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1 Introduction

This thesis addresses a powerful method for discrete optimisation problems,
called graph cuts. These methods have become popular in the last years
[12, 13, 38] although their general capabilities are well known already since
the 1960s.

Graph cuts are applicable to many computer vision problems. Besides
classical image regularisation and denoising [12, 13], there are plenty of
publications on segmentation methods using graph cuts [58, 9, 51, 45, 11].
Also the estimation of optical flow [13, 42, 5, 38] and stereo vision [12,
13, 38, 65, 5] are numerously treated problems. Moreover, there also exist
several successful graph cut based algorithms for scene reconstruction from
multiple views [39, 52]. But graph cut methods are not limited to the
field of image processing and computer vision. In principle, they are a well
suited method for minimising a wide class of discrete functions and could be
applied to any problem, that fulfils certain properties [40]. As an example,
in the field of machine learning massive research is being done on graph gut
ideas. One example is semi-supervised learning, where one tries to expand
the small set of labelled input data with such methods [6, 7]. Another field
of application where graphs play an important role are spectral clustering
methods [61]. There, one tries to cluster a graph whose vertices represent
data measurement points and whose edges represent the similarity of such
data points. The interesting speciality of spectral clustering methods is that
they try to solve this problem by analysing the eigenvalues and eigenvectors
of matrices that can be computed from the graphs instead of employing cuts
on this graph. But besides all these wide spread application possibilities,
we want to focus on image regularisation and stereo vision in this thesis.

The general procedure of all graph cut optimisation methods we con-
sider is essentially always the same: For the given problem we formulate
an appropriate discrete cost function. Then a graph consisting of nodes
and arcs is constructed. This graph then separated – or cut – into several
subgraphs – usually two subgraphs. Finally, due to the special construction
of our graph, we can identify a solution of our cost function with this par-
tition. Provided we found a minimal cut, we can then be sure to also have
a solution of our objective function with minimal energy.

Our first tries on graph cuts will be made for signal regularisation. There
we will consider the problem of filtering discrete 1-D signals, which are
assumed to be deteriorated by noise. This filtering can be expressed as an
energy function, whose minimum is the filtered signal. We will also compare
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the minimisation results obtained via graph cuts with the output of related
variational ideas.

The main topic of this thesis shall be stereo vision. In this task, we
are given a pair of images, and the goal is to recover the depth of the
scene. The main problem that has to be solved for this task is to establish a
correspondence relation between pixels of the two images. We will consider
the simplified case of the ortho-parallel setting in this thesis and concentrate
on the minimisation of a a suitable cost function, that we will have to
formulate. As a first step towards this problem we will discuss a successful
publication by Boykov, Veksler and Zabih [13] in detail.

A big problem in the context of stereo vision is the naturally occurring
effect of occlusions, where due to the geometrical setting certain parts of the
scene are only visible from one camera. The problem here is that simple cost
functions cannot resemble this phenomenon correctly and thus introduce a
systematic error. To overcome this problem we will discuss a very successful
publication by Kolmogorov and Zabih [38] in section 7, which completely
reformulates the stereo problem and imposes model assumptions that are
able to handle occlusions adequately.

Inspired by a variational method [3] and based on [13], we will finally
formulate a cross-checking based stereo algorithm that also incorporates
occlusions.

Organisation This thesis is organised as follows: We will start discussing
general graph theoretic modalities in section 2 that explain why all the fol-
lowing considerations are valid. In this section we will prove the famous
Min-Cut-Max-Flow theorem and introduce algorithms to determine maxi-
mal flows. The following section will then introduce one-dimensional sig-
nal regularisation ideas and methods. We will introduce one of the most
classical and basic graph constructions there and compare the obtained re-
sults with the results from other well known methods. After these first
experiences with graph cut methods, we will discuss the important role of
smoothness penalty functions in section 4. Starting from section 5, we will
concentrate on issues directly related to stereo vision. After a first introduc-
tion and explaination of the problem, we will use two different approaches
to solve the correspondence problem in sections 6 and 7. Finally we will
present own extensions to the methods from the previous sections in section
8 and conclude this thesis in last section.
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2 Graph Theoretical Aspects

In order to be able to apply graph cuts on real imagery later on, we will try
in this section first to introduce all necessary basic graph theoretical con-
cepts. We will start defining formally what a graph and related important
notions are, then we will prove the result which is for us most important,
the so-called Min-Cut-Max-Flow theorem. Finally we will discuss practical
algorithms to determine maximal flows and minimal cuts.

2.1 Flow Network Definition

In this section, we want to clarify and define the notation needed to describe
what we will call a graph throughout this document.

Before giving precise definitions, one should remark that the entity that
we mean when speaking of a graph, is also known under the name flow
network in the majority of the graph theoretical literature (e.g. [64, 23]).
Within this document we will use both notions side-by-side.

A graph, or flow network,

G = < V , E >

consists of a set of nodes, or vertices, v ∈ V and a set of edges, or arcs,
e ∈ E . We will mainly consider undirected graphs for our applications.

We will now define properties and invariants of graphs, but before giving
these formalisms, one should get an intuition on what a real world flow
network might be. One simple example (among many many others) is the
sewage water system of a city. It consists of a large network of water pipes,
which are obviously the counterparts to the edges of a graph. These pipes
often join, or one pipe ends in another pipe. All such junctions correspond
to the nodes of a graph, because only there two or more pipes can be
connected. In the following, we will define two important functions on
graphs: the capacity and the flow between two adjacent nodes. For the
sewage system example, one could identify the diameter of a pipe with the
capacity of the corresponding edge. The larger its diameter is, the more
water can flow through it. And by that already the meaning of a flow on an
edge becomes clear. It can be understood as the amount of water flowing
through it per time unit.

Further, there are some invariants a graph has to fulfil. One is, that
for each normal node, there cannot flow more water into it, than leaves it.
Physicists might also know this rule as Kirchhoff’s law. There are some
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special nodes, for which Kirchhoff’s law may be violated. The so-called
terminal nodes T ⊂ V are by definition allowed to produce or consume flow.
Their necessity is obvious, because the water must come from somewhere
and go somewhere. So, all the connected houses and the drain hole covers
could be identified as source nodes, and a river might be a sink node for
our example. But for the whole system, the sum of all flows produced
in sources must be equal to the sum of all consumed flows in sink nodes.
Another invariant is that the flow on a pipe may not exceed its capacity.
Otherwise it might happen that the pipe would burst.

To become more precise, the capacity is a function

c : E → R+
0

which assigns each edge a non-negative value. Sometimes, one also speaks
of the weight of an edge instead of its capacity. To emphasise the direction
of flows and capacities, we will use a slightly different version of the capacity
function taking the two nodes that are connected by this edge as argument:

c : V × V → R+
0

Using this notion taking two nodes as argument, we can also define the
capacity of a directed edge formally. Besides the capacity, also the flow is a
function

f : V × V → R
which assigns a real value to each edge. Note that flows are directed quan-
tities. In figure 1, an example of a flow network can be seen.

It is important to note that the flow function as well as the capacity
function are defined as quantities of one edge. This means that the versions
taking two nodes as argument resemble the capacity and the flow of a direct
edge between these two nodes, and not of a path consisting of several edges.
If there is no edge between two nodes, then the flow and capacity between
them is zero. For example, flow and capacity between node s and v3 in
figure 1 are zero.

An important property of a flow function is its skew symmetry, and can
be expressed as

f(u, v) = − f(v, u) (2.1)

This rule also implies, that even if there existed more than one edge between
two nodes u and v, the flow function resembles the accumulated flow over
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Figure 1: Undirected example graph. Slightly different version of [23, Chap-
ter 26]. Edges are labelled f(e)/c(e). Terminal nodes are box-shaped.

all these edges. In practice, one can neglect this problem by constructing
graphs that only have one single edge to connect two nodes. For two subsets
of the node set X, Y ⊂ V , we can define the net flow from X to Y as

f(X, Y ) :=
∑
u∈X

∑
v∈Y

f(u, v) (2.2)

The previously mentioned Kirchhoff’s law can then be expressed as∑
v∈V

f(u, v) = 0 ∀u ∈ V \ T (2.3)

where T ⊂ V is the set of all terminal nodes. In our applications, we will
usually have two terminal nodes, one source node denoted by s, and one
sink node t. Further following the previous example, it must hold that

f(u, v) ≤ c(u, v) ∀u, v ∈ V (2.4)

Besides the notion of the capacity of an edge, i.e. how much water the pipe
can transport, another important quantity for flow networks is the so-called
residual capacity. It is a function

cf : V × V → R+
0

that returns the amount of flow, that, given a flow f , an edge still could
carry, and can be computed by

cf (u, v) = c(u, v)− f(u, v) (2.5)

Note, that the residual network of an undirected graph is a directed graph,
because if an edge has a current flow, then the residual capacity in the
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u v
     3 / 10     

u v
                    7
13

Figure 2: Example graph G = < {u, v}, {e} > consisting of two nodes
u, v and one edge e. e has (undirected) capacity 10 and the flow on it is
f(u, v) = 3. Left: Flow network. The diamond shaped arrow head of the
edge indicates flow direction. Right: Corresponding residual flow network.
In the residual network, the edge from u to v has residual capacity 10−3 = 7,
and cf (v, u) = 10− (−3) = 13.

direction of the flow is smaller than in the opposite direction. This effect is
illustrated in figure 2 with one edge between two nodes.

A similar and at first glance unintuitive effect concerns directed edges:
Let a directed edge from u to v have capacity C. If no flow is on that edge,
we have c(u, v) = C and in the opposite direction c(v, u) = 0. Also for the
residual capacities, we get cf (u, v) = C and cf (v, u) = 0. Now assume there
is a flow F ≤ C on that edge from u to v. The residual capacity in direction
of the flow changes as expected: cF (u, v) = C − F ≥ 0. But, the opposite
direction which had zero residual capacity beforehand, now has

cf (v, u) = c(v, u)− f(v, u) = 0− (−F ) = F (2.6)

This means that by sending a flow along (u, v), a previously not existing
edge has been opened in the residual network.

2.2 Maximal Flows and Minimal Cuts on Graphs

As already the title of this thesis promises, this document will deal not only
with graphs but especially also with cuts of such graphs.

Let a graph G =< V , E > be given. For now, let us assume that G has
two terminal nodes, a source s and a sink t, {s, t} = T ⊂ V .

A cut C ⊂ E on a graph G is a subset of the edge set having the property
that in the induced graph

GC := < V , E \ C >

the terminal nodes are separated from each other. This means that the set
of nodes V is partitioned into two sets Vs and Vt = V \ Vs. Each of the
arising parts has exactly one terminal node as element, i.e. s ∈ Vs and
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t ∈ Vt. Additionally we require for a cut, that it shall not contain more
edges than necessary. Cuts as we will consider them will not have a proper
subset that would still separate the terminals. Otherwise, the edge set of a
graph itself would be a cut, which obviously does not make sense.

We will restrict our considerations on cuts in this section to the case
where |T | = 2 mainly, since the graphs we construct and cut in practice
will all have two terminal nodes only.

With this notion of a cut at hand, we can now define the capacity as well
as the flow of a cut. The capacity of a cut c(C) is the sum of the capacities
of all its edges.

c(C) =
∑
e∈C

c(e) =
∑
u∈Vs

∑
v∈Vt

c(u, v) (2.7)

Similarly, the flow of a cut C is defined as the sum of the flow on the edges
of C

f(C) =
∑
e∈C

f(e) = f(Vs,Vt) (2.8)

The edges of C are said to cross the cut, which means for an (undirected)
edge e from u to v that either u ∈ Vs and v ∈ Vt, or u ∈ Vt and v ∈ Vs.

For directed graphs, cuts are defined slightly differently. There, an edge
is only part of the cut, if it is directed from Vs to Vt. Then, the capacity
and flow of that edge can be calculated as for undirected flow networks.

The flow of a graph is defined to be the sum of flow leaving the source,
or, equivalently the sum of flow entering the sink of the graph.

|f(G)| =
∑
u∈V

f(s, u) =
∑
u∈V

f(u, t) (2.9)

See figure 3 for an example of a graph transporting flow.
As the sewage system of a city has a certain maximal amount of water,

that can be transported, so has every flow network a uniquely determinable
maximal flow value. If a graph is at maximal flow, then it is not possible
any more to increase the flow, because there exists no path with residual
capacity that could be augmented any more. Note that while the value of
the maximal flow can be uniquely determined, there still may exist many
different flow functions for a given graph being a maximal flow.

2.2.1 Min-Cut-Max-Flow Theorem

Before stating the famous Min-Cut-Max-Flow theorem itself, we need to
state and prove a few corollaries in order to prove the theorem.
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s
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 4 / 9 
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Figure 3: Undirected example graph transporting a flow. Slightly different
version of [23, Chapter 26]. The diamond shaped edge endings indicate the
direction of the flow. Note that the flow is not a maximum flow, since e.g.
the path s→ v1 → v3 → t could still be augmented.

There, let us assume a graph G =< V , E > with two terminals {s, t} =
T ⊂ V be given. Further, let C ⊂ E be a cut partitioning the node set
V = Vs ∪ Vt , Vs ∩ Vt = ∅. Then we can state the following corollaries (see
also [23]).

Corollary 1 For a flow f on G, the following equalities are valid:

1. For any X ⊂ V holds: f(X,X) = 0

2. For all X, Y ⊂ V we have f(X, Y ) = −f(Y,X)

3. For all X, Y, Z ⊂ V with X ∩ Y = ∅ it holds that

f(Z,X ∪ Y ) = f(Z,X) + f(Z, Y )

Proof

1. By equation (2.2) we have

f(X,X) =
∑
u∈X

∑
v∈X

f(u, v)

In this summation, each pair of elements of X appears twice, once as
(u, v) and once as (v, u). Together with the skew symmetry (2.1) we
can prove that the elements of the summation cancel out in pairs.
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2. With equations (2.2) and (2.1) we can show

f(X, Y )
(2.2)
=

∑
u∈X

∑
v∈Y

f(u, v)

(2.1)
=

∑
u∈X

∑
v∈Y

−f(v, u)

= −
∑
u∈X

∑
v∈Y

f(v, u)

= −
∑
v∈Y

∑
u∈X

f(v, u)

= −f(Y,X)

3. Writing out

f(Z,X ∪ Y )
(2.2)
=

∑
u∈Z

∑
v∈X∪Y

f(u, v)

X∩Y=∅
=

∑
u∈Z

∑
v∈X

f(u, v) +
∑
u∈Z

∑
v∈Y

f(u, v)

(2.2)
= f(Z,X) + f(Z, Y )

�

Corollary 2 The flow of a cut is equal to the flow of the graph.

f(Vs,Vt) = |f(G)| (2.10)

Proof By corollary 1 we know that

f(Vs,V) = f(Vs,Vs ∪ Vt)
= f(Vs,Vs) + f(Vs,Vt)

Further, we can write for the flow of the cut

f(Vs,Vt) = f(Vs,V)− f(Vs,Vs)
= f(Vs,V) by Corollary 1.1

= f(s ∪ (Vs \ s),V) since s ∈ Vs
= f(s,V) + f(Vs \ s,V) by Corollary 1.3

= f(s,V) because f(Vs \ s,V) = 0 by (2.1)

= |f(G)|

�
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Corollary 3 The value of a flow in a graph cannot be larger than the
capacity of any cut of that graph.

Proof We have

|f(G)| = f(Vs,Vt)

=
∑
u∈Vs

∑
v∈Vt

f(u, v)

≤
∑
u∈Vs

∑
v∈Vt

c(u, v)

= c(Vs,Vt)

(2.11)

�
Minimal cuts and maximal flows are closely related problems. The following
theorem states their equivalence.

Min-Cut-Max-Flow Theorem Let G =< V , E > be a graph according
to section 2, and let s, t ∈ V be the two terminal nodes. Then the three
statements are equivalent:

1. f is a maximal flow.

2. There is no path in the residual graph Gf from s to t that could be
augmented.

3. |f(G)| = c(C) for some cut C

Proof The proof for this theorem was given in 1956 by Elias et al. [27]
and independently by Ford and Fulkerson [29] in the same year.

(1)⇒ (2) Assume f was a maximum flow on G. Now, assume there still
existed a path P ⊂ E through G from s to t. If this path is an
augmenting path, it fulfils

m := mine∈P cf (e) > 0

This means that it must be possible to augment this path with flow
m. The resulting new network flow f ′ then definitely fulfils |f ′(G)| >
|f(G)| which contradicts the assumption that f is a maximum flow.
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(2)⇒ (3) Assume there was no path in Gf from s to t that could be aug-
mented. This means that t is not reachable from s in the residual
network. But still, it is straightforward to determine the subset Vs of
V as

Vs := {v ∈ V | v is reachable from s in Gf}
and

Vt := V \ Vs
Obviously is (Vs,Vt) a valid cut, since by construction the two parts
are disjoint, and s ∈ Vs and t /∈ Vs. Further, and most important, for
every edge crossing the cut, i.e. for each edge from u ∈ Vs to v ∈ Vt, it
must hold that c(u, v) = f(u, v). If this was not the case, then v was
reachable from s, which contradicts the previous construction. Now
if all edges that cross the cut are saturated, we have

|f(G)| = f(Vs,Vt) = c (Vs,Vt)

(3)⇒ (1) By corollary 3, we have that any flow on G can at most be equal
to the capacity of any cut,

|f(G)| ≤ c (Vs,Vt)

and by assumption (3) it even holds that

|f(G)| = c (Vs,Vt)

thus |f(G)| cannot be larger and is a maximum flow.

�

2.3 Minimal Cut Algorithm

The existence of the min-cut-max-flow theorem is of central importance for
our later applications, since this theorem offers a relatively straight forward
algorithm to determine minimal cuts. We want to mention here, that there
are other algorithms that compute minimal cuts in flow networks without
incorporating maximal flows (see e.g. [54] and references therein), but the
vast majority of minimal cut algorithms relies on maximum flow computa-
tions.

Throughout this thesis, we will consider two general classes of maximum
flow algorithms. First, we will consider the most classical and straightfor-
ward methods for this problem, which are based on ideas first published by
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Step 1: Determine maximal flow in G

Step 2: Determine partition of V into Vs and Vt

Step 3: C = {(u, v) = e ∈ E|u ∈ Vs ∧ v ∈ Vt}

Figure 4: Min-Cut algorithm overview.

Ford and Fulkerson [29]. After that, we will consider more advanced and
faster methods for the problem, so-called push-relabel algorithms due to
Goldberg et. al [33]. One should already here note that even though push-
relabel methods at least bring the computation times for our applications
with images into the range of minutes, still there is room for enhancements.
But as said, we will see that the push-relabel algorithm provides enough
efficiency for this thesis to fulfil its main objective of a proof of concept.

In the following, we will as a first step always determine the maximum
flow in the given graph. Then, we will determine the two sets Vs and Vt
corresponding to the minimal cut. Since the cut separates the two previously
extracted sets, the cut edges are in a last step easily identifiable: All edges
going from Vs into Vt are cut edges:

C = {(u, v) = e ∈ E | u ∈ Vs ∧ v ∈ Vt} (2.12)

An overview over the algorithm is again printed in figure 4.
Concerning the first step, the max flow calculation, we will detail on this

topic extensively in the upcoming section 2.4.
After a maximal flow is present in the graph, the next step is to identify

Vs and Vt. To understand how this can be achieved, we have to realise
that Vs and Vt must be disjoint sets and that there does not exist a path
in the residual graph Gf from s to t. Therefore it is sufficient to determine
Vs, the subset of V being reachable from the source node s in the residual
network. This subset fulfils all requirements on the partition of V into Vs
and Vt = V \ Vs.

The last step is to identify the cut edges. It can be easily done by
iterating once over all edges and evaluating their inclusion in C accordingly
to (2.12).

