximum, the function is strictly concave and on an open
and convex subset of the influence zone of a minimum, the function is strictly
convex. A convex set of points on which the function is strictly (convex), is
called strictly (convex) region in the following paragraphs. Analogously, we
refer to such a set on which the function is (strictly) concave as a (strictly)
concave region. In strictly convex/concave regions all shock filters with a
fixed guidance term that use a second derivative operator of the following
form behave equally:

Lv =
∑
i

∂pipiv (4.5)

where pi is a normalized vector.
We can show this by using the relation between the definiteness of the Hessian
and the convexity/concavity of a function. On a convex, open set R ⊂ R2,
a function is strictly convex if the Hessian is positive definite on that set. A
matrixA is positive definite if for any direction p 6= 0, pTAp > 0. Therefore,
for an arbitrary, normalized direction pi 6= 0 the following holds:

0 < pTi H(v)pi = ∂pipiv (4.6)

So all second directional derivatives in a strictly convex region must be posi-
tive. Thus, all second derivative operators of the form described in Eq. (4.5)
are positive. A shock filter using such a derivative operator always performs
erosion on a strictly convex region.
The strictly concave case is analogous. A matrix A is negative definite if
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(a) Initial Image (b) Guidance image (c) Lv = ∆v

(d) Lv = L∇v (e) Lv = Lwρ v (f) Lv = Lw
⊥

ρ v

Figure 4.2: Comparison of shock filter with different derivative operators us-
ing a fixed, convex guidance image. (a) Initial image: checkerboard pattern.
(b) Guidance image of the function u(x, y) = x2 + y2. (c)-(f): Steady state
of shock filter with different second derivative operators. (c) Laplacian. (d)
Derivative in gradient direction. (e) Derivative in direction of the dominant
eigenvector of the structure tensor. (f) Second derivative in direction of the
weak eigenvector of the structure tensor (w⊥w⊥). The guidance image was
rescaled to the range of [0, 255] using affine rescaling.

pTAp < 0 holds for any p 6= 0. Let the function be strictly concave on the
convex, open set R. Then on this set, the second directional derivative in an
arbitrary direction pi 6= 0 must be positive

0 > pTi H(v)pi = ∂pipiv (4.7)

So in strictly concave regions, derivative operators of the form from Eq. (4.5)
are negative and shock filters using such an operator always perform dilation.

Figure 4.2 demonstrates the equality of shock filters with fixed guidance
image in a strictly convex region. It shows the steady states of shock filtering
a convex image using the Laplacian and the second derivative in direction
of the gradient, the direction of the dominant eigenvector of the structure
tensor and the direction of the other eigenvector of the structure tensor.
All four resulting images consist of a black square surrounded by a white
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frame. Since the reflecting boundary conditions cause the pixels at the image
border to lose their convexity, the different shock filters do not have to behave
equally in these border pixels. Comparing the images 4.2e and 4.2f shows
that outside of the strictly convex region, the second derivatives in directions
of the eigenvectors of the structure tensor can behave differently, even though
they behave equally in the strictly convex region.

Remark In regions that are not strictly convex or concave but convex or
concave, the conclusion from above is not as strong. In such a case, there is
at least one direction p for which ∂ppu = 0. So in convex regions, shock filters
never perform dilation and in concave region they never perform erosion. If
you consider the example from Figure 4.1 again, you can see that the image
is constant in y-direction. Thus the second derivative in y-direction is also 0
everywhere. Derivative operators that consider derivatives across edges are
usually still positive in convex and negative in concave regions.

4.3.2 Differences

In regions that are neither convex nor concave, the derivative operators do
not necessarily act equal. In the remainder of this thesis, we often refer to
those regions as indefinite regions.
An example of shock filtering such an indefinite region is given in Figure 4.3.
The function depicted in the guidance image is v(x, y) = x2 − 0.7y2. In the
center of the image, the function has a saddle point. The slope in x and y
direction is different, so the function has a directional preference. The Lapla-
cian performs erosion almost everywhere, except for at the boundaries, since
the Laplacian of v is positive everywhere. The results using the directional
derivatives are similar, but not equal. The derivative in gradient direction
results in two triangular bright regions. If you look closely, you can see that
the dark shapes at the left and right of the triangles are connected. This
connection is also created and even enhanced by the shock filter using the di-
rectional derivative in direction of the dominant eigenvector of the structure
tensor.

The shock filter colors the regions defined by the guidance term in the
brightest or darkest value of the corresponding region. That means that for a
shock filter with a fixed guidance image, the differences between the behavior
of the shock filter corresponds to the differences between the derivative op-
erators themselves. In Figure 4.4 we reuse the example from Figure 3.2 from
Chapter 3, in which we showed the effect of the Laplacian having conflicting
signs. Here, the guidance image corresponds to the original image in the pre-
vious figure. The effect we explained earlier is also visible. On the left side of
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(a) Initial (b) v

(c) Lv = ∆v (d) Lv = L∇v (e) Lv = Lwρ v, ρ = 5

Figure 4.3: Effect of shock filter using a fixed, neither convex nor concave
guidance image. (a) Initial image: checkerboard pattern. (b) Guidance
image of function v(x, y) = x2 − 0.7y2. (c)-(e): Steady state of shock filter
with different second derivative operators. (c) Laplacian. (d) Derivative in
gradient direction. (e) Derivative in direction of the dominant eigenvector
of the structure tensor. The guidance image was rescaled to the range of [0,
255] using affine rescaling.
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1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

(a) Initial Image u

1 24 25 25 25
1 24 25 25 25
1 13 15 15 25
1 24 25 25 25
1 24 25 25 25

(b) Guidance Image v

0 1 1 0 1
0 1 1 1 0
0 0 0 0 1
0 1 1 1 0
0 1 1 0 1

(c) Lv = (∆v)

0 1 1 0 1
0 1 1 1 0
0 1 1 0 1
0 1 1 1 0
0 1 1 0 1

(d) Lv = (L∇v)

0 1 1 0 1
0 1 1 1 1
0 1 1 0 1
0 1 1 1 1
0 1 1 0 1

(e) Lv = (Lwρ v), ρ = 1

Figure 4.4: Steady states of different shock filters with a guidance image
leading to conflicting signs of the Laplacian. (a) Original image: checker-
board pattern of size 5 × 5. (b) Guidance image. (c) - (e) Steady state of
shock filters with different derivative operators.

the edge between the first and second row, all guidance terms have a positive
sign and therefore, the filters all perform erosion. Thus, in the steady state,
the values on the left side of that edge are 0. On the right side, (L∇v) and
(Lwρ v) have negative signs and therefore perform dilation. In the middle, of
the second and third column, the Laplacian still performs erosion, since the
conflicting signs lead to a positive sign. Therefore, the edge produced by the
shock filter using the Laplacian is not as clear as the edge produced by the
other two shock filter.

4.4 Natural Images

The properties of shock filters with regard to the convexity and concavity
can be used to explain the behavior of shock filters with different derivative
operators in natural images. Figure 4.5 shows the steady states of shock
filtering the trui image using different derivative operators. The trui image
is used as both the initial and the guidance image. Figure 4.5b visualizes
strictly convex regions by coloring them black, strictly concave regions by
coloring them white and red regions are neither strictly convex nor strictly
concave. One can see that the image is made up of many small strictly
convex/concave and indefinite regions. Therefore the results of the shock
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filters are similar, but not equal. The edges in the result of the shock filter
that uses the Laplacian are not as clean as the edges generated by the two
directional derivatives. The result that uses the second derivative in gradient
direction has cleaner edges. The result of the Laplacian and the gradient look
relatively similar, but some regions are interpreted differently. For example
the nostrils are colored dark by the Laplacian and bright by the derivative
in gradient direction. The difference of both results to one generated using
vww is larger overall. In this image, the directional preference of structures
plays a big role. This derivative operator is used in the Coherence Enhancing
Shock Filter by Weickert [32]. Therefore, it is not surprising that using this
derivative operator seems to enhance or elongate low-like structures, even
though no Gaussian smoothing is involved.
There is one more aspect in all three images that we need to point out. All
three image seem segmented according to their respective derivative operator.
But as can be seen looking at the image in Figure 4.5b, the are many regions
even if only the strict convexity is considered. Since the shock filter colors
regions, this can lead to a over-segmentation.
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(a) v, f (b) Region image

(c) Lv = ∆v (d) Lv = L∇v (e) Lv = Lwρ v, ρ = 5

Figure 4.5: Effect of shock filters using a fixed, natural guidance image. (a)
Guidance image and initial image. (b) False color representation of strict
convexity/concavity of the image. Strictly convex regions are black, strictly
concave regions white and red regions are not strictly convex/concave. (c)-
(e): Steady state of shock filter with different second derivative operators.



Chapter 5

Evolving Guidance Image

An interesting case arises if the guidance image is set to the evolving image
v = u. This leads to the following image evolution:

ut = −sgn(Lu)|∇u| (5.1)

Replacing Lu by the second derivative in gradient direction leads to the
shock filter definition of Osher and Rudin from [21]. Unfortunately, there are
currently no well-posedness results for this PDE available [35]. Therefore, we
only work with the discrete definition of the shock filter and the derivative
operators.

5.1 Strictly Convex and Concave Regions

In the previous chapter, we showed that all shock filters with a fixed guidance
term behave equally in strictly convex and concave regions. In the case of
an evolving guidance image, it is not quite as simple, since the evolution
affects the derivatives of the image. Nevertheless, the behavior in strictly
convex/concave regions is still interesting.

First, consider the strictly concave case. Here a shock filter step always
applies dilation, since all directional derivatives are negative. Therefore, we
need to investigate the influence of dilation on the concavity of the function.
We assume that concave and convex regions consist of more than one pixel.

We first consider an inner pixel (i, j), for which all neighbors are convex
and u is not maximal in (i, j).

