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Abstract

Hamilton-Jacobi equations arise in many areas of science such as classical mechanics or
geometric optics. After Berthold K. P. Horn formulated the Shape from Shading prob-
lem using a Hamilton-Jacobi equation in 1970, they have also been playing an important
role on computer vision.

This thesis deals with Hamilton-Jacobi equations in theoretical and numerical point of
view especially focusing on the application in Shape from Shading.

The first part covers the solution theory under the notion of continuous viscosity so-
lutions proposed by Crandall and Lions. The advantage of this approach is mainly
twofold. One is the well-posedness properties we can obtain in this framework which
cannot be achieved with the classical method. The other is that it provides a framework
in which we can derive a simple explicit scheme to approximate solutions and prove
the convergence of the scheme.

The second part concentrates on the model extension accomplished by the change of
surface reflectance from Lambertian to non-Lambertian in the modelling process which
causes non-convexities in the Hamiltonian. By employing critical points analysis for the
Hamiltonian we investigate one of the simplest non-convex models by the Vogel-Breuß-
Weickert model, and we provide conditions to circumvent the non-convex properties
theoretically. This gives us a deeper insight into the model.

The last part concerns numerical aspects for solving Hamilton-Jacobi equations in the
viscosity framework. Due to our special interest in the non-convex Hamiltonian one of
the main difficulties in numerical analysis lies in assuring the convergence of a scheme.
In this work, we have shown the convergence of an explicit scheme for the Vogel-Breuß-
Weickert model in one-dimensional case and present the experimental results.
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Chapter 1

Introduction

Hamilton-Jacobi equations are the mathematical language for describing natural phe-
nomena and thereby arise naturally in numerous subfields of science such as classical
mechanics or geometric optics in physics.

Since it was shown by Berthold K. P. Horn that the Shape from Shading problem can be
formulated by these equations, this thesis put emphasis upon both theoretical and nu-
merical perspectives for this nonlinear first-order partial differential equation especially
focusing on the application in the Shape from Shading.

In the present chapter, we first give an overview of Shape from Shading problems and
modelling issues on which we focus for this work. The detailed mathematical exposi-
tion for Hamilton-Jacobi equations is postponed until Chapter 2 and thereafter.

After we set goals for this thesis, short summaries of each chapter and the outline are
provided at the end.

Main references for this chapter are papers on Shape from Shading such as [14, 27, 84,
85, 96].

1.1 Shape from Shading

As one might guess from the name, the task of Shape from Shading (SfS) is to compute
a three-dimensional depth information of the object (Shape) from a given single grey
value image (Shading), see Figure 1.1.

This classical inverse problem is one of the research topics in computer vision and has
several practical applications. As an example, in astronomy this technique is used to
reconstruct the terrain on a planet from a photograph acquired by a spacecraft. Another
example can be found in endoscopy, where this method is helpful for recovering the
surface of human internal organs for various medical reasons [9, 20, 40, 105, 108].

This problem was first formulated by Berthold K. P. Horn as finding solutions of non-
linear first-order partial differential equation called the brightness equation under certain
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Input image Recover the 3-D surface of the object
SfS

Figure 1.1: Illustration of the Shape from Shading (SfS) problem. The goal of this prob-
lem is to obtain the same image as the input one (left) when we take a picture of the
recovered scene (right) that we have computed. Adapted from [3].

assumptions on the scenes [14, 45]. It was also he who coined the term “Shape from
Shading”. After he described the problem in 1970, a lot of efforts were made to solve
this problem based on his work.

Roughly speaking, this brightness equation describes the relationship between image
intensities and the variation of these intensities according to the slope of unknown sur-
face, so that the shape can be reconstructed from the shading. Nevertheless, in order to
solve this problem correctly it is also important for us to know exactly how the image is
acquired from the scene. Then, we can make reasonable assumptions based on the im-
age acquisition process. When the assumptions could not reflect physical phenomena
correctly, the proposed model made by unrealistic assumptions would not work, which
could yield unreasonable or poor results.

In the matter of SfS problem, it mainly involves three modelling issues of the scene: sur-
face, illumination and camera setup. The details in need will be discussed in Section 5.1.
In this thesis, we are primarily interested in surface and camera model.

Before we turn our attention to these modelling issues, we briefly see how progress has
been made in this area.

1.1.1 Brief History and Related Works

According to [84], in the first stage (1980s) the efforts were made by only trying to com-
pute numerical solutions directly without considering the existence and uniqueness of
solutions except the work of Bruss and Brooks [16, 17], which showed important aspects
in mathematics.

In the last decades, these questions were the central topics of the problem due to the
poor quality of the results despite the huge amount of papers. For this reason, it drew
the attention of mathematicians, and it turned out that the problem itself is in general
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ill-posed1. For example, in [79] the so-called “convex-concave ambiguities” show these
difficulties which we shall discuss in Section 4.4.

As a result, tremendous attempts weremade to alleviate these problems both in solution
theory2 of partial differential equations and in the modelling process. Among them vis-
cosity solutions3 and perspective camera model attract our interest, since we are allowed
to obtain desired results within these frameworks [27, 29, 84]. Hence, we utilise these
methods in this thesis.

1.1.2 Modelling Issues

As noted before, there are mainly three modelling components involved in Shape from
Shading problem and we briefly discuss here each one. The mathematical details about
this process is presented in Section 5.1.

Camera Model

The camera model is about how to map the surface point to the image plane.

As can be observed in Figure 1.2a, in an orthographic camera model the surface point
is directly projected onto the retinal plane. In contrast to this, in a perspective one the
surface point is mapped to the point on the retinal plane along the line starting from the
optical centre, see Figure 1.2b.

According to [10, 27, 84], a perspective projection model enables us to step forward in
dealing with ill-posedness with the help of viscosity framework, which is why we are
specially interested in.

Illumination

The illumination model explains how the light intensities on the surface are stored on
the image plane which is described by a brightness equation. Simply speaking, SfS
problem is equivalent to solve this brightness equation. It has the form

I (x1,x2) = R (n (x1,x2)) , (1.1)

where I denotes the image intensities at the point (x1,x2) and R is the reflectance map
depending on the surface normal vector n at the position (x1,x2) and can be computed
by R = cos (L,n) = L

|L| ·
n
|n| , see Figure 1.2.

1The meaning here is that solutions of the problem do not exist or the retrieved solution is not unique.
This is the opposite concept of well-posedness which will be explained in more detail in Section 2.2

2Actually, this theory was not developed solely for SfS problem but for other model problems, e.g. in
physics. SfS has benefited from its fruit.

3This theory was mainly developed to provide the well-posedness on the problem.
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(a) Orthographic camera model (b) Perspective camera model

Figure 1.2: Orthographic and perspective camera models. In 1.2a, I (x1,x2) denotes
image intensities at the point (x1,x2), n represents a normal vector of the surface at the
point (x1,x2), L is the normalised light direction, θ is the angle between n and L, and
u (x1,x2) is the unknown surface depth. In 1.2b, f denotes a focal length of a camera.
Adapted from [85].

A usual assumption on the scene is that the light intensity on the surface point is directly
saved on the image plane without any loss and the surface is Lambertian4.

Surface

In the matter of surface, most SfS models incorporate Lambertian surfaces for both an
orthographic setting and a perspective one. Comparing to huge amount of work for
Lambertian surfaces, non-Lambertian ones constitute only a small portion. Although
some attempts were already made for orthographic projections [56, 97], these models
suffer from ill-posedness as we mentioned earlier.

Despite the fact that non-Lambertian reflectance is more realistic than Lambertian one,
counting both non-Lambertian surfaces and a perspective cameramodelmakes a bright-
ness equation more complicated and difficult to deal with, since we have to cope with

4Basic properties of Lambertian surface will be explained in Section 5.1
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non-convex problems in general [5, 75]. The comparison between models is presented
in Table 6.1 and we shall account for these topics in Chapter 6.

So far, we have seen a brief overview of a SfS problem and its modelling issues. This
may be the moment that we set goals for this thesis.

1.2 Goals of the Thesis

1.2.1 Motivation

First, we have flooded with theoretical results specially of viscosity solutions which are
quite effective for SfS problems. Nonetheless, they are scattered all over the literature.

Second, theoretical works are sometimes considerably difficult to access.

Third, non-convex SfS models are up to now not analysed.

1.2.2 Goals

In this thesis, we aim at reaching following goals:

First, we try to collect all necessary theoretical ingredients from literature and give them
structure in a reasonable way.

Second, we perform a first investigation of simplest non-convex model.

Third, we evaluate a non-convex model with respect to numerical algorithms.

1.3 Organisation and Chapter Summary

This thesis is composed of nine chapters and the outline is given in Figure 1.3. For the
purpose of an overview, we summarise each chapter shortly.

In chapter 2, we give basic mathematical backgrounds on Hamilton-Jacobi equations
including partial differential equations, well-posedness, notion of continuous viscosity
solutions and Legendre transform.

In chapter 3, we consider a compatibility condition on the boundary data which is re-
quired to the existence of viscosity solutions.

In chapter 4, we investigate the uniqueness of the solution which can be explained by
comparison theorem.

In chapter 5, mathematical modelling process of perspective SfS and the details of Pra-
dos and Faugeras model are studied including convexity and well-posedness.

In chapter 6, non-convex Vogel-Breuß-Weickert model is presented and analysed. The
properties of a Hamiltonian and critical points are provided.
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In chapter 7, basics knowledge of numerical analysis is given including consistency,
stability and monotonicity. Afterwards, we examine the notion on the convergence of
a numerical scheme and see how it works in the viscosity framework. In addition, we
proved the convergence of one-dimensional explicit scheme for the VBWmodel.

In chapter 8, numerical experiments are performed in one- and two-dimension and
results are presented.

In chapter 9, we conclude this work by giving a summary and discussing possible out-
looks.

Chapter 1 Introduction

Chapter 2 Basics on Hamilton-Jacobi Equations

Chapter 3 Viscosity Solution Theory: Existence

Chapter 4 Viscosity Solution Theory: Uniqueness

Chapter 5 Perspective Shape from Shading: Prados Model

Chapter 6 Model Extension: Vogel-Breuß-Weickert Model

Chapter 7 Numerical Scheme: Convergence Theory

Chapter 8 Numerical Experiments

Chapter 9 Conclusion

Figure 1.3: Structure of the present thesis.



Chapter 2

Mathematical Background on
Hamilton-Jacobi Equations

In this chapter, we shall survey the important mathematical tools which will appear in
this thesis. Our major concern is to solve the Shape from Shading problems which are
described by partial differential equations. Among all different types of partial differ-
ential equations what we are specially interested in is a Hamilton-Jacobi equation. This
introduces a new concept of solutions for the Shape from Shading problems.

The chapter is organised as follows.

In the first section we begin with a question “What is a Hamilton-Jacobi equation?”,
then think about “What is the reasonable meaning of solving this problem?”, in other
words “In what sense are we seeking for a solution?”.

Afterwards, it can be realised that we encounter some problems when we approach
with a classical method to solve a one-dimensional eikonal1 equation, which brings us
naturally a new notion of a solution.

Then, we investigate a new concept of a solution. Our contribution here is to present
a detailed analytical exposition of a viscosity solution concept by making use of a one-
dimensional eikonal equation.

Finally, we shall have a look at the Legendre transform which plays a significant role in
the solution theory of a Hamilton-Jacobi equation.

To this end, we have used a certain range of the references depending on the topics.
The main references for the general theory of partial differential equations are [32, 83]
and for the well-posedness [11, 53] are used. In addition, we mainly follow [12, 67] for
the viscosity solution theory and [7, 42–44, 46, 71, 91] for Legendre transform theory,
respectively.

1εικών (or εικoν) means “an image” in Greek
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2.1 What is a Hamilton-Jacobi Equation?

In order to answer this question, we should first clarify what a partial differential equa-
tion is.

A partial differential equation (PDE) is an equation which describes the relationship be-
tween an unknown function u of two or more variables and its partial derivatives. In
general, for a fixed integer k ≥ 1 it has the form:

Definition 2.1.1 (Partial Differential Equation).

F
(
x,u (x) ,Du (x) , . . . ,Dk−1u (x) ,Dku (x)

)
= 0, (2.1)

where u : Ω→ R and Ω is any open subset in R
n. We often take Ω = R

n. Here the
notation Dku (x) denotes the vector containing all kth order partial derivatives. For
example,

Du (x) =

(
∂u

∂x1
, . . . ,

∂u

∂xn

)T

(2.2)

and

D2u (x) =

(
∂2u

∂xi∂xj

)T

1≤i,j≤n
(2.3)

and so on. Sometimes we write ∂u
∂xi

as uxi .

As an example, when we consider the spatially two-dimensional case, which means
x = (x1,x2)

T ∈ R
2, a general expression of a PDE has the following form:

F(x1,x2,u,ux1 ,ux2 ,ux1x2 ,ux2x1 ,ux1x1 ,ux2x2) = 0, (2.4)

where x1 and x2 are independent variables in R, u(x1,x2) : R×R→ R is the unknown

function, and uxi with i ∈ {1,2} denotes the partial derivative ∂u
∂xi

with i ∈ {1,2}. As we

can see in (2.4), the functional F “defines” the equation by involving u and its partial
derivatives.

In general, a solution technique of a PDE heavily depends on its type, therefore we are
in need of classifying this PDE into different types. To this end, we pay attention to
the order and the linearity of a PDE [32, 83].

The Order of a PDE

The first classification is according to the order of the PDE.

Definition 2.1.2 (Order of a PDE). The order of a PDE is defined to be the order of the
highest derivative present in the given PDE.
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When the highest derivative is of order k, then the order of a PDE is said to be of order
k. Let us have a look at some examples. A PDE ux1x1 + ux2x2 = 0 is called a second order
PDE, since its highest derivative order is two. While the PDE u2x1 + u2x2 = 1 is said to be
a first order, since this PDE involves only first derivatives.

Linear PDE

Another important classification criterion of a PDE is about linear versus nonlinear. A
PDE is called linear when a functional F in (2.4) behaves linearly with respect to the
unknown function u and its derivatives. Otherwise, it is called nonlinear. As an example,
a PDE x2ux1 + ex1x2ux2 + sin(x21 + x22)u = x3 is a linear one but with variable coefficients,
because we can rewrite this PDE as α1ux1 + α2ux2 + α3u + α4 = 0, where α1 = x2, α2 =
ex1x2 , α3 = sin(x21 + x22), and α4 = −x3, which means that the coefficient functions do
not depend on the unknown function u and its derivatives. However, in contrast to the
previous example a PDE u2x1 + u2x2 = 1 is a nonlinear one, since the functional F in (2.4)
does not behave linearly with respect to the derivatives of unknown function u in this
case.

Going back to the question “What is the Hamilton-Jacobi equation?” gives the answer
that a Hamilton-Jacobi equation (HJE) is a first order, nonlinear PDE. For the HJE, at-
tention will be focused on the following two classes of problems. One is

Definition 2.1.3 (Dirichlet Problem for Hamilton-Jacobi Equation).

{
H (x,u (x) ,Du (x)) = 0 in Ω

u (x) = ϕ (x) on ∂Ω,
(2.5)

where H (x,u (x) ,Du (x)) : Ω × R × R
n → R is a given function called Hamiltonian,

u (x) : Ω → R with x ∈ Ω = R
n is the unknown function that we want to seek, and

∂Ω denotes the boundary of Ω.

The other is

Definition 2.1.4 (Cauchy Problem for Hamilton-Jacobi Equation).






∂u

∂t
+ H (x, t,u (x, t) ,Du (x, t)) = 0 in Ω× ]0,T]

u (x, t) = ϕ (x, t) on ∂Ω× ]0,T]

u (x,0) = u0 (x) in Ω,

(2.6)

where x ∈Ω = R
n usually denotes a space variable and t ∈ ]0,T] with T ∈R is for time.

The function u (x, t) : R
n × ]0,T]→ R is the unknown and u0 (x) : R

n→ R is the initial
condition.
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As an example, in the spatially two-dimensional case with one time variable a Cauchy
Problem HJE has the expression





∂u

∂t
+ H(x1,x2, t,u,ux1 ,ux2) = 0 in Ω× ]0,T]

u (x1,x2, t) = ϕ (x1,x2, t) on ∂Ω× ]0,T]

u (x1,x2,0) = u0 (x1,x2) in Ω ,

(2.7)

where Ω⊂ R
2, uxi =

∂u
∂xi

with i ∈ {1,2}, and u = u(x1,x2, t) is the unknown function.

Remark 2.1.1. These types of PDEs were extensively invetigated by the Irish mathe-
matician William Rowan Hamilton (1805-1865) who made important contributions to
the problems in optics and classical mechanics [106, 107], extended by Carl Gustav Ja-
cob Jacobi (1804-1851), and named after them in honour of their achievements.

2.2 Well-Posedness

Our attention is now turned into the question “What does it mean to solve a PDE?”. In
general, solving a PDE is not an easy task depending on the particular structures of the
problem at hand. To deal with this problem, Jacques Salomon Hadamard (1865-1963)
presented guidelines in [41]. Having thought of a boundary value problem (BVP) for a
PDE, he claims that a mathematical model for a physical problem has to be well-posed in
the sense that it has the following three properties:

Definition 2.2.1 (Well-Posedness).

1. [Existence] There exists a solution of the problem.

2. [Uniqueness] There is at most one solution of the problem.

3. [Stability] The solution depends continuously on the given data in the problem.

If one of these conditions is not satisfied, the problem is said to be ill-posed.

Let us discuss briefly why these criteria are useful for solving a PDE.

The existence of a solution directly involves a questionwhat requirements we ask for the
solution. For example, is it enough for a solution u to be just a continuous function? Or
does it have to be infinitely many differentiable? Depending on these requirements, the
answer will be changed. For this matter, we shall see an example that a one-dimensional
eikonal equation equipped with boundary value has no solution in C1, but it does have
a solution which belongs to C0 in Section 2.3. Therefore, mathematically speaking, the
existence of a solution can be enforced by enlarging the solution space. The concept
of weak, generalised, or distributional solutions is developed to cope with these circum-
stances.
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In the matter of uniqueness, we can think of a two-dimensional eikonal equation u2x1 +

u2x2 = n2 which describes the property of a traversal path of a ray as formulated by
Hamilton, which can be seen in Figure 2.1. When a ray hits a denser homogenous
medium, it chooses its propogation path according to the Fermat’s principle, which
states that the ray of a light takes the path along which it can be traversed in the least
amount of time [77]. This suggests that the solution must fulfil the extremum condition
indicating that the solution is not a dashed curve path but actually a line path from A to
B in Figure 2.1. So, if a problem has more than one solution, then this can be understood
as missing information by the model which would enable us to single out the solution.
In this case, additional information, such as boundary conditions or initial conditions
can be added into the model to resolve this situation.

1

n

in
ci
de
nt
ra
y

wavefronts of light

A

B

refracted ray

Figure 2.1: Refraction of a ray when the light transmitted into the denser medium (n >

1).

Regarding the stability, it implicates that the solution should change only a little bit
when we change the problem a little. The requirement of this property is of great im-
portance in practice. When we compute the solution of a problem using a numerical
scheme, the convergence of the numerical scheme towards a true solution when the
grid size vanishes is always an issue. According to [80] without the property of sta-
bility, the convergence of the scheme cannot be guaranteed. Therefore, if the solution
does not depend continuously on the given data in the problem, then in general the
computed solution is not related with the true solution.

Hence, it is a desirable strategy for us to seek for a solution to a given PDE which satis-
fies well-posedness properties in the sense of Hadamard.
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2.3 Notion of a Solution

In this section, a simple example of a HJE is considered which makes trouble from the
perspective of well-posedness when we approach with the classical methods. This dis-
cussion leads, afterwards, to a new concept of a solution called viscosity solutions in order
to get around this problem.

2.3.1 Need for a New Concept of a Solution

Why do we need a new concept of a solution? At the first stage, let us try to solve
with a classical method the following one-dimensional eikonal equation with Dirichlet
boundary conditions (DBC) from geometric optics:

{
|∇u(x)| = 1, x ∈ (0,1)

u(x) = 0, x ∈ {0,1},
(2.8)

where | · | denotes the Euclidean norm.

Seeking the solution of the above problem (2.8) with the classical method, which means
that we want to find a continuous and differentiable function u over the entire domain
where x is defined, we encounter several questions concerned with the well-posedness.

The first question is about the existence of solutions. The PDE (2.8) has no solutions in
C1, which can be proved by contradiction. Suppose that there exist such solutions. In
that case, we must be able to find a point x0 ∈ (0,1) which satisfies u′(x0) = 0 by Rolle’s
theorem [8], which states that a differentiable and continuous function which attains
equal values at end points of the interval must have a point x0 between the interval
(0,1) where the slope of the tangent line at that point is zero which implies u′(x0) = 0,
see Figure 2.2. However, this contradicts the fact that for the every point x0 ∈ (0,1) the
slope is already given by |u′(x0)| = 1 in the problem (2.8). Therefore, (2.8) cannot admit
a solution in C1.

The second question is about the uniqueness of the solution. Now, let us expand our
solution space from C1 to C0, since we have failed in looking for a solution in C1. But
this leads to another problem. As an example, we can easily confirm that the function

u+(x) = 1
2 −

∣∣∣12 − x
∣∣∣ is a solution of (2.8) for almost every x ∈ (0,1) as follows.
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u(0) = 0 u(1) = 0

0 x0 1

u′(x0) = 0

Figure 2.2: Rolle’s theorem for PDE (2.8).

First, we check the boundary conditions:

u+(0) =
1

2
−
∣∣∣∣
1

2
− 0

∣∣∣∣

=
1

2
− 1

2
= 0,

u+(1) =
1

2
−
∣∣∣∣
1

2
− 1

∣∣∣∣

=
1

2
− 1

2
= 0.

Second, we consider the case when 0< x <
1
2 . In this case, we receive

∣∣∣12 − x
∣∣∣=
(
1
2 − x

)
.

Therefore, u+(x) = 1
2 −

∣∣∣ 12 − x
∣∣∣ becomes

u+(x) =
1

2
−
∣∣∣∣
1

2
− x

∣∣∣∣

=
1

2
−
(
1

2
− x

)

= x.

Since u+(x)→ 0 as x→ 0, we have u+(x) = x when 0≤ x <
1
2 .

Next, we treat the case when 1
2 ≤ x < 1. In this case, we have

∣∣∣ 12 − x
∣∣∣=−

(
1
2 − x

)
. Thus,
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u+(x) = 1
2 −

∣∣∣12 − x
∣∣∣ becomes

u+(x) =
1

2
−
∣∣∣∣
1

2
− x

∣∣∣∣

=
1

2
+

(
1

2
− x

)

= 1− x.

Extending the considered domain to 1
2 ≤ x ≤ 1, we also obtain u+(x) = 1− x, because

u+(x)→ 0 as x→ 1.

So, u+(x) has the form in the whole interval [0,1]

u+(x) =





x if 0≤ x <
1

2
,

1− x if
1

2
≤ x ≤ 1,

(2.9)

which can be seen in Figure 2.3. Now, we can clearly see that u+(x) has a slope 1 when
0≤ x <

1
2 and slope −1 when 1

2 < x ≤ 1, which indicates that u+(x) is a solution to the

(2.8) except the point x = 1
2 . The point to be stressed out here is that the situation is

delicate when x = 1
2 , since at this point u+(x) is not differentiable. That’s why u+(x)

is referred to as the solution which holds almost everywhere (a.e.), which implies in this
case excluding the point where the function is not differentiable. The treatment of this
problem will be more carefully handled in Section 2.3.2.

In the same way as we treated u+(x) above, we can also verify that u−(x) = −u+(x) is
a solution to (2.8) at the same time. In fact, for the equation (2.8) there are an infinite
number of solutions of the form [11]:






un(0) = 0,

un(1) = 0,

u′n(x) = 1 if x ∈
]
2k

2n
,
2k + 1

2n

]
, k = 0, . . . ,2n − 1,

u′n(x) =−1 if x ∈
]
2k + 1

2n
,
2k + 2

2n

]
, k = 0, . . . ,2n − 1,

(2.10)

where n∈N, whichwe can see in the Figure 2.3. Notice that u+(x) is the largest solution
of (2.8) in a pointwise sense and u−(x) is the smallest one.

Another problem that we can notice is that 0 is not a solution of 2.8, although un(x)→ 0
uniformly when n→+∞.

Considering the given circumstances, we need clearly another strategy to deal with
these difficulties.
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0 1

2

1

2

−1

2

1

u+(x) =
1

2
−
∣∣∣∣
1

2
− x

∣∣∣∣

u−(x) =−1

2
+

∣∣∣∣
1

2
− x

∣∣∣∣

Figure 2.3: Examples of admissible solutions of a one-dimensional eikonal equation.
Adapted from [11].

2.3.2 Viscosity Solutions

For the matter of viscosity solutions, we start with giving a brief history about solving a
HJE in the sense of well-posedness. Then, we investigate the definitions of viscosity so-
lutions in detail. This shows us how they are applied and helpful in the one-dimensional
eikonal equation with which we have already encountered problems with the classical
method.

Brief History

As we have already seen in the one-dimenstional eikonal equation problem, it is well
known that a HJE is in general ill-posed. In early 1980s, the theory of viscosity solutions
was introduced by Michael G. Crandall and Pierre-Louis Lions in [22, 23] for giving
us useful mathematical tools to overcome the previously mentioned inherent ill-posed
properties of the given HJE. However, before that another effort was already made and
the way was paved by the Russian mathematician S. N. Kružkov. In 1975, he proposed
a concept of generalised solutions of eikonal-type HJEs2 in [99]. In the work [100] it was
shown that he also put a further, physically meaningful constraint to receive existence

2eikonal-type HJE means that the hamiltonian H(x,u,∇u) is independent of u and only depends on
∇u.
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and uniqueness property of solutions. Although the mathematical details between vis-
cosity solutions by Michael G. Crandall and Pierre-Louis Lions and generalised solu-
tions by S. N. Kružkov are different, the basic idea of both theories is the same in the
sense that they all want to turn an ill-posed HJE into a well-posed one by imposing
some constraints on the problems.

As we have encountered several problems with the one-dimensional eikonal equation
in the previous section, we paymore our attention to the eikonal-type HJE with the help
of the viscosity theory rather than the general one. For more details and mathematical
rigourousness about generalised theory, we refer to [22, 23, 34, 60, 66, 67, 69] and the
references therein.

We present here two definitions of viscosity solutions which can be found in [12, 67].
One is defined making use of a test function ϕ ∈ C1, and the other one uses super-
and subdifferential. As the super- and subdifferential characterise the nondifferentiable
local maxima and minima, both definitions are equivalent, which is proved in [12].

The point to be stressed for the viscosity solutions is that the solution u need not be
everywhere differentiable. It may happen that the derivative Du does not exist, as e.g.
in the case of |x|. Even if the derivative Du does not exist at some point, the super-
and subdifferential are defined at that point and take the place of the derivative, which
makes u only belong to C0. Notice that, specially the notion of the subdifferential is also
extensively investigated in the convex analysis literature such as [42–44, 94].

For the given Hamilton-Jacobi equation with DBC:

{
H(x,∇u(x)) = 0 in Ω

u(x) = ϕ(x) on ∂Ω,
(2.11)

a continuous viscosity solution u ∈ C0 of an equation (2.11) is defined as follows.

Definition 2.3.1 (Continuous Viscosity Solution I). A continuous function u ∈ C0 is a
viscosity solution of the equation (2.11) if the following conditions are satisfied:

(i) (Viscosity subsolution) For any test function ϕ ∈ C1(Ω), if x0 ∈Ω is a local maxi-
mum point for (u− ϕ), then

H(x0,∇ϕ(x0)) ≤ 0 (2.12)

(ii) (Viscosity supersolution) For any test function ϕ ∈ C1(Ω), if x1 ∈ Ω is a local
minimum point for (u− ϕ), then

H(x1,∇ϕ(x1)) ≥ 0. (2.13)

This is equivalent to:
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Definition 2.3.2 (Continuous Viscosity Solution II). A continuous function u ∈ C0 is
a viscosity solution of the equation (2.11) if the following conditions are satisfied:

(i) (Viscosity subsolution) H(x, p) ≤ 0 ∀ x ∈ R
n, ∀p ∈ D+u,

(ii) (Viscosity supersolution) H(x, q) ≥ 0 ∀ x ∈ R
n, ∀q ∈ D−u,

where

D+u(x) =

{
p ∈ R

n : limsup
y→x

u(y)− u(x)− p · (y− x)

|y− x| ≤ 0

}
(2.14)

and

D−u(x) =

{
q ∈ R

n : liminf
y→x

u(y)− u(x)− q · (y− x)

|y− x| ≥ 0

}
. (2.15)

The sets D+u(x) and D−u(x) are called the super- and the subdifferential of u at x, re-
spectively. In [12], the properties of these sets are collected in the following:

Lemma 2.3.1.

(i) D+u(x) and D−u(x) are closed convex (possibly empty) subsets of R
n.

(ii) If u is differentiable at x, then

{Du(x)} = D+u(x) = D−u(x) . (2.16)

(iii) If for some x both D+u(x) and D−u(x) are nonempty, then

{Du(x)} = D+u(x) = D−u(x) . (2.17)

Remark 2.3.1. To understand the situation when u is nondifferentiable at x, proposi-
tional logic would be helpful. With the contraposition of the second property in Lemma
2.3.1 we are able to obtain

(u is differentiable at x)⇒
(
D+u(x) = {Du(x)}

)
∧
(
D−u(x) = {Du(x)}

)

⇔
(
D+u(x) 6= {Du(x)}

)
∨
(
D−u(x) 6= {Du(x)}

)
⇒¬(u is differentiable at x)

⇔
(
D+u(x) 6= {Du(x)}

)
∨
(
D−u(x) 6= {Du(x)}

)
⇒ (u is not differentiable at x)

This says that u is nondifferentiable at x if one of the super- or subdifferential of u is
different from the derivative.

The last property of Lemma 2.3.1 basically tells us that the nondifferentiable points be-
long to only one set, i.e. they are either super- or subdifferentials, since the third state-
ment in Lemma 2.3.1 can be formulated as follows:

(
D+u(x) 6= ∅

)
∧
(
D−u(x) 6= ∅

)
⇒
(
D+u(x) = {Du(x)}

)
∧
(
D−u(x) = {Du(x)}

)

considering the contraposition of the above

⇔
(
D+u(x) 6= {Du(x)}

)
∨
(
D−u(x) 6= {Du(x)}

)
⇒
(
D+u(x) = ∅

)
∨
(
D−u(x) = ∅

)
.
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Asmentioned above, one of super- or subdifferential of u at x is empty set if one of them
are different from the derivative.

Therefore, with the second property of Lemma 2.17 nondifferentiable points cannot
have the nonempty super- and subdifferential at the same time.

In [12] some algebraic properties on the super- and subdifferentials are given as follows.

Lemma 2.3.2.

(i) D+ (αu) (x) = αD+u (x) if α > 0,

(ii) D+ (αu) (x) = αD−u (x) if α < 0,

(iii) D+ (u + ϕ) (x) = D+u (x) + Dϕ (x) if ϕ ∈ C1 (Ω),

(iv) D+uα (x) = αD+u (x) + (1− α)Dϕ (x) if ϕ ∈ C1 (Ω),

where uα (x) := αu (x) + (1− α) ϕ (x) with α ∈ [0,1].

Now, we are in the position to realise that super- and subdifferential are the same as
the classical derivative when the function is differentiable at a certain point. The only
difference is made when the function is not differentiable. Whenever super- and sub-
differential are not empty, according to the Definition 2.3.2, u is a viscosity solution of
a HJE (2.11) if it is simultaneouly a viscosity sub- and supersolution. However, if we
think of this situation by virtue of Lemma 2.3.1 and its remark, it occurs only when the
points are differentiable. Otherwise, they have only one nonempty set from super- and
subdifferential and the other set is empty, which implies that there exists only viscosity
super- or subsolution.

After we have a look how the sub- and superdifferential are determined for the non-
differentiable points of the function |x|, we shall apply Definition 2.3.2 to the one-
dimensional eikonal equation, so that we can make this concept more clear.

In order to understand the Definition 2.3.2, let us first review the notions of subdiffer-
ential for the one-dimensional function u(x) = |x| that we have already seen in convex
analysis [42–44, 94].

Example 2.3.1 (Subdifferential of |x|).

Since u(x) = |x|=
{

x if x ≥ 0,

−x if x < 0,
we investigate this case by case as follows. We begin

the case distinction with x = 0.

I. x = 0
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(i) y ≥ 0

liminf
y→x

u(y)− u(x)− q (y− x)

|y− x| ≥ 0

⇔ liminf
y→x

y− qy

y
≥ 0

⇔ liminf
y→x

(1− q)y

y
≥ 0

⇔ 1− q ≥ 0

⇔ q≤ 1

(ii) y < 0

liminf
y→x

u(y)− u(x)− q (y− x)

|y− x| ≥ 0

⇔ liminf
y→x

−y− qy

−y ≥ 0

⇔ liminf
y→x

− (1+ q)y

−y ≥ 0

⇔ 1+ q ≥ 0

⇔ q≥ −1

Hence, we receive the subdifferential q ∈ [−1,1] when x = 0.

II. x > 0

(i) x > 0, y > 0

(a) y > x > 0 ⇔ y− x > 0

liminf
y→x

u(y)− u(x)− q (y− x)

|y− x| ≥ 0

⇔ liminf
y→x

(y− x)− q (y− x)

(y− x)
≥ 0

⇔ liminf
y→x

(1− q) (y− x)

(y− x)
≥ 0

⇔ 1− q≥ 0

⇔ q ≤ 1
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(b) x > y > 0 ⇔ y− x < 0 ⇔ − (y− x) > 0

liminf
y→x

u(y)− u(x)− q (y− x)

|y− x| ≥ 0

⇔ liminf
y→x

(y− x)− q (y− x)

− (y− x)
≥ 0

⇔ liminf
y→x

(1− q) (y− x)

− (y− x)
≥ 0

⇔ − (1− q) ≥ 0

⇔ 1− q≤ 0

⇔ q ≥ 1

(ii) x > 0, y < 0

liminf
y→x

u(y)− u(x)− q (y− x)

|y− x| ≥ 0

⇔ liminf
y→x

(−y− x)− q (y− x)

− (y− x)
≥ 0

⇔ liminf
y→x

− (1+ q)y + (q− 1)x

− (y− x)
≥ 0

⇔ (q− 1) x︸︷︷︸
>0

≥ (1+ q) y︸︷︷︸
<0

⇔ (q− 1≥ 0) ∧ (1+ q≥ 0)

⇔ (q≥ 1) ∧ (q ≥ −1)
⇔ q≥ 1

Therefore, considering all the cases when x > 0, we receive the subdifferential
q = {1} for u(x) = |x|. Next, let us move on to the next case when x < 0.