We want to conclude this paragraph with figure 5 which shows the ex-
ample graph from figures 1 and 3 with a maximum flow. Besides this, also
its residual network together with the minimal cut is illustrated.



2.4 Maximal Flow Calculation 13

s

v1

 12 / 16 

v2 12 / 13 

v3 12 / 12 

 0 / 4 

v4 4 / 14 

t
 8 / 9 

 20 / 20 

 4 / 4 

 0 / 7 

s

v1

       
428

v2       1

25

v3       0
24

       
4

4

v4       10
18

t
       17

1
         0 

40

       
08

       
7

7

Figure 5: Undirected example graph from figure 1 transporting a maximal
flow. Top: Flow network. Blue edges are saturated. Bottom: Residual
flow network. Filled nodes are reachable from the source node s. Red edges
belong to the minimal cut.

2.4 Maximal Flow Calculation

The generic minimal cut algorithm from section 2.3 employs a maximum
flow calculation in its first step. This calculation shall be the topic of this
section.

It turns out, that just this computation of the maximal flow is also
in terms of computational effort by far the most costly part of the whole
algorithm. The two remaining steps for the minimal cut determination are
not expensive any more once the maximal flow is found: the exploration
of the connected graph should not cost more than O(|V|) operations, and
the following decision for each edge, whether it is a cut edge or not is one
iteration over all edges, O(|E|).

Throughout the work on this thesis, we implemented two types of max-
imum flow algorithms: First we implemented the algorithm by Ford and
Fulkerson [29] and several variants of it. While the latter algorithmic idea
is very intuitive and straightforward, it turned out that the efficiency of
Ford-Fulkerson type algorithms is too low in order to be applicable to com-
puter vision problems.

A competing class of algorithms are so-called push-relabel algorithms,
which will be discussed after introducing the algorithm by Ford and Fulk-
erson.
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2.4.1 Ford-Fulkerson Algorithm

The algorithm by Ford and Fulkerson, first published in 1952, was the first
so-called augmenting path algorithm. Algorithms of this class always work
by repeatedly searching for a path from the source s to the sink t in the resid-
ual network. Once such a path is found, it is augmented. This augmentation
stage will increment the flow on all edges lying on this path. If no path with
free capacity can be found any more, the algorithm terminates, since the
actual flow is a maximal flow. A listing of the steps of Ford-Fulkerson style
methods can be found in listing 1. One concrete instance of such augment-

while ( p = f ind path ( s , t ) ) do
for each edge e in p do

increment f low on e
end

end

Listing 1: Ford-Fulkerson algorithm overview.

ing path algorithms is the algorithm by Dinic [26] from 1970, which was
independently also found by Edmonds and Karp in 1972 (but developed at
the same time [63]). The algorithm by Edmonds and Karp specified to use
a breadth first search (BFS) algorithm for searching the paths from s to t
in the residual network. By using BFS and defining the length of edges to
be 1, the algorithm ensures to always find a shortest path. In listing 2 one
can see the structure of the Edmonds-Karp algorithm. Please note that the
amount of augmentation for each path is specified there to be the minimal
(residual) capacity that all edges of the found path still have.

Concerning the worst-case running time of the Edmonds-Karp algo-
rithm, we make the following important observations: In the worst case,
searching a path in a flow network via breadth first search will cost O(|E|),
since BFS visits each edge of a graph at most once. In each augmentation
step the amount of augmentation is chosen such, that at least one edge
on the actual path becomes saturated. We will call such an edge criti-
cal. One can show (see e.g. [23]) that each edge of the graph can become
critical at most |V|/2 − 1 times. In total, we get then a worst case com-
plexity of O(|V| · |E|2). To conclude this part on the Edmonds-Karp and
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while ( p = BFS ( s , t ) ) do
m = ∞
for each edge e in p do
m = min(m, cf (e)

end

for each edge e in p do
f(e) = f(e) +m

end
end

Listing 2: Edmonds-Karp algorithm overview. The path search routine BFS
performs a breadth first search and outputs a path p ⊂ E .

Ford-Fulkerson methods, we want to give the steps and intermediate flow
networks that one execution of the Edmonds-Karp algorithm may produce
in figure 6. Note that these steps are not unique, since the order in which
the nodes are visited is not uniquely defined.

It is of course possible to use other graph search strategies than a breadth
first search. Depending on the graph structure, it might e.g. be more
efficient to use a depth first search [23], or other strategies. But in general
one should remark that all Ford-Fulkerson type max flow algorithms have
poor performance, especially for graph structures as they will occur in our
constructions. The reason for this is the general procedure of searching
always a new augmentable path that is to be saturated then. Each new
path search has to start from scratch and cannot reuse graph information
from previous executions. This problem is the starting point of the idea of
[10] of reusing this information if possible.

2.4.2 Push-Relabel Algorithm

We now want to investigate on a competing class of algorithms for the
maximum flow problem. The first representative of the class of Push-Relabel
algorithms was published in 1986 by Goldberg and Tarjan ([32, 33]).

There is one major difference between the previously discussed augment-
ing path algorithms and the push-relabel methods: While augmenting path
algorithms always maintain a valid flow throughout their execution, push-
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Figure 6: Example run of the Edmonds-Karp algorithm on the example
graph from figure 1. First Graph: Input flow network with zero flow.
Second Graph: Flow network after first augmentation. The path that
was augmented was s → v1 → v3 → t. Note that the edge between v1

and v3 is critical. Third Graph: Network after augmentation of path
s → v2 → v4 → t. Fourth Graph: Flow network after last augmentation
s→ v2 → v3 → t. The flow is maximal.

relabel methods omit this property and maintain a so-called preflow with
weakened validity constraints.

In order to explain the intuition behind this algorithm, we need to define
two additional attributes of a vertex. The excess of a node is defined as

e(u) =
∑
v∈V

f(v, u) (2.13)
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A valid flow has to respect Kirchhoff’s law, which constraints the excess to
be equal to zero always. We will call a node active, if its excess is larger
than zero. Further, we will assign a positive integer valued number to each
node which we will call its height.

Intuitively speaking, we can understand the push-relabel method as fol-
lows: The vertices of the network are regarded as a landscape, where the
height of each vertex might change over time. The height of a vertex should
ideally correspond somehow to its distance to the sink node. By this the
landscape descends towards the sink.

Initially, the height of all nodes is set to zero, except for the source,
whose height is set to |V| fixed. Secondly, all outgoing edges of the source
node are saturated. By this all direct children of the source node get a
positive excess and become active by that.

The next step, which is applied to all active nodes until the algorithm
terminates is the following: The actual node will try to push as much flow
as possible to its neighbours. The only restriction is to only push flow
downhill. By this latter constraint, we give the push operations a preferred
direction towards the sink. If an active node has no neighbour whose height
is smaller than his, a relabel operation is applied to this node: His height
is increased to one plus the height of his lowest neighbour.

The temporarily weakened constraints on the flow function for the time
of execution of the algorithms are summarised in the notion of a preflow. A
flow is a preflow, if for all non-terminal vertices it holds that

e(u) ≥ 0 ∀u ∈ V \ T . (2.14)

Intuitively, each vertex may have a reservoir to store flow. If the push-relabel
algorithm terminates, the preflow is converted into a valid flow.

The core algorithm consists of three main procedures: push, relabel and
discharge. Further, it maintains list of active nodes. As long as this list is
not empty, it takes one node of this list and applies the procedure discharge
to it. If the node is still active after this application, it is added to the list
again.

A pseudo-code formulation of the three mentioned procedures is given
in listing 3.

The initialisation of the algorithm is straight-forward. The height of
each node are set to zero, except for the source vertex, whose height will
be kept fixed at |V|. Similarly the sink, which will always represent the
deepest spot in the landscape, will stay at fixed height 0. As described, all
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procedure push ( ver tex u , ver tex v )
f(u, v) = f(u, v) +min(cf (u, v), e(u)) ;

end

procedure r e l a b e l ( ver tex u)
h = ∞ ;
for a l l neighbours v o f u do

h = min(h , v . he ight ) ;
end
u . he ight = h + 1 ;

end

procedure d i s cha rge ( ver tex u)
do

// n i s the a c t u a l ne ighbour to c o n s i d e r
n = u . n e i g h b o u r l i s t (u . a c t u a l n e i g h b o u r i d ) ;

i f ( ( u . he ight == n . he ight +1) ∧ (cf (u, n) > 0 ) )
push (u , n ) ;
continue ;

end

// goto the next ne ighbour
u . a c t u a l n e i g h b o u r i d += 1 ;
i f (u . a c t u a l n e i g h b o u r i d > u . n e i g h b o u r l i s t . l ength )

u . a c t u a l n e i g h b o u r i d = 1 ;
r e l a b e l (u ) ;
return ;

end
while (u . exc e s s > 0)

end

Listing 3: Push-Relabel algorithm overview. Each node stores list of links
to his neighbours as well as a link to his actual neighbour.

nodes that share a direct edge with the source node get an initial excess by
saturating this edge at the beginning. In this way all those nodes become
active and can push their excess towards the sink. In this way it will also
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never be necessary again to push any flow from the source into the graph.

Analysing the behaviour of the algorithm, one can see, that the height
of the nodes increases monotonically. At some point, all direct neighbours
of the sink node will have height strictly larger than one. Since we only
allowed to push flow to nodes with height exactly one unit smaller than
oneself, from this stage on, no flow can be pushed into the sink any more.
One can observe this height gap growing up to a value of |V| between these
nodes and the sink.

The next interesting point of execution is when the height of all non-
terminal nodes exceeds |V|. At this stage, the minimal cut as well as the
maximum flow value are already fixed, even though the algorithm has not
terminated yet. The maximal flow value is equal to the excess of the sink
node, and the minimal cut can be determined by the set of nodes which
can reach the sink in the residual graph Gf . All following steps of the
algorithm will increase the landscape such that the stored excess can be
discharged into the source node again. Note that since we are interested in
minimal cuts, we will terminate our computations at the mentioned stage,
moreover we will even stop all push and relabel operations at height |V|. If
one executes the algorithm until complete termination, it is obvious, that
all excess is transported back into the source again, and by that the preflow
is turned into a valid flow.

There are various actual implementations of the push-relabel algorithm
in the literature [32, 33, 19], that differ especially in the choice of the active
nodes list implementation and behaviour. For example, by using a FIFO
list, the runtime of the algorithm can be shown to be in O(|V|3)([32]).
While cubic complexities are not acceptable in practice, [19] proposed that
use heuristics to reduce the empirical runtime drastically.

Heuristics In [19], the usage of two heuristics was proposed.

The first heuristic they propose is to completely relabel the heights of all
nodes periodically, by setting them to the distance of the node to the sink.
This can be realised by a breadth first search starting from the sink node
t towards the source node s, see also [25]. Note that this operation must
be performed in the residual network, but with reversed edge capacities, in
order to reflect the reachability from the inner network nodes to the sink.

The big advantage of this action is that all following push operations are
directed in a probably good direction by that. This measure in conjunction
with a reordering of the FIFO queue produces a tremendous performance
jump in practice. But since this global relabelling is computationally ex-
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pensive compared to local push and relabel operations, it is only performed
periodically, e.g. after |V| relabel operations.

The second heuristic being proposed in [19] is called gap heuristic and
relies on an important observation: Assume for some height label g < |V|,
that at some stage of the algorithm no vertex has height g, but there are
nodes v with heights g < height(v) < |V|. The observation now is, that
since there is a gap, all these nodes will not be able to send any flow across
this gap into the sink any more. Therefore, it is valid to just set the height
of all these nodes to |V| directly. Note that these node will by that not have
to be considered any more by us, since we are only interested in minimal
cuts.

2.4.3 Algorithms for special graph structures

If the structure of the arising graphs is known and fulfils some special in-
variants, it might pay off to invent specialised algorithms tailored to the
specific problem. One instance of such an algorithm was given in [10]. It is
tailored perfectly to the graphs that arise in early vision problems. We will
see that such graphs consist only of the two terminal nodes and a number
of so-called pixel nodes. The speciality is that each pixel node has a direct
link to both terminals. Further, each pixel node is at most connected to 4
other pixel nodes. It is obvious that developing a specialised algorithm for
such graphs is possible and was realised in [10]. Interestingly, this algorithm
does not base on the Push-Relabel method, which is in its classical variant
considerably faster than all other discussed algorithms. Instead, the Ford-
Fulkerson algorithm is engaged, with additionally the possibility to reuse
network information from previous augmentations.
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Figure 7: Example of an input signal as considered in this section. The
black line shows the sin function that was used as example. The black
crosses denote the samples that were taken from function and perturbed
with additive Gaussian noise with standard deviation σ = 0.2. The per-
turbed samples were quantised at 10 equidistant quantisation levels, see
table 1 for the actual values. The black diamond shaped marks show the
result of this quantisation. The blue line interpolates the quantised samples
with a piecewise linear function.

3 1-D Image Regularisation

Our very first tests on graph cuts are concerned with one dimensional dis-
crete image (or signal-) regularisation, like proposed by Whittaker in 1923
[62] and later in 1977 by Tikhonov [55].

In this field, we consider 1-D signals f : R → R, that are sampled on
a regular grid with grid size h. Figure 7 presents a signal of such type.
Instead of designing this filter for discrete datasets directly, we will perform
the modelling of this regularisation method in continuous space. This leads
us to variational expressions, which we will discretise in a second step.
Usually, the input for regularisation methods are distorted or noisy signals.
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The objective of image regularisation is to remove these perturbations and
to output a filtered version u of f not containing such noise artefacts any
more.

To realise this filter [62, 55] introduced an energy functional that is to
be minimised by the desired function u : R→ R.

E(u) =
1

2

∫
Ω

(u− f)2 dx+
α

2

∫
Ω

(
d

dx
u
)2

dx (3.1)

In this functional the first integration term is called data term because it
penalises deviations of the filtered function from the noisy input signal f .
If the output was the same as the input signal, the integral would evaluate
to zero. Thus this term keeps u near f .

The second term in (3.1) is called smoothness term. It contributes to
the energy functional whenever the filtered signal changes its value. This
can be realised by considering the derivative, which is non-zero wherever
the function changes. The reason to choose such a smoothness term is that
empirically noise is a high-frequent component of a signal which consists of
many small perturbations. Obviously, in such perturbations, the derivative
is large, and hence, by penalising large derivatives a noisy signal cannot
minimise the proposed energy functional. The solution must be smooth.
The parameter α > 0 gives us the possibility to control the influence of the
smoothness term in this functional, it is often called regularisation param-
eter.

There are several practical implementation and realisation strategies,
how to apply and perform such a filter in practice. In particular, the calculus
of variations allows us to apply the so-called Euler-Lagrange theorem, which
leads to a differential equation that has to be solved.

Any minimiser of equation (3.1) has to fulfil the corresponding Euler-
Lagrange equation which reads

u− f
α

=
d2

dx2
u (3.2)

This equation is only valid in conjunction with so-called natural boundary
conditions

d

dx
u = 0 (3.3)

Equation (3.2) is known to be closely related to the (linear) diffusion equa-
tion, which describes how heat propagates. As a side remark we do not
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want to conceal that one simple solution of this diffusion equation is a con-
volution of the signal with a Gaussian kernel whose width depends on the
value of the mentioned regularisation parameter α.

Since we are designing our filters in continuous space, the main addi-
tional task we have to cope with after the design itself is the discretisation of
the continuous ideas in order to get a filter that can be applied in practice.

Even though it is a common methodology to discretise the Euler-Lagrange
equations, there also exists the possibility to discretise the energy functional
and to disregard the Euler-Lagrange formalism. Having a comparison with
graph cut methods in mind, this is also the way we want to progress.

Note that the Euler-Lagrange equations are differential equations that
just have to be solved. Once discretised, we immediately would get a system
of linear or non-linear equations. Besides this, a discretisation of the energy
functional itself leads to a discrete function, for that we still need to find a
minimiser.

Regarding the energy functional from equation (3.1), we see that it is
necessary to approximate the differential equation | d

dx
u|2 in discrete space.

In order to keep the resulting discretisation simple, and in order to stay
immediately comparable to graph cut methods later on, we realise this by
using simple one-sided finite differences methods. More precisely, we will
approximate the derivative expression by so-called forward differences which
can be computed as (

d

dx
u

)
i

≈ ui+1 − ui
h

(3.4)

where the discrete sample at position i ∈ N is sampled at i times the spatial
grid size (sampling distance) h > 0

ui = u(i · h) (3.5)

Assuming a grid size h = 1, we obtain the discretised version of the contin-
uous energy functional from (3.1) as

E(u) =
1

2

n∑
i=1

(ui − fi)2 +
α

2

n−1∑
i=1

(ui+1 − ui)2 (3.6)

where u ∈ Rn. The result of this discretisation step is a function E : Rn →
R, where n is the size or length of the discrete signal.

As already mentioned, it is still necessary to find the minimum of this
function. In general we know that the derivative of a function has to vanish
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in extreme points. Here in this n-dimensional setting, we have to find
positions, where the gradient of E vanishes

∇E :=


∂E
∂x1
...
∂E
∂xn

 !
= 0 (3.7)

This in turn implies a linear system of equations which reads
1 + α −α
−α 1 + 2α −α

. . . . . . . . .

−α 1 + 2α −α
−α 1 + α


︸ ︷︷ ︸

=:A


u1

u2
...

un−1

un

 =


f1

f2
...

fn−1

fn

 (3.8)

One can easily verify that the system matrix A ∈ Rn×n has tri-diagonal
shape and has rank n. Thus the inversion of it is straightforward. After
computing the system matrix A, one can obtain the filtered signal u by

u = A−1f (3.9)

In figure 8 we present results for the previously introduced filter for different
choices of α. One can clearly see the smoothing and regularising character
of this filter. Especially the sharp noise peak around x ≈ 22 is rapidly
removed. A major drawback of the regularisation method as introduced
in equation (3.1) becomes apparent when looking at positions of a signal
where an edge is present in the original signal f . Figure 9 illustrates such
a situation together with the result of filtering it. The problem is that if
an edge – or position where the signal has a large derivative – is filtered,
the smoothness term will penalise such constellations severely and suppress
them. An idea how to overcome this problem of over-penalisation is to use
other penalising functions than the quadratic one used in equation (3.1).
By introducing a function Ψ : R→ R as

Ψ(s2) :=
√
s2 + ε2 (3.10)

which is a regularised variant [1] of the total variation regularisation frame-
work [46, 21], we can impose a sub-quadratic process which approximates
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Figure 8: 1-D quadratic signal regularisation with different choices for the
regularisation parameter α. The dashed line denotes the input signal from
figure 7. Blue line: Filtered signal with α = 0.5. Green line: α = 1.
Cyan line: α = 2. Red line: α = 4. Violet line: α = 16. All variational
compuations have been realised in Scilab [22].

an L1 penalisation. The parameter ε ≈ 0.01 is chosen very small and en-
sures the differentiability of Ψ in s = 0. Using this function, the following
continuous energy functional arises

ETV (u) =
1

2

∫
Ω

(u− f)2 dx+ α

∫
Ω

Ψ
((

d
dx
u
)2
)

dx (3.11)

Again, instead of deriving the Euler-Lagrange equations and discretising
them in order to get a numerical scheme, we want to discretise the given
energy functional directly. As in the previous case, in order to get simple
and immediately comprehensible terms we stick to one-sided finite (forward)
difference methods to discretise the derivatives. Then, a discretised version
of 3.11 reads

ETV (u) =
1

2

n∑
i=1

(ui − fi)2 +
α

2

n−1∑
i=1

Ψ
(
(ui+1 − ui)2

)
(3.12)
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Figure 9: Variational quadratic regularisation of a step function. One can
observe that the discontinuity at x = 20 is removed with increasing smooth-
ness parameter α. The dashed line shows the original step function. Blue
line: Filtered signal with α = 0.5. Green line: α = 1. Cyan line: α = 2.
Red line: α = 4. Violet line: α = 16.