If (upp)
k
i,j > 0, then image at the time k + 1 is then given by

uk+1
i,j = uki,j − τ

(
max

{
0,
uki,j − uki+1,j

hx
,
uki,j − uki−1,j

hx

}2
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+ max
{

0,
uki,j − uki,j+1

hy
,
uki,j − uki,j−1

hy

}2
) 1

2

(5.2)

Without loss of generality, we assume that in both x- and y-direction the
backward difference is smaller and that |uki,j − uki+1,j| ≤ |uki,j − uki−1,j|. There-
fore, the following holds:

uk+1
i,j = uki,j − τ

√(uki,j − uki+1,j

hx

)2

+
(
uki,j −

uki,j+1

hy

)2

≥ uki,j − 2τ
uki,j − uki+1,j

hx
)

= uki,j

(
1− 2

τ

hx

)
+

2τ

hx
uki+1,j (5.3)

(5.4)

For the second directional derivative in the normalized and arbitrary direction
p at time level k + 1, the following holds:

(upp)
k+1
i,j =

(
p2

1

uk+1
i+1,j − 2uk+1

i,j + uk+1
i−1,j

h2
x

+ p2
2

uk+1
i,j+1 − 2uk+1

i,j + uk+1
i,j−1

h2
y

+ 2p1p2

uk+1
i+1,j+1 + uk+1

i−1,j−1 − uk+1
i+1,j−1 − uk+1

i−1,j+1

4hxhy

)
≥ (1− 2

τ

hx
)
(
p2

1

uki+1,j − 2uki,j + uki−1j

h2
x

+ p2
2

uki,j+1 − 2uki,j + uki,j−1

h2
y

+ 2p1p2

uki+1,j+1 + uki−1,j−1 − uki+1,j−1 − uki−1,j+1

4hxhy

)
+ 2

τ

hx

(
p2

1

uki+2,j − 2uki+1,j + uki,j
h2
x

+ p2
2

uki+1,j+1 − 2uki+1,j + uki+1,j−1

h2
y

+ 2p1p2

uki+2j+1 + uki,j−1 − uki+2,j−1 − uki,j+1

4hxhy

)
Eq.(5.3)

= (1− 2
τ

hx
)(upp)

k
i,j + 2

τ

hx
(upp)

k
i+1,j (5.5)

So for τ ≤ hx
2

(upp)
k+1
i,j ≥ 0 (5.6)

Therefore, τ should be chosen such that τ ≤ minhx, hy and for hx = hy = 1,
τ ≤ 0.5.
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The argumentation for the strictly concave case is very similar. It can be
shown, that dilation preserves concavity just as erosion preserves convexity.
For better readability, the corresponding calculation is moved to the appendix
11.

Let now (i, j) be the location of a local maximum. Dilation preserves the
location of maxima [35]. Therefore, uk+1

i,j is still a local maximum and u is
still concave in (i, j). Analogously, if there is a minimum in (i, j) the shock
filter does not change the value in that pixel and u remains convex in that
pixel since the values around the minimum can not become smaller than the
minimum.

For pixels on the border of convex/concave regions, such a general state-
ment can not be made. Thus, shock filters do not have to behave equally in
border pixels.
In summary, we can say that inner pixels of a strictly concave region increase
towards the maximum in the region. In border pixels, the behavior may be
different. However, the regions tend to evolve towards a flat region with the
value of the maximum. Analogously, strictly convex regions tend to become
flat regions with the value of the local minimum.
Figure 5.1 shows that by the example of an initially strictly convex image,
with non-convex border pixels. All three derivative operators flatten the
strictly convex region, such that it takes on the value of the minimum. Here
one can also see the white border which was also present the fixed case.
Looking at the image in Figure 5.1e shows, that shock filters in pixels at
the border of a convex region may behave differently. At the left, right, top
and bottom border of the image white pixels are visible inside the originally
convex region.

Note that the findings from this sections are true for regions that are
initially strictly convex/concave. If the region is only convex or concave then
some derivatives are 0. In that case, a derivative operator that only uses
such a direction will also be zero. If a derivative operator is used that is
typically non zero in convex/concave regions, such as the Laplacian or the
second derivative in gradient direction, then the region tends to become a
flat region during the evolution.

5.2 Non-convex/concave Regions

Like in the case of a fixed guidance image, the behavior of the shock filter
depends on the derivative operator in regions that are neither convex nor
concave. However, other than in the fixed case, the guidance term may
change its sign now.
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(a) u, f (b) Lu = ∆u (c) Lu = L∇u (d) Lu = Lwρ u (e) Lu = L∇⊥
u

Figure 5.1: Shock filters with an evolving guidance image applied to a convex
image. (a) Initial image of the function u(x, y) = x2 + y2. (b)-(d): Steady
state of shock filter with different second derivative operators. (b) Laplacian.
(c) Derivative in gradient direction. (d) Derivative in direction of the dom-
inant eigenvector of the structure tensor ρ = 2. (e) Derivative in direction
opposite of the gradient T = 125. The images are rescaled to the range of
[0, 255] using affine rescaling.

For a second directional derivative in an arbitrary direction p = (p1p2)T at
time level k + 1 that yields:

(upp)
k+1
i,j =

1

|p|2
(
p2

1

uk+1
i+1,j − 2uk+1

i,j + uk+1
i−1,j

h2
x

+ p2
2

uk+1
i,j+1 − 2uk+1

i,j + uk+1
i,j−1

h2
y

+ 2p1p2

uk+1
i+1,j+1 + uk+1

i−1,j−1 − uk+1
i+1,j−1 − uk+1

i−1,j+1

hxhy

)
= (upp)

k
i,j + τ(δpp)

k
i,j (5.7)

Thus, the sign of (upp)
k
i,j changes if the second derivative in the same direction

of the change of the image δ has the opposite sign and a larger magnitude.
Note that (δpp)

k
i,j is scaled by the time step size τ . So a larger time step size

makes a change of sign more likely.
The derivative operators that we have considered so far are not simply

directional derivatives in a fixed direction. Therefore, there are some special
aspects that need to be mentioned. The Laplacian is composed of directional
derivatives in both x and y direction. So to determine if there is a change of
sign of the Laplacian, Equation 5.7 has to be changed as follows:

(∆u)k+1
i,j = (∆u)ki,j + τ(∆δ)ki,j (5.8)

So the sign of the Laplacian changes, if the Laplacian of the change of u has
an opposite sign and a larger absolute value.
The directional derivatives in direction of the gradient and of the dominant
eigenvector of the structure tensor may also change their direction.



5.3. NATURAL IMAGES 39

(a) u, f (b) Lu = ∆u (c) Lu = L∇u (d) Lu = Lwρ u

Figure 5.2: Shock filters with evolving guidance image applied to an indefinite
region. (a) Initial image of u(x, y) = x2 − 0.7y2. (b)-(d): Steady states of
shock filter with different second derivative operators. τ = 0.5 for all images.
For (d) ρ = 5. The images are rescaled to the interval [0, 255] using affine
rescaling.

5.3 Natural Images

Natural images consist of many small convex, concave and indefinite regions.
Due to potentially different behavior at borders, not all shock filters be-
have completely equally in strictly convex/concave regions. Nevertheless,
they behave similarly. Thus, using the three different derivative operators
in shock filtering yields similar, but not equal results. Figure 5.3 shows the
steady states of shock filtering the trui image with an evolving guidance im-
age. Similar to the fixed guidance image, you can see the properties of the
derivative operators in these images.
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(a) Initial image (b) Region image

(c) Lu = ∆u (d) Lu = L∇u (e) Lu = Lwρ u, ρ = 5

Figure 5.3: Shock filtering natural image with evolving guidance image.
(a) Original image. (b) Strictly convex(black)/concave(white) of the initial
image. Red regions are neither strictly convex nor strictly concave. (c)-
(d)Steady states of the shock filters. τ = 0.5.



Chapter 6

Deblurring with Shock
Filtering

Originally, Kramer and Bruckner proposed shock filters as a tool for image
deblurring and noticed that deblurring drawn lines or characters, works es-
pecially well [16]. In this chapter, we show that shock filters can be used for
deblurring and explain why they work especially well for cartoon-like images.

6.1 How Blur Effects Edges

Blur is a type of image degradation that has many possible causes including
defocussing, motion during image creation or atmospheric disturbances [33].
Mathematically, blur is modeled as a convolution. The convolution kernel
determines the type of blur. For example Gaussian convolution can be used
to model atmospheric disturbances.

(a) (b) (c) (d)

Figure 6.1: Effect of Gaussian blur. (a) Initial image. (b) Convex and
concave regions of (a). (c) Gaussian blur with standard deviation σ = 5.
(d) Convex and concave regions of (c). Convex regions are black, concave
regions white and indefinite regions are red.

41
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Edges in particular are strongly affected by blur. Consider the example
in Figure 6.1. An edge like the one given in this example has a line of convex
pixels (not strictly convex) left of the edge and a concave one on the right of
the edge. If Gaussian convolution is applied then not only the grey values at
pixels are averaged, but by the differentiation property of convolution also
the derivatives:

∂vuσ = ∂v(u ∗K) = (∂vu) ∗K
∂vvuσ = ∂vv(u ∗K) = (∂vvu) ∗K (6.1)

where K is the convolution kernel. Therefore, the initially convex and con-
cave strips right and left of an edge are enlarged. Figure 6.1 also depicts that
for a Gaussian as a convolution kernel.

6.2 Deblurring Cartoon-Like Images

Cartoon-like images are images with clear edges and flat regions. Their edges
and regions are comparable to the edge from Figure 6.1. If blur is applied to
such an image, larger convex and concave regions are created. As we already
explained, in regions that are only convex/concave shock filter with deriva-
tive operators that consider the direction across the edge apply dilation in
concave regions and erosion in convex regions. Therefore, a shock filter using
one of the three derivative operators we have been using so far, sharpens the
blurred edges until the steady state.
Figure 6.2 compares the deblurring of an initially binary image by different
shock filters. The blur is relatively strong which causes the convex regions
that should surround the objects to blend into each other and lose the con-
vexity in some parts of the image. The concave regions inside the objects
are mostly preserved. Therefore, the results of the different shock filters are
all relatively similar. All shock filters manage to paint the concave regions
inside the object in a bright grey value. Outside of the concave regions the
shock filters do not always behave equally. For example the Laplacian cre-
ates only slightly rounded corners at the rectangles, while the derivatives
in direction of ∇u and w yield really rounded corners. Interestingly, the
shock filters with a fixed guidance image yield a better result than those that
use evolving guidance images. The shock filters with fixed guidance images
create a clear separation between the different objects, such that the result
strongly resembles the initial image. The separation of the objects created
using evolving guidance images is not as clear. Even in the steady state,
some objects like the disks or the two leftmost rectangles are still connected
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with a dark colored region, which is not the case if a fixed guidance image is
used.

6.3 Deblurring Natural Images

Deblurring natural images has additional difficulties. Natural images typi-
cally do not have flat regions. Usually, they are filled with grey value gra-
dients. However, applying a shock filter until it reaches a steady state will
also flatten regions, that are not supposed to be flattened. In Figure 6.3 this
problem is highlighted. For the small stopping time of T = 0.75 the image
is already sharpened, but not segmented extremely strong. For a larger evo-
lution time, the images look more segmented and the segments become flat.
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(a) Original (b) Blurred (c) Regions

(d) Lv = ∇v (e) Lv = L∇v (f) Lv = Lwρ v, ρ = 3

(g) Lv = ∆u (h) Lv = L∇u (i) Lv = Lwρ u, ρ = 3

Figure 6.2: Deblurring a blurred, cartoon-like image with shock filtering.
Top row: (a) Initial image. (b) Gaussian-blurred image with standard devi-
ation σ = 5, initial image and guidance image for the shock filter with fixed
guidance image. (c) Convex and concave regions of (b). Convex regions
are black, concave regions white and indefinite regions are red. Middle row:
Steady states of shock filters with fixed guidance image applied to (b). The
guidance image is the blurred image. Bottom row: Steady states of shock
filters with evolving guidance image.
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(a) Original (b) Blurred (c) T = 0.75 (d) T = 5

Figure 6.3: Deblurring a blurred, natural image with shock filtering. (a)
Initial image. (b) Gaussian-blurred image with standard deviation σ = 2.
(c)-(d) Shock filter with guidance term Lu = L∇u at different stopping times.