III. x < 0

(i) x < 0, y < 0
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(a) y < x < 0 ⇔ y− x < 0 ⇔ − (y− x) > 0

liminf
y→x

u(y)− u(x)− q (y− x)

|y− x| ≥ 0

⇔ liminf
y→x

(−y + x)− q (y− x)

− (y− x)
≥ 0

⇔ liminf
y→x

− (1+ q) (y− x)

− (y− x)
≥ 0

⇔ 1+ q≥ 0

⇔ q ≥ −1

(b) x < y < 0 ⇔ y− x > 0

liminf
y→x

u(y)− u(x)− q (y− x)

|y− x| ≥ 0

⇔ liminf
y→x

(−y + x)− q (y− x)

(y− x)
≥ 0

⇔ liminf
y→x

− (1+ q) (y− x)

(y− x)
≥ 0

⇔ − (1+ q) ≥ 0

⇔ (1+ q) ≤ 0

⇔ q ≤ −1

(ii) x < 0, y > 0

liminf
y→x

u(y)− u(x)− q (y− x)

|y− x| ≥ 0

⇔ liminf
y→x

(y + x)− q (y− x)

(y− x)
≥ 0

⇔ liminf
y→x

(1− q)y + (1+ q) x

(y− x)
≥ 0

⇔ (1− q) y︸︷︷︸
>0

≥ (1+ q) (−x)︸ ︷︷ ︸
>0

⇔ (1− q ≥ 0) ∧ (1+ q≤ 0)

⇔ (1≥ q) ∧ (q ≤ −1)
⇔ q≤ −1

Thus, taking all the cases above into account when x < 0, we receive subdifferen-
tial q = {−1} for u(x) = |x|.
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So, the result of Example 2.3.1 enables us to formulate the subdifferential of the function
u(x) = |x| depending on x as follows, see Figure 2.4.

D−u(x) =





−1 if x < 0,

[−1,1] if x = 0,

1 if x > 0.

(2.18)

As we did for the subdifferential, this time we proceed to the superdifferential of |x|.
First we take care of the case when x = 0.

Example 2.3.2 (Superdifferential of |x|).

I. x = 0

(i) y ≥ 0

limsup
y→x

u(y)− u(x)− p (y− x)

|y− x| ≤ 0

⇔ limsup
y→x

y− py

y
≤ 0

⇔ limsup
y→x

(1− p)y

y
≤ 0

⇔ 1− p ≤ 0

⇔ p ≥ 1

(ii) y < 0

limsup
y→x

u(y)− u(x)− p (y− x)

|y− x| ≤ 0

⇔ limsup
y→x

−y− py

−y ≤ 0

⇔ limsup
y→x

− (1 + p)y

−y ≤ 0

⇔ 1+ p ≤ 0

⇔ p ≤ −1

Hence, we receive the superdifferential p = ∅ when x = 0.

II. x > 0
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(i) x > 0, y > 0

(a) y > x > 0 ⇔ y− x > 0

limsup
y→x

u(y)− u(x)− p (y− x)

|y− x| ≤ 0

⇔ limsup
y→x

(y− x)− p (y− x)

(y− x)
≤ 0

⇔ limsup
y→x

(1− p) (y− x)

(y− x)
≤ 0

⇔ 1− p ≤ 0

⇔ p ≥ 1

(b) x > y > 0 ⇔ y− x < 0 ⇔ − (y− x) > 0

limsup
y→x

u(y)− u(x)− p (y− x)

|y− x| ≤ 0

⇔ limsup
y→x

(y− x)− p (y− x)

− (y− x)
≤ 0

⇔ limsup
y→x

(1− p) (y− x)

− (y− x)
≤ 0

⇔ − (1− p) ≤ 0

⇔ 1− p ≥ 0

⇔ p ≤ 1

Therefore, considering all the cases when x > 0, y > 0 we receive the
superdifferential p = {1} for u(x) = |x|. Next, let us move on to the case
when x > 0, y < 0.
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(c) x > 0, y < 0

limsup
y→x

u(y)− u(x)− p (y− x)

|y− x| ≤ 0

⇔ limsup
y→x

(−y− x)− p (y− x)

− (y− x)
≤ 0

⇔ limsup
y→x

− (1+ p)y + (p− 1)x

− (y− x)
≤ 0

⇔ (1+ p) (−y)︸ ︷︷ ︸
>0

≤ (1− p) x︸︷︷︸
>0

⇔ (1+ p ≤ 0) ∧ (1− p ≥ 0)

⇔ p ≤ −1

This case describes the situation when y < 0 crosses over the point 0 and
approaches x > 0. However, there is no solution set which satisfies this
condition since {p |(p ≥ 1) ∩ (p ≤ 1) ∩ (p ≤ −1)}= ∅. The reason is that
there is no superdifferential at x = 0.

Therefore, considering all the cases when x > 0, we receive the superdifferential
p = {1} for u(x) = |x| only when y > 0. Next, let us move on to the case when
x < 0.

III. x < 0

(i) x < 0, y < 0

(a) y < x < 0 ⇔ y− x < 0 ⇔ − (y− x) > 0

limsup
y→x

u(y)− u(x)− p (y− x)

|y− x| ≤ 0

⇔ limsup
y→x

(−y + x)− p (y− x)

− (y− x)
≤ 0

⇔ limsup
y→x

− (1+ p) (y− x)

− (y− x)
≤ 0

⇔ 1 + p ≤ 0

⇔ p ≤ −1
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(b) x < y < 0 ⇔ y− x > 0

limsup
y→x

u(y)− u(x)− p (y− x)

|y− x| ≤ 0

⇔ limsup
y→x

(−y + x)− p (y− x)

(y− x)
≤ 0

⇔ limsup
y→x

− (1+ p) (y− x)

(y− x)
≤ 0

⇔ − (1+ p) ≤ 0

⇔ (1+ p) ≥ 0

⇔ p ≥ −1

Thus, taking all the cases above into account when x < 0, y < 0 we receive
the superdifferential p = {−1} for u(x) = |x|.

(ii) x < 0, y > 0

limsup
y→x

u(y)− u(x)− p (y− x)

|y− x| ≤ 0

⇔ limsup
y→x

(y + x)− p (y− x)

(y− x)
≤ 0

⇔ limsup
y→x

(1− p)y + (p + 1) x

(y− x)
≤ 0

⇔ (p + 1) x︸︷︷︸
<0

≤ (p− 1) y︸︷︷︸
>0

⇔ (p + 1≥ 0) ∧ (p− 1≥ 0)

⇔ p ≥ 1

This case is similar as that of x > 0, y < 0. So, there is no solution set which
satisfies this condition since {p |(p ≥ −1) ∩ (p ≤ −1) ∩ (p≥ 1)} = ∅.

Therefore, considering all the cases when x < 0, we receive the superdifferential
p = {−1} for u(x) = |x| only when y < 0.

Based on the result of Example 2.3.2, we can write the superdifferential of the function
u(x) = |x| depending on x as follows.

D+u(x) =





−1 if x < 0,

∅ if x = 0,

1 if x > 0.

(2.19)
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As we can see in Figure 2.4, the subdifferential of a convex function |x| is actually not
different from the slope of function |x|, when the function is differentiable. The only
difference is made when the function is not differentiable.

0

1

-1

x

D−u(x)

(a) Subdifferential D−u(x) of u(x) = |x|.

0

1

-1

x

D+u(x)

(b) SuperdifferentialD+u(x) of u(x) = |x|.

Figure 2.4: Sub- and superdifferential of a convex function u(x) = |x|.

Analogously, the super- and subdifferential of concave function u(x) = −|x| can be ob-
tained as follow. For the superdifferential of −|x|, we have

D+u(x) =






1 if x < 0,

[−1,1] if x = 0,

−1 if x > 0.

(2.20)

As a subdifferential of −|x|, we receive

D−u(x) =






1 if x < 0,

∅ if x = 0,

−1 if x > 0.

(2.21)

It turns out that the super- and subdifferential of concave function −|x| just exchange
the roles of sub- and superdifferential of the convex function |x| as can be seen in Fig-
ure 2.5.

Using these results, let us find the solution u ∈ C0 of the following one-dimensional
eikonal-type HJE equipped with DBC in the viscosity sense:

{
|∇u(x)| = 1, x ∈ (−1,1) ,
u(x) = 0, x ∈ {−1,1} .

(2.22)

We begin with the convex Hamiltonian H(x, p) = |p| − 1 for this problem, where p de-
notes ∇u(x). As we have already seen in the problem (2.8), we have an existence result
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0

1

-1

x

D+u(x)

(a) Superdifferential D+u(x) of u(x) = −|x|.

0

1

-1

x

D−u(x)

(b) Subdifferential D−u(x) of u(x) =−|x|.

Figure 2.5: Super- and subdifferential of a concave function u(x) =−|x|.

by expanding our solution space from C1 to C0, and there are infinitely many possible
solutions belonging to C0 for this problem. The solution candidates can be seen in Fig-
ure 2.6b. However, the only “viscosity solution” for this problem with the Hamiltonian
H(x, p) = |p| − 1 turns out to be uc+(x) = 1− |x| and we verify that in the following.
To this end, we pay special attention to the treatment for nondifferentiable points using
sub- and superdifferential, which enables us to single out a solution.

0

-1

-1 1 p

H(x, p) = |p| − 1

(a) Convex Hamiltonian H(x, p) = |p| − 1.

0 1

1

-1

-1 x

u(x)

uc+(x) = 1− |x|

uc−(x) = |x| − 1

(b) Solution candidates for H(x, p) = |p| − 1.

Figure 2.6: One-dimensional convex Hamiltonian H(x, p) = |p| − 1 and solution candi-
dates, where p denotes∇u(x).

Since the super- and subdifferential of the function uc+ = 1− |x| is the same as those of
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−|x|, we have the superdifferential D+uc+(x) of uc+ = 1− |x|

D+uc+(x) =






1 if x < 0,

{p : |p| ≤ 1} if x = 0,

−1 if x > 0,

(2.23)

and as a subdifferential D−uc+(x) of uc+ = 1− |x|, we receive

D−uc+(x) =





1 if x < 0,

∅ if x = 0,

−1 if x > 0.

(2.24)

Now, we check whether uc+ = 1− |x| fulfils both viscosity sub- and supersolution con-
ditions in Definition 2.3.2.

Since uc+ = 1− |x| satisfies H(x,D+uc+(x)) = |p| − 1≤ 0 by (2.23), so that uc+ = 1− |x|
is a viscosity subsolution. Since the subdifferential D−uc+(x) is the empty set, we need
not to take care of this case. Therefore, uc+ = 1− |x| is a viscosity solution for the HJE
(2.22) with the Hamiltonian H(x, p) = |p| − 1.

How about the other solution candidates in Figure 2.6b? Let us try with uc−(x) = |x| − 1.
Since sub- and superdifferential of uc−(x) = |x| − 1 are the same as those of |x|, we have
the superdifferential D+uc−(x) of uc− = |x| − 1

D+uc−(x) =





−1 if x < 0,

∅ if x = 0,

1 if x > 0,

(2.25)

and as a subdifferential D−uc−(x) of uc−(x) = |x| − 1, we receive

D−uc−(x) =






−1 if x < 0,

{p : |p| ≤ 1} if x = 0,

1 if x > 0.

(2.26)

In a similar way, this time we test whether uc−(x) = |x| − 1 fulfils both the viscosity
super- and subsolution requirements.

Since the superdifferential is the empty set, we don’t need to treat this case. Plugging the
subdifferentialD−uc−(x) into theHamiltonian H(x, p) = |p|− 1 yields H(x,D−uc−(x)) =
|p| − 1≤ 0 by (2.26), which does not satisfy the viscosity supersolution condition. Thus,
uc− = |x| − 1 is not accepted as a viscosity solution for the HJE (2.22) with the Hamilto-
nian H(x, p) = |p| − 1. This can be interpreted as follows.
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The one-dimensional convex Hamiltonian H(x, p) = |p| − 1 of HJE (2.22) does not admit
the solution which has local minima at the nondifferentiable points by the viscosity su-
persolution criterion, which suggests that every other solution candidate (dashed lines
in Figure 2.6b) except uc+(x) = 1− |x| can be filtered out by the viscosity supersolution
criteria. Hence, this process makes uc+(x) = 1− |x| the unique viscosity solution for the
given HJE (2.22), which can be seen in Figure 2.7b.

0

-1

-1 1 p

H(x, p) = |p| − 1

(a) Convex Hamiltonian H(x, p) = |p| − 1.

0 1

1

-1 x

u(x)

uc+(x) = 1− |x|

(b) Viscosity solution of H(x, p) = |p| − 1.

Figure 2.7: One-dimensional convex Hamiltonian H(x, p) = |p| − 1 and a viscosity so-
lution, where p denotes ∇u(x).

What happens if we use non-convex Hamiltonian H(x, p) = 1− |p| for the same HJE
(2.22)? Following the same procedure as in the convex Hamiltonian case, we obtain a
different viscosity solution uc−(x) = |x| − 1 which is convex, see Figure 2.8b. This is not
a surprising fact comparing to the convex Hamiltonian case that we have already seen
in Figure 2.7.

Therefore, a striking difference between a viscosity solution and a classical one to be
pointed out here is that viscosity solutions are not preserved by changing of the sign
in the equation, which can be seen by comparing the Figure 2.7 with the Figure 2.8. In
other words, a viscosity solution for the given problem does not depend on the given
HJE itself but on the type of Hamiltonian that we choose for the given problem.

2.4 Legendre Transform

We begin with a question where the Legendre transform comes from by considering a
differentiable function, being in addition an invertible mapping. Afterwards, we shall
see how it is extended when the function has nondifferentiable points and the mapping
is not unique. Then, the coercivity of a function will be discussed as well.
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0-1

1

1 p

H(x, p) = 1− |p|

(a) Non-Convex Hamiltonian H(x, p) = 1− |p|.

0 1

-1

-1 x

u(x)

uc−(x) = |x| − 1

(b) Viscosity solution of H(x, p) = 1− |p|.

Figure 2.8: One-dimensional non-convex Hamiltonian H(x, p) = 1− |p| and a viscosity
solution, where p denotes∇u(x).

2.4.1 Classical Definition

In classical real analysis, the gradient of a differentiable function f : R
n→R plays a key

role as a first optimality condition in order to find extrema. Let us consider this gradient
as a mapping. Since

f : R
n→ R , (2.27)

and a gradient ∇ has influence on f , a gradient mapping can be understood as

∇ f : R
n f→ R

∇→R
n . (2.28)

At this point, what we are really interested in its inverse mapping (∇ f )−1. Namely, our
concern is to find x satisfying the condition s =∇ f (x) when s ∈ S is given. By virtue of
(2.28) this can be described as





∇ f (x) : x ∈ R
n f−→ f (x) ∈ R

∇−→ ∇ f (x) ∈R
n

(∇ f )−1 (s) : f−1∇−1(s) ∈ R
n ←−

f−1
∇−1(s) ∈ R ←−

∇−1
s ∈ R

n .
(2.29)

Since it turns out that the inverse mapping x (s) = (∇ f )−1 (s) itself is also a gradient
mapping, by renaming ∇−1 and f−1 as h and ∇ respectively, we can reformulate (2.29)
as follows

(∇ f )−1 (s) : s ∈ R
n ∇−1−→ ∇−1(s) ∈R

f−1−→ f−1∇−1(s) ∈ R
n

⇔ ∇h(s) : s ∈ R
n h−→ h(s) ∈R

∇−→ ∇h(s) ∈ R
n .

(2.30)
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Sometimes the above inverse process does not make sense, because not every mapping
is invertible. Therefore, we make this problem meaningful by assuming that such x
exists and is unique. The natural choice for this setup is to pick up a smooth and strictly
convex function. Since∇ f and∇h are inverse to each other by the construction in (2.29)
and (2.30), this makes the following reciprocal correspondence valid

s = ∇ f (x)

⇔ (∇ f )−1 (s) = (∇ f )−1 (∇ f ) (x)

⇔ (∇ f )−1 (s) = x

(2.30)⇔ ∇h (s) = x .

(2.31)

Now, let us think about this situation in a one-dimensional case.

For a given function f = f (x) with the differential

d f

dx
= s , (2.32)

our task is to find a function h = h(s) satisfying (2.30), which means

dh

ds
= x . (2.33)

This can be done as follows.

From (2.32) we can deduce

d f

dx
= s

⇔ d f = sdx

by product rule: d (sx) = sdx + xds

= d (sx)− xds

⇔ d ( f − sx) = −xds
⇔ d (sx− f ) = xds

⇔ d

ds
(sx− f )︸ ︷︷ ︸

(2.33)
= h

= x .

(2.34)

Therefore, when the function f is differentiable and every mapping in (2.29) is invert-
ible, the classical Legendre transform is naturally defined by

Definition 2.4.1 (Classical Legendre Transform).

S ∋ s 7→ h(s) = 〈s,x(s)〉 − f (x(s)), (2.35)
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where h : S ⊂ R
n→ R and 〈·, ·〉 denotes the scalar product. This definition also makes

the following statement vaild

f (x) + h(s) = 〈s,x〉. (2.36)

At this point, one may raise a question, why man does not define a Legendre transform
simply by exchanging the roles between x and s as we have seen in (2.31), because what
we are looking for is just inverse. However, this approach makes trouble in backtrans-
form. Let us make this clear with following example.

Assume that the transform were defined as

d f

dx
= s (x) : compute s for a given f

⇒ x = x (s) : compute the representaion of x from above expression

⇒ h (s) = f [x (s)] : plug this x into the original function f .

(2.37)

Now, we transform two functions f1(x) = x2 and f2(x) = (x + c)2 with c 6= 0 according
to (2.37). This yields






s =
d f1
dx

= 2x

s =
d f2
dx

= 2 (x + c)

⇒






x =
s

2

x =
s

2
− c

⇒






h1 (s) = f1

( s
2

)
=

( s
2

)2
=

s2

4

h2 (s) = f2

( s
2
− c
)

=
( s
2
− c + c

)2
=

s2

4
.

(2.38)

As we can see in (2.38), we have same transform result for the two different functions,
which makes problem in the backtransform.

In contrast to the above example, when we abide by the Definition 2.4.1 for the same
functions f1 and f2, the Legendre transform of each function is unique, since





s =
d f1
dx

= 2x

s =
d f2
dx

= 2 (x + c)

(2.39)

⇒





x =
s

2

x =
s

2
− c

(2.40)
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⇒





h1 (s) = sx(s)− f1(x(s))

= s
( s
2

)
− f1

( s
2

)

=

(
s2

2

)
−
( s
2

)2

=
s2

4

h2 (s) = sx(s)− f2(x(s))

= s
( s
2
− c
)
− f2

( s
2
− c
)

= s
( s
2
− c
)
−
( s
2
− c + c

)2

=
s2

4
− sc .

(2.41)

Furthermore, we can also confirm that the backtransform is unique, since




h1(s) =
s2

4

h2(s) =
s2

4
− sc

(2.42)

⇒





x =
dh1
ds

=
s

2
⇔ s = 2x

x =
dh2
ds

=
s

2
− c ⇔ s = 2(x + c)

(2.43)

⇒





f1 (x) = x s(x)− h1(s(x))

= x (2x)− h1 (2x)

= 2x2 − (2x)2

4

= x2

f2 (x) = x s(x)− h2(s(x))

= x · 2(x + c)−
(
22(x + c)2

4
− 2(x + c)c

)

= x · 2(x + c)− (x + c)2 + 2(x + c)c

= 2(x + c)(x + c)− (x + c)2

= 2(x + c)2 − (x + c)2

= (x + c)2 .

(2.44)
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This process is described in Figure 2.9.

f (x) = x s(x)− h (s (x))

x = x(s) s =
d f

dx
x =

dh

ds
s = s(x)

s x (s)− f (x (s)) = h(s)

Figure 2.9: Schema of a Legendre transform in one-dimension. Adapted from [71].

In particular, classical Legendre transform distinguishes itself in that it is its own in-
verse. This property is sometimes called involutive. This can be verified as follows.
Applying the classical Legendre transform to h, we can go back to the f , since

L(L( f )) = 〈s,x〉 − L( f )

= 〈s,x〉 − (〈s,x〉 − f )

= f ,

where h = L( f ) = 〈s,x〉 − f denotes the classical Legendre transform. This is one of the
important properties of the Legendre transform.

Geometrical Interpretation

In one-dimensional case, the Legendre transform f ∗(s) computes geometrically a nega-
tive y-interception of the tangential line of f with the slope s, which we shall substanti-
ate in the next paragraph. This problem involves finding an inverse mapping in (2.29)
and (2.30) and it turns out that this is equivalent to find x0 such that the hyperplane
H(s) which passes through (x0, f (x0)) is tangent to gr f at x0, see Figure 2.10. Such x0
exists and is unique, since we have chosen a smooth and strictly convex function.

First, for a function f : D→ R the graph of f is defined by

Definition 2.4.2 (Graph of f ).

gr f := {(x,r) : x ∈ D and r = f (x)} . (2.45)

In Figure 2.10, for a given point (x0, f (x0)) we draw a tangential line H(s). Let the slope
of this tangential line at this point be s, which can be formulated as

s =
d

dx
f (x)

∣∣∣∣
x=x0

. (2.46)
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f (x0)

f ∗(s)
0

(x0, f (x0))

x0

sx0

(0,− f ∗(s))

gr f

H(s)

Figure 2.10: Illustration of a Legendre transform in one-dimension.

Then, we have the tangential line equation

y = s(x− x0) + f (x0)

= sx− sx0 + f (x0)

= sx− (sx0 − f (x0))
(2.35)
= sx− f ∗ (s) ,

(2.47)

which explains the geometrical interpretation of Legendre transform. The last equality
can be also explained as follows. When we consider the length of horizontal arrowed
line labeled by x0, its corresponding function value is the vertical dashed line denoted
by f (x0). Since we assumed that the slope of the tangential line at this point is s, the
length of the thick arrowed vertical line corresponds to sx0. Here, the difference value
f ∗(s) = sx0− f (x0) in this case is encoded as a function of slope s, which coincides with
the Definition 2.4.1. The Figure 2.10 also confirms the symmetric relationship (2.36) as
well.

Remark 2.4.1. As we have seen so far, the Legendre transform generates a new function
which contains the same information as the old, but is of a different independent vari-
able. Mathematically, the Legendre transform is a symmetric equation whose structure
can be clarified both algebraically and geometrically. This technique is useful for formu-
lating model problems in the branch of physics, e.g. Hamilton-Lagrange mechanics or
thermodynamics. From the viewpoint of physics, the Legendre transform can be inter-
preted as an issue of choosing independent variables that can be more easily controlled.
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As an example in thermodynamics, it is impossible to have the entropy of the system
at constant volume as the controllable variable in practical application, and it is much
easier and intuitive to measure and control the temperature. More details about this
theory, we refer to [91].

2.4.2 Generalised Legendre Transform

What we have discussed so far is about the case when the mapping (∇ f )−1 is well-
defined. Let us turn our attention into the case when the mapping is not uniquely
determined and a function has nondifferentiable points, e.g. |x|. Convex analysis, how-
ever, provides a nice framework to get around this situation. Let us see how the classical
Legendre tansform is generalised.

First, the mapping x 7→ ∇ f (x) is replaced by a set-valued mapping x 7→ ∂ f (x), where
∂ f (x) denotes the subdifferential which we have already seen in the Definition 2.3.2. To
invert this mappingmeans that we want to find x such that ∂ f (x) contains a given s and
we allow a nonunique such x. Therefore, a set-valued inverse mapping (∂ f )−1 will be
obtained.

Second, the x(s) is constructed in such away that the relationship 0∈ ∂ f (x)−{s} holds.
Thanks to the convexity of f this relationship means that x minimises f − 〈s, ·〉 over R

n.
In other words, to find x(s), we have to solve

inf{ f (x)− 〈s,x〉 : x ∈ R
n}. (2.48)

This is the possible way to define the Legendre transform unambiguously. In the classi-
cal Legendre transform, this problem is well-definded so that it has a unique solution.
Therefore, we have the following more general definition of Legendre transform using
(2.48)

Definition 2.4.3 (Generalised Legendre Transform).

R
n ∋ s 7→ f ∗(s) := sup

x
{〈s,x〉 − f (x) : x ∈ dom f} , (2.49)

where dom f denotes the set {x : f (x) < +∞} 6= ∅. The mapping f 7→ f ∗ is also called
the conjugacy operation or the Legendre-Fenchel transform. In order to avoid any con-
fusedness with a classical definition, from now on “Legendre transform” is assumed to
be referred as this generalised definition.

Remark 2.4.2. As in [46], a Legendre transform can also be defined using an infimum
rather than a supremum:

g∗ (k) = inf
x
{〈k,x〉 − g (x)} . (2.50)

Transforming one version of the Legendre transform into the other is just a matter of in-
troducing a minus sign at the right place. Indeed, with the relationship between supre-
mum and infimum

inf (A) = −sup (−A) , (2.51)
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where −A = {−a|a ∈ A}, we obtain

f ∗(k) = sup
x
{〈k,x〉 − f (x)}

⇔ − f ∗(k) = −sup
x
{〈k,x〉 − f (x)}

(2.51)⇔ − f ∗(k) = inf
x
{−〈k,x〉+ f (x)}

⇔ − f ∗(k) = inf
x
{〈−k,x〉 − (− f (x))} .

(2.52)

Thus,
g∗ (q) = inf

x
{〈q, x〉 − g (x)} , (2.53)

makes the transformations g(x) =− f (x) and g∗(q = −k) = − f ∗(k = −q).

Let us make this clear by having a look at an example how a Legendre transform works
for a nondifferentiable function |x|.

Example 2.4.1 (Legendre transform of |x|). Since

|x| =
{

x if x > 0
−x if x ≤ 0

, (2.54)

by the Definition 2.4.3 a Legendre transform of |x| gives

f ∗ (s) = sup{sx− |x|}

= sup

{
sx− x if x > 0
sx + x if x ≤ 0

= sup

{
(s− 1) x if x > 0
(s + 1) x if x ≤ 0

.

(2.55)

As a Legendre transform is involved with a supremum, we have to think about the up-
per bound of (2.55). In order to achieve f ∗(s) < +∞, we need the following conditions

{
s + 1≤ 0 if x > 0
s− 1≥ 0 if x ≤ 0,

(2.56)

which means |s| ≤ 1, see Figure 2.11a. Otherwise there does not exist a upper bound of
f ∗(s), see Figure 2.11b. Therefore, we have the following result

f ∗ (s) =

{
1 if |s| ≤ 1
+∞ if |s| > 1,

(2.57)

which can be explained by Figure 2.4a.
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x

f ∗(s)

(s + 1)︸ ︷︷ ︸
s+1≥0

p

(s− 1)︸ ︷︷ ︸
s−1≤0

p

0

(a) When there is a upper bound for a
Legendre transform of |x|.

x

f ∗(s)

(s + 1)︸ ︷︷ ︸
s+1<0

p

(s− 1)︸ ︷︷ ︸
s−1>0

p

0

(b) When there is no upper bound for a
Legendre transform of |x|.

Figure 2.11: Legendre transform of |x|.

2.4.3 Legendre Transform and Coercivity

A major concern in (2.53) is whether an infimum exists or not and this depends on the
behaviour of g at infinity, which is why we are in need of the concept of coercivity. One
important property of a coercive function is that a continuous function g(x) defined on
all R

n has at least one global minimum if g(x) is coercive, which is proved in [7].

Considering (2.53), we can recognise that a function g(x) should be greater than the
linear function 〈q,x〉 for the existence of an infimum. The coercivity characterises this
behaviour of g at infinity. After appreciatiating the definitions and some properties of
coercivities, we shall see an example about this matter.

According to [42, 43], a convex function f which has an unambiguous Legendre trans-
form satisfies the following properties

(i) differentiability (almost everywhere) - so that there is something to invert,

(ii) strict convexity - to have uniqueness in (2.48),

(iii) ∇ f (R
n) = R

n - so that (2.48) does have a solution for all s ∈ R
n.

The last property essentially means that, when ‖x‖ →∞, f (x) increases faster than any
other linear funcion. This function f is said to be 1-coercive.

For the coercivities of the functions, the following definitions are given.

Definition 2.4.4 (0-Coercive Function). A continuous function f : R
n → R ∪ {+∞}

which satisfies that f 6≡+∞ and there is an affine function minorising f on R
n is said to

be 0-coercive when
lim

‖x‖→+∞
f (x) = +∞. (2.58)
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0-coercive is sometimes called uniform coercive as well.

Left us take a look at some examples.

Example 2.4.2 (Examples of Uniform Coercive Functions).

(a) Let f (x) = f (x1,x2) = x21 + x22 = |x|2.
Then, we have

lim
|x|→∞

f (x) = lim
|x|→∞

|x|2→∞ . (2.59)

Thus, f (x1,x2) = |x|2 is uniform coercive by Definition 2.4.4.

(b) Let f (x) = f (x1,x2) = x41 + x42 − 3x1x2.

Since f (x) is dominated by higher order terms as |x| →∞, we receive

f (x1,x2) =
(
x41 + x42

)
− 3x1x2

=
(
x41 + x42

)(
1− 3x1x2

x41 + x42

)
.

(2.60)

Then, we deduce

lim
|(x1,x2)|→∞

f (x1,x2) = lim
|(x1,x2)|→∞

(
x41 + x42

)

1− 3x1x2

x41 + x42︸ ︷︷ ︸
→0


→∞ . (2.61)

Therefore, by Definition 2.4.4 f (x1,x2) = x41 + x42− 3x1x2 is uniform coercive as well.

Remark 2.4.3. It is insufficient to conclude f (x) is uniform coercive, if we only know
that f (x)→ ∞ along each coordinate axis. A uniform coercive function must increase
without a limit on any path that tends to infinity. Thus, if we can show that on a certain
path in R

n, f (x) is bounded from above as |x| → ∞, then f (x) must not be coercive.
The following example explains this point.

Example 2.4.3 (Examples of Non-uniform Coercive Functions).

(a) Let f (x1,x2) = x21 − 2x1x2 + x22.

Then, we have:

(i) for each fixed x2 = y2, we receive

lim
|x1|→∞

f (x1,y2) = lim
|x1|→∞

x21 − 2x1y2 + y22→∞ . (2.62)
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(ii) for each fixed x1 = y1, we receive

lim
|x2|→∞

f (y1,x2) = lim
|x2|→∞

y21 − 2y1x2 + x22→∞ . (2.63)

(iii) However, f (x1,x2) = x21 − 2x1x2 + x22 is not uniform coercive. This can be ver-
ified as follows.

Since f (x1,x2) = x21 − 2x1x2 + x22 can be reformulated as

f (x1,x2) = x21 − 2x1x2 + x22 = (x1 − x2)
2 , (2.64)

f (x1,x2) = (x1 − x2)
2→ 0 even if |(x1,x2)| goes to infinity along the line x2 =

x1.

Hence,
lim

|(x1,x2)|→∞
f (x1,x2) 9 ∞ , (2.65)

which means that f (x1,x2) not uniform coercive by Definition 2.4.4.

(b) Linear functions on R
2 cannot be uniform coercive.

Such functions can be expressed as

f (x1,x2) = ax1 + bx2 + c , (2.66)

where either a 6= 0 or b 6= 0. To see that f (x1,x2) = ax1 + bx2 + c is not uniform
coercive, we can observe that in a simple case. Along the line

ax1 + bx2 = 0, (2.67)

f (x1,x2) is equal to c. Although the line ax1 + bx2 = 0 is unbounded, the function
f (x1,x2) = ax1 + bx2 + c is constant, which confirms the assertion.

Definition 2.4.5 (1-Coercive Function). A continuous function f : R
n → R ∪ {+∞}

which satisfies that f 6≡+∞ and there is an affine function minorising f on R
n is said to

be 1-coercive when

lim
‖x‖→+∞

f (x)

‖x‖ = +∞. (2.68)

Notice that for the 1-coercivity, it is not sufficient to conclude that function has 1-coercive
property if we only know that f (x) → +∞. For example, a function f (x) = |x| is 0-
coercive but not 1-coercive. Since it satisfies 0-coercive condition

lim
|x|→+∞

f (x) = lim
|x|→+∞

|x| → +∞, (2.69)

but does not fulfil the 1-coercive requirement

lim
|x|→+∞

f (x)

|x| = lim
|x|→+∞

|x|
|x| = 1 9 +∞. (2.70)

Concerning the coercivities, the following proposition will be used for the analysis of
the properties of Hamiltonians. The proof can be found in [43].
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Proposition 2.4.1. If a continuous function f : R
n→R ∪ {+∞} which satisfies that f 6≡+∞

and there is an affine function minorising f on R
n is 1-coercive, then f ∗ < +∞ for all s ∈ R

n.

Remark 2.4.4. This proposition basically states that a function must satisfy the convexity
and 1-coercive condition in order that the Legendre transform of f exists for all s ∈ R

n,
which is useful when we analyse the properties of a Hamiltonian.

Let us take a look at an example for this matter.

Example 2.4.4. Consider the following three one-dimensional functions f1 (x) = c with
c ∈ R, f2 (x) = |x|, and f3 (x) = x2.

First, we check the coercivities of functions. As we already know the result for f2 and
f3, here we only test for f1. It turns out that f1 is neither 0-coercive nor 1-coercive, since

lim
|x|→+∞

f3 (x) = c 9 +∞ (2.71)

and

lim
|x|→+∞

f1 (x)

|x| = lim
|x|→+∞

c

|x| = 0 9 +∞ . (2.72)

Next, we compute the Legendre transform of functions. The result of f2 and f3 is known
in (2.57) and (2.41). In order to find the Legendre transform of f1, by following the
Definition 2.4.3 we have to find

sup{sx− f1 (x)} = sup{sx− c} . (2.73)

Therefore, we have

f ∗1 (s) =

{
−c , s = 0

+∞ , s 6= 0.
(2.74)

As can be seen in (2.74), the Legendre transform of f1 only exists when s = 0, since f1
is neither 0-coercive nor 1-coercive in view of Proposition 2.4.1. In an analogous way,
the case of f2 can be explained as well. f2 is convex and 0-coercive but not 1-coercive.
Hence, its Legendre transform only exists when |s| ≤ 1, see (2.57). In the case of f3, it is
convex and 1-coercive, so the Legendre transform of f3 exists for all s ∈ R, see (2.41).