One can easily prove the convexity of Ψ and with this result also the
convexity of the whole energy function ETV (u) follows. Hence, a vec-
tor that fulfils ∇ETV = 0 must be a minimiser of the functional. Thus
we know that the partial derivatives of ETV must vanish. Abbreviating
ψi := Ψ′ ((ui+1 − ui)2), the derivatives are given by

0
!

= u1 − f1 − αψ1(u2 − u1)

0
!

= ui − fi + α (ψi−1(ui − ui−1)− ψi(ui+1 − ui)) (i=2,...,n−1)

0
!

= un − fn + αψn−1(un − un−1)

(3.13)

These equations define a non-linear system of equations similar to the sys-
tem from (3.8). Note that the abbreviating terms ψi are the non-linear
parts and steer the rate of diffusion pointwise. The system matrix is given
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as

ATV :=


1 + αψ1 −αψ1

−αψ1 1 + α(ψ1 + ψ2) −αψ2

. . . . . . . . .

−αψn−1 1 + α(ψn−1 + ψn) −αψn
−αψn 1 + αψn


(3.14)

As in (3.8), the system that has to be solved reads

ATV u = f (3.15)

As before, the strict positive definiteness of ATV can easily be shown. All
non-linear terms fulfil ψi > 0. Thus, ATV is strictly diagonally dominant and
by that invertible. In contrast to the system for quadratic regularisation,
we need to iterate a procedure like

uk+1 =
(
AkTV

)−1
f

for the actual system, where we have to refresh the non-linear terms in AkTV
after each iteration with the updated values of uk+1. This proceeding is also
known under the name of time-lagged diffusivity or Kačanov method.

Results for this variational approach applied to the simple step function
are given in figure 10. One can clearly see that the discontinuity survives
and is not smoothed out. Also applied to more complex signals such as
the signal from figure 7, the introduction of the total variation term clearly
influences the filtering results, as can be observed in figure 11.

After having introduced briefly variational regularisation strategies together
with classical minimisation methods in the past section of this thesis, we
want to come now to a closely related class of regularisation methods, using
a different minimisation procedure, namely graph cuts.

3.1 Graph Cuts in Signal Regularisation

In this section we want to document our first attempts towards graph cut
methods. The reason to start with 1-D image regularisation is that the
corresponding graphs have a very simple structure and can be constructed
easily.
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Figure 10: Sub-quadratic variational regularisation of a step function. The
steep discontinuity at x = 20 is preserved also with increasing smoothness
parameter α. The original signal is invisible since it is covered by the filtered
versions. Blue line: Filtered signal with α = 0.5. Green line: α = 1.
Cyan line: α = 2. Red line: α = 4. Violet line: α = 16.

The main idea behind graph cuts will now be to construct an appropriate
graph that resembles the image situation. This graph should be built in such
a way that a cut of this graph should induce a new labelling. Then we can
rely on graph theory, which says that if we can find a minimum cut, then the
corresponding labelling whould also be a minimum of our energy function
E(f).

One of the main differences between classical methods such as the varia-
tional method discussed in the previous section and graph cuts is that graph
cuts work in an absolutely discrete world. Solving the system from equation
(3.14), we could determine a solution vector u ∈ Rn. Using graph cuts, we
will only be able to determine a solution vector having one label of a finite
set of available labels L = {f1, . . . , fl} in each component, hence a solu-
tion by graph cuts would be u ∈ Ln. Note that already in the variational
setting the spatial axis was discretised. But still, the function values were
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Figure 11: Regularised total variation regularisation of the signal from figure
7. Also in this case one can see that edges are not rounded as in the
quadratic case. Blue line: Filtered signal with α = 0.5. Green line:
α = 1. Cyan line: α = 2. Red line: α = 4. Violet line: α = 16.

chosen from the continuous space. Now, also the space of function values
will be finite. For the sake of completeness, table 1 give the quantisation
values corresponding to the (equidistant) labels of L for the signal being
used throughout the section.

Thus, we will frequently use the notion of a labelling f , in correspon-
dence to a solution vector, which assigns to each pixel p ∈ P a label fp ∈ L.

As for the variational approach, for graph cuts we will set up and min-
imise a similar energy function E consisting of a data term as well as a
smoothness term. This function reads

E(f) = Edata(f) + Esmooth(f) (3.16)

Similarly to the data terms introduced for the variational methods, the data
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label value
l1 -1.2172
l2 -0.9535
l3 -0.6898
l4 -0.4261
l5 -0.1624
l6 0.1012
l7 0.3649
l8 0.6286
l9 0.8922
l10 1.1559

Table 1: Label set L belonging to the function from figure 7. Note that
for image regularisation the elements of the label set L coincide with the
quantisation of the signal.

term here will have the form

Edata(f) =
∑
p∈P

Dp(fp) (3.17)

where as data penaliser Dp usually a quadratic term is chosen

Dp(fp) = (fp − Ip)2 (3.18)

and where Ip represents the intensity of the input signal (or image) at pixel
p. The choice of the smoothness term is a more complicated issue, since
as in the variational setting, many different functions have been proposed.
Generally speaking, the smoothness term will resemble inter-pixel depen-
dencies and can be formulated as

Esmooth(f) =
∑
p,q∈N

Vp,q(fp, fq) (3.19)

where N is the neighbourhood set. Note already here, that this formulation
only allows for the interaction of one pixel with one other pixel. Higher or-
der terms such as the interaction of a clique of three pixels are possible [65]
but go beyond the scope of this introductory discussion of graph cuts. Con-
cerning the smoothness term, due to its central importance, we will devote
the upcoming section 4 entirely to different possible choices for this term.
In this section, we will try to establish a direct comparison of variational
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ideas with graph cuts. Therefore, we will examine two choices for Vp,q, a
quadratic one resembling quadratic image regularisation

Vquadr(fp, fq) :=
α

2
(fp − fq)2 (3.20)

as well as a linear one resembling total variation regularisation and reads

VTV(fp, fq) :=
α

2
|fp − fq| (3.21)

Note that since graph cut methods only need to evaluate these terms, and
not to differentiate them, it is not necessary to introduce an parameter ε
as in equation (3.10). Another big advantage we will detail on later, is
that replacing one smoothness term with an other when using graph cut
methods can be done without any effort, which is most often not the case
for variational methods.

3.2 Graph Construction

We now want to construct a graph in which we want to resemble our energy
function. Note that the exact determination of the global minimum of
functions such as in equation (3.16) is an NP-hard problem [13, 24]. Thus
the only thing we can do is approximating the global minimum with a
hopefully good local minimum. For this task, graph cuts provide us with
powerful means.

3.2.1 Moves

In this context, so-called moves play an important role. Classical methods
like e.g. simulated annealing [37] perform what we call standard moves,
whose property is that only one pixel changes at a time. In contrast, we
will introduce two types of more powerful moves, where many pixels can
change at a time. The notion is also of central importance for the definition
of a local minimum: Only using standard moves, an algorithm reaches a
local minimum, if the energy cannot be decreased by changing any pixel
value. For our moves, if the energy cannot be decreased any more even by
adjusting many pixels at a time, then also the quality of this local minimum
should rise.

Given a current labelling f ∈ Ln, this induces a partitioning of the pixels
by their assigned label. Thus we can define a partition of the image pixels
as P = {Pl|l ∈ L}, where Pl = {p ∈ P|fp = l} represents the set of all
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pixels being currently assigned to label l. This equivalence also holds vice
versa: A given partition uniquely induces a labelling. Therefore we can use
the two notions interchangingly.

In the following sections we will introduce two types of moves: swap-
moves and expansion-moves.

In a swap move we will always consider two labels α and β, and all pixels
being currently assigned to either α or β. Then, a swap move can transform
a partition P into a new partition P′ if it holds that Pl = P ′l for all l 6= α, β.
We will abbreviate the set Pα∪Pβ with Pαβ in the following. So, by a swap
move, only pixels from Pα can swap their assignment to β (or keep their
current assignment), or elements in Pβ can change to Pα (or also keep their
β-assignment). Given a partition P and two labels α and β, we say that
a partition P′ is one α-β-swap away from P if the above requirements are
fulfilled.

An expansion move considers all pixels being currently assigned to one
label α in contrast to all other pixels, being not assigned to this label α.
Then one partition P can be transformed into a new partition P′ by one
expansion move for label α, if Pα ⊂ P ′α and P ′l ⊂ Pl for any l 6= α.
Intuitively, this means that only more pixels can be assigned to α, i.e. Pα
cannot get smaller. All pixels that were already assigned to label α must
keep this assignment and only pixels that were assigned to other labels can
change to the expanded label. As for swap moves, we define a partition P′ to
be one α-expansion move away from a partition P, if the given requirements
hold. We want to refer to figure 12 for an example for the different moves
here.

3.2.2 Swap moves

As described, given an input labelling f and two labels α and β, an α-
β-swap move should find a labelling f̂ , being the minimum of the energy
function E(f) for this α-β-swap.

Once having such swap moves at hand we can then define an algorithm
to approximate the global minimum of the energy function from equation
(3.16) in listing 4. We do not want to conceal here, that the algorithm as
given here has some negative theoretical properties. Especially the order in
which the pairs of labels are processed has a big impact on how the labelling
is updated. Ideally, in each cylce one would go through all pairs of labels
and update the labelling not until after all pairs have been seen. One would
take the swap move providing the highest decrease of energy then. In this
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(a) (b) (c) (d)

Figure 12: Illustration of different moves. Image (a) is an input image with
three labels α, β and γ. The second image depicts a standard move, where
only one pixel can be changed in each step. The image (c) shows the possible
result of a swap move of the labels α and β. Note that Pγ has not changed.
The last image (d) illustrates a expansion move of label α. All pixels that
were already assigned to alpha keep this assignment, only other pixels can
change to α. Images courtesy [13].

way, the order of processing the label pairs would not be an issue any more.
But the algorithm would have to perform O(n2) swap moves for each single
applied swap move, which would lead to a drastical increase of computation
effort. Empirically, we did not find an increase of quality using the latter
algorithm strategy, therefore we took the algorithm as introduced in listing
4 by [13] altough it is ordering dependent in theory.

We will now detail on the still missing central part of the whole algorithm
which is denoted by swap-move (α,β,f) in listing 4.

Given the two labels α and β and the labelling f , we will construct a
graph Gαβ =< Vαβ, Eαβ >. This graph will have two terminal nodes s and
t corresponding to α and β, respectively. Further we will see that a cut
through this graph separating the two terminals will uniquely specify a new
labelling f̂ .

Given the construction, we will show certain properties of this construc-
tion. Especially, we will show that the labelling induced by a minimum cut
of Gαβ must be the desired minimum of our energy function.

The construction of the graph is straightforward. The set of vertices will
consist of all pixels being assigned either to α or β and the two terminal
nodes: Vαβ = Pα ∪ Pβ ∪ {s, t} = Pαβ ∪ {s, t}. Each pixel vertex will share
an edge with each of the terminals s and t, such a terminal-link connecting
a pixel p with s will be denoted by tαp and similarly for the sink t by tβp .
Moreover, there will be an edge between any two nodes from Pα ∪ Pβ that
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Step 1 : Input l a b e l l i n g f
Step 2 : s u c c e s s := f a l s e
Step 3 : for a l l p a i r s o f l a b e l s {α, β} ⊂ L × L do

f̂ = swap−move ( α , β , f )
i f (E(f ′ ) < E(f ) ) then

f = f ′

s u c c e s s = true
end

end
Step 4 : i f ( s u c c e s s ) then

goto Step 2
else

Return f
end

Listing 4: Swap move algorithm according to [13].

are direct spatial neighbours. The assigned weights for these edges can be
looked up in table 2.

edge weight for

tαp = e[s,p] Dp(α) +
∑

q∈Np
q /∈Pαβ

V (α, fq) p ∈ Pαβ

tβp = e[p,t] Dp(β) +
∑

q∈Np
q /∈Pαβ

V (β, fq) p ∈ Pαβ

e[p,q] V (α, β) p,q∈N
p,q∈Pαβ

Table 2: Edge weights for swap move graph construction. All edges are
symmetric and undirected.

We will refer to all edges corresponding to the first two lines of table
2 as t-links, since they connect the terminals to the pixels. Similarly we
will call the set of all edges satisfying the last line of table 2 as the n-links,
because they describe the neighbourhood relations.

Obviously, any cut that separates the two terminals must include one t-
link for each pixel. If this was not the case, then there would be a path from
s to t and hence the cut would not separate the terminals. This fundamental
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Figure 13: Illustration on how two neighbouring pixels can be cut (dashed
line). Left: tα-link for p and q is cut. Both nodes will be assigned to label α.
Since they have the same label, there is no contribution of the smoothness
term, whose edge e[p,q] is not part of the cut. Middle: Same as the first
case, just with label and terminal β. Right: p is assigned to label β and q
is assigned α. Since the label changes, also the n-link between them is cut.
Illustrations from [13].

property is the key how to relate a labelling uniquely to a cut through a
graph: Each pixel is assigned that label, whose link is part of the cut. Given
a graph Gαβ =< Vαβ, Eαβ > and an associated cut C ⊂ Eαβ we can derive
the corresponding labelling fC as

fCp =


α, if tαp ∈ C ∧ p ∈ Pαβ
β, if tβp ∈ C ∧ p ∈ Pαβ
fp, if p /∈ Pαβ

(3.22)

In order to proof that the capacity of a cut on Gαβ coincides to the energy
of the induced labelling, we need to state some lemmas. These lemmas are
illustrated best by figure 13 which explains all possibilities how to separate
the terminals. Regarding the neighbourhood links, by construction, we can
state that an n-link can only be part of a cut, if different t-links of the two
concerned p-nodes are cut. Formally we can state for all p, q ∈ Pαβ and
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{p, q} ∈ N that
if tαp , t

α
q ∈ C then e[p,q] /∈ C

if tβp , t
β
q ∈ C then e[p,q] /∈ C

if tαp , t
β
q ∈ C then e[p,q] ∈ C

if tβp , t
α
q ∈ C then e[p,q] ∈ C

(3.23)

The first two lines of the latter equation follow from the fact that only one
t-link is part of a cut for each pixel. If this was not the case, then there
existed a subset of C which was still a cut, which cannot be the case. The
last two lines must also hold, since a cut must separate the terminals. Since
in these cases the two nodes will be connected to different terminals in the
induced graph, also the link connecting the two nodes must be eliminated.

Now we can summarise equations (3.22) and (3.23) to one compact state-
ment

|C ∩ e[p,q]| = V (fCp , f
C
q ) (3.24)

Note that for a strict proof of this equation, we need V to be a semi-metric,
which is true for our case here. See section 4 for a deep discussion. Now we
have everything at hand to state and proof the following

Theorem The cost of a cut C on Gαβ equals the energy of its induced
labelling plus a constant: |C|+K = E(fC).

Proof For each pixel node, one t-link must be cut. Thus, the cost of the
cut is

|C| =
∑
p∈Pαβ

|C ∩ {tαp , tβp}|+
∑
{p,q}∈N
p,q∈Pαβ

|C ∩ e[p,q]| (3.25)

From table 2 and the fact that p ∈ Pαβ we can directly use

|C ∩ {tαp , tβp}| =

{
|tαp | if tαp ∈ C
|tβp | if tβp ∈ C

= Dp(f
C
p ) +

∑
q∈Np
q /∈Pαβ

V (fCp , fq) (3.26)

Combining the latter equality together with equation (3.24) we can rewrite
the total cost of a cut as

|C| =
∑
p∈Pαβ

Dp(f
C
p ) +

∑
p∈Pαβ

∑
q∈Np
q /∈Pαβ

V (fCp , fq) +
∑
{p,q}∈N
p,q∈Pαβ

V (fCp , f
C
q )

=
∑
p∈Pαβ

Dp(f
C
p ) +

∑
{p,q}∈N

{p,q}∩Pαβ 6=∅

V (fCp , f
C
q )

(3.27)
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The energy contribution missing in the last equation are just

K =
∑
p/∈Pαβ

Dp(fp) +
∑
{p,q}∈N

{p,q}∩Pαβ=∅

V (fp, fq) (3.28)

This constant K has the same value for all swap moves for given labels α
and β.

Thus, we can conclude that using this graph construction, we can shift
the problem of finding the minimum of a certain energy function to deter-
mining a minimal cut on an associated flow network. Once this minimal
cut is found, the former theorem shows that also the (local) minimum of
the function is found.

The following figures 14 and 15 show results obtained by filtering the
signal from figure 7 using graph cut methods. Then, in figures 16 and 17
we directly compare results obtained by graph cuts and variational regu-
larisation methods. For all computations of the swap moves, we used the
algorithm depicted in listing 4. As initial labelling we used a labelling hav-
ing label zero everywhere. We also tried other initial labellings, but the
method has rendered to be insensitive with respect to initialisation: Using
e.g. a random initial labelling, only about 1% of the pixels in the final
labeling changed. Also the order in which the pairs of labels are processed
play a role. For all tests we took a regular processing order, passing through
all pairs by going row by row through the following table, from left to right,
top to bottom.

� (1, 2) (1, 3) . . . (1, n)
� (2, 3) . . . (2, n)

. . .
...

� (n− 1, n)

(3.29)

3.2.3 Expansion moves

Besides the swap moves introduced in the last section, there also exist so-
called expansion moves acting slightly differently. A main restriction we
already have to stress here is that in order to approximate our energy func-
tion and to really find a minimum, we have to ensure that the smoothness
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Figure 14: Graph cut based 1-D image regularisation. Quadratic smooth-
ness term from equation (3.20) used. Only swap moves used. Blue line:
Filtered signal with α = 0.5. Green line: α = 1. Cyan line: α = 2. Red
line: α = 4. Violet line: α = 16.

term V fulfils an additional constraint. It must be what we call a metric, see
section 4 for details on this topic. For the discussion of 1-D image regulari-
sation it is sufficient to know that the quadratic smoothness term Vquadratic

from equation (3.20) does not fulfil all necessary requirements for being a
metric, it is just a semi-metric. But the linear model from equation (3.21)
satisfies all constraints and can hence be used to regularise our data using
expansion moves.

Similarly to the last section, also for expansion moves we need to find
an algorithm, that defines how and when to apply the new minimisation
move. This is done in listing 5.

In an α-expansion move we will consider all pixels, no matter which label
they are currently assigned to. The minimisation process for the move then
considers for each pixel whether it is cheaper to have label α or to keep its
actual label. Obviously, pixels that were assigned to α before the move will
always keep this assignment. This means that the number of pixels having
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Figure 15: Graph cut based 1-D image regularisation. Linear smoothness
term from equation (3.21) used. Only swap moves used. Blue line: Filtered
signal with α = 0.5. Green line: α = 1. Cyan line: α = 2. Red line:
α = 4. Violet line: α = 16.

label α can only grow by an α-expansion move: |P′α| ≥ |Pα|.
The graph construction for expansion moves is slightly different from

the construction for α-β-moves. Instead of |Pα|+ |Pβ|+ 2 nodes, this con-
struction Gα =< Vα, Eα > will have one vertex per pixel, independently of
the number of current α-pixels |Pα|. The sink and the source node will cor-
respond to the label α and the opposite label ”not α”, respectively. Besides
the vertices corresponding to pixels, we will need additional auxiliary nodes
whenever two neighbouring pixels are assigned to different labels.

To write the set of vertices down formally, as described we get

Vα =

α, ᾱ,P ,
⋃

{p,q}∈N
fp 6=fq

a[pq]


where a[pq] shall denote the auxiliary node between the pixel nodes p and q.
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Figure 16: Comparison between graph cut based 1-D image regularisation
and variational ideas. Only swap moves used. Quadratic smoothness term
used. The regularisation parameter was for both methods α = 2. One
can see that the results are very similar. Also one should note that the
quantisation of the graph cut method is not happening for the variational
ansatz. Violet line: Variational method. Green line: Graph cut method.