46 CHAPTER 6. DEBLURRING WITH SHOCK FILTERING



Chapter 7

Gaussian-Smoothing of the
Guidance Image

Derivative computation is generally very noise sensitive. Alvarez and Ma-
zorra suggest that applying Gaussian-smoothing to the guidance image may
solve the noise sensitivity problem [2]. Also, the Gaussian-smoothing may
enlarge or fuse different regions. This might solve the problem of over-
segmentation. Therefore, we investigate the effect of smoothing the guidance
image in this chapter.

Gaussian convolution is a very popular tool for regularizing images. There-
fore, it has also been used in shock filtering. In 1994, Alvarez and Mazorra
[2] first proposed presmoothing the guidance image using Gaussian convolu-
tion for their shock filter. In their definition, the guidance image equals the
evolving image. They use the second derivative in gradient direction for the
derivative operator. With that their shock filtering process for the evolving
image u can be expressed as follows:

ut = −s(L∇uσ)|∇u| (7.1)

where uσ = u ∗ Kσ for the Gaussian Kσ. Gaussian presmoothing is also
used by Weickert’s Coherence Enhancing Shock Filter [32]. Instead of the
second flow line derivative, this shock filter uses Lwρ uσ. Both shock filters
show interesting, yet very different results, which are presented later in this
section.

Convolution of an image with a Gaussian of standard deviation σ is equiv-
alent to applying homogeneous diffusion until the stopping time of T = σ2

2

[35]. We use this equivalence to formulate this modification of the guidance
image as an image evolution itself. If the shock filter uses a fixed guidance
image v, then the input of the evolution is always the initial guidance image

47
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v0:

vki,j = ∆v0
i,j

uk+1
i,j = −sgn(Lvki,j)(|∇u|)ki,j (7.2)

In the the case of v = u, the filter is applied to the evolving image u:

vki,j = ∆uki,j

uk+1
i,j = −sgn(Lvki,j)(|∇u|)ki,j (7.3)

The Gaussian convolution is implemented using a convolution in the im-
age domain with a sampled Gaussian that is truncated and normalized. The
implementation was given to us by Joachim Weickert.

7.1 Effect on (strict) Convexity and Concav-

ity

In the previous chapters, the relevance of convexity/concavity of image re-
gions was highlighted several times. Thus, to understand the effect of pres-
moothing the guidance image, we need to investigate the effect that the
smoothing process has on convex/concave regions.

Convolution averages values of an image within a window. For Gaussian
convolution that window is defined by the Gaussian kernel. By the differenti-
ation property of convolution, it also convolves the derivatives of that image
within that window:

uσ = u ∗Kσ

∂vuσ = ∂v(u ∗Kσ) = (∂vu) ∗Kσ

∂vvuσ = ∂vv(u ∗Kσ) = (∂vvu) ∗Kσ (7.4)

This averaging can lead to a change of the sign of second derivatives. Imagine
a strictly convex region located next to a strictly concave region. If Gaussian
convolution is applied, then the sign of the second derivatives of the border
pixels are influenced by derivatives with an opposite sign. Thus, they can
change their sign. So the strictly convex and strictly concave regions shrink.
Figure 7.1 depicts such a case. The initial image depicts a strictly convex
paraboloid next to a strictly concave one. Initially, the image is strictly
convex on the left side, strictly concave on the right and there is a non-
convex/concave border between the regions. There are strictly concave pixels
above and below the corners of the convex region. For the right side these
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(a) Original (b) Regions of (a)

(c) Smoothed σ = 2 (d) Regions of (c)

Figure 7.1: Change of strictly convex/concave regions caused by Gaussian
convolution. (a) Original image of two functions: Left x2 + y2, right −x2 −
y2. (b) Regions of the original image that are strictly convex or concave or
neither. (c) Smoothed original image. (d)Regions of the smoothed image
that are strictly convex or concave or neither. Convex regions are marked
black, concave regions white and regions that are neither red. The original
and smoothed image were rescaled using affine rescaling.

pixels are strictly convex. After applying Gaussian convolution to the image,
these regions at the corners and the non-convex/concave region are larger,
while the large strictly convex/concave regions are shrunken. If the size of
the kernel was large enough, the convex and concave region could even vanish
completely after the convolution.

This is only one example of how Gaussian convolution can effect the
convexity and concavity of an image. There are many more ways in which
Gaussian convolution can influence second derivatives. For example it has
been shown that Gaussian convolution can create new extrema [18, 39]. Thus,
it can even create new convex and concave regions.

In summary, smoothing an image with a Gaussian can create, shrink, en-
large and erase strictly convex/concave regions. Of course, this has a large
effect on the convexity and concavity of natural images. Figure 7.2 shows
an example of that. Before smoothing, the image consists of many small
strictly convex/concave regions and regions that are neither strictly convex
nor strictly concave. After applying Gaussian-smoothing, there are less seg-
ments that are much larger.
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(a) Original (b) Without smoothing (c) With smoothing

Figure 7.2: Change of strictly convex/concave regions of a natural im-
age through Gaussian convolution. Strictly convex regions are marked
black, strictly concave regions white and regions that are not strictly con-
vex/concave red. (a) Original image. (b) Regions without smoothing. 45.3%
of the pixels are colored red. (c) Regions after Gaussian-smoothing with
σ = 1.5. 54.6% of the pixels are colored red.

Furthermore, the number of indefinite pixels increases with the convolu-
tion. Without smoothing, 45.3% of the pixels are neither strictly convex nor
strictly concave. After applying Gaussian-smoothing, 54.6% of the pixels are
colored red. However, Gaussian-convolution does not necessarily increase the
number of pixels that are neither strictly convex nor strictly concave. Imag-
ine an image with shows a black pixel in the middle of a white background.
Here all pixels can be considered indefinite, except for the neighbors of the
black pixel, in which the image is convex. Applying Gaussian-smoothing
with a sufficiently small standard deviation to the image enlarges the convex
region. So the number of indefinite pixels decreases. Using a sufficiently
large standard deviation would cause the black pixel to vanish and with that
also the strictly convex pixels.

7.2 Shock Filter with Smoothed Guidance Im-

age

Gaussian convolution has a large effect on image derivatives and with that
also on convexity and concavity. So it is no surprise that presmoothing
the guidance image in shock filtering effects the result of the shock filter.
We again differentiate between shock filtering with a fixed and an evolving
guidance image.
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7.2.1 Fixed Guidance Image

If the guidance image is fixed, the presmoothing takes place before the shock
filtering process. Therefore, the shock filtering process itself is not effected
by the Gaussian convolution. Like before, all shock filters with derivative
operators of the form Lu =

∑
i upi for any direction pi behave equally inside

strictly convex/concave regions. In non-convex/concave regions they do not
necessarily behave similarly. Since Gaussian convolution enlarges these non-
convex/concave regions and some of the strictly convex/concave regions, the
guidance image has less regions and both the similarities between derivative
operators and their differences are visible more clearly.

Figure 7.3 shows the results of shock filtering a noise image using a
guidance image that is smoothed using Gaussian convolution with differ-
ent derivative operators. In strictly convex/concave regions, the images look
similar. In the other regions, the differences such as the directional prefer-
ence of Lwρ v are clearly visible. For example at the checkerboard pattern on
the scarf, there are strictly convex and strictly concave regions that are sepa-
rated a by non-convex/concave regions. Here the results using the Laplacian
and the second flow line derivative look similar, while the shock filter using
Lwρ v almost destroys the pattern due to the directional preference. In many
regions, one can also see that the edges created by the shock filters using
the L∇v and Lwρ v are cleaner than those created using the Laplacian. These
differences were somewhat visible without the presmoothing if one considers
Figure 4.5 from Chapter 4, but the convolution accentuates these effects,
since there are more and larger indefinite regions.

7.2.2 Evolving Guidance Image

In the special case u = v the convolution is applied in every iteration. Thus,
the averaging of the derivatives used in the guidance term happens in every
shock filter step. Here, the equivalence of homogeneous diffusion to Gaus-
sian convolution is important. With increasing time, diffusion propagates
information throughout the image domain. So repeatedly applying Gaus-
sian convolution also propagates information from one point in the image
to another point. In shock filtering, the convolution is only applied to the
guidance image, so the convolution does not directly propagate values. How-
ever, the dilation/erosion part paints the different regions according to the
sign of the second derivative operator. So the transport of the information
by the convolution may be carried over to the evolving image through the
dilation/erosion. Since in shock filtering the averaging can be understood
as an averaging of the image derivatives, the behavior of the propagation
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(a) Initial Image u (b) Guidance Image vσ (c) Regions

(d) Lv = ∆v (e) Lv = L∇v (f) Lv = Lwρ v, ρ = 5

Figure 7.3: Steady states of differentshock filters with a Gaussian-smoothed,
fixed guidance image.. Presmoothing using Gaussian convolution with a
kernel with σ = 1.5.
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(a) (b) (c)

Figure 7.4: Steady states of shock filters with τ = 0.7 using the guidance
term Lu = ∆uσ for a strictly convex initial image. (a) Initial image of the
function u(x, y) = x2 + y2. (b) σ = 0.5. (c) σ = 2. All images were rescaled
to the range of [0, 255] using affine rescaling.

heavily depends on which derivatives are used. In the following paragraphs,
we present the propagation properties of shock filters for different derivative
operators in different experiments.

Laplacian

The Laplacian is a symmetric derivative operator that consists of derivatives
in two perpendicular directions. Thus, the propagation caused by the con-
volution also acts symmetrically and in two perpendicular directions. Figure
7.4 shows how the convolution influences the behavior of a shock filter with
evolving guidance image, if the Laplacian is used as the derivative operator.
The initial image is a convex function. For a very small narrow convolution
kernel, the result looks like the result without the convolution. If the kernel is
large enough, the results of the shock filter looks different. The white edge,
that a shock filter without presmoothing creates, is thickened. Moreover,
there is a gap in the border at the edges. This is caused by the averaging of
information from the for example the upper and left border.

