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Abstract

The aim of this thesis is to give a collection of image processing methods that
allow for a reproducible and accurate extraction of tumour tissue in MRI data.
We have in total four different types of MRI sequences. As shown in Figure 1,
each type of MRI scan displays specific information. We combine them in the
segmentation procedure to gain as most reliable data as possible.
Due to the acquisition process, the images are noisy and the different MRI
scans are not registered. Thus, we denoise and align the MRI data before we
combine their information. This is necessary in order to segment various parts
of tumour tissue.

(a) T1 weighted

(b) T2 weighted

(c) T flair
2 weighted

(d) T1 weighted with contrast agent

Figure 1: Different types of MRI scans.
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Introduction

Motivation

Brain tumours account only for a very small proportion of all types of cancer and
are among the rare diseases. However, they are also among the most fatal forms
of cancer. There are many different types of brain tumours while most of them
develop from the glial cells that support the nerve cells of the brain - such tumours
are called gliomas. Based on the World Health Organization classification of
central nervous system tumours, they are put into groups according to how
quickly they probably grow [30]. There are 4 groups, called grades I to IV,
whereby the more quickly the brain tumour is likely to develop, the higher the
grade. Hence, grade IV gliomas are the fastest growing brain tumours at all.
When in addition, a tumour is likely to come back after surgery and may spread
to other parts of the brain, it is called malignant. Depending on whether the
cancer starts in the brain or spreads from another cancer somewhere else in
the body, it is called a primary or secondary brain tumour. Grade IV gliomas
are also called Glioblastoma multiforme and are the most common malignant
primary brain tumors.

The initial treatment of high-grade glioma usually involves surgery to remove as
much of the tumour cells as possible followed by a radiochemotherapy. Unfor-
tunately, high-grade brain tumours always have microscopic tumour cells that
grow beyond the border of the tumour. Hence, the tumour eventually regrows
and the prognosis for patients diagnosed with the highly aggressive glioblastoma
multiforme remains bleak: Current treatment provides an median overall sur-
vival up to 15 months [33].
The radiotherapy causes in addition a change in the permeability of the blood
brain barrier [60]. Therefore, it is hard to determine whether there is a real
or a pseudo-progression of the tumour. Certainty is only given by a biopsy, a
neurosurgery by which tissue is taken from the affected area.

In order to spare high-grade glioma patients this additional surgery we will
present image processing methods for analysing glioblastomae multiforme in
Magnetic Resonance Imaging (MRI) data. It can be possible that the processed
MRI data can be used to extract image features which contain enough informa-
tion such that a classification algorithm can discriminate between pseudo and
real progression.
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Within this thesis, we will use the T1 weighted scan as the reference cf. Fig-
ure 2a. Necrosis is a cell injury that results in the premature death of cells in
living tissue [56]. The central area of necrosis is best visible in a T1 weighted
scan with contrast agent. This is demonstrated by Figure 2b. Figure 2c and
Figure 2d depict T2 weighted scans, where fat is differentiated from water. In
the case of T flair2 the signal from free water, i.e. cerebrospinal fluid, is suppressed
such that the oedematous tissue is observable.

(a) T1 (b) T cont
1

(c) T2 (d) T flair
2

Figure 2: Different sequences of subject G13, Slice 7.

Contents
In the beginning, we give a short introduction to MRI as well as some mathemat-
ical background and basic knowledge of image processing as far as it is necessary
to explain the used procedures. Afterwards, we show in the second chapter how
the first step in the process chain, the denoising, can be done and explain in the
third chapter in which way the different scans can be registered. In the fourth
chapter we illustrate the process of segmenting the brain tumour. Due to the
extensive process chain, several parameters have to be selected. How this is done
is demonstrated in the fifth chapter, followed by an evaluation of our procedure
in chapter six.
In the end, we conclude this thesis with a summary and some proposals for
extensions of the given process chain.
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1 Background Information

In this chapter we give a basic introduction of MRI as well as some fundamental
knowledge of mathematical and image processing essentials, which are necessary
to develop the procedures we use to process the MRI scans.

1.1 Basics of Magnetic Resonance Imaging
MRI is also called magnetic resonance tomography (MRT) and was mainly
developed by Paul C. Lauterbur [3, 28]. MRI is a medical image acquisi-
tion technique which is based on the different properties of human tissue in
strong magnetic fields. It is used in radiology to visualise noninvasive inter-
nal structures of the body. In contrast to other imaging methods like X-
rays, MRI does not use ionising radiation. Soft tissues like the brain, mus-
cles, connective tissue and most tumours contain many hydrogen atoms. MRI
is therefore well suited for imaging those, as it is explained in the following.

z
N

S
x

y

Figure 1.1: Proton aligned
along a magnetic field

The physical principle of this technique is based
on the Nuclear Magnetic Resonance, that was
first described and measured by Isidor Rabi [44].
It describes a phenomenon in which nuclei with an
odd number of nucleons absorb and re-emit elec-
tromagnetic radiation in magnetic fields. MRI
scanners exploit the fact that hydrogen is present
in water, fat and most other tissues in the human
body. A hydrogen nuclei, which has exactly one
nucleon which consists only of a proton, behaves
in strong magnetic fields like a small magnetic
dipole aligning itself either parallel or antiparal-
lel along the field. While aligned, the proton of

the hydrogen nuclei spins around the axis of the magnetic field. If a radio fre-
quency impulse at their Larmor frequency1 is applied, the protons are stimulated
to perform a gyroscopic procession and are forced to spin synchronously, or in
phase.

1 Larmor frequency : ω = γ ∗ B, ω denotes the Larmor frequency, γ the gyromagnetic ratio
which is a nuclei specific constant. I.e. for hydrogen γ ≈ 42.6 Mhz

Tesla , B is the magnitude of the
strength of the magnetic field.
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After this excitation the protons slowly return to their thermodynamic equi-
librium and realign again with the magnetic field. During this relaxation, the
protons release the received energy, called spin echo, which is proportional to
the number of excited protons. This signal is measured with receiver coils and
transformed to an image. The spin echo itself can be divided into a transversal
or spin-spin2 and a longitudinal or spin-lattice3 relaxation.

The time required for a 63% decay transversal relaxation is called T2 the analo-
gous for the longitudinal relaxation T1. Thereby the spin-spin relaxation, which
decreases exponentially, accords to the dephasing of the x and y components,
whereby the spin-lattice relaxation describes the realignment to the axis of the
magnetic field [3, 50].

Protons of hydrogen return in different tissues to their equilibrium at different
relaxation rates. Several tissue variables, including T1 and T2 relaxation times
and also the injection of a contrast agent can be used to construct images. Con-
sequently, depending on the information one is interested in, the type of MRI
scan should be chosen accordingly.

The main parameters to describe such a sequence of various radio frequency
pulses and the selected measurement of a signal are given by the echo time TE
and the repetition time TR. TE denotes the time between the pulse and the
measurement and TR expresses the time between two stimulation cycles. Thus,
we will in the following illustrate the properties of different MRI sequences and
how they can be constructed.

1.1.1 T1 weighted MRI Scan
As mentioned before, T1 denotes the half-value time of the longitudinal relax-
ation of the stimulated photons. Thus, the T1 contrast of the resulting image
is heavily influenced by the repetition time TR which describes the time given
the protons for recovering between two stimulation cycles. After the first stim-
ulation cycle the spins are deflected and the relaxation begins. In contrast to
materials with long T1, tissues with short T1 are already completely returned
to their equilibrium, when the second stimulation is induced with short TR, i.e.
TR < 600 msec. Hence, these tissues will emit a higher signal after the second
excitement and will appear brighter in the resulting image [69].

2 For water-based tissues T2 is in the 40-200ms range, for fat-based it is in the 10-100ms range.
3 For water-based tissues T1 is in the 0.4-1.2s range, for fat-based it is in the 0.1-0.15s range.
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Figure 1.2: T1 relaxation rates in msec for differ-
ent tissues (1, 5T ) [69]

Some important T1 relaxation
rates are given in Figure 1.2.
These relaxation times are re-
flected in Figure 1.3b. White
matter has an insulator wrapped
around it, called myelin layer or
myelin sheat. The main purpose
of the myelin layer is to increase
the speed at which impulses prop-
agate along the myelinated fiber
[4]. However, as the myelin sheat
is made of fat, the white matter
appears light grey.

Grey matter, which does not have such an insulator and thus a higher T1 relax-
ation rate as white matter, turns up darker. Regarding the cerebrospinal fluid,
we gain nearly no signal. Its T1 relaxation time is very long, thus the longitudinal
relaxation of the protons of its hydrogen has not progressed far. Due to these
contrasts between different tissues, T1 weighted images are well suited to define
the anatomy.

(a) T1 weighted image (b) Magnified selected area

Figure 1.3: Different tissues in a T1 weighted Image.

Hence we use T1 weighted MRI scans in the registration step as reference images,
see Chapter 3.

The brain can be divided into a left and right half, i.e. hemispheres . Normally,
they are almost symmetric. Due to the visibility of the brain structure, we can
see in Figure 1.3a that the left hemisphere is deformed. We will illustrate in
the next section how the tumour causing this deformation, can be made visible.
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1.1.2 T1 weighted MRI Scan with Contrast Agent

MRI contrast agents, shortening the T1 relaxation time of protons located
nearby, are used to improve the visibility of internal structures in MRI.

Figure 1.4: T1 weighted Image with
Contrast Agent

The most frequently used ones are gadolini-
um-based, which are very hydrophilic com-
pounds and thus not able to pass an intact
blood brain barrier, separating the circulat-
ing blood from the central nervous system
[56]. Hence, only due to defects in this bar-
rier the gadolinium-compound can be trans-
ported into the stroma, i.e. the supportive
framework of the tissue [56].

Glioblastoma multiforme is a highly aggres-
sive malignant primary brain tumour which
degrades the blood brain barrier. Thus, the
contrast agent gets in the stroma and makes
the damaged areas of the barrier visible.
These blood vessels are responsible for the

supply of the tumour and are in the direct neighbourhood of it, such that the
dimension of the tumour, especially the central area of necrosis, becomes observ-
able.

1.1.3 T2 weighted MRI Scan

The half-value time of the exponential decay of the spin-spin relaxation is denoted
by T2 [50], which is much shorter than T1. This can be seen in Figure 1.2

> 2000

100

90

80

Cerebrospinal Fluid

Grey Matter

White Matter

Fat

Tissue T2
(relaxation time)

white

light grey

grey

black

Brightness
(T2 weighted)

Figure 1.5: T2 relaxation rates in msec for different
tissues (1, 5T ) [69]

and Figure 1.5. The echo time
determines the influence of T2

to the image contrast. If the
echo time is short, i.e. TE <
30msec [69], the signal differ-
ences between the various tis-
sues are small. The T2 relax-
ation has just begun and the
signals are not significantly sub-
sided. Hence the T2 contrast
is low. However, for long echo
times in the range of the oc-
curring T2 relaxation times, i.e.
TE > 60msec [69], the contrast
between different tissues is high. The faster the dephasing proceeds, the lower is
the remaining signal intensity. Tissues with shorter T2 relaxation rate are
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Figure 1.6: T2 weighted Image

therefore darker on the resulting image. On
the other hand, tissues with a slow transver-
sal relaxation still emit a high signal and
occur consequently brighter in the image
[50, 69].
The different signal intensities are reflected
in Figure 1.6. The cerebrospinal fluid has
a very slow spin-spin relaxation and there-
fore retained its signal intensity. Hence it
appears bright in the image, in contrast to
white matter which has a fast transversal
relaxation.
Although it is possible to identify the vaso-
genic oedema and the central area of necro-
sis in T2-weighted images [18], the cere-
brospinal fluid still appears bright.

How the measurement can be adjusted to a T flair2 sequence in which the signal
of free water is suppressed, is explained in the following.

1.1.4 T flair2 weighted MRI Scan
In a T2 sequence, tissues with a slow spin-spin relaxation appear brighter. Thus

Figure 1.7: T flair
2 weighted Image

it is difficult to distinguish between free wa-
ter and oedematous areas. With an addi-
tional radio frequency pulse and a manipu-
lation of the magnetic gradients of the MRI
scanner, this type of scanning can be con-
verted to a T flair2 sequence where the signal
from the cerebrospinal fluid is suppressed
[69].

Hence the oedematous area is clearly visible
and the T flair2 is well suited to detect the
vasogenic area surrounding the central area
of necrosis and lesions, that are abnormal
areas of tissue in the brain [18, 56].
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1.2 Fundamentals of Image Processing
This section gives an overview of basic definitions and concepts that we will use
in this thesis.

1.2.1 Digital Images
We model images and consequently also image stacks as functions. Thus, we
denote an given image by

f(x) : Ω→ R (1.1)

where x := (x, y)> and the rectangular image domain Ω ∈ R2 for 2D im-
ages and x := (x, y, z)>, Ω ∈ R3 is a cubic area for 3D images respectively.

x

y

z

fi−1,j,k−1

hx
hy

nx

ny

hz

Image Domain Ω

fi,j,k

fi,j−1,k

fi−1,j,k

Figure 1.8: Image dimensions

In the following, x ∈ Ω de-
scribes the position within
the image domain. The co-
domain of f denotes the im-
age intensities, hence f(x)
is a mapping from loca-
tions in the image domain
to brightness values.

In order to get a digital im-
age, the continuous image
is sampled4 to a discrete
grid which means a reduc-
tion from the continuous to
the discrete image domain:

f(x) : Γ→ N (1.2)

where Γ := {1, · · · , nx} × {1, · · · , ny} for 2D images and Γ := {1, · · · , nx} ×
{1, · · · , ny}×{1, · · · , nz} for 3D images respectively. Thereby nx, ny and nz are
the image dimensions in x,y and z-direction. The grid sizes hx and hy represent
the grid spacing in x- and y-direction, respectively. Additionally for 3D images,
hz denotes the grid spacing in z-direction.

We obtain for 2D images the discretisation

f(xi, yj) ≈ fi,j (1.3)

where xi := (i− 1
2
)hx, i ∈ {1, · · · , nx} and yj := (j − 1

2
)hy, j ∈ {1, · · · , ny}.

4 The Nyquist-Shannon sampling theorem is fundamental in digital signal processing. It states,
that aliasing starts at a sampling frequency lower than the Nyquist-frequency [21, 40, 51].



1 Background Information

1

7

Analogously, we get for 3D images the discretisation

f(xi, yj, zk) ≈ fi,j,k (1.4)

where xi := (i − 1
2
)hx, i ∈ {1, · · · , nx}, yj := (j − 1

2
)hy, j ∈ {1, · · · , ny} and

zk := (k − 1
2
)hz, k ∈ {1, · · · , nz}.

In the remainder, we will name fi,j as pixel, so a discrete location (i, j)> in a 2D
image f and fi,j,k as voxel, so a discrete position (i, j, k)> within a 3D image f .
We will also denote a single image as 2D image and an image stack as 3D image.

1.2.2 Fourier Transform
The mathematician Fourier stated in the 19th century that any periodic func-
tion can be expressed as the sum of sines and/or cosines of different frequencies
multiplied by coefficients [19].
An extension of these Fourier series is the Fourier transform, which allows to
express non-periodic functions with finite integrals as the integral of sines and/or
cosines multiplied by a weighting function [21]. Hence, also complicated func-
tions (with a finite area under the curve) break down in the Fourier domain to
simple waves.
In this section we will give a short overview of the Fourier transform and its
properties.

1.2.2.1 Continuous Fourier Transform

The Continuous Fourier Transform (CFT) of a continuous function f(x) and a
continuous variable x is defined by

Definition 1 (Continuous 1D Fourier Transform)

f̂(u) := F [f ](u) :=

∞∫
−∞

f(x) e−i2πux dx

where the frequency u ∈ R is also continuous. After integration, the only variable
left is the frequency, thus we call the domain of the Fourier transform the fre-
quency domain. With Euler’s formula e−iφ = cos(φ)−i sin(φ) it can be rewritten,
to

f̂(u) =

∞∫
−∞

f(x) (cos(2πux)− i sin(2πux)) dx (1.5)

Hence, if f(x) ∈ R, its transform f̂(u) is in general complex. The inverse Fourier
transform, denoted by
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Definition 2 (Inverse Continuous 1D Fourier Transform)

f(x) := F−1[f̂ ](u) :=

∞∫
−∞

f̂(u) ei2πux du

allows to reconstruct the original signal. Hence, Definition 1 and Definition 2
comprise the so-called Fourier transform pair [21].

The continuous 2D Fourier Transform is given by

f̂(u, v) := F [f ](u, v) :=

∞∫
−∞

∞∫
−∞

f(x, y) e−i2π(ux+vy) dx dy (1.6)

which we can reformulate to Equation 1.7. The CFT is therefore separable
and m-dimensional transforms break down to sequences of m 1D transforms [66].

f̂(u, v) =

∞∫
−∞

 ∞∫
−∞

f(x, y) e−i2πux dx

 e−i2πvy dy (1.7)

Analogously to the 1D case, the inverse CFT for the 2D case is denoted by

f(x, y) := F−1[f̂ ](x, y) :=

∞∫
−∞

∞∫
−∞

f̂(u, v) ei2π(ux+vy) du dv (1.8)

We rewrite it again in the same way as the 2D CFT:

f(x, y) =

∞∫
−∞

 ∞∫
−∞

f̂(u, v) ei2πux du

 ei2πvy dv (1.9)

Hence, also the backtransform is separable.

We will state in the following some properties of the CFT which we use in the
remainder, while [66] gives a more complete overview.
It is rotationally invariant, which means that if the image is rotated, its CFT is

Theorem 3 (Rotation Invariance)

Let rotαf denote a rotation of f around the angle α. Then

F [rotαf ] = rotαF [f ]
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rotated by the same angle [66], as denoted by Theorem 3.
The Fourier transform is also shift invariant in the sense that the Fourier spec-
trum is not affected by a shift in the spatial domain, although it results in a
rotation of the phase angle in the Fourier domain.