2.5 Summary

In this chapter, we have explorered the important mathematical concepts which will be
used in this thesis.

First, we have started with the topic of a Hamilton-Jacobi equation and thought about
why we need the viscosity solution concept based on the well-posedness perspective by
considering a one-dimensional eikonal equation with the classical methods.
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Afterwards, we have investigated the notions of viscosity solutions and how we can
obtain the viscosity solution for the one-dimensional eikonal equation.

Finally, the Legendre transform has been studied by classifying the cases when a con-
sidered function is differentiable and nondifferentiable.

In the next chapter, we shall have a look at the conditions for the existence of continuous
viscosity solutions.



Chapter 3

Compatibility Condition on the
Boundary Data

In the preceding chapter, we have gone through the viscosity solution concept with the
example of the one-dimensional eikonal equation equipped with Dirichlet boundary
conditions. In this chapter, we shall study a compatibility condition which is the sys-
tematic way to check the existence of the solutions for the Hamilton-Jacobi equations
with Dirichlet boundary conditions.

This chapter proceeds as follows.

We commence giving the starting point for a compatibility condition by recalling the
properties of the viscosity solutions in the previous chapter.

Then, our attention will be focused on howwe can characterise and formulate such con-
dition when a solution exists, which implies “necessary” requirements for the existence
of the solution.

Afterwards, some examples will be provided, so that we can see how these conditions
are applied for the Dirichlet boundary value problems.

Our contribution here is the analysis and elaboration on the exposition of Lion’s work
[60] in an accessible way with an example of a one-dimensional eikonal equation.

For this chapter, we mainly follow the result of [13, 60, 93].

3.1 Introduction

Investigating the existence of viscosity solutions raises naturally the following ques-
tions. Is there any formal and systematic way to check whether there exist solutions for
the given HJE with DBC in the viscosity framework? Or is there any proper conditions
for the existence of the viscosity solutions? The compatibility condition concerning the
Dirichlet boundary problems is studied to answer these questions, so that we can at
least recognise that under certain conditions there do not exist such solutions.
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To this end, we consider the following eikonal-type HJE with DBC

{
|Du(x)| = f (x) in Ω

u(x) = ϕ(x) on ∂Ω,
(3.1)

where ϕ is given on ∂Ω.

In the whole chapter, we assumed that Ω is a bounded, smooth and connected domain
in R

n and we will use the following convex Hamiltonian

H(x, p) = |p| − f (x), (3.2)

where p denotes Du and f ∈ C(Ω) and f ≥ 0 in Ω to be assumed. In addition, H is
also assumed to satisfy the uniform coercivity condition, which means H(x, p)→ +∞

uniformly for x ∈Ω, as |p| → +∞. Notice that H is 0-coercive but not 1-coercive as we
have already seen in (2.69) and (2.70).

Remark 3.1.1. As can be seen in the Subsection 2.3.2, making use of a convex Hamilto-
nian 3.2 implies that a viscosity subsolution plays a significant role.

Then, how can we characterise a condition if a continuous viscosity solution exists? If
such solution exists, by the Definition 2.3.2 we should necessarily have the viscosity
subsolution relationship on ∂Ω as follows

H(x,∂ϕ) = |∂ϕ| − f (x) ≤ 0, (3.3)

where ∂ϕ denotes the tangential gradient of ϕ on ∂Ω.

This is basically the starting point of formulating the compatibility condition on the
boundary data.

Since we are looking for a continuous viscosity solution for the given boundary condi-
tion, existence of a solution suggests that there is a continuous path from one boundary
point to the other. As an example, let us revisit the one-dimensional eikonal equation

{
|∇u| − 1 = 0 x ∈ (−1,1)

ϕ (x) = 0 x ∈ {±1} . (3.4)

As we have already seen in Figure 2.7b, the continuous viscosity solution of (3.4) is 1−
|x| with x ∈ [−1,1]. Apparently, we are able to find a continuous path 1− |x| between
boundary points x ∈ [−1,1] along which we can integrate. Hence, a necessary condition
for the existence of continuous viscosity solutions can be formulated via an integration
with the help of a viscosity subsolution criterion (3.3). Let us see how it is formulated
in the sequel.
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3.2 Formulation of a Compatibility Condition

In this section, we shall see how a compatibility condition on the boundary data is
formulated.

First, we construct a path formulation between boundary points of a solution using
integration. Then, we take care of the viscosity subsolution criterion, which leads to a
compatibility condition. Finally, the Legendre transfomation version will be derived.

3.2.1 Integration Path between Boundary Data

Let x,y∈Ω, and ξ(t) : [0,T]→ (ξ1,ξ2, . . . ,ξn)
T ∈R

n be a Lipschitz-continuous path func-
tion such that ξ(0) = x, ξ(T) = y, and |ξ′(t)| ≤ 1 a.e. ∀ t ∈ [0,T] and u is parameterised
by ξ(s), which means u (ξ (s)).

Now, we formulate the integration path between boundary points making use of “fun-
damental theorem of line integral” [8, 54, 102]

∫ T

0
∇u (ξ (s))

∣∣ξ′ (s)
∣∣ ds =

∫ ξ(T)

ξ(0)
∇u (τ) dτ . (3.5)

With the above assumptions this leads to

∫ ξ(T)

ξ(0)
∇u (τ) dτ =

∫ ξ(T)=y

ξ(0)=x
∇u (τ) dτ

= [u (τ)]yx

= u (y)− u (x) .

(3.6)

Therefore, we formally establish

u(y)− u(x) =
∫ T

0
∇u (ξ(s))

∣∣ξ′(s)
∣∣ ds . (3.7)

3.2.2 Viscosity Subsolution Criterion

As noted before, what we are interested in is the viscosity subsolution criterion, since
we deal with the convex Hamiltonian. It turns out that the basic idea of compatibility
condition stems from the viscosity subsolution criterion.

From (3.3) with the properties of estimation of integraion and the assumption f ≥ 0 and
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|ξ′| ≤ 1 we deduce

(3.3) |Du (ξ(s))| ≤ f (ξ(s))

⇔ |Du (ξ(s))| |ξ′(s)| ≤ f (ξ(s)) |ξ′(s)| ≤ f (ξ(s))

⇔
∣∣∣∣
∫ T

0
Du (ξ(s))

∣∣ξ′(s)
∣∣ ds
∣∣∣∣ ≤

∫ T

0
f (ξ(s))

∣∣ξ′(s)
∣∣ ds ≤

∫ T

0
f (ξ(s)) ds

(3.5)⇔
∣∣∣∣
∫ y

x
Du (τ) dτ

∣∣∣∣ ≤
∫ y

x
f (τ) dτ ≤

∫ T

0
f (ξ(s)) ds

⇔ |u(y)− u(x)| ≤
∫ y

x
f (τ) dτ ≤

∫ T

0
f (ξ(s)) ds.

(3.8)

Hence, we have the relationship

|u(y) − u(x)| ≤
∫ T

0
f (ξ(s))ds (3.9)

from which we can receive
|u(y)− u(x)| ≤ L(x,y), (3.10)

where

L(x,y) = inf
ξ,T

{∫ T

0
f (ξ(s))ds; ξ(0) = x, ξ(T) = y,

∣∣ξ′(t) ≤ 1
∣∣ a.e. in [0,T] , ξ(t) ∈Ω ∀ t ∈ [0,T]

}
.

(3.11)

In particular, writing this “necessary” condition (3.10) for the boundary data, we deduce

|ϕ(y)− ϕ(x)| ≤ L(x,y) ∀ (x,y) ∈ ∂Ω× ∂Ω, (3.12)

which is called a compatibility condition on the boundary data.

Remark 3.2.1. In fact, it turns out that (3.12) is also a “sufficient” existence condition,
which is shown in [60]. Furthermore, according to [60] when a compatibility condition
on the boundary data (3.12) holds, a viscosity solution of (3.1) is given by

u(x) = inf
y∈∂Ω

[ϕ(y) + L(x,y)] . (3.13)

This is based on the fact that a path integral from y to x is the same as that from x to y,
which suggests L(x,y) = L(y,x). Hence, we have

ϕ(x)− ϕ(y) ≤ L(x,y) ∀x,y ∈ ∂Ω

⇔ ϕ(x) ≤ ϕ(y) + L(x,y)

⇔ ϕ(x) = inf
y∈∂Ω
{ϕ(y) + L(x,y)}

⇔ u (x) = inf
y∈∂Ω
{ϕ(y) + L(x,y)} .

(3.14)
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3.2.3 Compatibility Condition with a Legendre Transform

Since we have used a convex Hamiltonian, the L(x,y) in (3.11) and (3.14) can be defined
as a Lagrangian function with the Legendre transform as well. Now we are in need of a
infimum version of Legendre tranform for L(x,y), by the Remark 2.4.2 we receive

H∗ (x,q) = sup
p∈Rn

{〈p,q〉 − H (x, p)}

⇔− H∗ (x,q) = − sup
p∈Rn

{〈p,q〉 − H (x, p)}

(2.51)⇔ − H∗ (x,q) = inf
p∈Rn
{−〈p,q〉+ H (x, p)}

⇔− H∗ (x,q) = inf
p∈Rn
{〈p,−q〉 − (−H (x, p))}

by the Remark 2.4.2

⇔H∗ (x,−q) = inf
p∈Rn
{〈p,−q〉 − (−H (x, p))} .

(3.15)

This leads to

L(x,y) = inf
ξ,T

{∫ T

0
H∗
(

ξ(s),−dξ

ds

)
ds; ξ(0) = x, ξ(T) = y,

ξ(t) ∈Ω ∀ t ∈ [0,T] ,
dξ

dt
∈ L∞ (0,T)

}
,

(3.16)

where L∞(0,T) denotes the set of boundedmeasurable functions defined on the interval
(0,T) and takes the value in R

n. With the result of (3.16), (3.13) can be formulated as

u (x) = inf
ξ

{∫ T

0
H∗
(
ξ (s) ,−ξ′ (s)

)
+ ϕ (ξ (T))

}
, (3.17)

which is actually explained in terms of Theorem 5.3 in [60]. This result is used for the
Prados model in the next chapter.

Coercivity of a Hamiltonian. One more point to be discussed here is the condition
|ξ′(t) ≤ 1| in (3.11), which can be explained by the 0-coercivity of a convex Hamiltonian
H(p) = |p| − 1.

According to Definition 2.4.4 and Definition 2.4.5, H(p) = |p| − 1 is 0-coercive but not
1-coercive, since

lim
|p|→+∞

H (p) = lim
|p|→+∞

|p| − 1→+∞ (3.18)

and

lim
|p|→+∞

H (p)

|p| = lim
|p|→+∞

|p| − 1

|p| → 1 6= +∞ . (3.19)
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By virtue of Proposition 2.4.1, we need a constraint to receive a finite H∗(s). Here, we
proceed as we did in Example 2.4.1.

Since

|p| =
{

p if p > 0
−p if p ≤ 0

, (3.20)

by the Definition 2.4.3 a Legendre transform of H(p) = |p| − 1 yields

H∗ (s) = sup
p
{sp− (|p| − 1)}

= sup
p

{
sp− p + 1 if p > 0
sp + p + 1 if p ≤ 0

= sup
p

{
(s− 1) p + 1 if p > 0
(s + 1) p + 1 if p ≤ 0

.

(3.21)

As a Legendre transform is involved with a supremum, we have to think about the up-
per bound of (3.21). In order to achieve H∗(s) < +∞, we need the following conditions

{
s + 1≤ 0 if p > 0
s− 1≥ 0 if p ≤ 0,

(3.22)

which means |s| ≤ 1 ∀p, see Figure 3.1a. Otherwise there does not exist a upper bound
of H∗(s), see Figure 3.1b. Therefore, we have the following result

H∗ (s) =

{
1 if |s| ≤ 1
+∞ if |s| > 1,

(3.23)

which explains the constraint

∣∣∣∣
dξ

ds

∣∣∣∣≤ 1 a.e. in (3.11).

3.3 Application of a Compatibility Condition

In this section, we shall see some examples how a compatibility condition is applied for
the boundary value problems.

To this end, let us reconsider the following one-dimensional eikonal equation that we
have seen in Section 2.3.

Example 3.3.1 (Compatibility Condition for 1-D Eikonal Equation 1).

{
|∇u(x)| − 1 = 0, x ∈ (0,1)

ϕ(x) = 0, x ∈ {0,1} . (3.24)
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p

H∗(s)

1

(s + 1)︸ ︷︷ ︸
s+1≥0

p + 1

(s− 1)︸ ︷︷ ︸
s−1≤0

p + 10

(a) When there is a upper bound for a
Legendre transform of H(p) = |p| − 1.

p

H∗(s)

(s + 1)︸ ︷︷ ︸
s+1<0

p + 1

(s− 1)︸ ︷︷ ︸
s−1>0

p + 1

1

0

(b) When there is no upper bound for a
Legendre transform of H(p) = |p| − 1.

Figure 3.1: Legendre transform of a convex Hamiltonian H(p) = |p| − 1.

In order to have a compatibility condition for this problem, we first estimate L (x,y) in
(3.11). So, from (3.11) we have

L (x,y) = inf
∫ T

0
f (ξ (s))ds

(3.8)
=

∫ y

x
f (τ)dτ

=
∫ y

x
1dτ

= y− x .

(3.25)

Thus, by (3.12) we have the compatibility condition

|ϕ(y)− ϕ(x)| ≤ |y− x| , (3.26)

where |·| reflects that path integral is nonnegative. This states that the positive differ-
ence between boundary function values must be less than that of boundary points for
the requirement of the existence of a solution. This fact can be validated as follows.

Computing the compatibility condition on the boundary data for this problem is there-
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fore given by
|ϕ (0)− ϕ (1)| ≤ L (0,1) = 1− 0 = 1

⇔ |0− 0| ≤ L (0,1) = 1

⇔ 0 ≤ L (0,1) = 1,
or
|ϕ (1)− ϕ (0)| ≤ L (1,0) = |0− 1|= 1

⇔ |0− 0| ≤ L (1,0) = 1

⇔ 0 ≤ L (1,0) = 1.

(3.27)

From the Section 2.3 we already know that this problem has a viscosity solution u (x) =
1
2 −

∣∣∣ 12 − x
∣∣∣ . This can be explained by the result of (3.27), see Figure 3.2a.

Now, let us have a look at the next example.

Example 3.3.2 (Compatibility Condition for 1-D Eikonal Equation 2).





|∇u| − 1 = 0 if x ∈ (0,1)

ϕ (0) = 1

ϕ (1) = 0

(3.28)

Analogously, the compatibility condition for this problem can be formulated as

|ϕ (0)− ϕ (1)| ≤ L (0,1) = 1− 0 = 1

⇔ |1− 0| ≤ L (0,1) = 1

⇔ 1 ≤ L (0,1) = 1,
or
|ϕ (1)− ϕ (0)| ≤ L (1,0) = |0− 1|= 1

⇔ |0− 1| ≤ L (1,0) = 1

⇔ 1 ≤ L (1,0) = 1.

(3.29)

Based on this result, we conclude that there exists a solution and actually it does, see
Figure 3.2b.

The last example shows us when the compatibility condition is useful.

Example 3.3.3 (Compatibility Condition for 1-D Eikonal Equation 3).





|∇u| − 1 = 0 if x ∈ (0,1)

ϕ (0) = 0

ϕ (1) = 1.5

(3.30)
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This problem does not satisfy the compatibility condition on the boundary data, which
can be seen as follows

|ϕ (0)− ϕ (1)|
?
≤ L (0,1) = 1− 0 = 1

⇔ |0− 1.5| � L (0,1) = 1

⇔ 1.5 � L (0,1) = 1,
or

|ϕ (1)− ϕ (0)|
?
≤ L (1,0) = |0− 1|= 1

⇔ |1.5− 0| � L (1,0) = 1

⇔ 1.5 � L (1,0) = 1.

(3.31)

As we can see in the Figure 3.2c, it is clear that we need a function whose slope is 3
2 so

as to fulfil the boundary condition in (3.30). However, the absolute value of the slope
of our unknown function is already given 1. This means that there is no way to satisfy
this requirement, which is confirmed in (3.31). As a consequence, we conclude that this
problem has no solution by the compatibility condition on the boundary data.

x
10.5

1

u(x)

0.5

0

(a) Compatibility condi-
tion for (3.24).

x
1

1

u(x)

0

(b) Compatibility condi-
tion for (3.28).

x
1

1

1.5

u(x)

0

(c) Compatibility condi-
tion for (3.30).

Figure 3.2: Compatibility conditions on the boundary data.

3.4 Summary

In this chapter, we have investigated the compatibility condition on the boundary data.
This condition serves as necessary and sufficient condition for the existence of solutions
and enables us to recognise when the boundary points are not compatible with the
problem.
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First, we have started with formulating the integration path between bounday points
by considering the necessary condition for the existence of solutions.

Then, having considered the viscosity subsolution criterion gives us the compatibility
condition formulation.

Afterwards, we have thought about how this compatibility condition is formulated by
Legendre transform as well.

Finally, some examples are provided how this condition is applied for the one-dimensional
eikonal equation.

In the next chapter, we shall study the uniqueness of a solution which is also an essential
part of the solution theory.



Chapter 4

Uniqueness of a Solution

In the previous chapter, the compatibility condition on the boundary datawas discussed
for the existence of solutions. In this chapter, we shall study the uniqueness of solutions,
which is another major issue in the viscosity solution theory.

This chapter is planned as follows.

First, we begin with a classical comparison theorem as an introduction from which we
can grasp the basic idea for the purpose.

Then, we investigate the comparison theorem in the viscosity framework. The key idea
of an argumentation on this matter relies on [12].

Finally, the convex and concave ambiguity of Shape from Shading problems in the per-
spective of well-posedness will be discussed.

For this purpose, we mainly follow the result of [12, 47, 67, 69] for the comparison
theorem and [26] for Shape from Shading modelling and the analysis of convex and
concave ambiguity, respectively.

4.1 Introduction

The uniqueness result of a viscosity solution is, actually, a direct consequence based on
the comparison theorem which can be found in [23, 60]. The uniqueness theory of a
generalised HJE with the Dirichlet boundary problem, i.e.

{
H (x,u (x) ,Du (x)) = 0 in Ω

u (x) = ϕ (x) on ∂Ω
(4.1)

is already well developed since the notion of viscosity solutions has been introduced.

However, it is not a simple task to apply directly the above mentioned uniqueness the-
ory in [23] into the eikonal-type Hamiltonian, since it is independent of u, e.g. in the
case of H(x, p) = |p| − n(x). As a consequence, in [47] Ishii presented and proved the
comparision theorem specially for this eikonal-type Hamiltonian.
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Although in [47] a different technique was used for the proof in the viscosity framework
comparing to the work in [23, 60, 99], the original setting was based on [99]. In this case,
the convexity of H with respect to p plays an essential role.

The comparison theorem for uniqueness theory has several versions depending on the
types of Hamilton-Jacobi equations that can be found in [12, 60]. Here, we make use of
the version for the eikonal-type Hamiltonian in [12, 47].

4.2 Classical Comparison Theorem

To begin with, we think about the basic idea of comparison theorem in the classical
sense and see how this is useful for the uniqueness of the solution.

As an introduction, let us consider the following problem.

Suppose that u1, u2 ∈ C0
(
Ω
)
∩ C1 (Ω) satisfy the inequalities

{
u1 (x) + H (x,Du1 (x)) ≤ 0

u2 (x) + H (x,Du2 (x)) ≥ 0
(4.2)

for x ∈Ω and
u1 ≤ u2 on ∂Ω . (4.3)

Assume also that Ω is bounded and let x0 be a maximum point for u1 − u2 on Ω. When
x0 ∈Ω is the case, by the first optimality condition we can receive

Du1 (x0) = Du2 (x0) . (4.4)

Let us think of (4.2) as

u1 (x) + H (x,Du1 (x)) ≤ 0 (4.5)

−u2 (x)− H (x,Du2 (x)) ≤ 0. (4.6)

Then, adding (4.6) to (4.5) using (4.4) yields

u1 (x)− u2 (x)
(∗)
≤ u1 (x0)− u2 (x0) ≤ 0 ∀x ∈Ω, (4.7)

where (∗) is valid because x0 is assumed to be a maximum point of u1 − u2.

If x0 ∈ ∂Ω, then by (4.3) we have the same result as (4.7)

u1 (x)− u2 (x) ≤ u1 (x0)− u2 (x0) ≤ 0 ∀x ∈Ω. (4.8)

As a consequence, we are able to obtain

u1 ≤ u2 ∀x ∈Ω. (4.9)
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Changing the roles of u1 and u2 enables us to have the uniqueness of the classical solu-
tion of the Dirichlet problem

{
u (x) + H (x,Du (x)) = 0 in Ω

u (x) = ϕ (x) on ∂Ω,
(4.10)

since as we have in (4.9)
{

u1 ≤ u2 ∀x ∈Ω

u1 ≥ u2 ∀x ∈Ω
⇒ u1 = u2 ∀x ∈Ω. (4.11)

The preceding technique does not work if u1,u2 satisfying (4.2) are the viscosity solu-
tions, because in that case Dui, i ∈ {1,2} may not exist at x0. However, the viscosity
solution framework is strong enough to allow us to extend the previous result to the
continuous viscosity solutions of HJE for the various Hamiltonian.

4.3 Comparison Theorem

In this section, we shall look into the details of comparison theorem so that how this
really works in the viscosity framework.

Considering the eikonal-type Hamiltonian, we discuss specially the following problem

H (x,Du (x)) = 0, x ∈Ω. (4.12)

First, we give the definition of modulus for the hypotheses on which the comparison
theorem rely on [47].

Definition 4.3.1 (Modulus). A function m : [0,+∞[→ [0,+∞[ is called modulus if it is
continuous and nondecreasing and satisfies m(0) = 0.

In addition, the following hypotheses on H will be used.

(H1) There is a modulus m such that

|H(x, p)− H(y, p)| ≤ m (|x− y| (1+ |p|))

for x,y ∈Ω and p ∈R
n.

(H2) The function p→ H (x, p) is convex on R
n for each x ∈Ω.

Now, we give a comparison theorem.

Theorem 4.3.1 (Comparison Theorem). Let Ω be a bounded open subset of R
n. Assume

that (H1) and (H2) hold. Let u,u ∈ C0
(
Ω
)
be, respectively, viscosity sub- and supersolution of

(4.12) with
u ≤ u on ∂Ω. (4.13)

Assume also that
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(H3) there is a function ϕ ∈ C1 (Ω) ∩ C0
(
Ω
)
such that ϕ ≤ u in Ω and

sup
x∈ω

H (x,Dϕ (x)) < 0, ∀ω ⊂⊂ Ω.

Then u ≤ u in Ω.

Here, we elaborate on the proof which is given in [12] based on [47], thereby clarifying
the steps therein.

Proof. The proof of this theorem proceeds in three steps and method of “proof by con-
tradiction” will be used, see Figure 4.1 for the outline of the proof. First, we set up an
auxiliary function uα satisfying (H3), which suggests that ϕ ≤ uα ≤ u in Ω. Then, using
the convexity assumption of (H2) we derive a relationship. Finally, we show that this re-
lationship implies uα≤ u in Ω by contradition. This leads to the conclusion (uα→ u)≤ u
as α→ 1.

Step 1. This step is a preparation stage by building up a function uα which can ap-
proach to u for the later use. We shall see how it behaves.

For α ∈ (0,1) we define a function uα as

uα = αu (x) + (1− α) ϕ (x) , x ∈Ω. (4.14)

As u ∈ C0
(
Ω
)
and by (H3) ϕ ∈ C1 (Ω) ∩ C0

(
Ω
)
, it is clear that

uα = αu + (1− α) ϕ ∈ C0
(
Ω
)
. (4.15)

Using ϕ ≤ u in Ω of (H3) we receive

ϕ ≤ u

⇔ αϕ ≤ αu α ∈ (0,1)

⇔ ϕ + αϕ ≤ ϕ + αu α ∈ (0,1)

⇔ ϕ ≤ αu + (1− α) ϕ︸ ︷︷ ︸
= uα

α ∈ (0,1)

⇔ ϕ ≤ uα α ∈ (0,1)

(4.16)

and
ϕ ≤ u

⇔ (1− α) ϕ ≤ (1− α)u α ∈ (0,1)

⇔ αu + (1− α) ϕ︸ ︷︷ ︸
= uα

≤ u α ∈ (0,1)

⇔ uα ≤ u α ∈ (0,1) .

(4.17)
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Hypothesis (H1) (H2) (H3)

Step 1 Set up a function uα satisfying (H3)
such that ϕ ≤ uα ≤ u in Ω

Step 2 Derive a statement
(uα→ u) ≤ u in Ω using (H2)

Negation of the claim in Step 2

Step 3 Define an auxiliary function Φε

for the negation of the claim

Boundedness of an auxiliary function Φε

Characterisation of a maximum of Φε

Contradiction

Figure 4.1: Outline of the proof for the comparison theorem.

Therefore, by virtue of (4.16) and (4.17) it follows

ϕ ≤ uα ≤ u in Ω. (4.18)

Following the Lemma 2.3.2 we obtain following property of uα

D+uα (x) =
{
q ∈ R

n| q = αp + (1− α)Dϕ (x) , p ∈ D+u (x) , ∀α ∈ (0,1)
}
. (4.19)
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In addition, from (4.14) we also have

uα→ u as α→ 1. (4.20)

At this stage with (4.18) and (4.20) we have the relationship
{

ϕ ≤ uα ≤ u ≤ u on ∂Ω

ϕ ≤ uα ≤ u in Ω.
(4.21)

Step 2. Based on the former step, here we derive a statement that will be proved in the
next step using the method by contradiction.

By (H2) for any q ∈ D+uα (x) in (4.19) we receive

H (x,q)
(4.19)
= H (x,αp + (1− α)Dϕ (x))

(H2)
≤ αH (x, p) + (1− α)H (x,Dϕ (x)) , (4.22)

for some p ∈ D+u (x) and ∀α ∈ (0,1).

From (4.22) for p ∈ D+u (x) and ∀α ∈ (0,1) we deduce the following

(4.22) H (x,q) ≤ αH (x, p) + (1− α)H (x,Dϕ (x))

⇔ H (x,q)− (1− α)H (x,Dϕ (x)) ≤ αH (x, p)

since u is a subsolution of (4.12): H (x, p) ≤ 0⇔ αH (x, p) ≤ 0

⇔ H (x,q)− (1− α)H (x,Dϕ (x)) ≤ αH (x, p) ≤ 0

⇔ H (x,q)− (1− α)H (x,Dϕ (x)) ≤ 0.
(4.23)

This means that for any α ∈ [0,1] uα is a viscosity subsolution of

H (x,Duα (x))− (1− α)H (x,Dϕ (x)) = 0 x ∈Ω, (4.24)

where H (x,Dϕ (x)) ∈ C0 (Ω).

The claim here is that this implies

uα ≤ u in Ω, ∀α ∈ (0,1) . (4.25)

As α→ 1 uα converges to u in (4.25) based on the (4.20). This comes to the conclusion
u ≤ u in Ω. The proof of (4.25) proceeds in the next step.

Step 3. Our goal is to show u ≤ u in Ω. As pointed out in the last part of the previous
step, this corresponds to show (4.25). In this step, we first set up an auxiliary function
by negating the statement in the previous step. Then, the properties of this auxiliary
function will be discussed. These are about the boundedness and the properties of
maximum points of this function. Having a look at the behaviour of these points tells us
the status of interior of the domain. Afterwards, proceeding within this negated setup
comes to the contradiction, which confirms the original assertion.
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Negation of the claim. In order to prove (4.25), as mentioned before let us suppose by
contradiction that for some β ∈ (0,1)

sup
x∈Ω

(
uβ − u

)
(x) = δ > 0. (4.26)

Define an auxiliary function. Consider now for ε > 0 the auxiliary function

Φε (x,y) = uβ (x)− u (y)− |x− y|2
2ε

(4.27)

and assume that there exists a maximum of (4.27) at (xε,yε) ∈ ω×ω. Then, using (4.27)
we obtain

sup
x∈ω

(
uβ − u

)
(x) = sup

x∈ω

Φε (x,x) ≤ sup
(x,y)∈ω×ω

Φε (x,y) = Φε (xε,yε) . (4.28)

Here, the open set ω can be set as

ω =

{
x ∈Ω

∣∣∣∣
(
uβ − u

)
(x) >

δ

2

}
. (4.29)

This leads to

ω =

{
x ∈Ω

∣∣∣∣
(
uβ − u

)
(x)≥ δ

2

}
, (4.30)

which satisfies (4.26) and so does the condition ω ⊂⊂ Ω ⇔ ω ⊂Ω in (H3).

Boundedness of an auxiliary function. First, we investigate the boundedness prop-
erty of this auxiliary function by looking into (4.37). Otherwise there does not exist a
maximum and the exposition in (4.37) does not make sense.

Recalling in the Definition 2.3.2 that a viscosity supersolution u has lower semicontin-
uous property gives us the fact that there is a lower bound for u. In other words, −u
is bounded above. Analogously, a viscosity subsolution u is upper semicontinuios, so
it has an upper bound. Therefore, choosing a suitable test function ϕ allows uβ to have

an upper bound as well. Now, we are about to take a look at the properties of
|x−y|2

2ε in
(4.27).
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From (4.37) we have

Φε (xε,xε) ≤ Φε (xε,yε)

(4.27)⇔ uβ (xε)− u (xε)−
|xε − xε|2

2ε
≤ uβ (xε)− u (yε)−

|xε − yε|2
2ε

⇔ uβ (xε)− u (xε)− 0 ≤ uβ (xε)− u (yε)−
|xε − yε|2

2ε

⇔ −u (xε) ≤ −u (yε)−
|xε − yε|2

2ε

⇔ |xε − yε|2
2ε

≤ u (xε)− u (yε) .

(4.31)

This formulation can be further expanded as

from (4.31)
|xε − yε|2

2ε
≤ u (xε)− u (yε)

⇔ |xε − yε|2 ≤ 2ε (u (xε)− u (yε))

⇒ |xε − yε| ≤
√

2ε |u (xε)− u (yε)|

⇔ |xε − yε| ≤ (Cε)
1
2 ,

(4.32)

where C = 2 |u (xε)− u (yε)| depends only on the maximum of |u| in ω. Therefore, in
(4.32) we obtain

|xε − yε| → 0 as ε→ 0. (4.33)

In addition, due to u (xε)− u (yε)≤ |u (xε)− u (yε)| from (4.32) we have

|xε − yε|2
2ε

≤ u (xε)− u (yε) ≤ |u (xε)− u (yε)| . (4.34)

By the continuity of u (4.34) leads to

|xε − yε|2
2ε

≤ u (xε)− u (yε) ≤ |u (xε)− u (yε)| ≤ m1 |xε − yε| , (4.35)

where m1 is a modulus of a continuity for u. Then, together with (4.33) we receive

|xε − yε|2
2ε

→ 0 as ε→ 0. (4.36)

Hence, with the property of (4.36) Φε is bounded above for each ε > 0 as well.
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Characterisation of a maximum of Φε. Let us now characterise the maximum of Φε at
the point (xε,yε). Since ω ⊂⊂ Ω from (4.37) we can derive

δ
(4.26)
= sup

x∈ω

(
uβ − u

)
(x) = sup

x∈ω
Φε (x,x) ≤ sup

(x,y)∈ω×ω

Φε (x,y) = Φε (xε,yε) . (4.37)

This implies that (xε,yε) ∈ ω × ω for sufficiently small ε. If this were not the case, then
either xε or yε would belong to ∂ω. This statement makes trouble. We can confirm that
as follows. Assuming xε ∈ ∂ω we have

from (4.37)
(
uβ − u

)
(xε) = δ ≤ Φε (xε,yε)

(4.35)⇔ δ−m2 |xε − yε| ≤ Φε (xε,yε)− (u (xε)− u (yε)) ,
(4.38)

where m2 is a modulus of continuity for u. Since we have assumed the maximum is
attatined on ∂ω (∗), by (4.30) we obtain

δ−m2 |xε − yε| ≤ Φε (xε,yε)− (u (xε)− u (yε))
(∗)
≤ uβ (xε)− u (xε)

(4.30)
=

δ

2
. (4.39)

Taking (4.33) into account yields δ ≤ δ

2
for δ > 0, which makes no sense. As a result, a

maximum of (4.27) can be attained only at the interior of the domain ω.

Contradiction. Now, we are about to set up the statement (4.24). In order to exploit
the Definition 2.3.1, we interpret the maximum of Φε at (xε,yε) in a different way. In
view of (4.27), a maximum of Φε can be attained when we subtract a local minimum of
u at yε from a local maximum of uβ at xε. This can be viewed as follows:
xε is a local maximum for

x 7→ uβ (x)−
(
u (yε) +

|x− yε|2
2ε

)
(4.40)

and yε is a local minimum for

y 7→ u (y)−
(
uβ (xε)−

|xε − y|2
2ε

)
. (4.41)
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Since a maximum of (4.40) is attained at xε, computing a superdifferential of (4.40) gives

D+

(
uβ (x)−

(
u (yε) +

|x− yε|2
2ε

))
∋ 0

⇔ D+uβ (x)−D+u (yε)︸ ︷︷ ︸
=0

−D+

(
|x− yε|2

2ε

)
∋ 0

⇔ D+uβ (x)− 2 (x− yε)

2ε
∋ 0

a maximum is attatined at xε

⇔ D+uβ (xε)−
(xε − yε)

ε
= 0

⇔ D+uβ (xε) =
(xε − yε)

ε
.

(4.42)

Using the fact that uβ is a viscosity subsolution of (4.24), we plug the result of (4.42) into
(4.24). This process yields

H

(
xε,

xε − yε

ε

)
− (1− β)H (xε,Dϕ (xε))≤ 0. (4.43)

In a similar way, calculating a subdifferential of (4.41) gives

D−
(
u (y)−

(
uβ (xε)−

|xε − y|2
2ε

))
∋ 0

⇔ D−u (y)−D−uβ (xε)︸ ︷︷ ︸
=0

+D−
(
|xε − y|2

2ε

)
∋ 0

⇔ D−u (y)− 2 (xε − y)

2ε
∋ 0

a minimum is attatined at xε

⇔ D−uβ (xε)−
(xε − yε)

ε
= 0

⇔ D−uβ (xε) =
(xε − yε)

ε
.