Figure 7.5 demonstrates the evolution of a line-like object under shock
filtering with an evolving smoothed guidance term that used the Laplacian.
The filter first thickens the line until it its thickness corresponds to the stan-
dard deviation of the Gaussian. Simultaneously, a blob-like structure forms
at the end of the line. After 20 iterations, the structure that formed at the
end of the line spreads out in two directions forming new structures. This
continues with each iteration. At 50 iterations, more of these structures have
developed already. In the steady state, the image is filled with structures
that developed from this procedure.
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(a) Initial (b) 10 (c) 20 (d) 50 (e) Steady state

Figure 7.5: Evolving an image with a line like structure using a shock filter
with the guidance term Lu = ∆uσ. σ = 2 and τ = 0.5. (a) Initial image.
(b) - (d) result after increasing number of iterations. (e) Steady state.

(a) (b) (c)

Figure 7.6: Steady states of shock filters with τ = 0.7 using the guidance
term Lu = L∇uσ for a strictly convex initial image. (a) Initial image of the
function u(x, y) = x2 + y2. (b) σ = 0.5. (c) σ = 2. All images were rescaled
to the range of [0, 255] using affine rescaling.

Flow-Line Derivative

Using the second derivative in gradient direction as the derivative operator
yields the guidance term L∇uσ. A shock filter using this operator was pro-
posed by Alvarez and Mazorra [2]. They extended the shock filter of Osher
and Rudin [21] with Gaussian smoothing to make the shock filter more ro-
bust against noise.
We performed the same experiments for the second derivative in gradient di-
rection as for the Laplacian. Figure 7.6 depicts the result of applying a shock
filter using L∇uσ as the derivative operator to a convex image. For a small
convolution kernel, the result looks like it does without the presmoothing for
this derivative operator as well. For a larger convolution kernel the shock
filter changed the structure of the image. The steady state consists of a white
border surrounding a black region, but the structure is slightly round.

Figure 7.7 shows again the evolution of the line under the shock filter
using L∇uσ. Like before, the line is thickened to the size of σ. However,
other than for the Laplacian, the line shrinks towards the image border here.



7.2. SHOCK FILTER WITH SMOOTHED GUIDANCE IMAGE 55

(a) Initial (b) 10 (c) 20 (d) Steady state

Figure 7.7: Evolution of an image with a line like structure using a shock
filter with the guidance term Lu = L∇uσ. σ = 2 and τ = 0.5. (a) Initial
image. (b) - (c) result after increasing number of iterations. (d) Steady state.

Initially, the point of the largest change of grey values is at the rightmost
pixel of the line. The convolution moves that point to the left. Therefore, on
the left of that point the intensity change increases until that point. Finally,
on the right of that point the change of intensity decreases again. Thus,
the second derivative in gradient direction must be positive on the left and
negative on the right. So dilation is applied on the right of that new point,
which causes the black line to become shorter with each iteration. In the
steady state, only the round end of the line created by the convolution is
visible. It is not removed completely by the shock filter as before, since the
edge is very close to the image border and can not be moved any further.
In summary, it seems like shock filters that use the guidance term L∇uσ tend
to round larger structures and shrinks structures of a scale that is related to
the size of the Gaussian that is used in the convolution.

Coherence Enhancing Shock Filter

Using the second derivative in direction of the dominant eigenvector of the
structure tensor as the second derivative operator and an evolving guidance
image that is presmoothed with Gaussian convolution yields the Coherence
Enhancing Shock Filter that was proposed by Weickert in 2003 [32].

Figure 7.8 shows the result of the experiment using a convex initial image
if Coherence Enhancing Shock Filtering is used. For a very small Gaussian
kernel, the filter behaves like it did in the other two cases. If the kernel is
sufficiently large, the shock filter enlarges the border around the dark center.
The dark center keeps a squarish shape but its corners are rounded. This
rounding at the corners comes from the round shape of the Gaussian.

Figure 7.9 demonstrates the evolution of the line under the Coherence
Enhancing Shock Filter. The results use different values for the integration
scale. For a small integration scale, the direction of dominant eigenvector of
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(a) (b) (c)

Figure 7.8: Steady states of shock filters with τ = 0.7 using the guidance
term Lu = Lwρ uσ, ρ = 5, for a strictly convex initial image. a) Initial image
of the function u(x, y) = x2 + y2. b) σ = 0.5. c) σ = 2. All images were
rescaled to the range of [0, 255] using affine rescaling.

(a) Initial (b) ρ = 1,
20 iterations

(c) ρ = 1,
Steady state

(d) ρ = 5,
20 iterations

(e) ρ = 5,
Steady state

Figure 7.9: Evolution of a line like structure using a shock filter with the
guidance term Lu = Lwρ uσ. (a) Initial image 65× 65 pixels. (b) - (c) Result
after increasing number of iterations for ρ = 1, σ = 2 and τ = 0.7. (d) - (e)
Result after increasing number of iterations for ρ = 5, σ = 2 and τ = 0.7.

the structure tensor is relatively close to the direction of the gradient. So if
a small integration scale is chosen, the result using the Coherence Enhanc-
ing Shock Filter is similar to the result using the shock filter of Alvarez and
Mazorra: the line is thickened and shrinks towards the image border. Using
a larger integration scale yields a different result. Here the line is thickened
and elongated towards the opposite image border. Figure 7.10 explores the
ability of the Coherence Enhancing Shock Filter to connect line fragments.
The initial image shows a line with a gap. The shock filter manages to con-
nect both line fragments, while keeping a matching slope.
In [32], Weickert shows that the Coherence Enhancing Shock Filter can be
used to enhance coherence structures in general by using it to enhance a
fingerprint. Figure 7.11 shows their example. The initial image is a finger-
print with partially disconnected and unclean lines. In the steady state of
the shock filter the lines are connected and slightly thicker. The generated
edges are sharp.
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(a) Initial (b) Steady state

Figure 7.10: Connecting lines with Coherence Enhancing Shock Filtering.(a)
Initial image 64 × 64 pixels. (b) Steady state of the Coherence Enhancing
Shock Filter applied to (a), ρ = 4, σ = 2 and τ = 0.7 was used.

(a) Initial (b) Steady state

Figure 7.11: Enhancing a fingerprint with Coherence Enhancing Shock Fil-
tering. (a) Initial image 186× 186 pixels from [32]. (b) Steady state, ρ = 5,
σ = 1.5 and τ = 0.7 was used.
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Summary

We can use these findings to explain the behavior of different shock filters
that use an evolving, smoothed guidance image. Figure 7.12 compares the
effect of the different shock filters if they are applied to the trui test image.
One can observe the effects that we described in the precious paragraphs
in the resulting images. The results produced by the shock filter using the
Laplacian show that pattern of linear structures being enlarged and split. A
larger smoothing scale produces larger structures. If the second derivative in
gradient direction is used, the filter produces roundish segments and removes
smaller scale structures. Using the coherence enhancing filter leads to the
enhancement of coherent structures of a scale that is defined be the size of
the Gaussian. For a larger Gaussian, the formed structures have a larger
scale and smaller scale details vanish.

In general, applying Gaussian-smoothing to an evolving guidance image
leads to the generation of structures of scale of the size of the Gaussian.
Smaller scale details vanish. This can lead to interesting effects such as the
enhancement of coherent structures. However, it does not necessarily have a
regularizing effect, even for a small smoothing scale. Comparing the results
using σ = 0.5 from Figure 7.12 to the result of Figure 5.3 from Chapter
5 7, one may argue that the results using the Gaussian-smoothing look less
smooth. To empathize this point, we applied the three shock filters to a noisy
image in Figure 7.13. Since the image is extremely noisy, we used a rather
larger smoothing scale. The three resulting images are not noisy anymore,
however they do not really look like the the original image. One can clearly
see the characteristics of the different shock filters. The Laplacian creates
the pattern of splitting lines. The second derivative in gradient direction
creates somehow roundish structures. The large structure at the top even
slightly resembles the initial triangle.The Coherence Enhancing Shock Filter
constructs coherent structures, that were not in the image initially. One can
imagine this behavior of the shock filters trying to make sense of the noise
and therefore creating structures according to their characteristics using the
noise, which leads to results that may not even remotely resemble the original
image.
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(a) Lu = ∆uσ,
σ = 0.5

(b) Lu = ∆uσ,
σ = 2

(c) Lu = L∇uσ,
σ = 0.5 T = 3500

(d) Lu = L∇uσ,
σ = 2

(e) Lu = Lwρ uσ,
σ = 0.5, ρ = 5

(f) Lu = Lwρ uσ,
σ = 2, ρ = 5

Figure 7.12: Result of applying different shock filters with Gaussian-
smoothed, evolving guidance image to a natural image (trui). All images,
other than (c), are the steady state of the evolution. τ = 0.7 was used for all
images.
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(a) Initial image. (b) Lu = ∆uσ (c) Lu = L∇uσ (d) Lu = Lwρ uσ,
ρ = 5

Figure 7.13: Applying shock filters with Gaussian-smoothed, evolving guid-
ance image to a noisy image. (a) Initial image. (b) - (d) Steady states of
different shock filters. σ = 3 and τ = 0.7.



Chapter 8

Shock-Diffusion

In the previous chapter, we examined the combination of diffusion and shock
filtering that uses Gaussian-smoothing in the guidance term. Unfortunately,
this does not necessarily lead to a regularized shock filter. Another way of
combining the two filters is coupling their PDEs. Such a coupling can be
realized by using a weighted linear combination of a shock term S(u) and a
diffusion term D(u):

ut = ωDD(u) + ωSS(u) (8.1)

where ωD, ωS are weights. We will be referring to this type of filter as shock-
diffusion.

Such a linear combination of diffusion and shock term can actually be
linked to an existing filter. In [15], Kornprobst et al. explain that nonlinear
isotropic diffusion can be written in terms of such a combination. For con-
venience, we provide the computation here.
Nonlinear Isotropic Diffusion can be rewritten as follows:

ut = div(g(|∇u|2)∇u)

= g(|∇u|2)∆u+ 2g′(|∇u|2)|∇u|uηη|∇u| (8.2)

The full computation can be found in Appendix Eq. 11.6.
Diffusivities typically have the form 1

f(ss)
, where f(s2) > 0. Therefore its

derivative is negative and has the form:

g′(s2) = − f
′(s2)

f 2(s2)
(8.3)

Equation 8.2 can be fitted to the form of Equation 8.1, using the shock
term S(u) = −sgn(uηη)|∇u|, the diffusion term ∆u and the weights ωD =

61



62 CHAPTER 8. SHOCK-DIFFUSION

g(|∇u|2), ωS = 2 f ′(s2)
f2(s2)

uηη|∇u|:

ut = g(|∇u|2)∆u+ 2
f ′(s2)

f 2(s2)
uηη|∇u|(−sgn(uηη)|∇u|) (8.4)

This connection to nonlinear isotropic diffusion makes the idea of a shock-
diffusion filter seem reasonable. The combination of homogeneous diffusion
and shock filtering has not really been investigated thoroughly thus far.
Therefore, we investigate this combination in this chapter. First, we intro-
duce some of the noteworthy related work, that investigates the combination
of shock filtering and smoothing operators, apart from diffusion.