Theorem 4 (Shift Theorem)

F [f(x− x0, y − y0)](u, v) = e−i2π(ux0+vy0)F [f ](u, v)

The last property of the Fourier transform, that we use is stated by the convo-
lution theorem:

Theorem 5 (Convolution Theorem)

F [f(x) ∗ g(x)] = F [f ]F [g]

Thus, a convolution, defined as

Definition 6 (2D Convolution)

(f ∗ g)(x, y) :=

∞∫
−∞

∞∫
−∞

f(x− x′, y − y′)g(x′, y′) dx dy

in two dimensions, can easily be computed as a multiplication in the Fourier
domain. The CFT is based on a continuous signal with infinite extend. Unfor-
tunately, an image has a finite number of samples. The CFT is for this reason
mostly used for designing filters, while they are implemented with the discrete
Fourier transform [66]. We will give in the following a short introduction to the
discrete Fourier transform and how problems, caused by the finite extend of the
signal, can be handled.

1.2.2.2 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is the analogue transform for discrete
signals to the previous explained CFT [66]. The discrete 1D Fourier transform
is given by

Definition 7 (Discrete 1D Fourier Transform)

f̂p :=
1√
M

M−1∑
m=0

fm e−
i2πpm
M
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where M is the number of samples. Its inverse transform is stated by

Definition 8 (Inverse Discrete 1D Fourier Transform)

fm :=
1√
M

M−1∑
p=0

f̂p e
i2πpm
M

The DFT has to some extent the same properties as the CFT. For instance, the
convolution theorem holds as well as the shift theorem, if the signal is extended
periodically. In contrast, rotation invariance can only be approximated due to
the discrete grid [66].
As mentioned before, the fundamental difference to the CFT is the finite number
of samples. The complex exponential function is periodic and causes unfortu-
nately a periodic continuation of the signal in the Fourier domain. This carries
over to the spatial domain and can create artefacts at the boundaries such as
wraparound errors in connection with convolutions [66].
We solve this issue by mirroring the images at the boundaries. Hence, the length
of our signal is doubled in each dimension which leads to a high computational
load.

1.2.2.3 Fast Fourier Transform

The computational effort to solve the DFT is quite high. In addition, the images
are mirrored at the boundaries to avoid artifacts.
The Fast Fourier Transform (FFT) reduces this computational load by a so-
called ”Divide and Conquer”-strategy. Thus, it divides the problem of size M
recursively into two subproblems of size M

2
until M = 1 while producing exactly

the same results as the DFT. Hence, the FFT is defined the same way as the
DFT, whereas the inverse FFT is slightly different.

Definition 9 (Inverse 1D Fast Fourier Transform)

fm = f̄m :=
1√
M

M−1∑
p=0

¯̂
fp e

− i2πpm
M fm ∈ R

Instead of weighting the Fourier coefficients f̂p, their complex conjugates
¯̂
fp :=

Re(f̂) − iIm(f̂) are used5.
Each term of the Fourier transform F(f) of f contains all values weighted by
sine and cosine functions, cf. Section 1.2.2. It is therefore mostly impossible

5 There are many numerical packages available containing the FFT. We use the NVIDIA CUDA
Fast Fourier Transform library [38] within this thesis.
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to see direct correspondences between an image and its transform.

Nevertheless, frequencies are related to spatial rates of changes in the intensity.
Thus, they can be associated with patterns of intensity variations in the trans-
formed image [21]. The low frequencies corresponding to low variations of the
intensities are centred around the origin. Hence, the further away a frequency is
from the origin, the higher is the intensity change it describes. Low frequencies
depict therefore nearly homogeneous areas and background artefacts while high
ones can be associated with edges and noise [66]. Filtering in the Fourier domain
is based on modifying the Fourier transform of an image. Thus, given an image
f(x, y) in two dimensions it can be denoted by

fD(x, y) = F−1(D(u, v)F(u, v)), (1.10)

where fD(x, y) is the filtered image and F(u, v) and D(u, v) are the Fourier
transforms of the image itself and the filter, respectively.

A filtering technique which attenuates high frequencies and does not affect low
ones is called lowpass filter , while a filter behaving the other way around is named
a highpass filter .

1.2.3 Lowpass Filtering
Lowpass filters attenuate noise and small scale details, but also act stabilising.
Hence, we use this filtering technique frequently to stabilise our algorithms. The
most popular lowpass filter is the Gaussian convolution, where a signal is con-
volved with a Gaussian kernel defined by

Definition 10 (2D Gaussian Kernel)

Kσ(x, y) =

∞∫
−∞

∞∫
−∞

1

2πσ2
e−

x2+y2

2σ2 dx dy

in two dimensions, while it is denoted by

Kσ(x, y) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

1

(2πσ2)
3
2

e−
x2+y2+z2

2σ2 dx dy dz

in three dimensions, respectively. Thereby, σ2 is the variance, which describes
the width of the kernel. Rotational invariance describes the property that no
direction is favoured. Gaussian kernels are the only separable and rotationally
invariant convolution kernels [66].
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Due to its separability and symmetry, the computational effort reduces for an
image with N pixels to O(Nσ) if the kernel is truncated at a multiple of the

Figure 1.9: 2D Gaussian kernel, σ = 1

standard deviation σ. It is there-
fore well suited for a computa-
tion in the spatial domain if σ is
small [67]. We mentioned in Sec-
tion 1.2.2 that a convolution in
the spatial domain corresponds to
a multiplication in the Fourier do-
main.

Hence, the convolution of an image
with a Gaussian kernel breaks down
to multiplications in the Fourier do-
main. The Fourier transform itself
can be computed efficiently while

the computational burden is independent of the standard deviation of the Gaus-
sian kernel. Computing the Gaussian convolution in the Fourier domain is con-
sequently preferable for large σ [67].

Over and above that, it is possible to regularise a differentiation by so-called
Gaussian derivatives.

Definition 11 (3D Gaussian Derivative)

∂nx∂
m
y ∂

r
z (Kσ ∗ f) = (∂nx∂

m
y ∂

r
z Kσ) ∗ f

Thus, convolving with a Gaussian before differentiation is equivalent to a convo-
lution with the derivatives of the Gaussian. Unfortunately, the Gaussian convo-
lution has some drawbacks: It blurs also important structures such as edges and
structures can become dislocated. We illustrate these disadvantages in detail in
Chapter 2 when we explain the method that we use for denoising.
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1.2.4 Highpass Filtering
Highpass filters let pass high frequencies but attenuate signals with

Figure 1.10: 2D highpass filter, σ = 1

low frequencies. Hence, they
are well suited to remove back-
ground distortions and to sharpen
blurry structures but act also
destabilising [66]. A highpass
filter can for example be con-
structed as the difference be-
tween the identity and a low-
pass filter, i.e. Gaussian con-
volution. This results in a fil-
tering kernel as depicted in Fig-
ure 1.10.

As we explain in Section 3.3.4, we
use morphological highpass filtering in the registration step to remove back-
ground perturbations.

1.2.5 Partial Derivatives
Derivatives are a measure how a quantity is changing in space. Thus, we often
consider derivatives of the functions describing the image data to get information
about structural properties like edges. We assume in the latter that the functions
are sufficiently smooth to compute the derivatives.
We deal often with Partial Differential Equations (PDE) and the functions usu-
ally depend on at least two variables. Hence we mostly consider partial deriva-
tives and denote the partial derivative of a function f(x, y) in 2D, or f(x, y, z)
in the 3D case respectively, with respect to x equivalently by

∂f

∂x
= ∂xf = fx (1.11)

We handle discrete image data and have therefore to approximate these deriva-
tives. For this we use finite difference approximations obtained by a Taylor
expansion. There are several ways for a numerical approximation of the first
order derivative ∂xf . The forward difference, defined by

Definition 12 (Forward Difference)

f+
x,i =

fi+1 − fi
hx

as well as the backward difference, denoted by
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Definition 13 (Backward Difference)

f−x,i =
fi − fi−1

hx

have an approximation order of O(h). As higher approximation orders give better
accuracies, the central difference

Definition 14 (Central Difference)

fx,i =
fi+1 − fi−1

2hx

which has an approximation order of O(h2) is more frequently used, cf. [45]. The
standard finite difference approximation of the second derivative ∂xxf is given
by

Definition 15 (Second Derivative)

fxx,i =
fi+1 − 2fi + fi−1

h2
x

With this, we can define the 2D gradient of a function f(x, y) as

∇2f =

(
fx
fy

)
(1.12)

This vector points in the direction of the greatest change in intensity. Thus, it
is a very simple structure descriptor and edge detector. The length of the 2D
gradient, the 2D gradient magnitude is denoted by

|∇2f | =
√
f 2
x + f 2

y (1.13)

Equivalently we define the 3D gradient of f(x, y, z) as

∇3f =

fxfy
fz

 (1.14)

and the 3D gradient magnitude as

|∇3f | =
√
f 2
x + f 2

y + f 2
z (1.15)

As the gradients contain directional information they suffer from rotational vari-
ance. However, as the gradient magnitude discards the directional information,
it is rotationally invariant.
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In the latter, we also use the divergence expression which is defined as

div j = ∇>2 j = (∂x, ∂y)

(
j1

j2

)
= ∂xj1 + ∂yj2 (1.16)

where j = (j1(x, y), j2(x, y))> is a vector valued function in two dimensions. The
3D case is denoted by

div j = ∇>3 j = (∂x, ∂y, ∂z)

j1

j2

j3

 = ∂xj1 + ∂yj2 + ∂zj3 (1.17)

where j = (j1(x, y, z), j2(x, y, z), j3(x, y, z))> is a vector valued function. Fur-
thermore we also make use of the Laplace operator

∆u = div(∇u) = ∇2u =
n∑
1

∂2u

∂x2
n

(1.18)

which describes the flux density of the gradient flow of a function.
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1.2.6 Structure Tensor

We mentioned in the preceding that the gradient ∇f is a very simple edge de-
tector. Unfortunately, it is rather susceptible to noise. Convolving ∇f with a
Gaussian kernel Kσ, stated by

∇fσ = Kσ ∗ ∇f (1.19)

leads to ∇fσ, which is more robust against small scale details and noise [63]. Re-
grettably, for larger noise scales σ adjacent gradients with the same orientation
but opposite direction cancel each other.
Thus, the structure descriptor ∇fσ is not able to find parallel structures. Re-
placing ∇fσ by its tensor product denoted by

J(∇fσ) := ∇fσ∇f>σ (1.20)

makes it invariant under sign changes. Additionally, the resulting matrix is
positive semidefinite [63]. Its eigenvectors are parallel and orthogonal to∇fσ and
the corresponding eigenvalues are denoting the contrast in the eigendirections
[63].

However, for large σ neighbouring gradients with the same direction but opposite
orientations are cancelled out and it is therefore unsuited for finding interrupted
lines in flow-like structures.
To overcome this problem, the orientations are averaged by applying a Gaussian
convolution on some integration scale ρ, which results in the structure tensor.

Definition 16 (Structure Tensor)

Jρ(∇fσ) = Kρ ∗ (J(∇fσ)).

This matrix is also positive semidefinite and the eigenvalues describe the average
contrast in the eigendirections, so the texture size should be reflected by ρ [63, 67].
Consequently, the structure tensor is a reliable structure descriptor and can
be used for different image analysis problems such as finding coherent flow-like
structures [25].

1.2.6.1 Eigenvalues and Eigenvectors

The structure tensor is stated by the positive semidefinite and symmetric matrix

Jρ =

(
j11 j12

j21 j22

)
(1.21)
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Its eigenvalues can easily be computed by

µ1,2 =
1

2

(
trace(Jρ)±

√
trace2(Jρ)− 4det(Jρ)

)
, (1.22)

where trace(Jρ) = j11 + j22, det(Jρ) = j11j22 − j12j21 with µ1 ≥ µ2 [64]. The

corresponding eigenvectors w1, w2 are given by w1 =

(
cos ζ
sin ζ

)
, where ζ satisfies

tan(2ζ) =
2j12

j11 − j22

j11 6= j22. (1.23)

The eigenvector w1 that corresponds to the larger eigenvalue is the dominant
eigenvector of Jρ and points in the direction with the highest fluctuation.
Hence, the eigenvector w2, corresponding to the smaller eigenvalue, describes the
coherence orientation [63, 64, 65]. Thus, the expression

κ = (µ1 − µ2)2 (1.24)

measures the coherence. Isotropic structures are characterised by µ1 = µ2 = 0,
straight edges leads to µ1 � µ2 = 0 and corners give µ1 ≥ µ2 � 0. Accordingly,
κ tends to zero for constant areas and becomes large for very different eigenvalues
[63, 64].

1.2.7 Diffusion Reaction Systems
Diffusion is a physical process over time which equilibrates concentration differ-
ences while preserving the mass [61].
PDE’s can be classified as hyperbolic, parabolic, elliptic and ultra-hyperbolic, cf.
[45]. The diffusion process is expressed by the parabolic diffusion equation,

Definition 17 (Diffusion Equation)

∂tu = div(D∇u)

where D denotes the diffusion tensor, t the time and u the concentrations.

Diffusion in image processing acts in the same manner but u is denoting color
values instead of concentrations. Depending on how the diffusion tensor D is
adapted to local image structures, we can distinguish between several cases of
diffusion filtering.

The principle of diffusion filtering is the calculation of a processed version u(x, t)
of f(x) as the solution of a diffusion equation with the bounded image f as initial
condition and reflecting boundary conditions, that are also named Neumann
boundary conditions [45].
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The resulting Initial Boundary Value Problem (IBVP) is thus stated by

Definition 18 (IBVP for the Diffusion Equation)

∂tu = div(D∇u)

with the boundary conditions

u(x, 0) = f(x) x ∈ Ω

∂u

∂n
(x, t) = 0 x ∈ ∂Ω

where n denotes the outer normal and ∂Ω the boundary.

In the following, we explain the easiest case of diffusion filtering the linear diffu-
sion and its equivalence to Gaussian convolution.

1.2.7.1 Linear Diffusion

The diffusion tensor D in the diffusion equation can be chosen in various ways.
In the most easiest case, linear diffusion, it is constant over the whole image do-
main and the image structures are not taken into account. Hence, the diffusion
process is homogeneous and its IBVP is stated for any bounded image f by

Definition 19 (IBVP for the Linear Diffusion Equation)

∂tu = ∆u

with the boundary conditions

u(x, 0) = f(x) x ∈ Ω

∂u

∂n
(x, t) = 0 x ∈ ∂Ω

This problem has the unique solution

u(x, t) =

{
f(x), (t = 0)

(K√2t ∗ f)(x), (t > 0),
(1.25)

which depends continuously on the initial image f and satisfies the maximum-
minimum-principle

inf
Rm

f ≤ u(x, t) ≤ sup
Rm

f ∀x, ∀t > 0,

where m denotes the number of dimensions [61]. Consequently, linear diffusion
and Gaussian convolution are equivalent. Furthermore, we can observe that the
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time t is related to the spatial width σ of the Gaussian convolution kernel with
σ =
√

2t [61]. Thus, smoothing structures of order σ requires to stop the diffusion
process at time

T =
1

2
σ2. (1.26)

Due to this equivalence, linear diffusion can easily be computed for any amount
of dimensions by exploiting the separability of Gaussian convolution, cf. Sec-
tion 1.2.3.
Linear diffusion filtering is wide spread in image processing. It is useful for
applications where images have to be simplified and edges are unimportant.
Furthermore, Gaussian smoothing has strong regularisation properties and its
scale space-evolution is well-understood [61]. Nevertheless, it has some major
drawbacks. Gaussian smoothing simplifies an image and removes thereby also
semantically important structures and can even dislocate them.

1.2.8 Variational Methods
Variational methods are an image transformation that satisfies an optimality
criterion. They are based on energy functionals like

E(u) =

∫
Ω

F (x1, ..., xn, u, ux1 , ..., uxn) dx (1.27)

that rate the quality of a function w.r.t. certain assumptions. In general, a vari-
ational method is minimised and the according function is called the minimiser
fitting the best to the model assumptions. The first variation of the energy is
given by

Definition 20 (First Variation of the Energy Functional)

∇E = Fu − ∂x1Fux1 − ....− ∂xnFuxn
with the natural boundary condition

n>

 Fux1
...

Fuxn

 = 0

at the image boundary with normal vector n

and acts like a gradient: ∇E points in the direction of the greatest positive
change and extrema occur when the first variation vanishes i.e. ∇E = 0. This
is the well known Euler-Lagrange equation. Similar to the standard calculus, it
holds that if an energy functional is strictly convex and satisfies (20), then it
has an unique minimiser [67].
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1.2.9 Active Contour Models
The active contour technique, also known as snakes, has grown significantly
since Kass et al. proposed their work ”Snakes: active contour models” [26]. The
fundamental idea in active contours is to evolve a curve in direction to an object
boundary subject to constraints in the underlying image.
We introduce in this section two level set methods: An edge-based segmentation
method, the geodesic active contour, and a region-based method, the Mumford-
Shah functional [10, 37]. We will use a simplification of the second one in our
work to extract on the one hand the skull from the different MRI sequences and
on the other hand to describe the boundary of the tumour tissues.

1.2.9.1 Edge-based Active Contours

The classical formulation of active contour models are energy minimisation ap-
proaches. As they suffer under difficulties to handle topological changes and
numerical instabilities never methods are based on level-set formulations [41]
and motion by mean curvature. These approaches allow for topological changes,
corners and cusps [13].
A level set formulation exploits that a curve can be seen as the zero level set of
a function in higher dimension and a evolving curve C is described implicitly as

C = {x | φ(x) = 0} (1.28)

where φ is a Lipschitz continuous function. The evolution of the curve is given
by the zero level isophote at time t of the function φ(x, t) and evolving the curve
in normal direction corresponds to the Initial Value Problem (IVP) for curve
evolution, defined as

Definition 21 (IVP for Curve Evolution)

φt = |∇φ|F
φ(x, 0) = φ0(x)

where F is the speed.

