
Numerical Algorithms for Visual Computing II 2010/11
Example Solutions for Assignment 8

Problem 1 (Characteristic Climax) Let us first discuss in general what
characteristics mean of IVPs for hyperbolic PDEs of the type:

ut + f(u)x = 0 (1)

The characteristics are defined as curves in the x-t-domain that fulfill the
following equation:

∂

∂t
u(x(t), t) = 0 (2)

Essentially, the constraint of (2) defines curves along which the solution of
the PDE is constant in respect to changes in the time variable t. Let us now
examine equation (2) by applying the (multidimensional) chain rule:

∂

∂t
u(x(t), t) =

∂

∂x
u
∂

∂t
x+

∂

∂t
u = ut + xtux (3)

Combining this result with the equations (1) and (2), we get:

ut + f(u)x = ut + xtux

In this exercise, we consider only flux functions of the general type f(u)x =
g(u, t)ux. This leads to a simple condition for the characteristics:

xt(t) = g(u, t) (4)

1. For f(u) = 2u condition (4) with g ≡ 2 leads to xt ≡ 2. Thus, the
characteristics are straight lines with slope 2, i.e. they can be described
by:

x(t) = x0 + 2t

Naturally, there are infinitely many straight lines that differ only in x0.

1

- 20

- 15

- 10

- 5

0

5

10

15

20

- 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5

2. In the same way as in 1., we get infinitely many lines of the type
x(t) = x0 + 1

2
t.

3. For the choice of f(u) = 1
2
u2 we get the PDE

ut + uux︸︷︷︸
=(1

2
u2)

x

= 0 (5)

and thus g(u, t) = u(x, t) and therefore, for some fixed point x0, as in
1. and 2., xt ≡ u(x0, t). Since ∂tu(x0, t) = 0 by construction, we know
u(x, t) is constant in respect to t and by that we get xt ≡ u(x0, 0).
Again, the characteristics are straight lines:

x(t) = x0 + u(x0, 0)t (6)

However, this time the slopes vary which means that the lines can
intersect (which in the example from this exercise they do in the point
(1, 1)). At each interesection, a shock occurs, i.e. u becomes a multi-
valued function.

2

- 4

- 3

- 2

- 1

0

1

2

- 2.0 - 1.5 - 1.0 - 0.5 0.0 0.5 1.0 1.5 2.0

Problem 2 (Parabolic Recall)

1. We begin our analysis by considering the discretised diffusion equation

ut = ∇ · (D(u)∇u) (7)

by taking into account the four pixel boundary segments lij,1, . . . , lij,4
as in (12.3):

d

dt
uij(t) =

1

|σi|

4∑
k=1

∫
lij,k

(D(u)∇u) · ~nds. (8)

As a note, in the following we denote D ≡ D(u).∫ t+δt

t

[
d

dt
uij(t)

]
dt︸ ︷︷ ︸

uij(t+δt)−uij(t)

=
1

|σi|

∫ t+δt

t

{
4∑

k=1

∫
lij,k

(D∇u)~nds

}
dt. (9)

In order to give a shorter notation for the time discretisation, we set in
the following ūij(t + δt) =: un+1

ij and ūij(t) =: unij. Let us rewrite this
now as an explicit scheme, i.e.

un+1
ij = unij +

1

|σi|

∫ t+δt

t

{
4∑

k=1

∫
lij,k

(D∇u)~nds

}
dt (10)

3

Now we have to do the spatial discretisation, as in (16.11) we can
rewrite this as

≈ unij +
δt

|σi|

{
4∑

k=1

∫
lij,k

(D∇u)
∣∣
t
~nds

}
(11)

= uni +
δt

∆x∆y

{
4∑

k=1

∫
lij,k

(D∇u)
∣∣
t
~nds

}
(12)