8.1 Related Work

Over the years, several linear combinations of smoothing and shock filter have
been proposed [2, 15, 12, 11, 3, 38]. In this section, we briefly introduce the
two shock-smoothing combinations that are the basis for all later proposed
definitions.

The first combination of shock filtering with a smoothing operation was
published by Alvarez and Mazorra in 1994 [2]. They propose to use a convex
combination of Mean Curvature Motion and shock filtering. The shock term
uses an evolving guidance image that is smoothed with Gaussian convolution.
The derivative operator is the second derivative operator in direction of the
gradient. Their proposed equation looks as follows:

ut = Cuξξ − β(L∇uσ, |∇uσ|)|∇u| (8.5)

where ξ⊥∇u and C > 0 is a constant that determines the weighting of both
operators.
The definition of Kornprobst et al. [15] uses a linear combination of a shock
term for image enhancement at edges, a smoothing term for denoising and
a similarity term to force the convergence to a non-trivial steady state. The
smoothing term uses smoothing in direction of the image gradient and the
opposite direction. The direction of the gradient is weighted using a function
hα(|∇uσ|) = 1 if |∇uσ| < α and 0 otherwise. Therefore, the process does
not smooth across edges for large gradient magnitudes. In this definition,
the same shock term is used as in the definition of Alvarez and Mazorra[2],
but the shock term is weighted using 1 − hα(|∇uσ|). The equation is given
by

ut = cf (u− f)︸ ︷︷ ︸
similarity

+ cd(hα(|∇uζ |)uηη + uξξ)︸ ︷︷ ︸
smoothing
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−cs(1− hα(|∇uζ |))sgn(L∇uσ)|∇u|)︸ ︷︷ ︸
shock

(8.6)

where cf , cd, cs are constants, η||∇u and η⊥ξ.

8.2 Model

Most linear combinations of smoothing and shock filtering use smoothing in
direction of the flow lines and some additionally use smoothing in direction
of the gradient. However, we use homogeneous diffusion for the smoothing
term. For the shock term, we use an evolving guidance image. For the
weighting of both terms, we use a ωD = ω(|∇uζ |2) and ωS = 1− ω(|∇uζ |2),
where uζ = Kσ ∗u for the Gaussian Kζ with standard deviation ζ. This leads
to the following formulation:

ut = ω(|∇uζ |2)∆u− (1− ω(|∇uζ |2))sgn(Lu)|∇u| on Γ× (0,∞)

u0 = f on Γ× (0,∞)

∂nu = 0 on ∂Γ× (0,∞) (8.7)

For the weighting function 0 ≤ ω ≤ 1 must hold. It should be chosen
such that it is decreasing in the (squared) gradient magnitude.

A class of functions that satisfies these properties are diffusivities. In
diffusion filtering, they are used to adapt the strength of the diffusion to the
image structures.
There are several different diffusivities. We use the Charbonnier diffusivity
[8]

gCH(s2) =
1√

1 + s2

λ

(8.8)

and the Perona-Malik diffusivity [22]

gPM(s2) =
1

1 + s2

λ

(8.9)

The contrast parameter λ determines how large the influence of the gradient
magnitude on the function is. A larger λ lessens the influence of the gra-
dient magnitude. This has an effect on how fast the function gets close to
zero. Figure 8.1 show the influence of the contrast parameter. For λ = 1
the functions decrease relatively fast, which leads to a small diffusivity for
smaller values of the gradient magnitude. For λ = 3, the function does not
decrease as drastically. Thus, for the same gradient magnitude the value of
the diffusivity is larger. In general the Perona-Malik diffusivity decreases
faster than the Charbonnier diffusivity.
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(a) λ = 1 (b) λ = 3

Figure 8.1: Influence of the contrast parameter on the diffusivities. Red:
Perona-Malik diffusivity. Blue: Charbonnier diffusivity.

8.2.1 Discretization

The shock term in Equation 8.7 is discretized as described in Chapter 2. The
diffusion term is discretized using an explicit scheme with central differences:

Dki,j =
(uki+1,j − 2uki,j + uki−1,j

h2
x

+
uki,j+1 − 2uki,j + uki,j−1

h2
y

)
(8.10)

The explicit scheme for the discretization of diffusion is stable with respect
to a minimum-maximum principle for τ ≤ 1

2

h2x
+ 2

h2y

[35].

The fully discrete scheme is given by

uk+1
i,j = τ(gki,jDki,j + (1− gki,j)Ski,j) + uki,j (8.11)

The shock term Ski,j is discretized as described in Chapter 2.

Like the diffusion scheme, this scheme satisfies a discrete minimum-maximum
principle for τ ≤ 1

2

h2x
+ 2

h2y

.

At time level k, the following holds:

uk+1
i,j = τ(gki,jDki,j + (1− gki,j)Ski,j) + uki,j

≤ τ(gki,j max{Dki,j,Ski,j}+ (1− gki,j) max{Dki,j,Ski,j}) + uki,j

= uki,j + τ

{
gki,jDki,j + (1− gki,j)Dki,j, Dki,j > Ski,j
gki,jSki,j + (1− gki,j)Ski,j, else
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=

{
uki,j + τDki,j, Dki,j > Ski,j
uki,j + τSki,j, else

(8.12)

The first case is equivalent to the discretization of the diffusion and the
second case to the discretization of the shock filter. Since both terms fulfill
the minimum-maximum principle for τ ≤ 1

2

h2x
+ 2

h2y

uk+1
i,j = =

{
uki,j + τDki,j, Dki,j > Ski,j
uki,j + τSki,j, else

≤ max
n,m∈Γ

{fn,m} (8.13)

Analogously, you can show that the evolution does not fall below the mini-
mum.

uk+1
i,j = τ(gki,jDki,j + (1− gki,j)Ski,j) + uki,j

≥ τ(gki,j min{Dki,j,Ski,j}+ (1− gki,j) min{Dki,j,Ski,j}) + uki,j

= uki,j + τ

{
gki,jDki,j + (1− gki,j)Dki,j, Dki,j < Ski,j
gki,jSki,j + (1− gki,j)Ski,j, else

=

{
uki,j + τDki,j, Dki,j < Ski,j
uki,j + τSki,j, else

≥ min
n,m∈Γ

{fn,m} (8.14)

8.3 Evolving Guidance Term

Using an evolving guidance image in the shock term leads to a shock-diffusion
equation that looks similar to nonlinear isotropic diffusion, especially if the
second derivative in gradient direction is used in the guidance term. Not only
the equation, but also the behavior of the shock-diffusion filter is similar.
Figure 8.2 compares the effects of shock-diffusion for different derivative op-
erators. Like in the previous chapters, the differences between the derivative
operators are visible. Compared to the images of the pure shock filter with
evolving guidance image, the results seem more clean, since the diffusion re-
moved small scale details. Especially for the second derivative in gradient
direction and the Laplacian, this leads to a more segmented result. The sec-
ond derivative in the dominant eigendirection of the structure tensor clearly
shows its directional dependency. Especially the derivative in gradient direc-
tion leads to a result that resembles the Perona Malik Diffusion. However,
in the direct comparison to nonlinear diffusion the edges of structures in the
shock-diffusion results are a lot sharper and the resulting images look more
segmentation like.
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(a) Initial image (b) Diffusion

(c) Lu = ∆u (d) Lu = L∇u (e) Lu = L∇u

Figure 8.2: Shock-diffusion with an evolving guidance image compared to
nonlinear isotropic diffusion. (a) Initial image. (b) Isotropic nonlinear diffu-
sion with Peronal-Malik diffusivity, λ = 1. (c) Laplacian, Lu = ∆u. T = 500
λ = 1. (d) Second flow line derivative, Lu = L∇u. T = 500 λ = 1. (e)
Lu = L∇u. ρ = 3 λ = 1 T = 500. For all images τ = 0.25 and ζ = 0.5 was
used.
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(a) Initial image. (b) T = 100 (c) T = 1000 (d) T = 2500

Figure 8.3: Shock-diffusion evolution at different stopping times using the
Perona-Malik diffusivity. Shock term: L∇u. ζ = 0, τ = 0.25 and λ = 3.

8.3.1 Steady State

Another similarity between shock-diffusion with evolving guidance image and
Nonlinear Isotropic Diffusion is their steady state. For an increasing evolution
time, the results of shock-diffusion becomes more blurry and even objects
with a larger contrast vanish. Figure 8.3 visualizes this behavior. For a
small stopping time, the objects with low contrast are removed. With a
larger stopping time, higher contrast objects are removed. In the steady
state, the resulting image would be a flat grey value. However, other than
for diffusion, the grey value is not necessarily equal to the initial average grey
value, since shock-diffusion does not have an average grey value invariance.

8.3.2 Denoising

Noise is a type of image degradation that may be created by the photo-sensors
during image acquisition, but there are also other causes. In a noisy image,
the grey values are changed, often without reference to the initial image.
Since noise may change the grey values drastically, it can also influence the
derivatives of the images heavily and with that also the result of shock filters.
Moreover, removing the noise from the image (denoising) is a popular task for
smoothing methods like diffusion. Therefore, we also test the performance
of our shock-diffusion filters with respect to denoising.

Figure 8.4 demonstrated the denoising capabilities of shock-diffusion with
an evolving, non-smoothed guidance image. The filter manages to remove the
noise, especially in regions. Across edges, the smoothing effect is relatively
small. The edges are not very clean, even after denoising. Since the diffusion
propagates grey values the resulting regions are less bright/dark than they
originally were.
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(a) Noisy image. (b) Lu = L∇u

Figure 8.4: Denoising with shock-diffusion with an evolving, non-smoothed
guidance image. (a) Initial, noisy image. (b) Result of the shock-diffusion
filter at T = 62.5 with guidance term L∇u, ζ = 5, τ = 0.25 and λ = 1. The
Charbonnier diffusivity is used as the weighting function.

8.4 Gaussian-smoothed Guidance Image

Similar to the classic shock filter, we can also add smoothing to the guidance
image for our shock-diffusion operator. As we saw in the previous chap-
ter, this smoothing leads to the creation of structures depending on which
derivative operator is used. As the Laplacian does not seem to create useful
structures, we are only using the directional derivatives in direction of the
gradient and the dominant eigenvector of the structure tensor in the shock
term. We will refer to the shock-diffusion that uses the shock term from the
Coherence Enhancing Shock Filter as coherence enhancing shock-diffusion.