In the case of mean curvature motion the speed is represented by

F = div

(
∇φ
|∇φ|

)
. (1.29)

Hence, the IVP for mean curvature motion is given by

Definition 22 (IVP for Mean Curvature Motion)

φt = |∇φ|div
(
∇φ
|∇φ|

)
φ(x, 0) = φ0(x)
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The Perona-Malik diffusivity [42] is a very popular edge detector for edge-based
active contours. It is positive and vanishes for large gradients, i.e. at boundaries,
defined by

Definition 23 (Perona-Malik Diffusivity)

g(|∇φσ|2) =
1

1 + |∇φσ |2
λ2

as suggested by [67]. According to Section 1.2.6 we use the blurred gradient
∇φσ as it is more robust against noise. If we add this function to the equation
for the mean curvature motion
Definition 24 (IVP of Geometric Active Contour Model)

φt = g(|∇uσ|2)|∇φ|div
(
∇φ
|∇φ|

)
φ(x, 0) = φ0(x)

we get a geometric active contour model whose zero level isophote moves in the
normal direction [9].
Geodesic active contours connect classical energy minimisation based snakes with
geometric active contours. Its model is represented by

inf

∫ 1

0

|C ′(s)g(|∇u0 C(s)|) ds (1.30)

which is a problem in the Riemann space whose metric is defined by the un-
derlying image u0 [10]. As we mentioned before, the edge-stopping function g
vanishes at object boundaries. Hence, a minimising curve C is obtained when
the object boundary is reached. Its level set formulation is stated by

Definition 25 (IVP of Geodesic Active Contours)

φt = |∇φ|div
(
g(|∇uσ|2)

∇φ
|∇φ|

)
φ(x, 0) = φ0(x)

The main drawback of active contour models relying on an edge-function is their
dependence on the image gradient. If the object boundary is smeared or diffuse
the curve may pass through it.

The region-based active contours we illustrate in the latter neither use a stopping
edge-function nor do they depend on the image gradient and are therefore also
able to segment objects with diffuse boundaries.
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1.2.9.2 Region-based Active Contours

The Mumford-Shah functional is a model for energy based image segmentation
and defined as

Definition 26 (Mumford-Shah Functional)

EMS(u,C) = λ

∫
Ω

(f(x)− u(x))2dx︸ ︷︷ ︸
1

+

∫
Ω\C
|∇u(x)|2dx︸ ︷︷ ︸

2

+α Length(C)︸ ︷︷ ︸
3

Minimising the energy functional EMS(u,C) implies the minimisation of a
weighted combination of the fidelity term (1) which penalises deviations from
the original image, the smoothing term (2) which forces the solution to be as
smooth as possible in each segment and the geometric term (3) penalising the
edge length Length(C) [37].
This equation has a normally non-unique minimiser with a closed edge-set sug-
gesting this edge-set C as the segmentation boundary.
Unfortunately, it is a mathematically very difficult free boundary problem as the
edge-set is unknown. Also because of this Mumford and Shah proposed

Definition 27 (Piecewise constant Mumford-Shah Functional)

EMSPC (u,C) =

∫
Ω

(f(x)− u(x))2dx + α Length(C)

where the smoothing term is neglected resulting in a piecewise constant formu-
lation with a closed edge-set C [37]. This is also called the minimal partition
problem [13].

We use in our segmentation steps a further simplification of the Mumford-Shah
function, the well known Chan-Vese active contour model (CV model) [11, 12,
13, 14], cf. Section 3.4 and Section 4.3.
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1.2.10 Thomas Algorithm
During the registration process, i.e. for the interpolation (Section 3.1) we have
to solve systems with tridiagonal matrices Bu = d which are characteristic for
1D problems.
For this we use a simple variant of the Gaussian elimination, the so-called Thomas
algorithm [54], which is stable for every diagonally dominant system and highly
efficient [62]. Solving a tridiagonal system by this algorithm, can be regarded as a
recursive filtering in three steps [62]. First the system of equations is decomposed
by an LU decomposition which factors a matrix as a product of an upper and a
lower bidiagonal matrix, denoted by

B = LU =


α1 β1

γ1 α2 β2

. . . . . . . . .

γN−2 αN−1 βN−1

γN−1 αN



L =


1
l1 1

. . . . . .

lN−2 1
lN−1 1

 ,U =


m1 r1

m2 r2

. . . . . .

mN−1 rN−1

mN



LU =


m1 r1

l1m1 l1r1 +m2 r2

. . . . . . . . .

lN−2mN−2 lN−2rN−2 +mN−1 rN−1

lN−1mN−1 lN−1rN−1 +mN


Hence, ri = βi, ∀i = 1, .., N − 1 and the coefficients mi and li are given by

m1 := α1

∀i = 1, .., N − 1 : li :=
γi
mi

, mi+1 := αi+1 − liβi
(1.31)

In the second step, the forward elimination the system Ly = d is solved for y
by using the results from Equation 1.31,

1
l1 1

. . . . . .

lN−2 1
lN−1 1




y1

y2
...

yN−1

yN

 =


d1

d2
...

dN−1

dN


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with the equations

y1 := d1

∀i = 2, .., N : yi := di − liyi−1

(1.32)

In the last step, the backward substitution, we solve Uu = y,
m1 β1

m2 β2

. . . . . .

mN−1 βN−1

mN




u1

u2
...

uN−1

uN

 =


y1

y2
...

yN−1

yN


by proceeding with

uN :=
yN
mN

∀i = N − 1, .., 1 : ui :=
yi − βiui+1

mi

(1.33)
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1.3 Visualisation
In the latter, we use several visualisations to highlight different aspects. Mostly
we show the original grey scale images where the grey values are in the range
[0, 4096]. Nevertheless, we also use a pseudo colouring of these grey value images
and a colour plot of the gradient domain.

1.3.1 Pseudo Colouring
The human eye can distinguish only about 40 different grey scales but two million
colours [66]. As the grey scale images we use consist in average of more than one
thousand grey values, we use several times a pseudo colouring to make different
aspects visible. The colouring blends thereby from blue to cyan to green to yellow
to red, i.e. follows the visual spectrum between blue and red. An example is
shown in Figure 1.11.

(a) Grey scale image. (b) Pseudo colouring of (a).

Figure 1.11: Pseudo colouring of a grey scale image.

1.3.2 Colour Plot of the Gradient Domain

Figure 1.12: Colour plot for
gradient magnitudes.

The visualisation of the gradient domain of an image
is more complicated than the visualisation of grey
scale images. On the one hand, gradients have a
specific length which has to be visible, on the other
hand, they also have a direction.

We follow [31] and visualise the gradient magnitude
as brightness and the gradient direction as colour.
The corresponding colour distribution is shown in
Figure 1.12. The higher the gradient magnitude
is, the brighter is the colour value. Hence, if the
gradient magnitude tends to zero, its visualisation
is nearly black.
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An example for this visualisation is given in Figure 1.13. Inside the skull is a
nearly homogeneous area with small gradient magnitudes, while there are long
gradients at the border of the skull. Hence, the colour plot of the gradient do-
main is nearly black in the homogeneous area while the gradients at the border
are coloured intensively.

(a) Grey scale image. (b) Colour plot of the gradient domain
of (a).

Figure 1.13: Colour plot of the gradient domain.
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2 Denoising

Noise is one of the most frequent image perturbations. Within a digital image,
noise is created by additional spurious information. The goal of image denoising
methods is to remove the false information and to recover the original values. It
is a crucial step to increase image quality and to improve the performance of all
the tasks needed for quantitative imaging analysis.

MRI data are commonly corrupted by various types of noise including additive
noise. They also contain many structured patterns and fine edges that are used
to diagnose and study the anatomical structures of the human body. Unfortu-
nately, denoising methods remove not only the noise itself but also small details,
because they cannot see any difference between them. Thus, the choice of the
denoising method is a tradeoff between loose of details and increase of image
quality.

In the end, we want to segment the different areas of a brain tumour. Most of
the segmentation methods are very sensitive to noise and low contrast regions.
We have to use therefore a denoising algorithm that increases on the one hand
the signal to noise ratio while small details are preserved. On the other hand, it
should also enhance the contrast in the images.

There are several denoising algorithms like diffusion based filters, filters based
on wavelet analysis, learning based algorithms and neighbourhood filters.
Diffusion based filtering can be grouped in linear and non-linear as well as in
isotropic and anisotropic filter techniques. A linear diffusion filtering, i.e. Gaus-
sian smoothing, does not take care about the local image structure and blurs
semantic important features, like edges [66]. Non-linear isotropic filters, like the
well known Perona-Malik filtering [42] decrease smoothing at edges but can have
problems when edges are noisy [67].
Filtering techniques based on wavelet analysis try to distinguish the image signal
from the noise in the frequency domain, cf. Section 1.2.2. As they can create
artifacts [16] and do not preserve small details, they are in our opinion not suited
for denoising medical image data.
Learning based denosing algorithms, for example [17, 47], can have a good per-
formance. Howewer, as they need to be trained with a reasonable data set their
application is restricted.
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We decided to use a neighbourhood filter, the Non-Local Means (NLMeans) al-
gorithm. In this chapter, we explain neighbourhood filter techniques in general
and illustrate in detail the NLMeans.

In order to judge a denoising method, it is necessary to be able to simulate noise.
Therefore, we introduce first the noise model and the used quality criterion, the
method noise [8].

2.1 Noise Model
There are several types of noise, but the most important type is the additive
noise. Thereby, the original values and the noise are assumed to be independent.
Thus, it is denoted by

v(x) = f(x) + n(x)

where f(x) is the original value at position x, n(x) the noise perturbation and
v(x) the resulting noisy value.

Noise can have different distributions but the most common one is the Gaussian
distribution. In this case, the noise model is called Gaussian noise and the noise
is independent and identically distributed.
We assume in the following, that the MRI sequences we consider in this thesis
are mainly corrupted by Gaussian noise.

2.2 Quality Measure
Denoising algorithms try to recover the original image f by splitting the noisy
image v into a denoised image and the noise guessed by the method. Therefore,
the result of a denoising method D can be described as a decomposition of any
image v as

v(x) = Dv(x) + nDv(x)⇔ nDv(x) = v(x)−Dv(x) (2.1)

where v is the (noisy) input image, Dv the denoised image and nDv is the noise
guessed by the method, the so-called method noise [8].

It is essential for denoising medical images to loose as few details as possible.
Thus, this method noise should be similar to Gaussian noise and in order not to
alter the original image it should contain as few structures as possible.
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(a) Input image (b) (a) with Gaussian Noise,
σ = 50

(c) Perfect method noise

Figure 2.1: Perfect splitting in image and noise.

We will in the following illustrate neighbourhood filters in general and two ap-
proaches in detail. The latter one, NLMeans filtering is used in this thesis to
denoise the MRI sequences.

2.3 Neighbourhood Filters
Neighbourhood filters are a powerful method for denoising images. In order to
restore the original grey value of a pixel, these filters perform an average of
neighbouring pixels. Hereby, the various methods differ mainly in the choice of
the considered neighbourhood.

(a) Input image (b) Gaussian smoothing (c) Method noise

Figure 2.2: Method noise of Gaussian smoothing, σ = 3. The method noise is gamma
corrected, γ = 1.2.

The simplest case, Gaussian Smoothing makes no difference between edges and
homogeneous regions as can be seen in Figure 2.2. Thus, semantically impor-
tant structures are also smoothed. The method noise contains therefore a lot of
structures, as we observe in Figure 2.2c. Based on the assumption that spatial
neighbouring pixels are not necessarily similar, there are different approaches to
find a neighbourhood of pixels that have a greater resemblance to the regarded
pixel.
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2.3.1 Bilateral Filtering
As mentioned before, Gaussian smoothing removes not only the noise but also
the structures. The cause of this is the choice of the weights for the considered
neighbourhood due to the spatial proximity. Convolving a signal f ∈ R2 with a
Gaussian kernel, denoted as

(Kσs ∗ f)(x) :=

∫
Ω

Kσs(x− y)f(y) dy (2.2)

averages each pixel x ∈ Ω with its spatial neighbourhood while the weights
decrease with distance from x. A range filter Dσr applied to a signal f ∈ R2, is
defined as

Dσr [f ](x) :=

∫
Ω

Kσr(f(x)− f(y))f(y) dy. (2.3)

Hence, the difference between pixel intensities is weighted by a Gaussian kernel.
Bilateral filtering combines both concepts by weighting the pixels in the spatial
neighbourhood with their corresponding relative pixel intensity [2, 55]. Weight-
ing the spatial and intensity distances with Gaussian kernels is very popular,
but there are several weighting functions that can be used. However, as a Gaus-
sian kernel has some nice properties we decided to weight the distances with it.
Hence, bilateral filtering can be defined as

Definition 28 (Continuous Bilateral Filtering)

BF [v](x) =

∫
Ω

Kσs(x− y)Kσr(f(x)− f(y))f(y) dy∫
Ω

Kσs(x− y)Kσr(f(x)− f(y)) dy

where the Gaussians Kσs and Kσr weight the spatial and intensity distance,
respectively.

In contrast to the weighting of a Gaussian smoothing, pixels are not solely
weighted because of their spatial distance. Thus, spatial neighbouring pixels
that are very dissimilar in intensity from the central pixel are weighted down
even though they may be located right next to it. As we are in a discrete set-
ting, we use the discrete formulation, given by

Definition 29 (Discrete Bilateral Filtering)

BF [v]i =

∑
j∈Γ

Kσs(i− j) Kσr(fi − fj))fj∑
j∈Γ

Kσs(i− j) Kσr(fi − fj)

where m is the number of dimensions, i = (i1, ..., im)> ∈ Nm and j =
(j1, ..., jm)> ∈ Nm are pixel positions. The Gaussians Kσs and Kσr weight
the spatial and intensity distance, respectively.
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Because of this double weighting, only pixels close in spatial distance and

(a) Input image (b) Bilateral filtering (c) Method noise.

Figure 2.3: Method noise of Bilateral filtering, σs = 7, σr = 20. The method noise is gamma
corrected, γ = 1.2.

intensity value are considered. In contrast to Gaussian smoothing, bilateral
filtering preserves the edges. The corresponding method noise is shown in Fig-
ure 2.3c. It is obvious that less structures are present therein than in the Gaus-
sian method noise (Figure 2.2c) and that it is relative similar to white noise.
Nevertheless, the comparison of single pixel values is not robust when they are
noisy. Additionally, bilateral filtering removes small structures in nearly homo-
geneous areas.

This is in our case a drawback and an advantage at the same time: On the
one hand, we cannot use this filter to denoise the images that are used in the
end to segment the tumour tissues. On the other hand, we do not need small
structures when we register the images. Hence, we use this filter technique in
our registration step.
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2.3.2 Non-Local Means
The NLMeans algorithm was introduced by Buades et al. [7, 8]. Based on the
assumption that the most similar pixels to a given pixel have no reason to be

Figure 2.4: Redundant information in a natural
image.

close at all, this algorithm picks
up the basic ideas of bilateral
filtering and extends them to a
non-local filtering. As can be
seen in 2.4, most image details
occur repeatedly in natural im-
ages.

Each color denotes a group of
patches in the image which can al-
most not be distinguished. Non-
Local means try to take advan-
tage of this high degree of redun-
dancy. By this, this algorithm de-
noises a digital image while pre-
serving edges, small structures and
fine details. As mentioned before,
NLMeans try to take advantage of
the redundancy in natural images.

Thereby the main observation is that every small sample of a detail in a natural
image has many similar samples in the same image. The square shaped similarity
window Ny or patch around a position y is given by

Ny := {k ∈ Ω : |yi − ki| ≤ di ∀i : 1, ...m} (2.4)

where di is the size of the patch in dimension m. A circular similarity window is
defined as

Ny := {k ∈ Ω : ||y− k|| ≤ rN} (2.5)

where rN is the radius of the circle. By considering the different patches, Buades
et al. defined the neighbourhood of x ∈ Ω as a set of positions y ∈ Ω such that
a window Ny around y, looks like a window Nx around x [8]. The similarity of
two neighbourhoods Nx and Ny is determined by the Euclidean distance of their
corresponding vectors

||f(Nx)− f(Ny)|| (2.6)

Hence, the similarity between two positions x and y depends on the similarity of
the windows around them. Thus, different patches can be regarded to be similar
even though they are far away within the spatial image domain.
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Figure 2.5: Similarity between different patches.

This principle is shown in Fig-
ure 2.5. The windows a and
b are considered to be simi-
lar to the window c while the
patch d is dissimilar. To bet-
ter adapt this comparison to
the image, the regarded win-
dows can have different shapes
and sizes, for example squares
and circles like (2.4) and
(2.5).

Additionally, the similarity win-
dows have to be small enough
to take care of details but
also large enough to be robust
against noise. As we prefer
rotational invariant procedures,
we use a circular shape for the

similarity patch and mirror at the border.

Approach

For each position and adapted to the image, the NLMeans algorithm chooses a
different average configuration [7]. As explained before, for a given position x ∈
Ω, this algorithm takes into account the similarity between the neighbourhood
configuration of x and all other positions in the image. In order to give similar
patches a higher weight while dissimilar patches should have a lower weight, the
Euclidean distance between Nx and Ny is used as input to a weight function,
often a Gaussian. This is denoted by

Definition 30 (Continuous Non-Local Means)

NL[v](x) :=

∫
Ω

Kσr(||f(Nx)− f(Ny)||2)f(y) dy∫
Ω

Kσr(||f(Nx)− f(Ny)||2) dy

where Kr denotes the Gaussian weight function with standard deviation σr.

Thus, the vector distance to the window around x sets the weights for each
position y. Hence, positions with a similar neighbourhood to Nx will have larger
weights on the average. Due to the fast decay of the exponential kernel large
Euclidean distances lead to nearly zero weights for dissimilar patches and acts
as an automatic threshold [7]. We are in a discrete setting and use therefore the
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discrete formulation given by

Definition 31 (Discrete Non-Local Means)

NL[v]i :=

∑
j∈Γ

Kσr(||f(Ni)− f(Nj)||2)fj∑
j∈Γ

Kσr(||f(Ni)− f(Nj)||2)

where m is the number of dimensions, i = (i1, ..., im)> ∈ Nm and j =
(j1, ..., jm)> ∈ Nm are pixel positions. Kr denotes the Gaussian weight func-
tion with standard deviation σr.

