Saarland University
Faculty of Natural Sciences and Technology 1
Department of Computer Science
Bachelor’s Program in Computer Science

JUUUUUL
T
JUUUUUL

Bachelor’s Thesis

Hamilton-Jacobi Skeletonisation
in Image Processing

submitted by
Pascal Tobias Peter

on February 25, 2010

Supervisor
PD Dr. Michael Breuf3

Reviewers
PD Dr. Michael Breuf
Prof. Dr. Joachim Weickert

Mathematical Image Analysis Group

Peter, Pascal Tobias

Hamilton-Jacobi Skeletonisation in Image Processing
Bachelor’s Thesis in Computer Science

Saarland University

Saarbriicken, Germany

February 2010

Abstract

Shape analysis is a central problem for many practical applications in image
processing and computer vision, such as shape recognition and segmentation.
In order to represent shapes in a way that fits the needs of shape-related image
processing methods, 2-D shapes are often not described by their outline, but
by alternative shape descriptors. The medial axis transform [Blum, 1967] is a
widely-used shape descriptor, which represents a shape by a thin set of lines
and arcs that are centred in the shape. Due to its visual similarity to bone
structures, the medial axis is also referred to as the skeleton of a shape.

One particular method for skeletonisation is the Hamilton-Jacobi approach
by Siddiqi et al. [2002], which is derived from a wave propagation model using
methods from classical mechanics. It identifies skeleton points as the sinks of
an Euclidean distance map’s gradient vector field by making use of the vector
field’s outward flux. In order to preserve major topological features of the
original shape, the skeleton is computed by removing points sequentially from
the shape, obeying homotopy preserving rules.

The primary goal of this work is to analyse and extend the Hamilton-Jacobi
method, as well as to design general methods for skeleton comparisons. Those
methods are used to assess the output quality of the Hamilton-Jacobi approach
in relation to other skeletonisation algorithms.

Two new algorithms are proposed that are based on the Hamilton-Jacobi
method and a recent maximal disc detection algorithm [Rémy and Thiel, 2005].
The new methods feature performance and exactness improvements compared to
the original Hamilton-Jacobi algorithm, as well as a reduction of the dependence
of output quality on input parameters. Additionally, a new thinning algorithm
that does not rely on classical mechanics is introduced as a basis for comparisons
of the Hamilton-Jacobi method to thinning methods with different theoretical
foundations.

In order to allow in depth comparisons of skeletonisation methods, general
quality criteria for discrete skeletons are introduced and used as a basis for defin-
ing quality measures. As a second method for skeleton analysis, an approach
based on graph matching is proposed. Skeleton graphs are defined by taking
skeleton end- and branching points as vertices. Fdges represent the configu-
rations of skeleton branches. In order to measure skeleton quality, the graphs
of skeletonisation results are matched to reference graphs that represent exact
skeletons.

Tests of both the newly proposed algorithms and the quality measures were
conducted on CE-Shape-1, a widely used image database consisting of 1400
shapes, which was specifically designed for testing shape descriptors [Latecki
et al., 2000]. Additionally, test cases for specific properties of the medial axis
transform were designed and implemented.

ii

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not
used any other media or materials than the ones referred to in this thesis.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible
to the public by having them added to the library of the Computer Science
Department.

Saarbriicken, February 25, 2010

Pascal Tobias Peter

iii

v

Acknowledgments

I thank PD Dr. Michael Breufl for providing not only an interesting and en-
gaging topic, but also for his constant support, especially for listening to all of
my ideas and problems and for supplying me with all the materials I could wish
for. My thanks also go to Prof. Dr. Joachim Weickert for giving me a wide
range of topics to choose from and offering a perfect working environment at
the Mathematical Image Analysis Group.

Furthermore, I owe gratitude to Prof. Dennis Shasha for providing his ap-
proximate graph matcher graphdiff and for his kind replies to my support re-
quests.

Additional thanks go to Sarah Diehl and Haiko Wick for their tireless and
competent proofreading efforts. I am also very grateful for Sarah’s valuable
hints on LaTeX and her imperturbable patience in putting up with my tirades
on thesis-related ideas and problems in her spare time.

Finally, I want to thank my family for their constant and unconditional
support in everything I do.

vi

Contents

1 Introduction
1.1 The Grass-Fire Analogy
1.2 Applications
1.3 Related Worko o
1.4 Overview e
1.5 Outline
2 Theoretical Background
2.1 Definitions
2.2 The Wave Propagation Model
2.3 Alternative Definitions oL
2.4 Properties of the MAF
2.5 The Eikonal Equation
2.6 Hamilton-Jacobi Skeletons
2.7 Homotopic Thinning
2.7.1 Simple Points oo
2.7.2 Thinning Order and Endpoints
2.8 Flux Ordered Thinning
3 Methods
3.1 Improvements of Flux Ordered Thinning
3.1.1 TImproved Distance Map Computation
3.1.2 Adaptive Thresholding
3.1.3 Flux-Ordered Maximal Disc Thinning
3.2 Comparison of Skeletonisation Results
3.2.1 Quality Criteria oL
3.2.2 Graph Matching oL
3.2.3 Skeleton Quality as a Minimisation Problem
3.2.4 Alternative Algorithms
4 Implementation
4.1 Meijster’s Algorithm,
4.2 Homotopic Thinning
4.3 Heap o o e
4.4 Flux-Ordered Thinning
4.5 Maximal Disc Algorithm
4.6 Maximal Disc Thinning
4.7 Adaptive Flux-ordered Thinning

vii

N O NN

11
12
15
17
19
22
22
23
24

29
29
29
31
33
34
35
37
38
40

4.8 Boundary Treatment
4.9 Correctness of the Implementation
4.9.1 Correctness of Distance Map Computation
4.9.2 Correctness of Homotopic Thinning

Results and Discussion

5.1 Testing Environment L oo
5.1.1 Runtime Tests
5.1.2 Invariance Tests
5.1.3 Shape Database Tests

52 Test Results
5.2.1 Runtime o
5.2.2 Quality Criteria oo
5.2.3 Graph Matching
5.2.4 Homotopy and Thinness

5.3 Discussion
5.3.1 Runtime Discussion
5.3.2 Quality Score Discussion
5.3.3 Graph Matching Discussion
5.3.4 Comparison of Quality Assessment Methods

Conclusions
6.1 Summarising Remarks o000
6.2 Outlook

Bibliography

List of Abbreviations
Appendix

A Command Line Tools

B Heap Functions

viii

55
55
56
56
o8
o8
60
62
64
70
70
70
70
71
72

73
73
74

77

87

89

89

91

Chapter 1

Introduction

Segmentation and object recognition are two fundamental problems of image
processing. Those and similar tasks are closely related to the natural problem
of shape vision [Blum, 1967]. For humans as well as for animals it is important
to recognise different objects in the vision field and assess their importance and
functionality. Based on this input, decisions can be posed, for instance if an
animal recognises a predator, it might flee.

While the shape of objects is not the only information that is usually consid-
ered in a decision process based on sensory input, it remains a very important
factor for the aforementioned tasks.

Intuitively, the oldest science dealing with shapes, geometry, can provide
the necessary mathematical tools for shape vision. However, according to Blum
[1967], classic geometry is not suited for this “biological problem of shape”.

On one hand, classic geometry is based on observation and was developed
with problems of physical science in mind and thus is not optimised for the
biological point of view. On the other hand, there is such a vast variety of
different shapes, that researchers usually have to concentrate on a small subset
of shapes. The choice and interpretation of those subsets might be culturally
biased. To avoid those problems, a higher degree of abstraction is needed.

It is possible to analyse shape with established geometric tools, for example
by using the number of inflection points of the shape’s boundary or introducing
other curvature-based properties. However, in general, the different fields of
geometry are either too specific (e.g. Euclidean/projective geometry) or too
general (e.g. topology). A suitable shape descriptor must therefore offer a
degree of abstraction that lies between those two extremes.

As a remedy for the shortcomings of classic geometry, Blum [1967] intro-
duced the medial axis transform (MAT). The MAT was designed to provide a
set of shape attributes that can be used to rate shapes based on specific rel-
evance criteria, thus mimicking biological sensory processes. It exploits local
symmetries of a shape, reducing it to a thin line that is equidistant to the
shape’s boundaries and is therefore also referred to as a central shape descrip-
tor. The MAT is also called the skeleton of a shape, since for animal silhouettes
it resembles simplified articulated bones.

2 Introduction

1.1 The Grass-Fire Analogy

An intuitive definition of the MAT of 2-D shapes is based on wave propagation
and can be compared to the spread of a prairie fire.

In order to define a two-dimensional skeleton, a planar shape is considered
that is described by its boundary curve in R?. For the purpose of the analogy,
the x-y-plane is regarded as a field of grass, while the boundary of the shape
corresponds to the source of a spreading grass-fire. This means that the grass
on the shape’s boundary lines is already burning when the observation of the
propagation process begins. The fire spreads uniformly in all directions, inciting
new patches of grass adjacent to its front and leaves behind burned patches that
cannot be inflamed anymore.

Eventually, several fronts of the spreading fire may collide. They cannot
pass through each other, since the areas that were previously passed by the
expanding fire are already burned. Therefore, the fronts undergo cancellation
in all collision points (shocks) of two or more fronts. Those collision points form
the skeleton of the shape. Depending on the shape of the object, skeleton points
may appear both outside and inside of the object. Usually, the term skeleton is
only used for the set of inside MAT points.

The analogy described above was used by Blum [1967] and is also referred
to as Blum’s grass-fire model. A formal wave propagation model based on the
prairie fire analogy can be found in Section 2.5.

1.2 Applications

The medial axis provides useful mathematical properties: in combination with
the distance of the skeleton points to the object boundary, the MAT is a compact
description of the shape, which is equivalent to the representation by its bound-
ary. Additionally, the skeleton is invariant under Euclidean transformations and
shares major topological features with the original object. More details on this
properties can be found in Section 2.4.

The aforementioned properties qualify the medial axis transform for a wide
variety of both theoretical and practical applications. In this section, several
examples for the use of skeletons in different fields are briefly presented.

Skeletons and related concepts were successfully applied to the task that
Blum [1967] originally designed the MAT for: object recognition. Examples
for this use are the FORMS framework of Zhu and Yuille [1995], which uses
modified skeletons, and different methods based on shock graphs [Siddiqi et al.,
1999; Sebastian et al., 2001].

Shock graphs are labeled skeletons, wherein each point of the medial axis
is assigned a certain shock class based on its relation to other medial points
(e.g. medial points that have a larger distance to the image boundary than
their medial neighbours in an e-neighbourhood belong to the same shock class).
The labels form the nodes of a graph. Siddigi et al. [1999] use shock graphs
to construct tree-representations of shapes. Object recognition is achieved by
comparing the trees of the corresponding shapes (see Figure 1.2). MATSs are
also used in optical character recognition [Lakshmi et al., 2009], which can be
regarded as a special case of object recognition.

Furthermore, there are geographical applications: The Crown Registry and

1.2 Applications 3

(a)

¥

(c) (d)

Figure 1.1: Skeletons and the grass-fire model. In (a), the wave propa-
gation of the grass-fire algorithm for two points is described. The wavefronts
expand in a circular fashion from each point. The first shock occurs when the
circular fronts have traveled the same distance from both source points and
intersect in exactly one point. The final skeleton consists of the line of points
with equal distance to both propagation sources. A skeletonisation result for
four points (red) is displayed in (b). The skeleton (blue) coincides with the
borders of the Voronoi diagram (see Section 2.3) generated by the four points.
Practical examples of skeletonisation results as shape descriptors are shown in
(c)-(e). The skeletons of the grey shapes are marked by red lines.

(e)

Geographic Base [2001] uses skeletonisation to maintain a database of watershed-
based geographical boundaries. A MAT approximation that relies on Voronoi
diagrams (see Section 2.3) is used to compute skeletons of lakes and rivers (see
Figure 1.3).

Skeletonisation is also applied in medical imaging. Sorantin et al. [2002]
used three-dimensional MATSs on images of the laryngo-tracheal tract obtained
by spiral computed tomography. The skeleton was used to assess site, length
and degree of tracheal-stenoses automatically.

The applications of skeletons are not necessarily direct incorporations of the
MAT in algorithms, but can also help to understand related concepts. Borne-
mann and Méarz [2007] used skeletons in the field of image inpainting (the task
of reconstructing missing or masked parts of images) to explain the behaviour
of the fast inpainting algorithm of Telea [2004]. Namely, errors produced by
Telea’s algorithm occur because image information is not transported across
the skeleton of the reconstructed areas.

4 Introduction

Figure 1.2: Object recognition with shock graphs (courtesy of Siddigi
et al. [1999]). The skeleton is divided into several segments that consist of
medial points of equal shock type. In the lower images, the first number of the
annotations denote the shock types. The upper pictures show trees built from
the shock labels in the images below. In order to perform object recognition,
tree nodes are matched as depicted by the lines connecting the labels in the
lower images.

1.3 Related Work

Due to the many different applications of the medial axis, there is a wide variety
of different approaches for its computation. Existing skeletonisation algorithms
can be categorised by several means.

First, the different methods can be classified by their underlying theoretical
background, which yields three basic classes of algorithms. For each class, due
to the high number of different approaches, only two representative methods
are given instead of an exhaustive list.

Thinning algorithms sequentially remove points from the object, mimicking
the “burning” of patches in the grass-fire analogy. Many thinning algo-
rithms guarantee that the resulting skeleton preserves major topological
features of the original shape (i.e. the skeleton is homotopic to the shape),
but do not locate skeleton points accurately. In order to achieve better
results, thinning approaches are often combined with other methods.
Zhu et al. [1994] introduced a boundary-based thinning algorithm that di-
vides the object into axis-parallel lines and reduces them to their midpoint,
exploiting the object’s local width. Homotopy is preserved by restoring
connectivity after a disconnect occurs.

A 3-D thinning algorithm was proposed by Palagyi and Nemeth [2009].
Multiple points are removed from the object in each step using homotopy
preserving rules, while skeleton endpoints are preserved. The identifica-

1.3 Related Work 5

TRIM HOL
Lake Skeletons

Figure 1.3: Skeletonisation in the TRIM database (courtesy of Crown
Registry and Geographic Base [2001]). The green line represents an approxima-
tion to the medial axis of the lake which is equidistant to the shorelines (dark
blue) of the lake. However, TRIM does not use exact skeletons, but medial axis
that are adapted to the specific needs of the database. This modified MAT can
be interpreted as the borders of the Voronoi-diagram (see Section 2.3) that is
created by the shoreline segments that result from dividing at estuaries.

tion of skeleton endpoints is independent from the thinning method.

Voronoi-based algorithms exploit the fact that the MAT can be defined by

the borders of a Voronoi diagram of the shape boundary (see Section 2.3).
Ogniewicz and Kiibler [1995] used Voronoi diagrams of the boundary
points together with a topology preserving metric to compute hierarchic
skeletons. The resulting MATSs form a pyramid that reaches from simple
skeletons with wide, but few branches to thin, complex skeletons of 2-D
shapes.
Another method for 2-D shapes was proposed by Kimmel et al. [1995].
First, the object boundary is segmented at its points of maximum curva-
ture. Afterwards, the corresponding Voronoi diagram is computed. The
borders of the diagram form the skeleton and coincide with the zero level
sets of the boundary segment’s distance map differences.

Distance map based algorithms use the definition of medial axis as the
ridges of the shape boundary’s distance map (see Section 2.3).
Exploiting the fact that the locations of the medial axis points coincide
with the centres of maximal inscribed discs, Rémy and Thiel [2005] pro-
posed an algorithm to precompute lookup tables that allow to identify
skeleton points by comparing the distance map values of an object-width-
dependent neighbourhood to the values of the lookup table.

Malandain and Ferndndez-Vidal [1998] introduced two local heuristic mea-
sures to characterise the singularities of the Euclidian distance function.

6 Introduction

Skeletons for objects of arbitrary dimensions are retrieved by thresholding
both measures and applying a topological reconstruction step that restores
homotopy to the original shape.

Additionally, methods differ significantly in the type of object representation
that is considered for skeletonisation. Again, there are three different classes:
most algorithms [e.g. Ogniewicz and Kiibler, 1995; Rémy and Thiel, 2005; Zhu
et al., 1994] use binary images for object representation, others rely on polygo-
nal approximations of the object boundary [e.g. Montanari, 1968] or deal with
smoothed object boundaries [e.g. P.J. Giblin, 1985].

Note that membership to the classes above is by no means mutually ex-
clusive. For example, the method of Kimmel et al. [1995], which is mentioned
above, uses both Voronoi diagrams and distance maps and also makes use of all
three categories of object representation.

1.4 Overview

The main focus of this work lies on a skeletonisation method based on Hamilto-
nian mechanics as introduced by Siddiqi et al. [2002]. In this approach, skeleton
points are located as sinks of the distance map’s gradient vector field. The av-
erage outward flux of the gradient vector field is used to identify the sinks by
thresholding combined with a homotopy preserving thinning process.

Several improvements to the original algorithm by Siddigi et al. [2002] are
proposed, namely updated methods for distance map computation and two mod-
ified versions of the algorithm. The modifications are designed to remove the
need for manual adjustment of parameters and improve the robustness of the
results under boundary perturbations. In the first new method, the flux-ordered
thinning algorithm with adaptive thresholding, a secondary MAT detection
method is used to precompute an approximation of the skeleton. This pre-
liminary result is used to adjust the flux threshold to the specific properties of
the shape. The second modified version of the original algorithm replaces MAT
detection with flux thresholding by a maximal disc detection method [Rémy and
Thiel, 2005] and only uses flux values to determine the order for the thinning
process.

In order to analyse the resulting MATS, quality criteria for discrete skeletons
are introduced. Based on those criteria, measures for exactness of reconstruc-
tion, skeleton minimality and skeleton complexity are defined. Those measures
can be used to determine suitability of the resulting MATSs for specific tasks
with different priorities for skeleton properties.

Based on the quality measures, a comparison of five skeletonisation algo-
rithms is conducted. This comparison is used to check the Hamiltonian ap-
proach against its modified versions and methods that require less complex
computations. The five methods that are compared are the flux-ordered thin-
ning algorithm by Siddiqi et al. [2002], its two modifications, a maximal disc
detection algorithm by Rémy and Thiel [2005] and a new thinning algorithm.

The new maximal disc thinning algorithm that is proposed in this work re-
sembles the approach of Pudney [1998] in that it removes points from the object
in the order of their distance to the boundary using homotopy preserving rules.
Skeleton endpoints are marked separately and are not removed. In contrast to

1.5 Outline 7

Pudney’s thinning algorithm, the new method uses exact Euclidian distances
instead of the Chamfer distance to identify skeleton endpoints based on the
maximal disc criteria by Rémy and Thiel [2005]

1.5 Outline

Chapter 2 gives a general introduction on the grass-fire model, mathematical
definitions of skeletons and their properties. It also contains basic definitions
and notational conventions that are used in this work and establishes the theo-
retical background for Hamilton-Jacobi skeletons and the resulting flux-ordered
thinning method for skeletonisation.

Improvements of the flux-ordered thinning method, an alternative thinning
algorithm based on maximal disc detection and quality criteria for skeletons are
presented in Chapter 3.

Details about the implementation of the methods established in Chapters
2 and 3 can be found in Chapter 4. The information in this chapter includes
explanations and pseudocode descriptions of the algorithms used in this work,
as well as remarks on boundary treatment and correctness tests.