(4.44)

As u is a viscosity supersolution of (4.12), by plugging (4.44) into (4.12) we obatin

H

(
yε,

xε − yε

ε

)
≥ 0. (4.45)

The claim here is that (4.43) and (4.45) disobeys (H1) in view of (4.33) and (4.36).
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By virtue of (H3), for all small ε there exists ρ > 0 such that

(1− β)H (xε,Dϕ (xε)) ≤ −ρ < 0. (4.46)

Then, from (4.43) we deduce

H

(
xε,

xε − yε

ε

)
− (1− β)H (xε,Dϕ (xε)) ≤ 0

⇔ − (1− β)H (xε,Dϕ (xε))≤ −H
(
xε,

xε − yε

ε

)

⇔ 0 < ρ
(4.46)

≤ − (1− β)H (xε,Dϕ (xε))≤ −H
(
xε,

xε − yε

ε

)

(4.45)⇔ 0 < ρ ≤ H

(
yε,

xε − yε

ε

)
− H

(
xε,

xε − yε

ε

)

⇔ 0 < ρ ≤ H

(
yε,

xε − yε

ε

)
− H

(
xε,

xε − yε

ε

)
(H1)

≤ m2

(
|xε − yε|

(
1+
|xε − yε|

ε

))
.

(4.47)
Following (4.43) and (4.45) allows the right hand side of (4.47) to approach 0. Then,
(4.47) leads to

0 < ρ ≤ H

(
yε,

xε − yε

ε

)
− H

(
xε,

xε − yε

ε

)
≤ 0, (4.48)

which is a contradiction. This completes the proof.

As a direct consequence of this comparison theorem, we obtain the following unique-
ness result.

Corollary 4.3.2. Let u,v the two viscosity solutions of (4.10) such that u = v on ∂Ω. Then
u = v. Therefore, the Dirichlet problem

{
H (x,Du (x)) = 0 in Ω

u (x) = ϕ (x) on ∂Ω,
(4.49)

has at most one continuous viscosity solution.

Proof. Since for all x on ∂Ω u = v and u,v are both viscosity sub- and supersolution,
the comparison principle implies that u ≤ v and v ≤ u on Ω. Thus, the conclusion
follows.

Remark 4.3.1. Theorem 4.3.1 can be applied to the eikonal equation |D (x)| = f (x) if
f is uniformly continuous in Ω and strictly positive. As an example, let us recall the
one-dimenstional eikonal equation

{ |u′ (x)| = 1 x ∈ (−1,1)
u (x) = 0 x = {±1} . (4.50)



64 Chapter 4. Uniqueness of a Solution

Using a convex Hamiltonian H (x, p) = |p| − 1, we can find a ϕ which satisfies (H3) by
taking ϕ = 0. This case is clear, since H (x,0) = 0− 1 = −1 < 0. This can be interpreted
as follows. In fact, we take ϕ such that

ϕ (x) ≡min
Ω

u, (4.51)

where u denotes the viscosity subsolution of a convex Hamiltonian H (x, p) = |p| − 1.
As we have seen in the Figure 2.7, u = 1− |x| has a minimum value 0 at the boundary of
the domain. Hence, (4.50) has a unique continuous viscosity solution by Theorem 4.3.1.
However, the difficulty of this approach lies in the fact that it is, in general, not trivial to
find ϕ satisfying (H3).

With the help of this theorem, one can also verify that under suitable assumptions Shape
from Shading models proposed by Prados and Faugeras in [31, 85, 88] have a unique
continuous viscosity solution.

4.4 Convex-Concave Ambiguity

Shape from Shading is well-known to be an ill-posed problem, so there are several ar-
ticles in which specially the nonuniqueness property of the solution called “convex-
concave ambiguity” was investigated [16, 25, 26, 30, 31, 72, 79].

Other than convex/concave ambiguity there are other points to make Shape from Shad-
ing problems ill-posed. According to [81] one of the reasons for that is so-called “bas-
relief ambiguity” which basically says that this type of ambiguity is caused by the fact
that the mathematical model does not reflect the physical phenomenon exactly or some
information is missing in the modelling process, e.g. the surface reflectance map at
some point is not defined or the focal length of a camera is unknown and so forth.
Therefore, this makes also the problem ill-posed. However, assuming all these infor-
mations are at hand, this is still not good enough to resolve all the situations com-
pletely [25, 26, 28, 31, 72, 82]. This suggests that we still suffer from the convex/concave
ambiguity.

In this section, the convex/concave ambiguity of the Shape from Shading problem will
be briefly discussed in the viscosity framework. It turns out that the problem of a con-
vex/concave ambiguity stems from the existence of singular points 1 [26]. So, con-
vex/concave ambiguity can be characterised by the singular points. For this purpose,
we shall use the following eikonal-type Hamiltonian which is designed for the ortho-
graphic Shape from Shading model by Rouy and Tourin [26]

Horth

Eikonal (x,p) = |p| −
√

1

I (x)2
− 1, (4.52)

1The points where the normalised image intensity is one are called “singular points” or sometimes
“critical points.” This phenomenon occurswhen the surface normal coincideswith the light direction [29].



4.4. Convex-Concave Ambiguity 65

where x = (x1, x2)
T ∈R

2, p =∇u (x) and I (x) > 0 denotes the normalised image inten-
sity.

Now, let us consider the uniqueness property of (4.52) by focusing on the requirement
(H3) for the Theorem 4.3.1. Then, with the help of Remark 4.3.1 this problem turns out to

be a question how the term

√
1

I (x)2
− 1 in (4.52) behaves. Since I (x) > 0 is normalised

image intensity, we have

√
1

I (x)2
− 1 > 0

⇔
√

1− I (x)2

I (x)2
> 0

I(x)>0⇔ 1

I (x)︸ ︷︷ ︸
>0

√
1− I (x)2 > 0

⇔ 1− I (x)2 > 0

⇔ I (x)2 < 1

⇔ |I (x)| < 1.

(4.53)

Therefore, it can be realised that we have a uniqueness result by the Theorem 4.3.1 as
long as the normalised image intensity holds 0 < I (x) < 1.

This naturally raises a question “What if the normalised image intensity is one?” When
the singular points occur, we lose the uniqueness property immediately, since it is im-
possible for us to find ϕ (x) at those points satisfying (H3) for the Theorem 4.3.1. This
can be understood as follows. At the singular points the Hamiltonian 4.52 is turned into

Horth

Eikonal (x,∇u (x)) = |∇u (x)| . (4.54)

When we think of (4.54) as

Horth

Eikonal (x,∇u (x)) = |∇u (x)|= 0, (4.55)

it is obvious that every constant vector u (x) = (c1,c2)
T ∈ R

2 is a viscosity solution of
(4.55). Therefore, the uniqueness does not hold.

This can be verified by the Theorem 4.3.1 as well. In (H3) finding ϕ (x) means that

Horth

Eikonal (x,∇ϕ (x)) = |∇ϕ (x)| < 0. (4.56)

It is clear that this is an impossible task, since |∇ϕ (x)| ≥ 0.



66 Chapter 4. Uniqueness of a Solution

Remark 4.4.1. As can be seen in the above, it can be noticed that for the eikonal-type
Hamiltonian

H (x,Du (x)) = 0 (4.57)

a nonuniqueness phenomenon may appear even in the viscosity framework.

Remark 4.4.2. Strong efforts were already made to make Shape from Shading problem
well-posed, e.g. [16, 55, 73] using eikonal-type Hamiltonian. However, as can be noticed
previously, an eikonal-type Hamiltonian is not good enough to reconstruct the surface
completely when the singular points occur. Furthermore, since a gradient itself is in-
variant under shifting, it is not a good idea when we only try to extract the information
of the gradient. Hence, it would be better if we had the information of the surface it-
self. This means that we have to change our Hamiltonian from the eikonal-type to the
general one. In the viscosity frame work, this is done by Prados and Faugeras [29, 87].

4.5 Summary

In this chapter, we have looked into the details of a comparison theorem in the viscosity
framework which plays a significant role in the uniqueness theory.

First, we have seen the classical comparison theorem in order to have basic idea.

Then, a comparison theorem for the eikonal-type Hamilton-Jecobi equation has been
investigated throughly in the viscosity framework. The convexity of a Hamiltonian has
been the essential part in this theorem.

Finally, convex-concave ambiguities of Shape from Shading problems are discussed in
the context of well-posedness as well.

In the next chapter, we shall see how the mathematical tools that we went through in
this chapter will be applied for the Shape from Shading problems based on the model
which is proposed by Prados and Faugeras.



Chapter 5

The Prados Model for Shape from
Shading

So far, we have reviewed the theoretical background for Shape from Shading problems,
one of whose main part is the concept of viscosity solution and its existence and unique-
ness property in the solution theory.

In this chapter, we shall see how this theory is applied in the perpective Shape from
Shading models.

The outline of this chapter is as follows.

We begin with how the Shape from Shading problem is modelled mathematically and
investigate two different cases of using the perspective projections. The first one is when
a point light source lies at infinity and the other is when a point light source is located
at the optical centre, respectively.

Afterwards, we pay special attention to the properties of the “generic” Hamiltonians
proposed by Prados and Faugeras [84, 85, 88]. This setup gives us an efficient frame-
work in which the proposed model can be handled effectively. Our contribution here is
to provide every step that Prados and Faugeras have taken for granted.

Then, we shall see howwe can receive the well-posedness properties for the Shape from
Shading problem in the viscosity sense. This requires our knowledge of the viscosity
theory that we have gone through in the previous chapters.

Our references for this chapter are mainly the papers by Prados and Faugeras [31, 84,
85, 88], which deal with the topic of perspective Shape from Shading models.

5.1 Mathematical Modelling

In this section, we first have a look how a surface and an illumination model is for-
mulated mathematically and then how they are connected to the perspective projection
camera setup. Here, we mainly follow the concept from [29, 84, 85, 88].
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Figure 5.1: Lambert’s cosine law. Each piece has same solid angle dΩ. dA denotes area.
Adapted from [2].

5.1.1 Lambertian Surfaces and Surface Parametrisation

Before we formulate the surface, we suppose the surface is Lambertian, which means
that the surface has perfectly matte properties which adheres to Lambert’s cosine law.
The Lambert’s cosine law in [57] states that the reflected radiant intensity in any di-
rection of Lambertian surface depends only on the cosine of the angle θ between the
surface normal and the light direction. As a direct consequence of Lambert’s cosine law,
the radiance1 of that surface is the same regardless of the viewing angle, which can be
formulated as

R (x1,x2,x3) = σ
n

|n| · L , (5.1)

where R(x1,x2,x3) denotes reflected light intensity, n is for surface normal, σ is propor-
tion factor and |·| Euclidean norm, see Figure 5.1.
Since the reconstructed scene in the Shape from Shading problem is represented by the
surface S , we assume that S can be parametrised by a function

S(x1,x2) : Ω ∈R
2 7→ R

3 , (5.2)

where Ω ∈ R
2 is the rectangular image domain ]0,X[×]0,Y[. Therefore, the surface S

can be formulated as following:

S =
{
S(x1,x2) ∈ R

3| (x1,x2) ∈Ω
}
. (5.3)

1Radiance is radiometric measurement which describes the amount of light that passes through or
is emitted from a particular area, and falls within a given solid angle in a specific direction [76, 77].
The radiance is usually denoted as L and the SI unit of radiance is watt per steradian per square meter[
W · sr−1 ·m−2

]
. The corresponding photometric term is luminance.
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5.1.2 Illumination Model and Brightness Equation

For the illumination model, we assume a single point light source and the light position
is always known in order to avoid bas-relief ambiguity. This enables us to have the in-
formation about the unit light vector L pointing to the light source. The image intensity
is modelled as a function I(x1,x2) by

I(x1,x2) : Ω 7→ [0,1] . (5.4)

In addition, the light intensity at each point on the surface S is assumed to be the same
as the given image intensity I(x1,x2). Therefore, for all x = (x1,x2) ∈Ω the normalised
image intensity I(x) is the light intensity at the point S(x) on the surface S . With this
assumption and (5.1) we have following image irradiance2 equation (or sometimes called
brightness equation)

I(x) =
n

|n| · L(S(x)) . (5.5)

The next point we think about is the perspective projection camera setup. Comparing
to the orthographic framework, a typical pinhole camera model is assumed here which
is represented by its optical and its retinal plane. It is characterised by its focal length,
see Figure 1.2b.

Light Source at Infinity

First, we assume that the light source is at the infinity. In this case, the scene is assumed
to be parameterised by a surface S defined by

S =



u(x1,x2)




x1
x2
−f




∣∣∣∣∣∣
(x1,x2) ∈Ω



 , (5.6)

where u(x1,x2) is the depth map that we are looking for and f is a focal length. Taking
partial derivative of S with respect to x1 gives

Sx1 =




u + x1 ux1
x2 ux1
−fux1


 . (5.7)

Analogously, we obtain the partial derivative of S with respect to x2 as following

Sx2 =




x1 ux2
u + x2 ux2
−fux2


 . (5.8)

2Irradiance is radiometry terms which describes total amount of radiative flux incident upon a point
on a surface from all directions above the surface (”hemisphere”). This can be calculated as an integration
of radiance along the solid angle. It is usually denoted as E and its SI unit is watts per square meter[
W/m2

]
[76, 77]. The corresponding phtometric terms is illuminance.
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By taking the cross product between Sx1 and Sx2

n(x) = Sx1 × Sx2 =




fux1
fux2

u + (x1ux1 + x2ux2)


 (5.9)

yields the surface normal vector n(x). The light can be represented by a constant unit
vector L = (α,β,γ), with γ > 0. By plugging (5.9) and light vector L into equation (5.5)
we receive the following brightness equation

I(x) =
f l · ∇u(x) + γ (x · ∇u(x) + u(x))√
f2 |∇u(x)|2 + (x · ∇u(x) + u(x))2

, (5.10)

where l = (α,β).

By changing the variable v(x) = lnu(x), we obtain ∇v(x) =
∇u(x)

u(x)
. This can be con-

firmed as follows. Since v(x) = lnu(x) ⇔ v(x1,x2) = lnu(x1,x2), we receive

vx1 =
∂v(x1,x2)

∂x1
=

∂ lnu(x1,x2)

∂x1
=

1

u

∂u

∂x1
=

1

u
ux1 ,

vx2 =
∂v(x1,x2)

∂x2
=

∂ lnu(x1,x2)

∂x2
=

1

u

∂u

∂x2
=

1

u
ux2 .

(5.11)

Plugging ∇u = u∇v into equation (5.10) gives

I(x) =
f l · u(x)∇v(x) + γ (x · u(x)∇v(x) + u(x))√
f2 |u(x)∇v(x)|2 + (x · u(x)∇v(x)) + u(x))2

=
u(x) [f l · ∇v(x) + γ (x · ∇v(x) + 1)]

u(x)

[√
f2 |∇v(x)|2 + (x · ∇v(x)) + 1)2

]

=
fl · ∇v(x) + γ (x · ∇v(x) + 1)√
f2 |∇v(x)|2 + (x · ∇v(x)) + 1)2

.

(5.12)

Therefore, perspective Shape from Shading problem when the light source is at infinity
corresponds to solve the following PDE

I(x)

√
f2 |∇v(x)|2 + (x · ∇v(x) + 1)2 − (f l + γx) · ∇v(x)− γ = 0. (5.13)
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Light Source at Optical Centre

Now, we consider the case when the light is at optical centre. For this case, as we can
see in Figure 5.2, the surface S is parameterised by

S =





f√

|x|2 + f2
u(x1,x2)




x1
x2
−f




∣∣∣∣∣∣
(x1,x2) ∈Ω




 . (5.14)

Figure 5.2: Perspective projection with a point light source located at the optical center.
Adapted from [85].

The Figure 5.2 shows that the image intensity at the pixel (x,− f ) is the intensity of the
point on the surface S . This framework is specially useful when a flash of a camera
pops up in the night, or for endoscopy modelling.

Similar to the previous model, in order to find a surface normal vector we first take the
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partial derivative of S with respect to x1

Sx1 =
f√

|x|2 + f2




(u + x1ux1)−
x21u

|x|2 + f2

x2ux1 −
ux2x1

|x|2 + f2

−fux1 +
fux1

|x|2 + f2




. (5.15)

Then, we compute the partial derivative of S with respect to x2

Sx2 =
f√

|x|2 + f2




ux2x1 −
ux2x1

|x|2 + f2

(ux2x2 + u)− x22u

|x|2 + f2

−fux2 +
fux2

|x|2 + f2




. (5.16)

Thus, by taking cross product between Sx1 and Sx2 yields the surface normal vector

n(x) = Sx1 ×Sx2 =




fux1
fux2

x1ux1 + x2ux2


− f

|x|2 + f2




x1u
x2u
−fu


 . (5.17)

In addition, as we can see in Figure 5.2 the single light source is located at the optical
centre, the unit light vector L at point S(x) is given by the vector

L(S(x)) =
1√

|x|2 + f2



−x1
−x2
f


 . (5.18)

Plugging (5.17) and (5.18) into the brightness equation (5.5) gives the PDE

I(x)

√√√√
(
|x|2 + f

2

f2

)[
f2 |∇u(x)|2 + (∇u(x) · x)2

]
+ u(x)2 − u(x) = 0. (5.19)

As we did in the previous case, we plug the result ∇v(x) =
∇u(x)

u(x)
of changing the
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variable v(x) = lnu(x) into the PDE (5.19), we obtain the following brightness equation

I(x)

√√√√
(
|x|2 + f

2

f2

)[
f2 |∇u(x)|2 + (∇u(x) · x)2

]
+ u(x)2 − u(x) = 0

⇔ I(x)

√√√√
(
|x|2 + f

2

f2

)[
f2 |u(x)∇v(x)|2 + (u(x)∇v(x) · x)2

]
+ u(x)2 − u(x) = 0

⇔ I(x)

√√√√
(
|x|2 + f

2

f2

)
u(x)2

[
f2 |∇v(x)|2 + (∇v(x) · x)2

]
+ u(x)2 − u(x) = 0

assuming the Surface S is visible and u(x) ≥

√
|x|2 + f2

f
≥ 1 gives

⇔ I(x)

√√√√
(
|x|2 + f

2

f2

)[
f2 |∇v(x)|2 + (∇v(x) · x)2

]
+ 1− 1 = 0.

(5.20)
This is equivalent to deal with the following PDE

I(x)

√[
f2 |∇v(x)|2 + (∇v(x) · x)2

]
+

f
2

|x|2 + f2
− f√

|x|2 + f2
= 0. (5.21)

Hence, as we can see in equation (5.13) and equation (5.21), Hamilton-Jacobi equations
arise for the perspective Shape from Shading problems.

5.2 The Prados and Faugeras Model

In this section, we shall see how the perspective Shape from Shading model can be
formulated under the framework called “generic” Hamiltonian which was proposed
by Prados and Faugeras in [84, 85, 88]. Afterwards, we investigate the properties of
Hamiltonian, which includes the convexity of the model.

5.2.1 Generic Hamiltonian

Motivation

In [84, 85, 88] Prados and Faugeras proposed a “generic” Hamiltonian which can unify
both orthographic3 and perspective Shape from Shading models. This generic Hamil-
tonian simplifies the formulation of the problem and, in particular, all theorems about

3Here, the orthographic Shape from Shading model means the one proposed by Rouy and Tourin
in [26].
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the characterisation and the approximation of the solution can be applied within this
setup. Therefore, from a practical point of view, a unique code can be used to numeri-
cally solve these two problems. Another useful point is that it can give us the possibility
of efficiency when we analyse the properites of Hamiltonian, e.g. convexity. However,
one of the drawbacks of this framework is that it is not always possible to formulate the
Shape from Shading problem with this method specially when we want to deal with a
more complicated model.

Now, we are about to see how the generic Hamiltonian is organised.

As we already have seen in (5.21), when the light source is at optical centre, the Hamil-
tonian of the perspective projection model by Prados and Faugeras can be read as:

Hpers

Foc (x,∇v) = I(x)
√
f2|∇v|2 + (∇v · x)2 + Q(x)2 −Q(x) , (5.22)

where Q(x) =

√
f
2

|x|2 + f2
, |x| =

√
x21 + x22 for x = (x1, x2)

T ∈ R
2 denotes a Euclidean

norm and f indicates the focal length of a camera.

Similarly, when the light source is at infinity, by (5.13) the Hamiltonian of the perspec-
tive projection model by Prados and Faugeras can be read as:

Hpers

Inf (x,∇v) = I(x)
√

f2|∇v|2 + (x · ∇v + 1)2 − (f l + γx) · ∇v− γ . (5.23)

The proposition made by Prados and Faugeras in [84, 85, 88] was that both Hamiltoni-
ans, (5.22) and (5.23), are the special cases of the following “generic” Hamiltonian:

Hg(x,p) = H̃(x,Axp + vx) + wx · p + cx (5.24)

with H̃(x,q) = κx
√
|q|2 + K2

x,

• κx > 0 and Kx ≥ 0,

• Ax = DxRx, where

– Dx =

[
µx 0
0 νx

]
, µx,νx 6= 0,

– if x 6= 0, Rx is the rotation matrix: Rx =

[
cosθ sinθ
−sinθ cosθ

]
, where cosθ =

x2
|x|

and sinθ = − x1
|x| ,

– if x = 0, Rx =

[
1 0
0 1

]
;

• vx, wx ∈R
2
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• cx ∈ R.

The main point to validate this idea is to reformulate both (5.22) and (5.23) in terms of
generic Hamiltonian notations. In other words, our major concern is to figure out how
the expressions in Hpers

Inf
4 and Hpers

Foc
5 appear in the generic Hamiltonian Hg(x, p). For this

purpose, we use the following lemma from [84, 85]. In particular, this lemma is useful
to find corresponding terms of (5.22) and (5.23) to vx in (5.24). We describe here how it
is achieved.

Lemma 5.2.1. By

∣∣∣∣∣

[
f1 0

0
√
f
2
1 + f

2
2 |x|

2

]
Rxp

∣∣∣∣∣

2

= f
2
1 |p|2 + f

2
2(x · p)2 , (5.25)

we have f2 |p|2 + (x · p)2 = |DxRxp|2 with µx = f and νx =
√
f2 + |x|2.

We elaborate here on the proof given in [84, 85], clarifying thereby the steps within.

Proof. This lemma says that we can reformulate the expression f
2
1 |p|

2 + f
2
2(x · p)2 as

the Euclidean square norm of the matrix vector product DxRxp. The proof proceeds in
three steps. First, we begin with rewriting the matrix vector product Rxp with x, x⊥

and |x|. Then, we reformulate DxRxp using the previous result. Finally, computing the
Euclidean norm square of DxRxp leads to the conclusion.

Let us denote x⊥ :=

[
x2
−x1

]
and p :=

[
p1
p2

]
. Therefore, we have

Rxp =
1

|x|

[
x2 −x1
x1 x2

][
p1
p2

]

=
1

|x|

[
x2p1 − x2p2
x1p1 + x2p2

]

=
1

|x|

[
x⊥ · p
x · p

]
.

(5.26)

This leads to
[
f1 0

0
√
f
2
1 + f

2
2 |x|

2

]
Rxp

(5.26)
=

1

|x|

[
f1 0

0
√
f
2
1 + f

2
2 |x|

2

][
x⊥ · p
x · p

]

=
1

|x|

[
f1

(
x⊥ · p

)
√
f
2
1 + f

2
2 |x|

2 (x · p)

]
.

(5.27)

4This Hamiltonian has been established by Prados and Faugeras in [31].
5This Hamiltonian has been introduced by Prados and Faugeras in [85, 88].
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Computing the square norm of (5.27) yields:

∣∣∣∣∣
1

|x|

[
f1

(
x⊥ · p

)
√
f
2
1 + f

2
2 |x|

2 (x · p)

]∣∣∣∣∣

2

=
1

|x|2
[
f
2
1

(
x⊥ · p

)2
+
(
f
2
1 + f

2
2 |x|2

)
(x · p)2

]

=
1

|x|2
[
f
2
1

(
x⊥ · p

)2
+ f

2
1 (x · p)2 + f

2
2 |x|2 (x · p)2

]

=
1

|x|2
[
f
2
1

((
x⊥ · p

)2
+ (x · p)2

)
+ f

2
2 |x|2 (x · p)2

]

=
1

|x|2
[
f
2
1

(
(x2p1 − x1p2)

2 + (x1p1 + x2p2)
2
)

+ f
2
2 |x|2 (x · p)2

]

=
1

|x|2
[
f
2
1

[(
x22p

2
1 − 2x1x2p1p2 + x21p

2
2

)
+
(
x21p

2
1 + 2x1x2p1p2 + x22p

2
2

)]]

+
1

|x|2
[
f
2
2 |x|2 (x · p)2

]

=
1

|x|2
[
f
2
1

(
x22p

2
1 + x21p

2
1 + x21p

2
2 + x22p

2
2

)
+ f

2
2 |x|2 (x · p)2

]

=
1

|x|2
[
f
2
1

(
p21

(
x21 + x22

)
+ p22

(
x21 + x22

))
+ f

2
2 |x|2 (x · p)2

]

=
1

|x|2


f

2
1

(
p21 + p22

)

︸ ︷︷ ︸
=|p|2

(
x21 + x22

)

︸ ︷︷ ︸
=|x|2

+ f
2
2 |x|2 (x · p)2




=
1

|x|2
[
f
2
1|p|2 |x|2 + f

2
2 |x|2 (x · p)2

]

=
1

|x|2
|x|2

[
f
2
1|p|2 + f

2
2 (x · p)2

]

= f
2
1 |p|

2 + f
2
2 (x · p)2 .

By comparing Hg(x,p) from (5.24)

Hg(x,p) = κx

√
|Axp + vx|2 + K2

x + wx · p + cx ,



5.2. The Prados and Faugeras Model 77

with H
pers
Foc from (5.22)

H
pers
Foc (x,p) = I(x)

√√√√√f
2|p|2 + (p · x)2︸ ︷︷ ︸

=|DxRxp|2
+

f
2

f2 + |x|2 −
√

f
2

f2 + |x|2 ,

and using Lemma 5.2.1, we obtain

µx = f, νx =
√
f2 + |x|2 ,

κx = I(x), Kx =

√
f
2

f2 + |x|2 ,

wx = 0, vx = 0 ,

cx = −Kx .

(5.28)

Plugging this into the generic Hamiltonian (5.24) for the Hpers

Foc model yields the expres-
sion

Hpers

Focg
(x,p) = I(x)

√
|DxRxp|2 + K2

x − Kx , (5.29)

where Dx =

[
f 0

0
√
f2 + |x|2

]
, Rx =

1

|x|

[
x2 −x1
x1 x2

]
and Kx =

√
f
2

f2 + |x|2 .

In an analogous way, we can also find the corresponding terms of Hg(x,p) from (5.24)
for Hpers

Inf from (5.23):

µx = f, νx =
√
f2 + |x|2 ,

κx = I(x), Kx =

√
f
2

f2 + |x|2 ,

wx = −(f l + γx), vx = Dx
−1Rxx =




0
|x|√

f2 + |x|2


 ,

cx = −γ .

(5.30)

Now, we are about to see how this is achieved.

As can be seen in the following, the main idea of doing this is to exploit the properties
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of diagonal and rotational matrix with the help of Lemma 5.2.1:

f
2 |p|2 + (x · p + 1)2 = f

2 |p|2 + (x · p)2 + 2 (x · p) + 1

Lemma 5.2.1
= |DxRxp|2 + 2 (x · p) + 1

= |DxRxp|2 + 2x ·


Rx

−1Dx
−1DxRx︸ ︷︷ ︸

=I

p


+ 1

(a)
= |DxRxp|2 + 2

[(
Rx
−1Dx

−1
)T

x
]
· (DxRxp) + 1

(b)
= |DxRxp|2 + 2

[
Dx
−1Rxx

]
· (DxRxp) + 1

(c)
=

∣∣∣DxRxp +
[
Dx
−1Rxx

]∣∣∣
2
−
∣∣∣Dx

−1Rxx
∣∣∣
2
+ 1

(d)
=

∣∣∣DxRxp +
[
Dx
−1Rx

]∣∣∣
2
+ K2

x .

(5.31)

Here, we validate the steps indicated by (a) to (d) in the above computation. The (a)
holds since

x ·
(
Rx
−1Dx

−1DxRxp
)

= xT

(
Rx
−1Dx

−1DxRxp
)

=
(
xTRx

−1Dx
−1
)

(DxRx)

=
[(

Dx
−1
)T(

Rx
−1
)T

x
]T

(DxRxp)

=
[(

Dx
−1
)T(

Rx
−1
)T

x
]
· (DxRxp)

=
[(

Rx
−1Dx

−1
)T

x
]
· (DxRxp) ,

(5.32)

and (b) holds by the properties of orthogonal and diagonal matrix, i.e.:

(
Rx
−1Dx

−1
)T

=
(
Dx
−1
)T(

Rx
−1
)T

here, rotation matrix, Rx, is an orthogonal matrix: Rx
−1 = Rx

T

=
(
Dx
−1
)T

(Rx
T)T

Dx is a diagonal matrix:
(
Dx
−1
)T

= Dx
−1

= Dx
−1Rx .

The transition to (c) is valid by the following fact:

|q|2 + 2v · q = |q + v|2 − |v|2 . (5.33)
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Whenwe plug q=:DxRxp and v=:Dx
−1Rxx into equation (5.33), the assertion follows.

Furthermore, we can also confirm that

Dx
−1Rxx =

1

|x|

[
f 0

0
√
f2 + |x|2

]−1[
x2 −x1
x1 x2

][
x1
x2

]

=
1

|x|




1

f
0

0
1√

f2 + |x|2







x2x1 − x1x2︸ ︷︷ ︸
=0

x21 + x22︸ ︷︷ ︸
=|x|2




=




0
|x|√

f2 + |x|2


 .

The last step, (d), can be verified as

1−
∣∣∣Dx

−1Rxx
∣∣∣
2
= 1−

(
|x|√

f2 + |x|2

)2

=

(
f
2 + |x|2

)
− |x|2

f2 + |x|2
= K2

x .

Hence, another expression of generic Hamiltonian from (5.24) for Hpers

Inf can be read as

Hpers

Infg
(x,p) = I(x)

√∣∣∣DxRxp +
[
Dx
−1Rxx

]∣∣∣
2
+ K2

x + wx · x + cx , (5.34)

where wx = −(f l + γx) and cx = −γ.

5.2.2 Properties of the Hamiltonian

As we have seen in the preceding chapter, the convexity of a Hamiltonian plays a sig-
nificant role on the solution theory. Therefore, it is worthwhile for us here to investigate
the convexity of Prados and Faugeras model. With the help of generic Hamiltonian, we
can treat convexity of the Hamiltonian efficiently, e.g. compare Hpers

Foc with (5.22). In what
follows, we substantiate the convexity of both Hamiltonians Hpers

Foc and Hpers

Inf .

Positive Definite Matrices and Sylvester’s Criterion

Before we go into the analysis of the convexity of the Hamiltonian, we should first
decide which tool we are going to use to confirm the convexity. Since we are interested
in the second derivative test to analyse Hessian matrix properties of the Hamiltonian,
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the Sylvester’s criterion which can be found, for example, in [39, 52, 63, 64, 104] draws
our attention. Thus, we look into this criterion.

Sylvester’s criterion enables us to characterise the positive definite matrices without
computing eingenvalues directly and can be explained by linear algebra knowledge. We
begin here by giving a well-known definition of a positive definite matrix from which
this criterion can be derived. To this end, we mainly follow the arguments in [19, 64, 98,
104]. Another approach and other properties of positive definite matrices can be found,
e.g. in [38, 50, 62, 63, 104]. The definitions of principal submatrices and principal minors
are borrowed from [39].

Having mentioned the background we need, we proceed to the definition of positive
definite matrices.

Definition 5.2.1 (Positive Definite). A real and symmetric matrixA∈R
n×n is called pos-

itive definite if for every nonzero vector x ∈ R
n, xTAx > 0.

This involves the following eingenvalue chracterisation of positive definite matrices as
well.

Theorem 5.2.1. A real and symmetric matrix A ∈R
n×n is positive definite if and only if all its

eigenvalues are positive.

Proof. The sufficiency can be deduced from the definition of eigenvalues. The necessity
is a direct consequence of the spectral theorem, e.g. which can be found in [52, 63, 104].

“⇒”. We use the definition of eigenvalues for this direction.

Suppose that λi is eigenvalue of A and xi is the corresponding unit eigenvector. Then,
we can obtain the following

Axi = λixi

⇔ xTi Axi = xTi λixi

λi is scalar
⇔ xTi Axi = λix

T
i xi

xi is a unit eigenvector so xTi xi = 1
⇔ xTi Axi = λi

since ∀i xTi Axi > 0
⇔ xTi Axi = λi > 0.

(5.35)

“⇐”. For this direction we use the spectral theorem (also known as principal axis the-
orem), which states that a real symmetric matrix A can be factored into PTAP = D,
where a diagonal matrix D = diag(λ1,λ2, . . . ,λn) is real and P denotes an orthogonal
matrix.
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Let
y = PTx . (5.36)

Since an orthogonal matrix P has the property of P−1 = PT we can derive

x = Py . (5.37)

Now, considering the quadratic form xTAx with (5.37) gives

xTAx = (Py)TA (Py)

= yTPTAPy

by spectral theorem PTAP = D

= yTDy

=
n

∑
i=1

λi y
2
i

since ∀iλi > 0

=
n

∑
i=1

λi y
2
i > 0.

(5.38)

This holds for all x 6= 0.

Another definition that we need is about principal submatrices and principal minors.

Definition 5.2.2 (Principal Submatrix and Principal Minor). Let A ∈R
n×n be a matrix.

For 1≤ k≤ n, the k-th principal submatrix ofA is the k× k submatrix formed from the first
k rows and first k columns of A. Hence, there are n principal submatrices for A ∈R

n×n.

A1 = [a11] , A2 =

[
a11 a12
a21 a22

]
, A3 =




a11 a12 a13
a21 a22 a23
a31 a32 a33


 ,

A4 =




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a34 a44


 , . . . , An =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


 .

(5.39)
Its determinant is the k-th principal minor

a11 ,

∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ ,

∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

∣∣∣∣∣∣∣∣
, . . . ,

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣

.