Concerning the edges of this expansion graph, as before, each pixel node
will be connected to the sink as well as to the source, representing the link to
α and ᾱ, respectively. These links will be denoted by tαp and tᾱp , respectively.

If present, an auxiliary node will be connected to the label ᾱ only, the
link to the source is not inserted.

The inter-pixel links are similar to the swap graph construction: Any
two spatial neighbours will be connected by an edge e[pq] if they have the
same current label. If their labels differ, instead of being directly connected,
they will be connected to their auxiliary node.

Closely resembling the proceeding from [13], we can then write the set
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Figure 17: Comparison between graph cut based 1-D image regularisation
and variational ideas. Only swap moves used. Linear (TV) smoothness
term used. The regularisation parameter was for both methods α = 1. One
can see that the results are very similar. Violet line: Variational method.
Green line: Graph cut method.

of edges as

Eα =


⋃
p∈P

{tαp , tᾱp},
⋃

{p,q}∈N
fp 6=fq

E[pq],
⋃

{p,q}∈N
fp=fq

e[pq]


where E[p,q] = {e[pa], e[aq], t

ᾱ
a} resembles the case when an auxiliary node a

is inserted. The weights for the edges of this graph construction are given
in table 3. Again, this graph construction incorporates two terminal nodes,
that will have to be separated by a valid cut through this graph. Having
a closer look on such a construction, one can recognise that any cut has to
sever either the tαp or the tᾱp edge. This property gives the criterion how
to read the induced labelling from the cutted graph. We read the labelling
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Step 1 : Input l a b e l l i n g f
Step 2 : s u c c e s s := f a l s e
Step 3 : for a l l l a b e l s α ∈ L do

f̂ = expansion−move ( α , f )
i f (E(f ′ ) < E(f ) ) then

f = f ′

s u c c e s s = true
end

end
Step 4 : i f ( s u c c e s s ) then

goto Step 2
else

Return f
end

Listing 5: Expansion move algorithm according to [13].

defined by the cut C ⊂ Eα on Gα as

fC =

{
α tαp ∈ C
fp tᾱp ∈ C

∀p ∈ P (3.30)

This means that if the edge from the pixel to the source (which represents
the α-node) is cut, then this pixel will be labelled α. For pixels having
already been mapped to α, the construction ensures that such a pixel will
keep this assignment by setting the capacity of the edge to ᾱ to infinity. By
that, a cut using this edge would have an infinite capacity. Since we are
searching minimal cuts, the algorithm can be sure to not choose this edge.

Similarly to the proceeding in the last section, we will now give and
proof several properties of this graph construction, leading finally to the
proof that the capacity of cuts on Gα can be related linearly to the energy
of corresponding labellings. Thus we will see as for the swap moves, that
an accordingly constructed graph together with a minimal cut on it, can
efficiently realise the approximation of the minimum of the energy function.

First, concerning the neighbourhood links we have to distinguish the
case when fp = fq and when fp 6= fq. In the first situation, by (3.30) we
can be sure that the edge e[pq] is cut if and only if p and q are connected
to different terminals in the induced graph GCα =< Vα, Eα \ C >. This can
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edge weight for

tᾱp ∞ p ∈ Pα
tᾱp Dp(fp) p /∈ Pα
tαp Dp(α) p ∈ P
e[pa] V (fp, α)

{p, q} ∈ N , fp 6= fqe[aq] V (α, fq)

tᾱa V (fp, fq)

e[pq] V (fp, α) {p, q} ∈ N , fp = fq

Table 3: Edge weights for expansion move graph construction. All edges
are symmetric and undirected

be related closely to the swap moves and equation (3.23), by substituting β
by ᾱ. Analogously we can then also get the result (3.24) for the expansion
graph construction. For fp = fq we get

|C ∩ e[p,q]| = V (fCp , f
C
q ) (3.31)

The second case, where fp 6= fq is slightly different. In this case we
defined the set of edges E[pq]. There are several possibilities how to cut
these edges, depending on which terminal links for the corresponding pixel
nodes p and q are cut. Assuming that the node a = a[pq] is the corresponding
auxiliary node for the two neighbour nodes p and q, and that the cut is a
minimal cut, we can state the following

(a) if tαp , t
α
q ∈ C then C ∩ E[pq] = ∅

(b) if tᾱp , t
ᾱ
q ∈ C then C ∩ E[pq] = tᾱa

(c) if tᾱp , t
α
q ∈ C then C ∩ E[pq] = e[pa]

(d) if tαp , t
ᾱ
q ∈ C then C ∩ E[pq] = e[aq]

(3.32)

The described cases are illustrated in figure 18 to clarify their validity. The
first part of (3.32) follows just from the fact that a cut is only a cut if no
proper subset of it would also separate the terminals, cutting both α links is
sufficient for the separation. The latter parts (b), (c) and (d) can be proven
using the properties of the smoothness penaliser V . Since we required V to
be a metric, we know that it fulfils the triangle inequality (see section 4).
We prove part (b) exemplarily. If both ᾱ-links are cut, we have exactly two
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(a) (b) (c,d)

Figure 18: Illustration of the four possible cases how to cut E[pq]. Note that
fp 6= fq in this case and that {p, q} ∈ N .

possibilities of cutting E[pq]. Either C ∩ E[pq] = tᾱa or C ∩ E[pq] = {e[pa], e[aq]}.
Since V is metric and fulfils the mentioned triangle inequality, we know that
the following inequality holds:

V (fp, fq)︸ ︷︷ ︸
|tᾱa |

≤ V (fp, α)︸ ︷︷ ︸
|e[pa]|

+V (α, fq)︸ ︷︷ ︸
|e[aq]|

(3.33)

Thus, a minimum cut on Gα must fulfil (3.32). Combining the results of
(3.30) and (3.32) in one statement, we can write for fp 6= fq

|C ∩ E[pq]| = V (fCp , f
C
q ) (3.34)

As described and analogously to the swap move construction, we were able
to state that property (3.31) holds for any cut on Gα. For the last statement
(3.34) we needed that the cut is a minimal cut. But generally speaking, in
order to get that properties (3.32) hold, it is not absolutely necessary to
have a minimum cut. Relaxing these requirements, and just demanding
that (3.32) is satisfied by a cut, we can define elementary cuts on Gα, for
which we can now prove the following

Theorem For a flow network Gα according to the above description and
given f and α, there exists a one to one correspondence between elementary
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cuts on Gα and labellings within one α-expansion of f . Further, for any
elementary cut C we have

|C| = E(F C).

Proof Given a cut, (3.30) defined how to read out a labelling of it. Hence
what still has to be proven is the other direction, given a labelling fC de-
termine the cut edge set C.

Also by definition, we know which terminal links have to be part of the
cut (→ eq. (3.30)), so what stays are the n-links. For those we distinguished
two cases, depending on the equality of neighbouring assignments. Using
properties (3.31) and (3.34) we can uniquely define the remaining cut edges.

For the cost of an elementary cut we can state

|C| =
∑
p∈P

|C ∩ {tαp , tᾱp}|+
∑
{p,q}∈N
fp=fq

|C ∩ e[pq]|+
∑
{p,q}∈N
fp 6=fq

|C ∩ E[pq]| (3.35)

From the capacity table 3 together with (3.30) we can infer that

|C ∩ {tαp , tᾱp}| = Dp(f
C
p )

Then incorporating the results from (3.31) and (3.34) we conclude

|C| =
∑
p∈P

Dp(f
C
p ) +

∑
{p,q}∈N

V (fCp , f
C
q ) = E(fC) (3.36)

�
Thus, if by finding a minimal cut on Gα, we can find the labelling within
one α-expansion from f with lowest energy.

3.2.4 Optimality

After having shown that the cost of cuts on expansion graphs equals the
energy of the corresponding labelling, we now want to go one step further.
Using the expansion move algorithm we can iterate single expansions until
no better configuration can be found for any label. We will now show that
we can guarantee for such a local minimum to be within a certain range
from the global minimum.

Let V be a metric according to all requirements (4.1)-(4.3). Further, we
define an important constant

c =
maxα 6=β∈L V (α, β)

minα 6=β∈L V (α, β)
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At this point, it might be important to mention the fact that our label set
is discrete. Thus, the smallest and a largest difference of two distinct labels
can be found, and these differences are neither 0 nor tending to ∞. E.g.
if we use as label set all integers between 0 and 255, L = {0, 1, . . . , 255},
then we can give even for the non-truncated linear or quadratic metrics this
constant as

c =
(255− 0)2

(0− 1)2
= 2552

Later in this document we will introduce special terms additionally to the
interaction penalties that depend per pixel on the images. To generalise
this constant already now to this case, we define for any two neighbouring
pixel positions

c = max
p,q∈N

(
maxα 6=β∈L Vp,q(α, β)

minα 6=β∈L Vp,q(α, β)

)
In essence, we have an upper bound for the ratio between the largest and
the smallest possible penalty. With this, in complete accordance to [13],
one can then claim

Theorem For a labelling f̂ being a local minimum of the expansion move
algorithm and for f ∗ being the global minimum, we claim that

E(f̂) ≤ 2 · c · E(f ∗). (3.37)

Proof For all α ∈ L we can define the set of all pixels of the global
minimum that have disparity α.

Pα =
{
p ∈ P|f ∗p = α

}
Next, we can create a new labelling fα from f̂ by replacing all pixels that
are assigned to α in the global minimum by α in the locally minimal solution
f̂ . This new configuration reads

fαp =

{
α if p ∈ Pα
f̂p else

Since we assumed that f̂ is a local minimum of the energy function, we
definitely know that

E(fα) ≥ E(f̂). (3.38)
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In the following we need the ability to restrict our energy function to subsets
of the pixel set. To this end we define for the set S consisting of any number
of pixels and neighbourhood pixel pairs the energy of the restricted set S
as

E(f |S) :=
∑
p∈S

Dp(fp) +
∑
{p,q}∈S

V (fp, fq)

The actual set to which we want to restrict our selves are inner, outer and
boundary pixels of Pα. More precisely we need

Iα = Pα ∪ {{p, q} ∈ N |p ∈ Pα, q ∈ Pα}
Bα = ∪ {{p, q} ∈ N |p ∈ Pα, q /∈ Pα}
Oα = (P \ Pα) ∪ {{p, q} ∈ N |p /∈ Pα, q /∈ Pα}

Note already now that the union of these three sets is the set of all pixel
and all neighbourhood pairs, i.e. Iα ∪Bα ∪Oα = P ∪N . Since fα does not
differ from f̂ in Oα, we know that

E(fα|Oα) = E(f̂ |Oα) (3.39)

Also by the previous definitions we can be sure that

E(fα|Iα) = E(f ∗|Iα) (3.40)

By the properties of the interaction penalty V we can estimate definitely
that for any neighbourhood pair {p, q} ∈ Bα it holds that

V (fαp , f
α
q ) ≤ c · V (f ∗p , f

∗
q ).

This is true since we found out that the left side of this inequality cannot
grow more than by the computed constant c > 1. Applying this estimate
to all elements of Bα, we can state

E(fα|Bα) ≤ c · E(f ∗|Bα) (3.41)

We can now use these findings to rewrite equation (3.38) as follows: We
split the total energy of f̂ into three parts.

E(f̂) = E(f̂ |Oα) + E(f̂ |Iα) + E(f̂ |Bα)

This is valid since the three sets are disjoint and their union is P ∪ N , as
described before. Then we can write

E(f̂ |Oα) + E(f̂ |Iα) + E(f̂ |Bα)︸ ︷︷ ︸
=E(f̂)

≤ E(fα|Oα) + E(fα|Iα) + E(fα|Bα)︸ ︷︷ ︸
=E(fα)

(3.42)
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This expression can be significantly simplified by plugging in the results
from (3.39),(3.40) and (3.41) as

E(f̂ |Oα) + E(f̂ |Bα) ≤ E(f ∗|Iα) + c · E(f ∗|Bα) (3.43)

All these terms are naturally non-negative, thus it is valid to sum over all
labels.∑

α∈L

(
E(f̂ |Oα) + E(f̂ |Bα)

)
≤
∑
α∈L

(
E(f ∗|Iα) + c · E(f ∗|Bα)

)
(3.44)

Consider B =
⋃
α∈LB

α which consists of neighbourhood pairs only. Thus,
for each single included pair {p, q} ∈ B we only get a smoothness contribu-
tion, i.e.

E(f̂ |{p, q}) = V (f̂p, f̂q) and E(f ∗|{p, q}) = V (f ∗p , f
∗
q )

Moreover, these V -terms are symmetric in their argument and occur twice
on the left as well as on the right side of equation (3.44): For the left
hand side E(f̂ |Bα) we get this term once for α = f ∗p and once for α = f ∗q .
Similarly the right hand side where we get the term V (f ∗p , f

∗
q ) 2 · c times.

Once having this result, we can get the main result

E(f̂) + E(f̂ |B) ≤ E(f ∗) + (2c− 1)E(f ∗|B) ≤ 2cE(f ∗) (3.45)

Thus we have proven that a if we compute a local minimum using expansion
moves, the energy of this minimum is within a factor of 2c from the energy
of a global minimum. Especially we can fix the constant c for the Potts
model at c = 1. �

Before concluding this section, we refer to an US patent on the just dis-
cussed swap and expansion moves that Zabih et al. filed in 2000 and which
was finally issued in 2004 to them, see [66]. This patent covers basically all
contents of the publication [13], including their swap and expansion moves.

We want to close this section on expansion moves by presenting corre-
sponding results. We reconsidered the signal used throughout the discussion
of 1-D image regularisation from figure 7 and applied the given expansion
move algorithm to it. Figure 19 shows results for different choices of the
regularisation parameter α. Next, figure 20 compares the results obtained
by the swap and expansion move algorithms.
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Figure 19: Expansion move algorithm applied to the input signal from figure
7. Blue line: Filtered signal with α = 0.5. Green line: α = 1. Cyan
line: α = 2. Red line: α = 4. Violet line: α = 16.
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Figure 20: Comparison of swap and expansion move algorithms. Both
methods used the linear smoothness penaliser and regularisation parameter
α = 2. One can recognise that the filter results are very similar Green
line: Expansion move algorithm result. Violet line: Swap result (only
visible where the two signals do not coincide).
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4 Metrics

As already briefly mentioned in sections 3.2.2 and 3.2.3, interaction penalty
functions play a central role in all applications of this thesis. Starting with
quadratic functions we already introduced the a bit more advanced concept
of linear penalising functions. In this section we want to detail on such
functions, and provide more instances of such penalisers being well suited
for our applications. But before listing new functions, we want to introduce
the standard requirements that such functions have to at least partly fulfil
in order to qualify for our purposes.

We define a penaliser function V : L×L → R to be a metric if it fulfils the
following three requirements:

V (α, β) = 0 ⇔ α = β (4.1)

V (α, β) = V (β, α) ≥ 0 (4.2)

V (α, β) ≤ V (α, γ) + V (γ, β) (4.3)

As already touched on, there are also interesting functions satisfying only
the first two requirements (4.1) and (4.2). Such functions will be called
semi-metrics throughout this document.

For the sake of formality, let us notice that every metric is a semi-
metric. One should keep this obvious corollary in mind when minimising
metric functions, because besides expansion moves, also for metrics swap
moves are applicable, but often neglected.

Already for the proof of the correctness of the expansion graph construc-
tion in section 3.2.3, the triangle inequality (4.3) was the central ingredient
for the whole construction to be valid. But there is a deeper connection
that we want to detail on in the next part of this section.

4.1 Metrics and Subadditivity

With the requirement (4.3), we demand a function to satisfy the triangle
inequality, in order to be a metric. Fulfilling this triangle inequality in
practice for a function always means, intuitively speaking, that it should
be cheaper to go directly from A to B, instead of making a detour over
C. Since the functions V that we are considering in practice all can be
represented by a function of the difference of the two arguments of V , we
can use this to get the transition to a well known concept in analysis. Using



52 4 METRICS

the transformation
V (α, β) = Ψ(α− β) (4.4)

we can rewrite the triangle inequality (4.3) to the form

Ψ(α− β) ≤ Ψ(α− γ) + Ψ(γ − β). (4.5)

By defining x = α− γ and y = γ − β, we get

Ψ(x+ y) ≤ Ψ(x) + Ψ(y). (4.6)

This latter result is the so-called Minkowski inequality, and also the require-
ment for a function to be sub-additive. Note that in the definition of Ψ, it
does not matter whether the argument is positive or not, since all functions
we use are symmetric, see (4.2). Thus it must hold by assumption that
Ψ(α− β) = Ψ(β − α), which is obviously fulfilled for all functions we use.

Now, we know that metrics are subadditive. Graphically speaking, sub-
additive functions have to lie “above” a certain corresponding linear func-
tion. Given x, y ∈ R, wlog. x < y, we know that by the subadditivity it
holds that Ψ(x + y) ≤ Ψ(x) + Ψ(y), see also figure 21. Then we can state

yx x+y

Psi

Figure 21: A function Ψ has to lie on or above the linear function in order
to be subadditive.

the following Lemma, which relates subadditivity to concavity.
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Lemma A concave function is subadditive.

Proof A function f : R → R is concave, if for all x, y ∈ R, λ ∈ [0, 1] it
holds that

f (λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)

This is illustrated in figure 22. Thus, let Ψ be concave. For any two real

ba

Psi(x)

l(x)

a+b

Figure 22: Sketch of a concave function. Between any two points, the graph
of Ψ is above the corresponding linear function.

numbers a and b, without loss of generality we can assume a < b, we know
that Ψ is concave on the interval [a, a + b]. Hence we know since b lies in
that interval that there exists a λ ∈ [0, 1] such that

Ψ(b) ≥ λ ·Ψ(a) + (1− λ) ·Ψ(a+ b).

The corresponding value of λ can be easily determined, it is λ = b
a
. Plugging

this in and adding Ψ(a) on both sides from the left we get

Ψ(a) + Ψ(b) ≥ Ψ(a) +
b

a
·Ψ(a) + (1− b

a
) ·Ψ(a+ b)︸ ︷︷ ︸

=l(b)

In the latter equation we annotated the quantity l(b), which is the value
of the linear function l : R → R going through the two points (a,Ψ(a))
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and (a + b,Ψ(a + b)) at position b. Since l is linear, and l(a) = Ψ(a) and
Ψ(a+ b) = l(a+ b) we can write

Ψ(a) + Ψ(b) ≥ l(a) + l(b)

= l(a+ b)

= Ψ(a+ b)

which concludes the proof. Note that the opposite way of this lemma is not
true in general. As an example we want to consider the function f : R+ → R

f(x) = e−x − e−ax + x for a > 1, x > 0 (4.7)

which is plotted in figure 23. By straightforward computations we can find

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

1

2

3

4

5

6

Figure 23: Example for the subadditive function from (4.7) for a = 2. f

starts concave, but after the inflection point at x = ln(a2)
a−1

it continues as a
convex function.

out that

f(x+ y) = e−(x+y) − e−a(x+y) + x+ y

= e−xe−y − e−axe−ay + x+ y
∗
≤ e−x + e−y − e−ax − e−ay + x+ y

= f(x) + f(y)
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At step (∗) we used that for x ≥ 0 it holds that 0 < exp−x ≤ 1. Hence,
the function fulfils the Minkowski inequality while at the same time being

convex for all x > ln(a2)
a−1

.
As already mentioned, the choice of the penalising function is a central

question for our algorithms. Moreover, by using one or an other penalty, we
can already in the modelling process influence, how the minimum should
look like. It turns out that one central question is, whether the used penalty
fulfils the triangle inequality or not. The reason for this is can be intuitively
explained as follows: The input data together with the data term tells us
that the disparity or the grey value must change by some certain value. On
the other hand, the smoothness term tries to avoid changes. Depending now
on the shape of this smoothness penalty, either bridging this gap is cheaper
when taking it in one step, or it could be cheaper to make more than one
small steps. The third possibility is that it could be equally costly no matter
how many steps we take. The first case resembles our metrics: We have to
bridge a gap of height x + y and we know that Ψ(x + y) ≤ Ψ(x) + Ψ(y).
Thus making one large step is always cheapest. In the second case, e.g.
for a quadratic penaliser, it is always cheaper to make multiple small steps,
since Ψ(x + y) ≥ Ψ(x) + Ψ(y). The third case is a special case, which
we will call the linear penalty Ψ(x) = |x|. For this function, it will not
matter whether to bridge the gap in one large or several small portions.
The resulting penalty will be the same.