A testing environment for the different skeletonisation algorithms of this
work is described in Chapter 5. Additionally, the results of several test runs on
different data sets from the testing environment are presented.

Chapter 6 concludes the thesis with summarising remarks and an outlook
on possible future work.

Additional pseudocode and instructions for program usage can be found in
the appendices.

Introduction

Chapter 2

Theoretical Background

In this chapter, both an overview of the general underlying concepts of the
medial axis, such as different definitions and properties, as well as the theoretical
background of the Hamiltonian approach by Siddiqi et al. [2002] are given.

2.1 Definitions

This section contains basic definitions and notations that are used throughout
the following sections. Most of the definitions establish two versions of the same
concept: a continuous and a discrete one.

The distinction between both versions is important, since there are signifi-
cant differences between continuous and discrete settings in skeletonisation pro-
cesses. While the foundations of a skeletonisation method’s theoretical back-
ground are usually discussed in the continuous setting, discretisation is, in most
cases, non-trivial, and introduces new sources of error that must be treated
separately.

In this work, the grid size h is introduced as an additional index that dis-
tinguishes mathematical objects in the discrete setting from their continuous
counter parts.

Image u(x) : The binary image containing the object is represented by the

function
u: = {0,1}

Q C R? is called the image domain. Object points have value one, back-
ground points have value zero.

The discrete version of the image with grid size h and dimension m X n is
denoted with

wp: Qp ={1,...,m} x {1,...,n} = {0,1}, Q) € N?

Object Domain O : Subset of the image domain that contains all object
points.
O={zeQu(z)=1}
Consequently, 2\ O is the set of background points. The discrete object
domain Oy, is defined analogously to the continuous case.

10 Theoretical Background

e-neighbourhood B.(x) : The open ball with radius € around the point x.
Be(z) ={yeQ:[y—=|<e}

| - | denotes the Euclidian norm. The ball is open in the topological sense
which is equivalent to the exclusion of the ball’s boundary from the set.
The discrete ball B, p, is defined analogously to the continuous version.

Open and closed sets : Several of the following definitions rely on the topo-
logical notion of open and closed sets. For any set A C §2, any given point
x € A is called a boundary point, if every open disc with centre x contains
at least one point that is not contained in A.

Consequently, the boundary 0A of is defined as
0A ={x € AlVe > 0: B(x)NQ\ A # 0}

All points of A that are not boundary points are called interior points.

A is referred to as an open set, if it does not contain any boundary points
(ie. A= A\ OA). The complements of open sets are called closed. In
other words, B is closed if and only if Q \ B is an open set.

Thin sets : A set A € Q) is referred to as thin, if and only if it only contains
boundary points. This condition can be paraphrased as: A is thin if and
only if A =0A.

8-Neighbourhood N3(p) : The 8-neighbourhood of a discrete point p € Qp,
is only defined in the discrete setting and contains all direct neighbours
n1(p),...,ns(p) of p as shown in Figure 2.1.

4-Neighbourhoods N, (p) and Dy(p) : The 8-neighbourhood of a point p €
Qj can be partitioned into two 4-neighbourhoods, namely the four diag-
onal neighbours Dy (p) and the four vertical /horizontal neighbours Ny(p)
of p.

ni(p) | n2(p) | Nna(p)

ng(p) P n4(p)

nz(p) | ns(p) | Ns(p)

Figure 2.1: 8-Neighbourhood of a point in the discrete setting.

Object Boundary 0O : Boundary of the object domain. In the continuous
setting, the object boundary is defined as the boundary of the set O in
the algebraic sense for the metric space with the Euclidean metric, i.e.

{r €0|Ve>0: B(x)NQ\ O # 0}

2.2 The Wave Propagation Model 11

The discrete object boundary can be defined in an easier way by utilising
the 8-neighbourhood of the discrete points:

80h={1‘60h|3y€/\/8($):yEQh\Oh}

Distance Map D(x) : Maps each point of the image domain Q to its minimal
distance to the object boundary, i.e.

D:Q— Ry, D(z) :yeis%|yf:r|

For the Hamiltonian approach, a signed distance map is used. In signed
distance maps, background points have negative distance values, while
object points have positive distance map values.

D:OSR, D)= mingepo |y — z|, ifxeO
’ ’ —mingego |y — x|, else

Voronoi Region Vp(z) : A Voronoi region Vp(z) is the set of image points
that are closer to the object point x than to any other object point y.

Vo(r)= (] {peQl lp—a|<[p—yl}
yeO\ [z}

Skeleton ¥ : The set of centre points of maximal inscribed discs (see Section
2.3 for more details).

Y ={z€OVy € O: Bp)(x) ¢ Bpu)(y)}

The skeleton is also referred to as the medial axis transform (MAT) .

D|2 is called the medial axis function (MAF). It maps each skeleton point
to the radius of the corresponding inscribed disc and allows object recon-
struction (see Section 2.4).

2.2 The Wave Propagation Model

Formally, the grass-fire analogy from Section 1.1 can be described by a wave
propagation model. The expansion of the object’s boundary 0O, regarded as
a curve, propagating with a constant velocity F': 0 — R in its inward normal
direction n : — R2, is observed in this model. The locations of the shocks
(cancellation points), that appear during this process, form the skeleton.

The evolution of the boundary curve can be described by the change over
time in the coordinate vectors of each curve point. Let ¢(x,y,t) denote the
coordinate vector of a curve point (z,y) € 0. Then the propagation process
is described by the partial differential equation

dc
ETi F-n

Since only the evolution of the boundary in direction of the inward normal

is observed, the outer skeleton is disregarded in this approach.

12 Theoretical Background

The special case of a circle acts as a good example for the functionality of
this model: the circular wavefront continuously shrinks to a single point, the
centre of the circle. No other shocks except for the centre point of the original
circle occur during the process. The skeleton combined with the traveling time
yields a very efficient, exact description of the circle: it is equivalent to centre
and radius. Actually, as explained in Section 2.3, inscribed circles and their
corresponding discs can be used to define the skeleton for arbitrary objects in
an alternative way.

Note that, in this model, every point on the evolving wavefront is generated
from exactly one point of the object boundary, as long as no cancellation occurs.
Therefore, the wavefronts in this model carry boundary information in form of
the origin points on the boundary. Since the fronts propagate with a known
velocity, it is possible to compute the minimal traveling distance from a point p
of the front to the shape’s boundary at any given time. This traveling distance
coincides with the distance of p to its origin point.

However, every time wavefronts cancel out, a part of the contained bound-
ary information is lost from the evolving front, since the information from the
original sources of the collision point are not further propagated. Therefore,
keeping this information in the cancellation points is an intuitive way to reduce
redundant features of the shape’s boundary (local symmetries) to the skeleton
without directly examining any geometric properties of the boundary.

Including the time of shock occurrences in the description yields the medial
axis function (MAF) . The MAF can be used to reconstruct the original object
from its skeleton, as described in Section 2.4. Equivalently, the minimal distance
of collision points to the boundary can be used as MAF values.

2.3 Alternative Definitions

In addition to the grass-fire analogy there are several equivalent definitions for
the MAT, each of them allowing to approach the problem from another point
of view.

Equidistant Viewpoint

In the grass-fire model, skeleton points mark collision points of evolving wave-
fronts that originate from the object boundary. As mentioned in Section 2.2,
each point on a wavefront corresponds to exactly one point of the object bound-
ary, as long as no collisions occur.

Consequently, if several fronts collide in a skeleton point s, each front carries
the information of a boundary point b; (i = 1,...,k, where k is the number of
colliding fronts) that is a source point of s.

Since all of the wave fronts propagate with the same constant velocity, the
distance |s —b;] is equal for all s € {1,...,k}. All non-skeleton points are passed
by the evolving wavefronts without collision and therefore only exactly one point
on the boundary has minimal distance to them.

Thus, an object point p is a skeleton point if and only if multiple boundary
points by, ..., b exist, which are equidistant to p. The distance of p and one of
the equidistant boundary points is equal to the distance map value of p.

2.3 Alternative Definitions 13

160
140
120
100
a0
B0
40
20

100

(c)

Figure 2.2: Alternative definitions of the MAT. The medial axis (red) of a
rectangle (black) is considered for different definitions. In (a), boundary points
are connected by arrows to their corresponding skeleton point. Each skeleton
point has equal distance to at least two boundary points which coincide with
the source points of the wave propagation in the grass-fire model. Image (b)
displays the maximal inscribed discs for two of the skeleton points and in (c),
the medial axis is depicted as the ridges of a 3-D distance map representation.

Inscribed Discs

Based on the equidistant viewpoint from Section 2.3, another definition of the
medial axis based on inscribed discs can be established. It allows easy recon-
struction of the original object from the medial axis (see Section 2.4).

Since a point s of the object is a medial axis point, if and only if there are
several boundary points with minimal distance d to s, those boundary points
are all located on a circle with radius d around s.

Consequently, a point is part of the medial axis, if and only if a circle around
an object point with the radius of its minimal distance to the boundary touches
several boundary points. An equivalent condition for aforementioned circles is,
that the disc bounded by the circle is maximal. This means that a point z € O
is a medial axis point if and only if the inscribed disc around x is not contained
in any other inscribed disc with centre y € O, y # x. The radius of the inscribed

14 Theoretical Background

disc around a point x € O is its distance D(x) to the boundary. Therefore, the
skeleton can be defined as

Y ={x€O|Vy € O: Bpw(x) £ Bpu)(v)}

Voronoi Diagrams

The Voronoi diagram of the object is the collection of the Voronoi regions of
all object points. A Voronoi region Vao(z), as defined in Section 2.1, contains
only those points that are closer to z € 0O than to all other object points
x #y € 0.

Therefore, all points that are equidistant to two boundary points are not
contained in any of the Voronoi regions, but all other points are. By definition
of the equidistant viewpoint, only skeleton points have equal minimal distance
to two or more boundary points. If 3 denotes the set of inner and outer skeleton
points, the image domain) can be partitioned in the following way:

Q= J Voo(z)uL
€0
In particular, the skeleton points form the boundary of the Voronoi regions
and Y can thus be defined as

Y= (U aVao(l‘)> no

€00

Distance Maps

The evolving wave fronts from the grass-fire analogy coincide with the level sets
of the distance map. A level set (or isoline) of a function is a set of points on
which the function is constant. For a distance map D, a level set with constant
value c is defined as

{peQ | Dp)=c}, ceR

D(p) however is, for each point p € €, the minimal distance of p to the
object’s boundary. Thus, each level set with constant distance map value ¢
corresponds to the points of the wave front after traveling the distance ¢ from
the boundary.

Interpreting the distance values that are assigned to each point of the image
domain by the distance map as a height value, a 3-D representation of the dis-
tance map can be obtained. From this point of view, the medial axis corresponds
to the ridges of the distance map (see Figure 2.2(c)).

Higher Dimensions

While in this work only the 2-D case is considered, all of the definitions above
can be applied to arbitrary dimensions by using the n-dimensional Euclidian
distance. This directly allows to apply the equidistant viewpoint.

Voronoi diagrams, distance maps and inscribed spheres in n dimensions can
be defined accordingly and thus the other definitions can also be extended to
arbitrary dimensions.

2.4 Properties of the MAF 15

(c)

Figure 2.3: Uniqueness of the MAF. (a) shows the skeleton of a rectangle.
The skeleton points (red) together with their distance to the boundary form a
unique descriptor of the corresponding shape. The location of the medial axis
alone does not suffice to define a one-on-one correspondence between skeleton
and shape. For each skeleton, depending on the values of the MAF, arbitrary
many shapes exist. (b) and (c) depict shapes that have the same medial axis as
the rectangle (a), but different MAF-values.

2.4 Properties of the MAF

The medial axis function has several properties that qualify it as a robust al-
ternative to the boundary as a shape descriptor. These properties are also
important for designing quality criteria for skeletonisation algorithms.

Equivalent Descriptor of Shape

One central property of the MAF is its equivalence to the shape description by
its boundary. This property can be observed in the wave propagation model
from Section 2.2: if a wave spreads from each boundary point uniformly into all
directions, as long as there are at least two points in the image, the wave fronts
will eventually collide. Therefore, each point on the boundary has at least one
corresponding point on the skeleton.

Conversely, each medial axis point p corresponds to at least two points on the
object boundary 0O that are also located on the boundary of the inscribed disc

16 Theoretical Background

Bp(p)(p). Drawing the maximal inscribed discs for each point in the skeleton
therefore yields the original shape again if O is an open set.

0= J Bow®)

peO

Note that the skeleton alone does not suffice for the reconstruction of an
object from its MAT. The radii of the inscribed maximal discs for each skeleton
point define the local width of the object, which means that one skeleton can
define arbitrary many shapes (see Figure 2.3). In other words, the MAT does
not correspond to a unique shape, but between the MAF and shape boundaries
exists a one-on-one correspondence.

Homotopy

The medial axis is homotopic to the corresponding shape. This means that the
shape and its skeleton have the same number of connected components, holes
and cavities [Kong and Rosenfeld, 1989] or, in other words, the skeletonisation
process is topology preserving. Thus, major topological features of the shape
are preserved when reducing it to its skeleton. In particular, the skeleton of a
single connected shape is also connected.

Invariances

Skeletons are invariant under Euclidian transformations, i.e. under translation
and rotation. Invariant means in this context that the skeleton of a transformed
shape is identical to the MAT of the original shape after the same transforma-
tion.

In other words, skeletonisation and the aforementioned transformations can
be applied to an object in arbitrary order. If O is an object, S the skeletoni-
sation operator (S(O) = X) and T a transformation operator, the invariance is
described by the equation:

Thin Set

The set of skeleton points is thin. In a discrete setting, this means that the
medial axis is composed of lines and arcs with a width of exactly one pixel.

For the continuous case, thin sets can be defined via the topological notion
of set boundaries. For an arbitrary set A C R2, the boundary 0A is defined as
the set of all points that have at least one adjacent point in an arbitrary small
neighbourhood that is not included in A.

OA={z € A|Ve>0: B.(z) NR? < 0}
A set is called thin if it only contains boundary points, i.e.

0A=A

2.5 The Eikonal Equation 17

(a) (b)

Figure 2.4: Effects of boundary perturbations on the MAT. Image (a)
shows the skeleton of a rectangle. Modifying the boundary yields significant
changes in the skeleton. Example (b) displays the effect of boundary perturba-
tions on the skeleton with large modifications to the boundary. Note that those
effects occur in the continuous setting for arbitrary small perturbations.

Convexity Criterion

The contours of convex objects only produce an inner skeleton. Points of the
outside MAF correspond to boundary points that are not on the convex hull of
the object’s contour.

Sensitivity to Boundary Perturbations

The MAT as an object descriptor also possesses properties that can be consid-
ered as drawbacks for practical applications. It is particularly sensitive to all
kinds of boundary perturbations. A slight change in the boundary might cause
significant changes, like additional branches, in the skeleton (see Figure 2.4).

Therefore, noise in input images or merely the discretisation of the boundary
can lead to significant errors in the computed skeleton if algorithms do not
address this problem (e.g. via presmoothing of the object boundary).

2.5 The Eikonal Equation

The wave propagation model from Section 2.2 uses coordinate vectors ¢ of the
boundary curve C' and models their change over time with the equation

dc
ETi F-n

where F'(x,y) is the speed and n(z,y) the direction of the inward normal at
the point (z,y) € Q.

Instead of using a time component and two-dimensional curves, the wave
propagation can also be modelled by introducing a third dimension. The evolved
boundary curves can be superimposed in three-dimensional space by assigning
the corresponding time ¢ to each curve as its height value.

Note that each point of the 2-D plane is only passed once by the evolving
wave front and the set of all evolved curve points forms a connected 3-D surface

18 Theoretical Background

Figure 2.5: Wave Propagation and the Eikonal Equation. (a) shows the
two dimensional wave propagation of a circular boundary as defined in Section
2.2. Superimposing the evolved curves in 3-D space yields (b). The entirety of
all evolved curves form a surface, in the case of (b) a cone.

(see Figure 2.5). Since this surface contains all evolved curves, it is called the
solution surface for the curve evolution process. It defines a function T'(x,y) =t
that maps each point (z,y) € Q to the time at which the propagating wave front
passes (z,y). The evolved curve at time ¢ is thus given by the intersection of
the solution surface with a plane parallel to the x-y-plane at height ¢:

{(z,y) € Q | T(z,y) =1}

T can be used to express the speed of the propagating wave front. The
gradient VT points in the direction of the steepest slope of the solution surface.
Thus, its projection to the x-y-plane points in the direction of the inward normal,
which coincides with the direction of the propagation. Additionally, the gradient
magnitude is a measure for the rate of change of the time coordinate in this
direction.

The speed F(x,y) of the evolving front, however, is defined by the time that
is needed for the front to travel a distance in the x-y-plane. Therefore, the speed
of the evolving front is inverse proportional to the rate of change in the time
coordinate.

1
F9) = 970y

Rearranging the equation above yields the eikonal equation

IVT|F =1

2.6 Hamilton-Jacobi Skeletons 19

There are several methods for solving the eikonal equation, such as the fast
marching method [Sethian, 1996] or the viscosity solution approach by Rouy
and Tourin [1992]. The problem with those methods is, however, that the com-
putation of the solution surface via the eikonal equation does not explicitly yield
the location of skeleton points (shocks). Therefore, solving the eikonal equation
alone is not enough to compute the skeleton. Additional shock detection must
be applied.

This problem was the motivation for Siddigi et al. [2002] to introduce an
alternative method for solving the eikonal equation that allows a direct compu-
tation of the medial axis. The resulting Hamiltonian framework is presented in
the following section.

2.6 Hamilton-Jacobi Skeletons

Siddigi et al. [2002] introduced a framework for solving the eikonal equation
that is based on classical mechanics, the science field that deals with the motion
of bodies in space over time. In this section, only a brief introduction on the
underlying physical theories is given, based on both the paper by Siddiqi et al.
[2002] and the book about classical mechanics by Sussman and Wisdom [2001].
The Hamiltonian formalism is one of several formulations of classical me-
chanics, alongside the Lagrangian and Newtonian formalisms. It describes the
movement of particles in a closed system with a phase space (p(t), ¢(t)) where ¢
are the particle’s coordinates and p the corresponding momenta at time ¢. The
energy of the system is represented by the Hamiltonian H that consists of the
sum of kinetic and potential energy. H fulfils Hamilton’s canonical equations:

. d B)
p=2p(t) = —%H(p, q) (2.1)
§= %q(t) = (%H(p, q) (2.2)

Equivalently, the system above can be described with the Lagrangian for-
malism. Here, the Hamiltonian #H(p, ¢) is replaced by the Lagrangian £(g,q).
Thus, the state of the system is not described by coordinates ¢ and momenta
p, but by the coordinates and their respective velocities ¢. The momenta p are
not used to describe the state of the Lagrangian system, but can still be derived
from it as shown in equation 2.3, just as the velocities ¢ are a derived quantity
in the Hamiltonian formalism (see equation 2.2).