(5.40)
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As we have seen the principal minors above, let us think about the following lemma.
This lemma is useful for the proof of sufficiency in Sylvester’s criterion.

Lemma 5.2.2. Let

A =

[
An−1 an
aTn ann

]
(5.41)

be an n-th order symmetric real matrix, where An−1 ∈ R
(n−1)×(n−1) the symmetric submatrix

consisting of first n− 1 rows and columns ofA. In addition, an ∈R
(n−1)×1 and aTn ∈R

1×(n−1)

are vectors consisting of last column and last row of A without ann ∈ R. Then, if An−1 is
nonsingular, there is a nonsingular matrix P such that

PTAP =

[
An−1 0

0T bnn

]
. (5.42)

If, in addition, detAn−1 and det A are positive, then ann is positive.

Here, we elaborate on the proof given in [98], thereby clarify the steps therein.

Proof. Themain point of this proof is to construct the matrix P using some linear algebra
knowledge. Then, we can come to the conclusion by the assupmtion without any pain.

Since An−1 is nonsingular, there is a unique nontrivial solution of

An−1p = an . (5.43)

This indicates that an can be uniquely represented as a linear combination of column
vectors of A. When we think of (5.41) as

A =





a1


 · · ·


an−1


 an

aT ann



, (5.44)

we receive

an = α1


a1


+ · · ·+ αn−1


an−1


 (5.45)

and

aTn = α1a
T
1 + · · ·+ αn−1aTn−1 , (5.46)

where α1, . . . ,αn−1 are the corresponding coefficients for the solution of (5.43).
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Constructing the matrix PT by replacing the last rows of the identity matrix with


−α1, . . . ,−αn−1︸ ︷︷ ︸

:=qT
n−1

,1


 , (5.47)

gives

PTAP =




1
. . . 0

1

−α1 · · · −αn−1 1








a1


 · · ·


an−1


 an

aT ann







1 −α1
. . .

...
1 −αn−1

0T 1




=





a1


 · · ·


an−1


 an

−α1a
T
1 − · · · − αn−1a

T
n−1︸ ︷︷ ︸

(5.46)
= −aT

+aT

︸ ︷︷ ︸
=0T

qT
n−1an︸ ︷︷ ︸

by (5.47)

+ann







1 −α1
. . .

...
1 −αn−1

0T 1




=





a1


 · · ·


an−1



−α1a1 · · · − αn−1an−1︸ ︷︷ ︸

(5.45)
= −an

+an

︸ ︷︷ ︸
=0

0T qT
n−1an + ann




=

[
An−1 0
0T bnn

]
.

(5.48)
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Since P is nonsingular, by means of the properties of determinants we can derive

det PTAP = detPT detA detP

since detPT = detP

= (detP)2detA︸ ︷︷ ︸
>0

= bnn detAn−1︸ ︷︷ ︸
>0

.

(5.49)

Considering the assumptions detAn > 0 and detAn−1 > 0 in (5.49), bnn must be positive.
Thus, the assertion follows.

As we have all the background that we need, we now present the Sylvester’s criterion.

Theorem 5.2.2 (Sylvester’s Criterion). A real and symmetric matrix A ∈ R
n×n is positive

definite if and only if all its principal minors are positive.

The proof given here is the detailed version whose exposition is based on [24, 98, 104].

Proof. For the necessity case, we can directly derive from the Definition 5.2.1 with the
Theorem 5.2.1 and the sufficiency can be shown by mathematical induction with the
Lemma 5.2.2.

“⇒”. The idea of this direction is to consider vectors xk whose first k elements are

nonzero and whose last n− k elements are all zero x =


 xTk︸︷︷︸
∈R1×k

∣∣∣∣∣∣
0T︸︷︷︸

∈R1×(n−k)




T

. This vector

allows us to extract the k-th principal submatrices of A and we can directly see the
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result. So, the corresponding quadratic form is

xTAx =

[
xTk︸︷︷︸
∈R1×k

0T︸︷︷︸
∈R1×(n−k)

]

︸ ︷︷ ︸
∈R1×n




Ak︸︷︷︸
∈Rk×k

B︸︷︷︸
∈Rk×(n−k)

BT
︸︷︷︸

∈R(n−k)×k

C︸︷︷︸
∈R(n−k)×(n−k)




︸ ︷︷ ︸
∈Rn×n




xk︸︷︷︸
∈Rk×1

0︸︷︷︸
∈R(n−k)×1




︸ ︷︷ ︸
∈Rn×1

=

[
xTk Ak︸ ︷︷ ︸
∈R1×k

+0TBT
︸ ︷︷ ︸
∈R1×k

xTk B︸︷︷︸
∈R1×(n−k)

+ 0TC︸︷︷︸
∈R1×(n−k)

]

︸ ︷︷ ︸
∈R1×n




xk︸︷︷︸
∈Rk×1

0︸︷︷︸
∈R(n−k)×1




︸ ︷︷ ︸
∈Rn×1

=

[
xTk Ak︸ ︷︷ ︸
∈R1×k

xTk B︸︷︷︸
∈R1×(n−k)

]

︸ ︷︷ ︸
∈R1×n




xk︸︷︷︸
∈Rk×1

0︸︷︷︸
∈R(n−k)×1




︸ ︷︷ ︸
∈Rn×1

= xTk Akxk .

(5.50)

Since the original quadratic form xTAx is assumed to be positive definite, so does that
of principal submatrices xTkAkxk by (5.50). As k can be varied from 1 to n, this includesA
itself. This implies that all eigenvalues of principal submatrices of A are positive by the
Theorem 5.2.1. Therefore, from the fact that a determinant of a matrix is multiplication
of all its eigenvalues, all determinants of principal submatrices are positive.

“⇐”. As mentioned above, we make use of a mathematical induction.

For the base case when n = 1, it is clear that the statement holds, as there is only one
element in the matrix and the element itself is a determinant of a matrix.

For the induction hypothesis, let us suppose that the it is true when n− 1 and let A be
an n-th order symmetric matrix with positive leading principal minors.

Now comes to the inductive step. By the induction hypothesis A fulfils the conditions
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of the Lemma 5.2.2. Therefore, positive definiteness of xTAx is equivalent to that of

xTPTAPx
(5.42)
= xT

[
An−1 0

0T bnn

]
x

=

[
xTn−1︸︷︷︸

∈R1×(n−1)

xn︸︷︷︸
∈R

]



An−1︸ ︷︷ ︸
∈R(n−1)×(n−1)

0︸︷︷︸
∈R(n−1)×1

0T︸︷︷︸
∈R1×(n−1)

bnn︸︷︷︸
∈R







xn−1︸︷︷︸
∈R(n−1)×1

xn︸︷︷︸
∈R




=

[
xTn−1An−1︸ ︷︷ ︸
∈R1×(n−1)

xn bnn︸ ︷︷ ︸
∈R

]



xn−1︸︷︷︸
∈R(n−1)×1

xn︸︷︷︸
∈R




= xTn−1An−1xn−1 + x2nbnn , (5.51)

where xn−1 denotes the first n− 1 elements in xn.

Following the induction hypothesis the first term of (5.51) is positive definite, since
every principal minor of A is also the principal minor of An−1. In addition, the second
term is also positive by the Lemma 5.2.2.

Convexity of Hpers

Foc

In order to verify the convexity of H with respect to p, we deal with the properties of
the generic Hamiltonian. For this, we use the formulations of H in the generic terms,
c.f. (5.28) and (5.29).

Since rotation matrix, Rx, is a unitary matrix, we can rewrite and expand (5.29) as fol-
lowing:

Hpers

Focg
(x,p) = I(x)

√
|DxRxp|2 + K2

x − Kx

= I(x)
√
|Dxp|2 + K2

x − Kx

= I(x)

√√√√
∣∣∣∣∣

[
f 0

0
√
f2 + |x|2

][
p1
p2

]∣∣∣∣∣

2

+ K2
x − Kx

= I(x)

√∣∣∣∣
[

fp1√
f2 + |x|2p2

]∣∣∣∣
2

+ K2
x − Kx

= I(x)
√

f2p21 + (f2 + |x|2) p22 + K2
x − Kx ,

(5.52)

where Kx =

√
f
2

f2 + |x|2 .
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Now, we are checking the properties of Hessian matrix of

h(p1, p2) =: I(x)
√
f2p21 + (f2 + |x|2) p22 + K2

x − Kx (5.53)

First, taking partial derivatives of h(p1, p2) with respect to each variable p1 and p2 leads
to

hp1 = I(x)
f
2p1√

f2p21 + (f2 + |x|2) p22 + K2
x

, (5.54)

hp2 = I(x)

(
f
2 + |x|2

)
p2√

f2p21 + (f2 + |x|2) p22 + K2
x

. (5.55)

Computing the second partial derivatives yields:

Hess(h) =

[
hp1p1 hp1p2
hp2p1 hp2p2

]
, (5.56)

where

hp1p1 = I(x)

f
2
√
f2p21 + (f2 + |x|2) p22 + K2

x −
f
4p21√

f2p21 + (f2 + |x|2) p22 + K2
x

(√
f2p21 + (f2 + |x|2) p22 + K2

x

)2

= I(x)
f
2
(
f
2p21 +

(
f
2 + |x|2

)
p22 + K2

x

)
− f

4p21(√
f2p21 + (f2 + |x|2) p22 + K2

x

)3

= I(x)
f
2
((
f
2 + |x|2

)
p22 + K2

x

)
(√

f2p21 + (f2 + |x|2) p22 + K2
x

)3 > 0,

(5.57)
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hp2p2 = I(x)

(
f
2 + |x|2

)√
f2p21 + (f2 + |x|2) p22 + K2

x

(√
f2p21 + (f2 + |x|2) p22 + K2

x

)2

− I(x)

(
f
2 + |x|2

)
p2

(
f
2 + |x|2

)
p2√

f2p21 + (f2 + |x|2) p22 + K2
x

(√
f2p21 + (f2 + |x|2) p22 + K2

x

)2

= I(x)

(
f
2 + |x|2

) (
f
2p21 +

(
f
2 + |x|2

)
p22 + K2

x

)
−
(
f
2 + |x|2

)2
p22(√

f2p21 + (f2 + |x|2) p22 + K2
x

)3

= I(x)

(
f
2 + |x|2

) (
f
2p21 + K2

x

)
(√

f2p21 + (f2 + |x|2) p22 + K2
x

)3 > 0,

(5.58)

and

hp1p2 = I(x)

0− f
2p1

(
f
2 + |x|2

)
p2√

f2p21 + (f2 + |x|2) p22 + K2
x

(√
f2p21 + (f2 + |x|2) p22 + K2

x

)2

= −I(x) f
2
(
f
2 + |x|2

)
p1p2

(√
f2p21 + (f2 + |x|2) p22 + K2

x

)3 ,

(5.59)

hp2p1 = I(x)

0−
(
f
2 + |x|2

)
p2

f
2p1√

f2p21 + (f2 + |x|2) p22 + K2
x

(√
f2p21 + (f2 + |x|2) p22 + K2

x

)2

= −I(x) f
2
(
f
2 + |x|2

)
p1p2

(√
f2p21 + (f2 + |x|2) p22 + K2

x

)3 .

(5.60)

This confirms hp1p2 = hp2p1 .

Assuming image intensity I(x) and focal length f are not zero gives hp1p1 > 0 and hp2p2 >
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0. In addition, computing the determinant of Hess(h) gives

|Hess(h)|

= I(x)2
f
2
((
f
2 + |x|2

)
p22 + K2

x

)(
f
2 + |x|2

)(
f
2p21 + K2

x

)
(√

f2p21 + (f2 + |x|2) p22 + K2
x

)6

− I(x)2
[
f
2
(
f
2 + |x|2

)
p1p2

]2
(√

f2p21 + (f2 + |x|2) p22 + K2
x

)6

= I(x)2
f
2
((
f
2 + |x|2

)
p22 + K2

x

)(
f
2 + |x|2

)(
f
2p21 + K2

x

)
(√

f2p21 + (f2 + |x|2) p22 + K2
x

)6

− I(x)2
f
4
(
f
2 + |x|2

)2
p21p

2
2(√

f2p21 + (f2 + |x|2) p22 + K2
x

)6

= I(x)2 f2
(
f
2 + |x|2

)

︸ ︷︷ ︸
=:A>0



(
f
2 + |x|2

)

︸ ︷︷ ︸
=:A>0

p22 + K2
x



(
f
2p21 + K2

x

)

(√
f2p21 + (f2 + |x|2) p22 + K2

x

)6

− I(x)2 f2
(
f
2 + |x|2

)

︸ ︷︷ ︸
=:A>0

f
2

=:A>0︷ ︸︸ ︷(
f
2 + |x|2

)
p21p

2
2

(√
f2p21 + (f2 + |x|2) p22 + K2

x

)6

= I(x)2 f2A

(
Ap22 + K2

x

)(
f
2p21 + K2

x

)
− f

2Ap21p
2
2(√

f2p21 + (f2 + |x|2) p22 + K2
x

)6

= I(x)2 f2A
Af2p21p

2
2 + AK2

xp
2
2 + f

2p21K
2
x + K4

x − f
2Ap21p

2
2(√

f2p21 + (f2 + |x|2) p22 + K2
x

)6

= I(x)2 f2A
AK2

xp
2
2 + f

2p21K
2
x + K4

x(√
f2p21 + (f2 + |x|2) p22 + K2

x

)6 > 0.

(5.61)

As we can see in (5.57) and (5.61), hp1p1 and determinant of Hessian matrix of are both
positive, so the convexity of h holds by the Theorem 5.2.1.
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Convexity of Hpers

Inf

For the case of Hpers

Inf , see (5.23) and (5.34), we can also reformulate the Hamiltonian using
the generic formulation as in the previous case:

Hpers

Infg
(x,p)

= I(x)

√∣∣∣DxRxp +
[
Dx
−1Rxx

]∣∣∣
2
+ K2

x + wx · p + cx

= I(x)

√∣∣∣Dxp +
[
Dx
−1x
]∣∣∣

2
+ K2

x + wx · p + cx

= I(x)

√√√√√√√

∣∣∣∣∣∣∣

[
f 0

0
√
f2 + |x|2

][
p1
p2

]
+




1

f
0

0
1√

f2 + |x|2



[
x1
x2

]
∣∣∣∣∣∣∣

2

+ K2
x + wx · p + cx

= I(x)

√√√√√√√

∣∣∣∣∣∣∣∣

[
f p1√

f2 + |x|2p2

]
+




1

f
x1

1√
f2 + |x|2

x2




∣∣∣∣∣∣∣∣

2

+ K2
x + wx · p + cx

= I(x)

√√√√√√√

∣∣∣∣∣∣∣




fp1 +
1

f
x1

√
f 2 + |x|2p2 +

1√
f2 + |x|2

x2




∣∣∣∣∣∣∣

2

+ K2
x + wx · p + cx

= I(x)

√√√√√√√√√


fp1 +

1

f
x1

︸︷︷︸
=: α




2

+




√
f2 + |x|2p2 +

1√
f2 + |x|2

x2

︸ ︷︷ ︸
=: β




2

+ K2
x + wx · p + cx ,

(5.62)

where Kx =

√
f
2

f2 + |x|2 , wx = −(f l + γx), and cx = −γ.

Therefore, we only need to analyse the properties of Hessian matrix of

d(p1, p2) =:

√

(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2

+ K2
x , (5.63)

because (wx · p + cx) does not give a contribution to the second derivatives with respect
to p.

Taking partial derivatives of d(p1, p2) with respect to each variable p1 and p2 leads to
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dp1 =
(fp1 + α)f√

(fp1 + α)2 +
(√

f2 + |x|2p2 + β
)2

+ K2
x

(5.64)

and

dp2 =

(√
f2 + |x|2p2 + β

)√
f2 + |x|2

√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

. (5.65)

With taking second derivatives of d, we can compute the Hessian matrix of d as follow-
ing

Hess(d) =

[
dp1p1 dp1p2
dp2p1 dp2p2

]
, (5.66)

where

dp1p1 =
f
2

√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

(√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

)2

−

(fp1 + α)f
(fp1 + α)f√

(fp1 + α)2 +
(√

f2 + |x|2p2 + β
)2

+ K2
x

(√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

)2

=

f
2

[
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

]
− (fp1 + α)2 f2

(√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

)3

=

f
2

[(√
f2 + |x|2p2 + β

)2
+ K2

x

]

(√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

)3
> 0,

(5.67)
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dp2p2 =

(
f
2 + |x|2

)[
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

]

(√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

)3

−

(√
f2 + |x|2p2 + β

)2 (
f
2 + |x|2

)

(√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

)3

=

(
f
2 + |x|2

)[
(fp1 + α)2 + K2

x

]

(√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

)3
,

(5.68)

and

hp1p2 =

0− (fp1 + α)f

(√
f2 + |x|2p2 + β

)√
f2 + |x|2

√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

(√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

)2

= −
(fp1 + α)f

(√
f2 + |x|2p2 + β

)√
f2 + |x|2

(√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

)3
,

(5.69)

hp2p1 =

0−
(√

f2 + |x|2p2 + β
)√

f2 + |x|2 (fp1 + α)f√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

(√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

)2

= −

(√
f2 + |x|2p2 + β

)√
f2 + |x|2 (fp1 + α)f

(√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

)3
.

(5.70)
This verifies dp1p2 = dp2p1 .
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Hence, the determinant of Hessian matrix is given by

|Hess(d)|

=

f
2

[(√
f2 + |x|2p2 + β

)2
+ K2

x

](
f
2 + |x|2

)[
(fp1 + α)2 + K2

x

]

(√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

)6

−
(fp1 + α)2 f2

(√
f2 + |x|2p2 + β

)2 (
f
2 + |x|2

)

(√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

)6

= f
2
(
f
2 + |x|2

)




(√
f2 + |x|2p2 + β

)2

︸ ︷︷ ︸
=:A>0

+K2
x





(fp1 + α)2︸ ︷︷ ︸

=:B>0

+K2
x




(√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

)6

−f
2
(
f
2 + |x|2

)

(fp1 + α)2︸ ︷︷ ︸
=:B>0

(√
f2 + |x|2p2 + β

)2

︸ ︷︷ ︸
=:A>0(√

(fp1 + α)2 +
(√

f2 + |x|2p2 + β
)2

+ K2
x

)6

=
f
2
(
f
2 + |x|2

) [(
B + K2

x

)(
A + K2

x

)
− BA

]
(√

(fp1 + α)2 +
(√

f2 + |x|2p2 + β
)2

+ K2
x

)6

=
f
2
(
f
2 + |x|2

) [
K4
x + (A + B)K2

x + AB− AB
]

(√
(fp1 + α)2 +

(√
f2 + |x|2p2 + β

)2
+ K2

x

)6

=
f
2
(
f
2 + |x|2

) [
K2
x + (A + B)

]
K2
x(√

(fp1 + α)2 +
(√

f2 + |x|2p2 + β
)2

+ K2
x

)6
> 0.

(5.71)

This verifies the positive definiteness of Hpers

Inf by the Theorem 5.2.2.
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5.3 Well-posedness of Prados and Faugeras Model

So far, we have investigated the properties of Hamiltonian proposed by Prados and
Faugeras. In this section, we shall think about thewell-posedness of Prados and Faugeras
model by taking the viscosity framework into account.

Shape from Shading has been a central problem in computer vision and also well known
that this problem is ill-posed as we have discussed in Section 4.4. In the work of Pra-
dos and Faugeras [85, 88], they have tried to reformulate the problem using generic
Hamiltonian in such a way that it can be interpreted as a well-posed problem in the
viscosity sense. However, as we have seen in Remark 4.3.1, it has limitations owing to
the properties of an eikonal-type Hamiltonian.

In this section, we investigate the requirements for the existence and uniqueness of the
Prados and Faugeras model. To this end, we make use of the theorem adjusted to the
Prados and Faugeras model which can be found in [84, 85, 88] based on the theory that
we have studied in Chapter 3 and Chapter 4.

5.3.1 Existence of Continuous Viscosity Solutions

The following theorem summarises all the points that we need. After we discuss why
we need these conditions, we shall checkwheter the Prados and Faugerasmodels satisfy
the requirements.

Theorem 5.3.1 (Existence of Continuous Viscosity Solutions for the Prados Model). If

(E1) [Regularity] H ∈ C0(Ω×R
2),

(E2) [Convexity] H is convex with respect to p for all x in Ω,

(E3) [Subsolution] inf
p∈R2

H(x,p) ≤ 0 in Ω,

(E4) [UniformCoercivity] H(x,p)→ +∞ when |p| → +∞ uniformly with respect to x ∈
Ω,

(E5) [Compatibility] For all x,y ∈ ∂Ω if ϕ(x) − ϕ(y) ≤ L(x,y) holds then the function u
defined in Ω by

u(x) = inf
y∈∂Ω
{ϕ (y) + L (x,y)} (5.72)

= inf

{∫ T0

0
H∗
(
ξ (s) ,−ξ′ (s)

)
ds + ϕ (ξ (T0))

}
(5.73)

is a continuous viscosity solution of equation (in particular u verifies u(x) = ϕ(x) for all
x in ∂Ω), where p denotes∇u.
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Remark 5.3.1. (E1) [Regularity] Regarding regularity, the Hamiltonian must satisfy
regularity, since we seek continuous soluions.

(E2) [Convexity] In order to apply the theory that we have investigated, the convexity
of Hamiltonian is crucial.

(E3) [Subsolution] As we have seen in Section 2.3, a viscosity subsolution plays an
essential role since we deal with a convex Hamiltonian.

(E4) [Uniform Coercivity] As discussed in 2.4.3 and 3.2.3, Hamiltonian should be at
least uniform coercive when the Legendre transform of Hamiltonian is finite.

(E5) [Compatibility] Since the compatibility condition is necessary and sufficient con-
dition for the existence of solutions by Remark 3.2.1, it must be fulfilled as well.

Thus, the model should be investigated whether all of these conditions are fulfilled. We
examine one by one.

Before going into analysis, we first see the following lemma and proposition which will
be used for the property of uniform coercivity for the Prados and Faugeras model.

Lemma 5.3.1. Let Q be a function defined by

Q : E×R
n → R

(x,q) 7→ Q (x,q) := |q|+W (x) · q + C (x) ,
(5.74)

where E is any set, C : x ∈ E 7→ C (x) ∈ R is a function bounded below by c ∈ R, and W is a
function definded by W : x ∈ E 7→W (x) ∈ R

n.

If there exists ε > 0 such that ∀x ∈ E, |W (x)| ≤ 1− ε then Q (x, ·) : q 7→ Q (x,q) is coercive
uniformly with respect to x in E.

Proof. The proof idea of this lemma is based on the Cauchy-Schwarz inequality. Esti-
mating the components of (5.74) leads us to the conclusion.

By the the Cauchy-Schwarz inequality we have

W (x) · q ≥ −|W (x)| |q|
⇔ |q|+W (x) · q ≥ |q| − |W (x)| |q|
⇔ |q|+W (x) · q ≥ |q| (1− |W (x)|) .

(5.75)

In addition, |q| (1− |W (x)|) in (5.75) can be estimated by

|W (x)| ≤ 1− ε

⇔ −|W (x)| ≥ ε− 1

⇔ 1− |W (x)| ≥ ε

⇔ |q| (1− |W (x)|) ≥ |q| ε .

(5.76)
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Hence, from (5.75) and (5.76) we receive

|q|+W (x) · q ≥ |q| ε
⇔ |q|+W (x) · q + c ≥ |q| ε + c

⇔ Q (x,q) ≥ |q|+W (x) · q + c ≥ |q| ε + c

⇔ Q (x,q) ≥ |q| ε + c .

(5.77)

Since Q (x,q) in (5.77) is bounded below but not above, the assertion follows.

Proposition 5.3.1. Assume that κx,cx,(Rx
TAx)

−1 ,wx,Rx
Tvx are continuous and bounded on

the compact set Ω in generic Hamiltonian Hg (5.24). If ∀x ∈ Ω,
∣∣∣
(
Ax
−1
)T

wx

∣∣∣ < κx then

Hg(x, ·) is coercive uniformly with respect to x in Ω.

The proof given here is the elaborated version from [84, 85].

Proof. The main idea for the proof of this proposition relies on the Lemma 5.3.1. The
proof proceeds in three steps.

First, we define an auxiliary Hamiltonian Ĥ in such a way that the uniform coercivity
of generic Hamiltonian Hg holds if we confirm the uniform coercivity of the auxiliary

Hamiltonian Ĥ.

In the second step, we consider an adapted Q(x,q) in Lemma 5.3.1 whose uniform
coercivity still holds, so that we can make use of it for the proof of uniform coercivity of

Ĥ.

As a third step, we show the uniform coercivity of Ĥ using Q (x,q) in the second step
by reformulating the uniform coercivity, which leads to the conclusion.

Step 1. Let us define

Ĥ (x,p) = κx |Axp + vx|+ wx · p + cx . (5.78)

Then, for x ∈Ω, ∀p ∈ R
2 we have

Hg (x,p) ≥ Ĥ (x,p) , (5.79)

since by (5.24)

κx

√
|Axp + vx|2 + K2

x ≥ κx |Axp + vx|

⇔ κx

√
|Axp + vx|2 + K2

x + wx · p + cx ≥ κx |Axp + vx|+ wx · p + cx .

(5.80)

Hence, if Ĥ (x, ·) : p 7→ Ĥ (x,p) is uniform coercive with repect to x then Hg (x, ·) is uni-
form coercive with respect to x as well.
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Step 2. Here, we consider

Q : Ω×R
2 → R

(x,q) 7→ Q (x,q) := |q|+ 1

κx

[(
AT

x

)−1
wx

]

︸ ︷︷ ︸
=:W(x)

·q + cx −
[(

AT
x

)−1
wx

]
· vx

︸ ︷︷ ︸
=:C(x)

.

(5.81)
Since we have assumed that

(i) cx, A
−1
x , wx, vx are bounded

and that

(ii)
∣∣∣
(
AT

x

)−1
wx

∣∣∣< κx,

by continuity there exists ε > 0 such that 1
κx

∣∣∣
(
AT

x

)−1
wx

∣∣∣ ≤ 1− ε for all x in the compact

set Ω. Therefore, by Lemma 5.3.1 Q(x, ·) is uniform coercive with respect to x in Ω.

Step 3.

Reformulation of Coercivity. Here, we rewrite the uniform coercivity of Q (x, ·) as
follows: for all a ∈ R there exists m ∈ R such that |q| ≥ m implies Q (x,q) ≥ a for all
q ∈R

2 and x ∈Ω.

Now, let us fix a andm1 such that the above implication is true withm=m1. We consider
m2 ∈R such that for all x in Ω

m2 ≥
1

κx

∣∣∣A−1x

∣∣∣ (|m1|+ κx |vx|) . (5.82)

The first term in (5.82) is bounded, since κ−1x is bounded based on the fact that
∣∣A−1x wx

∣∣=∣∣∣
(
AT

x

)−1
wx

∣∣∣ > 0 and
∣∣A−1x wx

∣∣ < κx is continuous in the compact set Ω. In addition, we

have assumed that vx and A−1x are bounded, the second term
∣∣A−1x

∣∣ |vx| is bounded as
well.

Uniform Coercivity of Ĥ. To show the uniform coercivity of Ĥ, we first see what
|p| ≥ m2 implies. This brings us to the position that we can use the uniform coercivity

of Q (x, ·) in step 2. Furthermore, it turns out that Ĥ can be expressed by Q (x, ·), which
leads to the conclusion.
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Implication of |p| ≥ m2. By the triangle and Cauchy-Schwarz inequality, e.g. in [95],
we can derive that |p| ≥ m2 implies

κx |Axp + vx| ≥ κx (|Axp| − |vx|)
⇔ κx |Axp + vx| ≥ κx (|Ax| |p| − |vx|)

⇔ κx |Axp + vx| ≥ κx


 1∣∣∣Ax

−1
∣∣∣
|p| − |vx|




|p|≥m2⇔ κx |Axp + vx| ≥ κx


 1∣∣∣Ax

−1
∣∣∣
|m2| − |vx|




(5.82)⇔ κx |Axp + vx| ≥ κx



 1∣∣∣Ax
−1
∣∣∣
1

κx

∣∣∣A−1x

∣∣∣ (|m1|+ κx |vx|)− |vx|





⇔ κx |Axp + vx| ≥ κx

(
1

κx
(|m1|+ κx |vx|)− |vx|

)

⇔ κx |Axp + vx| ≥ |m1|+ κx |vx| − κx |vx|

⇔ κx |Axp + vx| ≥ m1 .

(5.83)

Following the reformulation of the uniform coercivity using (5.83) and the result in step
2 leads us to:

for all a ∈ R there exists m ∈ R such that |p| ≥ m2 implies Q (x,κx (Axp + vx)) ≥ a for
all κx (Axp + vx) ∈ R

2 and x ∈Ω.

Our rest job is to show that Ĥ (x,p) has same bound as that of Q (x,κx (Axp + vx)).

Computing Q (x,κx (Axp + vx)) in (5.81) gives

Q (x,κx (Axp + vx))

= |κx (Axp + vx)|+
1

κx

[(
AT

x

)−1
wx

]
· κx (Axp + vx) + cx −

[(
AT

x

)−1
wx

]
· vx

= κx |(Axp + vx)|+
[(

AT
x

)−1
wx

]
· (Axp + vx) + cx −

[(
AT

x

)−1
wx

]
· vx

= κx |(Axp + vx)|+
[(

AT
x

)−1
wx

]
·Axp +

[(
AT

x

)−1
wx

]
vx + cx −

[(
AT

x

)−1
wx

]
· vx

= κx |(Axp + vx)|+
[(

AT
x

)−1
wx

]
·Axp + cx .

(5.84)

The second term
[(
AT

x

)−1
wx

]
· Axp in (5.84) has the same bound as the second one

wx · p in (5.78) by
∣∣∣
(
AT
)−1∣∣∣= |A|−1 and Cauchy-Schwarz inequality. Therefore, Ĥ (x, ·)
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is uniform coercive with respect to x as well. As noted in step 1, this completes the
proof.

In what follows, we check the first model Hpers

Foc .

(E1) [Regularity] Regarding the regularity, as soon as image intensity I(x) is continu-
ous, Hpers

Foc is continuous in Ω×R
2.

(E2) [Convexity] Convexity of the model Hpers

Foc is already verified in the previous sec-
tion.

(E3) [Uniform Coercivity] For uniform coercivity we apply Proposition 5.3.1.

By (5.28) we plug corresponding terms into
∣∣∣
(
Ax
−1
)T

wx

∣∣∣ < κx. Since wx = 0 in

this case,
∣∣∣
(
Ax
−1
)T

wx

∣∣∣
︸ ︷︷ ︸

=0

< κx holds if κx = I(x) > 0. Therefore, as long as I(x) > 0

Hpers

Foc is uniform coercive.

(E4) [Subsolution] Considering the Definition 2.3.1 or Definition 2.3.2, we can con-
firm that all constant functions are strict viscosity subsolutions of the Hamiltonian
Hpers

Foc (x,p). We validate the assertion as follows.

For all constant functions we have p =

[
p1
p2

]
=

[
0
0

]
. Plugging p =

[
0
0

]
into

Hpers

Foc (x,p) gives
H (x,0) = I (x)Q (x)−Q (x)

= (I (x)− 1)Q (x) ,
(5.85)

where Q (x) =

√
f
2

f2 + |x|2 .

As Q(x) > 0, H(x,0) < 0 if 0 < I(x) < 1. Therefore, we have H (x,p)≤ H (x,0) ≤ 0
as long as 0 < I(x) < 1, which verifies the statement.

(E5) [Compatibility]

ϕ(x)− ϕ(y) ≤ L(x,y) = inf
ξ∈Cx,y,T0>0

{∫ T0

0
H∗
(
ξ(s),−ξ′(s)

)
ds

}
∀x,y ∈ ∂Ω

Hence, if the aforementioned regularity, convexity, existence of viscosity subsolu-
tion and uniform coercivity are fulfilled and furthermore if the compatibility con-
dition is satisfied on ∂Ω, which means the change of boundary values is less than
the running cost, Hpers

Foc has continuous viscosity solutions by Theorem 5.3.1.

In an analogous way, we examine the second model Hpers

Inf .
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(E1) [Regularity] Regularity holds for Hpers

Inf as well, as soon as image intensity I(x) is
continuous.

(E2) [Convexity] Convexity of the model Hpers

Inf also holds, as we have seen in the previ-
ous section.

(E3) [Uniform Coercivity] In an analogous way in the case of Hpers

Foc , we can find the
conditions for uniform coercivity for Hpers

Inf using Proposition 5.3.1.

By (5.30), we have

∣∣∣
(
Ax
−1
)T

wx

∣∣∣
2

=

∣∣∣∣∣∣∣∣∣∣




x2 (−fα− γ x1)− x1 (−fβ− γ x2)

|x|f
x1 (−fα− γ x1) + x2 (−fβ− γ x2)

|x|
√
f2 + |x|2




∣∣∣∣∣∣∣∣∣∣

2

=

(
x2 (−fα− γ x1)− x1 (−fβ− γ x2)

|x|f

)2

+


x1 (−fα− γ x1) + x2 (−fβ− γ x2)

|x|
√
f2 + |x|2




2

,

(5.86)

where x = (x1,x2)
T ∈ R

2.

Since L = (α,β,γ) is normalised light direction vector,

α2 + β2 + γ2 = 1 (5.87)

holds. In addition, l denotes the vector (α,β)T ∈ R
2.

Now, plugging γ =
√

1− α2 − β2 from (5.87) into (5.86) and simplifying the terms
gives rise to

∣∣∣
(
Ax
−1
)T

wx

∣∣∣
2
=

1

f2 + |x|2
[
|γx + fl|2 + (|x|2|l|2 − (x · l)2)

]
. (5.88)

As a result, by Proposition 5.3.1 Hpers

Inf is uniform coercive when

I (x)2 >
1

f2 + |x|2
[
|γx + fl|2 + (|x|2|l|2 − (x · l)2)

]
(5.89)

holds.

(E4) [Subsolution] Regarding the subsolution of Hpers

Inf , Prados and Faugeras provided
the strict viscosity subsolution for Hpers

Inf in [86], which is given by

u(x) = − ln
γ

f
− ln(γf− l · x) (5.90)
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with the condition of γf− l · x > 0, i.e. L · (x,−f) < 0, where L = (α,β,γ) is the
normalised light direction constant vector and l denotes (α,β). Assuming that the
light source is above the surface makes γ > 0.