As the unrestricted NLMeans compares for every pixel in the image its neigbour-
hood with all other neighbourhoods, it has an extreme computational burden.
The search for similar pixels is for this reason restricted to a search window Si

around the regarded pixel i ∈ Γ. This window can also have different shapes and
sizes. We use again a circular shape to preserve the rotational invariance of the
method and mirror at the border. Hence Si is defined by its radius rs as

Si := {k ∈ Γ : ||i− k|| ≤ rs}

NLMeans has consequently three parameters. As mentioned before, the similar-
ity window N has to be small enough to preserve details and also large enough
to be unsusceptible against noise. Additionally, the computation time is strongly
connected to the radius rN . The radius rS of the search window Si defines the
area around i ∈ Γ in which the algorithm searches for pixels similar to i. For
this reason, the size of Si has also a high influence on the computational effort.

(a) Input image (b) NLMeans (c) Method noise

Figure 2.6: Method noise of NLMeans, rN = 3, rN = 5, σr ≈ 51.2. The method noise is
gamma corrected, γ = 1.2.

The third parameter, which is also the most important one is the standard de-
viation σr of the Gaussian kernel that weights the similarity between patches. If
this parameter is set too small nearly no noise will be removed, but if σr is too
large, the NLMeans will blur the image.
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The result of NLMeans is shown in Figure 2.6. Considering Figure 2.6c, we
can observe that little structures are removed and that the method noise is very
similar to Gaussian noise.

In Figure 2.7 the influence of a wrong set parameter σr to the result is presented.
If the standard deviation of the Gaussian weight function is too low, this filter
does also not remove the noise, as depicted in Figure 2.7d. On the other hand,
if this parameter is set too high, the method blurs the image and the method
noise contains a lot of structures as shown in Figure 2.7f.

(a) rN = 3, rN = 5, σr = 42. (b) Method noise of (a).

(c) rN = 3, rN = 5, σr = 10. (d) Method noise of (c).
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(e) rN = 3, rN = 5, σr = 170. (f) Method noise of (e).

Figure 2.7: Influence of σr to NLMeans. The method noise is gamma corrected, γ = 1.2.

Comparing Figure 2.7b and Figure 2.7f one can observe that with a correct
parameter setting, the NLMeans preserves all the structures while it blurs most
of the details with a too large standard deviation of the Gaussian weighting
function. We explain in detail in Section 5.1 how the parameters can be adopted
automatically to an image.

The NLMeans algorithm is well suited for a parallel implementation as the de-
noised value of each pixel can be computed separately. For this reason we use a
CUDA[39] based GP-GPU implementation.
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3 Registration

Information gained from different MRI sequences is usually of a complementary
nature, cf. Section 1.1. Hence a proper integration of data obtained from
the separate sequences is desired. A first step in this integration process is to
bring the modalities involved into spatial alignment, a procedure referred to as
registration.

(a) T1 (b) T cont
1

(c) T2 (d) T flair
2

Figure 3.1: Different sequences of subject G13, Slice 7.

To register two sequences means to align them, such that common features over-
lap and differences between them are emphasised and readily visible. There are
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many clinical applications requiring registration, but in this thesis we only con-
sider different sequences of MRI which are acquired directly after each other.
When registering image sequences, we are determining a geometric transforma-
tion which brings the sequences in precise spatial correspondence to each other.

Interpolation Disconnect outer objects

Gap enhancementSkull extractionAffine transformation

Figure 3.2: Scheme of the Registration Process.

We align therefore in the first step the sampling rates of the MRI scans, see
Section 3.1. As shown in Figure 3.1 the MRI sequences offer multi-modal
information about the same object, i.e. the brain. The only information that is
represented the same way in all the sequences is the shape of the skull. Because
of this, we decided to use this information to register the MRI scans.

By means of a CV model we split the images into fore- and background, cf. Sec-
tion 3.4. Then we select the largest segment, i.e. the skull and close holes inside
it, see Section 3.5. We use this mask in the end to determine the geometric
transformation between the MRI sequences, cf. Section 3.6. As we mentioned
before, the scans are acquired in a row. We assume therefore that the transfor-
mations between the different sequences can be described by a subset of affine
transformations, i.e. translation, rotation and scaling.

(a) T1 (b) T flair
2

Figure 3.3: Skull shape of different sequences.

On the one hand, this approach is very efficient and robust against noise as the
CV model does not rely on an edge detector. On the other hand, difficulties occur
when the outer contour of the skull is not nearly identical for the images to be
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registered. Figure 3.3 shows the T1 and T flair2 image of subject G13 at z ≈ 6cm,
i.e. slice 10. In the T1 image, the ears are clearly observable while they are barely
visible in the T flair2 image. This results in two very different registration masks.
Consequently, the registration of those images is of low quality.

We overcome this problem by preprocessing such images before we split them
into fore- and background with the CV model. As the ears disturb our regis-
tration process, we have to separate them from the skull. We achieve this by a
short evolution under Coherence Enhancing Diffusion (CED), cf. Section 3.2.
Afterwards, we enlarge the gap between the contour of the skull and the ear by
extracting only bright details with a white top hat, see Section 3.3. After this
step, both process chains for registration are identical.

In the latter, we explain first how we align the sampling rates of the MRI se-
quences.

3.1 Registration of Grid Dimensions
As mentioned before, the first step in the registration process is the alignment
of the sampling rates of voxels, due to mismatching sampling rates of different
MRI sequences. Furthermore, the acquisition has a non-homogeneous resolution
resulting in a fine within-slice and a coarse across-slice resolution.
In order to maintain all information, we decided to rescale always to the finest
sampling rate. Thus, we have to interpolate the coarser resolutions to a finer
grid.

3.1.1 Classical Interpolation

Interpolation is the recovery of continuous data from discrete data within a
known range of abscissa [53, 66]. The classical interpolation formula is given by

Definition 32 (Classical Interpolation Formula)

f(x) =
∑
k∈Zm

fk ϕint(x− k) ∀x = (x1, x2 . . . xm)> ∈ Rm, ϕint : Rm → R

where f(x) is the interpolated value at coordinate x, expressed as a weighted
average of the discrete samples fk where the weights are determined by the
synthesis function ϕint(x− k).

As denoted in Definition 32, the interpolated value is a linear combination of all
samples fk ∈ Zm, irrespective of always finite number of known samples. Hence,
to satisfy the formal conditions of (32) the finite amount of samples must be
extended to infinity. This can be done by setting suitable boundary conditions,
e.g. using mirror symmetries. Obviously, the only remaining freedom lies in the
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synthesis function [52, 53, 66].
To restrict the interpolation formula in Definition 32 to exact interpolation, it
has to satisfy the interpolation condition

f(n) = fn ∀n ∈ Zm. (3.1)

Furthermore, the synthesis function must vanish for all integer values except at
the origin, where it has to be 1. More formally, this is denoted by

ϕ(x) =

{
1 x = 0>

0 x ∈ Zm \ 0>
(3.2)

Optimising the classical interpolation approaches show to be diminishing.
Thévenaz et al. suggest therefore to use the so-called generalised interpolation
formula, defined by

Definition 33 (Generalised Interpolation Formula)

f(x) =
∑
k∈Zm

ck ϕ(x− k) ∀x = (x1, x2 . . . xm)> ∈ Rm, ϕ : Rm → R

that allows to carry out the interpolation in two steps by introduction of coeffi-
cients ck instead of the sample values fk [52].

The classical interpolation formula is obviously a special case of the general one
for ck = fk. However, by splitting the interpolation in two steps and neglecting
the interpolation constraint, we allow for the use of a much broader class of
synthesis functions, some with better properties like small support and excellent
approximation order.

Unfortunately, this advantages come with a higher computational burden.
Hence, we face a trade-off between quality and cost: The approximation er-
ror should be as small as possible to introduce the least amount of distortions
while we deal with a large amount of volumetric medical image data.

The high computational effort can be reduced on the one hand by using basis
functions which are separable, so

ϕsep(x) =
m∏
i=1

ϕ(xi) ∀x = (x1, x2 . . . xm)> ∈ Rm. (3.3)

Then the data processing breaks down to one dimensional computations. On the
other hand, we demand the basis functions to have a small support interval. As
we also want to preserve the spatial relations, the symmetry

ϕ(x) = ϕ(−x) ∀x ∈ Rm (3.4)
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of the basis functions is important. The registration of the grid dimensions is
the first step in a large process chain. As image processing methods often need
derivatives, we also restrict ourself to basis functions with high regularity.

We explain in the following the popular B-spline interpolation. B-splines are
maximally continuous by having the smallest possible support interval and an
excellent approximation order.

3.1.2 B-Spline Interpolation
B-Splines belong to a family of functions that enjoy maximal order and mini-
mal support called Moms [52]. All of these functions can be represented as the
weighted sum of a B-Spline and its derivatives. As the resulting functions have a
lower regularity, we decided to use pure B-Splines because they are those Moms-
functions that are maximally differentiable. However there are functions in this
family, i.e. the o-Moms, that have a slightly lower approximation error [52].

The most easiest synthesis function made of B-splines is the first order box
function for symmetric nearest neighbour interpolation, denoted by

β0(x) =


1 |x| < 1

2
1
2

|x| = 1
2

0 otherwise
(3.5)

As shown in Figure 3.4a, this spline is interpolating. It is very simple and
efficient as always just one sample fk contributes to it [52].

However, as the β0-spline is made of a square pulse, its approximation order is
one and it can only represent piecewise-constant functions.

Before we illustrate how we derive higher-order B-splines, we introduce some no-
tation. The order L of a basis function represents the approximation order. The
regularity of a B-spline β is denoted as β ∈ Cm indicating that the resulting in-
terpolant is m-times differentiable. The support W (β) characterises the interval
contributing to the interpolant and the degree n specifies that any polynomial of
degree n can be represented by this spline [52, 53].
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Synthesis functions of higher order can be iteratively derived by convolving a
B-spline with a square pulse, i.e. the synthesis function for β0

1.

(a) β0 (symmetric nearest neighbour) (b) β1 (linear)

(c) β2 (quadratic) (d) β3 (cubic)

Figure 3.4: Synthesis functions made of B-splines. (a) β0 and (b) β1 are interpolating as
β0(0) = β1(0) = 1.

A B-spline of order L is then characterised as

βn = βn−1 ∗ β0,

n = L− 1,

W (βn) = L,

βn ∈ Cn−1.

(3.6)

The B-spline β1 of degree 1, defined as

β1(x) =

{
1− |x| |x| < 1
0 otherwise

(3.7)

is also called linear interpolation. It can represent linear functions and is, as
shown in Figure 3.4b interpolating. Due to their sharp transitions, β0 and β1

exacerbate the occurence of blocking artifacts [52].

1 As the theory of B-splines is very complex and we only illustrate some basic facts, we refer to
[52, 53, 57, 58].
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All B-splines of degree n ≥ 1 are on the one hand not interpolating and on the
other hand they also do not have sharp transitions anymore. The first approxi-
mating synthesis function made of a B-spline is then

β2(x) =


3
4
− x2 |x| < 1

2
1
2
(3

2
− |x|)2 1

2
≤ |x| < 3

2

0 otherwise
(3.8)

The synthesis made of β2 describes quadratic functions and is sketched in Fig-
ure 3.4c. As it is just one time differentiable according to (3.6) we derive the
fourth order B-spline

β3(x) =


2
3
− x2 + 1

2
|x|3 |x| < 1

1
6
(2− |x|)3 1 ≤ |x| < 2

0 otherwise
(3.9)

where

β3 = β2 ∗ β0,

n = 3,

W (β3) = 4,

β3 ∈ C2.

(3.10)

This synthesis function is depicted in Figure 3.4d and represent cubic functions.
It looks similar to a Gaussian and it can be shown that βn converges to a Gaussian
for n → ∞ where the maximal relative error between β3 and a Gaussian with
identical variance is about 3.5% [23, 52, 53]. The interpolation is computed
in two steps. First we solve the generalised interpolation formula (33) for the
coefficients ck,k ∈ ZN . We do this by an one-dimensional algorithm as the B-
spline interpolation is separable. We solve row by row and column by column
the following linear system of equations:

β3(0) β3(1) . . . β3(N − 1)
β3(1) β3(0) . . . β3(N − 2)

...
... . . .

...
β3(N − 1) β3(N − 2) . . . β3(0)



c1

c2
...
cN

 =


f1

f2
...
fN

 (3.11)

where N = nx for a row and N = ny for a column, respectively. The support
interval of β3 is [−2, 2]. Therefore, (3.11) breaks down to a system with a
tridiagonal matrix

2
3

1
6

0 . . . . . . 0
1
6

2
3

1
6

0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 1

6
2
3

1
6

0 . . . . . . 0 1
6

2
3





c1

c2
...
...

cN−1

cN


=



f1

f2
...
...

fN−1

fN


(3.12)
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We solve this system with the Thomas Algorithm and mirror at the border, see
Section 1.2.10. In the second step, we determine the desired values f(x),x ∈ Ω
from the coefficients ck.

In our opinion, bi-cubic B-Splines are the best trade-off between computation
time, quality and regularity. We resample the image data to the finest resolution
occuring in the data. The sampling of the image data we have is always relatively
dense in x and y direction, i.e. hx ≈ 0.4mm,hy ≈ 0.4mm. Hence we have enough
supporting points to guarantee a reasonable interpolation result. The across-slice
resolution is unfortunately always very coarse and in average 15 times lower then
the within-slice sampling, i.e. hz ≈ 6mm. As the approximation error is too high
to get reliable data and the amout of data also increases dramatically by factor
15 for an equidistant sampling, we decided not to interpolate in the depth.

For this reason, we illustrate in the latter most of the procedures only for the
two dimensional case. However, all of the methods can easily be extended to
three dimensions.

3.2 Coherence Enhancing Diffusion Filtering
We mentioned before, that we use coherence-enhancing diffusion filtering to re-
move distortions from the contour of the skull. This filter technique is able to
complete interrupted lines and to enhance flow-like structures [61, 63, 64].

In CED filtering, the symmetric and positive definite diffusion tensor D = (dij) ∈
R2x2 is chosen as a function of the local image configuration by adapting it to
the structure tensor Jρ(∇uσ), cf. Section 1.2.6.
The diffusion tensor D is constructed on the one hand by using the same eigen-
vectors as the structure tensor and on the other hand by the eigenvalues

λ1 := α

λ2 :=

{
α if κ = 0

α + (1− α)exp(−C
κ

) otherwise

(3.13)

where C is a threshold parameter and κ := (µ1 − µ2)2 is the strength of the
local orientation. For κ� C the eigenvalue λ2 tends to 1 where κ� C leads to
λ2 ≈ α.
Hence, the CED filter acts mainly in the coherence-orientation and the smoothing
increases with the strength of the local orientation of the structure [63].
The introduction of the exponential function guarantees that the smoothness
of the structure tensor carries over to D and that λ2 does not exceed 1 while
α ensures that the diffusion process never stops [64]. Even if κ → 0, i.e. a
homogeneous area, a small linear diffusion with diffusivity α > 0 remains [63].
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Finally, the IBVP of the diffusion equation

Definition 34 (IBVP of CED)

∂tu = div(D∇u),

u(x, 0) = f(x) x ∈ Ω,

∂u

∂n
(x, t) = 0 x ∈ ∂Ω

with

D =

(
d1,1 d1,2

d2,1 d2,2

)
=

(
a b
b c

)

can be rewritten as

∂tu = ∂x(a ∂yu) + ∂x(b ∂yu) + ∂y(b ∂xu) + ∂y(c ∂yu) (3.14)

The standard discretisation gives the stencil weights shown in Figure 3.5.

−bi−1,j−bi,j+1

4hxhy

ai−1,j+ai,j
2h2x

bi−1,j+bi,j−1

4hxhy

ci,j+1+ci,j
2h2y

−ai−1,j+2ai,j+ai+1,j

2h2x

− ci,j−1+2ci,j+ci,j+1

2h2y

ci,j−1+ci,j
2h2y

bi+1,j+bi,j+1

4hxhy

ai+1,j+ai,j
2h2x

−bi+1,j−bi,j−1

4hxhy

Figure 3.5: Stencil weights for standard discretisation.

This scheme requires a very small time step τ to be stable,

τ =
1

2
h2x

+ 2
h2y

. (3.15)

However, as we perform only a short evolution, this is not a problem. Never-
theless, there are several ways to address this drawback, for example the Fast
explicit diffusion [23].
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(a) Input image (b) Result of CED

(c) Right ear of (a) (d) Right ear of (b)

Figure 3.6: Result of CED filtering with a short evolution. T = 1.5, C = 1, σ = 0.5, ρ =
1.5, α = 0.001

We use CED to enhance the coherence along the skull, which disconnects the
ears from it. This is shown in Figure 3.6. We explain in the following how the
gap between the skull and the ear can be enlarged.

3.3 Nonflat Morphological Filtering

Mathematical Morphology, introduced by Serra and Matheron in the 1960’s[34,
49], analyses the shape of objects in an image and is one of the most successful
classes of image analysis methods.
It is invariant under monotone grey-level rescalings. Hence, brightness of illumi-
nation and image contrast do not matter [61].
The basic transforms of mathematical morphology are dilation and erosion, de-
fined as an interaction between the image and a structuring element B.
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Definition 35 (Dilation with a Structuring Element)

(f ⊕B)(x) := sup {f(x− y) | y ∈ B}

Dilation replaces the grey value of a continuous image f(x) by its supremum in
the structuring element B as denoted by Definition 35. The erosion is defined
analogously, replacing the grey value by its infimum within the mask:

Definition 36 (Erosion with a Structuring Element)

(f 	B)(x) := inf {f(x + y) | y ∈ B}

The structuring element can be of different shapes: circular elements are rota-
tionally invariant while quadratic ones are separable. Unfortunately, there is no
structuring element that offers both separability and rotational invariance.