_oc
= %

With the Lagrangian formalism it is easier to establish a direct connection to
the wave propagation model: the coordinates g describe the positions of points
on the wave front and the velocities ¢ are the corresponding vectors F'-n. Note
that it is possible to express the Hamiltonian in terms of the Lagrangian and
vice versa by using the Legendre transformation

p (2.3)

oM OL

20 Theoretical Background

In order to apply the Hamiltonian formalism to the wave propagation model
from Section 2.2, marker particles are placed on the object boundary. At the
starting time ¢, a marker particle has the initial coordinates ¢y = ¢(ty). The
particle then moves during the propagation process, assuming new coordinates
q(t) on the evolved wave front at time ¢ > ¢y. The path X that the particle takes
from the boundary to the new coordinates ¢(t) minimises the action functional
S with

Suoss(a.0) = [0L(a. i)t (2.5)

The action functional S describes the energy that is associated with the
path XA in terms of its Lagrangian £. In order to find a minimiser of the action
functional, the associated Euler-Lagrange equation can be used:

doc_oc_

dt 0g 9q

Using the Legendre transformation (equation 2.4) in combination with equa-
tion 2.6 and equation 2.3 yields

(2.6)

OH 29 0L e doL ey .

Jdq dq¢ dt Oqg

This shows that the Euler-Lagrange equation, together with equation 2.3
from the Lagrangian formalism, corresponds to Hamilton’s canonical equations
2.1 and 2.2 from the Hamiltonian formalism. It is therefore possible to define the
action functional for the propagation process described by the eikonal equation
with an action functional in the Lagrangian setting (as in equation 2.5) and then
use the Legendre transformation to switch to the Hamiltonian formalism. Then,
instead of plugging £ into the Euler-Lagrange equations, Hamilton’s canonical
equations are considered.

Since the equations from classical mechanics are only used for the very spe-
cific case of the grass-fire model, they can be considerably simplified using the
information about the wave propagation process. The wave fronts move with
constant speed F(x,y) = 1 in the direction of the inward normal n. In this set-
ting, the paths of least action become straight lines and the value of the action
functional is the Euclidian length, i.e. S = D. Furthermore, the Lagrangian for
the special case of the grass-fire model is given by

1
L= g pld=1d (2.7)
——

=1

Additionally, two well-known equations from physics are used without proof.
Huygen’s principle states that p and ¢ have conjugate directions (equation 2.8)
and the Hamilton-Jacobi equation (equation 2.9) further specifies the properties
of p= % (see Sussman and Wisdom [2001] for more information).

p-qg=1 (2.8)
oS oS

2.6 Hamilton-Jacobi Skeletons 21

Using all of the established equations, the Hamiltonian can be described by
the gradient field of the distance map:

2.4) 2.7) .| (2.8),(2.9),8=D

H(q,p)(= p~d—£(q,d)(i p-q— 14| 1—|VD| (2.10)

Finally, plugging the Hamiltonian into Hamilton’s canonical equations yields

;@0 _ 0 10 9 _
p= g) =T -5 (1= VD) = (0,0) (2.11)
.22 0 210 9 __
i = U =" 5 (1-IVD)=-VD (2.12)

Note that in the equations above ¢ = (z,y), p = (Sz,Sy) = (Dy, Dy) = VD
and the derivatives in respect to ¢ and p are regarded component-wise. Each of
the two equations yields an important result.

According to equation 2.12, the path of the marker particles is determined
by the gradient vector field of the distance map. This gradient vector field does
not change with time, because %VD = p = (0,0) follows from equation 2.11.
For practical purposes this means that the gradient of the distance map has
to be computed only once. In particular, the equations 2.11 and 2.12 can be
used to compute the evolved curves for each time ¢, but this is not necessary
for achieving the goal of skeletonisation.

The medial axis points are exactly the sinks of the gradient vector field VD.
This intuitively fits the definition of the MAT as the location of the ridges of
the distance map (Section 2.3): since the gradients of the signed distance map
point in the direction of the steepest slope, they point to the distance map’s
ridges. Thus, the ridges coincide with the sinks of VD. Following the same
argument, the points of the outer skeleton share their locations with the vector
field’s sources.

Sinks and sources of a vector field can be identified using the divergence
divV D of the field: for sources the divergence has large positive values, for
sinks it has large negative values and for all other points it is close to zero.

In order to compute divV D, the average outward flux is used. In physics,
the outward flux of a region R describes how much of a fluid flows out of that
region and is determined by the number of sources and sinks in that region,
which implicates a connection to divVD. Mathematically, the outward flux is
related to divergence by the divergence theorem:

/ div(¢)da = / < q4,m>ds
R AR

Here, the left side of the equation contains an area integral of the divergence
on the region R while the right side contains the integral over the outward flux
on the boundary of R. Thus, the divergence can be computed for each point of
 via the average outward flux using the divergence theorem (see equation 2.13)
where R is a region containing the point, A(R) its area and n is the outward
normal of each point on OR:

<VD,n>d
dvvD = lim o n-as

A(R)—0 A(R) (2.13)

22 Theoretical Background

(a) threshold -0.1 (b) threshold -0.3 (c) threshold -0.5

Figure 2.6: Results of flux thresholding. The pictures above show results
of thresholding on a binary picture of a lizard. In (a) the skeleton is not thin
and boundary artefacts are visible. (b) contains only a few boundary artefacts,
but the skeleton is disconnected and not thin. In the last picture, the skeleton
is mostly thin, but large parts are missing.

The skeleton points ¥ can be identified by computing the limit of the outward
flux as defined above. In the discrete setting, it suffices to compute the outward
flux for a small neighbourhood of each object point and to mark all object points
that have large negative average flux values, according to Siddiqi et al. [2002].

In practice, the quality of the result is highly dependent on the threshold
that is used to identify the MAT points. If the threshold is too confining, the
skeleton might not be connected, if it is too large, unwanted additional branches
appear. Also, the resulting discrete skeleton is, in general, not thin (see Figure
2.6 for examples).

2.7 Homotopic Thinning

Homotopic thinning can be used as a remedy for the shortcomings of a simple
flux-based thresholding algorithm. The basic idea of this method is to reduce
an object sequentially to a thin set, removing points only if they do not change
the object’s topology.

2.7.1 Simple Points

In the 2-D setting, the removal of points is homotopy preserving if it does
not disconnect the object and does not create holes in the object [Kong and
Rosenfeld, 1989]. An object point that fulfils this conditions is called simple.
Test conditions for simple points can be described by the graph that is implied
by the configuration of the object neighbours in the 8-neighbourhood Ng(p)
around the point p € Oy, that is tested. The vertices V' of the graph are the
object neighbours of p.

V={zeO0, | zeNs(p)}

The edges E between the vertices V' are defined for all object points in the
8-neighbourhood N3 (p) that are either horizontal or vertical neighbours of each
other. Diagonal edges are only allowed in the graph if they do not introduce
cycles of length three. On a neighbourhood graph as described above, the two
conditions for simple points can be formulated as follows.

2.7 Homotopic Thinning 23

Figure 2.7: Neighbourhood graphs. The images above show examples for
neighbourhood graphs. The centre point is blue if it is simple, red if it is
not. Vertices and edges of the neighbourhood graph are yellow. The picture in
the middle shows a point that may not be removed because its removal would
create a hole in the object. Pruning the centre point in the right image would
disconnect the object.

Connector Points: If the removal of a point p € ; disconnects the object,
there must be at least two components of its neighbourhood graph that are
not connected by any edges, making p the only connection between them.
Thus, for p to be simple, the neighbourhood graph must be connected.

Interior Points: If the removal of a point p € (), creates a hole in the object,
p must be an interior point, i.e. the edges of the neighbourhood graph of p
must form a cycle that encloses p. Per definition, there are no degenerate
cycles in the graph. Thus, for p to be simple the graph must not contain
any cycles at all.

Bringing the two conditions together yields that p is simple, if its neighbour-
hood graph is connected and has no cycles. In graph theory, such a graph is
referred to as a tree. Thus, p is simple, if its neighbourhood graph is a tree.
This condition can be easily checked, since a graph is a tree if and only if the
difference between the number of vertices V' and the edges E is one:

V=Bl =1

2.7.2 Thinning Order and Endpoints

Removing only simple points from the shape guarantees homotopy to the orig-
inal object, but no other properties. In order to preserve topology, the pruning
of points from the object can be done in arbitrary order, as long as only simple
points are removed. However, the results may vary significantly, as shown in
Figure 2.8. An object with no holes in it will even eventually vanish, if simple
points are removed successively without any termination criterion.

In order to apply homotopic thinning to skeletonisation algorithms, all thin-
ning-based methods in this work share a common basic approach. The under-
lying concept is to mark skeleton endpoints that may not be removed, even if
they are simple.

Since homotopic thinning does not disconnect the shape, removing all simple
points but the skeleton endpoints yields a thin connection line between those
endpoints. The location of the line still depends on the order of the thinning
process, which means that it might not be centred in the object. This must be
ensured by choosing an appropriate thinning order.

24 Theoretical Background

Figure 2.8: Thinning order in homotopic thinning. The series of images
above displays the effect of different thinning orders. Both rows show the re-
moval of six simple points from a rectangle. In the upper row, simple points
are removed in a random order. The thinning process of the lower row can
be reached by excluding the skeleton endpoints (the four corner points) from
removal and removing simple points in the order of their distance map value.

Figure 2.9: Endpoints in homotopic thinning. From left to right, the
first two images show two possible configurations for endpoints with one object
neighbour (either horizontal or diagonal). The third image shows an example
for an endpoint with two object neighbours.

For the approach described above, a criterion to identify endpoints is needed.
Endpoints in a discrete setting can be easily identified via their 8-neighbourhood.
An object point is an endpoint if and only if it is a simple point that has either
one single object neighbour or a maximum of two object neighbours, which are
4-adjacent (i.e. two object points are horizontal or vertical neighbours of each
other). Examples for the possible configurations are given in Figure 2.9.

2.8 Flux Ordered Thinning

The skeletonisation algorithm given by Siddiqi et al. [2002] is based on the
identification of skeleton points by their outward flux (see Section 2.6) combined
with the homotopic thinning from Section 2.7.

First, the distance map D of the image and its gradient field VD are com-
puted subsequently. In a third step, based on VD, a flux map F : — R is
created that maps each point p of the image domain to its average outward flux
on a small region R with R € p:

_ Jor <dnla) >

F(p) = length(OR) where n(q) is the outward normal of OR in ¢

In practice, Siddigi et al. [2002] choose the 8-neighbourhood of p as the
region R for the discrete algorithm. The fourth and last stage of the algorithm
is the homotopic thinning process, which removes one point of the object in
each thinning step, obeying two rules:

1. Remove weak simple points first. Weak simple points are those points that
are simple and have positive or negative flux values of small magnitude.

2.8 Flux Ordered Thinning 25

The chosen order for the thinning process is therefore the inverse flux
order <ifux defined by Vz,y € Q : & <igux ¥ < F(x) > F(y). With this
order, the points that are closest to the skeleton are removed last (except
for discretisation or approximation errors).

2. If a simple point is an endpoint, remove it only if it is bigger than a
predefined negative flux threshold 7 < 0. This condition is used to ensure
that skeleton endpoints are not removed and is identical to the simple
thresholding approach from Section 2.6.

Figure 2.8 shows intermediate results of the four stages of the algorithm. In
Section 4.4, details of a discrete algorithm that implements the thinning process
above with a heap structure are given. Due to the choice of the thinning order,
this method is referred to as flux ordered thinning (FOT). In summary, FOT
with a flux threshold 7 < 0 can be described by the following steps:

1. Flux map Computation:

(a) Compute distance map D.
(b) Compute gradient map VD.
(¢) Compute flux map F.

2. Homotopic Thinning:
Remove simple points from the object in descending order <iaux. If a
simple point p is an endpoint with F(p) < 7, do not remove it.

Due to the two rules defined above, the algorithm reduces the object to a
thin skeleton that is homotopic to the original shape. Also, the branches are
located in close proximity to the continuous skeleton, because of the flux order.
Nevertheless, the output of the algorithm is significantly influenced by the choice
of the flux threshold.

While the most obvious shortcomings of the simple thresholding scheme are
eliminated by applying homotopic thinning to the object, the endpoints are still
determined by thresholding. If the threshold is too high, additional unwanted
endpoints appear and consequently, due to the homotopic thinning process,
spurious branches are added to the skeleton. If the threshold is too low, branches
(or parts of them) will be missing from the skeleton. Thresholding errors are
displayed in Figure 2.6.

26 Theoretical Background

(a) Original Image

100

100

150

200

(b) Step 1: Signed Distance Map

Figure 2.10: Flux-ordered thinning Steps (I). Image (a) shows a binary
image containing five geometric objects. The signed distance map in (b) is the
result of the flux-ordered thinning algorithm’s first step. Distance map values
close to zero are white, negative values are black and positive values are blue.

2.8 Flux Ordered Thinning

27

600 Y
500
400
300
IR
200 IEEERIRN
HIN
I
I
Y
100 trrritiny eerr 2} N
prrriring rrttl NN
ISARRARERN] JarAILY ey
i il sy AR HEEY
o 100 200 300 400 500 600 700 800
(a) Step 2: Gradients of the Signed Distance Map
08
06
04
02
0
-02
04
-06
-08

(b) Step 3: Average Outward Flux Map

Figure 2.11: Flux-ordered thinning Steps (II). The arrows in image (a)
denote the gradients of the signed distance map in Figure 2.10(b). Based on
the the gradient field the average outward flux is computed in the third step of
the flux-ordered thinning process (Figure (b)).

28

Theoretical Background

Chapter 3

Methods

In this chapter, methods are proposed that either improve the computation of
Hamilton-Jacobi skeletons or can be used to compare the results of flux-based
algorithms to other skeletonisation algorithms.

3.1 Improvements of Flux Ordered Thinning

The algorithm of Siddigi et al. [2002] does not offer many opportunities for sig-
nificant speed increases except for the method of distance map computation. In
Section 3.1.1, faster and more exact alternatives for the distance map algorithm
used by Siddiqi et al. [2002] are proposed.

Furthermore, the standard flux ordered thinning algorithm suffers from prob-
lems related to the thresholding of the flux map. First and foremost, the thresh-
old 7 must be chosen manually and it is not obvious how to find an optimal value
for 7. While connectedness and homotopy to the original shape are preserved
due to the homotopic thinning, the endpoints of the skeleton are still deter-
mined by thresholding. Thus, the chosen threshold 7 determines the number
and length of skeleton branches and an optimal threshold can vary for different
shapes.

A threshold that yields perfect results for a rectangle might give unwanted
additional branches for a circle instead of just the centre point. In turn, us-
ing a more confining threshold, which gives only the centre point of the circle
as its MAT, will yield an incomplete skeleton for other shapes (for examples,
see Figure 3.1). In Section 3.1.2 a method for automatic threshold adaption
is presented. Naturally, due to the aforementioned thresholding problem, the
pruning of endpoints with a global threshold causes problems for images with
several shapes in one picture or many boundary perturbations, as can be seen
in Figure 3.1. A modified flux ordered thinning algorithm that is designed to
counter this effect is presented in Section 3.1.3.

3.1.1 Improved Distance Map Computation

For all algorithms that rely on Euclidian distance maps, the choice of the corre-
sponding algorithm is vital. Since distance transforms are used in many different
research fields, there is a plethora of algorithms based on distinct approaches,

29

30 Methods

(c) FOT, r = —05 (d) FMDT

Figure 3.1: Thresholding in flux-ordered thinning. The images above
show results of flux-ordered thinning applied to a binary image with several
geometrical shapes. In (a), the skeleton of the circle, the star and the rounded
rectangle contain many spurious branches. (b) features the best overall results
of the three pictures. However, the skeleton of the circle still consists of more
than one point (formed by multiple pixels in the unmodified image file) and
there are slight skeleton perturbations at the vertices of the star. In (c), the
perturbations in the star are gone, but the circle skeleton is still containing
more than one point and, more importantly, large parts of the rectangle’s and
triangle’s skeletons are missing. With flux-ordered maximal disc thinning, those
problems can be avoided, as (d) displays. However, FMDT adds small spurious
branches to the skeleton of the star.

each with varying efficiency and exactness. Siddiqi et al. [2002] cite the so-called
D-Euclidian algorithm, a raster scanning algorithm that can be applied to arbi-
trary dimensions. However, the work of Borgefors [1984], which presented the
D-Euclidian algorithm as a refined version of Danielson’s algorithm [Danielsson,
1980], dates back to 1984. Naturally, many new and improved algorithms were
introduced since then.

While the D-Euclidian algorithm is easy to implement and can be extended
directly to arbitrary dimensions, it also has several drawbacks. Namely, the
distance transforms computed with the D-Fuclidian method provide a good
approximation, but are not exact in all cases [Borgefors, 1984; Fabbri et al.,
2008]. Additionally, its speed is not competitive anymore.

3.1 Improvements of Flux Ordered Thinning 31

In a comparative survey, Fabbri et al. [2008] examined a wide range of dis-
tance map algorithms, many of which are both exact and significantly faster
than the D-Euclidian method. For this work, only a 2-D distance map is needed
and thus, according to Fabbri et al. [2008], Meijster’s algorithm [Meijster et al.,
2002] or Maurer’s method [Maurer et al., 2003] are good choices. Since Mei-
jster’s algorithm is as efficient as Maurer’s method, but allows a more compact
implementation, it is used in this work. Details of the functionality and imple-
mentation of Meijster’s algorithm can be found in Section 4.1.

For 3-D extensions it is feasible to use the method of Saito and Toriwaki
[1994] instead, which can be directly applied to higher dimensions than 2-D and
is still superior to the D-Euclidian algorithm in exactness and speed. It has,
however, a higher worst case runtime than Meijster’s or Maurer’s algorithms.

3.1.2 Adaptive Thresholding

In the standard flux-ordered thinning approach of Siddiqi et al. [2002], endpoints
of the skeleton are only removed if their flux value is bigger than the threshold,
since medial axis points have negative flux values and non-medial points have
flux values close to zero. If the magnitude of the threshold is too low, spurious
branches are preserved in the thinning process. If the magnitude is too high,
parts of the skeleton are lost.

There are several possible strategies for an automatic adaption of the thresh-
old to the image content. In their experiments, Siddiqi et al. [2002] used either
fixed thresholds for all pictures or applied quantiles (e.g. choose the threshold
such that 75% of object points have a higher flux value). Quantiles however only
involve the area of the object in the choice of the threshold, not its shape. For
a disc, only one single point, the centre, is a valid skeleton point. In contrast,
an object that has the same area and is already a thin set, all object points are
also skeleton points. Therefore, adequate quantiles for objects of the same area
may vary substantially with shape.

Additionally, boundary artefacts in the discrete setting must be accounted
for. As can be observed in the flux map in Figure 2.8, boundaries that are
located between the gridlines produce small spurious areas with high flux mag-
nitude near the object’s borders (e.g. at the arc of the circle or the diagonal lines
of the star). Siddiqi et al. [2002] state that they used boundary interpolation
for their experiments without further detailing its effect on the exactness of flux
computation. In this work, additional computations for boundary interpolation
are avoided. Instead, the boundary is directly extracted from binary pictures
and boundary artefacts are treated in the endpoint selection methods instead.

In order to choose the threshold depending on the boundary’s shape, the
Hamiltonian approach can be combined with other methods for skeleton point
detection. Thinning processes in general and flux ordered thinning in particular
can be combined with arbitrary other skeletonisation methods, but algorithms
that require little additional runtime are preferred. Such additional computa-
tions are referred to as secondary MAT detection (SMD) . The SMD does not
need to be homotopy preserving.

One possible strategy to adapt the threshold is to start with a negative
threshold of low magnitude (i.e. close to zero) and then successively lower the
threshold until unwanted branches are removed. In order to identify incorrect

32 Methods

branches, SMD is performed on endpoints that would not be deleted because
their flux value is below the negative flux threshold.