In what follows, we justify the strict viscosity subsolution of Hpers

Inf .

For the given subsolution (5.90), first we can find the gradient of subsolution (5.90)

∇u(x) =
l

γf− l · x . (5.91)

Plugging (5.91) into Hpers

Inf yields

H (x,∇u(x))

= I(x)
√

f2 |∇u|2 + (x · ∇u+ 1)2 − (f l + γx) · ∇u− γ

= I(x)

√

f2

∣∣∣∣
l

γf− l · x

∣∣∣∣
2

+

(
x · l

γf− l · x + 1

)2

− (f l + γx) · l

γf− l · x − γ

= I(x)

√
f
2 |l|2

(γf− l · x)2
+

(
l · x + γf− l · x

γf− l · x

)2

− (f l + γx) · l
γf− l · x − γ

= I(x)

√√√√ f 2
(
|l|2 + γ2

)

(γf− l · x)2
− f |l|2 + γ (l · x)

γf− l · x − γ

by the normalised light direction vector |l|2 + γ2 = α2 + β2 + γ2 = 1

= I(x)
f

γf− l · x −
f |l|2 + γ (l · x)

γf− l · x − γ (γf− l · x)
γf− l · x

= I(x)
f

γf− l · x −
f |l|2 + γ (l · x) + γ2

f− γ (l · x)
γf− l · x

= I(x)
f

γf− l · x −
f

(
|l|2 + γ2

)

γf− l · x
by the same reasoning of normalised light direction vector

= I(x)
f

γf− l · x −
f

γf− l · x

=
f

γf− l · x (I(x)− 1) .

(5.92)

As we have already assumed γf− l · x > 0, the only way to achieve strict subso-

lution of Hpers

Inf is when 0 < I(x) < 1. Hence, under this condition u(x) = − ln
γ

f
−

ln(γf− l · x) is the strict viscosity subsolution of Hpers

Inf .
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(E5) [Compatibility] Compatibility conditions for Hpers

Inf are expressed in the same way
as in the case of Hpers

Foc .

Therefore, there exist continuous viscosity solutions for Prados and Faugeras model
which are described as in (E5) under the adequate conditions (E1)-(E4).

5.3.2 Uniqueness of Viscosity Solution

For the uniqueness of the Prados model, we make use of Theorem 5.3.2 adjusted to the
model which basically relies on the Theorem 4.3.1 discussed in Chapter 4. Although
there are several common criterion between Theorem 5.3.1 and Theorem 5.3.2, the ma-
jor difference is that uniqueness theorem requires the existence of the strict viscosity
subsolution.

For the given eikonal-type HJE of the form

H (x,∇u (x)) = 0 x ∈Ω , (5.93)

if the image intensity I does not reach the maximal value 1, a uniqueness theorem can
be formulated as follows.

Theorem 5.3.2 (Uniqueness of Continuous Viscosity Solutions for the PradosModel).
Let Ω be a bounded open subset of R

2. If H satisfies

(U1) [Convexity] H is convex with respect to p for all x in Ω,

(U2) [Space variable regularity] There exists a nondecreasing function ω which goes to
zero at zero, such that ∀x,y∈Ω, ∀p∈R

2, |H (x,p)− H (y,p)| ≤ω (|x− y| (1+ |p|)),

(U3) [Strict subsolution] There exists a strict viscosity subsoloution u ∈ C(Ω) ∩ C1(Ω) of
(5.93), i.e. such that H (x,∇u) < 0 for all x in Ω,

then there exists at most one continuous viscosity solution of (5.93) in Ω, such that

u(x) = ϕ(x) ∀x ∈ ∂Ω . (5.94)

In effect:

(U1) [Convexity] In Subsection 5.2.2, we have already seen that the convexity is true
for both Hpers

Foc and Hpers

Inf .

(U2) [Space variable regularity] This condition can be understood as I (x) is Lipschitz-
continuous.

(U3) [Strict subsolution] The existence of the strict subsolution is basically one of the
essential part in the comparison theorem for uniqueness theory. In the previous
section, we have already confirmed that for both cases, Hpers

Foc and Hpers

Inf , there exist
subsolutions and they are actually strict subsolutions.
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Therefore, as soon as the image intensity I(x) is Lipschitz-continuous and verifies

0 < I (x) < 1 ∀x ∈Ω , (5.95)

Prados and Faugeras models have at most one continuous viscosity solution by Theo-
rem 5.3.2.

Remark 5.3.2. However, there is a subtle issue to be discussed here. In practice, I(x)
can reach the value 1 in an arbitrary compact set in Ω, which insinuates that we lose
the uniqueness properity by (U3) in Theorem 5.3.2. In order to remedy this situation,
Prados and Faugeras extended the idea of Rouy and Tourin [26] to their perspective
framework. In what follows, we shall see how this works.

Here denotes S the set of singular points (also called critical points)

S = {x ∈Ω | I (x) = 1} (5.96)

and assumes that S contains a finite number of singular points S = {x1, . . . ,xn}, where
the index n and real constants ci = u (xi) = ϕ (xi) ,(ci)i,...,n, are also assumed to be fixed.
Then employing the DBC to the set ∂Ω ∪ S for the given Hamiltonian

{
H (x,∇u (x)) = 0 in Ω

u (x) = ϕ(x) on ∂Ω
(5.97)

yields

{
H(x,∇u(x)) = 0 in Ω− S

u(x) = ϕ(x) on ∂Ω ∪ S ,
(5.98)

which can be reformulated as

{
H(x,∇u(x)) = 0 in Ω′

u(x) = ϕ(x) on ∂Ω′ ,
(5.99)

where Ω′ = Ω− S and ∂Ω′ = ∂Ω ∪ S.

Thanks to the refomulation (5.99), we can still have the existence and uniqueness prop-
erty by applying the Theorem 5.3.1 and Theorem 5.3.2 into (5.99) if image intensity I (x)
is Lipschitz-continuous, since Ω′ includes no singular points. In other words, although
Hamiltonian (5.97) is ill-posed, we are still in the position to turn this problem into a
well-posed one and obtain the continuous viscosity solutions which have mathemati-
cally nice properties by choosing arbitrarily the constants ci(= ϕ(xi)) and solving (5.99).

One disadvantage to be pointed out about this framework is, namely, the assumptions.
They assumed that all the informations about singular points and the values on the
boundary are available, whereas in general the input data to a Shape from Shading
problem consists only of an image, which leads to the restriction of this setup.
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5.4 Summary

In this chapter, we have gone through the Shape from Shading model proposed by
Prados and Faugeras based on the theory in preceding chapters.

First, we have seen how the perspective Shape from Shading problems are modelled
mathematically.

Then, we have investigated the properties of generic Hamiltonian which has the ca-
pability of combining several Hamiltonians and the convexity of the Hamiltonians are
examined as well.

Afterwards, the existence and uniqueness theories for the Prados and Faugeras model
are looked into and verified for each case. For the uniqueness property, a caveat of the
model is also mentioned.

In the next chapter, we shall discuss the model extension for the Shape from Shading
problems.



Chapter 6

Discussion of Model Extensions

In the previous chapter, we have studied the Prados and Faugeras model extensively
which involves perspective Shape from Shading problem. However, there is one impor-
tant assumption that makes Prados and Faugeras model unrealistic, namely Lambertian
surface. Therefore, we are also in need of the model which can describe non-Lambertian
surfaces when we think of the application in real life situation.

In this chapter, we shall discuss the Vogel-Breuß-Weickert model which is more realistic
than that of Prados and Faugeras. Nevertheless, dealing with non-Lambertian surfaces
with the model by Vogel et al. gives rise to a non-convex general-type Hamiltonian
which needs careful treatments.

This chapter is outlined as follows.

First, we shall look into how the new model is described and the brightness equation
is formulated. This involves Phong reflection based perspective Shape from Shading
model from [29, 87].

Then, we investigate the convexity of the model. It turns out that this type of Hamil-
tonian is in general not convex because of specular terms in the Phong model. Thus,
we analyse the model when the non-convexities of the model occur and think about
whether there is a way to get around these difficulties, so that we can have at least
almost everywhere convexity properties.

Our contribution here is to provide the analysis of the critical points of the Hamiltonian
and condition to circumvent the non-convex properties around the critical points.

The main reference for this chapter is the paper by the authors [75].

6.1 The Vogel-Breuß-Weickert Model

In this section, we shall see how the new model is described. To describe a model,
we begin with the surface parametrisation for the perspective SfS that we have seen in
Section 5.1.
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6.1.1 Surface Parametrisation

By (5.14), we have surface parametrisation

S =





f√
|x|2 + f2

u(x1,x2)




x1
x2
−f





∣∣∣∣∣∣
(x1,x2) ∈Ω



 , (6.1)

where u (x1,x2) denotes the unknown depth and S : Ω→R
3 with Ω⊂ R

2.

As we did in (5.15) and (5.16), taking partial derivative with respect to each variable
and computing their cross product gives surface normal vector n(x) at S(x), which is
the same result as in (5.17)

n(x) = Sx1 ×Sx2 =




fux1
fux2

x1ux1 + x2ux2



− f

|x|2 + f2




x1u
x2u
−fu



 . (6.2)

Up till now, the process is identical to that of perspective SfS.

6.1.2 Brightness Equation for Phong-type Surfaces

As mentioned earlier, since the new model assumes Phong-type surfaces, the following
image irradiance equation is introduced based on [18]

I (x) = κa Ia︸︷︷︸
ambient

+ ∑
light sources

1

r2


κd Id cosφ︸ ︷︷ ︸

diffuse

+κs Is (cosθ)α

︸ ︷︷ ︸
specular


 . (6.3)

Remark 6.1.1. In (6.3) Ia, Id, and Is denote the image intensities of the ambient, diffuse,
and specular components of the reflected light, respectively. Accordingly, ka,kd, and ks
represent the corresponding constants with κa + κd + κs ≤ 1. In addition, the light atten-
uation factor 1/r2, where r is the distance between point light source and the surface, is
incorporated relying on the inverse square law1 in physics, see Figure 6.1.

In the diffuse term, φ is the angle between surface normal and light source direction,
so the intensities of the diffuse light is proportional to cosφ. According to the Phong
model, the diffuse term is not affected by the viewer direction.

In the specular term, θ is the angle between ideal mirror reflection of the incoming light
and the viewer direction and α is a constant depending on the material of the surface.
As α becomes larger, the model describes more mirror-like reflection. In contrast to
the diffuse term, the specular term is largely influenced by the viewer direction, so the
amount of specular light towards the viewer is proportional to (cosθ)α.

1In Figure 6.1 we assume that the total energy radiated from the light source S is distributed to spheri-
cal surface of radius r. Although the surface area with radius r is proportional to r2, the total energy given
off from the source remains the same. As a consequence, the absorbed energy per unit area is inversely
proportional to square of the distance from the light source.
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Figure 6.1: Visualisation of the inverse square law. S denotes the point light source, r
represents the distance from S, and the red lines stand for the flux emanating from the
source S. Adapted from [1].

Since this model is restricted to the case when a single light source is at the optical centre
of the camera, (6.3) reduces to

I (x) = κa Ia +
1

r2
(
κd Id cosφ + κs Is (cosθ)α) . (6.4)

In addition, in this case viewer direction and light source direction are the same, see
Figure 5.2, we can obtain

θ = 2φ , (6.5)

which leads to

I (x) = κa Ia +
1

r2
(
κd Id cosφ + κs Is (cos2φ)α) . (6.6)

Reformulating cosφ in (6.6) with scalar product between unit surface normal vector and
normalised light direction vector yields

cosφ = N · L , (6.7)
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where N = n(x)
|n(x)| and L is a normalised light direction vector. Additionally, employing

trigonometric identities, e.g. in [70],

cos2φ = 2 (cosφ)2 − 1 (6.8)

with (6.7) makes (6.6) turn into

I (x) = κa Ia +
1

r2

(
κd Id (N · L) + κs Is

(
2 (N · L)2 − 1

)α)
. (6.9)

As the normalised light direction vector is already given in (5.17), the scalar product
between surface normal vector and unit light direction vector gives

N · L (S (x))

=
n (x)

|n (x)| ·


 1√
|x|2 + f2



−x1
−x2
f






(5.17)
=

1

|n (x)|
√
|x|2 + f2






fux1
fux2

x1ux1 + x2ux2


− f

|x|2 + f2




x1u
x2u
−fu




 ·



−x1
−x2
f




=
1

|n (x)|
√
|x|2 + f2

(
−fux1x1 +

fx21u

|x|2 + f2
− fux2x2 +

fx22u

|x|2 + f2

)

+
1

|n (x)|
√
|x|2 + f2

(
fx1ux1 + fx2ux2 +

f
3u

|x|2 + f2

)

=
1

|n (x)|
√
|x|2 + f2

fu

|x|2 + f2


x21 + x22︸ ︷︷ ︸

=|x|2
+f

2




=
fu

|n (x)|
√
|x|2 + f2

.

(6.10)

Making use of r = fu (x) for the light attenuation factor 1/r2 in (6.9) and plugging (6.10)
into (6.9) yields

I (x)

= κa Ia +
1

f2u (x)2


κd Id


 fu (x)

|n (x)|
√
|x|2 + f2


+ κs Is


2


 fu (x)

|n (x)|
√
|x|2 + f2




2

− 1




α


= κa Ia +
1

f2u (x)2

(
κd Id

u (x)Q (x)

|n (x)| + κs Is

(
2

(
u (x)Q (x)

|n (x)|

)2

− 1

)α)
,

(6.11)
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where

|n (x)|=
√
f2 |∇u (x)|2 + (∇u (x) · x)2 + u (x)2Q (x)2 (6.12)

and Q (x) =

√
f2

|x|2+f2
.

6.1.3 Hamiltonian of the Model

In order to exploit the change of the variables for the later use, we multiply
f
2|n(x)|

u(x)Q(x)
both

sides of (6.11), which gives

(I (x)− ka Ia)
f
2 |n (x)|

Q (x)u (x)
− kd Id

u (x)2
− |n (x)|ks Is

u(x)3Q(x)

(
2u(x)2Q(x)2

|n(x)|2
− 1

)α

= 0. (6.13)

Here, assuming that the surface S is always visible makes u strictly positive. Moreover,
by applying the technique of change of variables v (x) = lnu (x)⇔∇u = u∇v to (6.12)
we can obtain

|n (x)|=
√
f2 |u (x)∇v (x)|2 + (u (x)∇v (x) · x)2 + u (x)2Q (x)2

⇔ |n (x)|
u (x)

=

√
f2 |∇v (x)|2 + (∇v (x) · x)2 + Q (x)2 =:W (x) .

(6.14)

Since
v = lnu

⇔ ev = u

⇔ e−2v = u−2 ,

(6.15)

by plugging (6.15) into (6.13) and with the help of (6.14) HJE (6.13) can be reformulated
as

(I (x)− κa Ia)
f
2W

Q
− κd Ide

−2v − Wκs Is
Q

e−2v
(
2Q2

W2
− 1

)α

= 0, (6.16)

which is also HJE and called “Phong SfS” problem.

Therefore, we obtain the Hamiltonian for the new model

HVBW = (I (x)− ka Ia)
f
2

Q(x)

|n(x)|
u(x)

− kd Id
u(x)2

− |n(x)|
u(x)

ks Is
u(x)2Q(x)

(
2Q(x)2

(
u(x)

|n(x)|

)2

− 1

)α

(6.17)
or

HVBW = (I (x)− ka Ia)
f
2W(x)

Q(x)︸ ︷︷ ︸
=:Ha

−kd Ide
−2v(x)

︸ ︷︷ ︸
=:Hd

− e−2v(x)
ks IsW(x)

Q(x)

(
2Q(x)2

W(x)2
− 1

)α

︸ ︷︷ ︸
=:Hs

, (6.18)
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with v = lnu.

Note that in the Phong model, the cosine in the specular term is usually replaced by
zero if

cosθ =
2Q(x)2

W(x)2
− 1 < 0. (6.19)

Remark 6.1.2. One important difference between the Hamiltonians of the model by Vo-
gel et al. and those of themodel by Prados and Faugeras that we have seen in Section 5.2
is the type of Hamiltonian. In fact, the latter is a eikonal type H (x,∇u (x)) and the for-
mer is a general one H (x,u (x) ,∇u (x)).

As pointed out in [29, 87], the difference is made in the modelling process. In [84, 85, 88]
Prados and Faugeras ignored the light attenuation factor 1/r2 influenced by inverse
square law, which leads to the results. After that, they consider this effect and refor-
mulated the brightness equation for the Lambertian surface in [29, 87], which we call
here “Prados 04” in order to distinguish from the previous one. As one might expect,
changing the image irradiance equation gives rise to a different type of Hamiltonian,
which requires different solution theory than that of eikonal-type. We summarise this
result in Table 6.1.

Rouy & Tourin Prados Prados 04 Vogel et al.

Camera Orthographic Perspective Perspective Perspective

Surface Lambertian Lambertian Lambertian Non-Lambertian

Hamiltonian Eikonal-type Eikonal-type General-type General-type

Convexity Convex Convex Convex Non-convex

Table 6.1: Comparison between the Shape from Shading models.

The exposition of the problems can also be found in [29, 87] which basically relies on
the generalised viscosity solution theory. More details about the solution theory for
general-type Hamiltonians, we refer to [12, 23, 60, 67, 69] and the references therein.

6.2 Analysis of the Model

In this section, we investigate the convexity of the Hamiltonian of the model.

We begin with ambient Ha and diffuse terms Hd in (6.18). This leads to the fact that the
convexity of the model is actually depends on the specular terms Hs.

Due to the complexities of the specular terms, here we only consider this problem in
one-dimensional case, and yet the idea can be extended to the two-dimensional case.
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6.2.1 Convexity of the Hamiltonian

Our task here is to check if HVBW is convex with respect to ∇v.

Ambient and Diffuse Terms

As can be seen in (6.18), the diffuse term Hd has no influence on the convexity of HVBW,
so we turn our attention to Ha. Actually, Ha is convex, since the convexity of W (x)
is already verified in Section 5.2. Therefore, the convexity of the model boils down to
check the property of the specular term Hs.

Now, we focus on the specular term Hs.

Convexity of the Functions

Before we test the convexity of Hs, we think about the properties of convex functions. In
general, convex functions are not closed under minus operations, e.g. x4 − x2, despite
the closedness under plus ones [103]. Therefore, Hs in (6.18) must be concave or “−Hs”
must be convex so as to achieve the convexity of Hamiltonian HVBW. We proceed with
this kept in mind.

6.2.2 Analysis of Hs in One-Dimensional Case

We analyse Hs by characterising critical points whose behaviour can give us useful in-
formation about the Hamiltonian itself.

When we take Hs into account in one-dimension, it is equivalent to consider

hs =
W(x)

Q(x)

(
2Q(x)2

W(x)2
− 1

)α

, (6.20)

where

W(x) =

√
f2p2 + (px)2 + Q(x)2 (6.21)

with p =∇v and

Q(x) =

√
f2

x2 + f2
. (6.22)

Since x ∈ R
2 is already known by pixel position of a given image, here we also assume

x to be known.
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Critical Points

In order to find critical points, we first differentiate (6.21) with respect to p for the later
use

Wp =
f
22p + 2px2

2
√
f2p2 + p2x2 + Q2

=
2p
(
f
2 + x2

)

2
√
f2p2 + p2x2 + Q2

=
p
(
f
2 + x2

)

W
.

(6.23)

Now, by taking the first derivative of (6.20) with respect to p, we have

hsP =
1

Q

[
Wp

(
2Q2

W2
− 1

)α

+Wα

(
2Q2

W2
− 1

)α−1
2Q2

(
−2
W3

p
(
f
2 + p2

)

W

)]

(6.23)
=

1

Q

(
2Q2

W2
− 1

)α−1[
p
(
f
2 + x2

)

W

(
2Q2

W2
− 1

)
− 4αQ2p

(
f
2 + p2

)

W3

]

=
1

Q

(
2Q2

W2
− 1

)α−1
p
(
f
2 + x2

)

W

[(
2Q2

W2
− 1

)
− 4αQ2

W2

]

=
1

Q

(
2Q2

W2
− 1

)α−1
p
(
f
2 + x2

)

W

[
2Q2 (1− 2α)

W2
− 1

]
.

(6.24)

When we consider hsp = 0 under the assumption Q 6= 0, we have three possibilities:

2Q2

W2
− 1 = 0, (6.25)

p = 0, (6.26)

or
2Q2 (1− 2α)

W2
− 1 = 0. (6.27)

By virtue of specular exponent property in Phong reflectance model α≥ 2, the left hand
side of (6.27) becomes negative and cannot be zero. As a consequence, the task reduces
to deal with (6.25) and (6.26).

Classification of Critical Points

In order to classify critical points, we compute the second derivative of hs using product
and chain rule. From (6.24) we can obtain
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hspp =
1

Q

[(
2Q2

W2
− 1

)α−1]

p

p
(
f
2 + x2

)

W

[
2Q2 (1− 2α)

W2
− 1

]

+
1

Q

(
2Q2

W2
− 1

)α−1[
p
(
f
2 + x2

)

W

]

p

[
2Q2 (1− 2α)

W2
− 1

]

+
1

Q

(
2Q2

W2
− 1

)α−1
p
(
f
2 + x2

)

W

[
2Q2 (1− 2α)

W2
− 1

]

p

.

(6.28)

Now, we examine two cases (6.25) and (6.26), respectively.

Case: 2Q2

W2 = 1. When we calculate this condition explicitly, we can obtain

W2 = 2Q2

(6.21)⇔
(
f
2 + x2

)
p2 + Q2 = 2Q2

⇔ p2 =
1

f2 + x2
Q2

(6.22)⇔ p = ± f

f2 + x2
.

(6.29)

In (6.28), we can easily see that hspp

∣∣∣ 2Q2

W2 =1
= 0.

Case: p = 0. Evaluating (6.28) when p = 0 gives

hspp

∣∣∣
p=0

=

(
x2 + f

2
)2

f2
(1− 4α) . (6.30)

Hence, hs is concave as long as α >
1
4 . Therefore, under this condition we can obtain

convex property of hs when p = 0.

We sum up the investigation of sign changes around the critical points in Table 6.2,
Table 6.3, and Table 6.4.

Remark 6.2.1. As can be seen in Table 6.3, we can recognise that convexity of the Hamil-
tonian HVBW for the range of specular exponent 1≤ α ≤ 100 still holds within the prox-
imity of the critical point (−0.05f

x2+f2
≤ p ≤ 0.05f

x2+f2
) when p = 0. From the theoretical point of

view, we can also have similar effect when x≫ f.

When p = ± f

x2+f2
, however, hsp vanishes, which makes hspp zero as well. Therefore, we

can notice that around this point the Hamiltonian hs is not strictly concave and thereby
HVBW loses strong convexity. As can be seen in Table 6.2 and Table 6.4, for the close



114 Chapter 6. Discussion of Model Extensions

p p =
−f

x2 + f2
p =
−0.95f
x2 + f2

hsp 0

{
+ α > 0.0243

− α < 0.0243

hspp 0





+ α > 1.0020

− 0.0007 < α < 1.0020

+ α < 0.0007

Table 6.2: Investigation of sign changes of hsp and hspp around the critical point when

p = −f
x2+f2

.

p p =
−0.05f
x2 + f2

p = 0 p =
0.05f

x2 + f2

hsp

{
+ α > 0.2494

− α < 0.2494
0

{
− α > 0.2494

+ α < 0.2494

hspp





+ α > 100.2525

− 0.2481 < α < 100.2525

+ α < 0.2481

{
− α >

1
4

+ α <
1
4





+ α > 100.2525

− 0.2481 < α < 100.2525

+ α < 0.2481

Table 6.3: Investigation of sign changes of hsp and hspp around the critical point when
p = 0.

point of p = ± f

x2+f2
the valid α for the convexity of HVBW is only when α = 1, which is

too small to be used in reality.

6.3 Summary

In this chapter, we have studied the Vogel-Breuß-Weickert model which involves non-
Lambertian surfaces.

First, we have appreciated the newmodel. Compared to the Prados model in Chapter 5,
it deals with Phong reflectance in consideration of light attenuation term. This change
in model assumptions affects the type of Hamiltonian, which also has influence on the
convexity.

Then, to understand the behaviour of Hamiltonian we have analysed the critical points
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p p =
0.95f

x2 + f2
p =

f

x2 + f2

hsp

{
− α > 0.0244

+ α < 0.0244
0

hspp





+ α > 1.0020

− 0.0007 < α < 1.0020

+ α < 0.0007

0

Table 6.4: Investigation of sign changes of hsp and hspp around the critical point when

p = f

x2+f2
.

in one-dimensional case and have seen that underwhich circumstances the Hamiltonian
can be convex.

In the next chapter, we shall discuss numerical schemes for solving Hamilton-Jacobi
equations.





Chapter 7

Numerical Schemes

So far, we have investigated perspective Shape from Shading models describing Lam-
bertian and non-Lambertian surfaces which actually deal with convex and non-convex
Hamiltonians. However, besides theoretical point of view we are also in need of practi-
cal strategy in order to realise the model in real-life situations.

In this chapter, we shall study numerical methods to solve Hamilton-Jacobi equations
in the viscosity framework. Since Hamilton-Jacobi equations belong to the class of non-
linear PDEs, there are more issues that we have to think about than those of linear ones.
One important issue is about the criterion for the convergence of numerical schemes.
Concerning the convergence matter, a scheme that approximates nonlinear PDEs to ob-
tain viscosity solutions asks more requirements than those of Lax-Richtmyer equiva-
lence theorem in the linear cases, which we shall discuss here.

The structure of this chapter is as follows.

We begin with the basic concepts that will be used for the analysis of numerical schemes
in this chapter by examining upwind schemes approximating linear advection equation.
This includes consistency, stability, monotonicity, and the fundamental theorem of nu-
merical analysis.

After that we shall see how the convergence of numerical schemesworks in the viscosity
framework with these notions. This is actually the main point to prove the convergence
of Rouy and Tourin scheme in [26]. To this end, we primarily follow the concepts and
arguments from the work by Barles and Souganidis [37] and by Souganidis [101], both
of which are based on the notion of weak limits.

Then, the attention will be paid to the scheme of Rouy and Tourin which is originally de-
signed to obtain viscosity solutions of the eikonal-type Hamiltonian for the orthogonal
Shape from Shading model.

Finally, we think of the Vogel-Breuß-Weickert model in a numerical point of view. Our
contribution here is to provide the analysis of convergence for the explicit scheme in
one-dimensional case.
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To this end, we have used a certain range of literature depending on the topics. Main
references for basic numerical concepts in this chapter are [6, 15, 33, 58, 59] and for
the convergence theory in the viscosity framework [37, 101] are used. In addition, we
mainly follow [26] for the scheme of Rouy and Tourin and [61, 74, 75] for numerical
algorithms of Vogel-Breuß-Weickert model, respectively.

7.1 Basic Notions for Numerical Schemes

Since upwind-type schemes are used in the work by Rouy and Tourin [26] and Vogel
et al. [75] in order to solve HJE numerically in the viscosity framework, here we briefly
review the basics of these types of schemes.

7.1.1 Upwind Scheme

To illustrate the idea, first let us consider the following one-dimensional linear hyper-
bolic advection equation

ut + aux = 0, (7.1)

where a ∈ R with an initial condition

u (x,0) := u0 (x) . (7.2)

The solution of (7.1) with (7.2) is known to be

u (x, t) := u0 (x− at) (7.3)

for example in [51, 58, 59] and it is not difficult to show. Taking partial derivatives of
(7.3) with respect to t and x yields

∂

∂t
u (x, t) =

∂

∂t
u0 (x− at)

x− at =: x0

=
∂

∂x0
u0 (x0)

∂x0
∂t

since ∂x0 = ∂x and
∂x0
∂t

= −a

=
∂

∂x
u0 (x− at) (−a)

(7.4)

and

a
∂

∂x
u (x, t) = a

∂

∂x
u0 (x− at)

= a
∂

∂x
u0 (x− at) ,

(7.5)
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respectively. Plugging (7.4) and (7.5) into (7.1) gives

ut + aux =
∂

∂x
u0 (x− at) (−a) + a

∂

∂x
u0 (x− at) = 0, (7.6)

which verifies the assertion.

In one-dimensional case, the solution (7.3) basically states that the initial data u0 propa-
gates with the speed a in one direction, namely right if a> 0 or left if a < 0. This explains
a spatially one-sided discretisation, see Figure 7.1.

Before we discretise spatial domain, temporal discretisation is taken into account first.
For this purpose, we make use of explicit forward Euler method, which means

ut ≈
un+1
i − uni

∆t
. (7.7)

Now, we consider the spatial discretisation. As mentioned earlier, the information is de-
livered from left to right when a> 0, so in this case the reasonable spatial approximation
is

ux ≈
uni − uni−1

∆x
. (7.8)

In an analogous way, when a < 0 the information propagates from right to left, therefore
we have the following spatial approximation

ux ≈
uni+1 − uni

∆x
. (7.9)

Plugging (7.8) and (7.9) with (7.7) into (7.1) yields

un+1
i − uni

∆t
+ a

uni − uni−1
∆x

= 0 a > 0,

un+1
i − uni

∆t
+ a

uni+1 − uni
∆x

= 0 a < 0,

(7.10)

where
unj = u (j∆x,n∆t) j ∈Z ,n ∈N

+ . (7.11)

By sorting (7.10) out with respect to un+1
i , we can obtain the following upwind scheme:

un+1
i = uni − a

∆t

∆x

(
uni − uni−1

)
a > 0, (7.12)

and

un+1
i = uni − a

∆t

∆x

(
uni+1 − uni

)
a < 0. (7.13)

Stencil diagrams for (7.12) and (7.13) are provided in Figure 7.1a and Figure 7.1b, re-
spectively.

Remark 7.1.1. As can be noticed above, the basic idea of a upwind scheme boils down
to determining propagation directions of information.
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n-1

n

n+1

time

i-2 i-1 i i+1 i+2 space

(a) Stencil diagram for the case of a > 0.

n-1

n

n+1

time

i-2 i-1 i i+1 i+2 space

(b) Stencil diagram for the case of a < 0.

Figure 7.1: Stencil diagrams for upwind scheme in one-dimension.

7.1.2 Local Truncation Error and Consistency

In numerical analysis literature, e.g. in [58], local truncation error L is explained as a mea-
sure of how well the difference equation approximates the differential equation locally.
It can be computed by replacing the approximate solution in the difference equation by
the true solution. Let us have a look at the following example.

Here we think about the case of a > 0 in (7.12). Then, the local truncation error L can be
understood as

ut + aux︸ ︷︷ ︸
original PDE

=
un+1
i − uni

∆t
+ a

uni − uni−1
∆x︸ ︷︷ ︸

numerical scheme

+ L︸︷︷︸
local truncation error

. (7.14)

In what follows, we shall see how local truncation error can be computed by making
use of Taylor series expansion.

Under the smoothness assumption of u, by employing a notation

u (x, t) =: u := u (i∆x,n∆t) = uni . (7.15)

Taylor series expansions yield:

un+1
i = u + ∆tut +

∆2

2
utt +

∆t3

6
+O

(
∆t4
)
, (7.16)

uni = u , (7.17)

and

uni−1 = u− ∆xux +
∆x2

2
uxx −

∆x3

6
uxxx +O

(
∆x4

)
. (7.18)
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Then, by (7.16), (7.17), and (7.18) the local truncation error L can be obtained by

L =

[
u + ∆tut +

∆2

2
utt +

∆t3

6
+O

(
∆t4
)]
− u

∆t

+
a

∆x

[
u−

[
u− ∆xux +

∆x2

2
uxx −

∆x3

6
uxxx +O

(
∆x4

)]]

= ut + aux︸ ︷︷ ︸
(7.1)
= 0

+
∆t

2
utt +

∆t2

6
uttt +O

(
∆t3
)
− a∆x

2
uxx +

a∆x2

6
uxxx +O

(
∆x3

)
.

(7.19)
Additionally, with

λ =
∆t

∆x
= constant (7.20)

we are able to have the relationship

O (∆t) =O (∆x) . (7.21)

Hence, with the help of (7.21) and “big O” notation we can formulate the local trunca-
tion error L in (7.19) as

L = O (∆x) . (7.22)

This defines the notion consistency of the numerical scheme, which means that local
truncation error L goes to zero with the rate ∆x as the mesh (or grid) size ∆x vanishes.
Thus, we can observe that upwind scheme (7.12) is consistent of first order in space and
time with the PDE (7.1).

7.1.3 Necessary Notions for Convergence

The fundamental theorem of numerical analysis which will be the next topic is a pri-
mary building block for linear numerical methods. In order to appreciate this, some
other notions are needed to be taken into account in addition to consistency and local
truncation error.

In the theory of numerical analysis for PDEs, three notions are closely related, i.e. consis-
tency, convergence, and stability. As we have studied the consistency just right before,
let us start with the meaning of convergence and see how it is related to others. Besides
that, monotonicity shall also be discussed as a nonlinear stability criterion.

Convergence

Convergence of a numerical scheme means that a solution of a difference equation ob-
tained from a numerical scheme approximating an original PDE approaches a true so-
lution of an original PDE with respect to a corresponding norm, as parameters in nu-
merical methods, e.g. a mesh size ∆x and a time step size ∆t, vanish. Convergence of a



122 Chapter 7. Numerical Schemes

scheme is the desired property of a numerical method, otherwise the result of a scheme
is meaningless.

At this point, one may raise a question “Is consistency not good enough for the conver-
gence of a scheme?” If not, why?

The answer to this question is “no” and the issue here is the total sum of accumulated
truncation errors. The main reason for this problem lies in the approximation process
of continuous problems in a discrete domain.

Since a truncation error occurs at each evaluation point of a numerical scheme as we go
over all grid points within a discretisation domain, we definitely need an insurance pol-
icy which guarantees that these accumulated errors do not grow exponentially, which in
mathematical terms is bounded above. If these computational errors are not bounded,
they force us to solve different problems from the original ones, which makes the com-
puted results of no use. Stability theory of numerical schemes is developed in order to
take care of this phenomenon.

Stability

In [15], stability is described in three aspects, all of which are helpful to understand the
convergence result in the next section. Here, we briefly appreciate them one by one.

First of all, stability means that solutions of a numerical approximation of a PDEmimics
important structural properties of analytic solutions of an original PDE.