This means, that if a function minimises such an energy consisting of
data and smoothness term, it will automatically make use of these prefer-
ences. Thus, using a quadratic penaliser, the solution cannot have sharp
jumps or discontinuities, they must be smooth. Conversely, using a subad-
ditive penalty function we will not be able to get smooth solutions.

After the discussion of the theory behind different penalty functions, we
want to introduce several possible choices of metrics and semi-metrics in
the next part of this section.

4.2 Interaction Functions

4.2.1 Quadratic Interaction Penalty

We define the quadratic semi-metric as

V quadratic(α, β) = (α− β)2 (4.8)
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and a truncated variant of it as

V quadratic
K (α, β) = min { (α− β)2, K }. (4.9)

A plot of all presented functions of this section is given in figure 24 in the
end of the discussion.

Concerning the requirements that have to be fulfilled by a semi-metric,
we can directly see, that (4.1) and (4.2) hold by construction. For the
triangle inequality, we can easily give an example showing that (4.3) does
not hold:

α = 1 , γ = 2 , β = 4

V (1, 4) = (1− 4)2 = 9 > V (1, 2) + V (2, 4) = 12 + 22 = 5

4.2.2 Linear Interaction Function

The linear smoothness penalty function is defined as

V linear(α, β) = |α− β| (4.10)

As before we will also consider a truncated version

V linear
K (α, β) = min { |α− β|, K }. (4.11)

The linear interaction penalty is a metric. Given two labels α, β ∈ R, wlog.
let α < β, then for any third label γ ∈ R we distinguish 3 cases:

α ≤ γ ≤ β : V (α, γ) + V (γ, β) = |α− γ|+ |γ − α|
= γ − α + β − γ
= β − α
= V (α, β)

γ ≤ α ≤ β : V (α, γ) + V (γ, β) = α− γ + β − γ
= α + β − 2γ
γ≤α
≤ α + β − 2α
= β − α
= V (α, β)

α ≤ β ≤ γ : V (α, γ) + V (γ, β) = α− γ + γ − β
= 2γ − α− β
γ≥β
≤ 2β − α− β
= β − α
= V (α, β)
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4.2.3 Truncated linear penalty

Inspired by [3], we also use the following linear truncated penalty function

V lintrunc
K (α, β) = − ln

(
e−K + (1− e−K)e−|α−β|

)
(4.12)

Since the function is globally concave (on the positive x-axis), we know that
it is subadditive and fulfils all requirements of a metric.

4.2.4 Potts metric

As last representative of penalty functions, we want to introduce the so-
called Potts model which is an extreme case for penalising functions. It
assigns to any input a constant value K > 0 except if the argument is zero.

V Potts
K (α, β) =

{
K , if α 6= β

0 , else
(4.13)

By this definition, one can see that this model prefers piecewise constant
results, because any variations in the result are penalised equally severely.
For the Potts model, we get c = 1 for the considerations in section 3.2.4,
thus the solution can be bounded to be within a factor of two of the global
minimum. Moreover, we found out that in general c ≥ 1, which in turn
implicates that the Potts model is in some sense optimal. No other penaliser
can bound our estimate tighter.
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Figure 24: Plot of the interaction penalties discussed in this section.
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5 Stereo Vision

With this section we want to introduce the major topic of this thesis, Stereo
Vision.

The main problem we want to solve is as follows: Given two views of
a scene, taken from different view points, we want to recover the depth in
the scene. This means that from two two-dimensional images, we want to
determine one 3-D model of the objects of the scene. An example of two
such images together with the result is given in figure 25. There is also a
more general related problem, called multi-view scene recovery where more
than two images are given.

An Experiment The general principle, why and how this task can be
realised at all, can be illustrated with the following short experiment: We
will use the two images of our two eyes as the two views we want to consider.
By closing one eye, our brain perceives the 2-D image of the still open eye
solely. The closing of one eye to get a 2-D image for us as humans is
mandatory, since if we use both our eyes, our brain immediately solves the
stereo vision task almost perfectly. In fact, the general idea of performing
stereo vision based depth reconstruction must have been inspired by the
human visual system and its excellent capabilities.

Coming back to the experiment, after closing one eye, we place an object,
for example a thumb of our hand, closely in front of our eyes. Then, by
closing the open eye and opening the previously closed one, we can observe,
that the position of the thumb in the perceived image jumps widely. By
moving the thumb further away from the eyes, and by re-performing the
opening and closing of the eyes, we should observe that the distance by
which the thumb moves between the images becomes smaller. The result of
this simple experiment is that depth in the scene can be closely related to
offsets of objects between the images - the larger the offset, the closer the
object to the camera.

Thus, the problem is to find and determine these offsets. Objects occurring
in both images have to be identified and the difference of their position is
what we are searching for. The unit of such offsets are 2-D vectors that
describe the displacement of an object. Note that there are also situations
where an object that is visible in one view does not occur in the second
image. Such constellations are called occlusions. Also, there might be cases
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Figure 25: Introductory stereo vision example. The task is to compute a
3-D model of the scene given just the first two images. (a) Top left: First
input image. (b) Top right: Second given view of the scene. (c) Bottom
left: Computed model with just lighting. (d) Bottom right: Computed
model from (c) with texture mapping. Images and results from [53].

that describe physically impossible configurations that should of course be
avoided by our models.

Camera Model and Geometry Figure 26 illustrates the underlying
so-called pinhole camera model which is essential to describe formally the
image formation process and geometry behind all our considerations. One
can see in this figure that each real world point M ∈ R3 is projected through
the optical centre C of the pinhole camera - the pinhole. The image plane
is located behind the optical centre, in distance f of C, where f is called
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Figure 26: Pinhole camera model. Image courtesy of Markus Mainberger.

the focal length. Furthermore, the Z-axis of the world coordinate system
(XC , YC , ZC) is arranged orthogonally to the image plane and also to the
image coordinate system (x, y). Note that images acquired in this constel-
lation would be upside down. Therefore, often one shifts the image plane
to the other positive side of the optical centre at position Z = f . Then the
arising images are upright and instead of projecting in the classical way, the
intersection of the ray from the world point to the optical centre with the
image plane is measured. We do not want to go too deep into detail of this
topic here, since it goes beyond the scope of this thesis. Let us concentrate
on the arrangement of the second camera instead.

The generally considered arrangement for classical stereo vision prob-
lems is the so-called converging camera setup, where two cameras are ar-
ranged like illustrated in figure 27. Usually the cameras are tilted slightly
towards each other. This means that starting from one optical centre, we
can come to the other centre by applying a rotation R as well as an trans-
lation t.

One can show that in this setup, one point in the first image cannot
lie everywhere in the second image. There are well defined constraints that
limit the corresponding point to lie on the so-called epipolar line, denoted by
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Figure 27: Converging camera setup. The pose of the two cameras does not
have many restrictions. Image courtesy of Markus Mainberger.

e1 and e2 in figure 27. These epipolar lines depend on the camera geometry
and the arrangements only. We can exploit this fact very well, since this
reduces the dimension of our search space by one. Instead of searching in
the whole 2-D image, we now can be sure to find a corresponding point on
one (1-D) line in the other image. Detailing further on this topic of the
geometry of stereo vision would go beyond the scope of this thesis. This
topic is well understood and examined and can be read e.g. in [28, 34].

Another common setup, which we will use throughout this document is
the so called ortho-parallel camera setup. In this setup, the image planes of
the two cameras are assumed to be perfectly parallel to each other and at the
same depth position. Further, also the corresponding axes of the internal
coordinate systems of both cameras are parallel. Figure 28 illustrates this
special arrangement. Obviously, the ortho-parallel setup is a special case of
the converging setup, where no rotation and just a translation between the
optical centres takes place. The big advantage that this setup provides is
that if the images are taken like that, all occurring displacements are solely
along the x-axis of the images. This means that the displacement vector
we mentioned before will always have the second component being zero. In
practice we will always have to search only in the same pixel scan line.

We also want to mention that given a pair of stereo images recorded in
the general converging camera setting, there exist methods that transform
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Figure 28: Ortho-parallel camera setup. The two image planes I1 and I2 are
lying in one plane and the internal coordinate systems are parallel as well.
Top: Schematic view from top on both cameras and world object point
M . Bottom: Schematic view from behind. Images courtesy of Markus
Mainberger.

such images to the ortho-parallel case. Such techniques are known under
the name image rectification, see [31, 34] and references therein.
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Establishing Correspondences Hence, we will focus on the ortho-parallel
setting for this document. The task there will be to identify pixels in both
images that correspond. This means that one pixel in the first frame that
corresponds to another pixel in the second frame should belong to the same
object or show the same part of the same object. Since we are in the ortho-
parallel setting, we already said, that only 1-D displacements along the
x-axis will occur, in which case one speaks of the disparity field which is to
be estimated.

Let the left and right grey value images

Il : Ωl → R and Ir : Ωr → R

in their usually rectangular domains Ωl,Ωr ⊂ R2 be given. We say that the
disparity field dl : Ωl → R relates a point x = (x, y)> ∈ Ωl in the left frame
to a point x′ ∈ Ωr in the right frame via

x′ = (x+ dl(x), y)> (5.1)

Note that in this notation, the disparity dl must attain negative values.
This effect is illustrated in figure 29, where one can see that a feature in
the left frame must be to the right of the corresponding feature in the right
frame. Otherwise, the object would have to be located behind the camera,
which obviously does not make sense.

Figure 29: Schematic sketch of the image pixel rasters for the ortho-parallel
setup. Displacements only occur along the horizontal x-axis.
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As for the latter left-to-right disparity dl, the right-to-left disparity dr
relates a point x ∈ Ωr to x′ ∈ Ωl using the analogous equation

x′ = (x+ dr(x), y)> x ∈ Ωr , x′ ∈ Ωl

The only difference is that for the right-to-left disparity, geometrically cor-
rect and meaningful fields attain positive values.

As for the image regularisation methods from the previous section 3,
the now presented stereo algorithms will amount to defining and minimis-
ing an energy function that will deliver a disparity field like just introduced.
Also we will concentrate and present the common left-to-right case predom-
inantly, even though we designed all software implementations for both
directions, see also our extensions in section 8.

Error quantification and statistics To be able to judge the perfor-
mance and quality of a certain stereo algorithm, a common methodology is
to test the algorithm on special image pairs for which the perfect result is
known. This so-called ground truth can then be used to compute statistical
measures against the output of the algorithm. In this section, we will use
two such frequently used measures:

• Percentage of bad pixels (BP)
A pixel is said to be a bad pixel if the computed disparity differs more
than a certain threshold ε > 0 from the corresponding ground truth
pixel. For a ground truth disparity dtruth and the computed disparity
destimate the bad pixels measure is calculated

BPε :=
100

|P|
∑
p∈P

T ( | d truth
p − d estimate

p | > ε) (5.2)

where the indicator function T is 1 if its argument is true, and 0
otherwise. Obviously, the choice of this threshold value has a crucial
meaning for this measure. In comparative literature [47, 49] the choice
ε = 1.0 is predominantly used.

Note that, even though the bad pixel measure is a popular statistic,
it is not as meaningful and unambiguous as one might think. As an
example, if one stereo sequence only contains disparity values between
0 and 10, and in an other sequence occur disparities in the range from
0 to 100, then the BP1.0 statistics is much more relaxed for the first
pair than for the second.
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Furthermore, especially for algorithms working on discrete labels and
regarding the fact that the in practice used and evaluated ground
truths from [47, 49] only contain integer valued disparity values, an-
other inconsistency suggests itself: Using integer valued labels with
the given ground truths will will not assign a pixel being labelled
d estimate
p = d truth

p ± 1 to the bad pixels.

• Average absolute disparity error (AADE)
The second statistical measure we will consider is the average absolute
disparity error which is computed via

AADE =
1

|P|
∑
p∈P

| d truth
p − d estimate

p | (5.3)

In section 7, we will introduce a stereo algorithm that will take occlusions
into direct consideration and that will identify occluded pixels explicitly.
This means that this algorithm does not assign a disparity value to such
pixels, and hence the previously defined statistical measures have to be
adapted accordingly. For the latter AADE it is straightforward to just
compute the average on those pixels that were not assigned to the occluded
region. For the BP measure, the adoption is more difficult, there are more
possible solutions. The ground truth maps also provide occlusion maps
where those pixels that are really occluded are marked. The discussion of
suitable error measures for this case is postponed to the point where we will
need them.

The remainder of this document is organised as follows: The upcoming
classical graph cut based stereo approach in section 6 will estimate a 100%
dense disparity field, this means that for each pixel we will determine a
disparity value. The following approach in section 7 will systematically
take occlusions into consideration and will also mark such areas as being
occluded instead of assigning a disparity value. After having discussed these
foreign approaches from literature, we will finally present new extensions
and own algorithmic ideas in section 8.
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6 Graph Cuts in Stereo Vision

This section is based on the successful publication due to Yuri Boykov et al.
”Fast Approximate Energy Minimisation via Graph Cuts” [13]. We will like
already introduced in section 3 reuse the swap- and expansion graph con-
struction ideas. Since these constructions work for both moves essentially
analogously to the constructions from the section on image regularisation,
we will just have to detail on the differences between these two methods
here.

For signal restoration, the quantity we estimated, and by that the values
of our label space L, were function values. For stereo vision, the quantities
of interest are disparities. This means that the most natural upper bound
on these labels should be the image width, because establishing a corre-
spondence to a pixel outside one image is not what we want. In practice we
will for each stereo rig know an upper bound on the maximal occurring dis-
parity value. Thus the set of labels will be disparities, whose sign depends
on whether to compute left-to-right or right-to-left disparity fields, see last
section.

L = {0, 1, . . . , l} (6.1)

This is one point where the difference between e.g. variational methods
and graph cuts becomes particularly obvious. The label space is completely
discretised, and inherent features of variational or classical minimisation
methods like sub-pixel accuracy are problematic for graph cut methods and
only realisable with additional efforts.

The next big difference of stereo methods to image restoration concerns
the data term. For regularisation methods, the purpose of the data term
was to keep the estimated signal similar to the input function. For stereo,
the data term shall express whether the two pixels p ∈ Ωl and q ∈ Ωr

correspond. This notion of correspondence is what we still have to define
now. The most classical model assumption on the correspondence of two
pixels is that their intensity (their grey value) should be the same or at least
similar. This assumption is called the grey value constancy assumption.
Thus we can write the stereo data term as

Dp(fp) = (Ip − Iq)2 (6.2)

where, in the left-to-right case the pixel position q should be computed in
accordance to equation (5.1) from position p, using fp as disparity value.
We want to mention already now that there are several other choices than
a quadratic penalisation possible, that we will examine in section 8.4.
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Figure 30: Illustration of the idealised sampling process happing in the left
and right camera. The resulting intensity difference is neither due to noise,
nor a bias, but it is a property of sampling process happening in the camera
and cannot be avoided. Images taken from [57].

Sensitivity to Image Sampling One important additional ingredient
concerning the data penalty is due to Birchfield and Tomasi [4]. They assert
that the sampling and quantisation process that happens when capturing
a pair of stereo images produces several problems in practice. Basically
the first problem is that if the cameras are not in the same position, then
the light being reflected from a static surface cannot be same in general.
Secondly, there might occur differences by slightly varying camera electron-
ics, noise, etc.. But the main observation is that the intensity of a pixel
is determined not by the light coming from one single point in the scene,
but by integrating the light coming from a whole surface patch in scene. If
this surface patch contained a depth discontinuity or if the colour of mate-
rial changed within the patch, then the integration performs an averaging
process to the stored pixel intensity. This phenomenon happens even in an
idealised setting, in the absence of any noise, with ideally equal cameras,
etc.. See also figure 30 for an illustration of this effect. The remedy that
[4] propose is to examine the local neighbourhood of the left and the right
image position for the least possible contribution. Speaking in continuous
terms, for the right image position we search

Cright(p, d) = min
d− 1

2
≤x≤d+ 1

2

|Il(p)− Ir(p+ x)| (6.3)
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Figure 31: Illustration of the practical realisation of equations (6.3) and
(6.4). Squares denote the sampled intensity at grid positions, straight lines
their linear interpolation. In essence, the upper and lower bound of the
image intensity is determined. For linear interpolation, the extrema can
only lie either in the unchanged grid position x, or at the left and right
boundaries of the interval.

where d is the disparity to consider and p the pixel coordinate. The grid
size is assumed to be 1 in these equations. Similarly we find

Cleft(p, d) = min
− 1

2
≤x≤ 1

2

|Il(p+ x)− Ir(p+ d)|. (6.4)

In this way, Cleft and Cright try to adjust the exact pixel position p such that
the corresponding intensity difference is minimal. Then the data penalty is
found as the minimum of both local minima. In practice the implementation
needs an interpolation procedure in order to be able to look up the values
of Il and Ir at sub-pixel positions. By using linear interpolation, also the
number possible locations for such minima is limited to 3, as figure 31
illustrates. Note that there could be many more possibilities, if we used
another interpolation scheme, hence the fact that the interpolated function
arising from linear interpolation is piecewise linear simplifies the problem
drastically.

Using for the left-to-right stereo case the abbreviations xl = p and xr =
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p+ d we can then compute

I+
r = Ir(xr +

1

2
)

I−r = Ir(xr −
1

2
)

Cmin
r = min{ Ir(xr), I+

r , I
−
r }

Cmax
r = max{ Ir(xr), I+

r , I
−
r }

Cright(p, d) = max{ 0, Il(xl)− Cmax
r , Cmin

r − Il(xl) }

And for adjusting the left position we get

I+
l = Il(xl +

1

2
)

I−l = Il(xl −
1

2
)

Cmin
l = min{ Il(xl), I+

l , I
−
l }

Cmax
l = max{ Ir(xl), I+

l , I
−
l }

Cleft(p, d) = max{ 0, Ir(xr)− Cmax
l , Cmin

l − Ir(xr) }

Finally we can then compute the data penalty via

D(p, d) = min{ Cleft(p, d) , Cright(p, d) }. (6.5)

In practical implementations, applying this method by Birchfield and Tomasi
costs only little computational overhead, but gives a remarkable quality gain
as shown in figure 32.

The purpose of the smoothness penalty Vp,q(fp, fq) for stereo vision is very
similar as for the discussed image restoration case. It shall penalise all
changes in the disparity field. The only difference is the fact that stereo
computations will take place on 2-D material. Even though we stated that
in the ortho-parallel case we are confronted with a 1-D search problem, still
we want to preserve an inter-line consistency of the disparity field. Thus,
the links between different scan lines are necessary. But as long as the
smoothness assumption just incorporates pairs of pixels, the construction
from section 3 is applicable.

An example for a more advanced construction incorporating neighbours
from both sides at a time, is [65]. By having the possibility to use two
neighbours, second order smoothness terms can be introduced there. But
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Figure 32: Evaluation of the method by Birchfield and Tomasi [4]. Brighter
colors mean larger disparity values. One can clearly see the drastic improve-
ment. Tests were run using expansion moves on the Tsukuba sequence [49].

in this thesis we will not consider such advanced constructions and rely
on [13] in this section and the method [38] in section 7. As an extension
we want to refer to section 8.2 where we increase the number of considered
neighbours from 4 to 8. As we will show there, this can improve the accuracy
of our approach.