If such an endpoint p is identified as a skeleton point by SMD, it is not
removed. If p is not a MAT point according to SMD, p is removed from the
object and the global flux threshold is set to a new value that is slightly lower
than the flux value of p. Therefore, in the following thinning steps, all points
with the same flux value as p are removed without further checks. While this
approach only requires SMD on endpoints, its output depends on the coherence
between the flux order and SMD. The flux order determines which points are
endpoints and thus which points influence the overall threshold.

In order to avoid such coherence effects, which are difficult to predict for all
possible cases, another approach is pursued in this work. Instead, a global flux
threshold is determined before the thinning process starts, similar to the quantile
approach of Siddiqi et al. [2002]. First, a SMD is performed on the object to
create a preliminary skeleton 3 that has not to be homotopy preserving or thin
and thus can be computed significantly faster than with complex homotopy
preserving methods such as FOT.

A threshold for the thinning process is then computed based on the flux
values of the skeleton points in 3. Instead of just considering the area of the
object, like in the quantile approach, this threshold adaption incorporates the
shape of the object. In this work, the threshold 7 is computed as a modified
mean of the flux values in 3. A parameter A € [0,1] is introduced that influences
how many points of the preliminary skeleton are considered as artefacts resulting
from inaccuracies of the SMD and are thus pruned by the subsequent FOT
process:

Z;pei]h F(‘T)
|2n]

Due to the introduction of the parameter A, the algorithm is not entirely
independent of input parameters, the dependency on 7 is merely replaced by
the dependency on A. However, in contrast to the threshold 7, A is not pri-
marily used to account for properties of the input shape, but for differences in
the boundary artefacts that occur due to the choice of the SMD. This reduces
the need for parameter adjustments significantly. In summary, automatic flux
adaptation can be performed in three steps:

T=(1-X)

1. Compute preliminary skeleton 3 with SMD.
Ezgih F(.’,E)
Sl

3. Compute final skeleton ¥ with FOT, using threshold 7.

2. Compute 7 = (1 — \)

The resulting algorithm is further referred to as flux-ordered adaptive (FOA)
thinning. This method is identical to FOT except for the threshold adaption,
which is performed as an additional initial step before the thinning process.

This approach requires a SMD method to decide if an endpoint is a skeleton
point. In the following Section 3.1.2, a fast SMD method that is based on
maximal disc detection with lookup tables is presented. Note that the choice
of the mean as a basis for the adaption of 7 is an intuitive one, values for A
were determined experimentally. Other obvious choices to compute a threshold
based on ¥ are the median of the flux values or quantiles.

3.1 Improvements of Flux Ordered Thinning 33

Maximal Disc Algorithm

A simple and fast means for identifying medial axis points in the discrete setting
can be constructed by using the maximal disc definition for the skeleton (see
Section 2.3):

Y={2€0 | VyeO:Bpw(x)Z Bpy)}

The radii of the inscribed discs of each object point coincide with their
distance map values. Note that a disc B,, (z) is contained in a disc B,,(y) if
and only if |x —y|+ 71 < 7. A naive algorithm based on this definition consists
of a check for this criterion for all points in the object domain. If the biggest
radius of all inscribed discs of the object is known, the search can be confined
to the neighbourhood B, ., (z) because of the equivalence:

& —yl +r1 <2 P |z — gl < Trnae — 71

Expanding further on those lines of thought, a lookup table can be precom-
puted that reduces the problem of finding maximal inscribed discs to a simple
comparison of lookup table values with distance map values in a certain neigh-
bourhood. The size and shape of the neighbourhood depends on the maximal
local width of the object. Lookup tables for Euclidean discs were provided by
Rémy and Thiel [2005]. In Section 4.5 the structure of the lookup tables and
an implementation that uses them to detect maximal discs is described.

3.1.3 Flux-Ordered Maximal Disc Thinning

A slight variation of the FOA algorithm from Section 3.1.2 can also be used to
eliminate the need for thresholding by removing the flux thresholding entirely
from the algorithm, only keeping the flux map as a means of defining a thinning
order.

Instead of deciding which endpoints are preserved in the homotopic thinning
process via the flux threshold 7, like in the FOT method, only the SMD deter-
mines which of the endpoints are considered skeleton points. The steps of the
resulting algorithm can be described as follows:

1. Flux map Computation:

(a) Compute distance map D.
(b) Compute gradient map VD.
(¢) Compute flux map F.

2. Homotopic Thinning:
Remove simple points from the object in descending order <igux- If a
simple point is an endpoint that is part of the skeleton according to SMD,
do not delete it.

In this work, the maximal disc check with lookup tables by Rémy and Thiel
[2005] is used as a SMD method and the resulting algorithm is referred to as
flux-ordered maximal disc thinning (FMDT).

FMDT has an exactness advantage over FOT or FOA if it is applied on im-
ages containing multiple objects. FOT and FOA both use a global flux threshold

34 Methods

[E

Figure 3.2: Discretisation errors. The two images above show discrete ver-
sions of straight boundary lines (blue). The inside of the object is marked in
grey, while the background is white. In both examples, a point p with mini-
mal distance one to the discrete boundary is marked in red. In the continuous
setting, the circle of radius one around p reaches over the boundary line and is
thus not an inscribed circle. Therefore, p is not a MAT point in the continuous
setting. In the discrete setting, p has minimal distance one to two boundary
points and is therefore part of the skeleton due to the equidistant viewpoint.

for the whole image which thus cannot be adapted to different shapes. The SMD
in the FMDT method, however, takes into account the local properties of every
separate shape in the image. For the same reasons, FMDT is also expected to
be slower than FOT or FOA. In FMDT, due to the missing global threshold,
more explicit homotopic thinning and SMD checks must be performed.

3.2 Comparison of Skeletonisation Results

One goal of this thesis is to compare skeleton quality of the FOT algorithm to its
modified versions FOA and FMDT, as well as to other, less complex algorithms.

Existing publications on skeletonisation usually do not include comparisons
to other algorithms and often only present images of the results for visual ver-
ification of skeleton quality [e.g. Siddiqi et al., 2002]. Omne of the reasons for
the lack of comparisons with different skeletonisation algorithms or a more de-
tailed analysis might be the inherent difficulty of assessing the quality of discrete
skeletons.

All algorithms presented in this work compute skeletons with pixel accuracy
and do not use interpolation of the object boundary. Therefore, the resulting
skeletons are not desired to be exact in the mathematical sense. Whole branches
can be located in between grid lines and thus need to be represented by adjacent
pixels. Depending on the algorithm used, this means that the branch is not
centred or not thin.

Also, even without noise in a picture, unwanted branches can occur due to
discretisation inaccuracies (see Figure 3.2), e.g. for boundary lines that cannot
be accurately described with pixel accuracy. In this case, not all points that
formally fulfil the mathematical definition of skeleton points are desirable to
occur in the skeleton and are regarded as boundary artefacts.

Additionally, depending on the application that the skeletons are intended
for, there are priorities beyond the accurate location of skeleton points. For
shape recognition for example, the overall structure of the skeleton, i.e. the
number and spatial configuration of its branches, as well as the homotopy to

3.2 Comparison of Skeletonisation Results 35

the original shape, are more important than the exact location of every single
skeleton point.

For other applications, such as compression, homotopy can be ignored, the
only goal is to minimise the number of points that are needed to reconstruct
the shape as exactly as possible. The next section establishes quality criteria
for discrete skeletons that are relevant for practical applications.

3.2.1 Quality Criteria

In Section 2.4, important mathematical properties of the medial axis in the con-
tinuous setting are described. The following criteria are designed to asses how
well skeletonisation results fulfil the desired properties in the discrete setting.

Exactness of Reconstruction: A frequently used test criterion for skele-

tonisation algorithms is the difference between the original object and the
shape that is obtained by applying a reconstruction algorithm to the MAF.
While the equivalence of the MAF description to the original shape is a
defining property, in the discrete setting, under practical conditions, it
rivals with other desirable properties such as robustness under rotation
and boundary perturbations.
Also, the exactness of reconstruction only yields little to no information
about the approximation quality of the skeleton. For instance, a skeleton
that is identical to the object itself yields a perfect reconstruction but is,
except for rare special cases of thin objects, not the correct MAT.

Skeleton Minimality: In order to assess the approximation quality of the
skeleton there are several possibilities. If test images with a ground truth
(i.e. exact pixel or subpixel locations of the skeleton points) are given, a
direct comparison is possible. However, for large databases with complex
shapes, this is usually not the case. Thus, skeleton minimality, i.e. the
fraction of object points that are contained in the skeleton, can be ex-
amined in combination with the exactness of reconstruction to assess the
overall approximation quality.

Skeleton Complexity: In addition to the raw number of skeleton points,
i.e. skeleton minimality, also the structure of the skeleton must be consid-
ered. The number, connectivity and length of skeleton branches defines
the overall complexity of the MAT and is especially important for shape
recognition by graph matching.

Thin Set: Determining if a discrete skeleton is a thin set can be done by
checking the number and spatial configuration of the skeleton points’
8-neighbours. This is a binary criterion that can be observed directly,
regardless of the object’s shape and location.

Homotopy: Homotopy to the original shape can be checked for arbitrary
shapes. For each connected component in the shape exactly one con-
nected skeleton must exist that contains the same number of holes as the
object component.

Translation Invariance: The only change for a discrete object that under-
goes translation is its position relative to the image boundary. This should

36 Methods

not change the computed skeleton at all, thus a perfect match between the
computed MAF of the original object and its translated version are ex-
pected. Translation invariances can be easily checked for arbitrary shapes
by applying the inverse translation to the skeleton and comparing it di-
rectly to the original skeleton.

Rotation Invariance: For rotations other than in ninety degree steps, dis-
cretisation problems arise. The shape does not stay the same, since the
boundary curve is located between the grid points and a representation
with pixel accuracy is neither exact nor unique and depends on the method
that is used to acquire the rotated version of the shape (for example ro-
tation using an image editing software). A perfect match between the
computed skeletons of the original and the rotated shapes is desirable,
but cannot be expected for all possible shapes and angles. The robust-
ness of the algorithm under rotation is also related to its robustness under
boundary noise.

Noise Invariance: Small perturbations on the boundary, such as single ob-
ject points adjacent to the boundary that are incorrectly attributed to the
image background (or vice versa) should not change the skeleton signifi-
cantly.

For in-depth comparisons of skeletonisation algorithms all of the criteria
above should be evaluated separately, judged by the importance of each criterion
for the application at hand.

The invariances can be described in terms of the other properties defined
above, i.e. the skeleton should differ as little as possible under transformation,
concerning exactness of reconstruction, minimality and complexity. Addition-
ally, homotopy and thinness should be preserved.

In order to quantify the three quality criteria above, the set E of erroneous
image points is defined, which contains all points of the reconstructed image that
differ from the original. Let Oy, be the object domain of the reconstruction.

E:{erh|xeOh/\xgéOh\/a:¢Oh/\erh}

Note that E contains false negatives (i.e. object points that are missing from
the reconstruction) as well as false positives (i.e. background points that are
incorrectly denoted as object points during reconstruction). |E| can be used to
quantify the exactness of reconstruction.

Analogously, skeleton minimality can be expressed by |X|. The complexity of
the skeleton is defined by the number and configuration of its branches. Instead
of counting branches and comparing their connectivity explicitly, a straight-
forward approach to quantify complexity is to count the number of skeleton
endpoints and branching points.

Endpoints are defined in Section 2.7.2. Branching points are those loca-
tions of the skeleton, where several branches connect. Since the MAT is a thin
set, each of those spots coincides with a single point. In the discrete setting,
branching points can be located by exploiting properties of their neighbourhood
graphs.

A skeleton point is a branching point if and only if its neighbourhood graph
contains at least three disconnected components. Each of those components

3.2 Comparison of Skeletonisation Results 37

corresponds to a branch. The set of all endpoints and branching points is
denoted P and accordingly, skeleton complexity can be expressed by |P|.

Based on |E|, |X| and | P|, three quality measures can be defined, which map
the skeletonisation results to the interval [0;1] C R:

in{|E
e(u,X) = mm{||0|h’||0h|} (exactness of reconstruction) (3.1)
in{|3|, |O
m(u,X) = HW (skeleton minimality) (3.2)
in{|P|, |2
c(u,X) = mm{||2|’||} (skeleton complexity) (3.3)

The measures defined above help to relate the quantities of the respective
quality criteria to the properties of the original object. Exactness of reconstruc-
tion, as well as minimality, are given as percentages of the total object points,
whereas skeleton complexity is measured as the percentage of endpoints and
branching points in relation to the total number of skeleton points. Values close
to zero are desirable, values close to one denote undesirable results.

However, especially for invariance tests, where the object changes slightly
due to discretisation errors or noise, the measures e, m and ¢ will vary, even if
the skeleton does not change under transformation. Therefore, the raw numbers
|E|, |2| and |P| should be considered in combination with the corresponding
measures.

3.2.2 Graph Matching

For invariance tests or images where a ground truth exists (i.e. the exact location
of the skeleton is known), another comparison method can be applied. If there
is a reference skeleton to which the results can be compared (e.g. the exact
result or the skeleton before transformation), the skeletons can be converted to
graphs that can be analysed with graph matching.

Graph matching is a core functionality of many skeleton-based shape recog-
nition algorithms and naturally, there are sophisticated algorithms that serve
this purpose, such as the shock graph method by Siddiqi et al. [1999].

While the computation of ground truths for a large image base and the appli-
cation of complex graph matching algorithms for skeleton comparisons is beyond
the scope of this work, results of a graph matching approach are presented in
Chapter 5.

Due to time constraints, no graph matching method that is tailored to the
particular needs of skeleton comparison could be implemented. In order to
back up the proposal of graph matching for comparative purposes, graphdiff, an
approximate graph matcher by Shasha and Wang [2000], is used to demonstrate
that even with methods that are not specialised to the problem at hand, skeleton
quality can be assessed.

Graphdiff computes a one-to-one mapping of nodes of a query graph @ and
a database graph D, using a scoring function that takes node types and edge
weights into account. Each possible mapping has a total score and the mapping
with the highest score is considered as the best match.

38 Methods

Figure 3.3: Graph matching. The two images above show two rectangles
and their respective skeleton graphs that are matched by graphdiff. Red discs
represent graph nodes of the type endpoint, blue discs are branching point
nodes. The dotted lines show the one-to-one node mappings that are computed

by graphdiff.

If 4,5 are nodes in) that are mapped to ¢’ and j’ in D, respectively, the
score for the matches is determined by the matching edges of the nodes. The
edge (i, j, w) with weight w matches (', j/,w’) if i and ¢/, as well as j and j' are
of the same node type. Then, the score is computed as min(w/w’, w’/w).

For the purpose of skeleton matching, in this work, endpoints and branching
points are considered as nodes of the graph, defining two different node types.
Edges between those nodes are defined, if the corresponding points are connected
by skeleton branches. The length of connection branches defines the weight of
the corresponding graph edge. An example for such skeleton graphs and an
application of graphdiff is given in Figure 3.3.

3.2.3 Skeleton Quality as a Minimisation Problem

In this section, the basic foundations for another view on skeleton quality are
presented, namely a minimisation approach that is closely related to the quality
measures that are defined in the previous sections. Due to the scope of this
thesis, the minimisation approach was not thoroughly explored and is only added
as an incentive for possibly future work.

As described in the last section, exactness of reconstruction rivals skeleton
minimality and complexity. The goal of skeletonisation algorithms is to provide
a skeleton that is as minimal and structurally simple as possible, while yielding
a reconstruction that is as similar as possible to the original shape.

In other words, the size of the skeleton, the number of special points (branch-
ing and endpoints) and the error of reconstruction must be minimised simultane-
ously. Since different applications prioritise the aforementioned quality criteria
differently, they must be individually balanced for each application.

A straightforward approach is to design a cost functional that maps a skele-
ton to a real value that is minimal for desired skeletonisation results. In order
to define such a cost functional, some additional definitions are introduced.

3.2 Comparison of Skeletonisation Results 39

s is an indicator function for skeleton membership and coincides with the
output of the algorithms:

s:Q, = {0,1},s(x) =1z e

The image that is reconstructed from the skeleton is denoted as R(s, z):

R(s,x)=1<{Jye X, : |z —y| < Dnly)}

The indicator function for end- and branching points is referred to as P(s, x).

With the new definitions, the cost functional C,(s) can be defined, which
maps s to a real value of weighted terms corresponding to the three quality
criteria described above. a, § and v € R are parameters that can be used to
adapt the weighting of the criteria to the demands of a concrete application.
Minimisers of C,, are preferred skeletonisation results.

Cu(s) =« Z (u(z) — R(s,2))* + 3 Z s(z)? + Z P(s,z)? (3.4)

€Ny, €y, reQy

Note that the cost functional C, does not account for additional skeleton
properties like homotopy to the original shape or thinness and is solely designed
to compare skeletons that were computed under additional constraints. The
properties of minimisers of C,, vary significantly with changes in the weights «,
B and ~. Consider for example an exact, discrete Euclidean disc with radius
r € Nyr > 1. For a = 8 = v = 1, the minimiser of C,, is the skeleton s’ that
consists only of the centre point.

Cu(s') =« Z (u(x) — R(s',2))* + Z s'(z)? + Z P(s',z)? =2

TEQY, TEQ, TEQ,

=0 =1 =1

Adding additional points to the skeleton while retaining the centre point
increases the minimality and complexity parts while the exactness term stays
constant. Removing the centre point causes reconstruction errors. The amount
of errors can be reduced by introducing more points to the skeleton s” that does
not contain the centre point. However, as soon as s consists of at least two
distinct points, it holds that C\,(s”) > 2 = C,(s’). Thus, s’ is the minimiser of
C,. While the example above describes the desired behaviour of the cost func-
tion, in that it has an unique minimiser that coincides with the exact skeleton,
it can be easily shown that this behaviour cannot be expected in general.

A thin shape that consists of just two discrete points (Op, = {x,y}) acts as a
counter example. The exact skeleton of the shape is identical to the whole shape:
3 = Op,. In this case, there are only four possible outputs for a skeletonisation
algorithm: either the correct skeleton ¥ = {x, y}, a one-point skeleton ¥, = {x}
or ¥, = {y} or an empty skeleton ¥,. The cost function C, with a = 2,
B =y =1 yields a cost of 16 for X, a cost of 3 for 3, and X, respectively,
and a cost of 16 for 3y. Thus, the minimiser of C,, does, in this case, yield a
skeleton that is different from the exact one. Additionally, the second example
demonstrates that minimisers of C, are not necessarily unique.

40 Methods

There are many possibilities to extend on the basic approach presented
above. Besides adding additional constraints to the cost function, nonquadratic
error penalisation or the incorporation of the quality measures e, m and c as
defined in Section 3.2.1 are potential improvements that could help to eliminate
the drawbacks demonstrated by the examples above.

3.2.4 Alternative Algorithms

In order to assess how much the flux component of the FOT method compares
to algorithms that are not based on classical mechanics, implementations of
non-flux methods are needed. In this work, two alternative algorithms that do
not use the outward flux to locate skeleton points are compared to the FOT
algorithm and its modifications FOA and FMDT.

First, there is the basic maximal disc (MD) algorithm by Rémy and Thiel
[2005]. This algorithm is straightforward to implement and also fairly efficient,
since it just consists of a single scan over all object points. For each point in
the object, the maximal disc criterion described in Section 3.1.2 is verified and
the object point is marked as a skeleton or a background point accordingly. A
pseudocode version of this method is given in Section 4.5. However, in general,
the MD algorithm does not preserve homotopy and does not yield thin skeletons.