Shock filters that use a smoothed directional derivative in direction of
the dominant eigenvector of the structure tensor create structures in a di-
rectionally dependent way. Using such a shock term in shock-diffusion leads
to a mainly directionally dependent behavior of the filter near edges. This
resembles the behavior of anisotropic diffusion methods like EED. Therefore,
we compare the results of the shock-diffusion to the result created by EED
in Figure 8.5. In the result of EED, small scale details with a small con-
trast, like the texture of the hat, are not visible anymore. Larger and higher
contrast regions persist. Likewise, both results of the shock-diffusion filter
remove such small scale details and smooth within the lager regions. The
edges created by the shock-diffusion are much sharper than the edges created
by EED and the result looks more segmentation-like. The implementation
of EED was provided by Joachim Weickert.
Shock-diffusion has some advantages over EED other than sharper edges.
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One problem of EED is that it is relatively hard to find a good discretization
that does not violate a discrete minimum-maximum principle as stated by
Weickert in a personal communication [36]. Numerical issues like this may
lead to over- and undershoots and may cause edges to be less sharp. The
shock-diffusion filter has a relatively simple numerical scheme that is easy to
implement and even satisfies a discrete minimum-maximum principle. How-
ever, shock-diffusion also has a disadvantage. For EED, several theoretical
properties such as well-posedness, average grey value invariance and many
more have been shown [35]. For shock-diffusion, no such theoretical results
are available, since they are already missing for shock filtering.

8.4.1 Denoising

Like before, we want to test the performance of the shock-diffusion with a
Gaussian-smoothed guidance image in denoising. Interestingly, denoising can
be used very well to explain the behavior of the filter. The difference between
the two derivative operators is also highlighted.

In Figure 8.6, we denoised the same image as before using shock-diffusion
with a Gaussian-smoothed guidance image. The middle row shows the result
of using L∇uσ as the derivative operator at different stopping times. The
bottom row uses Lwρ uσ as the derivative operator. At the stopping time of
T = 2.5, one can already see an effect. It smoothes primarily inside regions
and not so much across edges. Looking at the results at T = 100 shows that
the filter has smoothed the values inside the regions. Around the edges of
the shapes a bright/dark regions forms. Its size corresponds to the size of the
smoothing scale ζ that is used in the diffusivity. The values inside the regions
of the shapes are still brighter than the pixels close to the edge and the values
in the background are still darker than the values close to the edges. It seems
like the shock term is trying to preserve the values close to the edge, while
removing unwanted noise and sharpening the edge. At T = 25000, the values
inside the regions are closer to the values at the edges. The diffusion prop-
agates the values from the edges to the flat regions creating darker shapes
and a brighter background. At T = 37500, the grey values inside the regions
fit the grey values at the edges. Since there is a small amount of diffusion
across edges, the values near the edges become slightly darker/brighter than
they originally were, which leads to a slight darker background and slightly
brighter shapes overall. Applying the shock-diffusion longer will eventually
lead to a flat image.
The behavior displayed over time resembles inpaiting. Inpainting is an im-
age processing task in which a filter needs to fill gaps using information from
known pixels. We cover this topic in more detail in Chapter 9.1. Since the
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(a) Initial Image (b) EED

(c) Shock-diff., Lu = L∇u (d) Shock-diff., Lu = Lwρ u

Figure 8.5: Comparing EED to shock-diffusion using the smoothed gradient
derivative and the shock term from the Coherence Enhancing Shock Filter.
The shock-diffusion uses the Charbonnier Diffusion. (a) Initial image. (b)
EED uses a diffusivity that decreases exponentially in |∇uζ |2 by Weickert
[31], ζ = 0.5 λ = 2 T = 100. (c) Flow Line Derivative, λ = 1.5 σ = 1 ζ = 1,
T = 20. (d) Coherence Enhancing Shock Filter, λ = 1.5 σ = 1 ζ = 1 ρ = 1.5,
T = 20.
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values at the edges change very slowly, the diffusion almost inpaints the flat
regions in the color close to the edges. Since the values close to the edges
are not fixed, there is a difference to classical diffusion-based inpainting, but
there is a relation.
Comparing the result of the derivative in direction of the gradient and the
eigenvector of the structure tensor shows, that the estimation by the eigen-
vector of the structure tensor seems closer to the original. The operator
Lu = Lwρ uσ seems to be more robust against noise than L∇uσ

8.5 Creating a Non-flat Steady State

Diffusion and shock filtering are opposing processes: diffusion blurs edges,
while shock filtering sharpens them. Nevertheless, the steady state of shock-
diffusion always seems to be flat. We first explain, why shock-diffusion typi-
cally results in a flat steady state.
Consider the following shock-diffusion evolution:

ut = g∆u− (1− g)sgn(∆u)|∇u| (8.15)

So both processes always have opposite signs. If ∆u > 0 then the sign of the
shock filter is negative and vice versa for ∆u < 0. So the absolute values of
the shock filter and the diffusion term determine whether a value becomes
larger or smaller. Imagine a convex region. Here the shock term will try to
shrink values. Since the region is convex, ∆u > 0. So the diffusion tries to
enlarge values in that region. So pixels with a larger Laplacian than gradient
magnitude become larger instead of smaller.
Unfortunately, multiplying the shock term with a scale to enlarge its influence
does not solve the problem. Consider the one dimensional signal f and its
derivatives:

f = (0, 1)

fxx = (1,−1)

|fx| = (0, 0)

where |fx| is computed using the Roy-Tourin upwind sheme. As long as a
weighting function is used that can not become 0, the diffusion part of the
shock-diffusion will always blur this edge until the grey values are equal, since
the pixel remains a local minimum/maximum even after diffusion.
So the only guaranteed possibility to create a non-flat steady state, is choos-
ing a weighting function that can become 0.
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(a) Noisy Image

(b) Lu = L∇uσ,
T = 2.5

(c) Lu = L∇uσ,
T = 100

(d) Lu = L∇uσ,
T = 25000

(e) Lu = L∇uσ,
T = 37500

(f) Lu = Lwρ uσ,
T = 2.5

(g) Lu = Lwρ uσ,
T = 100

(h) Lu = Lwρ uσ,
T = 25000

(i) Lu = Lwρ uσ,
T = 37500

Figure 8.6: Denoising with shock-diffusion with a Gaussian-smoothed guid-
ance image. (a) Noisy image. (b)-(i) shock-diffusion evolution at different
stopping times. Middle row: Lu = L∇uσ, σ = 1.5. Bottom row: Lu = Lwρ uσ
with σ = 1.6 and ρ = 2.05. Both evolutions use the Charbonnier diffusivity
and τ = 0.25, λ = 1 and ζ = 5.
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(a) Perona-Malik and
Charbonnier diffusivity

(b) α = 0.2 (c) α = 0.06

Figure 8.7: Effect of α in modified diffusivities. (a) Perona Malik (red)
and Charbonnier (blue) diffusivity. (b)-(c) Modified Perona Malik (red) and
Charbonnier (blue) diffusivity with λ = 2.

8.5.1 Modified Diffusivity

Diffusivities never become 0, since this is needed for theoretical properties of
diffusion [35]. Therefore, we propose modifying diffusivities. For the Perona-
Malik diffusivity, the modification looks as follows:

gmPM(s2) = max
{ 1 + α

1 + s2

λ

− α, 0
}

(8.16)

The Charbonnier diffusivity is modified similarly:

gmCH(s2) = max
{ 1 + α√

1 + s2

λ

− α, 0
}

(8.17)

Figure 8.7 shows the graph of the modified diffusivities for different values
of α. The parameter α determines if the diffusivity is set to 0.

In Figure 8.8, the steady states of the shock filters with modified Perona-
Malik diffusivity of the palette image are shown for different values of α.
The parameter determines which squares still exist in the steady state. The
squares with a higher contrast survive even for small values of α, while squares
with a lower contrast vanish for a smaller α.

In the previous section, we explained that the shock term is aims to fix
the values close to edges, while the diffusion term also smoothes across edges
if a diffusivity is used. This conflict does not arise if a modified diffusivity
is used. Values that are close to an edge with a sufficiently large gradient
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(a) Initial Image (b) α = 0.02 (c) α = 0.006 (d) α = 0.003

Figure 8.8: Steady states of shock-diffusion for different α. The shock term
uses the second derivative in gradient direction. τ = 0.25, λ = 3 and σ = 0
for all resulting images. The modified Perona-Malik diffusivity is used.

magnitude are changed only by the shock term. However, the edge does not
have to exist in the beginning of the evolution, since the shock filter may
elongate or create edges. Once such an edge with a sufficiently large gradient
magnitude has formed, the shock filter preserves that edge. The diffusion
can not influence the edge. Instead, it propagates values from the edge into
the region adjacent to such an edge. That means the values near edges act
as an inpainting mask (known values in inpainting) and the diffusion then
inpaints regions surrounded by edges using the values at the fixed edges.
This behavior can be visualized very well using the denoising example from
the previous section. In Figure 8.9, a similar experiment is performed. We
denoise the same image using shock-diffusion with a modified diffusivity.
In early iterations, the diffusion term smoothes inside regions and slightly
across edges and the shock term enhances the edges. Since the shock term
from the Coherence Enhancing Shock Filter is used, it may even fill gaps in
edges. More importantly, the shock term keeps the values relatively close
to the original values. At T = 250, you can already see the inpainting take
effect. Since the edges can not be changed by the diffusion anymore, the grey
values at edges are fixed and act as a mask for inpainting by the diffusion
term. The rectangle is already filled with relatively dark values and the
background starts to become bright. In the steady state, the dark shapes
and the bright background are clearly distinguishable.
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(a) Initial Image (b) T = 25 (c) T = 250 (d) Steady state

Figure 8.9: Denoising with shock-diffusion with modified Charbonnier dif-
fusivity. (a) Initial image. (b)-(d) Results for different stopping times.
Lu = Lwρ uσ, σ = 1.6, ρ = 2.05, ζ = 5.5, λ = 1.5 and α = 0.15.
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Chapter 9

Inpainting with Shock-Diffusion
Filtering

We already mentioned the task of inpainting in the previous chapter. There,
we explained that the behavior of shock-diffusion resembles inpainting, de-
pending on the chosen weighting function. In this chapter, we demonstrate
that shock-diffusion can be used to perform image inpainting and even per-
forms well, compared to well-proven methods like EED.

9.1 PDE-based Inpainting

In inpainting, the task is to fill the gaps within an image using the informa-
tion given by the present pixels. We call the set of known pixels the inter-
polation mask or inpainting mask M . The set of unknown pixels is called
the inpainiting domain Γ\M . This task can be fulfilled using PDE-based
methods.

A brief overview on this topic is provided by Schmaltz et al. in [27]. We
use the model for inpainting from this publication. Formally, PDE-based
inpainting can be described using the following PDE:

0 = (1− cM)Du− cM(u− f) (9.1)

where f is the initial image and Du the derivative operator that describes
the inpainting operator. cM is the characteristic function of M :

cM(x) =

{
1, x ∈M
0, else

(9.2)

Since the inpainting does not change the values at the locations inside the
interpolation mask, the equation can be simplified. On Γ\M , the solution of
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Equation (9.1) is given by the steady state of

ut = Du (9.3)

The image in the steady state of that evolution corresponds to the final result
of the inpainting process.