Now, we have to approximate the boundary integrals as in (16.13),
however, we need to be careful here. In the lecture we have used h =
∆x = ∆y. In most applications, this suffices, however in order to be
precise, we have to consider the following. Each direction needs proper
approximation, so if we would want to approximate with respect to the
direction lij,1, i.e. the pixels right neighbour, then we have to consider
this setup:

ui ui+1︸ ︷︷ ︸
spatial derivative

∆y

This means, that we consider for the spatial derivative the standard ap-
proach, however, as the pixel width in y-direction, we have to consider
that the spatial differentiation occurs along the entire border between
both pixels ui and ui+1. As the size of this border is ∆y, we have to
include this in the approximation, i.e.∫

lijk

(D∇u) · ~nds ≈

{
∆y · [(D∇u) · ~n]|mij,k,t

if k = 1, 3

∆x · [(D∇u) · ~n]|mij,k,t
if k = 2, 4

From this we can plug this in into (12):

= unij +
δt

∆x∆y

(
∆y[D∇u · ~n]|mij,1,t

+ ∆x[D∇u · ~n]|mij,2,t
(13)

+ ∆y[D∇u · ~n]|mij,3,t
+ ∆x[D∇u · ~n]|mij,4,t

)
As being given in the instructions, we set as the diffusion tensor (with

4

the function g(s2) =
1

1 + s2

λ2

)

D = g(|∇u|2)I =

(
g(|∇u|2) 0

0 g(|∇u|2)

)

=

1

1 +
u2
x + u2

y

λ2

0

0
1

1 +
u2
x + u2

y

λ2

Now, we have to employ a discretisation of the derivatives. For this,
we will use the central differences, i.e.

g(|∇u|2)
∣∣
t
≈ 1

1 +

(
uni+1,j − uni−1,j

2∆x

)2

+

(
uni,j+1 − uni,j−1

2∆y

)2

λ2

In the following, we abbreviate this to Dn
ij := g(|∇u|2)|i,j,t. The dis-

cretisation of the tensor are then given as in (12.15)

D
∣∣
mi,j,1,t

=: Dn
i+ 1

2
,j

=
Dn
ij +Dn

i+1,j

2

D
∣∣
mi,j,2,t

=: Dn
i,j+ 1

2

=
Dn
ij +Dn

i,j+1

2

D
∣∣
mi,j,3,t

=: Dn
i− 1

2
,j

=
Dn
ij +Dn

i−1,j

2

D
∣∣
mi,j,4,t

=: Dn
i,j− 1

2

=
Dn
ij +Dn

i,j−1

2

We can plug this now in into our initial equation (together with the
scalar products with the respective norms) and get

un+1
ij = unij +

δt

∆x∆y

(
∆y

Dn
ij +Dn

i+1,j

2

uni+1,j − uni,j
∆x

+ ∆x
Dn
ij +Dn

i,j+1

2

uni,j+1 − uni,j
∆y

− ∆y
Dn
ij +Dn

i−1,j

2

unij − uni−1,j

∆x
−∆x

Dn
ij +Dn

i,j−1

2

uni,j − uni,j−1

∆y

)
This leads to our sought iterative method

un+1
ij = unij +

δt

∆x2

(
Dn
ij +Dn

i+1,j

2
(uni+1,j − uni,j)−

Dn
ij +Dn

i−1,j

2
(uij − ui−1,j)

)
+

δt

∆y2

(
Dn
ij +Dn

i,j+1

2
(uni,j−1 − uni,j)−

Dn
ij +Dn

i,j−1

2
(uni,j − uni,j−1)

)
,

5

which concludes our calculations.