The second algorithm is newly proposed in this work and extends the MD
method with homotopic thinning. Object points are pruned layer by layer from
the boundary inwards, only retaining points identified as skeleton points via the
MD method of Rémy and Thiel [2005] and obeying the homotopy preserving
erosion rules.

To define an order for the thinning process, the Euclidian distance to the
boundary is used, i.e. all possible points from the Euclidian distance map’s level
set with the lowest distance are removed before the algorithm moves on to the
next level set. This ensures that the connection lines between the skeleton points
are centred in the object. The corresponding order is referred to as Euclidean
distance order <guciq and can be defined as:

T <euclid Y <= D(LL') < D(y)

where D denotes an unsigned Euclidean distance map of the image boundary.
The resulting algorithm is referred to as maximal disc thinning (MDT) and is
similar to the FMDT approach. The two algorithms differ only in the chosen
order for the thinning process.

Chapter 4

Implementation

The implementations of all algorithms and tools used for this work were done
with ANSI C. Except for ANSI C’s lack of a standard heap structure, the
descriptions in this section abstract from the programming language by using
pseudocode.

Distance map computation and the basic homotopic thinning rules, as well
as the heap implementation, are the same for all algorithms that make use of it.
Therefore, the first sections of this chapter deal with common algorithms and
data structures.

After the description of common elements, the skeletonisation algorithms
are presented. The chapter closes with remarks about boundary conditions and
correctness tests.

4.1 Meijster’s Algorithm

Meijster’s algorithm [Meijster et al., 2002] is an independent scanning algorithm
for distance map computation. Independent scanning means that Meijster’s
algorithm can be parallelised, since it scans rows (or columns) without relying
on the information of other rows/columns [see Fabbri et al., 2008].

The distance transform is computed in two phases where phase two relies
on the results of phase one. Thus, parallelisation can be applied only for the
row/column scans in each phase respectively.

In the following sections it is assumed that Meijster’s algorithm computes
1-D distance maps for each row in phase one and uses this information for a
minimisation scan per column in phase two. Alternatively, in phase one column
scans can be used which implies row scans for phase two.

Phase 1

The first phase consists of computing a 1-D distance map for each separate row
R; (j € {1,...,n}). In other words, for each point z = (¢, j) in any row R;, the
minimal squared distance to the object points in this row is computed, which
means that the intermediate result G can be defined as

G(i,j) = min {(i —y)*(i,y) € Op}
(y,5)ER;

41

42 Implementation

Scan1: Forward pass
—> »

+1 +0 | -

Scan2: Backward pass

i -

Figure 4.1: Computation of vertical 1D distance maps in phase 1 of
Meijster’s algorithm. On each line, a forward pass (red arrows) and a back-
ward pass (blue arrows) are performed subsequently. The masks represent the
minima of neighbouring pixels that are computed. For the forward pass, the
left pixel under the mask is assigned the minimum of its own distance value and
the value of its right neighbour, increased by one. The backward pass works
analogously, but with reversed roles of the mask points.

This first step can be efficiently computed with two scans per row R; (j €
{1,...,n}), one forward and one backward scan, as displayed in Figure 4.1.

In the forward scan, each point p = (4,) € R; is assigned its distance to the
nearest object point to its left and oo if it does not have a left object neighbour.
This yields the intermediate result G (i, j):

Gr(i,j) = min {(i —y)*|(i,y) € Op Ay < i} U{oo}
(y.7)ER;

(1, is computed by initialising the first pixel of the row with zero if it belongs
to the object and infinity if it is a background point. Then sequentially, from
left to right, the other points of the row are assigned a distance value based on
two conditions: if the visited point is an object point its distance is set to zero,
ie. Gr(i,7) = 0. Otherwise, it is assigned the distance of its left neighbour
ng(p) (see Figure 2.1) increased by one, i.e. Gr(4,5) = ng((4,7)) + 1.

At the end of this pass, all object points in the row have the correct value
zero, and all background points that have at least one row neighbour on their
left that is an object point were assigned the distance to the closest object point
on their left. The remaining points that do not have any object points to their
left have distance value infinity.

The second pass, from right to left, is a corrective stage that ensures that
all background points have the correct value G(¢,7). Computing the distance

for each row point to its closest right object neighbour Gg(i, j) allows to derive

Gr(i,j) = min {(i —y)*|(i,y) € Op Ay > i} U{oo}
(v:5)ER;

In the backward pass, all background points are assigned Gg(%,j) + 1, and
their own distance value from the forward pass. Thus, object points that have
a right object neighbour that is closer to them as a previously discovered left
object neighbour, or do not have a left object neighbour, are assigned the new

4.1 Meijster’s Algorithm 43

value Gg(i,j). All other points already had the correct distance after the for-
ward pass and do not need to be changed.

At the end of the second pass, G(i,7) is an exact 1-D distance map for all
rows R; that contain at least one object point. In rows without any object
points, all values of the intermediate distance map are oc.

Algorithm 1 Phase 1 of Meijster’s algorithm. Each row is treated sepa-
rately in a forward and a backward pass. In the forward pass (left to right) each
point in the row is assigned the minimal distance to its left object neighbours.
The backward pass (right to left) corrects the distances if there are closer object
neighbours on the right.

// for practical purposes replace oo by the maximal possible distance m + n
for je{1,...,n} do

// forward pass (row j: left to right)

if (1,4) € Oy, then

G(1,5) =0
else
G(1,j) = %
end if
fori=2,...,m do
if (i,7) € Oy, then
G(i,j) =0
else
G(i,j) =gi—1,7) +1
end if
end for

// backward pass (row j: right to left)
fori=m-—1,...,1do
if G(i+1,7) <G(,7) then
G(i,5)=G(+1,5)+1
end if
end for
end for

Phase 2

In the first phase, only 1-D distance maps for the rows are computed, i.e. only
horizontal distances are considered. In order to find the minimal overall dis-
tance, vertical distance information of two points (z,y) € £, and (i,5) € Qp
must also be considered. The squared Euclidean distance between (z,y) and
(i,7) is given by (z —i)* 4 (y — j)*.

Regarding this distance as a minimisation problem in (i,j), the 1-D row
distance maps can be used to eliminate i from the equation, since the function
G provides horizontal distance minima for each row. Thus, the term z —¢ can be
replaced by G(z, j), i.e. instead of minimising the x-coordinate ¢, the horizontal
distance can be minimised in terms of G and the row number j. The resulting
minimisation problem is given by the equation

44 Implementation

"

1

Figure 4.2: Lower envelope of parabolas. The image above displays several
parabolas as they are encountered in phase two of Meijster’s algorithm. The
thick red line is the lower envelope of the four parabolas in the image. It consists
of the parabola segments s1,...,ss with minimal y-value. The corresponding
domains t1,...,t4 are the intervals on the y-axis marked by the alternating
shades of grey of the area below the parabola segments. In Meijster’s algorithm,
the lower envelope only needs to be evaluated at integer points, that are marked
with straight vertical black lines in the picture above.

Dlay)= min (G + =i} (@y) e

For a fixed row z and fixed value j € {1,...,m}, the graph of the function
F;, with Fj(y) = F, ;j(y) = G(z,5)* + (y — j)?, y € [1,m], is a parabola with
vertex at (G(z,7),7)-

The minimisation problem can be interpreted as finding the right parabola
F; for each point (z,y) € R, that provides a minimal value for F}(y). Thus,
a function F,;, that consists of all minimal curve segments of the intersect-
ing parabolas, evaluated at integer points, gives the solution to the minimisa-
tion problem above, i.e. D(x,y) = Fumin(y). Formally, Fi,in can be defined as
Frin(y) = minjeqr,. my3{F;(y)} and is called the lower envelope of the parabolas
F;.

Figure 4.2 shows the lower envelope of several parabolas. The curve seg-
ments are denoted as si,...,5,, where p is the number of segments and the
corresponding domains on the y-axis are denoted by #; ...,%,.

Which parabola is minimal for a point can be determined by solving the

4.2 Homotopic Thinning 45

following equation for a < :

Fo(y) < Fp(y)

EG(r,0)* + (y— @) < G2, 8)> + (y — B)?
yeEN

Sy < (87— a®+G(x,0)? — Glz,@)*)div(2(5 — a))

Using this equation together with the fact that the parabolas only need to be
evaluated at integer values, allows to compute the segments s; and the regions t;
efficiently in one forward pass over each column (top to bottom). In a backward
pass, only Fi,i, needs to be evaluated to obtain the final distance map value
D(z,y). For more details on the aforementioned computations see Algorithm 2
and the original work of Meijster et al. [2002].

Algorithm 2 Phase 2 of Meijster’s algorithm. Each column is treated sepa-
rately in a forward and a backward pass. In the forward pass (top to bottom)
the lower envelope Fynin of the parabolas Fj(y) = G(x, j)?+(y—j)? is computed.
The backward pass allows to derive D(z,y) by evaluating Flip.

for j from 0 to m — 1 do
q:=10,5(0):=0,¢0):=0
for u from 1 to n — 1 do {scan 3}
while ¢ > 0 A (t(q) — 5(q))* + g(s(q), 5)* > (t(a) — w)* + g(u, j)* do
g=q-1
end while
if ¢ < 0 then
q:=0,5(0):=u
else
w =14 (v = 5(¢)* + g(u, §)* — g(s(q), 5)?) div (2(u — 7))
if w < m then
qg:=q+1,s(q) :=u,t(q) :=w
end if
end if
end for
for u from m — 1 downto 0 do {scan 4}
dt(u, j) = (u—s(q))* + g(s(q),j)*
if u=1t(g) then
q:=q—1
end if
end for
end for

4.2 Homotopic Thinning

The homotopic thinning rules that are described in Section 2.7 are used in
several of the implemented algorithms.

Since the rules are only based on the 8-neighbourhoods of each pixel, the im-
plementation is straightforward. In order to identify simple points, the function
isSimple(p) computes the vertices V' and edges E of the neighbourhood graph

46 Implementation

of p. The output can the be determined with the rule isSimple(p) = TRUE <
|V| —|E| = 1. Algorithm 3 displays the function in pseudocode.

Algorithm 3 Function isSimple(p). Compute the number of edges and vertices
of the neighbourhood graph of p. If and only if |V| — |E| = 1 return TRUE.
Require: v =0 // vertices
Require: e =0 // edges
if -p € Oy, then
return FALSE
end if
// horizontal edges (with ng(p) = n1(p), no(p) = ns(p))
for i € {2,4,6,8} do
if n;(p) € Oy, then
v++
if n;_1(p) € Oy, then
e+-+
end if
if n;41(p) € O, then
e++
end if
end if
end for
// horizontal edges (with ng(p) = n1(p), no(p) = ns(p))
for i € {1,3,5,7} do
if n;(p) € Oy, then
v+—+
else
if n;_1(p) € Oy, then
e++
end if
if n;41(p) € Oy, then
e+-+
end if
end if
end for
return (v —e = 1)

Endpoints can also be identified by counting the edges. The function isEnd-
point(p) returns TRUE if and only if |[V| = 1 or |[V| = 2 and the two object
neighbours of p are 4-adjacent (i.e. they are either horizontal or vertical neigh-
bours (see Algorithm 4)).

4.3 Heap

ANSI C does not supply data structures like heaps oder priority queues. There-
fore, a type-independent heap implementation with automatic memory alloca-
tion was implemented for use in the homotopic thinning algorithm.

A MIN(MAX)-heap is a binary tree that fulfils the heap property: each
parent node is less (greater) or equal than its child nodes. Also, the tree is

4.3 Heap 47

Algorithm 4 Function isEndpoint(p). Compute the number of vertices of the
neighbourhood graph of p. If and only if |V| =1 or |V| = 2 and the two object
neighbours of p are 4-adjacent return TRUE.

Require: v =0 // vertices
if -p € Oy, then
return FALSE
end if
for x € N3(p) do
v++
end for
if v =1 then
return TRUE
end if
// no(p) = n1(p), no(p) = ns(p)
ifv=2AVi,je{l,...,8}:{ni(p),n;(p)} COn=1]i—j| =1 then
return TRUE
end if
return FALSE

®

v [107
lndexi| 1 [2 | 3 [4 |5 |6 |7 | 8|

i“2+1

i*2

Figure 4.3: Heap implementation. Example of a min-heap in the list format:
The root node (green) has index 1 and for every node i its right neighbour (red)
has index 2i and its left neighbor (blue) has index 2i 4 1.

48 Implementation

completely filled on all levels but possibly the lowest. An array is used to store
a list based binary heap, similar to the concept described by Cormen et al.
[2001].

The root node has array index 1. For all nodes with index ¢ the right child
is stored in the array field with index 2¢ and the left child in the field 27 + 1,
respectively (also refer to Figure 4.3).

On this list representation of a binary tree structure, the usual operations are
defined: insert, which adds a new value to the heap and restores the heap prop-
erty, if necessary, and pop (also referred to as delete-min/maz), which removes
the root-node while preserving the heap property.

Additionally, the heap must be of variable size and thus the insert operation
is modified to include a memory reallocation for the case that the heap size
exceeds the preallocated memory. A pseudocode-version of the operations can
be found in Appendix B.

4.4 Flux-Ordered Thinning

The implementations of all basic components that are needed for flux ordered
thinning besides the core algorithm are presented in the sections above: a heap
structure and rules for homotopic thinning are given, as well as a method for
computing the distance map.

In order to compute the outward flux, the gradients VD of the distance map
must be known. The approximation of VD can be done with several means,
e.g. finite differences. For this implementation, the Sobel operator [Sobel and
Feldman, 1973] was chosen to approximate VD.

After computing VD, the average outward flux F(p) must be derived for a
small region around each point p € . Using the smallest region possible, the
8-neighbourhood Ng(p) = {n1(p),...,ns(p)}, the outward flux can be written
as

8

— < VD(ni(p)), N(ni(p)) >
=1

N(n;(p)) is the outward normal of the the neighbourhood at n;(p). For the
4-adjacent (horizontal and diagonal) neighbours Ny(p) the normals are parallel
to the grid axis, and the normals for the diagonal neighbours D4 (p) coincide
with the grid axis vectors after a 45 degree rotation.

With the flux values known for all points, the homotopic thinning can be
applied to the picture. First, all boundary points from 00 are added to a
max-heap that orders the points by their flux value.

Subsequently, each point on the heap is checked for removal. Points are
removed if they are simple and no endpoints. Endpoints are only removed if
their flux value is less than the flux threshold that is given as a parameter.
On removal of a point p, all 8-neighbours Ng(p) are added to the heap if they
became simple points when p was removed.

4.4 Flux-Ordered Thinning 49

Algorithm 5 Flux-ordered thinning algorithm. In this pseudocode repre-
sentation, a precomputed distance map is required (see Section 4.1). Note that
boundary treatment is omitted from the pseudocode. The functions isSimple
and isEndpoint are the core methods of homotopic thinning and are defined in
Section 4.2

Require: dm // precomputed distance map
Require: hp // MIN-heap which orders points by decreasing flux
// gradient approximation with sobel operator
for p = (i,7) € QO do
v.x = (dm[i+1][j-1]42-dm[i+1][j]+dm[i+1][j+1]
-dm([i-1][j-1]-2-dm[i-1][j]-dm[i-1][j+1]) /8
v.y = (dm[i-1][j+1]+2-dm][i] [j+1]+dm[i+1] [j+1]
-dm[l 1][j-1]-2-dm[i] [j-1]-dm[i+1][j-1]) /8
grad[p] =
end for
// flux computation
for p = (i,5) € Oy do
// N: list of precomputed outward normals
flux[p] = > c () (Va), grad(q])
end for
// initialize heap with object boundary
for p = (i,5) € 90;, do
if isSimple(p) then
heaplInsert(hp, p, flux[p]) // insert p into heap with its flux value
end if
end for
// Perform homotopic thinning
while hp.size > 0 do
p = heapPop(hp) // get root of the heap
if isSimple(p) A (—isEndpoint(p) V flux[p] > minflux) then
remove(p) // delete p from object
for ¢ € Ng(p) do
// add all simple neighbours of p to the heap
if isSimple(q) then
heapInsert(hp, g, flux[q])
end if
end for
end if
end while

50 Implementation

4.5 Maximal Disc Algorithm

The maximal disc algorithm uses the precomputed lookup tables provided by
Rémy and Thiel [2005]. The lookup tables are given as text files that contain
two tables in a predetermined format.

First, there is a vector lookup table (VLU) that contains offset vectors for
all neighbours that need to be checked for maximal disc detection, given the
maximal local width of the object. The maximum of local width coincides
with the maximum of the distance map values in Oy and can thus be easily
determined. Each line of the file contains an offset vector and a corresponding
maximal radius, i.e. the VLU does not need to be read entirely, only those
vectors that correspond to a radius that is smaller or equal to the maximal local
width of the object at hand need to be considered.

The second table in a lookup file contains the main lookup table (LUT)
that maps each possible radius of an inscribed disc, to the maximal radii of the
neighbours defined in the VLU. In order to check if a disc is maximal, for each
point z = ¢+ v that can be reached from the centre ¢ of the disc by adding an
offset vector v from the VLU, the corresponding value LUT(x) has to be smaller
than the disc’s radius D(c). Otherwise, the disc around ¢ is not maximal and
therefore, ¢ is no skeleton point.

This check is performed on all object points. After visiting each object point
once and removing points that fail the maximal disc check, the remaining object
points form the skeleton .

Algorithm 6 Maximal disc algorithm. The maximal disc algorithm uses a
precomputed lookup table and the distance map to determine, if an inscribed
disc is maximal.
Require: dm // distance map
Require: vlu // lookup table for displacement vectors
Require: lut // lookup table for distances
for p = (i,5) € Oy, do
k=0
while INOBJ(p) A k < n do
v = viu[k]
for i e {1,...,8} do
// ny,; is v rotated by i - 45°
if dm[p + n, ;] > lut[dm[p]][k+1] then
remove(p) // delete p from object
end if
end for
k = k+1
end while
end for

4.6 Maximal Disc Thinning

The maximal disc thinning algorithm extends the flux ordered thinning algo-
rithm by an endpoint determination phase that uses maximal disc checks as

4.6 Maximal Disc Thinning 51

described in Section 4.5. Flux ordered maximal disc thinning and distance or-
dered maximal disc thinning are identical except for the chosen order. Therefore,
only one pseudocode version is given for both methods (see Algorithm 7).

As the maximal disc algorithm suffers from boundary artefacts for bound-
aries that cannot be accurately represented in the discrete setting, a straightfor-
ward pruning method is used in this work. Spurious skeleton points produced
by the maximal disc algorithm are, in general, isolated, i.e. there are no other
skeleton points close to them. Therefore, all skeleton points that do not have
at least two other skeleton points in their 5 x 5 square-shaped neighbourhood
are pruned before the homotopic thinning process is initiated.

Algorithm 7 Maximal Disc Thinning. The maximal disc thinning algo-
rithm combines a homotopy preserving thinning process with the maximal disc
algorithm as a secondary MAT detection. For this pseudocode representation,
the results from the maximal disc stage are considered as given, as well as
additional computations that are needed for the chosen order.