Image Driven Smoothness In the main reference [13], Boykov et al.
propose another successful add-on to their methodology, so called static-
cues. The underlying assumption is as follows: Without even considering
the second frame, empirically the probability that the disparities of two
neighbouring pixels p, q ∈ N differ is somehow related to the intensity
contrast of the pixels in one frame. This means that if two neighbour pixel
have the same intensity and thus locally low contrast, then they usually
also have the same or similar disparities. The other way round: if the
intensity changes remarkably, then this could indicate an object boundary
and by that a change of the disparity. Incorporating such assumptions can
especially help in low textured regions and constant areas.

This concept is well known in the variational community under the name
image driven smoothness term [2], where the weight of the smoothness as-
sumption is decreased with increasing length of the gradient of the input
image f .

Inspired by this observation, one can realise this concept on graph cuts
as follows. The Potts penaliser will be augmented by an image driven
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multiplicative expression u{p,q} as

Vpq(fp, fq) = u{p,q} · T (fp 6= fq) (6.6)

Note that in this expression p and q are always neighbours. For simplicity,
the image driven term is itself a simple binary case distinction again

u{p,q} =

{
K , if |Ip − Iq| ≥ 5

δ ·K , else
(6.7)

where K > 0 is the usual Potts model parameter already introduced in
section 4 and δ > 1 controls the influence of the static cues. This expression
approximates the derivative by just the intensity difference of the first image.
If it is below some threshold, the smoothness penalty is simply increased.
Note that there are other possibilities how to realise such a technique, one
could take the output of an edge detector as well, or even pre-segment the
image and use such features, see also our extensions in section 8.

As in [13], we want to motivate image driven smoothness priors with
a simple example. Consider the following two frames of a stereo sequence.
These images are assumed to not contain any noise, which allows us to

Figure 33: Left and right frame stereo sequence. There shall be a horizontal
shift of one pixel.

explicitly determine minimisers of the stereo problem. Without an image
driven prior, there are two possible minimisers, as the following figure illus-
trates. Which of the both disparity solutions is best, depends on the height
of foreground and background of input images. Obviously, these solutions
do not resemble human perception. By introducing static cues, which would
assign less weight to the smoothness prior to neighbour pixels p, q ∈ N where
Ip 6= Iq, then the following disparity field would be a minimiser. Such solu-
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Figure 34: Two possible solutions without an image driven term. Brighter
colors indicate larger disparity.

Figure 35: Solution with static cues.

tions often resemble the human perception better than solutions as in figure
34 obtained without image driven terms. Also in terms of quantitative error
statistics usually image driven terms improve the result.

Boundary treatment Another issue in the context of stereo vision is the
correct treatment of image boundaries. Coming from the field of variational
methods, we know that there are necessary constraints on the solution of
Euler-Lagrange equations, which have to be fulfilled. Also the indispensable
approximation of derivatives can cause problems at the image boundaries.

One the one hand, when working with graph cuts, such problems do
not appear. The approximation of derivatives is not necessary and there
are no constraints on the solution at the boundary that might cause prob-
lems. What has to be done is the extensive evaluation of the data and
the smoothness term. This is the point where graph cuts might run into
problems: It is an open question how to define the evaluation result of the
data term for a pixel – disparity pair, that would point out of the image
domain. For example in the left-to-right setting, consider the leftmost pixel
in the left frame, located at position p = (0, ·). For any disparity d < 0, the
corresponding pixel in the right frame is at p′ = (0 + d, ·). Note that in the
left-to-right setting all disparities must be non-positive. Thus, the pixel at
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p′ is not lying inside the right image domain.

In our implementation, we avoided this problem by just setting the en-
ergy of any such disparity field to infinity. The negative consequence from
this decision is that all disparity fields have to approach disparity zero at
the left or the right border. Especially, since every pixel must be assigned
to a label, the leftmost pixel can only be mapped to disparity zero, the
second pixel can only have disparity zero or one, etc. Obviously, this is
not an ideal choice. But still the question which choice is ideal cannot be
answered uniquely. In practice, the question is only of minor importance,
since the occurence of artifacts at the image boundaries is not unusual. Be-
sides problems related to boundary treatment, one has to keep in mind that
the image information ends at the boundaries and that the correct corre-
spondence for many pixels is just invisible. One could identify such pixels
as being occluded by the image boundary.

6.1 Swap Moves

Like we did for image restoration, we will now construct an analogous 2-
D graph for stereo vision having a very similar structure. Respecting the
previously mentioned necessary adoptions for stereo vision, we can build up
and cut the graph. Also a new labelling is read in the same way from a cut
as before. Concerning the general swap move algorithm that controls how,
when and in which order the swap moves are used to decrease the energy,
there is just one minor difference to the image restoration application. The
algorithm as presented in listing 4 does not stop until one cycle has been
performed where none of the single swap moves could decrease the energy.
But in practice, we found out that the first and partly the second cycle
perform the major part of the energy decrease. All following cycles just
lead to negligible further improvement, since only singular pixels will change
their label, see figure 38. This is the reason why we stopped our algorithms
after the second iteration in practice.

The implementation of all stereo vision related algorithms and methods
was realised in ANSI C. For visualisation and testing, Dr. Andrés Bruhn
provided his frontend [16] which was very helpful and simplified the evalu-
ation significantly.

We evaluate the performance quantitatively in table 4. Figure 36 gives
results for the swap move algorithm using different interaction penalties.
Surprisingly, it becomes apparent that the swap move algorithm has poor
performance for the non-truncated linear and quadratic interaction penal-
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ties. The presentation of results for the image driven smoothness penalties
is deferred to section 8 where also more advanced instances of this idea are
examined.

The presented computation results show the applicability of the swap move
algorithm. But we have to notice that that the performance of this method
could be better, especially the non-truncated quadratic and linear penalties
give unacceptably bad results. These results are not as we expected them
to be, because swap moves were introduced in [13] without mentioning this
drawback. When considering the truncated variants of these penalty terms,
one should not forget that our label set is discrete and integer valued in our
tests. Thus, a truncation level of 1.68 means that in practice only one non-
zero disparity difference is not cut off. But we will see in the next section
on expansion moves that this move performs very well.
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BP1.0 BP non-occ AADE

V quadr 62.5 62.5 3.028

V quadr
1.68 8.15 6.16 0.53

V quadr
4.79 36.21 35.04 1.8

V quadr
10.26 56.26 55.64 2.651

V linear 30.77 29.47 1.642

V linear
1.68 8.15 6.16 0.53

V linear
4.79 27.11 25.7 1.435

V linear
10.26 30.64 29.34 1.631

V lintrunc
1.68 11.49 9.63 0.725

V lintrunc
4.79 24.89 23.44 1.37

V lintrunc
10.26 30.74 29.45 1.655

V lintrunc
20 30.62 29.33 1.643

V Potts
1.68 7.37 5.27 0.478

V Potts
4.79 5.73 3.59 0.328

V Potts
10.26 6.4 4.25 0.254

V Potts
20 5.22 3.04 0.199

V Potts
42.9 4.4 2.16 0.153

V Potts
83.5 4.56 2.39 0.192

Table 4: Error statistics for the swap move algorithm on the Tsukuba
sequence. BP non-occ calculates the bad pixels error measure only in regions
that are not marked as occluded by the ground truth occlusion map. All
necessary images and occlusion maps are provided in [49, 47].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 36: Results for swap move algorithm. Brighter colours mean larger
disparity values. (a) Frame 3 of Tsukuba sequence [49]. (b) Ground truth
disparity field between frame 3 and frame 6. (c) Obtained disparity field
using V quadr (d) Result using V quadr

1.68 (e) V linear (f) V linear
1.68 (g) V Potts

20 (h)
V loglinear

1.68 .
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6.2 Expansion Moves

Like for swap moves, the graph construction for expansion moves in stereo
vision works in principle analogously to the image regularisation setting. We
have to resemble the 2-D neighbourhood interactions, and insert auxiliary
nodes whenever the labelling of two adjacent pixels varies. In practice, also
because of their guarantee to find a solution near the global minimum, we
predominantly used expansion moves for our computations. The drawback
we have to accept is that we can work on a theoretically well-founded basis
only with smoothness penalties V that satisfy all requirements of a metric,
especially the triangle inequality (4.3). As a theoretical consequence, the
quadratic penalty term cannot be used here. In practice however we show
that even for semi-metrics the expansion move algorithm finds a very good
local minimum – A minimum which is even remarkably better than the
result of the swap move algorithm! We want to mention that more recent
publications (e.g. [59] and references therein) investigate into this direction
and especially develop methods that are able to compute solutions for con-
vex semi-metrics with a guarantee of being within a certain distance from
the global minimum. Concerning the computation times, using the push-
relabel method our implementation needed about 50 seconds on an Intel
Core 2 Duo with 2 GHz on the Tsukuba dataset. Note that for all graph
cut algorithms treated in this thesis, the computation time depends linearly
on the number of labels to compute. Thus, for other image pairs such as
the Cones stereo sequence [49, 48] the computation times are significantly
longer, since the computation has to deal with 60 instead of only 16 labels
for the Tsukuba set. We did not use any parallelisation technique and our
implementation was kept simple to be able to adapt it to several approaches.
This is by far not the fastest implementation on can think of. We also did
not implement the specialised max flow algorithm [10].

Like for the swap algorithm, we stopped expanding after the second
cycle, although the expansion move algorithm from listing 5 terminates
earlier than the swap algorithm, refer to figure 38.

In table 5 we give a quantitative evaluation of the performance of ex-
pansion moves for stereo reconstruction. Corresponding disparity images
are given in figure 37.

With figure 39 we want to draw direct comparison of the results obtained
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BP1.0 BP non-occ AADE

V quadr 6.3 4.4 0.435

V quadr
1.68 6.15 4.1 0.425

V quadr
4.79 5.08 3.06 0.39

V quadr
10.26 5.52 3.55 0.395

V linear 6.05 4.09 0.408

V linear
1.68 6.15 4.1 0.425

V linear
4.79 5.84 3.83 0.402

V linear
10.26 6.01 4.03 0.407

V lintrunc
1.68 6.12 4.07 0.433

V lintrunc
4.79 5.79 3.78 0.398

V lintrunc
10.26 5.89 3.88 0.4

V lintrunc
20 5.93 3.95 0.404

V Potts
1.68 7.1 5.02 0.468

V Potts
4.79 5.75 3.61 0.326

V Potts
10.26 6.41 4.27 0.254

V Potts
20 5.14 2.97 0.189

V Potts
42.9 4.33 2.15 0.152

V Potts
83.5 4.54 2.37 0.195

V Potts
1.68 SC 5.68 3.58 0.372

V Potts
4.79 SC 4.94 2.79 0.244

V Potts
10.26 SC 5.02 2.84 0.216

V Potts
20 SC 5.19 2.94 0.187

V Potts
42.9 SC 5.01 2.82 0.201

V Potts
83.5 SC 6.24 4.06 0.231

Table 5: Error statistics for the expansion move algorithm on the Tsukuba
sequence. BP non-occ calculates the bad pixels error measure only in regions
that are not occluded. The last six lines show results with enabled static
cues. All necessary images and occlusion maps are provided in [49, 47].
Note that for the results obtained using semi-metrics, we do not have any
optimality guarantee.
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Figure 37: Results for expansion move algorithm. Note that even for the
quadratic penalty the algorithm outperforms the swap method significantly.
We also want to direct the readers attention to the effect of the static cues.
Almost all methods not using this technique have problems in the upper
right corner of the image. Image driven priors can help in such situations of
low texture. Top left: Obtained disparity field using V quadr Top right:
V linear Centre left: V Potts

4.79 Centre right: V Potts
20 Bottom left: V Potts

4.79

with static cues enabled. Bottom right: V Potts
20 with static cues enabled.
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Figure 38: Energy value versus cycle number. Red line shows swap move
algorithm. Blue line visualises expansion move results. The expansion move
algorithm terminated regularly after the 6th iteration. Linear penalty Vlinear

used on Tsukuba sequence [49].

with swap and expansion moves with identical choice of parameters.
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Swap Expansion

Figure 39: Comparison of swap and expansion moves. Top row: Quadratic
penalty. Middle row: Linear penalty. Bottom row: Potts penalty,
truncation level 20.
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7 Incorporating Occlusions

Besides the classical approach discussed in the last section that used a
straight forward and intuitive graph construction, we also implemented a
more advanced approach [38]. In contrast to [13], which was also suited for
image restoration, the approach we want to consider now is a specialised
stereo vision method. The main difference is that the new graph construc-
tion will not associate pixels with graph nodes as before. Instead, the con-
struction will set up one node for each possible assignment. The reason
to do this is that by such constructions, both left and right frame can be
treated symmetrically and special constraints can be enforced.

The main drawback of the classical approach from last section was that
the notion of occlusions, which are frequently occurring image constella-
tions, were not taken into consideration at all. There was no special treat-
ment, and no countermeasures were taken. Moreover the main model as-
sumption that each pixel has a corresponding pixel in the other frame is
violated in occluded regions: a part of the scene which is occluded in one
frame, cannot fulfil this assumption because there does not even exist a cor-
responding pixel. For this reason, we will now introduce a more elaborate
construction being able to identify and treat such pixels adequately.

7.1 Occlusions

Figure 40 illustrates a common image scene where occlusions naturally oc-
cur. The left side of the loudspeaker is only visible in the left frame. Any
method that assigns to each pixel in one frame a corresponding pixel in the
other frame can only fail on this part of the image, since this underlying
model assumption of the global existence of a corresponding visible pixel
does not fit to the observed images. Hence we have to relax this constraint,
and we will allow pixels to be not assigned to any other pixel. Such pixels
will be called occluded.

Additionally, we will also enforce a uniqueness constraint, meaning that
there might not exist two pixels in one frame being assigned to the same
pixel in the other frame.

7.2 Problem Reformulation

Instead formulating the problem over pixels as before, we will consider all
possible assignments between the two frames as quantity over which to min-
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Figure 40: Real world example stereo images. The left side of the loud-
speaker is only visible in the left image and all pixels in the left frame
belonging to the side do not have an associated corresponding pixel in the
other image.

imise. At some points it will be important to distinguish between pixels in
the left and the right frame, which we will denote by L and R, respectively.
Further the set of all pixels will be combined into P = L∪R. Note that the
previously used symbol L for the label set is not used for this method any
more. Thus, in complete accordance to [38] we define the set of all possible
assignments

A = {< p, q > | p ∈ L , q ∈ R , py = qy, 0 ≤ qx − px ≤ k }

In this definition we assume to work with the left-to-right ortho-parallel
stereo setup and that all disparities that occur lie in the range [0, k]. Thus,
disregarding pixels at the image boundary and assuming only integral dis-
parities we could state the number of possible assignments as

|A| = |L| · (k + 1)

since each pixel in the left frame can only correspond to at most k+1 pixels
in the right frame.

Later, we will present a graph construction for expansion moves, which
will activate assignments instead of assigning disparities to pixels. Of course
there must be correspondence between these two algorithmic ideas, but to
be able to identify occluded pixels we will need the possibility to deactivate
all assignments for a pixel.

This leads us to the notion of activity of a pixel. Formally we de-
fine a configuration as a binary function f : A → {0, 1} which is 1 if the
assignment is active and 0 if the assignment is inactive. We can then de-
fine the set of all currently active assignments in the configuration f as
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A(f) = {a ∈ A|fa = 1} and Np(f) as the set of active assignments involv-
ing the pixel p in the given configuration. The uniqueness of a configuration
can now be just expressed as the case where it holds that

|Np(f)| ≤ 1 ∀p ∈ P

which means that each pixel can just occur once in the set of active assign-
ments. As already touched on, the criterion for a pixel p to be occluded is
in this notion then just the question if |Np(f)| = 0.

For several reasons, we also have to define a translation rule how to
read the disparity from an assignment. To this end we define the disparity
d : A → R as d(a) = d(< p, q >) = qx − px. Note that those terms are all
related to the ortho-parallel left-to-right stereo setup. Further, we define
Aα to be the set of all assignments resembling a pair of pixels having the
disparity α.

With these notions at hand, a configuration f ′ is said to be within one
(single) α-expansion of f , if A(f ′) ⊂ A(f) ∪ Aα. This implies that any
active assignment might become inactive and that any α-assignment can
be activated. But it is not possible to activate any other assignment. If
an assignment a is deactivated by an α-expansion, it might happen that by
this deactivation no assignment incorporating this pixel p becomes active
afterwards, i.e. |Np(f

′)| = 0 then, and thus by an α-expansion pixels can
become occluded.

Figure 41 gives a simplified example of such a set of assignments. The
dashed lines are assignments that are not active. In this figure, the as-
signment < b, g > has disparity 1, is currently active, and hence might
become inactive by an expansion move for label 1. In the main reference

Figure 41: Exemplary situation for a 1-D signal of 4 pixels. R = {a, b, c, d},
L = {e, f, g, h}. Solid lines indicate active assignments, thus currently a
and d have an active disparity of 0, b of 1, and the pixels c and f do not
participate on any active assignment. This means that they are currently
marked as occluded.
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to this method [38], also a variant of α-β-swap moves is introduced, which
we omit since Kolmogorov et al. already there annotated that it seems
that swap moves are not powerful enough to find good local minima for the
corresponding energy function, that we will now discuss in detail.

In order to be able to resemble the new class of occluded pixels in our
energy, we have to introduce a new term to the existing smoothness prior
and data term, a so-called occlusion penalty term Eocc as

E(f) = Edata(f) + Eocc(f) + Esmooth(f) (7.1)

We want to stress here that we will always enforce the uniqueness of a
configuration as a hard constraint that must be fulfilled. Formally it would
be valid to add a term like

∑
p∈P∞ · T (|Np(f)| > 1), but since we will

encode this constraint naturally into our graph construction, we can omit
this term in (7.1).

The new occlusion term in this energy function is necessary in order
to limit the number of pixels being marked as occluded, since the solution
should label only as many pixels occluded as necessary. We use the following
realisation for the occlusion penalty

Eocc(f) =
∑
p∈P

Cp · T (|Np(f)| = 0) (7.2)

where Cp > 0 is the penalty for labelling pixel p occluded. Note that
the summation over P already indicates the underlying symmetry of this
approach, since this penalty is added for pixels from both, the left and the
right frame.

The definition of the data term is relatively straight forward. Using
the function D : A → R to represent the dissimilarity of the pixels of an
assignment, D(< p, q >) = (Il(p)− Ir(q))2, we define

Edata =
∑
a∈A(f)

D(a). (7.3)

The smoothness term for this formulation over assignments is the most
problematic part of this energy function. First, we observe that the neigh-
bourhood set we used in the previous sections is not valid here any more.
We need to define some neighbourhood relation for assignments, i.e.

N ⊂ {{a1, a2} | a1, a2 ∈ A}
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Then the most logical choice for the smoothness term would be

Esmooth =
∑

{a1,a2}∈N
a1,a2∈A(f)

V (a1, a2) (7.4)

which would sum up all variations of active assignments that are neigh-
bours. A suitable neighbourhood relation would then be a relation that
only includes assignments of spatially adjacent pixels, that have different
disparities. Kolmogorov et al. showed in [38] that the computation of just
one α-expansion of an energy of this form is NP-hard. This theory was also
generalised in a successful publication [40], where generic graph construc-
tions for certain classes of energy function are presented.