There is a large number of possible choices for the inpainting operator Du.
Schmaltz et al. provide a comparison of the performance of serveral different
inpainting operators in [27]. The best results in their different experiments
are achieved by using EED as the inpainting operator. Therefore, we compare
the performance of shock-diffusion and EED in inpainting in the following
sections. For the implementation of EED, we use an implementation that
Joachim Weickert provided to us and modified it to use the Charbonnier
diffusivity in the construction of the diffusion tensor.

9.2 Shock-Diffusion Inpainting Operator

Shock-diffusion, as we defined it in the previous section, allows different
shock terms and weighting functions. For the inpainting operator, we use
the two shock terms that gave the best results in the previous section. The
first operator uses the second derivative in direction of the gradient of the
smoothed, evolving guidance image:

Du = g(|∇uζ |2)∆u− (1− g(|∇uζ |2))sgn(L∇uσ)|∇u| (9.4)

The second operator uses the shock term from the Coherence Enhancing
Shock Filter:

Du = g(|∇uζ |2)∆u− (1− g(|∇uζ |2))sgn(Lwρ uσ)|∇u| (9.5)

For all of the produced inpaiting results, we use the Charbonnier diffusivity
as the weighting function.

To compare the performance of the two candidates for shock-diffusion
based inpainting, we performed one of the experiments, that was performed
by Schmaltz et al. to compare the performance of different inpainting op-
erators in [27]. Figure 9.1 shows the results of that experiment. The initial
image consists of three disks which contain white wedges on a dark back-
ground. Connecting the corners with straight lines yields a white triangle
on a dark background. The data inside the disks is used as the interpola-
tion mask. Everything outside the disks is supposed to be inpainted. The
shock-diffusion using the coherence enhancing shock term reconstructs the
triangle relatively well. The reconstructed edges are not as straight as the
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(a) Initial Image (b) Nonlin. iso. diff. (c) Shock-diff. L∇uσ

(d) EED (e) Shock-diff. Lwρ uσ

Figure 9.1: Comparison of different inpainting operators. (a) Initial image.
(b) Nonlinear isotropic diffusion with Charbonnier diffusivity, λ = 1 . (c)
Shock-diffusion using the second derivative in gradient direction, λ = 3,
ζ = 5.5 and σ = 1.75. (d) EED, λ = 0.01 and ζ = 4. (e) Shock-diffusion
using the coherence enhancing shock term, λ = 3, ρ = 5.5, ζ = 5.5 and
σ = 1.75. We received the initial image and the result of EED from Joachim
Weickert.

edges produced by EED. We suppose that this is related to the discretization
of the shock term. The produced edges are very sharp.
The result that is produced by using the second derivative in gradient di-
rection does not connect the corners. It strongly resembles resulting image
produced by nonlinear isotropic diffusion, in which the corners are not con-
nected either. This behavior is surprising, considering that shock-diffusion
using both shock terms has similar results when they are used to segment
or denoise images. However, looking at the results of the shock filter that
uses L∇uσ as its guidance term shows (see Ch. 7) that its behavior does not
seem anisotropic. Weickert’s Coherence Enhancing Shock Filter does behave
anisotropic, even though the two shock filters only differ from each other
by the choice of the direction for the directional derivative in the guidance
term. We suppose that the difference in inpainting has the same cause. The
directional dependency when using Lwρ uσ in shock-diffusion is caused by the
choice of the directional derivative.
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Since the coherence enhancing shock term performs better, we only con-
sider the inpainting operator from Equation 9.5. This is not the first inpaint-
ing operator that uses morphological methods in combination with eigenval-
ues of the structure tensor. Like our operator, the method of Bornemann
and März [4] uses derivatives in an eigendirection of the structure tensor and
morphological methods for inpainting.

9.2.1 Parameters

The proposed inpainting operator has many different parameters. This has
the advantage, that the process is relatively flexible. On the other hand, it
is not always easy to choose the right parameters to achieve a good result.

Contrast Parameter

The shock-diffusion inpainting operator is not only a combination of shock fil-
tering and diffusion, but also a combination of two operators that propagate
information in their own way. Homogeneous diffusion propagates informa-
tion equally strong in all direction and therefore it creates relatively blurry
results. If used as an inpainting operator, the homogeneous diffusion creates
grey values gradients, but it does not create sharp edges [5]. On the other
hand, the Coherence Enhancing Shock Filter propagates information in the a
direction that is determined by the structure tensor. While the filter thickens
structures it does not freely propagate values in the other direction. The bal-
ance of these two processes is determined by the parameters that influence
the weighting function, namely the presmoothing scale ζ and the contrast
parameter λ. While the smoothing scale only has an indirect influence, the
contrast parameter directly influences the weight of the respective operator.
A very small choice of λ leads to a generally larger weight of the shock term.
Therefore, the shock term propagates values according to its direction esti-
mation until it reaches a state in which it can not change anything anymore.
The only thing that happens after that, is the inpainting by the homogeneous
diffusion. From the structures that were mainly created by the shock term,
it inpaints the remaining regions.
A relatively large contrast parameter leads to an overall larger influence of
the diffusion term. In this case, the operator almost acts like a restricted
homogeneous diffusion inpainting operator. The diffusion is very strong and
the shock term restricts it to some degree at edges. Therefore, the result is
blurry, but less blurry than homogeneous diffusion without the restriction of
the shock term.
Another option is choosing the value for λ neither very small nor very large.
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(a) Initial Image (b) λ = 0.5 (c) λ = 7 (d) λ = 10

Figure 9.2: Inpainting with shock-diffusion for different contrast parameters.
(a) Initial image. (b) λ = 0.5, σ = 2.05, ρ = 3 and ζ = 1. (c) λ = 7, σ = 1.9,
ρ = 3 and ζ = 1. (d) λ = 10, σ = 2.05, ρ = 3 and ζ = 1. The initial image
was provided by Weickert.

This leads to the edges created by the shock term and the inpainting of the
regions by the diffusion at a similar speed.

Figure 9.2 compares the result of shock-diffusion inpainting with the
Charbonnier diffusivity for different values of λ. The initial image consists of
four dipoles. The grey region is supposed to be inpainted. A small λ yields
very sharp edges and a clear separation between the two regions. For a larger
contrast parameter, the edges are not as sharp and the resulting regions are
also not as clean. A really large λ leads to relatively blurry edges.
While all three evolutions reconstruct a similar shape, there are differences
in the result. Clearly, the smallest λ yields the best result for this example.
However, choosing the contrast parameter too small, may lead to unwanted
effects. As one can see from the example in Figure 7.13 in Chapter 7, the
Coherence Enhancing Shock Filter might not estimate the direction for the
propagation correctly, if the given information is not adequate. The same
holds true for the coherence enhancing shock term in the inpainting opera-
tor. So for inpainting problems, in which a good direction estimation is not
possible from the start, it might create structures that do not fit the desired
result. Therefore, choosing a slightly larger λ can yield better inpainting
results, since the direction estimation can be improved. However, the larger
λ comes with the cost of less sharp edges.

Smoothing Scale of the Shock Term

The smoothing scale σ of the shock term determines the scale of the struc-
tures that are constructed by the shock term. In a well inpainted result, it
can not be detected after the inpainting. So to visualize the effect of different
values of σ, we do not look at the steady states of the inpainting process in
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(a) Initial Image (b) σ = 1 (c) σ = 5

Figure 9.3: Effect of different σ on shock-diffusion inpainting. (a) Initial
image. (b) - (c) λ = 1, ρ = 3, ζ = 3 and T = 1250. The initial image was
provided by Weickert.

Figure 9.3. The initial image is one dipole of a black and white pixel. From
this dipole the inpainting process creates an edge in the middle of the image.
On the left of the edge, there is a dark bar and a bright bar on the right.
The thickness of this bar is determined by the parameter σ. For a large σ
the bar is thicker. This is the behavior that can also be observed from the
Coherence Enhancing Shock Filter, so it is not surprising that the parameter
has this effect.

Ahead-Looking Parameters

The integration scale ρ and the smoothing scale ζ of the diffusivity are both
used to average local gradient information. In a way, they look ahead to de-
termine the structure outside the inpainting mask and the already inpainted
pixels. The smoothing scale influences the scale on which the weight of shock
and diffusion term is computed. The integration scale determines the local
structure to estimate the direction of the created edges.
Both parameters are similar, but they are used in different contexts. Since ζ
determines whether the weight of the shock filter should be large, choosing
similar values for integration scale and smoothing scale typically works well.

Since the two parameters look ahead of the already inpainted data, it
has a large influence on the result of the inpainting. The choice of these
parameters can determine whether objects are connected by the inpainting
and how they are connected. In Figure 9.4, we can see the effect of smaller
and larger values of the two parameters. The initial image depicts a cross
that is missing the crossing of the horizontal and vertical line. For smaller
values of ρ and ζ, the bars are not connected to a cross. For sufficiently large
values, the inpainting creates the crossing.
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(a) Initial Image (b) ρ = 1.5, ζ = 1.5 (c) ρ = 3, ζ = 2

Figure 9.4: Effect of different ζ and ρ on shock-diffusion inpainting. (a)
Initial image. (b) - (c) Result of shock-diffusion λ = 2 and σ = 2. The initial
image was provided by Weickert.

9.3 Comparison to EED

EED is a very successful inpainting operator that produces high quality re-
sults. Therefore, it has even been implemented into the image compression
framework R-EED, which has been shown to outperform other popular im-
age compression codecs such as JPEG and JPEG2000 [27]. One strength of
EED is that it can be used for the reconstruction of shapes from very sparse
data sets. One example of that was already given in Figure 9.1. In one of
his talks [34], Weickert presented a number different experiments that show
how well EED performs in reconstructing shapes from a very sparse data
set. Using these examples, we show that shock-diffusion with a coherence
enhancing shock term can achieve results of a similar quality. To compare
our results to the result created by EED, Joachim Weickert provided us the
images that show the inpainting result by EED, as well as the input images.

Figure 9.5 demonstrates the ability of both EED and shock-diffusion to
reconstruct a shape from only few dipoles. One of the initial images uses
only one dipole as known data. Both inpainting operators reconstruct a
segmentation of the image into a black and white plane. The created edge
between the planes in both resulting images is really sharp and clean. The
other initial image has four dipoles. EED and shock-diffusion reconstruct a
white disk on a black background from these four dipoles. The outline of the
disk looks slightly different. The result created by EED has a very smooth
outline. Like the Coherence Enhancing Shock Filter, the shock term of shock-
diffusion creates structures of one value, which is a minimal or maximal value.
Therefore, the outline of the disk is not smooth, but slightly pixelated.

Figure 9.6 compares the capability of shock-diffusion and EED to restore
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(a) Initial Image (b) EED (c) Shock-diff.