Therefore we decided to use a more general framework, the nonflat morphology
introduced by van den Boomgard [5]. Instead of a structuring element, nonflat
morphology uses a structuring function b,

b : Rn → R. (3.16)

where n is the number of dimensions. Its building blocks dilation

Definition 37 (Dilation with a Structuring Function)

(f ⊕ b)(x) := sup {f(x− y) + b(y)|y ∈ Rn}

and erosion

Definition 38 (Erosion with a Structuring Function)

(f 	 b)(x) := inf {f(x + y)− b(y)|y ∈ Rn}

are defined similar to their counterparts with a flat structuring element. This
similarity is natural as the non-flat morphology resembles the flat one [61] when
the structuring function b is defined as,

b(x) :=

{
0 if x ∈ B
−∞ else.

(3.17)

The main difference between both morphological filter techniques is that the non-
flat morphology renounces the morphological invariance, i.e. it is not invariant
under monotonically increasing grey scale transformations [61].
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Nevertheless, as we are mainly interested in the always strong contours describing
the shape of the skull this drawback has no influence in our application.

However, van den Boomaard showed that paraboloids are separable and rota-
tionally invariant structuring functions [5]. Following his suggestion, we use

Definition 39 (Quadratic Structuring Function2)

b(x, t) = −|x|
2

4t
t > 0

as structuring function. The value of t controls the penalising for increasing
distances to the regarded pixel. In the latter, we recycle our implementation
with this structuring function for the reinitialisation of the level set function of
the CV model, cf. Section 3.4 to

b(x) = −|x|2. (3.18)

This is possible because a nonflat erosion of an image f(x) with foreground 0 and
background −∞ is equivalent to the euclidean squared distance function [67]. We
use this structuring function for our implementations of nonflat morphology.

3.3.1 Dilation
Analogously to the dilation with a structuring element, the dilation with a struc-
turing function is one of the two basic transforms of the nonflat morphology. As
structuring function we use (39) and the nonflat dilation is in our application
therefore defined as
Definition 40 (1D Dilation)

(f ⊕ b)(x) := sup
y

{
f(x− y)− y2

4t

}
= sup

z

{
f(z)− (x− z)2

4t

}
where z = x− y.

The grey value at position x is replaced by its supremum in the structuring
function b. The main difference between nonflat (40) and flat dilation (35)
is thereby the infinite support of the structuring function b in contrast to the
limited area of the structuring element B [68].

Figure 3.7 presents the images after dilation with different values of t. One can
see that for increasing t, the distance from a pixel to the maximum value in its
region is less penalised. Therefore bright areas grow for increasing t.

2 Dilation of f(x) with this quadratic structuring function is known to be equivalent to the evolu-
tion of the PDE ut = |∇u|2 at time t [6].
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(a) Input image

(b) t = 0.25

(c) t = 0.5

(d) t = 2.5

Figure 3.7: Dilation with structuring function (39). Left column: Grey scale images. Middle
column: Pseudo colouring of the left row. Right column: Coloured gradients.

The right column shows the coloured gradients where we can notice that the
gradients remain nearly zero at the boundary of the skull for increasing t.
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3.3.2 Erosion
Erosion with the structuring function given by (39) is defined as

Definition 41 (1D Erosion)

(f 	 b)(x) := inf
y

{
f(x+ y) +

y2

4t

}
= inf

z

{
f(z) +

(z − x)2

4t

}

is the counterpart to Definition 40 and replaces the grey value at position x
by its infimum in the support of the structuring function b. We can consider
in Figure 3.8 that erosion acts exact in the opposite way to the dilation: The
less the distance to a minimum is penalised the more bright details are removed.
Thereby the remaining structures also shrink for increasing t.

(a) Input image

(b) t = 0.25

(c) t = 0.5
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(d) t = 2.5

Figure 3.8: Erosion with structuring function (39). Left column: Grey scale images. Middle
column: Pseudo colouring of the left row. Right column: Coloured gradients.

3.3.3 Opening
While dilation results in an expansion of bright areas, erosion shrinks those
regions. Consequently, when objects are simplified and shrunken by an erosion,
see Section 3.3.2, the shrinkage effects can be mostly removed by a subsequently
dilation, cf. Section 3.3.1. The opening, defined as

Definition 42 (1D Opening)

(f ◦ b)(x) := ((f 	 b)⊕ b)(x)

combines therefore both building blocks of morphology and removes bright de-
tails while reducing the shrinkage effects of erosion. Hence, opening is a mor-
phological lowpass filter [66]. Additionally, it is an idempotent operation as it
can be applied multiple times without changing the result beyond the initial ap-
plication.
Figure 3.9 displays openings of Figure 3.9a for different values of t.

(a) Input image
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(b) t = 0.25

(c) t = 0.5

(d) t = 2.5

Figure 3.9: Opening with structuring function (39). Left column: Grey scale images. Middle
column: Pseudo colouring of the left row. Right column: Coloured gradients.

Regarding Figure 3.9 we can observe that openings with decreasing penalisa-
tion of the distance remove more and more bright details while the size of the
remaining regions does not decrease that much. Although it looks in the grey
scale and pseudo coloured images like a tremendous shrinkage of these regions,
we can see in the gradient domain, that their area remain nearly the same but
the morphological operations decreased the contrast.

However, this is the main drawback of the nonflat morphology compared to its
flat counterpart. Due to the infinite support of the structuring function, it is
not possible to guarantee that the shrinkage effects of the erosion are completely
removed.
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3.3.4 White Top Hat
Opening an image removes bright details, as we show in Section 3.3.3. Conse-
quently, we can extract those details by computing the difference of the original
image and the image after an opening.
The name of this procedure is white top hat and it is defined as

Definition 43 (1D White Top Hat)

WTH[f, b](x) := (f − (f ◦ b))(x).

Hence, the white top hat is a morphological highpass filter and as the grey values
of an opened image are for sure lower then in the original image, it guarantees a
positive result by construction.

As shown in Figure 3.10 for increasing t, white top hats of Figure 3.10a
extract more bright structures.

(a) Input image

(b) t = 0.25

(c) t = 0.5
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(d) t = 2.5

Figure 3.10: White Top Hat with structuring function (39). Left column: Grey scale images.
Middle column: Pseudo colouring of the left row. Right column: Coloured gradients.

In the registration process we are only interested in the shape of the skull. For
this reason we use a low value for t to enforce that only very bright structures

(a) Input image

(b) t = 0.5

Figure 3.11: Extraction of bright details with parabolic white top hat. Left: Input image and
white top hat, t = 0.5. Right: Selected area before and after the white top hat.

are extracted. As we can see in Figure 3.11 the shape of the skull is preserved
while darker details, like the connection to the ears, are removed. As the nonflat
morphology with structuring function (39) is separable, this algorithm is also
well suited for parallel computing. We use therefore a CUDA[39] based GP-GPU
implementation.
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3.4 Chan-Vese Active Contour Model
The next step in our process chain to register the different MRI sequences is to
extract the shape of the skull. For this we use the aforementioned CV model [13].
On the one hand this model is a reduction of the piecewise constant Mumford-
Shah model, which is as denoted by Definition 27 defined as

EMSPC (u,C) =

∫
Ω

(f(x)− u(x))2 dx + α Length(C) (3.19)

The image is partitioned in object and background as there are only two segments
allowed, denoted by

u(x) =

{
uin x inside C
uout x outside C

(3.20)

On the other hand, Chan and Vese added a term penalising the area enclosed by
the curve. Hence, the Chan-Vese active contour model is defined as

Definition 44 (Chan-Vese Active Contour Model)

ECV (uin, uout, C) = λ1

∫
inside C

(f(x)− uin)2 dx + λ2

∫
outside C

(f(x)− uout)2 dx

+α Length(C) + µ Area(inside C)

where uin and uout are the arithmetic means of f(x) inside and outside the curve
C. λ1 and λ2 are the weights for penalising the discrepancy between the input
image f(x) and the arithmetic means inside and outside the curve [13].

In order to find a minimiser, the formulation requires minimising over all edge-
sets C. This problem is addressed implicitly as Chan and Vese use a level set
formulation and represent C as the zero-crossings of the Lipschitz continuous
level set function φ : Ω→ R, such that [13]:

C = ∂w = {x ∈ Ω : φ(x) = 0}
inside C = w = {x ∈ Ω : φ(x) > 0}
outside C = Ω \ w = {x ∈ Ω : φ(x) < 0}

(3.21)

where ∂w is the border of w. With the Heaviside function H as indicator function
for the set enclosed by C, defined as

Definition 45 (Heaviside Function)

H(z) =

{
1 (z ≥ 0)
0 (z < 0)
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and its distributional derivative3 the one-dimensional Dirac measure δ0 = ∂
∂z
H(z)

and following [71],

Length{φ = 0} =

∫
Ω

|∇H(φ(x))| dx =

∫
Ω

δ0(φ(x))|∇φ(x)| dx,

Area{φ ≥ 0} =

∫
Ω

H(φ(x)) dx,

∫
φ>0

(f(x)− uin)2 dx =

∫
Ω

(f(x)− uin)2 H(φ(x)) dx,

∫
φ<0

(f(x)− uout)2 dx =

∫
Ω

(f(x)− uout)2 (1−H(φ(x))) dx.

(3.22)

The level set formulation of the CV model is then given by

ECV (uin, uout, φ) = λ1

∫
Ω

(f(x)− uin)2 H(φ(x)) dx

+ λ2

∫
Ω

(f(x)− uout)2 (1−H(φ(x))) dx

+ α

∫
Ω

|∇H(φ(x))| dx + µ

∫
Ω

H(φ(x)) dx

The solution u (3.20) of this energy functional, can be written as

u(x) = uinH(φ(x)) + uout(1−H(φ(x))), x ∈ Ω. (3.23)

The minimisation of the energy functional is solved by alternately updating uin,
uout and φ [13]. If φ is fixed and the curve has a nonempty interior and exterior
in Ω, the current arithmetic means uin and uout are computed by

uin(φ) =

∫
Ω

f(x)H(φ(x)) dx∫
Ω

H(φ(x)) dx

uout(φ) =

∫
Ω

f(x)(1−H(φ(x))) dx∫
Ω

(1−H(φ(x))) dx

(3.24)

In the second update step, uin and uout are fixed and ECV (uin, uout, φ) is min-
imised w.r.t. φ, i.e. we have to find a minimiser for

3 The Heaviside function is not differentiable in the classical meaning. However, it can be
differentiated in the sense of distributions, cf. [45].
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ECV (φ) = λ1

∫
Ω

(f(x)− uin)2 H(φ(x)) dx

+ λ2

∫
Ω

(f(x)− uout)2 (1−H(φ(x))) dx

+ α

∫
Ω

|∇H(φ(x))| dx + µ

∫
Ω

H(φ(x)) dx

(3.25)

The energy ECV is non-convex and has to be solved numerically. As we use a
gradient descent we regularise the Heaviside function H as suggested by [13] as

Definition 46 (Regularised Heaviside Function)

Hε(z) =
1

2

(
1 +

2

π
arctan

(z
ε

))

and its derivative δε as

δε(z) =
ε

π(ε2 + z2)
. (3.26)

The resulting approximations are shown in Figure 3.12. If H is regularised in

(a) Approximation of H (b) Approximation of δ0

Figure 3.12: Approximations of H and δ0 for different regularisation parameters ε.

this way, the equation acts on all level curves and therefore more like a global
minimiser [13].We deduce the Euler-Lagrange equation of ∇ECV
Definition 47 (Euler-Lagrange Equation of ∇ECV )

H ′ε(φ(x))

(
λ2(f(x)− uout)2 − λ1(f(x)− uin)2 − µ+ α div

(
∇φ(x)

|∇φ(x)|

))
= 0

with the boundary condition

∂ε(φ(x))

|∇φ(x)|
∂φ(x)

∂n(x)
= 0 x ∈ ∂Ω
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and the gradient descent w.r.t. φ is then given by

Definition 48 (Gradient Descent of ∇ECV )

∂tφ(x) = δε(φ(x))

(
λ2(f(x)− uout)2 − λ1(f(x)− uin)2 − µ+ α div

(
∇φ(x)

|∇φ(x)|

))
with the boundary conditions

φ(x, 0) = φ0(x) x ∈ Ω

∂ε(φ(x))

|∇φ(x)|
∂φ(x)

∂n(x)
= 0 x ∈ ∂Ω

where ∂φ(x)
∂n(x)

is the derivative of φ(x) in the direction of the outer normal n [13, 66].

We follow [13] and discretise (48) with finite differences as denoted by Equa-
tion 3.27, cf. Section 1.2.5. We also mix various finite differences to approxi-
mate

div

(
∇φ(x)

|∇φ(x)|

)
= ∂x

(
∂xφ√

(∂xφ)2 + (∂yφ)2

)
+ ∂y

(
∂yφ√

(∂yφ)2 + (∂xφ)2

)

to center the result. The discretisation is given by

φn+1
i,j − φni,j

τ
= δε(φ

n
i,j)

λ2(fi,j − uout)2 − λ1(fi,j − uin)2 − µ

+ α

∂−x
 ∂+

x φ
n+1
i,j√

(∂+
x φ

n
i,j)

2 + (∂yφni,j)
2


+ ∂−y

 ∂+
y φ

n+1
i,j√

(∂+
y φ

n
i,j)

2 + (∂xφni,j)
2


(3.27)

where τ is the time step. Let

C1,i,j =
α√

(∂+
x φ

n
i,j)

2 + (∂yφni,j)
2

C2,i,j =
α√

(∂+
x φ

n
i−1,j)

2 + (∂yφni−1,j)
2

C3,i,j =
α√

(∂+
y φ

n
i,j)

2 + (∂xφni,j)
2

C4,i,j =
α√

(∂+
y φ

n
i,j−1)2 + (∂xφni,j−1)2

and

Ri,j = λ2(fi,j − uout)2 − λ1(fi,j − uin)2 − µ
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then we can write (3.27) as

φn+1
i,j − φni,j

τ
= δε(φ

n
i,j)
[
Ri,j + C1,i,j(φ

n
i+1,j − φn+1

i,j )− C2,i,j(φ
n+1
i,j − φni−1,j)

+ C3,i,j(φ
n
i,j+1 − φn+1

i,j )− C4,i,j(φ
n+1
i,j − φni,j−1)

]
Finally, we update φ as

φn+1
i,j =

φni,j + τδε(φ
n
i,j)
[
Ri,j + C1,i,jφ

n
i+1,j + C2,i,jφ

n+1
i−1,j + C3,i,jφ

n
i,j+1 + C4,i,jφ

n+1
i,j−1

]
1 + τδε(C1,i,j + C2,i,j + C3,i,j + C4,i,j)

In some experiments, we reinitialise φ every step to the euclidean signed distance
function

Definition 49 (Euclidean signed Distance Function)

ψ(x) =

{
||x− φt(x)|| x inside φ
−||x− φt(x)|| otherwise

where φt(x) is the solution at time t

to its zero level curve. It is a rescaling and can prevent interior contours from
growing [13]. For its implementation we use a morphological operation as de-
scribed in Section 3.3. However, as the reinitialisation is extremely time con-
suming, we rarely use it.
The segmentation boundary of the steady state of the CV model is independent
of the initialisation of the level set function [11]. We decided to use a circular
initialisation, see Figure 3.13b. The advantage of this initialisation is, that we
can guarantee that the object is enclosed by the contour, i.e. it is inside the con-
tour. The evolution under the CV model for different evolution times is shown
in Figure 3.13c to Figure 3.13f.

(a) Input image (b) Initial contour
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(c) t ≈ 0.2 (d) t ≈ 0.5

(e) t ≈ 0.8 (f) t ≈ 1.9 (steady state)

Figure 3.13: Evolution under the CV model for different evolution times, λ1 = 1, λ2 = 1, µ =
0, α = 1, ε = hxhy, τ ≈ 0.04, with reinitialisation of the level set function.

Inspired by CPU code we get from Levi Valgaerts4, we use a CUDA [39] based
GP-GPU implementation of the CV model.

4 valgaerts@mpi-inf.mpg.de

mailto:valgaerts@mpi-inf.mpg.de
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3.5 Connected Component Labelling
The result of the segmentation can consist of several components while the largest
component is always the skull. Due to this, our first step is to find the largest
connected area. Connected component labelling scans an image and groups
its pixels into components based on pixel connectivity. After all groups are
determined, each pixel is labelled with a colour according to the component it
was assigned to.

We use a classical connected component algorithm for graphs [46]. It is a row-
by-row labelling with two passes. In the first pass we determine the equivalences
and assign temporary labels.

We use a eight point neighbourhood to determine equivalences. Equivalence
means that if the label of one of the eight direct neighbours of a pixel is different
from the one assigned to the regarded pixel, both labels are regarded as equivalent
and they are stored in the same equivalence class. We replace the temporary
labels then in the second pass by the label of its equivalence class.

(a) Steady state of the CV model. (b) Colouring of connected compo-
nents.

Figure 3.14: Labelling of connected components.

We use the connected component labelling in two ways. The first one addresses
the segmentation of the shape of the skull. The steady state of the CV model
can contain small segments. For this reason, we use the connected components
algorithm to find the largest segment as shown in Figure 3.14 and remove all
others, cf. Figure 3.15.
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(a) Colouring of connected compo-
nents.

(b) Largest segment.

Figure 3.15: Connected components.

Additionally, the largest segment can also contain holes, as depicted in Fig-
ure 3.15b. We invert therefore the mask image, shown in Figure 3.16a. Then
we choose the largest component, i.e. the background of the image, and set all
others to zero. Afterwards we invert the mask again and have a closed segment
of the skull.

(a) Inversion of Figure 3.15b. (b) Final result.

Figure 3.16: Closing of small holes in the skull segment.

Tthe final result is presented by Figure 3.16b. It would also be possible to
use a morphological operation to close small holes in the fore- and background.
Unfortunately, this has in our opinion two major drawbacks. On the one hand
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we do not know in advance the diameter of the holes. Hence, it would be difficult
to determine the correct parameter for the morphology. On the other hand, a
morphological process can also change the outer contour of our segment.

For this reason, we use the described connected component labelling to close
holes. It does not need any parameter and preserves the outer contour.

3.6 Affine Body Transform
The final step in our registration process is the affine body transform to bring
the MRI sequences in spatial correspondence. As we mentioned before, the MRI
sequences are imaged in a row. We assume therefore that the transformations
between them consist of a translation, rotation and a scaling. Hence, there is no
need for a registration method which is capable to handle elastic transformations,
like registration with mutual information [59] or normalised gradient fields [24].