Among such properties, we can choose a maximum (or minimum) principle. So, if
we have a maximum (or minimum) principle in analytic solutions, discrete solutions
of a stable scheme must also obey a discrete maximum (or minimum) principle. This
perspective leads to a notion of monotonicity of a scheme which will be discussed as a
next topic.

Another perspective of stability is that it is relevant to give a bound on a numerical
solution. This is reasonable in the sense that a bounded accumulated sum of errors lead
to a bound on a numerical solution. Such a bound may depend on the norm in use. This
aspect will be used for the convergence result in the next section.

As a result, in numerical analysis stability is an indispensable requirement to prove
convergence of a scheme.

Remark 7.1.2. Notice that we only have discussed linear cases so far. Then, how about
nonlinear ones? Not only for linear cases but also for nonlinear ones does a discrete
maximum (or minimum) principle have a meaning as well, since it enables to avoid
numerical oscillations which can be misinterpreted as noise.

In the sequel, we are about to see a property of monotonicity which can serve as a non-
linear stability criterion.
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Monotonicity

Monotonicy implies that a discrete comparison principle holds for all time levels n ∈
N

+. This suggests that for the given Vn and Wn with Vn ≥ Wn (pointwise) the in-
equality should not be changed as a time step n evolves. In other words, Vn+1 ≥Wn+1

(pointwise) must also be valid at the next time level n + 1 [58].

As a result, monotonicity mimics an analytic comparison principle: Given two initial con-
ditions (or boundary conditions) Φ≥Ψ (pointwise), then for the corresponding analytic
solutions uΦ and uΨ should hold uΦ ≥ uΨ (pointwise).

By monotonicity, a discrete maximum (or minimum) principle is immediately justified.
This can be understood as follows. We may take sequences composed solely of the
constants given by the maximum/minimum of some given sequences Vn. Applying a
monotone scheme to Vn implies that this can never exceed the bounds.

Then, how can we verify monotonicity and why in that way?

According to [59], for a given explicit three points scheme by

un+1
i = G

(
uni−1,u

n
i ,u

n
i+1

)
, (7.23)

to prove monotonicity we must show

(i)
∂G

∂uni−1
≥ 0, (ii)

∂G
∂uni
≥ 0, (iii)

∂G
∂uni+1

≥ 0. (7.24)

This means that G should be a monotonically increasing function with respect to uni−1,
uni , and uni+1. To explain why this is the case, let us take the point of view that a set of

data Vn =
{
. . . ,vni−1,v

n
i ,v

n
i+1, . . .

}
is given. The task is to validate a comparison principle

as defined above. Thus, for comparison we take some data setWn with Wn ≥ Vn in the
pointwise sense.

Now, let wn
k = vnk for all indices k, except for w

n
i > vni . What we expect when applying G

in (7.23) for G monotone isWn+1 ≥ Vn+1 in the pointwise sense.

First, we check the case of (i).

At point i − 1, given wn
i > vni , it may in general only hold wn+1

i−1 ≥ vn+1
i−1 . When we

consider any positive perturbation δ of wn
k

wn
k = vnk + δ , (7.25)

this leads to

wn+1
i−1

(7.23)
= G

(
wn
i−2,w

n
i−1,w

n
i

)

⇔ wn+1
i−1

(7.25)
= G

(
vni−2,v

n
i−1,v

n
i + δ

) !
≥ G

(
vni−2,v

n
i−1,v

n
i

)
︸ ︷︷ ︸

(∗)

(7.23)
= vn+1

i−1 . (7.26)
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The part (∗) which we really want in (7.26) can be expressed as

G
(
vni−2,v

n
i−1,v

n
i + δ

)
− G

(
vni−2,v

n
i−1,v

n
i

)
≥ 0 ∀δ > 0

⇔
G
(
vni−2,v

n
i−1,v

n
i + δ

)
− G

(
vni−2,v

n
i−1,v

n
i

)

δ
≥ 0 ∀δ > 0.

(7.27)

Taking δ→ 0 gives the reason of the condition (iii) in (7.24) from (7.23).

In a similar way, by investigating the case at the point i + 1 and i we can obtain the
condition (i) and (ii) in (7.24) from (7.23), respectively.

Example 7.1.1 (Monotonocity of Upwind Scheme). Here we consider the condition for
monotonicity of upwind scheme (7.12). When we rewrite (7.12) as

H
(
uni−1,u

n
i

)
= uni − a

∆t

∆x

(
uni − uni−1

)

=

(
1− a

∆t

∆x

)
uni +

a∆t

∆x
uni−1 .

(7.28)

In view of (7.24) scheme (7.12) is monotone under the following time step size restriction
when a > 0: 




∂H

∂uni−1
=

a∆t

∆x
≥ 0

∂H

∂uni
= 1− a∆t

∆x
≥ 0 ⇔ ∆t ≤ ∆x

a
.

(7.29)

Remark 7.1.3. The time step size restriction in (7.29) is known as CFL condition after
Courant, Friedrichs and Lewy [89] (English version [90]), which is a necessary condition
for the convergence of finite difference methods. This constraint states that there is a
limit for the rate in propagation of information [15, 58, 59]. In addition, ν := a∆t

∆x is
called Courant number.

Now, we give the fundamental theorem of numerical analysis.

7.1.4 The Fundamental Theorem of Numerical Analysis

The fundamental theorem of numerical analysis states that consistency and stability
conditions are the necessary and sufficient conditions for convergence of a scheme given
a well-posed initial value problem and a finite difference approximation to it.

This can be summarised as

consistency + stability⇔ convergence . (7.30)

Sometimes, it is also referred as Lax-Richtmyer theorem or Lax’s equivalence theorem [80].
The rigourous proof can be found, for example, in [92] or [49].

Remark 7.1.4. The point to be stressed out is that the Lax’s equivalence theorem can
only be applied to linear cases. We shall see the nonlinear cases in the next section.



7.2. Stepping Stones to Convergence 125

7.2 Stepping Stones to Convergence

According to [37], the convergence result basically states that solutions of a scheme
which is monotone, consistent and stable converge towards a unique continuous vis-
cosity solution provided that a problem admits a comparison principle.

In this section, we investigate the above statement which is amain building block for the
convergence of Rouy and Tourin scheme. Since for eikonal-type Hamiltonians the anal-
ysis is given in [68], we focus here specially on general-type. As noted previously, the
argumentations basically rely on the work by Barles and Souganidis [37] and Sougani-
dis [101]. More details about the theory, we refer to [37, 78, 101] and the references
therein.

7.2.1 Construction of a Scheme Function

The ideas explained below mostly came from work by Ishii [48] and by Barles and
Perthame [35, 36]. Although they have employed discontinuous concepts, we restrict
ourselves only to continuous ones.

What we focus on is the Dirichlet problem for Hamilton-Jacobi equations of the form

{
H (x,u,Du) = 0 in Ω

u (x) = ϕ (x) on ∂Ω ,
(7.31)

where H : Ω×R×R
n→ R is continuous.

Now, we are interested in constructing a function which has a capability to combine
the Hamiltonian and the boundary condition in (7.31) into one expression for efficient
treatment of schemes.

As noted before, by assuming that no discontinuity occurs on boundary in (7.31), we
can define a function F : Ω×R×R

n→R as

F (x,u,Du) =

{
H (x,u,Du) x ∈Ω

u (x)− ϕ (x) x ∈ ∂Ω .
(7.32)

Then, (7.31) can be reformulated as

F (x,u,Du) = 0 in Ω , (7.33)

where Ω denotes an open subset of R
n, Ω is its closure, the functions F : Ω×R×R

n→
R and u : Ω→ R are locally bounded and continuous both in Ω and on the boundary
∂Ω.
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7.2.2 Continuous Viscosity Solutions for General-Type HJE

As we have seen in Definition 2.3.1, continuous viscosity solutions for general-type
Hamilton-Jacobi equations (7.31) can be defined as follows.

Definition 7.2.1 (Continuous Viscosity Solution). A continuous function u ∈ C0 is a
viscosity solution of HJE (7.31) if the following conditions are satisfied:

(i) (Viscosity subsolution) For any test function ϕ ∈ C1(Ω), if x0 ∈Ω is a local maxi-
mum point for (u− ϕ), then

H (x0,u (x0) ,Dϕ (x0)) ≤ 0 (7.34)

(ii) (Viscosity supersolution) For any test function ϕ ∈ C1(Ω), if x1 ∈ Ω is a local
minimum point for (u− ϕ), then

H ((x1,u (x1) ,Dϕ (x1))) ≥ 0. (7.35)

This means that for a locally bounded function u : Ω→ R to be a viscosity solution of
(7.31) u need to satisfy (7.33) in the viscosity sense in view of Definition 7.2.1.

7.3 Theoretical Investigation of Convergence

To approximate (7.33), we consider schemes of the form

S (ρ,x,uρ (x) ,uρ) = 0 in Ω , (7.36)

where S : R
+×Ω×R× B

(
Ω
)
→R and B

(
Ω
)
denotes the space of bounded functions

defined on Ω and ρ > 0 is a grid parameter.

As mentioned before, the main statement for convergence result is that solutions of
(7.36) converge to the continuous viscosity solution of (7.31) as long as schemes are
monotone, stable and consistent and provided that the original problem (7.31) admits a
comparison principle.

In what follows, we formulate the assumptions for schemes (7.36).

7.3.1 Assumptions on Schemes

The assumptions on schemes comprise:

(S1) monotonicity

(S2) stability

(S3) consistency
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(S4) strong uniqueness.

Here, we appreciate one by one.

The first assumption is monotonicity of schemes and can be defined as follows.

Definition 7.3.1 (Monotonicity). The scheme S in (7.36) is calledmonotone if ρ≥ 0, x∈Ω,
t ∈ R, and u,v ∈ B

(
Ω
)

u ≤ v ⇒ S (ρ,x, t,u) ≥ S (ρ,x, t,v) . (7.37)

Remark 7.3.1. According to this definition, the monotone scheme is nonincreasing with
respect to u. For this matter, one may raise a question if this notion is different from the
one in (7.23) and (7.24). The answer to this question is “no” and can be understood as
follows.

The monotonicity in (7.23) is designed for a one-dimensional Cauchy problem





∂u

∂t
+ H (x,u,Du) = 0 in R× (0,T]

u (x,0) = u0 (x) in R ,

(7.38)

where H : R×R×R→ R is continuous.

For discretisation of (7.38), by making use of Euler forward method in time and upwind
scheme in spatial domain we obtain

un+1
i − uni

∆t
+ H

(
xi,u

n
i ,
xi − xi−1

∆x

)
= 0

⇔ un+1
i = uni − ∆tH

(
xi,u

n
i ,
xi − xi−1

∆x

)

︸ ︷︷ ︸
=:H

.
(7.39)

According to (7.23) and (7.24),H in (7.39) should be a nondecreasing function for mono-
tonicity. This means that H in (7.39) must be a monotonic nonincreasing function and
so is S in (7.36) which approximates H.

The second one is the stability of schemes and can be defined as follows.

Definition 7.3.2 (Stability). The scheme S in (7.36) is called stable if for all ρ > 0, there
exists a solution uρ ∈ B

(
Ω
)
of (7.36) with a bound which is independent of ρ.

Remark 7.3.2. As we have studied the notion of stability in previous section, the bound
on the accumulated local truncation error leads to the existence of numerical solutions
with a corresponding bound.

The third one is consistency of schemes and can be defined as follows.
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Definition 7.3.3 (Consistency).

limsup
ρ→ 0
y→ x
ξ→ 0

S (ρ,y,φ (y) + ξ,φ + ξ)

ρ
≤ F (x,φ (x) ,Dφ (x)) , (7.40)

and

liminf
ρ→ 0
y→ x
ξ→ 0

S (ρ,y,φ (y) + ξ,φ + ξ)

ρ
≥ F (x,φ (x) ,Dφ (x)) . (7.41)

Remark 7.3.3. This new definition seems a little bit different from the one that we en-
countered in the previous section, but it is also related to the local truncation error in
the viscosity sense. Both (7.40) and (7.41) are designed to check how schemes accu-
rately mimic viscosity super- and subsolution notions in Definition 7.2.1, respectively.
Specially, the right hand sides of both (7.40) and (7.41) are the limiting process of the
method which will be detailed in the proof of Theorem 7.3.1.

Another important assumption is strong uniqueness property of (7.31), which also sug-
gests that the same property holds for (7.33). Since we treat only continuous solutions,
we can have this property without any difficulty, which basically rely on the comparison
principle. The result is given in Definition 7.3.4 borrowed from [84], for the proof and
theorems involved with this matter, we refer to [12, 23, 60] and the references therein.

Definition 7.3.4 (Strong Uniqueness). It can be said that the strong uniqueness holds for
the problem (7.31) and (7.33), when

u (x) ≤ v (x) ∀x ∈Ω , (7.42)

where u and v denote viscosity sub- and supersolution, respectively.

7.3.2 The Convergence Result

Themain theorem for convergence of schemes is given below. We elaborate on the proof
in [37] thereby clarifying the ideas therein.

Theorem 7.3.1. Assume that scheme S in (7.36) satisfies (S1), (S2), (S3), and (S4). Then, the
solution of uρ of (7.36) converges locally uniformly to the unique continuous viscosity solution
of (7.31) and (7.33) as ρ→ 0.

Proof. The main idea of this proof utilises strong uniqueness property and the auxil-
iary functions defined by weak limits which have useful properties in the continuous
viscosity framework.

The flow of argumentation is as follows.
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First, we define functions u and u by

u (x) = liminf
ρ→ 0
y→ x

uρ (y) (7.43)

and
u (x) = limsup

ρ→ 0
y→ x

uρ (y) . (7.44)

Hence, it is clear that u ≤ u holds.

Next, assume for the time being that u and u are viscosity sub- and supersolution
of (7.33) respectively, which we shall validate later. Then, we have u ≤ u by Defini-
tion 7.3.4. This means that with the previous result we are able to receive

u = u . (7.45)

In other words, we can obtain the unique viscosity solution u such that

u ≡ liminf
ρ→ 0
y→ x

uρ (y) = limsup
ρ→ 0
y→ x

uρ (y) , (7.46)

where uρ is used in scheme function (7.36).

Since viscosity solution u is both viscosity sub- and supersolution at the same time by
Definition 7.2.1, this also implies the local uniform convergence of uρ to u in view of
(7.46). Hence, the assertion follows.

As a result, our rest job is to confirm the above claim that u and u are viscosity sub- and
supersolution of (7.33), respectively.

Subsolution u. The idea of this proof is composed of two parts. First, we build up
sequences in such a way, that they satisfy the viscosity subsolution criteria. Afterwards,
by taking limits and applying the assumptions on the scheme S, i.e. monotonicity and
consistency, we obtain the desired result.

Let x0 be a local maximum of u− φ on Ω for some φ ∈ C∞
(
Ω
)
. Without loss of gener-

ality, we may assume that x0 is a strict local maximum, that u (x0) = φ (x0), and finally
that φ ≥ 2 supρ ‖uρ‖∞ outside the ball B (x0,r), where r > 0 is such that

u (x)− φ (x) ≤ 0 = u (x0)− φ (x0) in B (x0,r) . (7.47)

This guarantees that the local maximum occurs only within the ball B (x0,r).

Then, as n→∞ by Lemma II 2.4 in [12] there exist sequences ρn ∈ R
+ and yn ∈Ω such

that

(i) ρn→ 0



130 Chapter 7. Numerical Schemes

(ii) yn→ x0

(iii) uρn (yn)→ u (x0)

(iv) yn is a global maximum point of uρn (·)− φ (·).

By denoting
ξn =: uρn (yn)− φ (yn) (7.48)

and making use of (7.47), as ξn→ 0 we have

uρn (yn) ≤ φ (x) + ξn ∀x ∈Ω . (7.49)

Applying monotonicity of S to (7.49) yields

S (ρn,yn,u
ρn (yn) ,u

ρn) ≥ S (ρn,yn,φ (yn) + ξn,φ + ξn) (7.50)

Taking limits on the left hand side of (7.56) gives

S (ρn,yn,φ (yn) + ξn,φ + ξn) ≤ 0. (7.51)

For estimation of (7.51), by using consistency of S in (7.41) we can receive

liminf
n

S (ρn,yn,φ (yn) + ξn,φ + ξn)

ρn
≤ 0

⇔ F (x0,φ (x0) ,Dφ (x0))
(7.41)

≤ liminf
ρ→ 0
y→ x0
ξ→ 0

S (ρ,y,φ (y) + ξ,φ + ξ)

ρ
≤ 0,

(7.52)

which is desired inequality, since u (x0) = φ (x0) by (7.47).

Supersolution u. The idea here is identical to the subsolution case and only the maxi-
mum point is replaced by a minimum point.

Let x1 be a local minimumof u−φ on Ω for some φ∈C∞ (Ω). Without loss of generality,
we may assume that x1 is a strict local minimum, that u (x1) = φ (x1), and finally that
φ ≤ −2 supρ ‖uρ‖∞ outside the ball B (x1,r), where r > 0 is such that

u (x)− φ (x) ≥ 0 = u (x1)− φ (x1) in B (x1,r) . (7.53)

This guarantees that the local minimum occurs only within the ball B (x1,r).

Then, as n→∞ by Lemma II 2.4 in [12] there exist sequences ρn ∈ R
+ and yn ∈Ω such

that

(i) ρn→ 0
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(ii) yn→ x1

(iii) uρn (yn)→ u (x1)

(iv) yn is a global maximum point of uρn (·)− φ (·).
By denoting

ξn =: uρn (yn)− φ (yn) (7.54)

and making use of (7.47), as ξn→ 0 we have

uρn (yn) ≥ φ (x) + ξn ∀x ∈Ω . (7.55)

Applying monotonicity of S to (7.49) yields

S (ρn,yn,u
ρn (yn) ,u

ρn) ≤ S (ρn,yn,φ (yn) + ξn,φ + ξn) (7.56)

Taking limits on the left hand side of (7.56) gives

S (ρn,yn,φ (yn) + ξn,φ + ξn) ≥ 0. (7.57)

For the estimation of (7.57), by using consistency of S in (7.40) we can receive

limsup
n

S (ρn,yn,φ (yn) + ξn,φ + ξn)

ρn
≥ 0

⇔ F (x1,φ (x1) ,Dφ (x1))
(7.40)

≥ limsup
ρ→ 0
y→ x1
ξ→ 0

S (ρ,y,φ (y) + ξ,φ + ξ)

ρ
≥ 0, (7.58)

which is desired inequality, since u (x1) = φ (x1) by (7.53).

Remark 7.3.4. Since the assumptions of the Rouy and Tourin scheme [26] are the same
as here, i.e. monotonicity, stability, consistency and strong uniqueness, this convergence
result can be transferred directly.

7.4 The Scheme of Rouy and Tourin

In this section, we study the scheme of Rouy and Tourin by making use of the one-
dimensional eikonal equation. This scheme was quite successful to deal with Hamilton-
Jacobi equation in the viscosity framework [26].

7.4.1 Construction of a Scheme

Let us consider the following one-dimensional eikonal equation
{
|∇u (x)| = 1 x ∈ (0,1)

u (x) = 0 x ∈ {0,1} .
(7.59)
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Numerical Approximation

Then, a numerical approximation U must satisfy

{
gi (D

+
x Ui,D

−
x Ui) = 0 ∀i ∈ Q

Ui = 0 ∀i ∈ ∂Q ,
(7.60)

where

gi (a,b) =

√
(min(0,a,b))2 − 1, (7.61)

D+
x =

Ui+1−Ui

∆x
, (7.62)

D−x =
Ui−1−Ui

∆x
, (7.63)

Q = {i ∈N |xi ∈ (0,1)} , (7.64)

and
∂Q = {i ∈N |xi ∈ {0,1}} . (7.65)

To make sure everything go off without a hitch, we assume the original problem (7.59)
fulfils all the requirements for Theorem 4.3.1 in order to guarantee the uniqueness of a
solution and so does the scheme gi with index sets Q and ∂Q in view of Remark 4.3.1.
In what follows, we give an exposition of this method.

To solve boundary value problem (7.59), we make use of method of artificial time as done
in [75]. This means that we obtain u (x, t) by introducing a pseudo-time variable t and
solve this problem with respect to t iteratively until a steady state defined by ut = 0 is
attained [26, 75]. For an overview of different numerical methods to solve HJEs, we
refer to [21].

According to this method, (7.59) can be turned into a Cauchy problem





ut + |ux| − 1 = 0 x ∈ (0,1)× t ∈ ]0,T]

u (x, t) = 0 x ∈ {0,1} × t ∈ ]0,T]

u (x,0) = 0 x ∈ [0,1] .

(7.66)

For the approximation of (7.66), we employ Euler forward method like in (7.7) for the
time derivative ut and a upwind-type scheme of Rouy and Tourin for the spatial deriva-
tive ux [26]. The latter means

ux (i∆x, ·) ≈min
(
0,D+

x ,D
−
x

)
=: ûx , (7.67)

where

D+
x =

ui+1 − ui
∆x

(7.68)
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and

D−x =
ui−1 − ui

∆x
. (7.69)

Plugging (7.7) and (7.67) into (7.66) yields

un+1
i − uni

∆t
+ |ûx| − 1 = 0

⇔ un+1
i − uni

∆t
= − (|ûx| − 1)

⇔ un+1
i = uni − ∆t (|ûx| − 1)

|·|=
√

(·)2⇔ un+1
i = uni − ∆t

(√
û2x − 1

)

︸ ︷︷ ︸
=:G(ui−1,ui,ui+1)

.

(7.70)

Remark 7.4.1. For the choice of the third argument in (7.67), we need to set

ûx :=
ui − ui−1

∆x
> 0 (7.71)

in order to ensure the consistency of the discretisation.

This type of scheme chooses one appropriate direction of information propagationwhich
is meaningful for the problem itself. In other words, the discretisation has the same ef-
fect by making use of max operation with + sign of ui, which means

ux (i∆x, ·) ≈max
(
0,D+

x ,D
−
x

)
=: ûx , (7.72)

where

D+
x =

ui − ui+1

∆x
(7.73)

and

D−x =
ui − ui−1

∆x
. (7.74)

Analogous to Remark 7.4.1, we need to set

ûx :=
ui+1 − ui

∆x
, (7.75)

when in (7.72) the second argument is chosen.

7.4.2 Convergence of a Scheme

In the previous section, we have already seen how the convergence of a scheme works
in the viscosity framework. Therefore, it suffices here that the assumptions of a scheme
are fulfilled. These assumptions are composed of monotonicity, stability, consistency
and uniqueness property of a problem.
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Monotonicity and Stability

Since the scheme is stable as long as it is monotone, a monotonicity condition on the
scheme can also serve as a stability restriction.

For the monotonicity investigation, we follow the notions from (7.23). As we have seen
in (7.24), this means that we must show

(i)
∂G

∂uni−1
≥ 0, (ii)

∂G
∂uni
≥ 0, (iii)

∂G
∂uni+1

≥ 0. (7.76)

For simplicity, we assume here that the iteration level used for discrete representations
of ux is always the “actual” level n.

Case (i). When the first or second argument in (7.67) is chosen, there is no contribution
for the case (i). This means that it holds

∂G
∂uni−1

= 0. (7.77)

Thus, we only need to consider the case when the third argument in (7.67) is selected.

By taking partial derivative of G from (7.70) with respect to ui−1 we have

∂G
∂uni−1

= −∆t
ûx√
û2x

∂ûx
∂ui−1

(7.71)
= −∆t

ûx√
û2x

(
− 1

∆x

)

=
ûx√
û2x

∆t

∆x

(7.71)
=

ûx
ûx

∆t

∆x

=
∆t

∆x
> 0,

(7.78)

which is the desired result.

Case (ii). For the case (ii), we need to make case distinctions between the choice of
the second and the third argument in (7.67).

To this end, we first take partial derivative of G from (7.70) with respect to ui. Then, we
have

∂G
∂uni

= 1− ∆t
ûx√
û2x

∂ûx
∂ui

(7.79)
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with

ûx =
ui+1 − ui

∆x
< 0 (7.80)

or

ûx =
ui − ui−1

∆x

(7.71)

> 0. (7.81)

Now, let us take the case into account when the second argument in (7.67) is involved.
Then, (7.79) is turned into

∂G
∂uni

= 1− ∆t
ûx√
û2x

∂ûx
∂ui

(7.80)
= 1− ∆t

ûx√
û2x

(
− 1

∆x

)

= 1+
ûx√
û2x

∆t

∆x

(7.80)
= 1+

ûx
(−ûx)

∆t

∆x

= 1− ∆t

∆x

(!)
≥ 0.

(7.82)

Hence, in order to satisfy (!) in (7.82) the following condition must be satisfied:

1− ∆t

∆x
≥ 0

⇔ 1≥ ∆t

∆x

⇔ ∆t ≤ ∆x .

(7.83)

Next, let us consider the case when the third argument in (7.67) comes into play.

Then, (7.79) can be reformulated as

∂G
∂uni

= 1− ∆t
ûx√
û2x

∂ûx
∂ui

(7.71)
= 1− ∆t

ûx√
û2x

(
1

∆x

)

(7.71)
= 1− ûx

ûx

(
∆t

∆x

)

= 1− ∆t

∆x

(!)
≥ 0.

(7.84)

Therefore, we can obtain the same condition as (7.83) to fulfil the inequality (!) in (7.84).
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Case (iii). This case is analogous to the case (i). So, when the first or third argument
in (7.67) is chosen, there is no contribution for the case (iii). This means it holds

∂G
∂uni+1

= 0. (7.85)

Therefore, we only need to consider the case when the second argument in (7.67) is
selected.

By taking partial derivative of G from (7.70) with respect to ui−1 we have

∂G
∂uni+1

= −∆t
ûx√
û2x

∂ûx
∂ui+1

(7.68)
= −∆t

ûx√
û2x

(
1

∆x

)

=
−ûx√
û2x

∆t

∆x

(7.68)
=
−ûx
−ûx

∆t

∆x

=
∆t

∆x
> 0,

(7.86)

which is the desired result.

As a consequence, in view of all three cases in (7.76) we have the followingmonotonicity
condition:

∆t ≤ ∆x . (7.87)

Consistency

In the light of a consistency notion in (7.14), the scheme (7.60) is consistent with (7.59)
owing to (7.61).

Comparison Principle

As we have already investigated in Theorem 4.3.1, the original problem (7.59) admits a
comparison principle under certain hypotheses.

As a result, the numerical solution of (7.60) converges to a continuous viscosity solution
of (7.59) by Theorem 7.3.1.

7.5 Numerical Scheme for VBWModel in 1-D

In this section, we look into the numerical scheme for (6.16) in one-dimensional case.
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Let us consider following Phong SfS model in one-dimension

JW − κd Ide
−2v − κs Ise

−2vW
Q

(
2Q2

W2
− 1

)α

= 0, (7.88)

where

J (x) = (I (x)− κa Ia)
f
2

Q
, (7.89)

W (x, p) =

√
f2p2 + (px)2 + Q (x)2 , (7.90)

with p = vx and

Q (x) =

√
f2

x2 + f2
. (7.91)

7.5.1 Construction of a Scheme

The procedure here is exactly the same as we did for the scheme of Rouy and Tourin.

By employing the method of artificial time for (7.88) we need to solve

vt + JW − κd Ide
−2v − κs Ise

−2vW
Q

(
2Q2

W2
− 1

)α

︸ ︷︷ ︸
=:H

= 0. (7.92)

For spatial derivative the following upwind-type scheme

vx ≈min

(
0,
vi+1− vi

∆x
,
vi−1− vi

∆x

)
=: v̂x (7.93)

is used. When the third argument of (7.93) is taken, as in Remark 7.4.1 v̂x needs to be set

v̂x =
vi − vi−1

∆x
> 0 (7.94)

for the purpose of ensuring the consistency of dicretisation. Besides, by means of the
Euler forward method and with the notation (7.93) the approximation scheme of (7.88)
reads as

vn+1
i − vni

∆t

+

(
JW (xi, v̂x)− κs Is (xi) e

−2vni W (xi,vx)

Q (xi)

(
2Q (xi)

2

W (xi, v̂x)
2
− 1

)α

− κd Id (xi) e
−2vni

)

︸ ︷︷ ︸
=:H(xi,vi,v̂x)

= 0.

(7.95)
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Thus, we can obtain the following update rule

vn+1
i = vni − ∆tH (xi,vi, v̂x)︸ ︷︷ ︸

=:G(xi ,vi,v̂x)

. (7.96)

For simplicity, here we also assume that the iteration level used for discrete representa-

tions of vx is always the actual level n. This also holds for source term, i.e. e−2v ≈ e−2v
n
i .

All the other terms in (7.95) are assumed to be evaluated at each grid point i.

7.5.2 Convergence of a Scheme

Monotonicity and Stability

For the monotonicity, by virtue of Definition 7.3.1 and Remark 7.3.1 we need to confirm
that H in (7.96) is a nonincreasing function. This is equivalent to show G in (7.96) to be
nondecreasing. As we did for the scheme of Rouy and Tourin, we validate this by the
criterion (7.76).

To this end, we make use of the following notations for brevity:

W :=
√

(f2 + x2) v̂2x + Q2 , (7.97)

where v̂x refers to (7.93) or (7.94) correspondingly depending on the choices.

In addition, we proceed in the sequence of case (i)→ (iii)→ (ii), since the procedure
between case (i) and case (iii) is analogous with each other.

Case (i). In view of (7.93) there is contribution to the case (i) only when the third
argument in (7.93) is taken. In this case, by (7.94) we have

∂v̂x
∂vi−1

= − 1

∆x
. (7.98)

As a next step, taking partial derivative of (7.96) with respect to vi−1 yields

∂G
∂vi−1

= −∆t
∂H

∂vi−1

(7.95)
= −∆t

∂

∂vi−1

(
JW − κs Ise

−2vni W
Q

(
2Q2

W2
− 1

)α

− κd Id e
−2vni

)

= −∆t
∂

∂vi−1

(
JW − κs Ise

−2vni W
Q

(
2Q2

W2
− 1

)α
)

= ∆t



−J

∂W

∂vi−1︸ ︷︷ ︸
=:(a)

+κs Ise
−2vni ∂

∂vi−1

[
W

Q

(
2Q2

W2
− 1

)α
]

︸ ︷︷ ︸
=:(b)



.

(7.99)
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For computational reasons, we perform further calculations of (a) and (b) separately.

For (a) we can proceed as

∂W

∂vi−1

(7.97)
=

(
f
2 + x2

) 2v̂x
2W

∂v̂x
∂vi−1

(7.98)
=

(
f
2 + x2

) v̂x
W

(
− 1

∆x

)

= −
(
f
2 + x2

)
v̂x

W ∆x
.

(7.100)

In the case of (b), by applying the chain rule we can obtain

∂

∂vi−1

[
W

Q

(
2Q2

W2
− 1

)α
]

=
1

Q

∂W

∂vi−1
·
(
2Q2

W2
− 1

)α

+
W

Q

∂

∂vi−1

[(
2Q2

W2
− 1

)α
]

(7.100)
=

1

Q

(
−
(
f
2 + x2

)
v̂x

W∆x

)
·
(
2Q2

W2
− 1

)α

+
W

Q

∂

∂vi−1

[(
2Q2

W2
− 1

)α
]

(∗)
= − 1

Q

(
f
2 + x2

)
v̂x

W∆x
·
(
2Q2

W2
− 1

)α

+
W

Q

[
α

(
2Q2

W2
− 1

)α−1
4Q2

W3
·
(
f
2 + x2

)
v̂x

W∆x

]

=
1

Q
·
(
f
2 + x2

)
v̂x

W∆x

(
2Q2

W2
− 1

)α−1[
−
(
2Q2

W2
− 1

)
+

4αQ2

W2

]

=
1

Q
·
(
f
2 + x2

)
v̂x

W∆x

(
2Q2

W2
− 1

)α−1[
2 (2α− 1)Q2

W2
+ 1

]
.

(7.101)
The step (∗) in (7.101) can be explained by

∂

∂vi−1

[(
2Q2

W2
− 1

)α
]

= α

(
2Q2

W2
− 1

)α−1
∂

∂vi−1

(
2Q2

W2
− 1

)

= α

(
2Q2

W2
− 1

)α−1
2Q2

(−2
W3

)
∂W

∂vi−1

(7.100)
= α

(
2Q2

W2
− 1

)α−1 (−4Q2

W3

)(
−
(
f
2 + x2

)
v̂x

W∆x

)

= α

(
2Q2

W2
− 1

)α−1
· 4Q

2

W3
·
(
f
2 + x2

)
v̂x

W∆x
.

(7.102)
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As a final step, plugging (7.100) and (7.101) into (7.99) gives

∂G
∂vni−1

= ∆t

[
−J

(
−
(
f
2 + x2

)
v̂x

W∆x

)]

+ ∆t

[
κs Ise

−2vni 1
Q
·
(
f
2 + x2

)
v̂x

W∆x

(
2Q2

W2
− 1

)α−1[
2 (2α− 1)Q2

W2
+ 1

]]

= ∆t

[
J

(
f
2 + x2

)
v̂x

W∆x
+ κs Ise

−2vni 1
Q
·
(
f
2 + x2

)
v̂x

W∆x

(
2Q2

W2
− 1

)α−1 [
2 (2α− 1)Q2

W2
+ 1

]]

= ∆t︸︷︷︸
>0

>0︷ ︸︸ ︷(
f
2 + x2

)
(7.94)
> 0︷︸︸︷
v̂x

W︸︷︷︸
(7.90)
> 0

∆x︸︷︷︸
>0




J︸︷︷︸
[75]
> 0

+κs Ise
−2vni︸ ︷︷ ︸

>0

1

Q︸︷︷︸
(7.91)
> 0



2Q2

W2
− 1

︸ ︷︷ ︸
[75]

≥0




α−1

[
2 (2α− 1)Q2

W2
+ 1

]

︸ ︷︷ ︸
>0 for α≥ 1

2




⇒ ∂G
∂vni−1

> 0.

(7.103)
Therefore, case (i) holds for normal specular case when α ≥ 1

2 .

We now move on to the case (iii).