Thus we have to find another formulation for the smoothness term. This
formulation uses another neighbourhood relationship, which only incorpo-
rates assignments that resemble the same disparity. Thus we can define
formally for a =< p, q > and a′ =< p′, q′ >

N = {{a, a′} | ({p, p′} ∈ N ∗ ∨ {q, q′} ∈ N ∗) ∧ d(a) = d(a′)} (7.5)

where N ∗ denotes the known spatial neighbourhood relation for pixels.
With this new neighbourhood system at hand, we can define

Esmooth =
∑

{a1,a2}∈N

V (a1, a2) · T (f(a1) 6= f(a2)) (7.6)

Using this formulation for a smoothness term, we get a contribution when-
ever one of two spatially adjacent assignments is active and the other is not.
We can understand this choice as the Potts model over assignments.

7.3 Graph construction

The overall algorithm that we will use to compute a local minimum using
this method is essentially the same as the expansion move algorithm from
listing 5 in section 3. We will now define how to compute one α-expansion for
a given labelling f and label α. The algorithm will pick a label α each time
and compute one expansion move for this label. If this decreases the total
energy, it will accept this new labelling and go on from there. As before,
instead of doing this loop until no label can decrease the energy further,
we will stop after a certain number of iterations, because the changes just
affect single pixels.
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We will construct a graph G =< V , E > with two terminal vertices s
and t. A cut on this graph is a set of edges C ⊂ E such that the terminals
are separated in the induced graph GC =< V , E \ C >. Equivalently we can
consider the two disjoint sets of separated sub-graphs by this cut, Vs and
V t. All nodes in Vs are reachable from s in GC and all vertices in V t from
t. Thus we will now try to set up a graph on which a cut coincides to a
labelling. Hence if we can determine a minimum cut, we should also have
found a labelling with minimum energy.

Given a label α and a current configuration or labelling f 0 the graph
construction is as follows: The graph will consist of the two terminals s and
t and one vertex corresponding to each assignment being included in the set

Ã = A0 ∪ Aα

where

A0 = {a ∈ A(f 0) | d(a) 6= α}

is the set of all assignments that are currently active, but that do not have
disparity α, for short: all active other assignments. Further, we need to
define

Aα = {a ∈ A | d(a) = α}

in this formulation. It resembles all α-assignments.
Before we give the edges and their weight, and in order to understand

more intuitively the system behind this construction, we will briefly explain
the so-called voxel-labelling idea. Kolmogorov et. al published in 2005 a
book chapter on stereo vision [41]. There they completely re-motivated
their approach [38] from 2001 that we are currently discussing here, using
the voxel labelling idea. In essence, the graphs of those those two approaches
completely coincide, only the explanation and their motivation is more in-
tuitive and can be illustrated nicely, which is done in figure 42. Given a
labelling or configuration f , one can understand each assignment as a voxel
whose depth is related to its disparity.

In essence, we will now wire all voxels as illustrated accordingly to a
logical system. The important point there is, that a cut on such a graph
will coincide with a labelling. In contrast to the previous constructions,
we will have to insert one directed edge into this graph and also the rule
how to read a labelling from a graph will be a bit more difficult. To really
be able to explain the construction, we have to repeat the figure 42 with
additionally marked voxels for an α-expansion to make clear the important
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Figure 42: Voxel la being idea. Each solid assignment line in the left as-
signment visualisation coincides with a dark grey marked diamond shaped
voxel in the right figure. The different disparity levels are marked there.

Figure 43: Graph for voxel labelling expansion algorithm for expansion
of label α = 1. The solid lined assignments belong to A0. The dashed
assignments belong to Aα. Red colour indicates that this assignment is not
active at present.

points. This is done in figure 43. There, one can see that for an expansion
of label 1, the graph would consist of 5 assignment nodes. Note that for the
label 1, not more assignments than currently marked are possible, because
any other assignment with disparity 1 would point out of the images.

Thus, each pixel will be involved at least in one Aα assignment – if this
is possible. For example pixel e cannot take part in an 1-expansion, due
to its position at the boundary. Next, if for a pixel the currently expanded
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label is not active, then this pixel will be involved in two expansions, which
is a frequently occurring case (e.g. pixels a and h).

The list of all edges and corresponding weights is presented in table 6. If

edge weight for

(s, a) Docc(a) a ∈ A0

(a, t) Docc(a) a ∈ Aα

(a, t) D(a) +Dsmooth(a) a ∈ A0

(s, a) D(a) a ∈ Aα
(a1,a2)
(a2,a1) V (a1, a2)

{a1,a2}∈N
a1,a2∈Ã

(a1, a2) ∞ p∈P,a1∈A0,a2∈Aα
a1,a2∈Np(f̃)(a2, a1) Cp

Table 6: Voxel labelling edge list with corresponding capacities. To identify
the edges later on we will call all edges corresponding to the first two lines
t-links. Further the edge with weight Cp will be called a c-link.

a graph consisting of nodes as given previously and edges as given in table
6 is cut into the two disjoint sets of vertices Vs and V t, we can define how
to read a new configuration from this cut as follows:

∀a ∈ A0 fCa =

{
1, if a ∈ Vs

0, if a ∈ V t

∀a ∈ Aα fCa =

{
1, if a ∈ V t

0, if a ∈ Vs

∀a /∈ Ã fCa = 0

(7.7)

In order to really understand why this construction does what we want,
we give with figure 44 one additional illustration on the standard setting
where two assignments a1 ∈ A0 and a2 ∈ Aα are involved with the same
pixel p, i.e. a1, a2 ∈ Np(f̃). In this sketch we see the two terminals and
the two assignments, which shall concern the same pixel as described. With
the given edges and weights, we get the illustrated situation. Any valid
cut must separate the terminals and hence for this constellation, we have
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Figure 44: Situation for one pixel: Wiring of the two assignments a1, a2 ∈
Np(f̃) where a1 ∈ A0 and a2 ∈ Aα.

4 possibilities to realise this separation, indicated by the dashed lines. The
grey line is not a valid cut in that sense, that its capacity is infinite, since it
contains the edge (a1, a2) which has capacity ∞. Thus there are 3 possibil-
ities left how to cut this situation. The diagonal cut would deactivate both
assignments and leave the pixel occluded, the other two possibilities would
either activate the α-assignment or the previously active assignment.

Thus, each node will have a link to the source and a link to the sink. We
have seen what is happening between nodes that concern the same pixel.
What edges are still missing are the neighbourhood links from the fifth line
in table 6. Since we defined our neighbourhood system to only contain
assignments having equal disparities, these edges will only connect horizon-
tally, on the same disparity level. Note that the edge exists independently
of the activity of the two concerned assignments.

Further, we have to define the occlusion term for an assignment

Docc(a) = Docc(< p, q >) = Docc(p) +Docc(p) (7.8)

where the occlusion term per pixel is defined to be either Docc(p) = Cp if
there is only one assignment among the currently considered assignments
Ã accounting to p, and Docc(p) = 0 else. Also the smoothness cost used in
table 6 still needs to be specified. We say that is sums up the smoothness
terms of all neighbouring assignments being not part of Ã, but with the
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same disparity.

Dsmooth(a1) =
∑

{a1,a2}∈N
a2 /∈Ã

V (a1, a2) (7.9)

Again, we have to redefine the smoothness term V (a1, a2), because if we
took the known terms, we would not get any contribution: With the first
requirement to semi-metrics (4.1) we forced that if the two labels are equal,
then the contribution must be zero as well. The previously mentioned Potts
interaction idea is in this graph construction encoded in the graph itself
and not included in the smoothness penalty term V . Here we just reuse
the idea of an image driven prior to get for two neighbouring assignments
a1 =< p, q > and a2 =< r, s >

V (a1, a2) =

{
λ, if max{|Il(p)− Il(r)|, |Ir(q)− Ir(s)|} > 8

3λ, else
(7.10)

With this formulation we enforce more smoothness if the image intensities
are similar. Kolmogorov et. al. proposed to use parameter values λ = 3
and Cp = 3λ, but we found out that the method is quite stable with respect
to the choice of these variables. This is also the reason why we decided to
just take the choice for V (a1, a2) as proposed. Working at these parameters
will not give tremendous improvements, and thus we just have to alter the
single parameter λ.

Please keep in mind that every expression here that considers pixels
p ∈ P always has to be evaluated twice, once for the left and once for the
right frame.

Moreover, please note that every configuration arising form this method
is symmetric, in that sense that a new labelling in the right-to-left setup
can be just translated uniquely to the left-to-right setup. But again, an
important restriction is that not every pixel is mapped to a disparity value.
Occluded pixels are not labelled at all. But this proceeding of not assigning
a label to an occluded pixel at all, is in principle the only correct possibility,
because there cannot exist a corresponding pixel in the other frame.

7.4 Optimality Considerations

In the main reference to this method [38] a proof is given showing that
the cost of a cut can be related to the energy given in (7.1). We want to
rephrase this proof here now, giving some more details.
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Let G be a graph that has been constructed according to the just given
rules for an input configuration f and the expansion of the label α. Further
let C be a cut on G.

After having specified the graph construction and after having fixed the
rules how to relate a new configuration to a cut on this graph, we obviously
can state that any such new configuration must lie within one α-expansion
of the input configuration.

The next important appraisal relates uniqueness and finiteness of con-
figurations and cuts.

Lemma The finiteness of the cost of the cut C is equivalent to the unique-
ness of the configuration fC.

Proof If the cost of the cut was infinite, then one of the directed edges
with cost ∞ must be part of the cut. The situation is also illustrated in
figure 44, where the dashed line in grey colour represents this cut. Reusing
without loss of generality the notion used in the mentioned sketch, we have
that a1 ∈ A0 and a2 ∈ Aα. One can see that if the ∞-edge is part of the
cut, it must hold that a1 ∈ V t and a2 ∈ Vs. Translating this situation into a
configuration, we get that both assignments would be active, which means
that the configuration is not unique.

The proof of the opposite way of the implication is very similar. If the
fC is not unique, both assignments must be active, and hence it must again
hold that a1 ∈ V t and a2 ∈ Vs. Obviously this is only possible if the∞-edge
is cut. Thus the cost must be infinite. �

We will split the reasoning why the cost of a cut is equal to the energy of
the arising labelling in two parts. For this let fC be unique. The first part
is a

Lemma The cost of all c-links a and all t-links equals Eocc(f
C) plus a

constant.

Proof Given the cut C and the corresponding partition of the node set
into Vs and V t, we can calculate the cost of the t-links by simply summing
up ∑

a∈A0

Docc(a) · T (a ∈ V t) +
∑
a∈Aα

Docc(a) · T (a ∈ Vs) (7.11)
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Similarly, the c-links can only contribute to the cost if they are part of the
cut, i.e. if the corresponding pixel is marked as occluded. Hence we get for
the cost of the c-links ∑

p∈P,a1∈A0,a2∈Aα
a1,a2∈Np(f̃)

Cp · T
(
a1 ∈ V t ∧ a2 ∈ Vs

)
(7.12)

On the other hand we defined in equation (7.2)

Eocc(f) =
∑
p∈P

Cp · T (|Np(f
C)| = 0)

This summation can be split up by the number of involved assignments per
node. Thus the complete occlusion energy is a constant plus

∑
p∈P

|Np(f̃)|=1

Cp · T (|Np(f
C)| = 0) +

∑
p∈P

|Np(f̃)|=2

Cp · T (|Np(f
C)| = 0) (7.13)

The two terms are not perfectly identical because at the boundaries of the
images it might occur that there are pixels with |Np(f̃)| = 0, but their
contribution can be bounded by a constant. For the first term of the last
equation, we know that either an assignment a ∈ A0 or an α-assignment is
concerned, thus

∑
p∈P

|Np(f̃)|=1

Cp · T (|Np(f
C)| = 0)

=
∑
p∈P

Np(f̃)={a}⊂A0

Cp · T (a /∈ A(fC)) +
∑
p∈P

Np(f̃)={a}⊂Aα

Cp · T (a /∈ A(fC))
(7.14)

and the second term in (7.13) is just the standard situation

∑
p∈P

|Np(f̃)|=2

Cp · T (|Np(f
C)| = 0)

=
∑

p∈Pa1∈A0,a2∈Aα
a1,a2∈Np(f̃)

Cp · T (a1, a2 /∈ A(fC))
(7.15)
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Using equation (7.8) to translate from Cp to Docc(p) we have everything at
hand to rewrite (7.13) as∑

p∈P
Np(f̃)={a}⊂A0

Docc(p) · T (a /∈ A(fC))

+
∑
p∈P

Np(f̃)={a}⊂Aα

Docc(p) · T (a /∈ A(fC))

+
∑

p∈Pa1∈A0,a2∈Aα
a1,a2∈Np(f̃)

Cp · T (a1, a2 /∈ A(fC))

(7.16)

Comparing the latter result with equations (7.11) and (7.12) shows that the
stated holds. �

Lemma If C is a minimal cut on G, then fC is unique and minimises E.

Proof We have shown the uniqueness (with respect to assignments to
pixels), and with the last lemma it is sufficient to proof the equality of the
cost of the remaining edges and the remaining parts of the energy function
Edata and Esmooth. Thus we have

Edata(fC) + Esmooth(fC) =∑
a∈A(f)

D(a) +
∑

{a1,a2}∈N

V (a1, a2) · T (f(a1) 6= f(a2)) (7.17)

Our graph construction was focussed on a subset of all possible assignments
Ã ⊂ A. Using the fact that we have no contributions from assignments
a ∈ A \ Ã, we can rewrite the second part of (7.17) as∑
{a1,a2}∈N
a1,a2∈Ã

V (a1, a2) ·T (f(a1) 6= f(a2)) +
∑

{a1,a2}∈N
a1∈Ã,a2 /∈Ã

V (a1, a2) ·T (f(a1) 6= f(a2))

(7.18)
On the other hand, considering the cost of the cut C, and ignoring the costs
of the c-links and t-links, we can state∑

a∈A0(D(a) +Dsmooth(a)) · T (a ∈ Vs)
+
∑

a∈Aα D(a) · T (a ∈ V t)
+
∑
{a1,a2}∈N
a1,a2∈Ã

V (a1, a2) · T ((a1 ∈ Vs, a2 ∈ V t) ∨ (a1 ∈ V t, a2 ∈ Vs))

(7.19)
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For the first two terms of latter equation we can get rid of the indicator
function by rewriting them as∑

a∈A0∩A(fC)

(D(a) +Dsmooth(a)) +
∑

a∈Aα∩A(fC)

D(a)

The argument of the indicator function in the third term of (7.19) can also
be simplified significantly by∑

{a1,a2}∈N
a1,a2∈Ã

V (a1, a2) · T
(
fCa1
6= fCa2

)

The data term contributions just fit together and finally coincide with what
we computed in (7.17). In the same way we see that the last equation
coincides with the first part of (7.18). Hence, what remains is to show that
the smoothness penalties are equal. Thus we want to show that∑

{a1,a2}∈N
a1∈Ã,a2 /∈Ã

V (a1, a2) · T (f(a1) 6= f(a2)) =
∑

a∈A0∩A(fC)

Dsmooth(a)

We can assume for the summation of the first term, that a1 ∈ A0. Because
if this was not the case, i.e. if a1 ∈ Aα, then it would follow that a2 is ele-
ment of Aα too, because the assignments are neighbours, and we imposed a
neighbourhood system that only contains assignments with equal disparity.
In this case, we would violate the condition that a2 /∈ Ã, thus we know that
a1 ∈ A0.

With this detail and the definition of Dsmooth from (7.9) we get their
equality immediately. �

Thus we have proven that a minimum cut on the given graph construction
finds the labelling within one α-expansion with least energy.

Dense disparity In many cases, it is not desired to have occlusion holes
in the disparity map, where the algorithm does not establish a pixel corre-
spondence. As an example, when trying to perform backward registration
[43] or when trying to compare the algorithms in the on-line evaluation form
[47, 48, 49], 100% dense disparity maps are required.

What one can do to get a 100% dense disparity also in occluded regions
is a trick: Assume a pixel that is marked as occluded. Usually such pixels
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are detected in positions where the depth of the scene changes abruptly.
Hence to one side of this occlusion, we will find a foreground pixel, and to
the other side a background pixel. The idea now is to fill-in the disparity of
the background, because the pixels that have no correspondence in the other
frame can just belong to the background. The foreground that caused the
occlusion must still be visible. At which side foreground and background
must be located just depends on whether we are computing the left-to-right
or the right-to-left setting. For left-to-right computations, the background
is always to the left of the occlusion. Thus what we can do is just searching
along the same scanline in left direction until the first non-occluded pixel is
found and insert its disparity to all traversed occluded pixels.

Again we want to refer to the original publications of this approach
[38, 41] where all ideas we presented in this section are taken from. In-
terestingly there is a revised version of [38], unfortunately not officially
published, that re-motivates the graph construction systematically follow-
ing the generic construction in [40]. But this new motivation does not alter
the effective graph construction, the generic graph from [40] only generalises
this construction to a wider formal class of energy functions.

7.5 Results

For our results we started with a configuration f where all assignments are
inactive at the beginning and we travelled twice through all labels α in
ascending order.

Still a problem to be discussed are quantitative error statistics. As
mentioned, we do not output a disparity value for each pixel. This gives
rise to several possible ways how to evaluate the bad pixels measure.

• Standard bad pixels: BP standard does only get a ground truth
disparity map but no ground truth occlusion map. Hence we get
a contribution wherever the disparity does not identify an occluded
pixel.

• Strict non-occluded bad pixels: BP strict For this measure, we
fill in disparities from the background first and then compute the
standard measure which will then give a contribution in every pixel.
No occlusion maps are considered.

• Strict bad pixels (with occlusion map): BP strict non-occ Given
a ground truth, we proceed as follows: If the ground truth votes for
occlusion but the computed disparity not, then this is taken as a
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bad pixel. Vice versa, if the computed disparity gives a false positive
occlusion, then this also is taken as a bad pixel. But, in this setting,
if both ground truth and disparity detect an occlusion in a pixel, then
this must count as a correctly detected occlusion and no bad pixel.

• Relaxed bad pixels (with occlusion map): BP relaxed non-occ

only takes a contribution from a pixel if both ground truth and com-
puted disparity are not occluded.

All necessary images and occlusion maps to evaluate our results were taken
from [49, 48, 47]. For an overview over the performance of this method we
give table 8 and figure 45. We found out that the algorithm is extraordi-
narily stable with respect to the main model parameter λ. This behaviour
is illustrated in table 7.

BP relaxed non-occ

λ = 1 1.768

λ = 3 1.057

λ = 10 1.395

λ = 50 6.545

Table 7: Error evaluation for variations of the model parameter λ of the
method by Kolmogorov and Zabih [38] on the Tsukuba image set. The
static cues factor was δ = 3 in all cases.
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Tsukuba 1.587 2.124 2.518 1.057 0.145

Venus 1.203 1.298 2.076 0.956 0.320

Teddy 7.274 9.876 7.234 5.948 0.722

Cones 14.448 19.095 16.513 11.725 1.303

Table 8: Error statistics for the method by Kolmogorov and Zabih [38]. The
static cues factor was δ = 3 in all cases.
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Figure 45: Results for the important test images from [49, 48, 47]. Left col-
umn: Left input frame. Middle column: Ground truth with occlusions
in red. Right column: Computation results for the presented algorithm.
Top to bottom: Tsukuba, Venus, Cones and Teddy sequence. Quantita-
tive error statistics can be looked up in table 8
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8 Extensions

In sections 6 and 7 we have discussed and reimplemented two successful
graph cut approaches to the stereo vision problem. So far we have not sup-
plemented new ideas. This shall be the topic of this part of this document.