2. Let us consider a general nonlinear diffusion equation

ut = ∇ · (D(u)∇u), (14)

where D ≡ D(u) is a nonlinear diffusion tensor, with only diagonal
entries. Let us employ the Theorem of Gauß at (14) over a pixel σi
and divide by |σi| (as in (11.3):

1

|σi|

∫
σi

d

dt
u(~x, t)d~x =

1

|σi|

∫
∂σi

∇ · [D(u)∇u]d~s

Assuming smoothness of u, we can pull the temporal derivative in front
of the left hand side integral, i.e.

d

dt

[
1

|σi|

∫
σi

u(~x, t)d~x

]
︸ ︷︷ ︸

Average grey value
over pixel σi

=
1

|σi|

∫
∂σi

∇ · [D(u)∇u]d~s

⇔ d

dt
ui(t) =

1

|σi|

∫
∂σi

[D(u) · ∇u] · ~nds. (15)

For ∇u ≡ ~0 along ∂σi according to von Neumann boundary conditions
we obtain

d

dt
ui(t) =

1

|σi|

∫
∂σi

[D(u) ·~0] · ~nds = 0, (16)

i.e., analogously to the procedure in §11, we see that the average
grey value is conserved for von Neumann boundary conditions. In
order to have a proper numerical implementation, this von Neumann
boundary needs some further considerations. Consider a 1-D signal
u = (u1, . . . , uN)>. Now consider, we would have to introduce ghost
boundary pixels u0 and uN+1 in order to employ von Neumann condi-
tions for the derivatives on the border pixels. For this, you may just
mirror pixels u1 and uN , so that you have u0 = u1 and uN+1 = uN .
This suffices for the ensurance of the average grey value.

6

Problem 3 (Discrete Theorem of Gauß)

The conservation form of a hyperbolic PDE-discretisation is defined in (16.2)
in the script:

un+1 = unj −
∆t

∆x
(gj+ 1

2
− gj− 1

2
)

gj+ 1
2
≡ g(unj , u

n
j+1)

gj− 1
2
≡ g(unj−1, u

n
j)

A discretisation that can be written in this form is grey-value conservative,
i.e. the average grey value is preserved. In order to write the Lax-Wendroff-
discretisation in the conservation form we have to find a fitting numerical
flux function g(·, ·).

With some simple operations we can rewrite the Lax-Wendroff scheme in a
form that gives us an idea how g might look like:

Un+1
j = Un

j − ∆t
∆x

1

2
(f(Un

j+1)− f(Un
j−1))︸ ︷︷ ︸

:=G1

− ∆t

2∆x
(Aj+ 1

2
(f(Un

j+1)− f(Un
j))− Aj− 1

2
(f(Un

j)− f(Un
j−1)))︸ ︷︷ ︸

:=G2

In order to achieve the conservation form, we have to find g sucht that

G1 +G2 = g(unj , u
n
j+1)− g(unj−1, u

n
j)

holds. For G2 we can easily find a function g(2) that fulfills this equation.
The factors Aj+ 1

2
and Aj− 1

2
already suggest how to split the term:

G2 = − ∆t

2∆x
Aj+ 1

2
(f(Un

j+1)− f(Un
j))︸ ︷︷ ︸

=g
(2)

j+1
2

+
∆t

2∆x
Aj− 1

2
(f(Un

j)− f(Un
j−1))︸ ︷︷ ︸

=g
(2)

j− 1
2

The resulting function g(2) is of the form:

g(2)(U, V) = − ∆t

2∆x
f ′
(

1

2
(U − V)

)
︸ ︷︷ ︸

=A
j± 1

2

(f(U)− f(V))

7

For G1 we first have to rewrite the term with a little trick in order to achieve
a similar situation as in G2:

G1 =
1

2
(f(Un

j+1)− f(Un
j−1)) =

1

2
(f(Un

j+1)− f(Un
j)︸ ︷︷ ︸

=g
(1)

j+1
2

+
1

2
(f(Un

j)− f(Un
j−1)︸ ︷︷ ︸

=g
(1)

j− 1
2

)

Combining the results of the examination of G1 and G2 yields g = g(1) +g(2):

g(U, V) =
1

2
(f(U)− f(V)− ∆t

2∆x
f ′
(

1

2
(U − V)

)
(f(U)− f(V))

8