Require: order // precomputed array of ordering values
Require: hp // MIN-heap which orders points by the chosen order
Require: ep // lookup array for endpoints, computed with maximal disc algo-
rithm
// Prune spurious points, using 5x5 neighborhood Ny
for p € Oy do
if |{z € Mas(p)|ep[z] = TRUE}| < 2 then
ep[p] = FALSE
end if
end for
// initialize heap with object boundary
for p = (i,5) € 00, do
if isSimple(p) then
heaplnsert(hp, p, order[p]) // insert p into heap with its ordering value
end if
end for
// Perform homotopic thinning
while hp.size > 0 do
p = heapPop(hp) // get root of the heap
if isSimple(p) A (—isEndpoint(p) V ep[p]=FALSE) then
remove(p) // delete p from object
for q € Ng(p) do
// add all simple neighbors of p to the heap
if isSimple(q) then
heaplnsert(hp, q, order|q])
end if
end for
end if
end while

52 Implementation

4.7 Adaptive Flux-ordered Thinning

As described in Section 3.1.2, the flux-ordered thinning algorithm with adaptive
thresholding (FOA) uses the maximal disc algorithm to compute a preliminary
skeleton Y. Based on X the adapted threshold 7 is computed as:

Using 7, a standard flux-ordered skeletonisation process is applied to the
image after the threshold computation. A condensed pseudocode version of
FOA is given in Algorithm 8.

Algorithm 8 Flux-ordered thinning with adaptive thresholding uses the max-
imal disc algorithm to compute preliminary locations of skeleton points. Based
on the location of this intermediate MAT, a threshold for flux ordered thinning
is computed.

Require: flux // precomputed array of flux values
Require: hp // MIN-heap which orders points by the chosen order
Require: ep // lookup array for endpoints, computed with maximal disc algo-
rithm
// compute threshold
sum = 0; total = 0
for p € Oy, do
if ep[p] = TRUE then
sum = sum + flux[p]; total = total + 1
end if
end for
minflux = (1 — A) - sum/total
// initialize heap with object boundary
for p € 00;, do
if isSimple(p) then
heaplnsert(hp, p, order[p]) // insert p into heap with its ordering value
end if
end for
// Perform homotopic thinning
while hp.size > 0 do
p = heapPop(hp) // get root of the heap
if isSimple(p) A (—isEndpoint(p) V flux[p] > minflux) then
remove(p) // delete p from object
for ¢ € Ns(p) do
// add all simple neighbors of p to the heap
if isSimple(q) then
heaplInsert(hp, q, order[q])
end if
end for
end if
end while

4.8 Boundary Treatment 53

4.8 Boundary Treatment

All pseudo code versions of the algorithms presented in this chapter omit the
treatment of the image boundaries for the sake of readability. Since, in this
work, it is assumed that objects are fully contained in the input images, the
boundary can be arbitrarily extended with background points without losing
exactness of the object representation. This property of the input images can
be exploited for boundary treatment.

Critical computations that may depend on values outside of the image bound-
ary are the distance map, gradient and flux derivations. Each of those com-
putations relies on the results of the previous one. Consequently, boundary
conditions are considered in reverse order of the actual computations.

Flux computation is performed on 8-neighbourhoods, therefore, the corre-
sponding 3 x 3 mask reaches outside of the image at boundary points. Extending
the size of the gradient map by one in each direction suffices to deal with this
problem.

The boundary treatment for gradient computation depends on the method
that is used, but most of the well-known methods rely on the 8-neighbourhoods.
Note that the size of the gradient map must be extended by two in each direction
because of the boundary requirements for flux computation. Thus, the size of
the distance map must be extended by two in each direction.

Finally, boundary treatment for distance map computation is dependent on
the method, but for Meijster’s algorithm, again, 8-neighbourhoods are used.
Incorporating the extensions that are necessary for the aforementioned com-
putations, the image size must be extended by three in each direction, using
additional background points for padding, in order to remove the need for ad-
ditional boundary checks.

4.9 Correctness of the Implementation

The flux-ordered thinning algorithm has several nontrivial stages that should be
tested separately for correctness of implementation. Otherwise, errors become
difficult to trace. In this section, some brief commentary on the correctness
tests that were applied for this implementation are given.

4.9.1 Correctness of Distance Map Computation

The correctness of any algorithm that computes the Euclidian distance trans-
form can be verified by comparing its results to precomputed exact distance
maps.

Using test cases similar to those of Fabbri et al. [2008] (see Figure 4.4), first
an exact distance map is computed with a brute force algorithm. Those results
are then compared to the results of Meijster’s algorithm.

For a correct implementation, a perfect match in all cases is expected.

4.9.2 Correctness of Homotopic Thinning

Homotopic thinning relies on both, a correct heap implementation and correct-
ness of the two functions isSimple and isEndpoint.

54 Implementation

b) Q)

Figure 4.4: Test images for distance map correctness. a) Images contain-
ing varying amounts of uniform noise (9 pictures, 10%-90%) b) Images with a
varying amount of solid fill (9 pictures, 10%-90%). c) Line through image centre
with varying rotation (10 pictures, 0°-90°). d) Inscribed circle. e) Outlines of a
photograph. f) Original photograph.

Both of those functions can be tested exhaustively by applying them to all
possible object membership configurations of the 8-neighborhood of a point.

There are 28 different configurations for an 8-neighborhood and the subset
of them that yields TRUE for isSimple or isEndpoint can be determined in a
straightforward manner by exploiting symmetries. Thus, a comparison with a
precomputed truth table suffices.

Chapter 5

Results and Discussion

In this section, various tests that were conducted with the algorithms described
in Chapter 4, are presented. Namely, performance and skeleton quality of flux-
ordered thinning (FOT), flux-ordered adaptive thinning (FOA), flux-ordered
maximal disc thinning (FMDT), maximal disc detection (MD) and maximal
disc thinning (MDT), were compared.

The tests use several different methods and were designed to achieve the
following goals:

o Assess the effect of using Meijster’s algorithm [Meijster et al., 2002] instead
of the D-Euclidean algorithm [Borgefors, 1984] in flux-ordered thinning.

e Compare overall performance of FOT, FOA, FMDT, MD and MDT under
practical conditions.

e Assess, in how far skeletonisation results of the different algorithms are
invariant under rotation, translation and boundary noise.

e Compare overall quality of the new methods FOA, FMDT and MDT to
the original flux-ordered thinning method.

e Check in how far the results obtained with the tools for quality assessment
(quality criteria and graph matching, see Chapter 3) correspond to quality
assessment by manual visual examination.

o Assess how well graphdiff [Shasha and Wang, 2000] in combination with
the thinning algorithms (FOT, FOA, FMDT, MDT) can be used for shape
recognition (without adaption of graphdiff to this task).

The following section introduces the testing environment, including a de-
scription of different representative test cases, as well as soft- and hardware
specifications.

5.1 Testing Environment
All algorithms were implemented in ANSI C and compiled with gec 3.4.2. The

tests were conducted on Windows XP SP3, using an dual core processor with
2.71 GHz and 3.5 GB RAM.

%)

56 Results and Discussion

The test images that are described in the following sections are binary images
in the portable grey map (pgm) ascii format with 255 grey tones. Object points
have value zero (black), while all other points are regarded as background points.

In addition to the ANSI C versions of the skeletonisation algorithms, sev-
eral command line tools implementing computational methods for the quality
criteria from Section 3.2.1 were used. Graphdiff, the program that the graph
matching tests are based on, is provided by Shasha and Wang [2000] as a K-file.
K is a programming language that is designed for high performance database
operations. For a short description of the command line tools, see Appendix A.

5.1.1 Runtime Tests

Runtime optimisation is not a main focus of this work, but nevertheless, the
performance of the algorithms was documented for all test cases. Runtime was
measured directly by the skeletonisation program, using the C function clock().

Additional command line tools written in ANSI C were used to compute
the average runtime of the algorithms for each test set. While runtime was
recorded for all tests described in Sections 5.1.2 and 5.1.3, only two test sets are
specifically designed for runtime analysis.

Two image collections were created to test runtime behaviour for images
of varying size with constant content. Shapes for the runtime experiments
were chosen to be natural objects of variable size and complexity.The test set
size_apple contains rescaled versions of the quadratic binary image of an apple.
For the images of this set, the picture height takes the values 50, 100, 200,
400, 800, 1200 and 1800. A second test set, size_human, contains rescaled ver-
sions of a human silhouette (heights: 100, 300, 500, 800, 1000, 1200, 1400). For
all images, the runtime of each algorithm is recorded.

5.1.2 Invariance Tests

Four sets of images were used to determine invariance of the skeletonisation
results of different algorithms under Euclidean transformations and under noise,
respectively.

All of the four test sets that are described in this section are based on two
original images, one of a rectangle with axis-parallel outlines and one of a jar.
The two base images are chosen as representatives of different shape classes.
The rectangle is a simple geometric object with no holes or curved boundary
lines and is, in the original, unmodified image, described exactly by its discrete
boundary. In contrast, the jar is a natural and more complex shape that has
a hole and cannot be described with full accuracy by a discrete binary picture,
because its boundary lines are curved.

The rotation invariance sets rot_rect and rot_jar contain rotated versions of
the aforementioned base images. Rotations were performed in an external image
editing software in five degree steps. The image sets contain rotations by 5, 10,
15, 20, 25, 30, 35, 40 and 45 degrees (see Figure 5.1).

Following the same basic approach, the image collections transl_rect and
transl_jar feature the same original objects, a rectangle and a jar, that are
translated by nine different two-dimensional translation vectors. Those two
image sets are representatives for translation invariance tests.

5.1 Testing Environment 57

(b)
Figure 5.1: Test images for rotation invariance. The two test sets rot_rect

and rot_jar contain rotated versions of the two respective base images, one of a
rectangle with axis-parallel outlines and one of a jar.

(a)

Figure 5.2: Test image for noise invariance. Boundary noise is composed by
single additional points adjacent to the boundary (black) and points that are re-
moved from the rectangle’s boundary. In order to make the small perturbations
visible, the region marked with a red rectangle is enlarged.

In order to test invariance of the skeletonisation results under small-scale
boundary noise, random noise was added to the boundary of the rectangle and
the jar. Boundary noise refers, in this context, to object points that are deleted
from the boundary of the original shape (false negatives) and additional ob-
ject points adjacent to the original’s boundary (false positives). The amount
of boundary noise reaches from five to thirty pixels (in steps of five). The
corresponding picture sets are named noise_rect and noise_jar.

For all invariance tests, two testing strategies are applied. For the first
testing method, the quality measures for exactness of reconstruction, skeleton
minimality and skeleton complexity (see Section 3.2.1) are computed and com-
pared.

The second strategy is based on graph matching and uses the approximate
graph matcher graphdiff [Shasha and Wang, 2000] to compare the skeletons of
rotated shapes to the skeleton of the original shape, as described in Section
3.2.2.

58 Results and Discussion

5.1.3 Shape Database Tests

In order to test the skeletonisation algorithms under conditions that are closer
to practical applications than the invariance test described in Section 5.1.2,
the skeletonisation methods are applied to a shape database of 1400 images.
The test images of this database were taken from the MPEG-7 core experiment
database for shape descriptors (CE-Shape-1) and converted to the input format
of the skeletonisation algorithms. CE-Shape-1 is widely used and specifically
designed for testing shape descriptors [Latecki et al., 2000].

For all images in the database and for all algorithms, the corresponding
medial axis transform (MAT) is computed. The skeleton analysis based on the
quality measures from Section 3.2.1. FOT is the only one of the six algorithms
that requires a parameter, the flux threshold 7. For the shape database test,
several thresholds for FOT were used and 7 was chosen such that, for most
pictures, spurious branches are pruned.

Since for CE-Shape-1 no exact reference skeletons for comparison exists,
graph matching cannot be applied directly, as for the invariance tests. Instead,
a small-scale shape recognition experiment is conducted in order to complement
the comparison of quality criteria.

For the shape recognition experiment, due to high runtime, only a small
subset of the shape database that is displayed in Figure 5.3 is used. In ad-
dition to the database small_db (see Figure 5.3), five query images are chosen
from the full image set shape_db, that correspond to similar shapes in small_db.
Skeletonisation with FOT, FOA, FMDT and MDT is performed on all of the
aforementioned images and the resulting MATSs are converted to skeleton graphs.
For each algorithm separately, matching scores for all pairs containing one query
image and one image from small_db are computed using graphdiff. The image
pair with the highest score is considered the query result and represents the
database entry that is most similar to the query shape.

5.2 Test Results

The results of the tests described in Section 5.1 are presented in the following
sections. In order to make interpretation of the data easier, the large amount
of information that was collected during the test runs is given in detail for
specific cases only and in terms of averages for the rest of the image database.
Additionally, each type of data (runtime information, quality scores and graph
matching results) is treated separately.

All of the following sections deal with one distinct aspect of skeletonisation
analysis. Runtime data is presented in detail for invariance tests and runtime
tests on images of variable size. The runtime of the algorithms for the large im-
age database is given in terms of averages. The two approaches for determining
skeleton quality, namely scores for the quality criteria from Section 3.2.1 and
the graph matching method (see Section 3.2.2) do not depend on each other.
Therefore, the corresponding data is presented in separate sections.

An additional graph matching data set shows the results of a shape recog-
nition experiment that was conducted in order to display the practical use of
graphdiff in combination with several different skeletonisation algorithms.

Another section is dedicated to preservation of homotopy and thinness, since

5.2 Test Results 59

Figure 5.3: Examples from the Shape Database. The twenty images above
are an excerpt from the shape database shape_db, which includes 1400 different
shapes. The examples conform with the contents of small_db, which is used for
the shape recognition experiment.

FOT ——FOD FOT ——FMDT —— MD
/ FOA FOD —= MDT
4 A
S/ 15 |
/S /
@ 3 4 O '/
~ / ~ /LS
© / © '/
£ E 1 S
€ 2 5 //
J 05 | 7
1 7 e 2
e 7
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400
angle (°) image height (pixel)
(a) size_apple (b) size_human

Figure 5.4: Runtime for varying picture size.

those are binary criteria that can be checked independently from runtime and
the other quality criteria. Interpretations and a discussion of implications that
result from the different test runs can be found in Section 5.3.

60 Results and Discussion

FOT ——FMDT —— MD FOT ——FMDT —— MD
FOA —— FOD —=— MDT —-— FOA —— FOD —=— MDT ——
O
/7 e e e
— o e e T . . NE— -]
) T - T) B o
/ — — — e —e—
Ag 0.5 ¢ //// E .g 05 ¢ e o o]
£ // € /’—94 A — e
el // el
/
O L L L L O L L L L L
0 10 20 30 40 50 60 0 5 10 15 20 25 30 35 40 45
angle (°) angle (°)
(a) rot_rect (b) rot_jar
Figure 5.5: Runtime for rotation test sets.
1 1
FOT ——FMDT —— MD FOT ——FMDT —— MD
FOA —— FOD —=— MDT —— FOA —— FOD —=— MDT ——
@ N _ JEa— @ B]
g o5}) I g 05 -
[- I '
0 L L L " L n L n 0 L L L L L n L "
o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9
image (index number) image (index number)
(a) transl_rect (b) transl_jar

Figure 5.6: Runtime for translation test sets.

5.2.1 Runtime
Comparison of Distance Map Algorithms

A direct comparison of the original flux-ordered thinning with the D-Euclidian
algorithm [Borgefors, 1984] and the modified flux-ordered thinning algorithm
that uses Meijster’s algorithm [Meijster et al., 2002] reveals that FOT is consis-
tently faster. The runtime advantages of FOT over FOD are however small for
both the invariance test sets (see figures 5.5-5.7) and the images of the shape
database (see Table 5.1). More distinct differences become visible for larger
image sizes (see Figure 5.4).

Invariance Tests

For the invariance tests, MD is by far the fastest method, followed in ascending
order by FOT, FOD, MDT, FOA and FMDT. This runtime order can be ob-
served in figures 5.5-5.7, as well as in Table 5.1 that displays average runtime
for the invariance tests.

The only exceptions from this rule are the images that contain a rectangle

5.2 Test Results 61

FOT ——FMDT —— MD FOT ——FMDT —— MD
FOA —— FOD —=— MDT —— FOA —— FOD —=— MDT ——
z — R z I S
g oost— 2 o5 o
€ e e T T € — |
E — E
0 : : : : 0 : : : :
0 5 10 15 20 25 30 0 5 10 15 20 25 30
boundary noise (no. of pixels) boundary noise (no. of pixels)
(a) noise_rect (b) noise_jar
Figure 5.7: Runtime for noise test sets.
Table 5.1: Runtime averages
test set FOT FOA FOD FMDT MD MDT

rect_rot 0.520556 | 0.732556 | 0.597444 | 0.790111 | 0.297000 | 0.658111
rect_transl | 0.312100 | 0.483000 | 0.381400 | 0.553300 | 0.267300 | 0.573500
jar_transl | 0.416600 | 0.614000 | 0.454600 | 0.665600 | 0.259600 | 0.556100
jarmoise | 0.433143 | 0.625143 | 0.466429 | 0.687714 | 0.263571 | 0.569429
shape_db | 0.078000 | 0.140000 | 0.093000 | 0.141000 | 0.062000 | 0.125000

with axis-parallel outlines, where MDT is the slowest algorithm, falling behind
FOA and FMDT speed-wise. Such rectangles with exact discrete representation
are contained in the original picture for the invariance test sets rot_rect (angle:
0°) and all of the images in transl_rect. For the noise invariance tests, MDT and
FMDT vary in their position in the runtime order, depending on the location
and amount of noise (see Figure 5.7).

Shape Database

The test runs under practical conditions using the shape database shape_db
(see Table 5.1) confirm the tendencies that are described in Section 5.2.1. On
average, MD is the fastest method, followed in ascending order by FOT, FOD,
MDT, FOA and FMDT.

For the image sizes of the shape database (varying from roughly 250 x 250
to 640 x 640), FOT does not have significant runtime advantages over FOD and
is not significantly slower than the MD algorithm. FOA, FMDT and MDT are,
on average, roughly two times slower as FOT and MD, respectively.

62

Results and Discussion

Table 5.2: Quality averages for rot_jar

algorithm | error score | minimality score | complexity score
FOT 319.700012 1249.800049 10.200000
FOA 294.299988 1269.699951 12.400000
FMDT | 270.500000 1299.699951 44.700001
MD 213.399994 2606.399902 297.200012
MDT 345.899994 1235.199951 11.000000
Table 5.3: Quality averages for rot_rect
algorithm | error score | minimality score | complexity score
FOT 20.777779 929.444458 6.000000
FOA 18.888889 933.777771 6.000000
FMDT 26.000000 948.444458 26.666666
MD 8.555555 2229.888916 286.777771
MDT 32.777779 918.444458 6.000000

5.2.2 Quality Criteria

In this section, the quality criteria of Section 3.2.1, namely exactness of recon-
struction, skeleton minimality and skeleton complexity are assessed by using
quality scores.

Exactness of reconstruction is measured using the number of erroneous pixels
in the image that is reconstructed from the skeletonisation results. Erroneous
pixels are image points that deviate from the original image. The corresponding
quality score is referred to as the error score (ERR). The minimality score
(MIN) is used to assess skeleton minimality and is derived as the total number
of skeleton points in the skeletonisation results. Finally, the complexity score
(CMP) is computed by counting all branching and endpoints (see Sections 2.7
and 3.2.1) in the MAT's that were computed during the test runs.

In order to allow direct comparisons, the scores are not normalised to the
quality measures e, m and c¢ described in Section 3.2.1. Quality scores are
expressed as a percentage only for the shape database test.

Invariance Tests

Table 5.2 and 5.3 display the averages for both rotation invariance tests, rot_rect
and rot_jar. Detailed information on the quality scores for each test image of
rot_jar is given in Table 5.7.