8.1 Advanced static cues

It is possible to exchange the hard thresholding for the image driven term in
[13] by the application of a Perona-Malik type decreasing function. Instead
of the formulation from equation (6.7)

Vpq(fp, fq) = T (fp 6= fq) ·

{
K , if |Ip − Iq| ≥ 5

δ ·K , else

we decided to use instead the continuous function [44]

g(s2) =
1

1 + s2

λ2

. (8.1)

This decreasing function was then applied to suppress the influence of the
smoothness prior at edge positions

Vpq(fp, fq) = g(|Ip − Iq|2) ·K · T (fp 6= fq). (8.2)

Note that this formulation gives at most the value K as smoothness penalty,
instead of adding more weight to the prior as proposed in [13]. This means
that the smoothness term can become arbitrarily close to zero in this formu-
lation. The used function is plotted in figure 46. For computation results
we refer to table 9 and figure 47.

BP non-occ

with static cues
BP non-occ

without static cues
V quadr 3.358 4.491
V linear 3.45 4.06
V Potts 2.467 2.967

Table 9: Error evaluation for the expansion move algorithm on the Tsukuba
sequence.
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Figure 46: Penalisation function proposed by Perona and Malik [44]. In
practice we can choose the parameter λ in such a way, that the smoothness
penalty is never set to zero completely, but still decreased significantly.

We only applied this modified image driven term to the classical ap-
proach from section 6 and did not extend the method from section 7, be-
cause the specialised graph structure of the latter methods limits the degrees
of freedom for changes and extensions considerably.

8.2 Extended Neighbourhood System

Inspired by literature on graph cut based image segmentation [11], we have
extended the underlying neighbourhood model from a 4-connected to an
8-connected neighbourhood system. This extension is relatively simple,
since we only have to consider 4 additional neighbour pixels in all terms.
Moreover, assuming a horizontal and vertical grid size of 1, we have to ap-
proximate the derivatives in diagonal direction correctly: If the grid has
quadratic and non-skewed shape, we get a diagonal grid size of

√
2. Thus,

besides the sum over all smoothness contributions from neighbouring pixels
from equation (3.19), we also have to carefully adjust the weighting of the
image driven parts of the energy function. Instead of just thresholding the
absolute value of the grey value difference of neighbouring pixels, we also
have to respect the diagonal grid size. In practice, we found that the min-
imisation process converges slightly slowlier. Instead two cycles, we used
three cycles of the expansion algorithm. This lead to the results listed in
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with static cues without static cues

Figure 47: Advanced static cues results computed on the Tsukuba dataset
[49] using the expansion move algorithm from section 6. Top row: V quadr.
Middle: V linear . Bottom: V Potts. Quantitative error statistics are given
in table 9.

table 10.
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Image pair
BP non-occ

4 neighbours
BP non-occ

8 neighbours

Tsukuba 2.48 2.171
Venus 2.155 1.872
Cones 11.114 6.499

Table 10: Comparison of statistical error measures for the extended neigh-
bourhood set. Expansion moves and Potts model used. The truncation
level has to be adopted when using 8 neighbours, because otherwise the
smoothness term attains too high weight. Images taken from [49, 48].

8.3 Semi-symmetric Occlusion Handling

Occlusions are a crucial problem for stereo methods, since on the one hand
they occur naturally and on the other hand the usually imposed colour
consistency term is not resembling the physical reality of our scene. Thus
by enforcing our data term to be contributing to our model globally, we
introduce a systematic error. This is an obvious drawback, because we
minimise an energy whose global minimum does not naturally coincide with
the true disparity field.

In section 7, we tried to tackle this problem by allowing the solution
to not establish a correspondence in some pixels and by that we excluded
systematically incorrect contributions of the data term. The downside of
this realisation was a complex and inflexible graph construction, as well as
a not 100% dense disparity field.

On the other hand the method we presented in section 6 had a compa-
rably straightforward and flexible construction, but completely disregarded
occlusions as well as treated the images asymmetrically.

Inspired by a variational method by Ben-Ari and Sochen [3], we now
want to combine the advantages of both methods, i.e. a straight forward
and simple construction, with the symmetric treatment of both input images
and the incorporation of occlusions. Unfortunately we found out in the
meantime that Chang et. al. presented a similar method in 2006 [18].

Consistency checking Instead of the fully symmetric and equitable han-
dling of both images and the enforced uniqueness constraint for pixel assign-
ments, we will use another strategy to detect occlusions. This technique is
known under several names as cross-checking, consistency check or forward-
backward check [20, 30, 8].

The idea is simple: We compute both, left-to-right and right-to-left
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stereo disparity fields dl and dr, respectively. This computation is carried
out using the classical approach from section 6. Since the computation of
dl and dr has basically been done on the same images, we can assume that
the two fields should be consistent. But if this is not the case somewhere,
then we will assume, that this pixel is occluded, because no consistent cor-
responding pixel could be determined in the other frame.

Formally speaking, we compute two disparity fields

dl : Ωl → L and dr : Ωl → L.

As introduced in section 5, these disparity fields establish a correspondence
between the two frames. Explicitly we say that for i ∈ {l, r} a point x in one
frame corresponds to the point x′ in the other frame and can be computed
via

∀x = (x, y) ∈ Ωi : x′ = (x+ di(x), y) .

Since we are equipped with both disparities we can now perform a consis-
tency check as follows: For each pixel at position x = (x, y) ∈ Ωl in the left
frame, we compute its corresponding pixel in the right frame according to
the last equation x′ = (x+dl(x), y) ∈ Ωr. Since we are in the ortho-parallel
setting, no vertical disparities have to be considered. We can now look up
the right-to-left disparity in the right frame, which should lead us into the
left frame to position

x′′ = (x+ dl(x) + dr(x
′), y) ∈ Ωl

again. The notion of consistency can now be defined as the case where

x = x′′.

This process is illustrated in figure 48 again. Obviously, it is equivalent to
test whether the values of the disparities of corresponding pixels fit:

dl(x) + dr(x + dl(x))
!

= 0 (8.3)

This procure can be defined analogously for the right frame. Note that
it would not make sense to use the advanced approach from section 7 for
the disparity computation here, because the left-to-right and right-to-left
field being produced by this method must fulfil this consistency assumption
already by the underlying model of the method.
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Figure 48: Consistency checking. Starting from one frame, we try to go to
the other frame and from there back to the first frame again.

Mistrusting inconsistent pixels We cannot be sure to have an occlu-
sion whenever the consistency check detects irregularities, but at least we
know that we are confronted with a problematic pixel. But in case that we
really have an occlusion in this pixel, we know definitely that the colour
consistency assumption that our data term imposes does not reflect the re-
ality. Thus, we will switch off the data term whenever the consistency check
fails.

To this end we compute two consistency fields Cl : Ωl → [0, 1] and
Cr : Ωr → [0, 1] as

Cl(x) = g ((dl(x) + dr(x + dl(x))) (8.4)

where the function g is again the function from (8.1) due to Perona and
Malik [44]. For our tests we took the value λ = 1 for the parameter of this
function.

The right consistency field can be computed analogously to (8.4). We
can then realise the disabling of the data term by multiplying it with the
corresponding consistency field. Hence we will reuse the graph construction
from section 6, with the new data terms D̃l

p(fp) and D̃r
p(fp)

D̃i
p(fp) = Ci(p) ·Dp(fp) for i ∈ {l, r} (8.5)

where Dp is the usual data term for stereo vision from equation (3.18).
Chang et al. [18] did not use a Perona Malik type function that only partly
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deactivate their data term, they completely disabled the data term as soon
as there is any inconsistency detected during the cross-checking.

We may not forget to enable the image driven part of the smoothness
prior if we disable partially the data term. This is very important, because
by that the discontinuities in the disparity field will be aligned with discon-
tinuities in the image.

The general proceeding is obvious now: We will repeatedly compute both
left-to-right and right-to-left disparity fields with the new data term from
(8.5). After each iteration we will update the consistency fields with the
fresh disparity information. As output, we give the disparity field as com-
puted. It would be possible as well to hand out the occlusion map, because
we compute them anyway after each iteration.

As initialisation for Cl and Cr we just use fields that have value 1 every-
where, i.e. the standard stereo computation as introduced in section 6. We
let our algorithm perform 4 iterations. The disparity computations in each
iteration can easily be performed in parallel on machines with more than
one processing unit, because the computations do not need to exchange any
information that might get changed at runtime. By that the computation
time just increases by the number of iterations.

Figure 49 and table 11 present visual and quantitative results of this
simple algorithm. Figure 50 illustrates the first few iterations of our al-
gorithm on the Tsukuba sequence. One can see that the occlusion maps
improve in the first few iterations, and worsen bit then. This is a behaviour
one still has to investigate on, maybe a relaxation of the binary decision for
occlusions might help here. Usually we would expect a convergence of the
resulting disparities and occlusion maps after some iterations.

Concluding this method, we can state that we have used simplest means
to improve the performance of the classical graph cut method by Boykov
et al. significantly. This might be interesting, because the intuitive graph
construction can be used to get really good results. Unfortunately we have
not been the first to combine these two concepts, [18] proposed a very similar
idea already at the Asian Conference on Computer Vision in 2006.
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Figure 49: Computed disparities (top row), consistency fields (middle) and
error images (bottom) for the Tsukuba and the Venus image sequence [49,
48]. For the consistency fields, dark colours indicate inconsistent areas. The
error image is shaded in grey in all areas where the ground truth occlusion
map is marked as occluded, these areas do not count for the BP strict non-occ

and BP relaxed non-occ error measures.
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Sequence our approach Boykov et al. [13] Kolmogorov [38]

Tsukuba 1.66 2.171 1.057
Teddy 8.839 9.21 5.948
Cones 5.533 8.525 11.725
Venus 1.805 1.872 0.956

Table 11: Comparison of quantitative error statistics results between the
discussed algorithms and our proposed algorithm. Numbers given present
the BP relaxed non-occ measure. Note that the third column gives the error
statistics of the base method by [13], but with all our extensions already
enabled.

8.4 Other extensions

Besides the just presented extensions, we also tried to adapt several suc-
cessful methods and ideas from the field of variational methods to graph
cuts. Among those, e.g. we tried to impose a gradient constancy assump-
tion [56, 14] additionally to the colour or grey value consistency assumption.
This idea assumes that two pixels correspond, if their derivative of the im-
age intensities is similar. The advantage of this assumption is that it is
invariant under additive illumination changes, which can be very helpful in
practice.

There are several ways how to implement and realise such an additional
gradient constancy term. Especially the question at which point to intro-
duce the robust penalisation is interesting. Either, one can sum together
the gradient and grey value constancy terms where each term itself is robus-
tified [15], e.g. in a TV fashion, or one can sum the squared terms together
and apply the robust penaliser to the result [14]. In contrast to their varia-
tional counterparts, we found out that for graph cuts the latter proceeding
according to the data term in the method of Brox et al. [14] leads to better
results. But still we have to note that the quality of the computed dispari-
ties does not increase by using a gradient constancy assumption – at least
not for the common test sequences that we used [49, 48, 47]. One resulting
disparity obtained with the combined robustification [14] is given in figure
51.

The reason why generally the idea of incorporating derivative informa-
tion unfortunately does not enhance the results of our graph cut method
seems to be the averaging that necessarily happens when estimating the
partial derivatives of the images. By this averaging, the previously pre-
cisely localised image information is blurred. This blur is unfortunately not
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Disparity Consistency Cl BP relaxed non-occ

2.168

1.672

1.908

1.660

Figure 50: Behaviour of the algorithm over the first 4 iterations. Top row
to bottom: Disparity and consistency fields after first, second, third and
fourth iteration.

eliminated in the optimisation procedure and is still present in the resulting
disparity field.
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Figure 51: Left: Computation result using enabled gradient constancy
assumption for β = 5.4. Right: Result for the CLG idea [17].
BP relaxed non-occ = 3.84

Another unfortunately unsuccessful extension was the incorporation of
block matching ideas, such as proposed by [17]. The underlying idea is to
not only compare single pixels, but to compare patches of the images. In
practice, the data term is evaluated on all pixels in a certain neighbourhood
of the currently considered central pixel and their result is averaged. The
big disadvantage of this idea in practice is that the assumption that the
disparity is constant in this neighbourhood is not true if we consider a pixel
near a depth discontinuity. Thus, such a CLG data term necessarily has to
lead to blurring effects in the disparity. Like for the previously mentioned
gradient constancy assumption, we found out that the order in which to
sum up and penalise is very important. As before, a separately robustified
version that sums up the already penalised parts of the convolution showed
to give worse results as the opposite order. What we did was formally to
use a data term

Edata(f) =
∑
p∈P

Ψ (h ∗D(fp)) (8.6)

In this formulation, the convolution of the data term with the kernel h inside
the robust penaliser function can be written as

Ψ (h ∗D(fp)) = Ψ

 ∑
x∈Γ(h)

h(x) ·Dp+x(fp)

 (8.7)

where Γ(h) denotes the set of relative pixel positions where h does not van-
ish. Note that the data term is evaluated with the same constant disparity
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value in all shifted positions. It is important here that the term Dp(fp)
in (8.7) is e.g. the squared grey value difference. The penalising function
was chosen as Ψ(x) =

√
x which lead to an L1 penalisation finally. For the

convolution kernel h we used in practice binomial kernels as e.g.

h =
1

256
·

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

where the centre position denotes pixel position (0, 0). Increasing their size
lead in the same way to comparably growing blurring effects. But as already
mentioned in the original publication [17], this methodology should render
the estimation of the disparity robust against noise in the input imagery.
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9 Conclusion

In this thesis we have explored the world of graph cuts, a powerful method
for discrete optimisation. Starting from different optimisation problems, we
implemented and evaluated graph cut based optimisation processes.

After presenting graph theoretical fundamentals in section 2, we dived
into the field of graph cuts in section 3 for the first time. There we tried to
compare the computed results with those of related variational methods.

In section 4 we have discussed important properties of the penaliser func-
tions. In particular, we reasoned why subadditivity is of such importance
for the shape of discontinuities in the solution. Fortunately, we considered
graph constructions being especially well suited for subadditive functions.
A very important instance of such functions was the Potts model, which
lead to piecewise constant solutions with perfectly sharp discontinuities.

Sections 5, 6 and 7 finally brought us to the main topic this thesis: Stereo
Vision. We saw two successful methods, the first model only incorporated
basic and straight forward model assumptions. The next method presented
in section 7 was more advanced and made use of a fully symmetric treatment
of both frames. This is also reflected in the quantitative error statistics:
While the basic approach by Boykov et al. lead to moderate results, we
saw that the symmetric method by Kolmogorov and Zabih really produced
disparity fields of remarkable quality.

In the final part of this thesis we introduced several smaller contributions
known from other related methods such as image driven smoothness terms
also for other than the Potts models, gradient constancy assumptions and
robust penalisation for the data term. We also extended the neighbourhood
system, which lead to slightly improved results. Finally we adopted an
occlusion treatment technique inspired from a variational stereo method
[3, 18], which also lead us to improved results.

It seems that the main advantages of graph cut based optimisation are the
extended move spaces, that can find local minima of the cost function by
changing multiple pixels at a time. The expansion moves even considered
all pixels at a time and found a labelling that had the least energy among
all possible labellings being reachable by one such expansion move. This is
a very strong capability compared to standard moves, e.g. like simulated
annealing which can only change one pixel in one move. Moreover, we saw
that the optimisation process, although it is not initialisation independent
in theory, converged to almost the same solutions for any initialisations.
The same was true for the order in which the labels were processed.
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An obvious drawback of graph cuts is their fully discrete nature. While
this has a strongly regularising effect in practice, it still constricts their
usage considerably. E.g. the inherent sub-pixel accuracy of methods using
partial differential equations can only be partly overcome by increasing the
number of labels drastically. This in turn blows up the computational effort
to a point where other methods might become equally suitable again. Thus
we have to trade off between the problem size and quality requirements.

While considering all the proposed methods and their results, one should
keep in mind that there is an important difference between the model and its
optimisation. The perfect optimisation strategy will not help, if one tries to
minimise the wrong model. In the same way, if our minimiser cannot find
a good minimum of the perfect model assumption, then can still not get
great results. Practically speaking it seems that a model for stereo vision
that does not take occlusions explicitly into account seemingly cannot get
beyond a certain quality threshold.

9.1 Further work

Besides the two main publications on stereo vision that we have discussed
in detail in this thesis, there are a lot more highly interesting and promising
publications on the topic of graph cut methods. The range of possible fields
of application is wide spread, because we just need to have an appropriate
discrete energy formulation at hand for a certain problem, in order be able to
apply graph cut methods. There is a successful publication by Kolmogorov
and Zabih [40] on exactly this topic of generalising and formalising the
applicability of graph cut methods. Several general function classes are
given there, with corresponding generic graph constructions and optimality
arguments.

We also want to mention a paper by Kim et al. [36] trying to incorporate
the maximisation of mutual information [50, 60] instead of the classical grey
value constancy into the energy formulation for stereo vision.

Optical Flow Another big topic in computer vision, which we have not
treated at all so far is optical flow estimation, which can be seen as a gener-
alisation of the 1-D correspondence problem of ortho-parallel stereo vision
to the 2-D case. There, our search for corresponding pixels is not limited to
the actual scan line, motions may occur in all directions. As a consequence,
our label set must become two-dimensional in order to express horizontal
and vertical motions at a time. While this obviously increases the computa-
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tional effort drastically, it definitely would be interesting to have such sharp
discontinuities as the stereo algorithms have shown us. Moreover the fact
that graph cuts do not have to work on multiple scales of the input images,
which is the case for today’s state of the art methods for optic flow, would
be a great feature of graph cut based optic flow methods.

FusionFlow In the context of the just mentioned optic flow methods and
besides a straightforward extension of already known and existing methods,
e.g. by Boykov et al. [13], there is a very interesting publication by Lem-
pitsky et al. [42] going in a different direction. Especially this work comes
partly across the problem of a fully discretised two dimensional label space.
Instead of trying to estimate the displacement vectors, this approach needs
a number of candidate solutions, which may be computed with any optical
flow method, e.g. variational methods like [35, 17, 14]. Also constant pro-
posal solutions are used. The method then builds a graph for all pairs of
two such proposals and performs a binary optimisation always selecting for
each pixel from one of the two currently processed proposals. In this way,
this method has shown to produce high quality flow fields, although the
proposal solutions used by Lempitsky et al. were themselves of comparably
low quality.

Incorporation of colour information In many cases, the incorporation
of colour information has shown to give a respectable performance gain.
Usually using modern imaging techniques for stereo vision produce colour
images naturally, so this information is available in most cases. There are
several ways how to realise the usage of vector valued image material. A
straight forward idea would be sum up the data terms arising from each
channel. Note that the smoothness prior would not be affected directly, we
would just have to think about how to determine the local image contrast
for colour images if we use the additional image driven term.

Adaptive Disparity Resolution Refinement We have seen that al-
though graph cuts provide powerful means for the energy minimisation pro-
cess in stereo vision, the inherent discretisation of the label space is a clear
drawback. The arising disparity fields show stair casing artefacts, which
are especially in slanted surface regions far away from the perfect solution.
There are techniques to overcome this problem by fitting affine functions
into the solution [5]. This means that after the disparity computation, the
labels are replaced by affine function which have a continuous co-domain.
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Another idea, staying completely in the discrete domain, could be to
develop a method that adaptively detects consecutive labels of interest and
refines the label set L between them. Simple α-β-swap moves could then be
used to relabel the affected pixels. In this way the problem of stair casing
cannot be solved, but at least the height of the steps could be adaptively
reduced and disparity fields of higher quality could be a result.

Software optimisation It has become obvious, that while the software
realisation used for this thesis was very handy and well understandable,
there are inherently large performance drawbacks coming from the extensive
use of pointers. One should note here, that due to its straight-forwardness,
the chosen design was perfect for this kind of exploration of techniques in
the field of graph cuts. But of course, the performance in reality could and
should be improved drastically by other implementations. Moreover, there
is no direct reason why it should not become possible some day to perform
such computations in real time, or at least to compute several frames per
second. The topology of the graphs we use is always similar and specialised
algorithms like [10] can definitely speed up the calculations by orders of
magnitudes.
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