3.6.1 Principal Axes Transform
We use for the registration the masks that we gain by the connected component
labelling. The main observation is that the mask, i.e. the outer contour of the
skull, is shaped like an ellipse in two dimensions and like an ellipsoid in three
dimensions, respectively5.

An ellipse is uniquely located by the position of its center of mass and its orien-
tation w.r.t. the center of mass [1, 27].
The result of the connected component labelling M is one for every pixel inside
the segment and zero everywhere else. The mass centroids are then computed
as [15]

cx =

∑
(i,j)∈Γ

iM(i, j)∑
(i,j)∈Γ

M(i, j)
cy =

∑
(i,j)∈Γ

jM(i, j)∑
(i,j)∈Γ

M(i, j)
. (3.28)

The covariance matrix Σ describes the variance of mass as a function of direction
where

Σ =

(
σ2
X σ2

XY

σ2
XY σ2

Y

)
(3.29)

5 We mentioned before, that the sampling rate w.r.t. the depth is too coarse to get a reasonable
interpolation error. Consequently, we illustrate in the latter only the two dimensional registra-
tion. Nevertheless, the algorithm can be extended easily to three dimensions.
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is symmetric and positive definite. As we know the centroid of each image, we
compute (3.29) as

σ2
X =

∑
(i,j)∈Γ

(i− cx)2fi,j

σ2
Y =

∑
(i,j)∈Γ

(j − cy)2fi,j

σ2
XY =

∑
(i,j)∈Γ

(i− cx)(j − cy)fi,j

(3.30)

where cx and cy denote the x position and y position of the center of mass [27].
The covariance matrix permits an eigenvalue decomposition [36]:

Σ = D(ζ)ΛD(ζ)−1 (3.31)

where D(ζ) is a rotation and Λ a scaling matrix [48],

D(ζ) =

(
cos(ζ) − sin(ζ)
sin(ζ) cos(ζ)

)
, Λ :=

(
σ2
X 0
0 σ2

Y

)
(3.32)

The eigenvectors

w1 =

(
cos(ζ)
sin(ζ)

)
, w2 =

(
− sin(ζ)

cos(ζ)

)
(3.33)

span the principal axis [48] as shown in Figure 3.17.

(a) Mask of reference image (b) Mask of template image

Figure 3.17: Principal axes. Red: Dominant eigenvector. Blue: Non-dominant eigenvector.

With this information, we can register the images. We try to find a transforma-
tion ϕ(x) : Ω→ Ω that produces the alignment between the reference R and the
transformed version F of the template T

F (x) = T (ϕ(x)). (3.34)
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As we mentioned before, we assume an affine transformation. Hence,

ϕ(x) = Ax + b (3.35)

where

A =

(
a11 a12

a21 a22

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
︸ ︷︷ ︸

Rotation

(
s1 0
0 s2

)
︸ ︷︷ ︸
Scaling

b =

(
b1

b2

)
︸ ︷︷ ︸

Translation

.

(3.36)

To validate our procedure, we generated an artificial registration problem by
rotating, scaling and translating an image, i.e. Figure 3.18b is the transformed
version of Figure 3.18a.
We determine the transformation parameters in three steps. First we match the
center of mass of the template image to the one of the reference image, i.e. the
green markers in Figure 3.18a and Figure 3.18b. By this we compensate for
the translation b. An example for this is shown in Figure 3.18c.

(a) Reference image with principal
axes

(b) Template image with principal
axes

(c) Aligned centres of mass (d) (c) rotated by −α
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(e) (d) scaled with s1, s2 (f) Reference image

Figure 3.18: Different transformations to align reference and template image.

The next step is to find the rotational transformation. For this, we compute
the angle α between the dominant eigenvectors of the template w1,T and the
reference mask w1,R as

cos(α) =
w1,Rw1,T

|w1,R||w1,T |
(3.37)

We rotate then the template image by the negative angle, i.e. −α. The result is
depicted in Figure 3.18d.

The third step is to compensate for the scaling between different MRI sequences.
We solve this by using the ratio of the eigenvalues of the covariance matrices

s1 =
σRX
σTX

s2 =
σRY
σTY

(3.38)

as they describe a scaling, shown in Figure 3.18e. Hence, the affine transfor-
mation can be written as

ϕ =

(
cos(α) sin(α)
− sin(α) cos(α)

)(
s1 0
0 s2

)
+

(
cRx − cTx
cRy − cTy

)
. (3.39)

The last step is to apply this transformation to the template image. As the
transformation possibly maps pixels to non-grid locations, we use a B-spline
interpolation to determine the grey values of the transformed image F .
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4 Tumour Segmentation

The segmentation of brain tumour images consists mainly of separating the tu-
mour tissue from healthy brain tissue. As we mentioned in Section 1.1, the
normal brain tissue can be split in grey matter, white matter and cerebrospinal
fluid. A glioblastoma multiforme can be divided in central area of necrosis,
oedema and lesions. Although it is relatively easy to detect abnormal tissues in
MRI brain data, a reproducible and precise segmentation is difficult.

There are several ways to segment brain tumour images. A frequently used
method is manual segmentation, where a human expert draws the boundaries of
the tumour and the structures of interest. The main advantage of this method
is, that human experts make also use of experience and additional knowledge
like anatomy.
However, if the person defining the segmentation boundaries is not an expert,
the segmentation result will be most likely of poor quality. Even if the manual
segmentation is done by an expert, the task of marking the tumour regions slice
by slice limits his view and generates jaggy segments. As a result, the segmented
images are not optimal and show a striping effect [43].
Over and above that, manually drawn boundaries are also operator dependent.
The study in [35] states that the variation between different operators ranges
from 11% to 69% with an average variability rate of 28%. Additionally, they
quantified a variability of 20% when the same expert repeats the task three
times at one month intervals. Consequently, the selected segments are subject
to large variability [70] and not reproducible.

Another popular method for brain tumour segmentation is thresholding. Thresh-
olding creates binary images by setting all pixels below a specific threshold value
to zero and all pixels above this threshold to one [66]. The major drawback
of this method is that only the intensity is considered. All other relationships
between the pixels, like spatial context, are neglected [66]. The segmentation is
therefore often of poor quality. Additionally, finding a good threshold value can
be a tedious and very time consuming task.

The most frequently used method for brain tumour segmentation is region grow-
ing. It is a simple region-based segmentation technique that is highly interactive
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and is used to extract a connected region of similar pixels. Region growing starts
with at least one seed, that belongs to the area of interest. This method uses
the spatial context by checking if the neighbours of the seed satisfy the similar-
ity criteria [66]. These criteria are determined for example by a range of pixel
intensity values or other features.

However, region growing has some major drawbacks. It requires, that the region
differs clearly from its background [66]. A glioblastoma multiforme has diffuse
boundaries [20] and this segmentation method can therefore lead to undesirable
growth [66]. Furthermore, the MRI data we have consist in average of more than
one thousand different grey values. It is therefore nearly impossible for human
observers to identify the object boundaries.

As we mentioned in Section 3.4, the CV model does not rely on edge detection.
Accordingly, it is well suited to extract objects with diffusive boundaries. MRI
sequences offer multi-modal information about the same object and we register
the different sequences before we extract the tumour. Thus, we can regard them
as different channels of a vector valued image.

4.1 Chan-Vese Active Contour Model for
Vector Valued Images

The Chan-Vese active contour model for vector valued images (CVec model) al-
lows us to include all information available to determine the tumour boundaries
[11]. The definition of the CV model (Definition 44) is stated as

ECV (uin, uout, C) = λ1

∫
inside C

(f(x)− uin)2 dx + λ2

∫
outside C

(f(x)− uout)2 dx

+ α Length(C) + µ Area(inside C).

The parameter µ sets the penalty for the area enclosed by the contour. Penalising
this area is only meaningful when we have a prescribed inside versus outside of
the segmented boundary.
As we do not have this information beforehand, we never penalise the enclosed
area and the CV model becomes

ECV (uin, uout, C) = λ1

∫
inside C

(f(x)− uin)2 dx + λ2

∫
outside C

(f(x)− uout)2 dx

+ α Length(C).

The CVec model is a straightforward extension of the CV model for scalar valued
images to the vector valued case. Let f := (f 1, ..., fV )> be a vector valued image
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where V is the number of channels. Hence, f i is the ith channel of a vector
valued image f ∈ Ω with i = 1, ..., V . The CV model for scalar valued images is
extended to the CVec model [11] by

Definition 50 (CV model for vector valued images)

ECV ec(uin,uout, C) =
1

V

∫
inside C

V∑
i=1

λi1(f i(x)− uiin)2 dx

+
1

V

∫
outside C

V∑
i=1

λi2(f i(x)− uiout)2 dx

+ α Length(C)

where uin,uout,λ1,λ2 ∈ RV .

Equivalently to the CV model for scalar valued images, the edge-set C is repre-
sented by the zero-crossings of the level set function φ. The level set formulation
of the CVec model is then given by

ECV ec(uin,uout, φ) =

∫
Ω

V∑
i=1

λi1(f i(x)− uiin)2 H(φ(x)) dx

+

∫
Ω

V∑
i=1

λi2(f i(x)− uiout)2 (1−H(φ(x))) dx

+ α

∫
Ω

|∇H(φ(x))| dx

(4.1)

where the Heaviside function H is used as indicator function for the set enclosed
by the edge-set C. Similar to the scalar valued case, a minimiser of this energy
functional is found by alternately updating the arithmetic means

uiin(φ) =

∫
Ω

f i(x)H(φ(x)) dx∫
Ω

H(φ(x)) dx

uiout(φ) =

∫
Ω

f i(x)(1−H(φ(x))) dx∫
Ω

(1−H(φ(x))) dx

(4.2)

and the level set function φ [11]. Although this method is able to include infor-
mation from different channels, it has a major shortcoming inherent in the use
of one level set function. With just one level set function, the image can only
be divided in fore-and background or two classes, separating the object from its
surrounding area.
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However, we are interested in segmenting a brain tumour. As we need therefore
more than two classes, we make use of a further extension of the CV model, the
CV model for multiple level sets [12].

4.2 Chan-Vese Active Contour Model with a
Multiphase Level Set Representation

The basic idea of the CV model for multiple level sets is sketched in Figure 4.1.
With m level sets, it is possible to divide the image in up to n = 2m different
classes.

Figure 4.1: Two curves given by the level set functions φ1 and φ2 partition the domain in four
areas.

Hence, the energy functional of this method is given by

Definition 51 (CV model with a multiphase level set representation)

En
CVmult(u,φ) =

n∑
K=1

∫
Ω

|f(x)− uK |2χK dx +
m∑
j=1

α

∫
Ω

|∇H(φj(x))| dx

where n is the number of classes, m is the number of level sets, K = 1, ...n are
the labels of the different classes, uK is the average and χK is the characteristic
function of the class K, respectively [12, 14].

The used number of level sets is a trade-off between a detailed partitioning of the
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image and an over-segmentation. We decided to use two level sets to partition
the image. Hence, Definition 51 becomes

E4
CVmult(u,φ) =

4∑
K=1

∫
Ω

|f(x)− uK |2χK dx +
2∑
j=1

α

∫
Ω

|∇H(φj(x))| dx (4.3)

where u = (u1, u2, u3, u4)> and φ = (φ1, φ2)>. We follow [12, 14] and reformulate
(4.3) to

E4
CVmult(u,φ) =

∫
Ω

|f(x)− u1|2 H(φ1)H(φ2) dx

+

∫
Ω

|f(x)− u2|2 H(φ1)(1−H(φ2)) dx

+

∫
Ω

|f(x)− u3|2 (1−H(φ1))H(φ2) dx

+

∫
Ω

|f(x)− u4|2 (1−H(φ1))(1−H(φ2)) dx

+ α

∫
Ω

|∇H(φ1(x))| dx

+ α

∫
Ω

|∇H(φ2(x))| dx

(4.4)

where u = (u1, u2, u3, u4)> and φ = (φ1, φ2)>. Again, the energy functional is
minimised by alternately updating the arithmetic means

u1 =

∫
Ω

f(x)H(φ1(x))H(φ2(x)) dx∫
Ω

H(φ1(x))H(φ2(x)) dx

u2 =

∫
Ω

f(x)H(φ1(x))(1−H(φ2(x))) dx∫
Ω

H(φ1(x))(1−H(φ2(x))) dx

u3 =

∫
Ω

f(x)(1−H(φ1(x)))H(φ2(x)) dx∫
Ω

(1−H(φ1(x)))H(φ2(x)) dx

u4 =

∫
Ω

f(x)(1−H(φ1(x)))(1−H(φ2(x))) dx∫
Ω

(1−H(φ1(x)))(1−H(φ2(x))) dx

(4.5)
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and the level set functions φ1 and φ2 [12, 14]

∂φ1

∂t
= δε

[
α div

(
∇φ1

|∇φ1|

)
− ((f − u1)2 − (f − u3)2)H(φ2)

− ((f − u2)2 − (f − u4)2)(1−H(φ2))
]

∂φ2

∂t
= δε

[
α div

(
∇φ2

|∇φ2|

)
− ((f − u1)2 − (f − u3)2)H(φ1)

− ((f − u2)2 − (f − u4)2)(1−H(φ1))
]
.

(4.6)

This formulation allows for four segments, triple junctions and complex topolo-
gies. Thereby the partitioning cannot have overlaps and no vacuum can arise
[12, 14].

We use a combination of both, the CV model for vector valued images and the
CV model with a multiphase level set representation, to segment the tumour
tissues.

4.3 Chan-Vese Active Contour Model for
Vector Valued Images with a
Multiphase Level Set Representation

MRI brain tumour images contain more then two objects. On the one hand, there
is the skull and its background. On the other hand, there is also the tumour,
which is located inside the skull. We also have more then one MRI sequence.
As we register the different MRI scans before we segment the tumour, we can
regard the MRI data we have as vector valued images.

We explain in Section 4.1 and Section 4.2 two extensions of the CV model,
cf. Section 3.4. The first one, the CV model for vector valued images, allows
us to include all information available in the different channels. The second one,
the CV model with a multiphase level set representation, is capable to partition
the image in more than two segments.
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Combining both extensions results in the formulation

Definition 52 (CVec model with a Multiphase Level Set Representation)

En,V
CV ecMult(u,φ) =

n∑
K=1

V∑
i=1

λi
∫
Ω

|f i(x)− uiK |2χK dx

+
m∑
j=1

α

∫
Ω

|∇H(φj(x))| dx.

where we changed the formulation suggested by [12, 14] to take care of the im-
portance of channels. We added for this reason the weight λi for channel f i,
i = 1, .., V .
This method has m level set functions partitioning the image in n classes.
Thereby, information from V channels is used to minimise the functional. We
have in our application at most four different channels: T1, T cont1 , T2 and T flair2 .
We decided furthermore to use two level set functions.
Then Definition 52 becomes

E4,4
CV ecMult(u,φ) =

4∑
K=1

4∑
i=1

λi
∫
Ω

|f i(x)− uiK |2χK dx

+
2∑
j=1

α

∫
Ω

|∇H(φj(x))| dx.
(4.7)

We reformulate this to

E4,4
CV ecMult(u,φ) =

4∑
i=1

λi
∫
Ω

|f i(x)− ui1|2 H(φ1)H(φ2) dx

+
4∑
i=1

λi
∫
Ω

|f i(x)− ui2|2 H(φ1)(1−H(φ2)) dx

+
4∑
i=1

λi
∫
Ω

|f i(x)− ui3|2 (1−H(φ1))H(φ2) dx

+
4∑
i=1

λi
∫
Ω

|f i(x)− ui4|2 (1−H(φ1))(1−H(φ2)) dx

+ α

∫
Ω

|∇H(φ1(x))| dx + α

∫
Ω

|∇H(φ2(x))| dx.

(4.8)

This functional is minimised by alternately updating the arithmetic means of the
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enclosed areas for all channels ∀i = 1, .., 4 as

ui1 =

∫
Ω

f i(x)H(φ1(x))H(φ2(x)) dx∫
Ω

H(φ1(x))H(φ2(x)) dx

ui2 =

∫
Ω

f i(x)H(φ1(x))(1−H(φ2(x))) dx∫
Ω

H(φ1(x))(1−H(φ2(x))) dx

ui3 =

∫
Ω

f i(x)(1−H(φ1(x)))H(φ2(x)) dx∫
Ω

(1−H(φ1(x)))H(φ2(x)) dx

ui4 =

∫
Ω

f i(x)(1−H(φ1(x)))(1−H(φ2(x))) dx∫
Ω

(1−H(φ1(x)))(1−H(φ2(x))) dx

and φ = (φ1, φ2)> [12]. This energy is non-convex and has to be solved nu-
merically. We use a gradient descent and regularise the Heaviside function H
the same way as for the ordinary CV model, cf. Section 3.4. We deduce the
Euler-Lagrange equations of ∇E4,4

CV ecMult

Definition 53 (Euler-Lagrange Equations of ∇E4,4
CV ecMult)

H ′ε(φ1(x))
[
α div

(
∇φ1

|∇φ1|

)
−

4∑
i=1

λi((f i(x)− ui1)2 − (f i(x)− ui3)2)H(φ2)

−
4∑
i=1

λi((f i(x)− ui2)2 − (f i(x)− ui4)2)(1−H(φ2))
]

= 0

H ′ε(φ2(x))
[
α div

(
∇φ2

|∇φ2|

)
−

4∑
i=1

λi((f i(x)− ui1)2 − (f i(x)− ui3)2)H(φ1)

−
4∑
i=1

λi((f i(x)− ui2)2 − (f i(x)− ui4)2)(1−H(φ1))
]

= 0

with the boundary conditions

∂ε(φ1(x))

|∇φ1(x)|
∂φ1(x)

∂n(x)
= 0 x ∈ ∂Ω

∂ε(φ2(x))

|∇φ2(x)|
∂φ2(x)

∂n(x)
= 0 x ∈ ∂Ω
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The gradient descent w.r.t. φ = (φ1, φ2)> is then given by

Definition 54 (Gradient Descent of ∇E4,4
CV ecMult)

∂tφ1(x) = δε(φ1(x))
[
α div

(
∇φ1(x)

|∇φ1(x)|

)
−

4∑
i=1

λi((f i(x)− ui1)2 − (f i(x)− ui3)2)H(φ2(x))

−
4∑
i=1

λi((f i(x)− ui2)2 − (f i(x)− ui4)2)(1−H(φ2(x)))
]

∂tφ2(x) = δε(φ2(x))
[
α div

(
∇φ2(x)

|∇φ2(x)|

)
−

4∑
i=1

λi((f i(x)− ui1)2 − (f i(x)− ui3)2)H(φ1(x))

−
4∑
i=1

λi((f i(x)− ui2)2 − (f i(x)− ui4)2)(1−H(φ1(x)))
]

with the boundary conditions

φ1(x, 0) = φ1,0(x), φ2(x, 0) = φ2,0(x) x ∈ Ω

∂ε(φ1(x))

|∇φ1(x)|
∂φ1(x)

∂n(x)
= 0

∂ε(φ2(x))

|∇φ2(x)|
∂φ2(x)

∂n(x)
= 0 x ∈ ∂Ω

We follow [13] and discretise (54) with finite differences as denoted by Equa-
tion 4.9 and Equation 4.10, cf. Section 1.2.5.