For the test set rot_jar, the MD method produces the smallest amount of
errors, followed in ascending order by FMDT, FOA, FOT and MDT. The ex-
actness order is similar for rot_rect, except for FMDT, which ranks second to

5.2 Test Results

63

Table 5.4: Quality averages for noise_jar

algorithm | error score | minimality score | complexity score
FOT 97.571426 1330.571411 11.142858
FOA 92.142860 1328.285767 13.142858
FMDT 59.000000 1319.000000 34.000000
MD 34.714287 2326.857178 285.857147
MDT 129.714279 1265.428589 9.571428

Table 5.5: Quality averages for noise_rect

algorithm | error score | minimality score | complexity score
FOT 14.571428 805.000000 6.000000
FOA 16.000000 805.000000 6.000000
FMDT 21.571428 790.142883 6.000000
MD 16.428572 926.142883 27.714285
MDT 34.142857 786.428589 6.000000

last in the exactness order, followed by MDT.

In both test sets, the average minimality score of all algorithms is similar,
the only exception being the MD method, which produces roughly two times
as much skeleton points as the other algorithms. The skeleton complexity score
of FOT, FOA and MDT is similar for all test images. FMDT has a notably
higher complexity score than the aforementioned algorithms (roughly four times
larger). An even more significant difference in complexity occurs for MD, which
produces skeletons with scores that are roughly fifty times higher than those of
the other algorithms.

A picture by picture comparison of the scores for rot_jar and rot_rect reveals
that for all algorithms, there is a noteworthy increase in error from the original
image (angle: 0°) to the rotated shapes. However, for the rotated shapes, the
error stays stable with comparatively small changes from picture to picture.

In Table 5.7, the skeleton complexity score varies only slightly for MDT (10-
12), FOA (10-14) and FOT (8-14). In contrast, the CMP score of FMDT ranges
from 32 to 62 and every skeleton has a distinct number of end and branching
points, no two scores are equal. Skeleton complexity for MD is consistently
higher than for all other algorithms and fluctuates more.

For the translation tests, no separate data is given, since all scores are iden-
tical to the original shape for all translated objects and for all algorithms. The
score values for the translated images coincide with the scores for the unrotated
objects from the rotation test sets. The noise invariance tests (see tables 5.4,
5.5 and 5.8) reveal tendencies similar to the rotation invariance tests.

64 Results and Discussion

Table 5.6: Quality averages for shape_db

algorithm | error score | minimality score | complexity score
FOT 346.423218 995.720276 31.683489
FOA 322.351837 1023.875244 31.985580
FMDT | 145.362656 1070.573120 48.845711
MD 90.453499 1878.093750 229.994949
MDT 299.688538 979.944458 31.224945

Database Tests

For the tests on the test set shape_db, only averages for the quality scores ex-
actness of reconstruction, skeleton minimality and skeleton complexity are pre-
sented in this work, due to the large amount of data (more than 16.000 quality
scores). The averaged quality scores can be found in Table 5.6.

The maximal disc algorithm produces, on average, the most exact recon-
structions, since its average reconstruction error is the lowest (see Table 5.6).
Skeletons computed by the MD method are also significantly larger and more
complex, as the skeleton minimality and skeleton complexity scores suggest.

FMDT yields skeletons with a better reconstruction quality than all other
homotopy preserving algorithms. Again, similar to the MD method, the ad-
vantage in exactness comes at the cost of higher minimality and complexity
scores. The skeletonisation results of FOT, FOA and MDT have very similar
complexity. Additionally, the minimality score varies only slightly with FOA
having the largest skeletons. However, FOA skeletons are also more exact than
those produced by FOT.

In Table 5.6 and Figure 5.8 it can be observed that the MDT algorithm, the
only homotopy preserving algorithm in the selection that does not rely on a flux
order, has the lowest (i.e. the best) values for all three quality scores. Figure 5.8
displays the quality scores in terms of percentages, relative to the total number of
object points or, for skeleton complexity, relative to the total number of skeleton
points. This method of representation shows that all algorithms produce less
than 1% erroneous pixels, relative to the total number of object points.

5.2.3 Graph Matching

The results in this section were obtained by performing graph matching as de-
scribed in Section 3.2.2; using the approximate graph matcher graphdiff [Shasha
and Wang, 2000]. Graphdiff computes the best match for a query graph and
a database of graphs that results in the output of a node mapping and a score
value. The score represents the quality of the match as the quantity of matched
nodes, normalised in relation to the total number of nodes.

Since the exact node mappings are irrelevant for skeleton quality, in this
section only the scores are presented. The highest possible score is one, which
corresponds to a perfect match, while the lowest possible score is zero (no match
found).

65

5.2 Test Results

0T LLIT c€F | L6 €0Lt e€c | 9¢ ghel 0€e | ¥1 8eel 0z& | OT L8IT 16¢ Gp
¢l LIl 86¢ | 69z 9¥9z SIc | e ¥Sel S6T | FT 91l 6GE | ol L0G1 €€ v
¢l 90Tl 9¥¢ | cle 8.9 F¥ge | 6V @lLol 6L | ol 6GGl 88% | VI €9l €68 Ge
0T 8el 8¥e | L0& 869z 98¢ | @9 SOST 8L | &l ¥Lel ¥6¢ 8 Lecl SFE 0¢
¢l €Fel Gee | 0GE L89% 8€¢ | 68 98¢l ¥6T | ol Seel 0g€ | O1 9Fel 0¥ St
01 V9ol 1.& | 8.6 @89 69% | 8¢ 6061 €0¢ | ¥I ¥8cl ¥Ie | OI 8%el T¥E 02
¢l LSeT IT¥ | 11€ 2192 @6G | I¥ 0%l 62€ | FI FOST L€€ | OT 0L61 1.€ qT
0T 92T €6¢ | 08 GPSTc €€ | @S Le€T G6c | OT @8el GFe 8 0L1 e 01
¢l €Lel @Se | V9 ©lSe S8T | WG PSel @l | 0T 1621 68€ | O S8GT GFE G
0T 99T 98 | ¥8¢ 98¢ 01 ge 91eT 0¢ (AR (T AR 0T S8gT 09 0
dIND NIN 994 | dND NIN 944 | JND NIN 944 | JND NIN 984 | JND NIN 9ud

LA an IANA VOd 104 (o) o18uy

4D[704 1899 9OURLIBRAU] I0J RLIOLIY) AN[RNy) :1°G 9[qR],

1Iscussion

Results and D

66

Table 5.8: Quality Criteria for Invariance test noise_jar

FOT FOA FMDT MD MDT
noise | ERR MIN CMP | ERR MIN CMP | ERR MIN CMP | ERR MIN CMP | ERR MIN CMP
0 60 1285 10 o7 1294 12 30 1316 32 10 2286 284 86 1266 10
) 65 1285 10 o7 1294 12 34 1318 34 13 2317 284 102 1261 8
10 72 1285 10 64 1294 12 42 1314 30 19 2296 286 96 1266 8
15 107 1285 10 102 1294 12 73 1321 36 44 2323 289 154 1267 10
20 136 1385 12 104 1316 14 78 1318 32 o1 2359 290 163 1263 11
25 131 1285 10 145 1294 12 73 1330 42 95 2326 286 158 1268 10
30 112 1504 16 116 1512 18 83 1316 32 51 2381 282 149 1267 10

5.2 Test Results 67

9 1
S o075
()
C
S o5
8
=
Z 025
c
[e]
Q
o 0

FOT FOA FMDT MD MDT

(a) percental exactness of reconstruction

skeleton size (%)

FOT FOA FMDT MD MDT

(b) percental skeleton minimiality

14
12

end/branching points (%)

oN o

FOT FOA FMDT MD MDT

(c) percental skeleton complexity

Figure 5.8: Percental database results. Exactness of reconstruction and
skeleton minimality are given in terms of percentages of the total object points.
Skeleton complexity is given as a percentage of the total skeleton points.

Invariance Tests

Matching scores for the application of graphdiff on the test sets rot_rect and
rot_jar can be found in Table 5.9 and Table 5.10. FOT, FOA and MDT feature
similar graph matching results, with high matching scores that vary between
0.64 and 0.95 for rot_rect. While those algorithms are not entirely rotation
invariant, the high scores suggest that the configuration of the branches stays
the same, only branch length varies. In contrast, FMDT has consistently lower
matching scores and for one case, no match can be found by graphdiff, at all.
For rot_jar, the tendencies are similar, but overall the scores are lower for all
algorithms.

For the translation tests, both for the rectangle and the jar test sets, graphdiff

68

Results and Discussion

Table 5.9: Graph Matching: Invariance test rot_rect

rotation angle (°) FOT FOA FMDT MDT
5 0.9453704 | 0.7430553 | 0.3776216 | 0.7300299
10 0.8947018 | 0.8916416 | 0.06075862 | 0.8883656
15 0.6539656 | 0.6566482 | 0.00000000 | 0.6409290
20 0.8238728 | 0.8130085 | 0.54800000 | 0.8136446
25 0.7966479 | 0.7865378 | 0.79441380 | 0.7826887
30 0.7680811 | 0.7629597 | 0.34068970 | 0.7618113
35 0.7430201 | 0.7402330 | 0.48583010 | 0.7324194
45 0.7477580 | 0.7470745 | 0.74984300 | 0.7280779

Table 5.10: Graph Matching: Invariance test rot_jar

rotation angle (°) FOT FOA FMDT MDT
5 0.8696369 | 0.7364974 | 0.08883411 | 0.4898076
10 0.5578834 | 0.6992813 | 0.1154723 | 0.6859648
15 0.8602323 | 0.6960153 | 0.09060973 | 0.5542712
20 0.6298299 | 0.7153714 | 0.1313318 | 0.5814962
25 0.9208212 | 0.7721554 | 0.1762637 | 0.5362848
30 0.5934053 | 0.6839552 0.139588 0.6249221
35 0.2755947 | 0.4672229 | 0.06131341 | 0.5482262
40 0.5928457 | 0.5477218 | 0.1057576 | 0.5772137
45 0.4027719 | 0.4217458 | 0.1634385 | 0.4868252

reports a matching score of 1.0 for all tests. This means, that perfect matches are
found for all combinations of test images and algorithms and thus, all algorithms
are fully invariant under translation.

The noise invariance tests show similar results as the rotation invariance
tests. FMDT has poor scores, while the results for FOT, FOA and MDT are
significantly higher. However, a bigger gap in the matching scores can be ob-
served between FOT/FOA and MDT. FOT and FOA both feature several per-
fect matches, while MDT produces consistently lower scores.

Database Queries

The shape recognition experiment that was conducted with the set of twenty
database images from small_db and five query images yielded mixed results,
depending on which algorithm was used to compute the skeletons. The query

5.2 Test Results 69
Table 5.11: Graph Matching: Invariance test noise_jar
noise pixels FOT FOA FMDT MDT
5 1.0000000 | 1.0000000 | 0.8284314 | 0.4949118
10 1.0000000 | 0.9149658 | 0.6065511 | 0.8498562
15 1.0000000 | 1.0000000 | 0.9108073 | 0.9992832
20 0.7029765 | 0.7266314 | 0.2187128 | 0.6371714
25 1.0000000 | 1.0000000 | 0.2104022 | 0.9778802
30 0.4024742 | 0.6244489 | 0.4311077 | 0.5545693
Table 5.12: Graph Matching: Database query results
FOT FOA FMDT MDT
query match score | match score match score | match score
bone-13 | cup-5 0.534 | bone-14 0.686 | beetle-9 0.244 | car-16 0.384
> \
— / L=
f B : / ¥ o
cup-4 cup-5 0.506 | cup-5 0.469 | phone-17 0.327 | phone-2 0.380
N | o B < o
fly-10 fly-8 0.134 | bat-15 0.134 | turtle-5 0.156 | bat-4 0.167
% »
bat-14 bat-4 0.180 | bat-4 0.124 jar-8 0.140 | bat-15 0.202
1 | apple-3 0.567 | apple-3 0.608 | apple-2 0.340 | apple-2 0.548

T

T

1

1

images and the resulting best match from the database, along with its graphdiff
score are displayed in Table 5.12.

Queries based on FOT and FOA results yield a correct corresponding shape
from the database in four of five cases. Shape recognition with MDT succeeds

in two of five cases, while FMDT produces only one correct result.

The matching scores for MDT and FMDT are notably lower than the scores

70 Results and Discussion

for FOT and FOA. Another tendency that can be observed is, that for more
complex skeletons (like the fly’s skeleton) the matching score is lower than for
simple skeletons (like the apple’s skeleton).

5.2.4 Homotopy and Thinness

Homotopy and thinness were checked manually for all pictures in the various
test sets. As expected, all algorithms that use the homotopy preserving thinning
rules (FOT, FOA, FOD, FMDT, MDT) produce skeletons that are both thin and
homotopic to the original shapes. All skeletons computed by the aforementioned
algorithms that contain disconnected components correspond to original images
that also contain multiple disconnected shapes.

The maximal disc algorithm, in contrast, ensures neither homotopy to the
original shape, nor thinness, which is confirmed by the test runs. Virtually
all skeletons computed with the MD method are not thin and feature several
disconnected components.

5.3 Discussion

In the following subsections, the results of runtime and skeleton analysis of
Section 5.2 are interpreted.

5.3.1 Runtime Discussion

The results on the image database of the MPEG7 Core Experiment revealed
some unexpected tendencies: due to the relatively small image size, Meijster’s
algorithm does not display significant performance advantages in comparison
to the D-Euclidean algorithm. For the same reasons, FOT is only marginally
slower than the MD method, though MD does not use homotopic thinning rules,
but only performs one single check on a shape-dependent neighbourhood of each
image point.

Overall, the runtime of the newly proposed methods FOA, FMDT and MDT
is significantly higher than the one of FOT. This however follows directly from
the secondary MAT detection that is applied in all of the three methods. FOA,
FMDT and MDT perform maximal disc detection on the image as a preliminary
computation step. Thus, the runtime of MD is added to the runtime of the
thinning method that is also applied by FOT. The missing flux computation
of the MDT algorithm explains its advantages over FMDT, but is otherwise
negligible.

5.3.2 Quality Score Discussion

The quality scores based on the criteria from Section 3.2.1 turn out to provide a
much deeper insight into skeleton quality than just the number of reconstruction
errors or visual examination. Comparing the minimality and complexity scores
of FOT, FOA or MDT with the results of FMDT shows clearly that FMDT
produces qualitatively inferior skeletons, though it features very competitive
exactness values. The high complexity and skeleton size suggests that there are
spurious branches. This fact corresponds with visual examination of the results

5.3 Discussion 71

(a) FOT (b) FMDT

Figure 5.9: Spurious branches in FMDT results. The skeleton on the
right features many spurious branches extending from the branch in the mid-
dle. Those unwanted branches only appear for FMDT, the expected result is
displayed on the left (skeletonisation result of FOT).

(see Figure 5.9). Concerning MD, the CMP and MIN scores are significantly
higher than all other algorithms in the field, which results from the lack of
homotopy preservation of the method.

Interpreting the scores for the invariance tests, all algorithms are clearly fully
invariant under translation, while none of them are entirely invariant under
rotation or boundary noise. The scores of FOA, FOT and MDT are mostly
stable for the rotation and noise sets which suggests minor differences in the
skeletons, but an overall similar structure. However, for FMDT and MDT, the
highly variable CMP scores imply that skeleton structure changes significantly
for those algorithms. Again, this observations can be confirmed by manual
visual examination of the results.

While quality scores prove to be a valid tool for skeleton comparison, this
method requires a manual comparison of three individual scores, leaving room
for different interpretations of the data. For practical applications, priorities
of the different scores might shift, as the following examples demonstrate: for
compression, MIN is the most important score, followed by ERR, while CMP
is insignificant. Since the shape should be represented by minimal number of
skeleton points, while exactness of reconstruction is as high as possible, skeleton
complexity is irrelevant. For shape recognition with graph matching, CMP is by
far the most important score, since CMP assesses the configuration of branches
in the skeletons and therefore also gives insight on the structure of the resulting
skeleton graphs.

5.3.3 Graph Matching Discussion

Graph matching turns out to be an effective method for invariance tests. Graphd-
iff provides a single matching score for each comparison and thus represents the
similarity of two skeletons much more efficiently and clearly than the quality
scores. The results are similar for both methods: full translation invariance
is suggested by perfect matches for the translation invariance tests. Rotation
invariance and noise invariance are reasonably good for FOT, FOA and MDT.
FMDT and MD achieve very low graph matching scores, which suggests poor

72 Results and Discussion

invariance under rotation and boundary noise. Those tendencies correspond to
the visually determined observations.

However, the implementation of graph matching in this thesis also features
a significant weak point. Only the configuration and length of branches is in-
corporated in the skeleton graphs that are compared with graphdiff. The MAF
values are not considered in this model. This means, that even a perfect match
of two skeleton graphs does not guarantee that the corresponding shapes are
identical (see Figure 2.3), since the MAT alone is not a unique shape descriptor.

While the shape recognition experiment that was conducted on small_db is
not representative for the full capacities of graphdiff for skeleton-based shape
recognition, due to the small size of the database and the limited number of
queries that were analysed, the results reinforce the validity of the quality crite-
ria for skeletons. The experiment shows that skeletons with spurious branches,
like the ones of the FMDT method, are significantly less well-suited for shape
recognition than skeletons with a less complex structure (FOT, FOA).

5.3.4 Comparison of Quality Assessment Methods

Both, quality scores (Section 3.2.1) and graph matching (Section 3.2.2), prove
to be valid tools for skeleton analysis. The implications for skeleton quality that
result from the application of both methods correspond to the manual, visual
analysis of skeleton quality and can thus add credibility to prevalent methods of
skeleton analysis that are based solely on visual confirmation and reconstruction
quality.

The two methods offer individual advantages and drawbacks. Graph match-
ing produces one single matching score for the analysed skeleton, which is a
very clear way of describing skeleton quality. This method however requires a
reference skeleton graph. For invariance tests, such a reference skeleton is pro-
vided by the MAT of the base image, but for database tests, for each image,
the exact skeleton must be known in order to build a skeleton graph from it.
Additionally, the conversion of skeletons to skeleton graphs is non-trivial and,
in the implementation that was used in this thesis, has significant weak points
(missing incorporation of MAF values).

In contrast to graph matching, quality scores feature three different scores
that must be interpreted holistically. This is both an advantage over graph
matching and a drawback. On one hand, each score gives information on a
single aspect of skeleton quality (exactness, minimality and complexity) that
cannot be extracted from the graph matching score, but on the other hand,
combining the scores into one single quality score is non-trivial, as demonstrated
in Section 3.2.3. A clear advantage of the quality scores over graph matching is
however, that no reference skeleton is needed. The scores can be computed from
an arbitrary MAF and the original picture without the need of any additional
information.

Chapter 6

Conclusions

6.1 Summarising Remarks

In this work, the flux-ordered thinning (FOT) method based on Hamiltonian
mechanics, originally proposed by Siddigi et al. [2002], was used as a basis
for new skeletonisation algorithms. FOT identifies skeleton points by applying
a threshold 7 to the outward flux values of the points in the image domain.
Points with a negative flux value of high magnitude coincide with the sinks
of the distance map’s gradient vector field and thus with the skeleton points
(see Chapter 2). In a homotopic thinning process, points are removed from the
object, in inverse order of their flux value, until a thin discrete set remains that
has the same major topological features as the original shape. Endpoints of this
thin set of lines and arcs are removed based on the aforementioned threshold
criterion for MAT points.