(d) Initial Image (e) EED (f) Shock-diff.

Figure 9.5: Inpainting from one dipoles using EED and shock-diffusion. (a)
Initial image: one dipole. (b) EED, ζ = 1 and λ = 0.01. (c) Shock-diffusion,
λ = 1, ρ = 2.3, ζ = 1 and σ = 1. (d) Initial image of four dipoles: (e) EED,
ζ = 1 and λ = 0.01. (f) Shock-diffusion, λ = 2, ρ = 2, ζ = 2 and σ = 2.05.
The images created by EED were provided by Joachim Weickert.
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(a) Initial Image (b) EED (c) Shock-diff.

Figure 9.6: Restoration of a cross with EED and shock-diffusion. (a) Initial
image. (b) EED, ζ = 3 and λ = 0.003. (c) Shock-diffusion, λ = 2, ρ = 3,
ζ = 3 and σ = 3. The initial image and the image created by EED was
provided by Joachim Weickert.

a cross from an image of a cross that is missing its crossing in the center.
We already used this initial image in the previous section. Here, the pa-
rameters of the shock-diffusion are chosen, such that the result matches the
result produced by EED. The produced results of both operators look really
similar. In both reconstructions, the four bars are connected, such that a
cross with rounded corners is formed. A close look at the rounded corners
shows that EED produces a smooth edge, while shock-diffusion creates the
slightly pixelated effect.

Figure 9.7 shows the reconstruction of a disk by EED and shock-diffusion
from a heavily occluded disk. The initial image shows the bottom part of
a disk. The grey rectangle is supposed to be inpainted to reconstruct the
missing part of the disk. Both operators manage to reconstruct the disk. In
this example, one can see that the shock-diffusion inpainting creates slightly
sharper edges than EED.

In Figure 9.8, compares the result of inpainting with EED and shock-
diffusion for a challenging inpainting task. The original image depicts a cat.
Points that are important for the shape of the cat, are preserved in the
disks in the inpainting mask. Everything outside the disks is supposed to be
inpainted. EED almost perfectly reconstructs the cat. The inpainting result
of shock-diffusion is close to the result of EED. For example, the head or the
back of the cat of both results look similar. The reconstruction of the foot by
shock-diffusion is slightly curved instead of straight as in the original image.

The previous examples show that the performances of EED and shock-
diffusion in reconstruction shapes from very sparse data sets are comparable.
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(a) Initial Image (b) EED (c) Shock-diff.

Figure 9.7: Reconstruction of an occluded disk with EED and shock-diffusion.
(a) Initial image. (b) EED, ζ = 20 and λ = 0.0003. (c) Shock-diffusion,
λ = 1, ρ = 3, ζ = 2 and σ = 70. The initial image and the image created by
EED was provided by Joachim Weickert.

Due to the properties of the shock term, shock-diffusion can produce sharper
edges than EED. Shock-diffusion even creates comparable result for difficult
inpainting tasks like the reconstruction of the cat image. Unfortunately, it
also produces some errors like the bend foot of the cat in Figure 9.8 or the
imperfect edges of the triangle from Figure 9.1.

9.4 Natural Images

Inpainting is not only used to reconstruct shapes from sparse data, but often
also to reconstruct natural images. For example, in the image compression
codec R-EED natural images are reconstructed using EED as the inpainting
operator [27]. Therefore, we investigate the result of shock-diffusion inpaint-
ing using some experiments. In our experiments, we use inpainting masks
with a random distribution of pixels. Code to produce such masks was pro-
vided to us by Joachim Weickert.
To determine the quality of the inpainting, we compare the result of the in-
painting process to the original image using the mean squared error (MSE).
The mean squared error penalizes differences between the value of two pixels
in a quadratic manner. It is defined as follows:

MSE(f, g) =
1

nxny

nx∑
i=1

ny∑
j=1

(fi,j − gi,j)2 (9.6)

Figure 9.9 compares the inpainting result of EED and shock-diffusion for
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(a) Original Image (b) Inpainting mask

(c) EED (d) Shock-diff.

Figure 9.8: Reconstruction of a cat from a sparse inpainting mask. (a)
Original image. (b) Inpainting mask. (c) EED, ζ = 4 and λ = 0.01. (d)
Shock-diffusion, λ = 7.2, ρ = 6, ζ = 4.5 and σ = 4. The initial image and
the image created by EED was provided by Joachim Weickert.



88 CHAPTER 9. INPAINTING

Original Image Inpainting mask Shock-diff. EED

5% MSE: 185.9 MSE: 162.36

2% MSE: 587.23 MSE: 632.88

Figure 9.9: Reconstruction of a natural image from randomly chosen pixels
using shock-diffusion and EED. Top row: 5% of the original pixels. Shock-
diffusion with MSE of 185.9 σ = 1.45, ρ = 4.9, ζ = 4.9 and λ = 6.1. EED
with MSE of 162.36 λ = 0.5 and ζ = 1. Bottom row: 2% of the pixels.
Shock-diffusion with MSE of 587.23 σ = 2, ρ = 6, ζ = 5 and λ = 6. EED
with MSE of 162.36 λ = 0.5 and ζ = 1.

spare data of natural images. At 5% of the original pixels, the results of
both operators are have a similar visual quality, even though the result of
EED has a lower MSE compared to the original image. For even less pixels,
both operators still perform similarly. The inpainting by the shock-diffusion
operator even has a smaller MSE than the result produced by EED. So even
when inpainting a natural image from very sparse and randomly selected
data, shock-diffusion can keep-up with the performance of EED.
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Conclusion and Outlook

10.1 Conclusion

In this thesis, we have investigated several aspects of shock filtering. We
gained a better understanding of shock filtering by decoupling the guidance
image from the evolving image. We proved, that in case of a fixed guidance
image, all shock filters behave equally and result in the same steady state in
strictly convex and strictly concave regions. Although we can not make such
a strong statement in case of an evolving guidance image, we explained that
the behavior of shock filters with different derivative operators is still similar
to the fixed case. We used these findings to explain the finding of Kramer
and Bruckner [16], that shock filters perform well for deblurring-cartoon like
images.

Shock filters often suffer from over-segmentation and are noise sensitive.
This problem has been addressed by presmoothing the evolving guidance
image with Gaussian convolution in [2]. Using different examples, we showed
that this presmoothing does not necessarily lead to a regularized shock filter.
It has the interesting effect of creating or removing structures of the same
scale as the Gaussian, that is used for the presmoothing. We explained
that this effect is linked to the equivalence of homogeneous diffusion and
Gaussian convolution, and the property of diffusion to propagate information
throughout an image.

Furthermore, we proposed shock-diffusion as an extension to shock filter-
ing. A shock-diffusion filter combines homogeneous diffusion and shock filter-
ing by using a weighted sum of the corresponding shock and diffusion term.
Unlike other combinations of smoothing and shock filtering, our operator is
stable with respect to a discrete minimum-maximum principle. Our experi-
ments suggested, that shock-diffusion with diffisivites as weighting functions
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behave similar to diffusion. Shock-diffusion produces the best result using the
coherence enhancing shock term. Using the proposed modified diffusivites as
the weighting functions may lead to a non-flat steady state.

We made use of the similarity to diffusion filters, by applying the shock-
diffusion operator that uses the coherence enhancing shock term to inpainting
problems. The comparison of our operator to EED suggests, that shock-
diffusion can produce results with a similar quality to EED, in shape recon-
struction and inpainting of natural images from sparse data.

10.2 Future Work

Our shock-diffusion operator produced qualitatively good results. It creates
sharp edges and is highly flexible. Unfortunately, the estimation of the di-
rection of edges is not always optimal. Therefore, we will try to improve the
discretization of the shock term.
EED has successfully been used for image compression in the R-EED codec
[27]. Since our inpainting operator can produce a quality that is similar to
EED, we want to evaluate its performance in an image compression frame-
work. The distance between the data points in the interpolation mask seems
to be relevant for the result of shock-diffusion. Thus, different data selection
strategies may be more successful than the one used in the R-EED codec for
shock-diffusion.
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Appendix

Shock Filter with evolving guidance image in

the strictly concave regions

If (upp)
k
i,j < 0, then image at the time k + 1 is then given by

uk+1
i,j = uki,j + τ

(
max

{
0,
uki+1,j − uki,j

hx
,
uki−1,j − uki,j

hx

}2

+ max
{

0,
uki,j+1 − uki,j

hy
,
uki,j−1u

k
i,j − uk

hy

}2
) 1

2

(11.1)

Without loss of generality, we assume that in both x- and y-direction the
backward forward difference is larger and that |uki,j − uki+1,j| ≥ |uki,j − uki−1,j|.
Therefore, the following holds:
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(11.3)

For the second directional derivative in the normalized and arbitrary direction
p at time level k + 1, the following holds:

(upp)
k+1
i,j =

(
p2

1

uk+1
i+1j − 2uk+1

i,j + uk+1
i−1j

h2
x

+ p2
2

uk+1
ij+1 − 2uk+1

i,j + uk+1
ij−1

h2
y
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+ 2p1p2

uk+1
i+1j+1 + uk+1

i−1,j−1 − uk+1
i+1j−1 − uk+1

i−1j+1

4hxhy

)
≤ (1− 2

τ

hx
)
(
p2

1

uki+1j − 2uki,j + uki−1j

h2
x

+ p2
2

ukij+1 − 2uki,j + ukij−1

h2
y

+ 2p1p2

uki+1j+1 + uki−1,j−1 − uki+1j−1 − uki−1j+1

4hxhy

)
+ 2

τ

hx

(
p2

1

uki+2j − 2uki+1,j + ukij
h2
x

+ p2
2

uki+1j+1 − 2uki+1,j + uki+1j−1

h2
y

+ 2p1p2

uki+2j+1 + uki,j−1 − uki+j−1 − ukij+1

4hxhy

)
Eq.(11.2)

= (1− 2
τ

hx
)(upp)

k
i,j + 2

τ

hx
(upp)

k
i+1,j (11.4)

Since we assume that τ ≤ hx
2

, the following holds:

(upp)
k+1
i,j ≤ (1− 2

τ

hx
)(upp)

k
i,j + 2

τ

hx
(upp)

k
i+1,j < 0 (11.5)

Extending Shock Filters

Nonlinear isotropic diffusion can be reformulated as follows:

ut = div(g(|∇u|2)∇u)

= g(|∇u|2)div(∇u) + g′(|∇u|2)2
(
ux(uxuxx + uyuxy) + uy(uyuyy + uxuxy)

)
= g(|∇u|2)∆u+ 2g′(|∇u|2)(u2

xuxx + 2uxuyuxy + u2
yuyy)

= g(|∇u|2)∆u+ 2g′(|∇u|2)∇uTH(u)∇u

= g(|∇u|2)∆u+ 2g′(|∇u|2)|∇u|uηη|∇u| (11.6)
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