Case (iii). For the case (iii), the contribution is only made when the second argument
in (7.93) is chosen. In this case, we have

v̂x =
vi+1− vi

∆x
< 0 ⇔ −v̂x > 0 (7.104)

and

∂v̂x
∂vi+1

=
1

∆x
. (7.105)

The rest steps are the same as in the case (i).
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First, we take the partial derivative of (7.96) with respect to vi+1. Then, we have

∂G
∂vi+1

= −∆t
∂H

∂vi+1

(7.95)
= −∆t

∂

∂vi+1

(
JW − κs Ise

−2vni W
Q

(
2Q2

W2
− 1

)α

− κd Id e
−2vni

)

= −∆t
∂

∂vi+1

(
JW − κs Ise

−2vni W
Q

(
2Q2

W2
− 1

)α
)

= ∆t



−J

∂W

∂vi+1︸ ︷︷ ︸
=:(c)

+κs Ise
−2vni ∂

∂vi+1

[
W

Q

(
2Q2

W2
− 1

)α
]

︸ ︷︷ ︸
=:(d)



.

(7.106)

The further computation of (c) in (7.106) can be expanded by

∂W

∂vi+1

(7.97)
=

(
f
2 + x2

)
2v̂x

2W

∂v̂x
∂vi+1

(7.105)
=

(
f
2 + x2

)
v̂x

W∆x
.

(7.107)

By use of the chain rule, (d) in (7.106) can be calculated by
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∂

∂vi+1

[
W

Q

(
2Q2

W2
− 1

)α
]

=
1

Q

∂W

∂vi+1
·
(
2Q2

W2
− 1

)α

+
W

Q

∂

∂vi+1

[(
2Q2

W2
− 1

)α
]

(7.107)
=

1

Q

(
f
2 + x2

)
v̂x

W∆x
·
(
2Q2

W2
− 1

)α

+
W

Q

∂

∂vi+1

[(
2Q2

W2
− 1

)α
]

(∗)
=

1

Q

(
f
2 + x2

)
v̂x

W∆x
·
(
2Q2

W2
− 1

)α

− W

Q

[
α

(
2Q2

W2
− 1

)α−1
4Q2

W3
·
(
f
2 + x2

)
v̂x

W∆x

]

=
1

Q
·
(
f
2 + x2

)
v̂x

W∆x

(
2Q2

W2
− 1

)α−1 [(
2Q2

W2
− 1

)
− 4αQ2

W2

]

=
1

Q
·
(
f
2 + x2

)
v̂x

W∆x

(
2Q2

W2
− 1

)α−1 [
2 (1− 2α)Q2

W2
− 1

]

= − 1

Q
·
(
f
2 + x2

)
v̂x

W∆x

(
2Q2

W2
− 1

)α−1 [
2 (2α− 1)Q2

W2
+ 1

]
.

(7.108)
The steps (∗) in (7.108) can be computed as

∂

∂vi+1

[(
2Q2

W2
− 1

)α
]

= α

(
2Q2

W2
− 1

)α−1
∂

∂vi+1

(
2Q2

W2
− 1

)

= α

(
2Q2

W2
− 1

)α−1
2Q2

(−2
W3

)
∂W

∂vi+1

(7.107)
= α

(
2Q2

W2
− 1

)α−1 (−4Q2

W3

)
·
(
f
2 + x2

)
v̂x

W∆x

= −α

(
2Q2

W2
− 1

)α−1
4Q2

W3
·
(
f
2 + x2

)
v̂x

W∆x
.

(7.109)

As a final step for this case, the results of (7.107) and (7.109) can be substituted for
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(7.106). This leads to

∂G
∂vni+1

= ∆t

[
−J

(
f
2 + x2

)
v̂x

W∆x

]

+ ∆t

[
−κs Ise

−2vni 1
Q
·
(
f
2 + x2

)
v̂x

W∆x

(
2Q2

W2
− 1

)α−1[
2 (2α− 1)Q2

W2
+ 1

]]

= ∆t

[
J
(−v̂x)

(
f
2 + x2

)

W∆x

]

+ ∆t

[
κs Ise

−2vni 1
Q
· (−v̂x)

(
f
2 + x2

)

W∆x
·
(
2Q2

W2
− 1

)α−1 [
2 (2α− 1)Q2

W2
+ 1

]]

= ∆t︸︷︷︸
>0

(7.104)
> 0︷ ︸︸ ︷

(−v̂x)

>0︷ ︸︸ ︷(
f
2 + x2

)

W︸︷︷︸
(7.90)
> 0

∆x︸︷︷︸
>0




J︸︷︷︸
[75]
> 0

+κs Ise
−2vni︸ ︷︷ ︸

>0

1

Q︸︷︷︸
(7.91)
> 0



2Q2

W2
− 1

︸ ︷︷ ︸
[75]

≥ 0




α−1

[
2 (2α− 1)Q2

W2
+ 1

]

︸ ︷︷ ︸
>0 for α≥ 1

2




⇒ ∂G
∂vni+1

> 0.

(7.110)
Hence, case (iii) also holds for the specular exponent α when α ≥ 1

2 .

Now, we come to the case (ii).

Case (ii). For this case, we go into the condition which should imply a stability restric-
tion on the time step size.
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Taking partial derivatives of (7.96) with respect to vi gives

∂G
∂vni

= 1− ∆t
∂H
∂vi

(7.95)
= 1− ∆t

∂

∂vi

(
JW − κs Ise

−2vni W
Q

(
2Q2

W2
− 1

)α

− κd Id e
−2vni

)

= 1− ∆t

[
J

∂W

∂vi
− κs Is

∂

∂vi

[
e−2v

n
i
W

Q

(
2Q2

W2
− 1

)α
]
− κd Id e

−2vni (−2)
]

= 1− 2∆tκd Id e
−2vni − ∆t



J

∂W

∂vi︸︷︷︸
=:(e)

−κs Is
∂

∂vi

[
e−2v

n
i
W

Q

(
2Q2

W2
− 1

)α
]

︸ ︷︷ ︸
=:( f )



.

(7.111)
The further computation of the term (e) in (7.111) can be received as

∂W

∂vi

(7.90)
=

(
f
2 + x2

)
2v̂x

2W

∂v̂x
∂vi

=

(
f
2 + x2

)
v̂x

W

∂v̂x
∂vi

.

(7.112)

Since we do not specify yet whether the second or the third argument in (7.93) is chosen,

the notation ∂v̂x
∂vi

in (7.112) is still alive and this quantity shall be estimated later.

As is done before, we are able to calculate the term ( f ) in (7.111) by use of the chain rule
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as follows

∂

∂vi

[
e−2v

n
i
W

Q

(
2Q2

W2
− 1

)α
]

= −2e−2vni W
Q

(
2Q2

W2
− 1

)α

+ e−2v
n
i

(
2Q2

W2
− 1

)α
∂

∂vi

(
W

Q

)

+ e−2v
n
i
W

Q

∂

∂vi

[(
2Q2

W2
− 1

)α
]

(7.112)
= −2e−2vni W

Q

(
2Q2

W2
− 1

)α

+ e−2v
n
i

(
2Q2

W2
− 1

)α
1

Q

(
f
2 + x2

)
v̂x

W

∂v̂x
∂vi

+ e−2v
n
i
W

Q

∂

∂vi

[(
2Q2

W2
− 1

)α
]

= −2e−2vni W
Q

(
2Q2

W2
− 1

)α

+ e−2v
n
i

(
2Q2

W2
− 1

)α
1

Q

(
f
2 + x2

)
v̂x

W

∂v̂x
∂vi

+ e−2v
n
i
W

Q
· α
(
2Q2

W2
− 1

)α−1
2Q2

(−2
W3

)
∂W

∂vi

(7.112)
= −2e−2vni W

Q

(
2Q2

W2
− 1

)α

+ e−2v
n
i

(
2Q2

W2
− 1

)α
1

Q

(
f
2 + x2

)
v̂x

W

∂v̂x
∂vi

+ e−2v
n
i
1

Q
· α
(
2Q2

W2
− 1

)α−1(−4Q2

W2

) (
f
2 + x2

)
v̂x

W

∂v̂x
∂vi

= −2e−2vni W
Q

(
2Q2

W2
− 1

)α

+ e−2v
n
i

(
2Q2

W2
− 1

)α−1
1

Q

(
f
2 + x2

)
v̂x

W

∂v̂x
∂vi
·
[(

2Q2

W2
− 1

)
− 4αQ2

W2

]

= −2e−2vni W
Q

(
2Q2

W2
− 1

)α

+ e−2v
n
i

(
2Q2

W2
− 1

)α−1
1

Q

(
f
2 + x2

)
v̂x

W

∂v̂x
∂vi
·
[
2 (1− 2α)Q2

W2
− 1

]

= −2e−2vni W
Q

(
2Q2

W2
− 1

)α

− e−2v
n
i

(
2Q2

W2
− 1

)α−1
1

Q

(
f
2 + x2

)
v̂x

W

∂v̂x
∂vi
·
[
2 (2α− 1)Q2

W2
+ 1

]
.

(7.113)

At this point, we have done all the necessary computations in order to get hands on the
monotonicity conditions for (7.96). By replacing (e) and ( f ) in (7.111) with the results
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of (7.112) and (7.113) we receive

∂G
∂vni

= 1− 2 e−2v
n
i κd Id ∆t

− ∆t

[
J

(
f
2 + x2

)
v̂x

W

∂v̂x
∂vi

]

+ κs Is∆t

[
−2e−2vni W

Q

(
2Q2

W2
− 1

)α
]

+ κs Is∆t

[
− e−2v

n
i

(
2Q2

W2
− 1

)α−1
1

Q

(
f
2 + x2

)
v̂x

W

∂v̂x
∂vi

(
2 (2α− 1)Q2

W2
+ 1

)]

= 1− 2 e−2v
n
i κd Id ∆t− 2 e−2v

n
i κs Is

[
W

Q

(
2Q2

W2
− 1

)α
]

∆t

− ∆t

[
J

(
f
2 + x2

)
v̂x

W

∂v̂x
∂vi

]

− κs Is∆t

[
e−2v

n
i

(
2Q2

W2
− 1

)α−1
1

Q

(
f
2 + x2

)
v̂x

W

∂v̂x
∂vi

(
2 (2α− 1)Q2

W2
+ 1

)]

= 1− 2 e−2v
n
i

[
κd Id + κs Is

W
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(7.114)
Since a violation of case (ii) primarily occurs due to the quantity of

(
f
2 + x2

)
in the last

two rows of (7.114), we incorporate a worst case estimate

v̂x ≤max(|v̂x|) =: |v̂|max , (7.115)
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where the maximum is taken over all possible cases in (7.93). It follows
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(7.116)
Additionally, in view of (7.93) and (7.94) we have

∂v̂x
∂vi

= ± 1

∆x

⇒
∣∣∣∣
∂v̂x
∂vi

∣∣∣∣ =
1

∆x
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(7.117)

This implies that by (7.116) and (7.117) we can formulate a sufficient condition formono-
tonicity on the time step size as follows:
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⇔
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2 e−2v
n
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(
B + e−2v

n
i C
)
hx

.

(7.118)

As a consequence, the scheme satisfies monotonicity and thereby stability as long as
(7.118) is valid.

Consistency

The scheme (7.96) is consistent with (7.88) due to (7.95).
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Comparison Principle

As can be recognised in (7.88), one-dimensional VBW model is described by general-
type HJE, which means Hamiltonian depends not only on ∇u but also on u. The good
news is that there also exists a comparison theorem for this type of HJE which guaran-
tees uniqueness of a solution.

For the purpose of convergence, we borrow the following theorem from [12] where the
proof is provided.

Theorem 7.5.1. Let Ω be a bounded open subset of R
n. Assume that u,u ∈ C

(
Ω
)
are, respec-

tively, viscosity sub- and supersolution of

u (x) + H (x,Du (x)) = 0, x ∈Ω (7.119)

and
u ≤ u x ∈ ∂Ω . (7.120)

In addition, assume also that H satisfies

|H (x, p)− H (y, p)| ≤ ω (|x− y| (1+ |p|)) , (7.121)

for x,y∈Ω, p ∈R
n, where ω : [0,+∞[→ [0,+∞[ is continuous nondecreasing with ω (0) = 0.

Then u ≤ u in Ω.

Therefore, a numerical solution of one-dimensional VBW explicit scheme (7.95) con-
verges to a continuous viscosity solution of (7.88) by Theorem 7.3.1 as grid size van-
ishes.

Remark 7.5.1. This result can also serve as a proof of the existence of viscosity solutions.
In other words, as the mesh size disappear solutions of our scheme converge towards a
viscosity solution of (7.88), which means the existence of viscosity solutions.

7.6 Summary

In this chapter, we have studied the Hamilton-Jacobi equation in a numerical point of
view.

First, we have studied the basic notions of numerical analysis including local truncation
error and consistency, stability, monotonicity, and Lax-equivalence theorem by taking a
linear upwind scheme as an example.

After that, we went through the convergence theory for the Rouy and Tourin scheme by
following the work by Barles and Souganidis [37].

Then, we have seen how the theory works in the scheme of Rouy and Tourin taking an
example of one-dimensional eikonal equation.
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Finally, we have shown the convergence of explicit scheme for the Vogel-Breuß-Weickert
model in one-dimensional case.

In next chapter, we shall perform numerical experiments in view of what we have seen
so far.





Chapter 8

Numerical Experiments

In this chapter, we shall perform numerical experiments in order to validate the conver-
gence results established in previous chapter.

First, we test our method on the one-dimensional eikonal equation for confirming the
correctness.

Then, we apply the method to the VBW model. To be more specific, the test involves
with the Lambertian and Phong SfS problems in 1-D and 2-D, respectively.

To this end, the main part of the algorithm is coded in both C andMatlab and the results
are illustrated by Matlab and Gnuplot.

8.1 Eikonal Equation in 1-D

In this section, we shall see the overview of implementation and experimental results
for a one-dimensional eikonal equation. Since we have already investigated the analytic
solution of the one-dimensional eikonal equation in Chapter 2, it is a good starting point
to validate a numerical scheme.

8.1.1 Numerical Implementation

Our implementation relies on the theory that we have studied in Section 7.4 and the
pseudocode is provided in Algorithm 8.1. Here we briefly have a look at parameters in
Algorithm 8.1.

Parameters and Variables

Number of Grid Points N. A total number of grid points N ∈N
+ for discretisation

of the interval [0,1] is needed and it is desirable to be an odd number, otherwise we do
not receive a peak at the point x = 1

2 due to numerical reasons. Then, a computational
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Algorithm 8.1 Upwind-type numerical algorithm for an eikonal equation in 1-D

Require: N > 1

1: X← 1
N−1 [0,1, . . . ,N − 1]

2: U← [0,0, . . . ,0]

3: dx← 1
N

4: dt← dx

5: iter← 0

6: while
∥∥Un+1−Un

∥∥
∞

> ε do

7: for j = 2 to N − 1 do

8: mx(j)← u(j−1)−u(j)
dx

9: px(j)← u(j+1)−u(j)
dx

10: dir(j)←min(0,mx(j), px(j))

11: h(j)←
√

dir(j)2 − 1

12: u(j)← u(j)− dt ∗ h(j)
13: end for
14: iter← iter + 1
15: end while

domain X has the form

X := [x(1), . . . ,x(N)]︸ ︷︷ ︸
# of vector elements = N

=
1

N − 1
[0,1, . . . ,N − 1]︸ ︷︷ ︸

# of grid points = N

, (8.1)

see “Require” and line 1 in Algorithm 8.1.

Grid Size dx. Since the interval [0,1] is subdivided with N grid points by (8.1), the
grid size is given by

dx =
1

N
= x(2)− x(1) = · · · = x(N)− x(N − 1) , (8.2)

see line 3 in Algorithm 8.1.

Time Step Size dt. As is discussed in Section 7.4, it should be always careful when we
choose a time step size to guarantee the stability of a scheme. Based on (7.83) we can
recognise that a time step size dt and a mesh size dx are in the same order as long as the
scheme is stable. Thus, in order to make the scheme convergent as fast as possible we
have selected a largest possible time step size dt as

dt =
1

N
, (8.3)
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see line 4 in Algorithm 8.1.

Stopping Criterion by ε. The stopping criterion is realised in such a way, that a nu-
merical computation stops if the difference of the two successive iterations is less than a
predefind small number ε in the sense of a maximum-norm, see line 6 in Algorithm 8.1.
As can be observed in Table 8.1, measuring error in max norm is reasonable, since it is
the point of bottleneck for the convergence.

Number of Iterations iter. The variable iter counts the number of iterations until the
above mentioned stopping criterion is satisfied, see line 14 in Algorithm 8.1.

Boundary and Initial Conditions

Another important issue for numerical implementation is about boundary and initial
conditions. However, this information for the case of a one-dimensional eikonal equa-
tion is already available in (7.66), so we can use them without any pain. Therefore, the
initialisation of a solution U has the form

U := [u(1), . . . ,u(N)] = [0,0, . . . ,0] , (8.4)

see line 2 in Algorithm 8.1.

8.1.2 Experimental Result

The first test is performed with ε = 10−3. In this case, the computation stops after nine
iterations and Figure 8.1 shows us how a numerical solution evolves and converges to a
viscosity solution. To this end, wemake use of L1-, L2-, and L∞-error and corresponding
error estimations at each iteration step are given in Table 8.1. They are estimated by

L1- error =
N

∑
i=1

|uc (i)− ue (i)| , (8.5)

L2- error =

√√√√
N

∑
i=1

(uc (i)− ue (i))
2 , (8.6)

and
L∞- error = max

i=1,...,N
|uc (i)− ue (i)| , (8.7)

where uc and ue denote computed and exact solution respectively.

Then, we further test by changing a parameter N. Since both dx and dt are described by
a same function of N, adjusting N affects both parameters dx and dt as well. Table 8.2
tells us how the iteration numbers change with a fixed constant ε as the number of mesh
points N increases. It can be recognised that more iteration numbers are needed as the
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(i) After 9 iterations.

Figure 8.1: Numerical experiments for one-dimensional eikonal equation. The param-
eters used for this test are: N = 11, dx = dt = 1

N , ε = 10−3. The corresponding error
estimations are given in Table 8.1.

number of grid points increases. The results are not surprising but what one might
expect based on the theory that we have studied before.

8.2 VBWModel

In this section, we shall see experimental results of one-dimensional VBW explicit scheme
on synthetic images. SfS is, however, usually performed in two-dimension, here we
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# of iterations L1-error L2-error L∞-error

1 1.6818 0.6854 0.0909
2 1.0289 0.4744 0.0909
3 0.5406 0.2925 0.0909
4 0.2168 0.1458 0.0909
5 0.0575 0.0462 0.0909
6 0.0128 0.0111 0.0345
7 0.0024 0.0022 0.0088
8 4.1662E− 4 3.8398E− 4 0.0018
9 6.5415E− 5 6.1159E− 5 3.2184E− 4

Table 8.1: L1-, L2-, and L∞-error estimation after each iteration from iter = 1 to 9 for the
case of ε = 10−3, cf. Figure 8.1.

# of grid points N # of iterations L1-error L2-error L∞-error

21 16 2.4254E−7 2.2971E−7 1.9124E−6
41 25 7.1621E−7 6.7076E−7 6.0704E−6
61 35 4.0103E−7 3.7509E−7 3.6326E−6
81 45 2.7448E−7 2.5665E−7 2.5751E−6
101 55 2.0755E−7 1.9392E−7 1.9899E−6

Table 8.2: Necessary iteration numbers and corresponding errors for a predefined con-
stant ε = 10−5 depending on the numbers of grid points N.

briefly explain how we proceed our tests in one-dimension.

8.2.1 Shape from Shading in 1-D

The test idea in one-dimension is exactly the same as in two-dimensional case. Let us
have a look at Figure 8.2 to clarify this.

First, we take one row from an input grey value matrix, see Figure 8.2a.

Then, we apply the algorithm to reconstruct the shape of the cross section of the original
surface, see Figure 8.2b.

Since applying SfS to thewhole two-dimensional imagematrix yields three-dimensional
surface, its cross section is automatically in two-dimension, which we expect.

8.2.2 Numerical Implementation

The numerical implementation of VBW explicit scheme is based on the theory from
Section 7.5. The pseudocode of main part for VBW Lambertian model is given in Al-
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(a) Input grey value matrix: “→” indicates
the taken row.
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x
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v(

x)

(b) Output of one-dimensional SfS.

Figure 8.2: Illustration of Shape from Shading in one-dimension.

gorithm 8.2, where E(x,y) denotes an input grey value image with M × N pixels and
σ depends on the albedo of the surface and the intensity of the light source [74]. In
addition, we briefly touch the issues which are not detailed in Algorithm 8.2.

Points to Consider

Time Step Size dt. As we investigated in previous chapter, choosing time step size dt
plays a significant role on the stability of an explicit scheme and convergence speed is
influenced by this number as well. In order to guarantee monotonicity of a scheme and
thereby to fulfil the stability condition, (7.118) must be obeyed pixelwise and it turns out
that the right hand side of (7.118) is usually very small. In our experiment, this number
is between 10−8 and 10−7.

Boundary Conditions. It is also crucial to treat boundary conditions correctly not only
for solution theory but also for numerical realisations. When it comes to perspective
Shape from Shading problems, there are several options that we can choose [65].

First one is a state constraint boundary condition which was used by Prados in [84]
based on the formulation by Hamilton-Jacobi-Bellman equations. In our case, it can be
implemented in the form of Dirichlet boundary conditions

u (x1,x2) = u , (8.8)

where
u = max

(x1,x2)∈Ω
u (x1,x2) . (8.9)

This condition makes automatically sense owing to the minimisation process in (7.93).
One advantage of this method is that we do not need any boundary data which is in
general unavailable.
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Algorithm 8.2 Upwind-type numerical algorithm for VBW model in 1-D

Require: E(x,y) > 0

1: I← E(x,y)
σ

2: V←− 1
2 ln If2

3: iter← 0

4: while
∥∥Vn+1−Vn

∥∥
∞

> ε do

5: for i = 1 to M do

6: for j = 1 to N do

7: mx(i)← v(i−1,j)−v(i,j)
dx

8: px(i)← v(i+1,j)−v(i,j)
dx

9: xdir(i)←min(0,mx(i), px(i))

10: my(j)← v(i,j−1)−v(i,j)
dy

11: py(j)← v(i,j+1)−v(i,j)
dy

12: ydir(j)←min(0,my(j), py(j))

13: Q(i, j)← f√
i2+j2+f2

14: A(i, j)← If2

Q(i,j)2

√
f2 (xdir(i)2 + ydir(j)2) + (i ∗ xdir(i) + j ∗ ydir(j))2 + Q(i, j)2

15: v(i, j)← v(i, j)− dt ∗ A(i, j) + dt ∗ e−2∗v(i,j)
16: end for
17: end for
18: iter← iter + 1

19: end while

Of course, alternatives are possible. If the solution is known at the boundary under spe-
cial circumstances, then exact Dirichlet boundary conditions are best choice. When no
information is available, homogeneous Neumann boundary conditions can be another
choice. In all our tests, we used Neumann boundary conditions.

Initial Condition. Another important factor to influence on convergence speed is the
initialisation. Since we use an iterative method and rather small time step size for sta-
bility reasons, the initial values should be larger than and as close as possible to the
solution. As suggested and shown in [84],

v := −0.5 log I f2 (8.10)

meets the requirements. However, one disadvantage of (8.10) is that due to the prop-
erties of a log function the normalised image I is not allowed to have complete black
pixels, which means grey values must be strictly positive.
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8.2.3 Convergence Tests

We now present test results for both Lambertian- and Phong-type surfaces.

Lambertian Surfaces

For the Lambertian case, we use the classical vase as a test image.

1-D Experiment. Figure 8.3 shows the reconstruction shape for selected rows. The
outcome in fact seems reasonable enough to confirm the convergence according to the
test method and only one iteration is necessary in order to satisfy the stopping criterion
ε = 10−4.

2-D Experiment. Figure 8.4 displays that the shape itself of the vase complies with
the behaviour of 1-D case as expected. However, as can be noticed the treatment of
the background close to the edge is not that efficient by smoothing effect. Therefore,
it can be mentioned that this method does not treat steep gradient well, although the
computed result shows the reasonable reconstruction of the shape itself.

Phong Surfaces

The big difference between Lambertian and Phong surface is a specular effect. In order
to test correctly, we make use of an ellipsoid scene (8.5a) as an input image which is
rendered by a ray tracer.

1-D Experiment. For this test, our experiment is carried out columnwise. Figure 8.5
shows the 1-D outcome is quite reasonable to convince the convergence of the solu-
tion within the ellipsoid region. Specially, when it comes to specular point where the
highlight effect occurs, they are treated pretty well and the cross section of the original
surface is not distorted although it looks a little bit flat. The computational results are
described in Table 8.3.

2-D Experiment. As in the case of 1-D, Figure 8.6 also shows the reasonable conver-
gence output. It can be also noticed that the computed solution looks quite well espe-
cially around specular points. However, the treatment of edges is not quite efficient, as
we have seen in the Lambertian case.
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(a) Input image: the
classic vase with
128 × 128 pixels.
Adapted from [4]
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(b) 1D SfS of the 16th row.

 4

 4.1

 4.2

 4.3

 4.4

 4.5

 4.6

 0  20  40  60  80  100  120  140

column index

1D SfS of the 32th row

(c) 1D SfS of the 32th row.
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(d) 1D SfS of the 48th row.
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(e) 1-D SfS of the 64th row.
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(f) 1-D SfS of the 70th row.
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(g) 1-D SfS of the 80th row.
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(h) 1-D SfS of the 96th row.
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(i) 1-D SfS of the 112th row.
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(j) 1-D SfS of the 120th row.

Figure 8.3: The results of 1-D Lambertian SfS. The following parameters are incorpo-
rated for this test: dt = 10−8, σ = 255, dx = 1, f = 100, ε = 10−4.
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(a) Input image: the
classic vase with
128× 128 pixels.
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(b) Pixelwise computed solution.
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(c) Colour-coded map of (8.4b).
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(d) Grid representation of (8.4b).
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(e) Corresponding surface representation with
colour-coded map.

Figure 8.4: The classic Lambertian vase experiment in 2-D. The parameters employed
are: dt= 10−8, σ = 255, dx= dy= 1, f= 100, ε = 10−4. The test results are ‖Vn−Vn−1‖=
9.999913E− 5 with n = 34 iterations.
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(a) Input image: a Phong-
type ellipsoid with 120 ×
160 pixels.
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(b) 1-D SfS of the 40th column.
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(c) 1-D SfS of the 60th column.
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(d) 1-D SfS of the 70th column.
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(e) 1-D SfS of the 75th column.
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(f) 1-D SfS of the 80th column.
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(g) 1-D SfS of the 85th column.
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(h) 1-D SfS of the 90th column.
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(i) 1-D SfS of the 100th column.
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(j) 1-D SfS of the 120th column.

Figure 8.5: The Phong-type ellipsoid experiment in 1-D. The parameters employed are:
dt = 10−7, σ = 255, dx = 1, f = 100, ε = 10−4, κa = 0, κd = 0.7, κs = 0.3, Id = Is = 1000,
α = 5.
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selected column index # of iterations (n) ‖Vn −Vn−1‖∞

40 3560 9.995699E− 5
60 3459 9.998679E− 5
70 3431 9.995699E− 5
75 3427 9.995699E− 5
80 3423 9.998679E− 5
85 3423 9.998679E− 5
90 3427 9.998679E− 5
100 3456 9.998679E− 5
120 3554 9.995699E− 5

Table 8.3: Summary of computational results for 1-D Phong SfS with a stopping criterion
ε = 10−4.
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(a) Input image: a Phong-
type ellipsoid with 120 ×
160 pixels.
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(b) Pixelwise computed solution.
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(c) Colour-coded map of (8.6b).
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(d) Grid representation of (8.6b).
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(e) Corresponding surface representation with
colour-coded map.

Figure 8.6: The Phong-type ellipsoid experiment in 2-D. The parameters employed are:
dt= 10−7, σ = 255, dx = dy= 1, f= 100, ε = 10−4, κa = 0, κd = 0.7, κs = 0.3, Id = Is = 1000,
α = 5. The test results are ‖Vn −Vn−1‖ = 9.998679E− 5 with n = 3513 iterations.





Chapter 9

Conclusion

In this thesis, we have explorered the world of Hamilton-Jacobi equations which turned
out to be quite effective for Shape from Shading problems.

After Chapter 1 has given a general overview of Shape from Shading problems and
modelling issues, the goal of Chapter 2-4 has been to provide the foundation of a con-
tinuous viscosity solution framework on which the rest of this work relies.

We have seen that under this notion the long-desired well-posedness properties can be
acquired with the help of compatibility condition and comparison principle, which was
not possible in the classical one. This notion is not only useful from a theoretical point
of view but also from a numerical one, since the convergence of a numerical scheme
can be guaranteed in this setup. Therefore, this setting gives us the power to analyse
and realise new Shape from Shading models efficiently in both theoretical and practical
perspectives, as long as the model involves Hamilton-Jacobi equations.

The next two subsequent chapters have handled modern Shape from Shading models.

Chapter 5 has discussed the perspective Shape from Shading with Lambertian surfaces
by Prados and Faugeras includingmodelling process, eikonal-type generic Hamiltonian
- an efficient formulation of the model itself - and well-posedness of the model.

It was shown that singular points played an important role on the uniqueness of solu-
tions. In order to avoid the effect of singular points, a light attenuation term based on
the inverse square law was taken into account leading to a general-type Hamiltonian
which can satisfy well-posedness properties without being affected by singular points.
In consideration of these results, the modelling process should reflect physical phenom-
ena correctly, otherwise an outcome would be unreasonable or have poor qualities.

Chapter 6 has treated one of the simplest non-convex Shape from Shading models han-
dling Phong-type surfaces which look much more realistic than Lambertian ones. As
recognised in this case, more realistic modelling often has led to non-convex problems
which are, in general, more complicated and difficult to deal with. However, the anal-
ysis of critical points enables us to get hands on the valuable information on the be-
haviour around critical points and the convexities of Hamiltonians. It can even provide
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conditions to alleviate the non-convex properties theoretically, which can offer us in-
depth understanding of the model.

The last part of this work has been involved with numerical sides of the problem.

Chapter 7 has put so much effort to establish the convergence of a numerical scheme
for solving general-type Hamilton-Jacobi equations in the viscosity sense and Chapter 8
has presented the experimental results.

Despite the difficulties of monotonicity analysis due to our special interest in the non-
convex Hamiltonian we have shown that under certain stability constraints a simple
monotone and consistent upwind-type explicit scheme equipped with a strong unique-
ness property for the Vogel-Breuß-Weickert model converges toward a continuous vis-
cosity solution in one-dimensional case.

In these contexts, this work can be extended in several ways.

For the modelling aspect, one could employ more physically accurate reflectance model
for surfaces in Shape from Shading problems. As long as the mathematical model in-
volves Hamilton-Jacobi equation, properties of viscosity framework can also be trans-
ferred into the new model. One example can be found in [5].

For the analysis of these models, a critical point analysis method that we have used in
Chapter 6 remains still useful, since in general more realistic models possess non-convex
Hamiltonians.

Another work could be expected in higher dimensions. While the theory and the ex-
amples in the present thesis mainly focus on 1-D or 2-D grey value data, it is evident
that most of its results could be generalised to higher dimension problems, e.g. colour
Shape from Shading. Such generalisations could be applied to the situation where more
precise operation technique under endoscopy scene is in need for medical purposes.

From the numerical perspective, more efficient schemes like implicit ones can be ex-
pected.

Therefore, there is still room for improvements. It would be very nice if this work has
inspired its readers to contribute to the related fields.
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tions generalisées équations Hamilton-Jacobi de premier ordre. Comptes Rendus
de l’Académie des Sciences. Série I., 292(3):183–186, 1981. 15, 16

[23] Michael G. Crandall and Pierre-Louis Lions. Viscosity Solutions of Hamilton-
Jacobi equations. Transactions of the American Mathematical Society, 277(1):1–42,
May 1983. 15, 16, 53, 54, 110, 128

[24] Angel de la Fuente. Mathematical Methods and Models for Economists. Cambridge
University Press, 2000. 84

[25] Jean-Denis Durou and Didier Piau. Ambiguous Shape from Shading with Critical
Points. Journal of Mathematical Imaging and Vision, 12(2):99–108, 2000. 64

[26] Elisabeth Rouy and Agnès Tourin. A viscosity solutions approach to Shape-from-
Shading. SIAM Journal on Numerical Analysis, 29(3):867–884, June 1992. 53, 64, 73,
103, 117, 118, 131, 132

http://www.mia.uni-saarland.de/Teaching/NAVC-WS0809/NAVC02-08.pdf


References 169

[27] Emiliano Cristiani, Maurizio Falcone, and Alessandra Seghini. Some Remarks
on Perspective Shape-from-Shading Models. In Fiorella Sgallari, Almerico Murli,
and Nikos Paragios, editors, Scale Space and Variational Methods in Computer Vision
– First International Conference, SSVM 2007, Ischia, Italy, May 30 - June 2, 2007. Pro-
ceedings, volume 4485 of Lecture Notes in Computer Science, pages 276–287, Berlin
Heidelberg, 2007. Springer. 1, 3

[28] Emmanuel Prados, Oliver Faugeras, and Elisabeth Rouy. Shape from shading
and viscosity solutions. Technical Report 4638, INRIA, November 2002. 64

[29] Emmanuel Prados, Oliver Faugeras, and Fabio Camilli. Shape from Shading: a
well-posed problem? Technical Report 5297, INRIA, August 2004. 3, 64, 66, 67,
105, 110

[30] Emmanuel Prados, Olivier D. Faugeras, and Elisabeth Rouy. Shape from Shading
and Viscosity Solutions. In Computer Vision – ECCV 2002: 7th European Confer-
ence on Computer Vision Copenhagen, Denmark, May 28-31, 2002 Proceedings, Part
II, volume 2351/2002 of Lecture Notes in Computer Science, pages 790–804, Berlin
Heidelberg, 2002. Springer. 64

[31] Emmanuel Prados and Olivier D. Faugeras. ”Perspective Shape from Shading”
and Viscosity Solutions. In 9th IEEE International Conference on Computer Vision
(ICCV 2003), 14-17 October 2003, Nice, France, pages 826–831. IEEE Computer So-
ciety, 2003. 64, 67, 75

[32] Lawrence C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in
Mathematics. American Mathematical Society, 1998. 7, 8

[33] Bernd Freytag. Lecture Note “Introduction to Numerical Hydrodynamics”.
http://www.astro.uu.se/∼bf/course/numhd course 20100124.pdf, 2010. 118
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