φn+1
1,i,j − φn1,i,j

τ
= δε(φ

n
1,i,j)

[
−

4∑
i=1

λi((f ii,j − ui1)2 − (f ii,j − ui3)2)H(φ2,i,j)

−
4∑
i=1

λi((f ii,j − ui2)2 − (f ii,j − ui4)2)(1−H(φ2,i,j))

+ α

∂−x
 ∂+

x φ
n+1
1,i,j√

(∂+
x φ

n
1,i,j)

2 + (∂yφn1,i,j)
2


+∂−y

 ∂+
y φ

n+1
1,i,j√

(∂+
y φ

n
1,i,j)

2 + (∂xφn1,i,j)
2



(4.9)
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φn+1
2,i,j − φn2,i,j

τ
= δε(φ

n
2,i,j)

[
−

4∑
i=1

λi((f ii,j − ui1)2 − (f ii,j − ui3)2)H(φ1,i,j)

−
4∑
i=1

λi((f ii,j − ui2)2 − (f ii,j − ui4)2)(1−H(φ1,i,j))

+ α

∂−x
 ∂+

x φ
n+1
2,i,j√

(∂+
x φ

n
2,i,j)

2 + (∂yφn2,i,j)
2


+∂−y

 ∂+
y φ

n+1
2,i,j√

(∂+
y φ

n
2,i,j)

2 + (∂xφn2,i,j)
2



(4.10)

where τ is the time step [12, 14]. Let

C1,m,i,j =
α√

(∂+
x φ

n
m,i,j)

2 + (∂yφnm,i,j)
2

C2,m,i,j =
α√

(∂+
x φ

n
m,i−1,j)

2 + (∂yφnm,i−1,j)
2

C3,m,i,j =
α√

(∂+
y φ

n
m,i,j)

2 + (∂xφnm,i,j)
2

C4,m,i,j =
α√

(∂+
y φ

n
m,i,j−1)2 + (∂xφnm,i,j−1)2

and

Rm,i,j = −

(
4∑
i=1

λi((f ii,j − ui1)2 − (f ii,j − ui3)2)H(φm,i,j)

+
4∑
i=1

λi((f ii,j − ui2)2 − (f ii,j − ui4)2)(1−H(φm,i,j))

)
.

Then we can write (4.9) and (4.10) as

φn+1
1,i,j − φn1,i,j

τ
= δε(φ

n
1,i,j)

[
R2,i,j + C1,1,i,j(φ

n
1,i+1,j − φn+1

1,i,j)− C2,1,i,j(φ
n+1
1,i,j − φn1,i−1,j)

+ C3,1,i,j(φ
n
1,i,j+1 − φn+1

1,i,j)− C4,1,i,j(φ
n+1
1,i,j − φn1,i,j−1)

]
φn+1

2,i,j − φn2,i,j
τ

= δε(φ
n
2,i,j)

[
R1,i,j + C1,2,i,j(φ

n
2,i+1,j − φn+1

2,i,j)− C2,2,i,j(φ
n+1
2,i,j − φn2,i−1,j)

+ C3,2,i,j(φ
n
2,i,j+1 − φn+1

2,i,j)− C4,2,i,j(φ
n+1
2,i,j − φn2,i,j−1)

]
Finally, we update φ1 as

φn+1
1,i,j =

φn1,i,j
1 + τδε(φn1,i,j)(C1,1,i,j + C2,1,i,j + C3,1,i,j + C4,1,i,j)

+

τδε(φ
n
1,i,j)

[
R2,i,j + C1,1,i,jφ

n
1,i+1,j + C2,1,i,jφ

n+1
1,i−1,j + C3,1,i,jφ

n
1,i,j+1 + C4,1,i,jφ

n+1
1,i,j−1

]
1 + τδε(φn1,i,j)(C1,1,i,j + C2,1,i,j + C3,1,i,j + C4,1,i,j)
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and φ2 as

φn+1
2,i,j =

φn2,i,j
1 + τδε(φn2,i,j)(C1,2,i,j + C2,2,i,j + C3,2,i,j + C4,2,i,j)

+

τδε(φ
n
2,i,j)

[
R1,i,j + C1,2,i,jφ

n
2,i+1,j + C2,2,i,jφ

n+1
2,i−1,j + C3,2,i,jφ

n
2,i,j+1 + C4,2,i,jφ

n+1
2,i,j−1

]
1 + τδε(φn2,i,j)(C1,2,i,j + C2,2,i,j + C3,2,i,j + C4,2,i,j)

The variance of the intensity ranges of the different channels can be very high.
We align therefore the grey values to the interval [0, 255]. The evolution under the
CVec model with a multiphase level set representation is shown in Figure 4.2.

(a) T1 (b) T2

(c) T flair
2

(d) Partitioning of the image domain

Figure 4.2: Evolution under the CVec model with a multiphase level set representation. (a)-(c)
denoised and registered input slices. (d) Partitioning of the image domain. α = 1, ε = hxhy,
τ ≈ 0.04, λT1 = λT2 = 1, λT

flair
2 = 2.
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Figure 4.2 shows the 11th slice of all MRI sequences for subject G-25 and the
detected boundary of the tumour tissue, i.e. the oedema. Figure 4.2a, Fig-
ure 4.2b and Figure 4.2c are the different channels of the vector valued input
image. Figure 4.2d displays the partitioning of the image domain while each
colour depicts one class. The tumour boundaries are clearly visible although
there are some parts of the skull, which do not belong to the tumour but are in
the same class. We will name this in the latter false positive.

Figure 4.3: Tumour boundaries in the T flair
2 data detected by the CVec model with a multi-

phase level set representation (steady state).

Figure 4.3 shows the detected tumour boundary in the T2 data. The oedema
is clearly visible while most of the high signal of the cerebrospinal fluid is not
present therein. Only areas having high intensities in most of the image channels
are assigned to the this class. Consequently, the tumour but also the skull are
assigned to the same class as the tumour tissue.

The oedematous tisse has brighter and darker areas. Therefore, two classes con-
tain oedematous areas. We show in the latter mostly the determined boundary
and neglect the visualisation of the classes.
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5 Parameter Selection

We use several methods to denoise, register and segment the MRI data. We
explain in the following how the parameters for these methods can be chosen.

5.1 Non-Local Means
We use NLMeans to denoise the MRI sequences. As it is important for denoising
medical images to loose as few details as possible, the parameters of NLMeans
have to be chosen carefully.

The most important parameter is the standard deviation σr of the Gaussian
weighting function as it influences which neighbourhoods are regarded as similar,
cf. Section 2.3.2. Additionally the choice of this parameter is also the most
tedious part.

(a) Input image (b) t ≈ 2, cT ≈ 0.72 sec (c) t ≈ 2, cT ≈ 19.67 sec

Figure 5.1: Steady states of an evolution under the CV model (b) without and (c) with reini-
tialisation of the level set function φ, λ1 = 1, λ2 = 1, µ = 0, α = 1, ε = hxhy, τ ≈ 0.04. cT :
computation time.

To overcome this difficulty we split the image in fore- and background with the
CV model, see Section 3.4. Afterwards we compute the standard deviation σB
of the background and use this as input for the NLMeans [32].

The resulting segmentation is shown in Figure 5.1. The reinitialisation of the
level set function φ acts as a rescaling and prevents interior contours from growing
[11].
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We prefer a detailed splitting of the image in fore- and background. The reinitial-
isation is also the most time consuming step in the CV model. For this reason,
we do not reinitialise the level set function when we compute the background
of an image to determine the standard deviation. As experience has shown, σB
fits best to a similarity window with rN = 3. We adapt therefore σr to the area
enclosed by the similarity window N by σr = ( rN

3
)2σB.

(a) Input image (b) rN = 3, σr ≈ 43.71

(c) rN = 5, σr ≈ 121.42 (d) rN = 7, σr ≈ 237.99

Figure 5.2: Method noise of NLMeans for different radii rN (rS = 5). The method noise is
gamma corrected, γ = 1.2.

The second important parameter is the size of the similarity window rN . It has
to be large enough to be robust even in the presence of noise. On the other hand
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it has to be sufficient small to take care about details. The noise guessed by
NLMeans for different radii rN is shown in Figure 5.2. The method noise
in Figure 5.2b is very similar to white noise while small details, for example
structures near the eyes or inside the skull, are not present therein. We observe
in Figure 5.2c and Figure 5.2d that for larger patches more and more details
are removed. The radius of the regarded patches has furthermore a tremendous
effect on the computation time, cf. Table 5.1. In our opinion, setting the radius
rN = 3 is for this reason a good choice.

The last parameter to be set is the radius rS of the search window S. As depicted
in Figure 5.3, NLMeans is very tolerant against changes of this parameter.

(a) Input image (b) rS = 5

(c) rS = 7 (d) rS = 10

Figure 5.3: Method noise of NLMeans for different radii rS (rN = 3, σr ≈ 43.71). The method
noise is gamma corrected, γ = 1.2.
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Regarding Figure 5.3b and Figure 5.3d, there is nearly no difference observ-
able. The main difference of rS = 5 and rS = 10 is the computation time, cf.
Table 5.1.

rS = 5 rS = 7 rS = 10
rN = 3 3.29 6.22 12.28
rN = 5 — 15.01 29.68
rN = 7 — — 55.59

Table 5.1: Runtime of NLMeans for different parameter settings in seconds (rN : Similarity
window, rS : Search window).

We suggest consequently a parameter setting with rN = 3, rS = 5 while σr is
automatically adopted to the variance of the background.
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5.2 Coherence Enhancing Diffusion
Our spatial registration is based on the outer contour of the skull. Consequently,
the registration is of low quality when this shape varies for different MRI se-
quences. As the ears can for this reason disturb our registration process, we
have to separate them from the skull. We overcome this problem by prepro-
cessing affected images before we split them into fore- and background with the
CV model. We do this with a short evolution under the CED [63]. CED has
several parameters. We show in the following how those can be set to disconnect
the ears. The most important parameter ist the evolution time T .

(a) Input image (b) Right ear (c) Detail at the forehead

(d) T = 1.5 (e) Right ear (f) Detail at the forehead

(g) T = 5 (h) Right ear (i) Detail at the forehead

Figure 5.4: Evolution under CED for different evolution times. σ = 0.5, ρ = 1.5, α = 0.001,
C = 1.
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The evolution under the CED for different evolution times T is shown in Fig-
ure 5.4. After a short evolution, the connection between the ear and the skull
is smeared out, depicted in Figure 5.4e. Also small details are smoothed but
they remain in the image, cf. Figure 5.4f. If the evolution is too long, small
details are completely removed, Figure 5.4i.

The parameter σ denotes the noise scale [63]. For larger values of σ, more noise
and small-scale details are removed. In general, it should be chosen very small as
it cancels adjacent gradients having the same direction, but opposite orientation
[63]. However, we do not have parallel structures at the outer shape of the skull.
Thus, a not accurate parameter setting of σ does not have a big influence, as
shown in Figure 5.5.

(a) Input image (b) σ = 0.5

(c) σ = 1.5 (d) σ = 3

Figure 5.5: Evolution under CED for different noise scales. T = 1.5, ρ = 1.5, α = 0.001,
C = 1.



5 Parameter Selection

5

85

The integration scale ρ averages directional information [63]. The images that we
preprocess to disconnect outer parts have a closed contour. Hence, this parameter
setting is also not critical, see Figure 5.6.

(a) Input image (b) ρ = 1.5

(c) ρ = 3 (d) ρ = 20

Figure 5.6: Evolution under CED for different integration scales. T = 1.5, σ = 0.5, α = 0.001,
C = 1.

However, if the chosen value for ρ is much too large, CED removes details in the
contour of the skull. This is observable in Figure 5.7.

(a) ρ = 1.5 (b) ρ = 20

Figure 5.7: Effect of averaging too much directional information.
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(a) Input image (b) C = 1

(c) C = 100 (d) C = 1000

Figure 5.8: Evolution under CED for different threshold parameters. T = 1.5, σ = 0.5, ρ = 1.5,
α = 0.001.

The parameter C acts as a threshold for the strength of the local orientation
[63]. If the local coherence is smaller than C, the diffusion is more homogeneous.
Comparing Figure 5.8b and Figure 5.8d, one can observe that in Figure 5.8d
the brain is more smoothed and less structures are present therein.

However, the orientation at the outer contour of the skull is always high, i.e.
κ � C. The CED filter acts mainly in the coherence-orientation, therefore the
outer contour is not disturbed for high threshold values.
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(a) Input image (b) α = 0.001

(c) α = 0.1 (d) α = 1

Figure 5.9: Evolution under CED for different regularisation parameters. T = 1.5, σ = 0.5,
ρ = 1.5, C = 1.

The regularisation parameter α ensures s small amount of linear diffusion [63].
Thus, α guarantees that the diffusion process never stops [64]. Consequently, if
this parameter is set too high, the image is blurred, cf. Figure 5.9d.

In our experiments, the default parameter setting with T = 1.5, ρ = 1.5, σ = 0.5,
C = 1 and α = 0.001 worked well in all cases.
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5.3 White Top Hat
The nonflat white top hat has one parameter. This parameter t determines how
many bright structures are extracted. The choice of the parameter setting for
the white top hat is critical. We use this filtering technique to enlarge the gap
between the outer contour of the skull and the ears. If t is too small, the contour
of the skull is not completely extracted, shown in Figure 5.10f. If t is too large,
the gap between skull and ear is not enlarged, cf. Figure 5.10l.

(a) Input image (b) (c)

(d) t = 0.5 (e) (f)

(g) t = 1 (h) (i)
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(j) t = 5 (k) (l)

Figure 5.10: Result of white top hat filtering for different distance penaliser t.

Our experiments showed, that t = 1 is a good trade-off. The outer contour of
the skull is nearly completely extracted, while the gap between the skull and the
ear is enlarged, Figure 5.10i.
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5.4 Bilateral Filtering
Bilateral filtering is an optional step when preprocessing MRI data to remove
outer objects, i.e. the ears. We mentioned in Section 2.3.1, that bilateral filter-
ing removes small structures in nearly homogeneous areas. It has two parame-
ters. The standard deviation σr of the Gaussian kernel Kσr weights the distance
between the intensities of the neighbouring pixel and the regarded pixel.

(a) Input image (b) σr = 10

(c) σr = 50 (d) σr = 100

Figure 5.11: Bilateral filtering with different standard deviations of the range weighting func-
tion. σs ≈ 16.7.

Figure 5.11 shows the result of bilateral filtering for different values of σr. The
gradient at the outer contour of the skull is in general very high. Hence, the pa-
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rameter setting of σr is not critical. As shown in Figure 5.11b - Figure 5.11d,
bilateral filtering removes more small details for increasing σr, while the outer
contour of the skull is not affected. However, the areas of bone and background
become more homogeneous. Thus, the CV model determines the shape of the
skull easily.

(a) Input image (b) σs ≈ 16.7

(c) σs = 50 (d) σs = 100

Figure 5.12: Bilateral filtering with different standard deviations of the spatial distance weight-
ing function. σr ≈ 50.

The second parameter of the bilateral filtering is the standard deviation σr of the
distance weighting function. Figure 5.12 shows the result of bilateral filtering
for different σr. Beforehand, we extract only bright structures with a white top
hat. Neighbouring pixels are only regarded as similar, when they are near in
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spatial and intensity distance. Consequently, it has nearly no effect on the outer
contour of the skull when the size of the spatial neighbourhood is increased,
shown in Figure 5.12d.

A human skull has an average thickness of ≈ 7mm [29]. We decided therefore
to adapt the spatial parameter to this value. The grid size of the pixels in
the shown image of subject G13 is hx ≈ 0.42mm,hy ≈ 0.42mm,hz ≈ 6mm.
Hence, we choose for the spatial distance σr = 7mm

0.42mm
≈ 16.7. We also chose σs

adopted to the image and set it to 5% of the maximal grey value maxGV (Γ) in
the image. In our experiments, the standard parameter setting σr = 7mm

hx
and

σs = 0.05 ∗maxGV (Γ) works well in all cases.
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5.5 Chan-Vese Active Contour Model

The CV model has several parameters. The most important ones are the weights
λ1, λ2 for penalising the discrepancy between the input image and the arith-
metic mean inside and outside the curve, respectively. The evolution under the
CV model for different λ1 is shown in Figure 5.13.

(a) Input image (b) λ1 = 0.2

(c) λ1 = 1 (d) λ1 = 2

Figure 5.13: Evolution under the CV model for different weights for penalising the discrepancy
between the input image and the arithmetic mean inside the curve . α = 1, λ2 = 1, τ ≈ 0.04,
ε = hxhy, no reinitialisation of the level set function.

Figure 5.13b presents the steady state of the CV model when the weight for
the difference between the average grey value inside the curve and the image is
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low, i.e. λ1 = 0.2. If this error term is less penalised then the one for the area
outside the curve, the energy fits the background more accurate [11]. Similarly,
finer details are detected when λ1 is large, see Figure 5.13d.
The according weight for the difference between the image and the arithmetic
mean outside the curve is given by λ2.