Two general methods that remove the need for parameter adjustment in the
FOT method by removing the need for the flux threshold 7 were proposed: flux-
ordered adaptive thinning (FOA), that uses a secondary MAT detection (SMD)
method to adapt the flux threshold to the input shape and flux-ordered maximal
disc thinning (FMDT). FMDT uses a SMD to replace the threshold criterion
entirely. For a concrete implementation of FOA and FMDT, a maximal disc
detection (MD) algorithm by Rémy and Thiel [2005] was used as the SMD. An
additional thinning algorithm was proposed, which does not rely on the outward
flux: maximal disc thinning (MDT) uses the distance to the shape boundary
to define the thinning order and relies on the MD method to identify skeleton
endpoints. For all of the new algorithms, an improved method of distance map
computation was applied, Meijster’s algorithm [Meijster et al., 2002].

In order to compare the new methods to the original FOT method, two
distinct means of quality analysis for discrete skeletons were proposed. Sev-
eral quality criteria were introduced, and three primary criteria were used to
define quality measures: exactness of reconstruction (the deviation of the recon-
structed shape from the original), skeleton minimality (the number of skeleton
points) and skeleton complexity (number of branching and endpoints of the
skeleton). As a second method for quality assessment, graph matching was pro-
posed. Skeletons are transformed into graphs by using endpoints and branching
points as nodes, connecting them with edges if they are connected by branches

73

74 Conclusions

in the skeleton. The branch lengths are used as edge weights. An approximate
graph matcher, graphdiff [Shasha and Wang, 2000] was used for an implemen-
tation of graph matching.

A series of tests was conducted, both to assess performance and output qual-
ity of the newly proposed algorithms and to compare them to the original FOT
method, and in order to test the practical use of the proposed quality assess-
ment methods. The tests relied on image sets that were specifically designed
to check invariance of the algorithms under rotation, translation and boundary
noise. Additionally, tests were conducted on a widely used test database for
shape descriptors, the MPEGT core experiment CE-Shape-1 database [Latecki
et al., 2000].

The tests confirmed that Meijster’s algorithm offers performance improve-
ments over the distance map computation in the original FOT algorithm. Those
advantages are however smaller than expected and show primarily for images of
large size. The new methods FOA and MDT yielded results comparable or supe-
rior to FOT without the need for parameter adjustments. Both algorithms are
however slower than FOT, due to the additional runtime of the SMD. FMDT
needs further work in order to be competitive to the other algorithms in the
field, because its skeletons feature many spurious branches.

Quality scores and graph matching both yielded solid skeleton analysis re-
sults that correspond to manual visual observations and can be used as a basis
for more elaborate methods for comparisons of skeletonisation methods. Sev-
eral proposals for improvements of the quality measures and the skeletonisation
algorithms described above are given in the following section.

6.2 Outlook

The modified versions of the flux-ordered thinning algorithm, namely FOA and
FMDT offer ample opportunities for improvements. While pruning of spurious
branches works well on FOA, FMDT needs more elaborate treatment of bound-
ary artefacts. Since both FOA, FMDT and, additionally, MDT are general
methods that are not limited to a specific choice of the secondary MAT detec-
tion algorithm, the application of SMDs other than the maximal disc method
[Rémy and Thiel, 2005] can be used to improve performance and output quality
of the aforementioned algorithms.

Considering pruning methods for spurious branches, the minimisation ap-
proach that was only briefly discussed in Section 3.2.3 may harbour the poten-
tial for the creation of new pruning algorithms. By further refining the cost
function and finding methods of approximating the cost change for removing
branches, correction stages could be designed. In order to base full skeleton-
isation algorithms on this approach, the cost function would have to undergo
major changes that make minimisers unique or significantly reduce the amount
of possible candidates.

The quality criteria introduced in Section 3.2.1 yield valid results for the
analysis of skeleton quality, but do not incorporate all of the skeleton’s important
properties, such as the MAF values. Adding further quality measures to the
existing ones and finding a way to combine them into a robust general measure
for skeleton quality, similar to the graph matching score, could be the focus of
future work.

6.2 Outlook 75

Finally, graph matching as a comparison tool offers many possibilities for
further research. The application of the graphdiff method by Shasha and Wang
[2000] to skeleton analysis and shape recognition can be further improved. Both
more complex edge weights and node types could be used to enhance the ex-
actness of skeleton comparison, for example by incorporating the medial axis
function’s value of endpoints and branching points into the node type, as well as
the number of branches. Naturally, not only the input graphs can be modified
to improve results, but also the graph matching method. In particular, using
graph matching methods that are specifically designed for determining similarity
of skeleton graphs [Siddiqi et al., 1999; Sebastian et al., 2001] is promising.

In the future, an optimised graph matching method, combined with an image
database like CE-Shape-1, extended by skeleton graphs of exact skeletonisation
results, could act as a reliable method for comparison of skeletonisation algo-
rithms.

76

Conclusions

Bibliography

Blum, H. A Transformation for Extracting New Descriptors of Shape. In
Wathen-Dunn, W, editor, Models for the Perception of Speech and Visual
Form, pages 362—-380. MIT Press, Cambridge, 1967.

Borgefors, G. Distance transformations in arbitrary dimensions. Computer
Vision, Graphics and Image Processing, 27(3):321-345, 1984.

Bornemann, F and Mérz, T. Fast image inpainting based on coherence trans-
port. Journal of Mathematical Imaging and Vision, 28(3):259-278, 2007.

Cormen, T. H, Leiserson, C. E, Rivest, R. L, and Stein, C. Introduction to
Algorithms. MIT Press/McGraw-Hill, 2nd edition, 2001.

Crown Registry and Geographic Base. User Manual For The British Columbia
TRIM HoL (Height-of-Land) Database, 2001. URL http://ilmbuww.gov.bc.
ca/crgb/pba/trim/#manual. Last checked: February 23, 2010.

Danielsson, P. E. Euclidean distance mapping. Computer Graphics and Image
Processing, 14(3):227-248, 1980.

Fabbri, R, Costa, L. D. F, Torelli, J. C, and Bruno, O. M. 2D Euclidean distance
transform algorithms: A comparative survey. ACM Computing Surveys, 40
(1):1-44, 2008.

Kimmel, R, Shaked, D, Kiryati, N, and Bruckstein, A. Skeletonization via
distance maps and level sets. Computer Vision and Image Understanding, 62
(3):382-391, 1995.

Kong, T. Y and Rosenfeld, A. Digital topology: introduction and survey. Com-
puter Vision, Graphics and Image Processing, 48(3):357-393, 1989.

Kraml, G. Binary Heap Priority Queue: Introduction and ansi C reference
implementation. http://www.sbhatnagar.com/SourceCode/pqueue.html. Last
checked: February 23, 2010.

Lakshmi, C. V, Singh, S, J., R, and Patvardhan, C. A novel approach to
skeletonization for multi-font OCR applications. In Proc. 3rd International
Conference on Pattern Recognition and Machine Intelligence, volume 5909,
pages 393-399, New Delhi, India, 2009.

Latecki, L, Lakamper, R, and Eckhardt, U. Shape descriptors for non-rigid
shapes with a single closed contour. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition, Hilton Head Island, South Caronlina, 2000.

(s

http://ilmbwww.gov.bc.ca/crgb/pba/trim/#manual
http://ilmbwww.gov.bc.ca/crgb/pba/trim/#manual
http://www.sbhatnagar.com/SourceCode/pqueue.html

78 BIBLIOGRAPHY

Malandain, G and Fernandez-Vidal, S. Euclidean skeletons. Image and Vision
Computing, 16(5):317-327, 1998.

Maurer, Jr., C. R, Qi, R, and Raghavan, V. A linear time algorithm for com-
puting exact euclidean distance transforms of binary images in arbitrary di-
mensions. IEEFE Transactions on Pattern Analysis and Machine Intelligence,
25(2):265-270, 2003.

Meijster, A, Roerdinkand, J, and Hesselink, W. A general algorithm for com-
puting distance transforms in linear time. In Goutsias, J, Vincent, L, and
Bloomberg, D. S, editors, Mathematical Morphology and its Applications to
Image and Signal Processing, volume 18 of Computational Imaging and Vi-
sion. Springer, Dordrecht, 2002.

Montanari, U. A method for obtaining skeletons using a quasi-euclidean dis-
tance. Journal of the ACM, 15(4):600-624, 1968.

Ogniewicz, R. L and Kiibler, O. Hierarchic Voronoi skeletons. Pattern Recog-
nition, 28(3):343-359, 1995.

Palagyi, K and Nemeth, G. Fully parallel 3D thinning algorithms based on
sufficient conditions for topology preservation. In Proc. 15th IAPR Interna-
tional Conference on Discrete Geometry for Computer Imagery, pages 481—
492, Montréal, Canada, 2009.

P.J. Giblin, S. B. Local symmetry of plane curves. American Math Monthly,
92:689-707, 1985.

Pudney, C. Distance-ordered homotopic thinning: a skeletonization algorithm
for 3D digital images. Computer Vision and Image Understanding, 72(3):
404-413, 1998.

Rémy, E and Thiel, E. Exact medial axis with euclidean distance. Image and
Vision Computing, 23(2):167-175, 2005.

Rouy, E and Tourin, A. A viscosity solutions approach to shape-from-shading.
SIAM Journal on Numerical Analysis, 29:367-884, 1992.

Saito, T and Toriwaki, J.-I. New algorithms for euclidean distance transforma-
tions of an n-dimensional digitised picture with applications. Pattern Recog-
nition, 27(11):1551-1565, 1994.

Sebastian, T. B, Klein, P. N, and Kimia, B. B. Recognition of shapes by editing
shock graphs. In Proc. Fighth IEEE International Conference on Computer
Vision, pages 755-762, Vancouver, Canada, 2001.

Sethian, J. A. A fast marching level set method for monotonically advancing
fronts. Proceedings of the National Academy of Sciences, 93(4):1591, 1996.

Shasha, D and Wang, J. Graphdiff: Approximate Graph Matcher and Clusterer.
http://cs.nyu.edu/shasha/papers/agm.html, 2000. Last checked: February
23, 2010.

http://cs.nyu.edu/shasha/papers/agm.html

BIBLIOGRAPHY 79

Siddiqi, K, Shokoufandeh, A, Dickinson, S. J, and Zucker, S. W. Shock graphs
and shape matching. International Journal of Computer Vision, 35(1):13-32,
1999.

Siddiqi, K, Bouix, S, Tannenbaum, A, and Zucker, S. W. Hamilton-Jacobi
skeletons. International Journal of Computer Vision, 48(3):215-231, 2002.

Sobel, I and Feldman, G. A 3x3 isotropic gradient operator for image processing.
Pattern Classification and Scene Analysis, pages 271-272, 1973.

Sorantin, E, Halmai, C, Erdohelyi, B, Palagyi, K, Nyul, L, Olle, K, Geiger, B,
Lindbichler, F, Friedrich, G, and Kiesler, K. Spiral-CT-based assessment of
tracheal stenoses using 3-D-skeletonization. Medical Imaging, 21(3):263-273,
2002.

Sussman, G. J and Wisdom, J. Structure and interpretation of classical me-
chanics. MIT Press, Cambridge, MA, USA, 2001.

Telea, A. An image inpainting technique based on the fast marching method.
Journal of Graphics Tools, 9(1):23-34, 2004.

Zhu, S. C and Yuille, A. L. FORMS: A flexible object recognition and modeling
system. International Journal of Computer Vision, 20:187-212, 1995.

Zhu, Y, Seneviratne, L. D, and Earles, S. W. E. A fast boundary based thinning
algorithm. In Proc. IAPR Workshop on Machine Vision Applications, pages
548-551, Kawasaki, Japan, 1994.

80

BIBLIOGRAPHY

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9

Skeletons and the Grass-Fire Model 3
Object Recognition with Shock Graphs. 4
Skeletonisation in Geography 5
8-Neighbourhood of a point in the discrete setting. 10
Alternative Definitions of the MAT 13
Uniqueness of the MAF 15
Effects of Boundary Perturbations on the MAT 17
Wave Propagation and the Eikonal Equation 18
Flux Thresholding Results 22
Neighbourhood Graphs 23
Thinning Order in Homotopic Thinning 24
Endpoints in Homotopic Thinning 24
Flux-Ordered Thinning Steps (I). 26
Flux-Ordered Thinning Steps (IT). 27
Thresholding in Flux-Ordered Thinning 30
Discretisation Errors o000 34
Graph Matching o 38
Phase 1 of Meijster’s Algorithm 42
Lower Envelope of Parabolas 44
Heap Implementation 47
Test Images for Distance Map Correctness 54
Test Images for Rotation Invariance 57
Test Image for Noise Invariance 57
Examples from the Shape Database 59
Runtime for Varying Picture Size 59
Runtime for Rotation Tests 60
Runtime for Translation Tests 60
Runtime for Noise Tests 61
Percental Database Results 67
Spurious Branches in FMDT Results 71

81

82

LIST OF FIGURES

List of Tables

5.1 Runtime averageso L 61
5.2 Quality averages for rot_jar 62
5.3 Quality averages for rot_rect 62
5.4 Quality averages for noise_jar 63
5.5 Quality averages for noise_rect 63
5.6 Quality averages for shape_db 64
5.7 Quality Criteria for Invariance test rot_jar 65
5.8 Quality Criteria for Invariance test noise_jar 66
5.9 Graph Matching: Invariance test rot_rect 68
5.10 Graph Matching: Invariance test rot_jar 68
5.11 Graph Matching: Invariance test noise_jar 69
5.12 Graph Matching: Database query results. 69

83

84

LIST OF TABLES

List of Algorithms

= O 00 O Ui Wi

Phase 1 of Meijster’s Algorithm 43
Phase 2 of Meijster’s algorithm 45
Function sSimple 46
Function isEndpoint 47
Flux-Ordered Thinning Algorithm 49
Maximal Disc Algorithm 50
Maximal Disc Thinning 51
Flux-ordered Thinning with Adaptive Thresholding 52
Heap Insert 91
Heap: Delete Root 92

85

86

LIST OF ALGORITHMS

List of Abbreviations

FMDT flux-ordered maximal disc thinning
FOA flux-ordered adaptive thinning
FOT flux-ordered thinning

MAF medial axis function

MAT medial axis transform

MD maximal disc detection

MDT maximal disc thinning

PGM portable grey map

SMD secondary MAT detection

87

88

List of Abbreviations

Appendix A

Command Line Tools

In this appendix, a short description and usage manual for the command line
tools used for skeleton analysis is given. Each tool is described by its name,
followed by a list of possible parameters, Optional parameters are marked with
square brackets, alternative values for a certain parameter are separated by
vertical bars. The purpose of the parameters is briefly described in an argument
list, followed by a short text overview of the tool’s core functionality.

analyser in_filename out_filename [-a]

in_filename: name of input file.
out_filename: name of output file.
-a : optional parameter for averaging mode.

Without the parameter -a, the analyser reads the pgm file with the input
filename and the associated distance map, as well as the skeletonisation
results for all algorithms, obeying the naming conventions of the output
files produced by skel. For each input skeleton, analyser computes a re-
construction of the original shape and uses it to compute the quality scores
described in Section 3.2.1.

The parameter -a enables averaging mode. The input file is a text file with
quality scores as created by analyser in normal mode. Runtime informa-
tion from the input file is averaged and written to the specified output
file.

graphtool in_filename out_filename graph_title

in_filename: name of skeleton file.
out_filename: name of output file.
graph_title: title of output graph.

The graphtool takes a skeleton file in the pgm format and computes a
skeleton graph based on the end- and branching points of the skeleton.
The output format is a graph file for the approximate graph matcher
graphdiff [Shasha and Wang, 2000].

89

90

Command Line Tools

runtime in_filename out_filename [-a

skel

in_filename: name of input file.
out_filename: name of output file.
-a : optional parameter for averaging mode.

Without the parameter -a, the runtime tool takes a runtime file created
by skel as input and appends the runtime results for all algorithms to the
output file in LaTeX table format.

The parameter -a enables averaging mode. The input file is a table with
truncated LaTeX format as created by runtime in normal mode. Runtime
information from the input file is averaged and written to the specified
output file.

[-fot|-foal|-fod|-fmdt|-md|-mdt|-all][threshold] in_filename

algorithm: -fot, -foa etc. specify the algorithms that are used, multiple
options can be combined.

threshold: threshold 7 for FOT and FOD (real number).

in_filename: name of input file (binary pgm image).

Skel computes the MAT of a binary input image in the .pgm format.
The output files are a single distance map file and skeletonisation results
for the chosen algorithms. The skeletons and distance maps are saved
as pgm images. Additionally, skel writes a text file with the runtime
of each skeletonisation process. All output filenames are generated from
in_filename.

Appendix B

Heap Functions

Memory allocation in the ANSI C implementation of the binary heap is based
on the public domain reference information by Kraml.

Algorithm 9 Insert value x into a list based binary MIN-heap.

Require: size // heap size

Require: max // available memory

Require: h // heap array

Require: x // element that is inserted into the array

if size > max then
realloc(h,2-max) // double array size
end if
size = size+1
if size = 1 then

sl]==
else
1 = size

while i > 1 A z < s[i/2] do
sli] = s[i/2] // swap parent end child node
i =1/2 // set insertion index to former parent node
end while
s[i]=x // insert x
end if

91

92 Heap Functions

Algorithm 10 Return the value of the root node and remove the root node
while preserving the heap property.

Require: size // heap size
Require: h // heap array
root = s[1] // save root
s[1] = s[size] // move last leaf to root
size = size-1
1=1
while i < size/2 do
// restore heap property
j=2
if size > 2i + 1 A s[2i + 1] < s[2i] then
j=2+1
end if
if s[j] < s[i] then
// swap parent and child node

tmp = sfi]
s(i] = s(j]
sfj] = tmp
1=

else
return root

end if

end while

return root

	Introduction
	The Grass-Fire Analogy
	Applications
	Related Work
	Overview
	Outline

	Theoretical Background
	Definitions
	The Wave Propagation Model
	Alternative Definitions
	Properties of the MAF
	The Eikonal Equation
	Hamilton-Jacobi Skeletons
	Homotopic Thinning
	Simple Points
	Thinning Order and Endpoints

	Flux Ordered Thinning

	Methods
	Improvements of Flux Ordered Thinning
	Improved Distance Map Computation
	Adaptive Thresholding
	Flux-Ordered Maximal Disc Thinning

	Comparison of Skeletonisation Results
	Quality Criteria
	Graph Matching
	Skeleton Quality as a Minimisation Problem
	Alternative Algorithms

	Implementation
	Meijster's Algorithm
	Homotopic Thinning
	Heap
	Flux-Ordered Thinning
	Maximal Disc Algorithm
	Maximal Disc Thinning
	Adaptive Flux-ordered Thinning
	Boundary Treatment
	Correctness of the Implementation
	Correctness of Distance Map Computation
	Correctness of Homotopic Thinning

	Results and Discussion
	Testing Environment
	Runtime Tests
	Invariance Tests
	Shape Database Tests

	Test Results
	Runtime
	Quality Criteria
	Graph Matching
	Homotopy and Thinness

	Discussion
	Runtime Discussion
	Quality Score Discussion
	Graph Matching Discussion
	Comparison of Quality Assessment Methods

	Conclusions
	Summarising Remarks
	Outlook

	Bibliography
	List of Abbreviations
	Appendix
	Command Line Tools
	Heap Functions