(a) Input image (b) λ2 = 0.2

(c) λ2 = 1 (d) λ2 = 2

Figure 5.14: Evolution under the CV model for different weights for penalising the discrepancy
between the input image and the arithmetic mean outside the curve . α = 1, λ1 = 1, τ ≈ 0.04,
ε = hxhy, no reinitialisation of the level set function.

If the weight for this error term is low, the steady state of the CV model has
more fluctuations in the background while the discrepancy in the foreground is
minimised. This is depicted in Figure 5.14b. Likewise, the detected object
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boundary contains less finer details when λ2 is large, see Figure 5.14d. We use
the CV model to find the contour of the skull. Hence, we neither need a lot of
details inside nor outside the skull. We suggest therefore to give the error terms
of both classes the same weight, i.e. λ1 = λ2 = 1.
The parameter α sets the penalty for the length of the segmentation boundary.
The lower the length penalty is, the more detailed is the segmentation, as shown
in Figure 5.15 and Figure 5.16.

(a) Noisy input image, σNoise = 20 (b) α = 1

(c) α = 100 (d) α = 1000

Figure 5.15: Evolution of a noisy input image under the CV model for different weights for pe-
nalising the length of the edge-set C. λ1 = 0.1, λ2 = 0.1, τ ≈ 0.04, ε = hxhy, no reinitialisation
of the level set function.

Large settings for α and/or small values for λ1, λ2 are necessary for noisy images.
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Figure 5.15 shows the segmentation boundary for different length penalties in
a noisy input image where we added Gaussian noise with σ = 20. However, we
use the CV model in two ways. On the one hand we set the standard deviation
of the Gaussian weighting function for the NLMeans according to the variance
in the background of the image. We do not need a perfect parameter setting in
this case.

(a) Input image (b) α = 1

(c) α = 100 (d) α = 1000

Figure 5.16: Evolution under the CV model for different weights for penalising the length of
the edge-set C. λ1 = 1, λ2 = 1, τ ≈ 0.04, ε = hxhy, no reinitialisation of the level set function.

On the other hand, we use the detected object boundary as backbone of our
affine registration process. Fortunately, we denoise the images with NLMeans
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beforehand. Consequently, we do not need to take too much care about noise.
Accordingly, we do not have to adjust the parameters λ1 and λ2 to filter high
frequent noise. The parameter setting for α has therefore less effect on the
resulting splitting, shown in Figure 5.16.

(a) Input image (b) τ ≈ 0.04, cT = 1.4 sec

(c) τ = 0.1, cT = 0.51 sec (d) τ = 1, cT = 0.32 sec

Figure 5.17: Evolution under the CV model for different time step sizes. α = 1, λ1 = 1,
λ2 = 1, ε = hxhy, no reinitialisation of the level set function. cT : computation time.

The parameter τ determines the step size of the gradient descent. If τ is too large,
the algorithm might not reach the global minimum. Comparing Figure 5.17b
and Figure 5.17d shows, that the steady state of the CV model for a smaller
time step size gives are more detailed object boundary. This is especially visible
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at the ventricles, i.e. the black area inside the brain. Unfortunately, if the step
size is chosen to small, the computation time increases. We adopt therefore the
time stepping to the grid dimensions of the image and set τ the same way as for
CED, see Section 3.2,

τ =
1

2
h2x

+ 2
h2y

. (5.1)

We also have to choose the regularisation parameter ε for the Heaviside function.

(a) Input image (b) ε = 0.1

(c) ε = hxhy ≈ 0.16 (d) ε = 1

Figure 5.18: Evolution under the CV model for different regularisation parameters. α = 1,
λ1 = 1, λ2 = 1, τ ≈ 0.04, no reinitialisation of the level set function.

Figure 5.18 presents the steady states of the CV model for different regularisa-



5 Parameter Selection

5

99

tions. We decided to follow [11, 12, 13, 14] and set ε according the grid dimension,
i.e. ε = hxhy.

We mentioned in Section 3.4, that it is also possible to reinitialise the level set
to the euclidean signed distance function to its zero level curve.

(a) Input image (b) without reinitialisation,
cT ≈ 1.4 sec

(c) with reinitialisation, cT ≈
46 sec

Figure 5.19: Evolution under the CV model (b) with and (c) without reinitialisation of the level
set function. α = 1, λ1 = 1, λ2 = 1, τ ≈ 0.04, ε = hxhy. cT : computation time.

This reinitialisation is a rescaling of the level set function φ. If φ is reinitialised
every step, it prevents interior contours from growing [11], see Figure 5.19c. On
the one hand, we are not interested in the interior contours when we determine
the boundaries of the skull. On the other hand, the reinitialisation is a very time
consuming step. We decided consequently to not rescale the level set function.
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5.6 Chan-Vese Active Contour Model for
Vector Valued Images with a
Multiphase Level Set Representation

Similar to the CV model, the CVec model with a multiphase level set representa-
tion has several parameters that have to be chosen. We suggest to set α, τ and ε
the same way as for the original formulation, see Section 5.5. In the CV model,
the parameters λ1 and λ2 sets the penalty for the discrepancy between the input
image and the arithmetic means inside and outside the edge-set C, respectively.
In the more sophisticated CVec model with a multiphase level set representation,
we have to set the parameter λi for each channel f i, i = 1, ..., V .

(a) T1 (b) T2 (c) T flair
2

(d) λT1 = 1, λT2 = λT
flair
2 = 0 (e) λT2 = 1, λT1 = λT

flair
2 = 0 (f) λT

flair
2 = 1, λT1 = λT2 = 0

Figure 5.20: Evolution under the CVec model with a multiphase level set representation with
different weights for the error terms of each channel. α = 1, τ ≈ 0.04, ε = hxhy.

These parameters weight the error terms of each channel. Figure 5.20 shows
the partitioning when just one channel is weighted, i.e. when the information
from the other channels are neglected.
The most information about the oedema are present in the T2 and the T flair2

sequences. If the information in the T2 image is considered exclusively, the
tumour boundary is visible. However, there are also a lot of false positives inside
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the brain, see Figure 5.21c. Similarly, if just the T flair2 data is taken into
account, the boundary of the oedema is visible. Nevertheless, also in this case,
the segmentation boundary is suboptimal. Although there are nearly no false
positives, the tumour is not completely detected, see Figure 5.21d.

(a) λT2 = 1, λT1 = λT
flair
2 = 0 (b) λT

flair
2 = 1, λT1 = λT2 = 0

(c) Tumour boundary of (a) (d) Tumour boundary of (b)

Figure 5.21: Evolution under the CVec model with a multiphase level set representation for
different combinations of channel weights. α = 1, τ ≈ 0.04, ε = hxhy. no reinitialisation of the
level set functions.

To overcome this problem, we combine all information we have, i.e. more than
one channel has to influence the partitioning. Figure 5.22 presents the parti-
tioning of our model for different weight combinations, while the result is based
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on data from different channels. The segmentation boundary shown in Fig-
ure 5.22b has less false positives than Figure 5.21d but a lot of wrongly
detected boundaries are still present therein. Nearly no information about the
oedematous area is observable in the T1 sequence. Nevertheless, including this
information improves the result. This is demonstrated by Figure 5.22d.

(a) λT2 = λT
flair
2 = 1, λT1 = 0 (b) Tumour boundary of (a)

(c) λT1 = λT2 = λT
flair
2 = 1 (d) Tumour boundary of (c)

(e) λT1 = λT2 = 1, λT
flair
2 = 2 (f) Tumour boundary of (e)

Figure 5.22: Evolution under the CVec model with a multiphase level set representation for
different combinations of channel weights. α = 1, τ ≈ 0.04, ε = hxhy. No reinitialisation of the
level set functions.
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The oedema is still completely detected while less false positives are present in
the segmentation boundary. Figure 5.22f shows the resulting partitioning of
our model, when a priori knowledge is included. The oedematous tissue is most
observable in T2 and T flair2 sequences. However, also the cerebrospinal fluid ap-
pears bright in the T2 scan. Accordingly, a higher weight for the T flair2 channel
results in a better partitioning.

The selection of the weights λi for the different channels is the most tedious
part in our complete process chain. We suggest for this reason to use a priori
knowledge about the images. The oedema is best visible in a MRI sequence with
T flair2 weighting. Hence, the T flair2 image should have a higher weight than other
types of MRI scans, when the oedema has to be extracted. Similarly, the central
area of necrosis is best observable in just one of the MRI sequences, i.e. T cont1 .
Accordingly, the T cont1 scan should have the highest weight when this part of the
tumour is extracted.
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6 Experimental Results

We use in the following several image stacks to evaluate our process chain. We
make use of these data to show the capabilities and limitations of our methods.

All calculations for CV model based methods are performed using a regularisa-
tion parameter for the Heaviside function of ε = hxhy and a length penalty of
α = 1. If not stated otherwise, we always apply a parameter setting of T = 1.5,
ρ = 1.5, σ = 0.5, C = 1 and α = 0.001 for CED. Additionally, we always
use the parameter setting t = 1 for the white top hat filtering and σr = 7mm

hx
,

σs = 0.05 ∗maxGV (Γ) for bilateral filtering, respectively.

All computations that need a time stepping, i.e. CED and the CV model based
methods, use the time step size τ = 1

2

h2x
+ 2

h2y

.

The figures are shown as follows. First, we show a series of images for each
channel, that is available. Each series contains also the intermediate steps of
denoising and registration as well as the segmentation boundary of the tumour
tissue. As shown in Section 5.6, choosing the parameters for the CVec model
with a multiphase level set representation requires some a priori knowledge about
the image data. Consequently, we always give the T flair2 sequence a higher weight,
when we want to extract the oedema. Similarly, we apply also a higher weight
for the T cont1 sequence, when we extract the central area of necrosis.

Figure 6.1 to Figure 6.4 show the intermediate steps to determine the bound-
aries of tumour tissue for G13 slice 10. As shown in Figure 6.1, the contours
of the skull are different for the T1 and T cont1 images. The ears are imaged
in both of them while they are barely visible in the T2 and T flair2 sequences.
Figure 6.2 presents therefore the process chain to separate the skull and the
ears. Figure 6.3 displays the steps to gain the registration masks. As we can
observe, the registration masks are nearly identical. Thus, the subsequent reg-
istration is accurate and the segmentation of the oedematous tissue is precise,
see Figure 6.4. However, the parameter choice for detecting the boundaries of
the central area of necrosis is tedious. As shown in Figure 6.4, even for an
adjusted parameter setting there are a lot of false positives present therein. Al-
though the necrotic area is segmented, the segmentation boundary is fuzzy and
unsatisfactory.
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Figure 6.1: Experimental results of G13 slice 10. NLMeans and CED. Left: From top to
bottom: T1, T cont

1 , T2, T flair
2 . Middle: Result of NLMeans. Right: Result of CED.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Experimental results of G13 slice 10. CED, white top hat and bilateral filtering.
Left column: T1 sequence. Left column: T cont

1 sequence. From top to bottom: Result of
CED, white top hat filtering and bilateral filtering.
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Figure 6.3: Experimental results of G13 slice 10. CV model and connected component la-
belling. Left: From top to bottom: T1, T cont

1 , T2, T flair
2 . Middle: Steady state of the CV model.

Right: Registration mask.
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Figure 6.4: Experimental results of G13 slice 10. Registration, oedema boundary and necro-
sis boundary. Left: From top to bottom: T1, T cont

1 , T2, T flair
2 , registered. Middle: Oedema

boundary, λT1 = λT
cont
1 = 1, λT2 = 2, λT

flair
2 = 10. Right: Necrosis boundary. λT1 = 1,

λT
cont
1 = 10, λT2 = 0, λT

flair
2 = 0.
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Figure 6.5 and Figure 6.6 present the intermediate steps of our approach for
G13 slice 8. As shown in Figure 6.5, the contour of the skull is not disturbed
in the T1 and T cont1 scans. Thus, we extract directly the shape of the skull and

Figure 6.5: Experimental results of G13 slice 8. NLMeans and registration mask. Left: From
top to bottom: T1, T cont

1 , T2, T flair
2 . Middle: Result of NLMeans. Right: Registration mask.
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register the images. As observable in Figure 6.6 we get an accurate segmenta-
tion of the oedema. Unfortunately, the necrotic area suffers under an extreme

Figure 6.6: Experimental results of G13 slice 8. Registration, oedema boundary and necrosis
boundary. Left: From top to bottom: T1, T cont

1 , T2, T flair
2 , registered. Middle: Oedema

boundary, λT1 = λT
cont
1 = 1, λT2 = 2, λT

flair
2 = 10. Right: Necrosis boundary. λT1 = 0.5,

λT
cont
1 = 10, λT2 = 0, λT

flair
2 = 0.5.
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amount of false positives. The central area of necrosis is surrounded by tissue
with lower intensity values. Hence, for a human observer, the necrotic area seems
to have higher intensity values. Unfortunately, this is not the case - the intensity
values of the necrotic area are very similar to those of white matter. Thus,
the amount of false positives is huge. Fortunately, the central area of necrosis
is always surrounded by oedematous tissue. Consequently, we can neglect all
segments that do not overlap with the oedema. Hence, the amount of false
positives reduces dramatically.

Figure 6.7 and Figure 6.8 display the process chain for G25 slice 6. Also in
this case, the segmentation of oedematous tissue is successful and accurate.

Figure 6.7: Experimental results of G25 slice 6. NLMeans and registration mask. Left: From
top to bottom: T1, T2, T flair

2 . Middle: Result of NLMeans. Right: Registration mask.
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Figure 6.8: Experimental results of G25 slice 6. Registration and oedema boundary. Left:
From top to bottom: T1, T2, T flair

2 , registered. Right: Oedema boundary, λT1 = 1, λT2 = 1,
λT

flair
2 = 2.
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Figure 6.9 and Figure 6.10 show the intermediate steps for G2 slice 8. This
application is more challenging because the skull is not completely imaged in the
reference sequence, i.e. the T1 scan.

However, as shown in Figure 6.10, the result of the registration is nevertheless
acceptable and the oedematous tissue is segmented very well.

Figure 6.9: Experimental results of G2 slice 8. NLMeans and registration mask. Left: From
top to bottom: T1, T2, T flair

2 . Middle: Result of NLMeans. Right: Registration mask.
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Figure 6.10: Experimental results of G2 slice 8. Registration and oedema boundary. Left:
From top to bottom: T1, T2, T flair

2 , registered. Right: Oedema boundary, λT1 = 1, λT2 = 1,
λT

flair
2 = 2.
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Figure 6.11 and Figure 6.12 present the processing of G25 slice 19. As visible
in Figure 6.11, the contour of the skull is not a homogeneous area. Hence, the
splitting of the image in fore- and background assigns small areas of the bone to
the background. Thus, our registration mask has holes and the registration fails.

Figure 6.12 shows also the steady state of the CV model for a different param-
eter setting. Here, we highly penalise the error terms for the discrepancy in the
background. Unfortunately, it is also not possible with this parameter setting to
gain the same contour for all sequences.

Figure 6.11: Experimental results of G25 slice 19. NLMeans and CV model. Left: From top
to bottom: T1, T2, T flair

2 . Middle: Result of NLMeans. Right: Result of CV model.
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Figure 6.12: Experimental results of G25 slice 19. Connected component labelling, NLMeans
and CV model. Left: From top to bottom: T1, T2, T flair

2 , registration mask for standard
parameters. Middle: Result of CV model, λ1 = 0.1, λ2 = 5. Right: Registration mask for the
CV model with λ1 = 0.1, λ2 = 5.
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7 Conclusion and Outlook

7.1 Conclusion
We explored in this thesis how medical image data, i.e. MRI data of brain tu-
mours, can be processed. In Chapter 2, we showed a possibility to denoise
MRI sequences. We made use of the NLMeans algorithm and illustrated why it
is well suited to denoise medical data. Furthermore, we explained how we align
the sampling rates of the MRI sequences.
Afterwards, we illustrated in Chapter 3 how different MRI scans can be regis-
tered when they are imaged in a row. The backbone of our registration method
is the outer contour of the skull.
We showed, that a similar contour of the skull is sufficient to perform an affine
registration. Thus, we derived two procedures to find those contours. When
the shape of the skull is similar in the different MRI sequences, we extract this
boundary with the CV model.
Regrettably, the procedure is slightly complicated when additional parts of the
human body are imaged, i.e. ears. We explained, how we separate the skull to
align the skull’s shapes in the different scans.

The boundaries of the tumour tissues are very diffusive. Consequently, there is
no easy way to segment the boundaries of all parts of a glioblastoma multiforme.
Additionally, there are also several drawbacks to be reported. One the one hand,
our registration process fails, when it is not possible to determine in all sequences
the same contour of the skull. On the other hand, finding an appropriate param-
eter setting for the CVec model with a multiphase level set representation can
be tedious when it comes to necrotic tissue. Hence, our procedure to segment
the tumour tissues seems to be less suitable for necrotic areas.

Nevertheless, we showed that CV model based segmentation methods are well
suited to determine the boundaries of oedematous tissue. Finding a good pa-
rameter setting to segment the oedema is uncomplicated and the determined
boundary is very accurate.
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7.2 Outlook
The work pursued in this thesis can be continued in different directions. On the
one hand, the principal axes transform is not able to compensate a shearing.
On the other hand, the assumption that the MRI data is acquired in a row is
usually wrong. We suggest therefore to use a different registration method, e.g.
normalised gradient fields [24].

Furthermore, it can be very tedious to find a suitable parameter setting to seg-
ment the glioblastoma multiforme. We used two level sets for the CVec model
with a multiphase level set representation. In our experience, this amount of
partitioned classes is mostly not sufficient to determine the central area of necro-
sis. Hence, the usage of more level sets to determine the necrotic tissue could
overcome this problem.

Finally, the whole process chain can be accelerated. Although we implemented
most of the methods in CUDA [39], some GPU-implementations are still missing,
i.e. CED, b-spline interpolation and connected components labelling.
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